WO2017169498A1 - 表面被覆切削工具、およびその製造方法 - Google Patents

表面被覆切削工具、およびその製造方法 Download PDF

Info

Publication number
WO2017169498A1
WO2017169498A1 PCT/JP2017/008300 JP2017008300W WO2017169498A1 WO 2017169498 A1 WO2017169498 A1 WO 2017169498A1 JP 2017008300 W JP2017008300 W JP 2017008300W WO 2017169498 A1 WO2017169498 A1 WO 2017169498A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alternating
constituting
group
atomic ratio
Prior art date
Application number
PCT/JP2017/008300
Other languages
English (en)
French (fr)
Inventor
寛紀 竹下
周平 三角
福井 治世
今村 晋也
広瀬 和弘
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP17774043.8A priority Critical patent/EP3269479B1/en
Priority to US15/567,149 priority patent/US11872636B2/en
Priority to CN201780001560.0A priority patent/CN107848040B/zh
Priority to KR1020177031889A priority patent/KR102268364B1/ko
Publication of WO2017169498A1 publication Critical patent/WO2017169498A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads
    • B23G5/02Thread-cutting tools; Die-heads without means for adjustment
    • B23G5/06Taps

Definitions

  • the present invention relates to a surface-coated cutting tool and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2016-063935, which is a Japanese patent application filed on March 28, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Recent cutting tool trends include the need for dry machining without cutting fluids from the viewpoint of global environmental conservation, the diversification of work materials, and higher cutting speeds to further improve machining efficiency. Therefore, the tool edge temperature tends to become higher and higher. As a result, since the tool life is shortened, the cost burden is large, and the characteristics required for the tool material are becoming increasingly severe.
  • Patent Document 1 when used as a cutting tool or wear-resistant tool, in order to improve wear resistance and surface protection function, WC-based cemented carbide, cermet, high-speed steel, etc.
  • Al x Ti 1-xy Si y C z N 1-z (where 0.05 ⁇ x ⁇ 0.75, 0.01 ⁇ y ⁇ 0.1, 0.00) as a hard coating layer on the surface of the hard substrate.
  • An example of coating an AlTiSi film such as 6 ⁇ z ⁇ 1) is disclosed.
  • the substrate surface has a Ti 1-x Al x (provided that 0.2 ⁇ x ⁇ 0.7) carbide or carbonitride as a main component.
  • An abrasion-resistant film is formed, and Al 1-ab Cr a V b (where 0.2 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.4, a + b ⁇ 0.4) is formed on the surface of the abrasion-resistant film.
  • a cutting tool in which a chipping-resistant coating mainly composed of the above nitride or carbonitride is formed is disclosed. According to this cutting tool, it is said that the tool life can be improved by suppressing chipping or chipping of the cutting edge that occurs in the early stage of cutting, that is, by suppressing exposure of the base material.
  • Patent Document 3 aims to improve wear resistance and chipping resistance, and has different characteristics such as residual stress and hardness.
  • An alternating layer in which one or more layers are alternately laminated is included as a coating layer. Thereby, it is supposed that the abrasion resistance and toughness as the whole coating layer can be improved.
  • the surface-coated cutting tool is a surface-coated cutting tool comprising a base material and a coating formed on the surface of the base material, wherein the coating includes first alternating layers and the first alternating layer.
  • a second alternating layer formed on one alternating layer, wherein the first alternating layer includes a first layer and a second layer, and the second alternating layer includes a third layer and a fourth layer.
  • the first layer and the second layer are alternately stacked one or more layers, the third layer and the fourth layer are alternately stacked one or more layers, and the first layer is It is made of Al a Cr b M1 1-ab nitride or carbonitride, and the atomic ratio of each metal atom constituting the first layer is 0.5 ⁇ a ⁇ 0.9, 0 ⁇ b ⁇ 0.
  • the second layer is made of nitride or carbonitride of Al c Ti d M2 1-cd and constitutes the second layer
  • Each gold The atomic ratio of the group atoms satisfies the relationship of 0.35 ⁇ c ⁇ 0.7, 0.3 ⁇ d ⁇ 0.7, and 0 ⁇ 1-cd ⁇ 0.1
  • the third layer is , Al e Ti f M3 1-ef nitride or carbonitride, and the atomic ratio of each metal atom constituting the third layer is 0.35 ⁇ e ⁇ 0.7, 0.3 ⁇ f ⁇ 0.7 and 0 ⁇ 1-ef ⁇ 0.1 are satisfied
  • the fourth layer is made of nitride or carbonitride of Al g Ti h M4 1-gh , and the fourth layer
  • the atomic ratio of each metal atom constituting the above satisfies the relationship of 0.35 ⁇ g ⁇ 0.7, 0.3 ⁇ d ⁇ 0.7, and
  • the manufacturing method of the surface coating cutting tool which concerns on 1 aspect of this invention is the 1st process which prepares the said base material, and the said 1st layer and the said 2nd layer are each one layer alternately using a physical vapor deposition method.
  • the second step of forming the first alternating layer, and the third layer and the fourth layer are alternately formed on the first alternating layer using a physical vapor deposition method.
  • FIG. 1 is a cross-sectional explanatory view schematically showing and explaining a cross section of the surface-coated cutting tool according to the present embodiment.
  • FIG. 2 is a drawing-substituting photograph in which the lower layer (first alternating layer) of the coating in the present embodiment is photographed with a microscope.
  • FIG. 3A is a drawing-substituting photograph in which the upper layer (second alternating layer) of the coating in this embodiment is photographed with a microscope.
  • FIG. 3B is a drawing substitute photograph showing FIG. 3A in an enlarged manner.
  • FIG. 4A is a drawing-substituting photograph in which the adhesion layer of the coating in this embodiment is photographed with a microscope.
  • FIG. 4B is a drawing substitute photograph showing FIG. 4A in an enlarged manner.
  • FIG. 5 is an explanatory view schematically showing and explaining a film forming apparatus used in the method for manufacturing the surface-coated cutting tool according to the present embodiment in the cross section.
  • FIG. 6 is an explanatory diagram schematically showing and explaining the film forming apparatus used in the method for manufacturing the surface-coated cutting tool according to the present embodiment in the plane.
  • the cutting tool described in Patent Document 2 has insufficient adhesion between the chipping-resistant coating and the wear-resistant coating at the initial stage of cutting when a material such as stainless steel that is easily welded to the cutting edge is cut. As a result, the film peeled off, leaving room for improvement in suppressing chipping of the film.
  • Patent Document 3 The cutting tool described in Patent Document 3 is likely to be welded to the cutting edge. Therefore, in the processing of difficult-to-cut materials such as the coating layer that peels off with welding, the coating layer and the work material react at the initial stage of processing, and a crack is generated between the A layer and the B layer, thereby delamination. Tended to be short-lived, leaving room for improvement.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance, and a method for producing the same.
  • a surface-coated cutting tool is a surface-coated cutting tool including a base material and a coating film formed on the surface of the base material, wherein the coating film includes first alternating layers and A second alternating layer formed on the first alternating layer, wherein the first alternating layer includes a first layer and a second layer, and the second alternating layer includes a third layer and a fourth layer.
  • the first layer and the second layer are alternately stacked one or more layers, and the third layer and the fourth layer are alternately stacked one or more layers, and the first layer
  • the layer is made of nitride or carbonitride of Al a Cr b M1 1-ab , and the atomic ratio of each metal atom constituting the first layer is 0.5 ⁇ a ⁇ 0.9, 0 ⁇ b ⁇ 0.4 and 0 ⁇ 1-ab ⁇ 0.1
  • the second layer is made of nitride or carbonitride of Al c Ti d M2 1-cd
  • the atomic ratio of each metal atom satisfies the relationship of 0.35 ⁇ c ⁇ 0.7, 0.3 ⁇ d ⁇ 0.7, and 0 ⁇ 1-cd ⁇ 0.1
  • the layer is made of Al e Ti f M3 1-ef nitride or carbonitride, and the atomic ratio of each metal atom constituting the third layer is 0.35
  • the atomic ratio e of Al constituting the third layer and the atomic ratio g of Al constituting the fourth layer satisfy the relationship of 0.05 ⁇
  • the surface-coated cutting tool having such a configuration can exhibit excellent chipping resistance and wear resistance, and therefore can withstand severe cutting conditions and obtain excellent cutting edge quality.
  • the atomic ratio c of Al constituting the second layer, the atomic ratio e of Al constituting the third layer, and the atomic ratio g of Al constituting the fourth layer are e ⁇ c ⁇
  • the atomic ratio d of Ti constituting the second layer, the atomic ratio f of Ti constituting the third layer, and the atomic ratio h of Ti constituting the fourth layer satisfy the relationship of g. ⁇ d ⁇ f is satisfied. Thereby, more excellent chipping resistance and wear resistance can be exhibited.
  • the uppermost layer is the second layer.
  • the lowest layer is the first layer or the second layer.
  • the thickness ⁇ 1 of the first layer and the thickness ⁇ 2 of the second layer are 0.005 ⁇ m to 2 ⁇ m, respectively, and ⁇ 1 / ⁇ 2 that is the ratio of the thickness of the first layer to the second layer is 1 ⁇ ⁇ 1 / ⁇ 2 ⁇ 5 is satisfied. Thereby, the oxidation resistance of a film can be improved and the film can be made hard.
  • the thickness ⁇ 3 of the third layer and the thickness ⁇ 4 of the fourth layer are 0.005 ⁇ m to 2 ⁇ m, respectively, and ⁇ 3 / ⁇ 4, which is the ratio of the thickness of the third layer to the fourth layer, is 1 ⁇ ⁇ 3 / ⁇ 4 ⁇ 5 is satisfied. Thereby, the progress of cracks in the coating can be more strongly suppressed.
  • the total thickness of the coating film is 0.5 ⁇ m or more and 15 ⁇ m or less. Thereby, a film is excellent in chipping resistance, and a tool life can be improved.
  • the coating includes an adhesion layer closer to the substrate than the first alternating layer, the adhesion layer has a thickness of 0.5 nm to 20 nm, and the adhesion layer constitutes the substrate.
  • the base material includes hard particles containing WC and a binder phase that bonds the hard particles, the binder phase contains Co, and the adhesion layer includes W, Cr, Ti, Al, and Carbides, nitrides or carbonitrides containing M5, wherein M5 is from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Si and B in the periodic table excluding W, Cr, Ti One or more elements selected.
  • M5 is from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Si and B in the periodic table excluding W, Cr, Ti One or more elements selected.
  • the first alternating layer and the second alternating layer have a cubic crystal structure. Thereby, the hardness of a film can be improved.
  • a method of manufacturing a surface-coated cutting tool includes a first step of preparing the base material, and the first layer and the second layer alternately using a physical vapor deposition method. By laminating one or more layers, the second step of forming the first alternating layer, and the third layer and the fourth layer are alternately formed on the first alternating layer using a physical vapor deposition method. A third step of forming the second alternating layer by laminating one or more layers. Thereby, the surface-coated cutting tool which shows the outstanding chipping resistance and abrasion resistance can be manufactured.
  • the physical vapor deposition method is at least one selected from the group consisting of a cathode arc ion plating method, a balanced magnetron sputtering method, and an unbalanced magnetron sputtering method.
  • the notation in the form of “X to Y” in this specification means the upper and lower limits of the range (that is, X or more and Y or less), and there is no unit description in X, and the unit is described only in Y.
  • the unit of X and the unit of Y are the same.
  • the atomic ratio is not particularly limited, any conventionally known atomic ratio is included, and is not necessarily limited to a stoichiometric range.
  • metal elements such as titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), chromium (Cr), nitrogen (N), oxygen (O), carbon (C), etc.
  • the nonmetallic element does not necessarily have to have a stoichiometric composition.
  • the surface-coated cutting tool according to the present embodiment includes a base material 12 and a coating film 11 formed on the surface of the base material 12, for example, as shown in FIG.
  • the surface-coated cutting tool 1 exhibits excellent chipping resistance and wear resistance, can withstand severe cutting conditions, and obtain excellent cutting edge quality.
  • the surface-coated cutting tool includes a drill, an end mill, a cutting edge exchangeable cutting tip for a drill, a cutting edge exchangeable cutting tip for an end mill, a cutting edge exchangeable cutting tip for milling, and a cutting edge exchangeable cutting tip for turning. It is extremely useful as a tip for pin milling of metal saws, gear cutting tools, reamers, taps, and crankshafts.
  • any substrate can be used as long as it is conventionally known as this type of substrate.
  • cemented carbide for example, WC (tungsten carbide) based cemented carbide, WC, Co (cobalt), or Ti (titanium), Ta (tantalum), Nb (niobium) and other carbonitrides Including those added
  • cermets titanium nitride, titanium carbonitride, etc.
  • high speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), It is preferably either a cubic boron nitride sintered body or a diamond sintered body.
  • a WC-based cemented carbide is used as the base material, either one or both of free carbon and an abnormal layer called ⁇ phase may be included in the structure.
  • a cemented carbide particularly a WC-based cemented carbide, or a cermet (particularly a titanium carbonitride-based cermet).
  • these base materials are particularly excellent in the balance between hardness and strength at high temperatures, and have excellent characteristics as base materials for cutting tools for the above applications.
  • the base material includes hard particles containing WC and a binder phase that bonds the hard particles, and the binder phase more preferably includes Co.
  • the surface-coated cutting tool includes an adhesion layer described later
  • the above is more preferably WC.
  • These substrates may have a modified surface. For example, even if a de- ⁇ layer is formed on the surface of the cemented carbide, it does not depart from the scope of the present invention.
  • the base material includes those having a chip breaker and those having no chip breaker.
  • the edge of the blade edge is sharp edge (the ridge where the rake face and flank face intersect), honing (the sharp edge is given a radius), negative land (the chamfered), and the combination of honing and negative land Anything is included.
  • the coating includes first alternating layers 112 and second alternating layers 113 formed on the first alternating layers 112.
  • the first alternating layer 112 includes a first layer and a second layer.
  • the second alternating layer 113 includes a third layer and a fourth layer.
  • the first layer and the second layer are alternately stacked one or more layers.
  • the third layer and the fourth layer are alternately stacked one or more layers.
  • the first alternating layer 112 is a multilayer film composed of two or more layers configured to particularly have wear resistance, and may be referred to as “abrasion resistant layer” in the present specification.
  • the first alternating layer 112 is sometimes referred to as a “lower layer” in this specification because the second alternating layer 113 is formed thereon.
  • the second alternating layer 113 is a multilayer film composed of two or more layers that are particularly configured to have chipping resistance, and may be referred to as a “chipping-resistant layer” in this specification. Further, since the second alternating layer 113 is formed on the first alternating layer 112, it may be referred to as an “upper layer” in this specification.
  • the coating 11 covers the base 12.
  • the film 11 covers the entire surface of the base material
  • the base material 12 is not partially covered with the film 11 or the laminated structure of each layer constituting the film 11 is partially different. However, it does not depart from the scope of the present invention.
  • the coating can include other layers in addition to the first alternating layer, the second alternating layer, and the adhesion layer described below.
  • the coating can include an underlayer, for example, as a layer formed between the substrate.
  • the coating film can also include a surface protective layer as a layer for protecting the surface.
  • As the underlayer a solid solution layer containing an element constituting the film can be exemplified. By having the solid solution layer, the uniformity of the coating can be further secured.
  • the formation method of these layers can use a well-known method.
  • underlayers include TiCNO layer, TiBN layer, TiC layer, TiN layer, TiAlN layer, TiSiN layer, AlCrN layer, TiAlSiN layer, TiAlNO layer, AlCrSiCN layer, TiCN layer, TiSiC layer, CrSiN layer, AlTiSiCO layer, TiSiCN layer Etc.
  • Examples of the surface protective layer include an ⁇ -Al 2 O 3 layer and a ⁇ -Al 2 O 3 layer.
  • the coating is skillfully eliminated by degrading each layer such as brittleness while maintaining the original suitable characteristics of each layer by laminating a layer with excellent wear resistance and a layer with excellent chipping resistance. Can be made. Furthermore, the strength of the coating film can be remarkably improved by forming a multilayer in which two or more layers are alternately laminated in each layer as compared with the case where each layer is formed alone. When each layer is formed independently, the brittleness tends to increase as the layer thickness increases. However, two or more layers are alternately stacked, and the thickness per unit layer is controlled to be thin as a multilayer. This can be suppressed.
  • film or “layer” is used for the structural units constituting the film, but it is intended to clearly distinguish both “film” and “layer”. It is not what you have.
  • the total thickness of the coating is preferably 0.5 ⁇ m or more and 15 ⁇ m or less. More preferably, the upper limit of the total thickness is 10 ⁇ m or less, more preferably 6 ⁇ m or less, and the lower limit is 0.5 ⁇ m.
  • the total thickness of the coating is less than 0.5 ⁇ m, the thickness of the coating is too thin and the life of the surface-coated cutting tool tends to be shortened.
  • the total thickness of the coating exceeds 15 ⁇ m, the coating tends to chip at the initial stage of cutting, so that the life of the surface-coated cutting tool tends to be shortened.
  • the total thickness of the coating means the total thickness including the other layers when the first alternating layer, the second alternating layer, the adhesion layer described later, and other layers are included.
  • the first alternating layer and the second alternating layer preferably have a cubic crystal structure.
  • the hardness of a film can be improved.
  • the first alternating layer and the second alternating layer are entirely amorphous or partly amorphous, the hardness tends to decrease and the life of the surface-coated cutting tool tends to be shortened.
  • the overall thickness of the coating can be adjusted by appropriately adjusting the film formation time. Further, in the present specification, when “the thickness of the coating” is referred to, the thickness means an average thickness.
  • the thickness of the coating is, for example, by forming the coating on an arbitrary base material, cutting it at an arbitrary position, and cross-sectioning the scanning electron microscope (SEM: Scanning Electron Microscope) and transmission electron microscope (TEM: Transmission). It can be measured by observing with a scanning transmission electron microscope (STEM) or a scanning transmission electron microscope (STEM).
  • STEM scanning transmission electron microscope
  • STEM scanning transmission electron microscope
  • STEM scanning transmission electron microscope
  • the sample for cross-sectional observation can be produced using, for example, a focused ion beam apparatus (FIB: Focused Ion Beam system), a cross section polisher apparatus (CP: Cross section Polisher), or the like.
  • FIB Focused Ion Beam system
  • CP Cross section Polisher
  • the thicknesses at the respective cross-sections are measured, and the average value of the measured values can be set as the “coating thickness”.
  • the composition of the elements constituting the film can be measured by an energy dispersive X-ray spectroscopy (EDX) apparatus attached to the SEM or TEM.
  • EDX energy dispersive X-ray spectroscopy
  • the thickness and composition of the first to fourth layers described later can also be measured by the same method as described above.
  • the first alternating layer 112 includes a first layer and a second layer as described above.
  • the first layer and the second layer are alternately stacked one or more layers.
  • the thickness ⁇ 1 of the first layer and the thickness ⁇ 2 of the second layer are each preferably 0.005 ⁇ m or more and 2 ⁇ m or less.
  • the respective layers are mixed and tend not to obtain the effect of alternately laminating the first layer and the second layer. There is.
  • the thickness ⁇ 1 of the first layer and the thickness ⁇ 2 of the second layer each exceed 2 ⁇ m, the effect of suppressing the progress of cracks tends to be difficult to obtain.
  • the thickness ⁇ 1 of the first layer and the thickness ⁇ 2 of the second layer are more preferably 0.005 ⁇ m or more and 0.5 ⁇ m or less, respectively.
  • ⁇ 1 / ⁇ 2 which is the ratio of the thickness of the first layer and the second layer satisfies the relationship of 1 ⁇ ⁇ 1 / ⁇ 2 ⁇ 5.
  • ⁇ 1 / ⁇ 2 is less than 1, the oxidation resistance of the coating tends to decrease.
  • ⁇ 1 / ⁇ 2 exceeds 5, there is a tendency that it is difficult to obtain the effect of suppressing the progress of cracks caused by alternately laminating the first layer and the second layer.
  • ⁇ 1 / ⁇ 2 satisfies the relationship 1 ⁇ ⁇ 1 / ⁇ 2 ⁇ 4.
  • the first layer is made of nitride or carbonitride of Al a Cr b M11 -ab , and the atomic ratio of each metal atom constituting the first layer is 0.5 ⁇ a ⁇ 0.9, 0 ⁇
  • the relations b ⁇ 0.4 and 0 ⁇ 1-ab ⁇ 0.1 are satisfied.
  • the first layer contains Cr (chromium) together with Al (aluminum), the oxidation resistance is improved. Further, the first layer can be increased in hardness by combining Al and Cr so that the crystal structure becomes cubic.
  • the atomic ratio b of Cr constituting the first layer is larger than 0 and not larger than 0.4.
  • the atomic ratio b of Cr needs to be larger than 0 in order to increase the hardness of the first layer by combining Al and Cr.
  • the atomic ratio b of Cr exceeds 0.4, the hardness of the first layer tends to decrease.
  • the atomic ratio b of Cr is preferably 0.2 or more and 0.34 or less (0.2 ⁇ b ⁇ 0.34).
  • the atomic ratio a of Al constituting the first layer is 0.5 or more and 0.9 or less.
  • the atomic number ratio a of Al is less than 0.5, the oxidation resistance of the coating tends to decrease.
  • the atomic ratio a of Al exceeds 0.9, the hardness tends to decrease and wear tends to be accelerated.
  • the atomic number ratio a of Al is more preferably 0.56 or more and 0.7 or less (0.56 ⁇ a ⁇ 0.7).
  • M1 is a Group 4 element (Zr, Hf, etc.), Group 5 element (V, Nb, Ta, etc.), Group 6 element (Mo, W, etc.), Si (silicon) of the periodic table excluding Cr and Ti And one or more elements selected from the group consisting of B (boron).
  • B boron
  • M1 is preferably any element of B, Si, Zr, V, Nb, W, and Ta.
  • B boron
  • B boron
  • an element having free electrons is regarded as a metal and boron is converted into a metal. It shall be included in the range.
  • the second layer is made of nitride or carbonitride of Al c Ti d M2 1-cd , and the atomic ratio of each metal atom constituting the second layer is 0.35 ⁇ c ⁇ 0.7, 0. The relations 3 ⁇ d ⁇ 0.7 and 0 ⁇ 1-cd ⁇ 0.1 are satisfied.
  • the second layer is made of nitride or carbonitride, the film hardness is increased and wear resistance is improved, and the friction coefficient against the work material is reduced, so that the welding resistance is improved. is there.
  • the second layer contains Ti together with Al, the wear resistance is improved. Furthermore, since the second layer is a combination of Al and Ti, there is an effect that the oxidation resistance improves as the amount of Al added increases.
  • the atomic ratio c of Al constituting the second layer is 0.35 or more and 0.7 or less.
  • the atomic ratio c of Al is less than 0.35, the oxidation resistance of the coating tends to decrease.
  • the atomic ratio c of Al exceeds 0.7, the hardness of the second layer tends to decrease and wear tends to be accelerated.
  • the atomic ratio c of Al is more preferably 0.4 or more and 0.65 or less (0.4 ⁇ c ⁇ 0.65).
  • the atomic ratio d of Ti constituting the second layer is not less than 0.3 and not more than 0.7.
  • the atomic ratio d of Ti is less than 0.3, the hardness tends to decrease and the wear tends to accelerate.
  • the atomic ratio d of Ti exceeds 0.7, the amount of Al added to the coating is relatively small, and the oxidation resistance tends to decrease.
  • the atomic ratio d of Ti is more preferably 0.4 or more and 0.6 or less (0.4 ⁇ d ⁇ 0.6).
  • M2 is one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Si and B in the periodic table excluding Cr and Ti. By being such an element, the second layer is improved in heat resistance, film hardness and welding resistance.
  • M2 is preferably any element of B, Si, Zr, V, Nb, W, and Ta.
  • M1 and M2 are the same or different. That is, M1 and M2 may be the same element or different elements.
  • the first alternating layer preferably has a lowermost layer of the first layer or the second layer. Since the lowermost layer is the first layer or the second layer, the adhesion of the entire film becomes uniform, so that peeling at the interface between the coating and the substrate can be suppressed. When the lowermost layer is the first layer, oxidation from the interface between the substrate and the coating can be suppressed even if the substrate is exposed due to the progress of wear. Furthermore, when the lowermost layer is the second layer, the stress tends to be small in the second layer. Therefore, particularly in the case of intermittent machining such as milling or end milling that repeatedly applies a load to the cutting edge, The peelability tends to be remarkably improved.
  • the uppermost layer of the first alternating layer is preferably the second layer.
  • the adhesion between the first alternating layer and the second alternating layer can be further strengthened, as will be described later.
  • the first alternating layer is a mixed layer in which the lowermost layer and / or the uppermost layer are composed of a compound in which the composition of the compound constituting the first layer and the compound constituting the second layer are mixed.
  • the composition of the mixed layer include elements composed of a first layer and a second layer, and examples thereof include TiAlCrN, TiAlCrCN, TiAlCrC, TiAlCrSiN, TiAlCrSiCN, and TiAlCrSiC.
  • the second alternating layer 113 is formed on the first alternating layer 112 and on the side opposite to the base material side of the first alternating layer 112.
  • the second alternating layer 113 includes a third layer and a fourth layer.
  • the third layer and the fourth layer are alternately stacked one or more layers.
  • the thickness ⁇ 3 of the third layer and the thickness ⁇ 4 of the fourth layer are preferably 0.005 ⁇ m or more and 2 ⁇ m or less, respectively.
  • the thickness ⁇ 3 of the third layer and the thickness ⁇ 4 of the fourth layer are each less than 0.005 ⁇ m, there is a tendency that the respective layers are mixed and the effect obtained by alternately stacking the third layer and the fourth layer cannot be obtained. is there.
  • the thickness ⁇ 3 of the third layer and the thickness ⁇ 4 of the fourth layer each exceed 2 ⁇ m, it is difficult to obtain the effect of suppressing the progress of cracks.
  • the thickness ⁇ 3 of the third layer and the thickness ⁇ 4 of the fourth layer are more preferably 0.005 ⁇ m or more and 0.5 ⁇ m or less.
  • ⁇ 3 / ⁇ 4 which is the ratio of the thicknesses of the third layer and the fourth layer, satisfies the relationship 1 ⁇ ⁇ 3 / ⁇ 4 ⁇ 5.
  • ⁇ 3 / ⁇ 4 is less than 1, both when ⁇ 3 / ⁇ 4 exceeds 5, there is a tendency that the effect of suppressing the progress of cracks is difficult to obtain.
  • ⁇ 3 / ⁇ 4 satisfy the relationship 1 ⁇ ⁇ 3 / ⁇ 4 ⁇ 4.
  • the third layer a nitride of Al e Ti f M3 1-ef or carbonitrides, the atomic ratio of the respective metal atoms constituting the third layer, 0.35 ⁇ e ⁇ 0.7,0.
  • the relations 3 ⁇ f ⁇ 0.7 and 0 ⁇ 1-ef ⁇ 0.1 are satisfied.
  • the third layer is made of nitride or carbonitride, the hardness of the film is increased and the wear resistance is improved, and the welding coefficient is improved by reducing the friction coefficient against the work material. is there.
  • the third layer contains Ti together with Al, the wear resistance is improved. Furthermore, since the third layer is a combination of Al and Ti, there is an effect that the oxidation resistance improves as the amount of Al added increases.
  • the atomic ratio e of Al constituting the third layer is not less than 0.35 and not more than 0.7.
  • the atomic ratio e of Al is less than 0.35, the oxidation resistance of the coating tends to decrease.
  • the atomic ratio e of Al exceeds 0.7, the hardness of the third layer tends to decrease and wear tends to be accelerated.
  • the atomic ratio e of Al is more preferably 0.4 or more and 0.65 or less (0.4 ⁇ e ⁇ 0.65).
  • the atomic ratio f of Ti constituting the third layer is not less than 0.3 and not more than 0.7.
  • the atomic ratio f of Ti is less than 0.3, the hardness tends to decrease and the wear tends to be accelerated.
  • the atomic ratio f of Ti exceeds 0.7, the amount of Al added to the coating is relatively small, and the oxidation resistance tends to decrease.
  • the atomic ratio f of Ti is more preferably 0.4 or more and 0.6 or less (0.4 ⁇ f ⁇ 0.6).
  • M3 is one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Si and B in the periodic table excluding Cr and Ti. By being such an element, the third layer has improved heat resistance, film hardness, and welding resistance.
  • M3 is preferably any element of B, Si, Zr, V, Nb, W, and Ta.
  • M1 to M3 are the same or different. That is, M1, M2, and M3 may be the same element or different elements. However, from the viewpoint of further strengthening the adhesion between the first alternating layer and the second alternating layer, M2 and M3 are preferably the same.
  • the fourth layer is made of a nitride or carbonitride of Al g Ti h M4 1-gh , and the atomic ratio of each metal atom constituting the fourth layer is 0.35 ⁇ g ⁇ 0.7, 0.8.
  • the relations 3 ⁇ h ⁇ 0.7 and 0 ⁇ 1-g ⁇ h ⁇ 0.1 are satisfied.
  • the fourth layer is made of nitride or carbonitride, the hardness of the film is increased and the wear resistance is improved, and the welding resistance is improved by reducing the friction coefficient against the work material. is there.
  • the fourth layer contains Ti together with Al, the wear resistance is improved. Further, since the fourth layer is a combination of Al and Ti, there is an effect that the oxidation resistance improves as the amount of Al added increases.
  • the atomic ratio g of Al constituting the fourth layer is 0.35 or more and 0.7 or less.
  • the atomic ratio g of Al is less than 0.35, the oxidation resistance of the coating tends to decrease.
  • the atomic ratio g of Al exceeds 0.7, the hardness of the fourth layer tends to decrease and wear tends to be accelerated.
  • the atomic number ratio g of Al is more preferably 0.4 or more and 0.65 or less (0.4 ⁇ g ⁇ 0.65).
  • the atomic ratio h of Ti constituting the fourth layer is not less than 0.3 and not more than 0.7.
  • the atomic ratio h of Ti is less than 0.3, hardness tends to decrease and wear tends to be accelerated.
  • the atomic ratio h of Ti exceeds 0.7, the amount of Al added to the coating is relatively small, and the oxidation resistance tends to decrease.
  • the atomic ratio h of Ti is more preferably 0.4 or more and 0.6 or less (0.4 ⁇ h ⁇ 0.6).
  • M4 is one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Si and B in the periodic table excluding Cr and Ti. By being such an element, the fourth layer has improved heat resistance, film hardness, and welding resistance. Specifically, M4 is preferably any element of B, Si, Zr, V, Nb, W, and Ta. M1 to M4 are the same or different. That is, M1, M2, M3, and M4 may be the same element or different elements. However, from the viewpoint of further strengthening the adhesion between the third layer and the fourth layer, M3 and M4 are preferably the same.
  • the second alternating layer is preferably formed on the uppermost layer, with the uppermost layer of the first alternating layer being the second layer. Since the second layer in the first alternating layer has a composition close to that of the third and fourth layers constituting the second alternating layer, the adhesion between the first alternating layer and the second alternating layer is further strengthened. Because you can. From this point of view, the uppermost layer and the lowermost layer of the second alternating layer may be either the third layer or the fourth layer.
  • the atomic ratio c of Al constituting the second layer, the atomic ratio e of Al constituting the third layer, and the atomic ratio g of Al constituting the fourth layer satisfy the relationship of e ⁇ c ⁇ g. It is preferable to satisfy.
  • the atomic ratio d of Ti constituting the second layer, the atomic ratio f of Ti constituting the third layer, and the atomic ratio h of Ti constituting the fourth layer satisfy the relationship h ⁇ d ⁇ f. Is preferred. These can improve the adhesion between the first alternating layer and the second alternating layer, while further strengthening the hardness of the entire coating, so that it has excellent chipping resistance and wear resistance. it can.
  • the third layer and the fourth layer which are chipping-resistant layers, are configured to be very similar in terms of their constituent elements and composition ratio.
  • the chipping resistant layer (second alternating layer) is observed macroscopically as if having a single composition.
  • the atomic ratio e of Al constituting the third layer and the atomic ratio g of Al constituting the fourth layer satisfy the relationship of 0.05 ⁇
  • the third layer The atomic ratio f of Ti constituting Ti and the atomic ratio h of Ti constituting the fourth layer satisfy the relationship of 0.05 ⁇
  • the composition ratio of the third layer and the fourth layer does not match at least.
  • FIG. 3B two types of streaks or layer portions are observed microscopically, and the third layer and the fourth layer can be distinguished.
  • an interface (a surface having a slight distortion until dislocation is not reached) exists between the third layer and the fourth layer. Is done.
  • the chipping resistant layer has this interface, it is possible to suppress the propagation of cracks between the third layer and the fourth layer when cracks occur in the coating. Furthermore, since the third layer and the fourth layer are very similar in their constituent elements and composition ratio, the crystal lattice can be continuous between the third layer and the fourth layer. Thereby, a 3rd layer and a 4th layer can be provided with strong adhesiveness.
  • the coating 11 preferably includes an adhesion layer 111 on the substrate 12 side of the first alternating layer 112. That is, the coating 11 preferably includes an adhesion layer 111 between the first alternating layers 112 and the substrate 12. More preferably, the adhesion layer 111 in the coating 11 is in contact with the first alternating layer 112 and the substrate 12. When the coating 11 includes the adhesion layer 111, peeling of the coating 11 from the substrate 12 is prevented, and the life of the surface-coated cutting tool 1 can be stabilized.
  • the adhesion layer preferably has a thickness of 0.5 nm to 20 nm.
  • the thickness of the adhesion layer is less than 0.5 nm, it may be too thin to obtain a sufficient adhesion force.
  • the thickness of the adhesion layer exceeds 20 nm, the residual stress in the adhesion layer is increased, and there is a possibility that the adhesion layer may be easily peeled off.
  • the thickness of the adhesion layer is more preferably 0.5 nm or more and 10 nm or less, and particularly preferably 2 nm or more and 6 nm or less.
  • the thickness of the adhesion layer can also be measured by TEM, STEM, or the like.
  • the measurement method may be obtained by obtaining a cross-sectional sample of the adhesion layer, similarly to the measurement of the thickness of the coating.
  • a sample for cross-sectional observation can also be obtained by the same method as the measurement of the thickness of the film.
  • the thickness of the adhesion layer is an average thickness, which is an average value of measured values.
  • the adhesion layer is preferably a carbide, nitride, or carbonitride containing one or more elements selected from the group consisting of elements constituting the substrate, a first element, and a second element.
  • the first element is one or more elements selected from the elements forming the first alternating layer except for Cr, Ti, Zr (zirconium) and Nb
  • the second element is Cr, Ti, Zr and One or more elements selected from the group consisting of Nb.
  • One or more elements selected from the group consisting of elements constituting the substrate include at least W, and this W diffuses into the adhesion layer.
  • the first element is preferably one or more elements selected from Al, Si, B, V, and Ta.
  • the adhesion layer is made of carbide, nitride, or carbonitride, the adhesion is remarkably improved. Furthermore, the adhesiveness of a base material and an adhesion layer can be improved more by including W which is one of the elements which comprise a base material, and W diffusing in the adhesion layer.
  • the base material preferably includes hard particles containing WC and a binder phase that bonds the hard particles together, and the binder phase preferably includes Co.
  • the adhesion layer is preferably made of carbide, nitride or carbonitride containing W, Cr, Ti, Al and M5 in particular.
  • M5 is preferably one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Si and B in the periodic table excluding W, Cr, and Ti. More specifically, M5 is more preferably any element of Si, B, Zr, V, Nb, and Ta.
  • the adhesion layer is preferably made of a compound containing an element having chemical affinity with both the base material and the first alternating layer, and the elements constituting the base material (for example, in the case of cemented carbide, W, C ) And an element (such as Cr, Ti, Al, Si, B, or N) constituting the first alternating layer, may be a carbide, nitride, or carbonitride.
  • such carbides, nitrides or carbonitrides can significantly improve adhesion by including one or more elements selected from the group consisting of Cr, Ti, Zr and Nb, The life of the surface-coated cutting tool is further stabilized.
  • the thickness, constituent elements, and composition ratio of the adhesion layer can also be measured by SEM or TEM-attached EDX.
  • carbide, nitride, or carbonitride constituting the adhesion layer include the following (a) to (j).
  • the manufacturing method of the surface coating cutting tool which concerns on this embodiment is by laminating
  • the second step of forming the first alternating layer and the second alternating layer by alternately laminating one or more layers of the third layer and the fourth layer on the first alternating layer using a physical vapor deposition method.
  • the physical vapor deposition method is a vapor deposition method in which a raw material (also referred to as an evaporation source or a target) is vaporized using a physical action, and the vaporized raw material is deposited on a substrate.
  • the physical vapor deposition method used in this embodiment is preferably at least one selected from the group consisting of a cathode arc ion plating method, a balanced magnetron sputtering method, and an unbalanced magnetron sputtering method.
  • the cathode arc ion plating method with a high ionization rate of the raw material element is more preferable.
  • the cathodic arc ion plating method since the metal ion bombard cleaning treatment can be performed on the surface of the base material before the coating is formed, the cleaning time can be shortened.
  • a base material is set in the apparatus and a target is set as a cathode, and then a high current is applied to the target to cause arc discharge.
  • atoms constituting the target are evaporated and ionized, and deposited on a substrate to which a negative bias voltage is applied, thereby forming a film.
  • a base is placed in the apparatus and a target is placed on a magnetron electrode having a magnet that forms a balanced magnetic field, and high-frequency power is applied between the magnetron electrode and the base. Is applied to generate gas plasma. A film is formed by causing ions of the gas generated by the generation of the gas plasma to collide with the target to ionize the atoms emitted from the target and deposit them on the substrate.
  • a coating film is formed by making the magnetic field generated by the magnetron electrode in the balanced magnetron sputtering method unbalanced.
  • a substrate is prepared.
  • a cemented carbide substrate is prepared as the substrate.
  • a commercially available material may be used, or it may be produced by a general powder metallurgy method.
  • a WC powder and a Co powder are mixed by a ball mill to obtain a mixed powder.
  • the mixed powder is dried and then molded into a predetermined shape to obtain a molded body.
  • the WC—Co cemented carbide (sintered body) is obtained by sintering the compact.
  • a base material made of a WC—Co based cemented carbide can be manufactured by subjecting the sintered body to a predetermined cutting edge processing such as a honing process.
  • a predetermined cutting edge processing such as a honing process.
  • any substrate other than those described above can be prepared as long as it is a conventionally known substrate.
  • a base material cleaning step for cleaning the base material can be performed before the second step described later.
  • the ion bombardment treatment can be performed on the surface of the base material before the coating is formed using the cathode arc ion plating method in the second step.
  • the soft binder phase can be removed from the surface of the base material.
  • the occupation ratio of the hard particles in the portion where the adhesion layer and the base material are in contact with each other can be increased. At this time, it is more preferable that 80% or more of the area of the base material in contact with the adhesion layer is WC.
  • the precursor of the adhesion layer can be formed by the ion bombardment treatment itself. That is, by using a target containing one or more elements selected from Cr, Ti, Zr and Nb in the ion bombardment treatment, these elements are used as precursors of the adhesion layer while cleaning the surface of the substrate. It can be attached to the surface of the substrate. Then, by performing a step of forming a first alternating layer, which is a second step, which will be described later, on the surface to which these elements are attached, an adhesive layer having excellent adhesion is formed together with the first alternating layer. Can do.
  • the element used for the ion bombardment treatment and contained in the adhesion layer is more preferably Cr. This is because Cr is a sublimable element, so that there is little generation of molten particles (droplets) during ion bombardment treatment, and surface roughness of the substrate can be prevented.
  • the first step and the subsequent substrate cleaning step can be performed as follows.
  • a chip having an arbitrary shape is mounted as a substrate in the chamber of the film forming apparatus.
  • the base material 12 will be attached to the outer surface of the base material holder 21 on the turntable 20 with which the center in the chamber 2 was equipped.
  • a bias power source 42 is attached to the substrate holder 21.
  • the first layer forming evaporation source 31 and the second layer forming evaporation source 32 respectively corresponding to the alloy target, which is the metal raw material of the coating, are placed at predetermined positions in the chamber 2.
  • the third layer forming evaporation source 33, the fourth layer forming evaporation source 34, and the ion bombardment evaporation source 30 are attached.
  • An arc power supply 41 is attached to the evaporation source 31 for forming the first layer, the evaporation source 32 for forming the second layer, the evaporation source 33 for forming the third layer, the evaporation source 34 for forming the fourth layer, and ion bombardment.
  • An arc power source (not shown) is also attached to each evaporation source 30.
  • a gas introduction port 22 for introducing atmospheric gas is provided, and a gas discharge port 23 for discharging atmospheric gas from the chamber 2 is provided.
  • the atmospheric gas in the chamber 2 can be sucked from the gas discharge port 23 by a vacuum pump.
  • the inside of the chamber 2 is decompressed to 1.0 ⁇ 10 ⁇ 5 to 1.0 ⁇ 10 ⁇ 3 Pa by a vacuum pump, and the substrate 12 of the substrate holder 21 is rotated by rotating the rotary table 20.
  • the surface temperature of the substrate 12 is heated to 400 to 700 ° C. by a heater (not shown) installed in the apparatus.
  • argon gas is introduced from the gas inlet 22 as an atmospheric gas, the pressure in the chamber 2 is maintained at 1.0 to 4.0 Pa, and the voltage of the bias power source 42 is gradually increased to ⁇ 1000 to ⁇ 400 V.
  • the surface of the substrate 12 is cleaned for 15 to 90 minutes. Thereby, when the base material 12 is a cemented carbide base material, a binder phase can be removed from the surface.
  • a first alternating layer is formed in which one or more first layers and second layers are alternately stacked.
  • various methods are used according to the composition of the first layer and the second layer to be formed.
  • a method using an alloy target with different particle sizes such as Ti, Cr, Al and Si a method using a plurality of targets having different compositions, and a bias voltage applied during film formation as a pulse voltage Examples thereof include a method, a method of changing the gas flow rate during film formation, and a method of adjusting the rotation speed of the substrate holder that holds the substrate in the film formation apparatus.
  • the first alternating layers can also be formed by combining these methods.
  • the second step can be performed as follows. That is, following the cleaning of the base material 12, nitrogen is introduced as a reaction gas while the base material 12 is rotated at the center. Further, the base material 12 is maintained at a temperature of 400 to 700 ° C., the reaction gas pressure is maintained at 1.0 to 5.0 Pa, and the voltage of the bias power source 42 is maintained within a range of ⁇ 30 to ⁇ 800 V, or each is gradually changed.
  • the arc current of 100 to 200 A is supplied to the evaporation source 31 for forming the first layer and the evaporation source 32 for forming the second layer.
  • the first alternating layer rotates the substrate 12 so that the first layer and the second layer having the above-described composition have a predetermined thickness ( ⁇ 1, ⁇ 2) and a predetermined layer thickness ratio ( ⁇ 1 / ⁇ 2). It is produced by alternately laminating one layer at a time while controlling the speed. Furthermore, by adjusting the film formation time, the thickness of the first alternating layer is adjusted to be within a predetermined range.
  • the uppermost layer and the lowermost layer of the first alternating layer limit the evaporation source used when forming each layer (that is, which of the evaporation source 31 for forming the first layer and the evaporation source 32 for forming the second layer) Can be produced as the first layer or the second layer.
  • the first layer is the lowermost layer
  • only the first layer can be formed by setting the arc current of the evaporation source 32 for forming the second layer to 0A.
  • the mixed layer can be made to have a first layer and a second layer by increasing the rotational speed of the turntable 20. It can be produced as a mixed layer.
  • a second alternating layer is formed in which one or more third layers and fourth layers are alternately stacked.
  • various methods are used according to the composition of the third layer and the fourth layer to be formed, as in the second step. For example, a method using an alloy target in which the grain sizes of Ti, Al, and Si or B are changed, a method using a plurality of targets having different compositions, and a bias voltage applied during film formation as a pulse voltage Or a method of changing the gas flow rate, a method of adjusting the rotation speed of the substrate holder that holds the substrate in the film forming apparatus, and the like. These methods can be combined to form the second alternating layer.
  • the third step can be performed as follows. That is, the third layer forming evaporation source 33 and the fourth layer forming evaporation source 34 are respectively maintained while maintaining the temperature, reaction gas pressure, and bias voltage of the base material 12 shown in the example of performing the second step.
  • an arc current 100 to 200 A
  • metal ions are generated from the evaporation source 33 and the evaporation source 34, respectively.
  • the supply of the arc current is stopped, and a second alternating layer is formed on the first alternating layer.
  • the second alternating layer rotates the substrate 12 so that the third layer and the fourth layer having the above-described composition have a predetermined thickness ( ⁇ 3, ⁇ 4) and a predetermined layer thickness ratio ( ⁇ 3 / ⁇ 4). It is produced by alternately laminating one layer at a time while adjusting the speed. Furthermore, by adjusting the film formation time, the thickness of the second alternating layer is adjusted to be within a predetermined range.
  • the second alternating layer for example, by appropriately adjusting the composition of the metal raw material used for the evaporation source 33 and the evaporation source 34, the relationship of 0.05 ⁇
  • Compressive residual stress may be applied to the coating after forming the first alternating layer and the second alternating layer. This is because toughness is improved.
  • the compressive residual stress can be applied by, for example, a blast method, a brush method, a barrel method, an ion implantation method, or the like.
  • FIG. 5 shows a schematic side perspective explanatory view of a film forming apparatus (cathode arc ion plating apparatus) used in this example
  • FIG. 6 shows a schematic of the cathode arc ion plating apparatus shown in FIG. Plane perspective explanatory drawing is shown.
  • a substrate 12 is prepared in the chamber 2 of the film forming apparatus.
  • a chip made of cemented carbide having a grade of ISO standard P30 and having a shape of SFKN12T3AZTN of JIS standard was used as the base material 12.
  • the base material 12 was attached to the outer surface of the base material holder 21 on the turntable 20 provided at the center in the chamber 2.
  • the chamber 2 has a first layer forming evaporation source (alloy evaporation source made of a metal raw material having a composition constituting the first layer) 31, which is an alloy target used as a metal raw material for the coating.
  • An evaporation source for forming the second layer an alloy evaporation source made of a metal raw material having a composition constituting the second layer
  • an evaporation source for forming the third layer made of a metal raw material having a composition constituting the third layer
  • An alloy evaporation source) 33 and an evaporation source for forming the fourth layer an alloy evaporation source made of a metal raw material having a composition constituting the fourth layer
  • an arc power source 41 was attached to the evaporation source 31 for forming the first layer. Further, an arc power source (not shown) is also provided for the evaporation source 32 for forming the second layer, the evaporation source 33 for forming the third layer, the evaporation source 34 for forming the fourth layer, and the evaporation source 30 for ion bombardment. Attached.
  • a bias power source 42 was attached to the substrate holder 21.
  • a gas introduction port 22 for introducing atmospheric gas is provided, and a gas discharge port 23 for discharging atmospheric gas from the chamber 2 is provided.
  • the atmospheric gas in the chamber 2 can be sucked and exhausted.
  • the inside of the chamber 2 was decompressed by a vacuum pump, and the base 12 of the base holder 21 was rotated by rotating the rotary table 20. Subsequently, the surface temperature of the substrate 12 is heated to 500 ° C. by a heater (not shown) installed in the apparatus, and evacuation is performed until the pressure in the chamber 2 becomes 1.0 ⁇ 10 ⁇ 4 Pa. It was.
  • argon gas is introduced from the gas inlet 22 as an atmospheric gas, the pressure in the chamber 2 is maintained at 3.0 Pa, the voltage of the bias power source 42 is gradually increased to ⁇ 1000 V, and the surface of the substrate 12 is In addition to cleaning, a treatment for removing the binder phase from the surface of the substrate 12 was performed. Thereafter, argon gas was exhausted from the chamber 2.
  • metal ions are generated from the evaporation source 31 and the evaporation source 32, respectively, and when a predetermined time has passed, the supply of arc current is stopped, and the first alternating layer having the composition shown in Table 1 is formed on the surface of the substrate 12. Formed. At this time, the rotation speed of the substrate 12 is adjusted so that the first alternating layer has the first layer and the second layer having the composition shown in Table 1 and the thickness and the layer thickness ratio ( ⁇ 1 / ⁇ 2) shown in Table 1. However, it produced by laminating
  • methane gas is introduced in addition to nitrogen as a reaction gas so that the first layer and the second layer to be formed are carbonitrides. Otherwise, the first alternating layers are formed in the same manner as described above. Produced.
  • the thickness ratio (layer thickness ratio) per layer of the first layer and the second layer was adjusted by controlling the rotation speed of the turntable 20 so as to be as shown in Table 1.
  • the uppermost layer and the lowermost layer are mixed layers of the first layer and the second layer in Examples 1 to 4, and the first layer or the second layer in Examples 5 to 23. Either.
  • a TiN layer was produced as a single layer as a layer corresponding to the first alternating layer.
  • the first layer as shown in Table 1 was produced as a single layer corresponding to the first alternating layer.
  • Comparative Example 6 is an example in which the second alternating layer is not formed as will be described later.
  • the lowermost layer and the uppermost layer are the second layer, the layer thickness ratio ( ⁇ 1 / ⁇ 2) is 5, and the composition ratio of the second alternating layer described later is 0.05 ⁇
  • Example 5 to 23 the uppermost layer and the lowermost layer of the first alternating layer were formed by forming a film using only one side of the two surfaces of the evaporation source forming the first alternating layer.
  • the mixed layers in Examples 1 to 4 were produced as layers in which the rotation speed of the turntable 20 was increased and the first layer and the second layer were mixed.
  • the evaporation source 33 for forming the third layer and the evaporation for forming the fourth layer are maintained while maintaining the temperature, reaction gas pressure, and bias voltage of the substrate 12 as described above.
  • an arc current of 100 A to the source 34 metal ions are generated from the evaporation source 33 and the evaporation source 34, respectively, and when a predetermined time has passed, the supply of the arc current is stopped and the first alternating layer is formed.
  • a second alternating layer having the composition shown in Table 2 was formed.
  • the second alternating layer is formed so that the third layer and the fourth layer having the composition shown in Table 2 have the thickness ( ⁇ 3, ⁇ 4) and the layer thickness ratio ( ⁇ 3 / ⁇ 4) shown in Table 2. While adjusting the rotation speed of the film, each layer was alternately laminated. In Examples 13 and 14, methane gas is introduced in addition to nitrogen as a reaction gas so that the third layer and the fourth layer formed are carbonitrides, and the second alternating layers are formed in the same manner as above. Produced. In addition, the ratio (layer thickness ratio) per layer of the third layer and the fourth layer was adjusted by controlling the rotation speed of the turntable 20 so as to be as shown in Table 2. Thereby, the third step was performed.
  • the second alternating layer has a relationship of 0.05 ⁇
  • both the nitrogen and methane gases are used as reaction gases in the state where the substrate 12 is rotated at the center following the cleaning of the substrate 12 before the step related to “(formation of coating)”.
  • the substrate 12 is maintained at a temperature of 500 ° C.
  • the reaction gas pressure is set to 2.0 Pa
  • the voltage of the bias power source 42 is maintained at a constant value in the range of ⁇ 30V to ⁇ 800V, or the substrate 12 is adhered while being gradually changed.
  • An arc current of 100 A was supplied to an alloy target (not shown) composed of the composition of the layers. Thereby, metal ions were respectively generated from the alloy target, and when a predetermined time had elapsed, the supply of arc current was stopped, and an adhesion layer having the composition and thickness shown in Table 4 was formed on the surface of the substrate 12. .
  • the atomic ratio of Al constituting the second to fourth layers has a predetermined relationship
  • the atomic ratio of Ti constituting the second to fourth layers has a predetermined relationship
  • the lower layer of the alternating layer is the first layer or the second layer
  • the uppermost layer of the first alternating layer is the second layer
  • ⁇ 1 / ⁇ 2, ⁇ 3 / ⁇ 4 is within a predetermined range, etc.
  • the tendency to improve the life was recognized more strongly.
  • the tool life was further improved by providing an adhesion layer having a predetermined composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備え、被膜は、第1交互層と、該第1交互層上に形成された第2交互層とを含み、第1交互層は、第1層と第2層とを含み、第2交互層は、第3層と第4層とを含み、第1層と第2層とは交互にそれぞれ1層以上積層され、第3層と第4層とは交互にそれぞれ1層以上積層され、第1層は、AlaCrbM11-a-bの窒化物または炭窒化物からなり、第2層は、AlcTidM21-c-dの窒化物または炭窒化物からなり、第3層は、AleTifM31-e-fの窒化物または炭窒化物からなり、第4層は、AlgTihM41-g-hの窒化物または炭窒化物からなり、M1、M2、M3およびM4は、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。

Description

表面被覆切削工具、およびその製造方法
 本発明は、表面被覆切削工具、およびその製造方法に関する。本出願は、2016年3月28日に出願した日本特許出願である特願2016-063935号に基づく優先権を主張する。当該日本特許出願に記載されたすべての記載内容は、参照によって本明細書に援用される。
 最近の切削工具の動向として、地球環境保全の観点から切削油剤を用いないドライ加工が求められていること、被削材が多様化していること、加工能率を一層向上させるため切削速度がより高速になっていることなどから、工具刃先温度はますます高温になる傾向がある。その結果、工具寿命が短くなることからそのコスト負担が大きく、以って工具材料に要求される特性はますます厳しくなっている。
 特開平07-310174号公報(特許文献1)では、切削工具または耐摩耗工具として用いる場合に、耐摩耗性および表面保護機能を改善するため、WC基超硬合金、サーメット、高速度鋼などの硬質基材の表面に、硬質被覆層としてAlxTi1-x-ySiyz1-z(ただし、0.05≦x≦0.75、0.01≦y≦0.1、0.6≦z≦1)のようなAlTiSi系の膜を被覆する例が開示されている。
 特開2005-305576号公報(特許文献2)では、基材表面に、Ti1-xAlx(ただし、0.2≦x≦0.7)の炭化物または炭窒化物を主成分とする耐摩耗性被膜を形成し、この耐摩耗性被膜表面に、Al1-a-bCrab(ただし、0.2≦a≦0.4、0≦b≦0.4、a+b≦0.4)の窒化物または炭窒化物を主成分とする耐チッピング性被膜を形成した切削工具が開示されている。この切削工具によれば、切削初期に起こる刃先のチッピングまたは欠損を抑制し、すなわち母材の露出を抑制することにより、工具寿命を向上できるとされている。
 国際公開第2006/070730号パンフレット(特許文献3)に開示された切削工具は、耐摩耗性および耐チッピング性を向上させることを目的とし、残留応力および硬度などの特性が異なるA層およびB層を交互にそれぞれ1層以上積層させた交互層を被覆層として含む。これにより、被覆層全体としての耐摩耗性および靱性を向上させることができるとされている。
特開平07-310174号公報 特開2005-305576号公報 国際公開第2006/070730号
 本発明の一態様に係る表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備える表面被覆切削工具であって、前記被膜は、第1交互層と、該第1交互層上に形成された第2交互層とを含み、前記第1交互層は、第1層と第2層とを含み、前記第2交互層は、第3層と第4層とを含み、前記第1層と前記第2層とは、交互にそれぞれ1層以上積層され、前記第3層と前記第4層とは、交互にそれぞれ1層以上積層され、前記第1層は、AlaCrbM11-a-bの窒化物または炭窒化物からなり、前記第1層を構成する各金属原子の原子数比は、0.5≦a≦0.9、0<b≦0.4、および0≦1-a-b≦0.1の関係を満たし、前記第2層は、AlcTidM21-c-dの窒化物または炭窒化物からなり、前記第2層を構成する各金属原子の原子数比は、0.35≦c≦0.7、0.3≦d≦0.7、および0≦1-c-d≦0.1の関係を満たし、前記第3層は、AleTifM31-e-fの窒化物または炭窒化物からなり、前記第3層を構成する各金属原子の原子数比は、0.35≦e≦0.7、0.3≦f≦0.7、および0≦1-e-f≦0.1の関係を満たし、前記第4層は、AlgTihM41-g-hの窒化物または炭窒化物からなり、前記第4層を構成する各金属原子の原子数比は、0.35≦g≦0.7、0.3≦h≦0.7、および0≦1-g-h≦0.1の関係を満たし、前記第3層を構成するAlの原子数比eおよび前記第4層を構成するAlの原子数比gは、0.05≦|g-e|≦0.2の関係を満たし、前記第3層を構成するTiの原子数比fおよび前記第4層を構成するTiの原子数比hは、0.05≦|h-f|≦0.2の関係を満たし、前記M1、前記M2、前記M3および前記M4は、それぞれ独立してCr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。
 本発明の一態様に係る表面被覆切削工具の製造方法は、前記基材を準備する第1工程と、前記第1層と前記第2層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、前記第1交互層を形成する第2工程と、前記第1交互層上に、前記第3層と前記第4層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、前記第2交互層を形成する第3工程とを含む。
図1は、本実施形態に係る表面被覆切削工具の断面を模式的に示して説明する断面説明図である。 図2は、本実施形態における被膜の下部層(第1交互層)を顕微鏡で撮影した図面代用写真である。 図3Aは、本実施形態における被膜の上部層(第2交互層)を顕微鏡で撮影した図面代用写真である。 図3Bは、図3Aを拡大して示す図面代用写真である。 図4Aは、本実施形態における被膜の密着層を顕微鏡で撮影した図面代用写真である。 図4Bは、図4Aを拡大して示す図面代用写真である。 図5は、本実施形態に係る表面被覆切削工具の製造方法で用いる成膜装置を、その断面において模式的に示して説明する説明図である。 図6は、本実施形態に係る表面被覆切削工具の製造方法で用いる成膜装置を、その平面において模式的に示して説明する説明図である。
 [本開示が解決しようとする課題]
 しかし、特許文献1に記載される硬質被覆層を切削工具に用いた場合、高硬度で耐酸化性に優れる一方、脆さがあり、かつチッピングしやすいという難点があった。
 特許文献2に記載される切削工具は、たとえばステンレス鋼など刃先に溶着が発生しやすい材料を切削した場合、切削初期において耐チッピング性被膜と耐摩耗性被膜との密着性が不十分であることなどにより、被膜が剥離し、被膜のチッピング抑制に改善の余地が残されていた。
 特許文献3に記載される切削工具は、刃先に溶着が発生しやすい。したがって、溶着とともに被覆層が剥離するような難削材などの加工において、加工初期に被覆層と被削材とが反応し、A層およびB層の間にクラックが発生することにより、層間剥離が発生して短寿命になる傾向があり、改善の余地が残されていた。
 本発明は、上記実情に鑑みなされ、優れた耐チッピング性および耐摩耗性を示す表面被覆切削工具、およびその製造方法を提供することを目的とする。
 [本開示の効果]
 上記によれば、優れた耐チッピング性および耐摩耗性を示すことができる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 [1]本発明の一態様に係る表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備える表面被覆切削工具であって、上記被膜は、第1交互層と、該第1交互層上に形成された第2交互層とを含み、上記第1交互層は、第1層と第2層とを含み、上記第2交互層は、第3層と第4層とを含み、上記第1層と上記第2層とは、交互にそれぞれ1層以上積層され、上記第3層と上記第4層とは、交互にそれぞれ1層以上積層され、上記第1層は、AlaCrbM11-a-bの窒化物または炭窒化物からなり、上記第1層を構成する各金属原子の原子数比は、0.5≦a≦0.9、0<b≦0.4、および0≦1-a-b≦0.1の関係を満たし、上記第2層は、AlcTidM21-c-dの窒化物または炭窒化物からなり、上記第2層を構成する各金属原子の原子数比は、0.35≦c≦0.7、0.3≦d≦0.7、および0≦1-c-d≦0.1の関係を満たし、上記第3層は、AleTifM31-e-fの窒化物または炭窒化物からなり、上記第3層を構成する各金属原子の原子数比は、0.35≦e≦0.7、0.3≦f≦0.7、および0≦1-e-f≦0.1の関係を満たし、上記第4層は、AlgTihM41-g-hの窒化物または炭窒化物からなり、上記第4層を構成する各金属原子の原子数比は、0.35≦g≦0.7、0.3≦h≦0.7、および0≦1-g-h≦0.1の関係を満たし、上記第3層を構成するAlの原子数比eおよび上記第4層を構成するAlの原子数比gは、0.05≦|g-e|≦0.2の関係を満たし、上記第3層を構成するTiの原子数比fおよび上記第4層を構成するTiの原子数比hは、0.05≦|h-f|≦0.2の関係を満たし、上記M1、上記M2、上記M3および上記M4は、それぞれ独立してCr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。このような構成の表面被覆切削工具は、優れた耐チッピング性および耐摩耗性を示すことができ、以って過酷な切削条件に耐え、優れた刃先品位を得ることができる。
 [2]上記第2層を構成するAlの原子数比c、上記第3層を構成するAlの原子数比eおよび上記第4層を構成するAlの原子数比gは、e≦c≦gの関係を満たし、上記第2層を構成するTiの原子数比d、上記第3層を構成するTiの原子数比fおよび上記第4層を構成するTiの原子数比hは、h≦d≦fの関係を満たす。これにより、より優れた耐チッピング性および耐摩耗性を示すことができる。
 [3]上記第1交互層は、最上層が上記第2層である。これにより被膜の密着性をより強固にすることができる。
 [4]上記第1交互層は、最下層が上記第1層または上記第2層である。これにより被膜の剥離をより抑制することができる。
 [5]上記第1層の厚みλ1および上記第2層の厚みλ2は、それぞれ0.005μm以上2μm以下であり、上記第1層と上記第2層との厚みの比であるλ1/λ2は、1≦λ1/λ2≦5の関係を満たす。これにより、被膜の耐酸化性を向上させ、かつ被膜を高硬度化することができる。
 [6]上記第3層の厚みλ3および上記第4層の厚みλ4は、それぞれ0.005μm以上2μm以下であり、上記第3層と上記第4層との厚みの比であるλ3/λ4は、1≦λ3/λ4≦5の関係を満たす。これにより、被膜におけるクラックの進展をより強く抑制することができる。
 [7]上記被膜は、全体の厚みが0.5μm以上15μm以下である。これにより、被膜が耐チッピング性に優れ、工具寿命を向上させることができる。
 [8]上記被膜は、上記第1交互層よりも上記基材側に密着層を含み、上記密着層は、厚みが0.5nm以上20nm以下であり、上記密着層は、上記基材を構成する元素からなる群より選択される1種以上の元素と、第1元素と、第2元素とを含む炭化物、窒化物または炭窒化物であり、上記第1元素は、Cr、Ti、ZrおよびNbを除く周期表の第4族元素、第5族元素、第6族元素、Al、SiおよびBからなる群より選択される1種以上の元素であり、上記第2元素は、Cr、Ti、ZrおよびNbからなる群より選択される1種以上の元素であり、基材を構成する元素からなる群より選択される1種以上の元素は、少なくともWを含み、上記Wが密着層に拡散している。これにより、被膜と基材との密着性を向上させることができる。
 [9]上記基材は、WCを含む硬質粒子と、該硬質粒子同士を結合する結合相とを含み、上記結合相は、Coを含み、上記密着層は、W、Cr、Ti、AlおよびM5を含む炭化物、窒化物または炭窒化物であり、上記M5は、W、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。これにより、被膜と基材との密着性をより向上させることができる。
 [10]上記第1交互層および上記第2交互層は、結晶構造が立方晶である。これにより、被膜の硬度を向上させることができる。
 [11]本発明の一態様に係る表面被覆切削工具の製造方法は、上記基材を準備する第1工程と、上記第1層と上記第2層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、上記第1交互層を形成する第2工程と、上記第1交互層上に、上記第3層と上記第4層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、上記第2交互層を形成する第3工程とを含む。これにより、優れた耐チッピング性および耐摩耗性を示す表面被覆切削工具を製造することができる。
 [12]上記物理的蒸着法は、カソードアークイオンプレーティング法、バランスドマグネトロンスパッタリング法およびアンバランスドマグネトロンスパッタリング法からなる群より選択される少なくとも1種である。これにより、上述の性能を有する表面被覆切削工具を歩留まりよく製造することができる。
 [本発明の実施形態の詳細]
 以下、本発明の実施形態(以下「本実施形態」とも記す)についてさらに詳細に説明する。以下の実施形態の説明では、図面を用いて説明しているが、その図面において同一の参照符号を付したものは、同一または相当部分を示す。
 ここで、本明細書において「X~Y」という形式の表記は、範囲の上限下限(すなわちX以上Y以下)を意味しており、Xにおいて単位の記載がなく、Yにおいてのみ単位が記載されている場合、Xの単位とYの単位とは同じである。また、本明細書において化合物を化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば「TiAlN」と記載されている場合、TiAlNを構成する原子数比の比はTi:Al:N=0.5:0.5:1に限られず、従来公知のあらゆる原子比が含まれる。このことは、「TiAlN」以外の化合物の記載についても同様である。本実施形態において、チタン(Ti)、アルミニウム(Al)、ケイ素(Si)、タンタル(Ta)、クロム(Cr)などの金属元素と、窒素(N)、酸素(O)または炭素(C)などの非金属元素とは、必ずしも化学量論的な組成を構成している必要がない。
 <表面被覆切削工具>
 本実施形態に係る表面被覆切削工具は、たとえば図1に示すように、基材12と、該基材12の表面に形成された被膜11とを備える。表面被覆切削工具1は、後述する構成を備えることにより、優れた耐チッピング性および耐摩耗性を示し、過酷な切削条件に耐え、優れた刃先品位を得ることができる。
 したがって、本実施形態に係る表面被覆切削工具は、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、クランクシャフトのピンミーリング加工用チップなどとして極めて有用である。
 <基材>
 基材は、この種の基材として従来公知のものであればいずれも使用することができる。たとえば、超硬合金[たとえば、WC(炭化タングステン)基超硬合金、WCのほか、Co(コバルト)を含み、あるいはTi(チタン)、Ta(タンタル)、Nb(ニオブ)などの炭窒化物を添加したものも含む]、サーメット(炭化チタン、窒化チタン、炭窒化チタンなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化ホウ素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。基材としてWC基超硬合金を用いる場合、その組織中に遊離炭素およびη相と呼ばれる異常層のいずれか一方または両方を含んでいてもよい。
 これらの各種基材の中でも超硬合金、特にWC基超硬合金を選択すること、またはサーメット(特に炭窒化チタン基サーメット)を選択することが好ましい。これらの基材は、特に高温における硬度と強度のバランスに優れ、上記用途の切削工具の基材として優れた特性を有している。特にWC基超硬合金を選択した場合、基材は、WCを含む硬質粒子と、該硬質粒子同士を結合する結合相とを含み、結合相は、Coを含むものがより好ましい。
 さらに、表面被覆切削工具が後述する密着層を含む場合、基材と被膜との密着性の観点から、基材としてWC基超硬合金を選択したときに、密着層と接する面積のうち80%以上がWCであることがより好ましい。これらの基材は、その表面が改質されていても差し支えない。たとえば、超硬合金の表面に脱β層が形成されていても、本発明の範囲を逸脱するものではない。
 なお、切削工具が刃先交換型切削チップなどである場合、基材はチップブレーカーを有するものも、有さないものも含まれる。刃先稜線部は、その形状がシャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドを組み合わせたものなど、いずれのものも含まれる。
 <被膜>
 被膜は、図1に示すように第1交互層112と、該第1交互層112上に形成された第2交互層113とを含む。この第1交互層112は、第1層と第2層とを含む。第2交互層113は、第3層と第4層とを含む。第1層と第2層とは、交互にそれぞれ1層以上積層されている。第3層と第4層とは、交互にそれぞれ1層以上積層されている。第1交互層112は、耐摩耗性を特に備えるために構成する2層以上からなる多層膜であり、本明細書において「耐摩耗層」と称する場合がある。また、第1交互層112は、その上に第2交互層113が形成されるため、本明細書において「下部層」と称する場合もある。
 第2交互層113は、耐チッピング性を特に備えるために構成する2層以上からなる多層膜であり、本明細書において「耐チッピング層」と称する場合がある。また、第2交互層113は、第1交互層112上に形成されるため、本明細書において「上部層」と称する場合もある。
 本実施形態において被膜11は、基材12を被覆している。被膜11は、基材の全面を被覆することが好ましいものの、基材12が部分的に被膜11で被覆されていなかったり被膜11を構成する各層の積層構成が部分的に異なっていたりしていたとしても本発明の範囲を逸脱するものではない。
 被膜は、第1交互層、第2交互層、後述する密着層以外に、他の層を含むことができる。被膜は、たとえば基材との間に形成する層として、下地層を含むことができる。さらに被膜は、表面を保護する層として、表面保護層を含むこともできる。下地層として、被膜を構成する元素を含む固溶体層を例示することができる。固溶体層を有することにより、被膜の均一性がより担保できるようになる。なお、これらの層の形成方法は、公知の方法を用いることができる。
 他の下地層として、TiCNO層、TiBN層、TiC層、TiN層、TiAlN層、TiSiN層、AlCrN層、TiAlSiN層、TiAlNO層、AlCrSiCN層、TiCN層、TiSiC層、CrSiN層、AlTiSiCO層、TiSiCN層などを例示することができる。表面保護層として、α-Al23層およびκ-Al23層を例示することができる。
 本実施形態において被膜は、耐摩耗性に優れる層と、耐チッピング性に優れる層とを積層させることにより、各層の本来の好適な特性を維持しつつ、脆性などの各層のデメリットを巧みに解消させることができる。さらに、各層において2種の層を交互にそれぞれ1層以上積層した多層とすることにより、各層を単独で形成した場合に比べ被膜の強度を飛躍的に向上させることができる。各層を単独で形成した場合、層厚が厚くなるのにしたがって脆性が増大する傾向があるが、2種の層を交互にそれぞれ1層以上積層し、多層として単位層当たりの厚みを薄く制御することにより、これを抑えることが可能となる。
 本明細書において被膜を構成する構成単位に対し、便宜的に「膜」または「層」という名称を用いているが、「膜」と「層」との両者を明確に区別することを意図しているものではない。
 被膜は、その全体の厚みが0.5μm以上15μm以下であることが好ましい。より好ましくは全体の厚みの上限は10μm以下であり、さらに好ましくは6μm以下であり、その下限が0.5μmである。被膜の全体の厚みが0.5μm未満である場合、被膜の厚みが薄すぎて表面被覆切削工具の寿命が短くなる傾向がある。一方、被膜の全体の厚みが15μmを超える場合、切削初期において被膜がチッピングしやすくなるため、表面被覆切削工具の寿命が短くなる傾向がある。被膜の全体の厚みとは、第1交互層、第2交互層、後述する密着層、および他の層を含む場合は該他の層を含んだ全体の厚みを意味する。
 被膜のうち第1交互層および第2交互層は、結晶構造が立方晶であることが好ましい。これにより被膜の硬度を向上させることができる。第1交互層および第2交互層の全体が非晶質あるいは一部が非晶質である場合、硬度が低下し、表面被覆切削工具の寿命が短くなる傾向がある。
 被膜の全体の厚みは、成膜時間を適宜調節することにより調整することができる。また、本明細書において「被膜の厚み」といったとき、その厚みは平均厚みを意味する。被膜の厚みは、たとえば、被膜を任意の基材上に形成し、これを任意の位置で切断し、その断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)、透過型電子顕微鏡(TEM:Transmission Electron Microscope)、走査型透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)などで観察することにより測定することができる。断面観察用のサンプルは、たとえば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)などを用いて作製することができる。そして、たとえば被膜の10箇所において断面を得て、それぞれの断面における厚みを測定し、その測定値の平均値を「被膜の厚み」とすることができる。さらに、被膜を構成する元素の組成は、SEMあるいはTEM付帯のエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)装置により測定することができる。後述する第1層~第4層の厚みおよびその組成も、上述した方法と同様な方法により測定することが可能である。
 ≪第1交互層(下部層、耐摩耗層)≫
 図1および図2に示すように、第1交互層112は、上述のとおり第1層と第2層とを含む。第1層と第2層とは、交互にそれぞれ1層以上積層されている。特に、第1層の厚みλ1および第2層の厚みλ2は、それぞれ0.005μm以上2μm以下であることが好ましい。第1層の厚みλ1および第2層の厚みλ2がそれぞれ0.005μm未満である場合、各層が混ざり合って第1層と第2層とを交互に積層したことによる効果を得ることができない傾向がある。一方、第1層の厚みλ1および第2層の厚みλ2がそれぞれ2μmを超える場合、クラックの進展を抑制する効果が得られにくい傾向がある。第1交互層について耐摩耗性および耐酸化性を強化する観点から、第1層の厚みλ1および第2層の厚みλ2は、それぞれ0.005μm以上0.5μm以下であることがより好ましい。
 さらに、第1層と第2層との厚みの比であるλ1/λ2は、1≦λ1/λ2≦5の関係を満たすことが好ましい。λ1/λ2が1未満である場合、被膜の耐酸化性が低下する傾向がある。一方、λ1/λ2が5を超える場合、第1層と第2層とを交互に積層したことによるクラックの進展を抑制する効果が得られにくくなる傾向がある。第1交互層について耐摩耗性および耐酸化性を強化する観点から、λ1/λ2は、1≦λ1/λ2≦4の関係を満たすことがより好ましい。
 (第1層)
 第1層は、AlaCrbM11-a-bの窒化物または炭窒化物からなり、第1層を構成する各金属原子の原子数比は、0.5≦a≦0.9、0<b≦0.4、および0≦1-a-b≦0.1の関係を満たす。第1層は、窒化物または炭窒化物であることにより、膜の硬度が高くなり耐摩耗性が向上する、被削材に対する摩擦係数が小さくなることにより耐溶着性が向上するなどの効果がある。
 第1層は、Al(アルミニウム)とともにCr(クロム)を含むため、耐酸化性が向上している。さらに第1層は、AlとCrとが組み合わされることにより、その結晶構造が立方晶となることによって高硬度化することができる。
 特に、第1層を構成するCrの原子数比bは、0よりも大きく0.4以下である。Crの原子数比bは、AlとCrとを組み合わせることにより第1層を高硬度化するため、0よりも大きくする必要がある。一方でCrの原子数比bは、0.4を超える場合、第1層の硬度が低下する傾向がある。第1層の硬度および耐酸化性をより高める観点からCrの原子数比bは、0.2以上0.34以下(0.2≦b≦0.34)であることが好ましい。
 さらに、第1層を構成するAlの原子数比aは、0.5以上0.9以下である。Alの原子数比aは、0.5未満である場合、被膜の耐酸化性が低下する傾向がある。一方でAlの原子数比aは、0.9を超える場合、硬度が低下して摩耗が促進する傾向がある。第1層の硬度および耐酸化性をより高める観点からAlの原子数比aは、0.56以上0.7以下(0.56≦a≦0.7)であることがより好ましい。
[規則91に基づく訂正 16.08.2017] 
 M1は、Cr、Tiを除く周期表の第4族元素(Zr、Hfなど)、第5族元素(V、Nb、Taなど)、第6族元素(Mo、Wなど)、Si(ケイ素)およびB(ホウ素)からなる群より選択される1種以上の元素である。このような元素であることにより、第1層は、耐熱性、膜硬度および耐溶着性が向上する。M1は、具体的にはB、Si、Zr、V、Nb、W、Taのいずれかの元素であることが好ましい。
 なお、B(ホウ素)は通常、金属元素と非金属元素との中間の性質を示す半金属として捉えられるが、本実施形態においては、自由電子を有する元素を金属であるとみなしてホウ素を金属の範囲に含むものとする。
 (第2層)
 第2層は、AlcTidM21-c-dの窒化物または炭窒化物からなり、第2層を構成する各金属原子の原子数比は、0.35≦c≦0.7、0.3≦d≦0.7、および0≦1-c-d≦0.1の関係を満たす。第2層は、窒化物または炭窒化物であることにより、膜の硬度が高くなり耐摩耗性が向上する、被削材に対する摩擦係数が小さくなることにより耐溶着性が向上するなどの効果がある。
 第2層は、AlとともにTiを含むため、耐摩耗性が向上している。さらに第2層は、AlとTiとが組み合わされているために、Alの添加量が多くなるほど耐酸化性が向上するという効果がある。
 特に、第2層を構成するAlの原子数比cは、0.35以上0.7以下である。Alの原子数比cは、0.35未満である場合、被膜の耐酸化性が低下する傾向がある。一方でAlの原子数比cは、0.7を超える場合、第2層の硬度が低下し、摩耗が促進する傾向がある。第2層の耐摩耗性および耐酸化性をより高める観点からAlの原子数比cは、0.4以上0.65以下(0.4≦c≦0.65)であることがより好ましい。
 さらに、第2層を構成するTiの原子数比dは、0.3以上0.7以下である。Tiの原子数比dは、0.3未満である場合、硬度が低下し摩耗が促進する傾向がある。一方でTiの原子数比dは、0.7を超える場合、被膜のAlの添加量が相対的に少なくなり、耐酸化性が低下する傾向がある。第2層の耐摩耗性および耐酸化性をより高める観点からTiの原子数比dは、0.4以上0.6以下(0.4≦d≦0.6)であることがより好ましい。
 M2は、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。このような元素であることにより、第2層は耐熱性、膜硬度および耐溶着性が向上する。M2は、具体的にはB、Si、Zr、V、Nb、W、Taのいずれかの元素であることが好ましい。M1とM2とは、同一または異種である。すなわちM1とM2とは、同一の元素であってもよく、異種の元素であってもよい。
 第1交互層は、最下層が第1層または第2層であることが好ましい。最下層が第1層または第2層であることにより、膜全体の密着性が均一となるので被膜と基材との界面での剥離を抑制することができる。最下層を第1層とした場合、摩耗の進展により基材が露出したとしても、基材と被膜との間の界面からの酸化を抑制することができる。さらに、最下層を第2層とした場合、第2層は応力が小さい傾向にあることから、特に刃先に繰り返し負荷のかかるようなフライス加工、エンドミル加工などの断続加工の場合に、被膜の耐剥離性が格段に向上する傾向にある。
 第1交互層は、最上層が第2層であることが好ましい。最上層が第2層であることにより、後述するように、第1交互層と第2交互層との密着性をより強固にすることができる。
 さらに、第1交互層は、最下層および最上層の両方またはいずれか一方が、第1層を構成する化合物と第2層を構成する化合物との組成が混合した化合物からなる混合層であってもよい。混合層の組成としては、第1層と第2層とからなる元素で構成され、TiAlCrN、TiAlCrCN、TiAlCrC、TiAlCrSiN、TiAlCrSiCN、TiAlCrSiCなどを例示することができる。
 ≪第2交互層(上部層、耐チッピング層)≫
 図1に示すように、第2交互層113は、第1交互層112上であって、第1交互層112の基材側とは反対側に形成されている。第2交互層113は、第3層と第4層とを含む。第3層と第4層とは、交互にそれぞれ1層以上積層されている。特に、第3層の厚みλ3および第4層の厚みλ4は、それぞれ0.005μm以上2μm以下であることが好ましい。第3層の厚みλ3および第4層の厚みλ4がそれぞれ0.005μm未満である場合、各層が混ざり合い第3層と第4層とを交互に積層したことによる効果を得ることができない傾向がある。一方、第3層の厚みλ3および第4層の厚みλ4がそれぞれ2μmを超える場合、クラックの進展を抑制する効果が得られにくい傾向がある。第2交互層について耐摩耗性および耐亀裂進展性を強化する観点から、第3層の厚みλ3および第4層の厚みλ4は、0.005μm以上0.5μm以下であることがより好ましい。
 さらに、第3層と第4層との厚みの比であるλ3/λ4は、1≦λ3/λ4≦5の関係を満たすことが好ましい。λ3/λ4が1未満である場合、λ3/λ4が5を超える場合ともに、クラックの進展を抑制する効果が得られにくい傾向がある。第2交互層について耐亀裂進展性を強化する観点から、λ3/λ4は、1≦λ3/λ4≦4の関係を満たすことがより好ましい。
 (第3層)
 第3層は、AleTifM31-e-fの窒化物または炭窒化物からなり、第3層を構成する各金属原子の原子数比は、0.35≦e≦0.7、0.3≦f≦0.7、および0≦1-e-f≦0.1の関係を満たす。第3層は、窒化物または炭窒化物であることにより、膜の硬度が高くなり耐摩耗性が向上する、被削材に対する摩擦係数が小さくなることにより耐溶着性が向上するなどの効果がある。
 第3層は、AlとともにTiを含むため、耐摩耗性が向上している。さらに第3層は、AlとTiとが組み合わされているために、Alの添加量が多くなるほど耐酸化性が向上するという効果がある。
 特に、第3層を構成するAlの原子数比eは、0.35以上0.7以下である。Alの原子数比eは、0.35未満である場合、被膜の耐酸化性が低下する傾向がある。一方でAlの原子数比eは、0.7を超える場合、第3層の硬度が低下し、摩耗が促進する傾向がある。第3層の耐摩耗性および耐酸化性をより高める観点からAlの原子数比eは、0.4以上0.65以下(0.4≦e≦0.65)であることがより好ましい。
 さらに、第3層を構成するTiの原子数比fは、0.3以上0.7以下である。Tiの原子数比fは、0.3未満である場合、硬度が低下し摩耗が促進する傾向がある。一方でTiの原子数比fは、0.7を超える場合、被膜のAlの添加量が相対的に少なくなり、耐酸化性が低下する傾向がある。第3層の耐摩耗性および耐酸化性をより高める観点からTiの原子数比fは、0.4以上0.6以下(0.4≦f≦0.6)であることがより好ましい。
 M3は、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。このような元素であることにより、第3層は、耐熱性、膜硬度および耐溶着性が向上する。M3は、具体的にはB、Si、Zr、V、Nb、W、Taのいずれかの元素であることが好ましい。M1~M3は、同一または異種である。すなわちM1とM2とM3とは、同一の元素であってもよく、異種の元素であってもよい。ただし、第1交互層と第2交互層との密着性をより強固にする観点から、M2とM3とは、同一であることが好ましい。
 (第4層)
 第4層は、AlgTihM41-g-hの窒化物または炭窒化物からなり、第4層を構成する各金属原子の原子数比は、0.35≦g≦0.7、0.3≦h≦0.7、および0≦1-g-h≦0.1の関係を満たす。第4層は、窒化物または炭窒化物であることにより、膜の硬度が高くなり耐摩耗性が向上する、被削材に対する摩擦係数が小さくなることにより耐溶着性が向上するなどの効果がある。
 第4層は、AlとともにTiを含むため、耐摩耗性が向上している。さらに第4層は、AlとTiとが組み合わされているためにAlの添加量が多くなるほど耐酸化性が向上するという効果がある。
 特に、第4層を構成するAlの原子数比gは、0.35以上0.7以下である。Alの原子数比gは、0.35未満である場合、被膜の耐酸化性が低下する傾向がある。一方でAlの原子数比gは、0.7を超える場合、第4層の硬度が低下し、摩耗が促進する傾向がある。第4層の耐摩耗性および耐酸化性をより高める観点からAlの原子数比gは、0.4以上0.65以下(0.4≦g≦0.65)であることがより好ましい。
 さらに、第4層を構成するTiの原子数比hは、0.3以上0.7以下である。Tiの原子数比hは、0.3未満である場合、硬度が低下し摩耗が促進する傾向がある。一方でTiの原子数比hは、0.7を超える場合、被膜のAlの添加量が相対的に少なくなり、耐酸化性が低下する傾向がある。第4層の耐摩耗性および耐酸化性をより高める観点からTiの原子数比hは、0.4以上0.6以下(0.4≦h≦0.6)であることがより好ましい。
 M4は、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である。このような元素であることにより、第4層は耐熱性、膜硬度および耐溶着性が向上する。M4は、具体的にはB、Si、Zr、V、Nb、W、Taのいずれかの元素であることが好ましい。M1~M4は、同一または異種である。すなわちM1とM2とM3とM4とは、同一の元素であってもよく、異種の元素であってもよい。ただし、第3層と第4層との密着性をより強固にする観点から、M3とM4とは、同一であることが好ましい。
 第2交互層は、第1交互層の最上層を第2層とし、この最上層上に形成されることが好ましい。第1交互層における第2層は、第2交互層を構成する第3層および第4層と近い組成を有するため、第1交互層と第2交互層との密着性をより強固にすることができるからである。このような観点から第2交互層の最上層および最下層については、第3層であっても第4層であっても、どちらでもよい。
 さらに、第2層を構成するAlの原子数比c、第3層を構成するAlの原子数比eおよび第4層を構成するAlの原子数比gは、e≦c≦gの関係を満たすことが好ましい。第2層を構成するTiの原子数比d、第3層を構成するTiの原子数比fおよび第4層を構成するTiの原子数比hは、h≦d≦fの関係を満たすことが好ましい。これらにより、第1交互層と第2交互層との密着性を向上させつつ、被膜全体の硬度をさらに強固なものとすることができるので、優れた耐チッピング性および耐摩耗性を有することができる。
 ここで本実施形態では、耐チッピング層である第3層および第4層を、その構成元素および組成比において、敢えて酷似する構成とした。これにより、耐チッピング層(第2交互層)は、図3Aに示すように、巨視的にはあたかも単一組成を有するように観察される。
 しかしながら、第3層を構成するAlの原子数比eおよび第4層を構成するAlの原子数比gは、0.05≦|g-e|≦0.2の関係を満たし、第3層を構成するTiの原子数比fおよび第4層を構成するTiの原子数比hは、0.05≦|h-f|≦0.2の関係を満たす。このため、第3層と第4層とは、その組成比が少なくとも一致することがない。これにより図3Bに示すように、微視的に2種の筋状部あるいは層状部が観察され、第3層と第4層とが区別し得るようになる。特に、図3Bに示す顕微鏡写真から第3層と第4層との間には、これらを区別し得る界面(転位に至らないまでのわずかな歪みを有する面)が存在していることが理解される。
 耐チッピング層は、この界面を有することにより、被膜中で亀裂が発生した場合に、第3層と第4層との間で亀裂の伝播を抑制することができる。さらに、第3層と第4層とは、その構成元素および組成比において酷似するため、第3層と第4層との間で結晶格子を連続させることができる。これにより、第3層と第4層とは、強固な密着性を備えることができる。
 ≪密着層≫
 図1および図4A、図4Bに示すように被膜11は、第1交互層112よりも基材12側に密着層111を含むことが好ましい。すなわち被膜11は、第1交互層112と基材12との間に密着層111を含むことが好ましい。より好ましくは、被膜11において密着層111は、第1交互層112および基材12と接する構成となる。被膜11が密着層111を含むことにより、被膜11の基材12からの剥離が防止され、表面被覆切削工具1の寿命を安定化させることができる。
 密着層は、その厚みが0.5nm以上20nm以下であることが好ましい。密着層の厚みが0.5nm未満である場合、薄すぎて十分な密着力が得られない恐れがある。密着層の厚みが20nmを超える場合、密着層内の残留応力が大きくなって、むしろ剥離しやすくなる恐れが生じる。密着層の厚みは、より好ましくは0.5nm以上10nm以下であり、特に好ましくは2nm以上6nm以下である。密着層の厚みも、TEM、STEMなどで測定することができる。その測定方法は、被膜の厚みの測定と同様に、密着層の断面サンプルを得て測定すればよい。断面観察用のサンプルも、被膜の厚みの測定と同様の方法により得ることができる。密着層の厚みは平均厚みであり、測定値の平均値である。
 密着層は、基材を構成する元素からなる群より選択される1種以上の元素と、第1元素と、第2元素とを含む炭化物、窒化物または炭窒化物であることが好ましい。第1元素は、Cr、Ti、Zr(ジルコニウム)およびNbを除き、上記第1交互層を形成する元素から選択される1種以上の元素であり、第2元素は、Cr、Ti、ZrおよびNbからなる群より選択される1種以上の元素である。基材を構成する元素からなる群より選択される1種以上の元素は、少なくともWを含み、このWが密着層に拡散している。第1元素は、具体的にはAl、Si、B、V、Taより選択される1種以上の元素であることが好ましい。密着層は、炭化物、窒化物または炭窒化物であることにより、密着性が顕著に向上する。さらに、基材を構成する元素の1つであるWを含み、このWが密着層に拡散していることにより、基材と密着層との密着性をより高めることができる。
 たとえば、本実施形態に係る表面被覆切削工具において、基材は、WCを含む硬質粒子と、硬質粒子同士を結合する結合相とを含み、結合相は、Coを含む構成であることが好ましい。密着層は、特にW、Cr、Ti、AlおよびM5を含む炭化物、窒化物または炭窒化物からなることが好ましい。上記M5は、W、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素であることが好ましい。M5は、具体的にはSi、B、Zr、V、Nb、Taのいずれかの元素であることがより好ましい。
 すなわち密着層は、基材および第1交互層の双方と化学的親和性を有する元素を含有する化合物からなることが望ましく、基材を構成する元素(たとえば、超硬合金の場合、W、C)と、第1交互層を構成する元素(Cr、Ti、Al、Si、B、Nなど)とを含む炭化物、窒化物または炭窒化物とすることができる。特に、このような炭化物、窒化物または炭窒化物が、Cr、Ti、ZrおよびNbからなる群より選択される1種以上の元素を含むことにより、密着性を顕著に向上させることができ、表面被覆切削工具の寿命がより安定化する。密着層の厚み、構成元素および組成比についても、SEMあるいはTEM付帯のEDXにより測定することができる。
 以下、密着層を構成する炭化物、窒化物、もしくは炭窒化物の具体例として、下記(a)~(j)を挙げることができる。
(a)Ti、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWTiC、WTiN、WTiCNなど)
(b)Cr、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWCrC、WCrN、WCrCNなど)
(c)Ti、Cr、Wを含む炭化物、窒化物もしくは炭窒化物(たとえば、WCrTiC、WCrTiN、WCrTiCNなど)
(d)Ti、Al、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWTiAlC、WTiAlN、WTiAlCNなど)
(e)Ti、Si、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWTiSiC、WTiSiN、WTiSiCNなど)
(f)Ti、Cr、Al、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWCrTiAlC、WCrTiAlN、WCrTiAlCNなど)
(g)Ti、Cr、Si、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWCrTiSiC、WCrTiSiN、WCrTiSiCNなど)
(h)Ti、Al、Si、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWTiAlSiC、WTiAlSiN、WTiAlSiCNなど)
(i)Ti、Cr、Al、Si、Wを含む炭化物、窒化物もしくは炭窒化物(たとえばWCrTiAlSiC、WCrTiAlSiN、WCrTiAlSiCNなど)
(j)上記の(a)~(i)においてCrの全部または一部がTi、ZrおよびNbから選択される1種以上の元素と置き換えられた炭化物、窒化物もしくは炭窒化物。
 <表面被覆切削工具の製造方法>
 本実施形態に係る表面被覆切削工具の製造方法は、基材を準備する第1工程と、第1層と第2層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、第1交互層を形成する第2工程と、第1交互層上に、第3層と第4層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、第2交互層を形成する第3工程とを含む。
 上記表面被覆切削工具の製造方法では、耐摩耗性を有する被膜を基材の表面上に形成することを目的とするため、結晶性の高い化合物からなる層を形成することが望ましい。本発明者がそのような被膜を開発すべく、各種成膜技術を検討したところ、その手段としては物理的蒸着法を用いることが適切であった。物理蒸着法とは、物理的な作用を利用して原料(蒸発源、ターゲットともいう)を気化し、気化した原料を基材上に付着させる蒸着方法である。特に、本実施形態で用いる物理的蒸着法は、カソードアークイオンプレーティング法、バランスドマグネトロンスパッタリング法およびアンバランスドマグネトロンスパッタリング法からなる群より選択される少なくとも1種であることが好ましい。なかでも、原料となる元素のイオン化率の高いカソードアークイオンプレーティング法がより好ましい。カソードアークイオンプレーティング法を用いる場合、被膜を形成する前に、基材の表面に対して金属のイオンボンバード洗浄処理が可能であるので、洗浄時間を短縮することもできる。
 カソードアークイオンプレーティング法は、装置内に基材を設置するとともにカソードとしてターゲットを設置した後、このターゲットに高電流を印加してアーク放電を生じさせる。これにより、ターゲットを構成する原子を蒸発させイオン化させて、負のバイアス電圧を印可した基材上に堆積させて被膜を形成する。
 さらに、たとえば、バランスドマグネトロンスパッタリング法は、装置内に基材を設置するとともに平衡な磁場を形成する磁石を備えたマグネトロン電極上にターゲットを設置し、マグネトロン電極と基材との間に高周波電力を印加してガスプラズマを発生させる。このガスプラズマの発生により生じたガスのイオンをターゲットに衝突させてターゲットから放出された原子をイオン化させ、基材上に堆積させることにより被膜を形成する。
 アンバランスドマグネトロンスパッタリング法は、上記バランスドマグネトロンスパッタリング法におけるマグネトロン電極により発生する磁場を非平衡にすることにより、被膜を形成する。
 ≪第1工程≫
 第1工程では基材が準備される。たとえば、基材として超硬合金基材が準備される。超硬合金基材は、市販のものを用いてもよく、一般的な粉末冶金法で製造してもよい。一般的な粉末冶金法で製造する場合、たとえば、ボールミルなどによってWC粉末とCo粉末などとを混合して混合粉末を得る。該混合粉末を乾燥した後、所定の形状に成形して成形体を得る。さらに該成形体を焼結することにより、WC-Co系超硬合金(焼結体)を得る。次いで該焼結体に対して、ホーニング処理などの所定の刃先加工を施すことにより、WC-Co系超硬合金からなる基材を製造することができる。第1工程では、上記以外の基材であっても、この種の基材として従来公知のものであればいずれも準備可能である。
 (基材洗浄工程)
 後述する第2工程の前に、基材を洗浄する基材洗浄工程を行なうことができる。たとえば、第2工程においてカソードアークイオンプレーティング法を用いて被膜を形成する前に、基材の表面に対してイオンボンバードメント処理を施すことができる。これによりたとえば、基材として超硬合金基材を用いた場合、基材の表面から軟質な結合相を除去することができる。その後、基材上に密着層を形成することにより、密着層と基材とが接する部分における硬質粒子の占有率を高めることができる。このとき基材における密着層と接する面積のうち80%以上がWCであることがより好ましい。
 (密着層形成工程)
 さらにイオンボンバードメント処理自体により、密着層の前駆体を形成することができる。すなわちイオンボンバードメント処理においてCr、Ti、ZrおよびNbから選択される1種以上の元素を含むターゲットを使用することにより、基材の表面を洗浄しながら、これらの元素を密着層の前駆体として基材の表面に付着させることができる。そして、これらの元素が付着した表面上に、後述する第2工程である第1交互層を形成する工程を行なうことにより、密着力に優れる密着層を、第1交互層と併せて形成することができる。イオンボンバードメント処理に使用され、かつ密着層に含まれる元素としては、Crであることがより望ましい。Crは昇華性の元素であるため、イオンボンバードメント処理の際に溶融粒子(ドロップレット)の発生が少なく、基材の表面荒れを防止できるからである。
 たとえば第1工程およびその後の基材洗浄工程は、次のようにして行なうことができる。成膜装置のチャンバ内に、基材として任意の形状のチップを装着する。たとえば、図5に示す成膜装置を用いて説明すれば、基材12を、チャンバ2内の中央に備え付けられた回転テーブル20上の基材ホルダ21の外表面に取り付ける。基材ホルダ21には、バイアス電源42を取り付ける。
 続いて、図6に示すように、チャンバ2内の所定位置に、被膜の金属原料である合金製ターゲットをそれぞれ対応する第1層形成用の蒸発源31、第2層形成用の蒸発源32、第3層形成用の蒸発源33、第4層形成用の蒸発源34およびイオンボンバーメント用蒸発源30に取り付ける。第1層形成用の蒸発源31にはアーク電源41を取り付け、第2層形成用の蒸発源32、第3層形成用の蒸発源33、第4層形成用の蒸発源34およびイオンボンバーメント用蒸発源30にもそれぞれアーク電源(図示せず)を取り付ける。
 チャンバ2内には、雰囲気ガスを導入するためのガス導入口22が設けられ、チャンバ2から雰囲気ガスを排出するためのガス排出口23が設けられている。このガス排出口23から真空ポンプによってチャンバ2内の雰囲気ガスを吸引することができる。
 まず、真空ポンプによりチャンバ2内を1.0×10-5~1.0×10-3Paまで減圧するとともに、回転テーブル20を回転させることにより基材ホルダ21の基材12を回転させながら、装置内に設置されたヒータ(図示せず)により基材12の表面温度を400~700℃に加熱する。
 次に、ガス導入口22から雰囲気ガスとしてアルゴンガスを導入し、チャンバ2内の圧力を1.0~4.0Paに保持し、バイアス電源42の電圧を徐々に上げながら-1000~-400Vとし、基材12の表面を15~90分に亘り洗浄する。これにより、基材12が超硬合金基材である場合、その表面から結合相を除去することができる。
 イオンボンバーメント用蒸発源30に100~200Aのアーク電流を印可し、基材の表面に対してイオンボンバーメント処理を15~90分に亘り施すことにより、基材の表面をさらに洗浄するとともに、金属元素を表面に付着させる。
 ≪第2工程≫
 第2工程では、第1層と第2層とが交互にそれぞれ1層以上積層された第1交互層が形成される。その方法としては、形成しようとする第1層および第2層の組成に応じて、各種の方法が用いられる。たとえば、Ti、Cr、AlおよびSiなどの粒径をそれぞれ変化させた合金製ターゲットを使用する方法、それぞれ組成の異なる複数のターゲットを使用する方法、成膜時に印可するバイアス電圧をパルス電圧とする方法、あるいは成膜時にガス流量を変化させる方法、成膜装置において基材を保持する基材ホルダの回転速度を調整する方法などを挙げることができる。これらの方法を組み合わせて第1交互層を形成することもできる。
 たとえば、第2工程は、次のようにして行なうことができる。すなわち、上記の基材12の洗浄に引き続き、基材12を中央で回転させた状態で、反応ガスとして窒素を導入する。さらに、基材12を温度400~700℃に、反応ガス圧を1.0~5.0Paに、バイアス電源42の電圧を-30~-800Vの範囲にそれぞれ維持し、またはそれぞれを徐々に変化させながら第1層形成用の蒸発源31および第2層形成用の蒸発源32にそれぞれ100~200Aのアーク電流を供給する。これにより、蒸発源31および蒸発源32からそれぞれ金属イオンを発生させ、所定の時間が経過したところでアーク電流の供給を止めて、基材12の表面上に第1交互層を形成する。このとき第1交互層は、上述した組成を有する第1層および第2層を、所定の厚み(λ1、λ2)および所定の層厚比(λ1/λ2)を有するように基材12の回転速度を制御しながら、それぞれ1層ずつ交互に積層することによって作製する。さらに、成膜時間を調節することにより、第1交互層の厚みが所定範囲になるように調整する。
 特に、第1交互層の最上層および最下層は、各層を成膜する際に使用する蒸発源を限定(すなわち第1層形成用の蒸発源31および第2層形成用の蒸発源32のどちらかを指定)することにより第1層または第2層として作製することができる。たとえば、第1層を最下層とする場合、第2層形成用の蒸発源32のアーク電流を0Aとすることにより第1層のみを成膜することができる。さらに、第1交互層の最上層および最下層の両方またはいずれか一方を混合層とする場合、混合層は、回転テーブル20の回転速度を早くすることにより、第1層と第2層とが混合した層として作製することができる。
 ≪第3工程≫
 第3工程では、第3層と第4層とが交互にそれぞれ1層以上積層された第2交互層が形成される。その方法としても第2工程と同様に、形成しようとする第3層および第4層の組成に応じて、各種の方法が用いられる。たとえば、Tiと、Alと、SiまたはBとの粒径をそれぞれ変化させた合金製ターゲットを使用する方法、それぞれ組成の異なる複数のターゲットを使用する方法、成膜時に印可するバイアス電圧をパルス電圧とするか、あるいはガス流量を変化させる方法、成膜装置において基材を保持する基材ホルダの回転速度を調整する方法などを挙げることができる。これらの方法を組み合わせて第2交互層を形成することもできる。
 たとえば、第3工程は、次のようにして行なうことができる。すなわち、上記第2工程を行なう例で示した基材12の温度、反応ガス圧およびバイアス電圧を維持したまま、第3層形成用の蒸発源33および第4層形成用の蒸発源34にそれぞれ100~200Aのアーク電流を供給することによって、蒸発源33および蒸発源34からそれぞれ金属イオンを発生させる。その後、所定の時間が経過したところでアーク電流の供給を止めて、第1交互層上に第2交互層を形成する。このとき第2交互層は、上述した組成を有する第3層および第4層を、所定の厚み(λ3、λ4)および所定の層厚比(λ3/λ4)を有するように基材12の回転速度を調整しながら、それぞれ1層ずつ交互に積層することによって作製する。さらに、成膜時間を調節することにより、第2交互層の厚みが所定範囲になるように調整する。特に、第2交互層は、たとえば蒸発源33および蒸発源34に使用する金属原料の組成を適宜調整することにより、上述した0.05≦|g-e|≦0.2の関係、0.05≦|h-f|≦0.2の関係を満たすように制御することができる。
 第1交互層および第2交互層を形成した後、被膜に圧縮残留応力を付与してもよい。靭性が向上するからである。圧縮残留応力は、たとえばブラスト法、ブラシ法、バレル法、イオン注入法などによって付与することができる。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 <表面被覆切削工具の作製>
 図5に、本実施例で用いた成膜装置(カソードアークイオンプレーティング装置)の模式的な側面透視説明図を示し、図6に、図5に示すカソードアークイオンプレーティング装置の模式的な平面透視説明図を示す。
 (基材の準備および洗浄)
 この成膜装置のチャンバ2内に、基材12を準備する。本実施例では、基材12としてグレードがISO規格P30の超硬合金であって形状がJIS規格のSFKN12T3AZTNであるチップを用いた。図5に示すように、基材12は、チャンバ2内の中央に備え付けられた回転テーブル20上の基材ホルダ21の外表面に取り付けた。
 図6に示すように、チャンバ2には、被膜の金属原料となる合金製ターゲットである第1層形成用の蒸発源(第1層を構成する組成の金属原料からなる合金製蒸発源)31、第2層形成用の蒸発源(第2層を構成する組成の金属原料からなる合金製蒸発源)32、第3層形成用の蒸発源(第3層を構成する組成の金属原料からなる合金製蒸発源)33および第4層形成用の蒸発源(第4層を構成する組成の金属原料からなる合金製蒸発源)34を取り付けた。
 図5に示すように、第1層形成用の蒸発源31にはアーク電源41を取り付けた。さらに、第2層形成用の蒸発源32、第3層形成用の蒸発源33、第4層形成用の蒸発源34およびイオンボンバーメント用蒸発源30にもそれぞれアーク電源(図示せず)を取り付けた。
 基材ホルダ21には、バイアス電源42を取り付けた。チャンバ2内には、雰囲気ガスを導入するためのガス導入口22が設けられ、チャンバ2から雰囲気ガスを排出するためのガス排出口23が設けられているので、このガス排出口23から真空ポンプによってチャンバ2内の雰囲気ガスを吸引して排気することができる。
 まず、図5および図6に示す成膜装置において、真空ポンプによりチャンバ2内を減圧するとともに、回転テーブル20を回転させることにより基材ホルダ21の基材12を回転させた。続いて、装置内に設置されたヒータ(図示せず)により基材12の表面温度を500℃に加熱し、チャンバ2内の圧力が1.0×10-4Paとなるまで真空引きを行なった。
 次に、ガス導入口22から雰囲気ガスとしてアルゴンガスを導入し、チャンバ2内の圧力を3.0Paに保持し、バイアス電源42の電圧を徐々に上げながら-1000Vとし、基材12の表面のクリーニングに加え、基材12の表面から結合相を除去する処理を行なった。その後、チャンバ2内からアルゴンガスを排気した。
 (被膜の形成)
 実施例1~11、13、15~23においては、上記の基材12の洗浄に引き続き、基材12を中央で回転させた状態で、反応ガスとして窒素を導入した。さらに、基材12を温度500℃に、反応ガス圧を2.0Paに、バイアス電源42の電圧を-30V~-800Vの範囲の一定値にそれぞれ維持し、またはそれぞれを徐々に変化させながら第1層形成用の蒸発源31および第2層形成用の蒸発源32にそれぞれ100Aのアーク電流を供給した。これにより、蒸発源31および蒸発源32からそれぞれ金属イオンを発生させ、所定の時間が経過したところでアーク電流の供給を止めて、基材12の表面上に表1に示す組成の第1交互層を形成した。このとき第1交互層は、表1に示す組成を有する第1層および第2層を、表1に示す厚みおよび層厚比(λ1/λ2)を有するように基材12の回転速度を調整しながら、それぞれ1層ずつ交互に積層することによって作製した。
 実施例12、14においては、反応ガスとして窒素に加えメタンガスを導入し、形成される第1層および第2層が炭窒化物となるようにし、その他は上記と同様にして第1交互層を作製した。
 特に、第1層および第2層の1層当たりの厚みの比率(層厚比)は、表1のとおりとなるように回転テーブル20の回転速度を制御することにより調整した。
[規則91に基づく訂正 16.08.2017] 
 ここで、最上層および最下層については、表1に示すように、実施例1~4において第1層および第2層の混合層とし、実施例5~23において第1層または第2層のいずれかとした。比較例1、2、7については第1交互層に相当する層としてTiN層を単一層として作製した。比較例3~5、8については第1交互層に相当する層として表1のとおりの第1層を単一層として作製した。比較例6は、後述するように第2交互層を形成しない例である。比較例9については、最下層および最上層を第2層とすること、層厚比(λ1/λ2)を5とすること、ならびに後述する第2交互層の組成比において0.05≦|g-e|≦0.2の関係および0.05≦|h-f|≦0.2の関係をいずれも満たさないこと以外、実施例1と同様にして作製した。これにより、第2工程を実施した。
 なお、実施例5~23において、第1交互層の最上層および最下層は、第1交互層を形成する蒸発源2面のうち片側1面だけを使用し成膜することにより作製した。実施例1~4における混合層は、回転テーブル20の回転速度を早くし、第1層と第2層とが混合した層として作製した。
Figure JPOXMLDOC01-appb-T000001
 次に、実施例1~12、15~23において、基材12の温度、反応ガス圧およびバイアス電圧を上記で維持したまま、第3層形成用の蒸発源33および第4層形成用の蒸発源34にそれぞれ100Aのアーク電流を供給することによって、蒸発源33および蒸発源34からそれぞれ金属イオンを発生させ、所定の時間が経過したところでアーク電流の供給を止めて、第1交互層上に表2に示す組成の第2交互層を形成した。このとき第2交互層は、表2に示す組成を有する第3層および第4層を、表2に示す厚み(λ3、λ4)および層厚比(λ3/λ4)を有するように基材12の回転速度を調整しながら、それぞれ1層ずつ交互に積層することによって作製した。実施例13、14においては、反応ガスとして窒素に加えメタンガスを導入し、形成される第3層および第4層が炭窒化物となるようにし、その他は上記と同様にして第2交互層を作製した。なお、第3層および第4層の1層当たりの厚みの比率(層厚比)は、表2のとおりとなるように回転テーブル20の回転速度を制御することにより調整した。これにより、第3工程を実施した。
 特に、第2交互層は、第3層と第4層とに使用する金属原料を異なる組成の組み合わせとすることにより、0.05≦|g-e|≦0.2の関係、および0.05≦|h-f|≦0.2の関係を満たすようにして作製した。
[規則91に基づく訂正 16.08.2017] 
 比較例1~6については第2交互層を形成しなかった。比較例7、8については第2交互層を、実施例2と同様として作製した。ただし比較例9は、第3層および第4層の組成が表2のとおりとなるようにしたため、0.05≦|g-e|≦0.2の関係を満たさず、かつ0.05≦|h-f|≦0.2の関係も満たしていない。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (密着層の形成)
 ここで実施例11~23においては、上記の「(基材の準備および洗浄)」に係る工程に引き続き、表4に示す組成および厚みの密着層を形成した。比較例2については、密着層に相当するものとしてTiNを表4に示す厚みで形成した。
 密着層の形成は、上記の「(被膜の形成)」に係る工程の前に、基材12の洗浄に引き続き、基材12を中央で回転させた状態で、反応ガスとして窒素およびメタンガスの両方またはいずれか一方を導入して行なった。さらに、基材12を温度500℃に、反応ガス圧を2.0Paに、バイアス電源42の電圧を-30V~-800Vの範囲の一定値にそれぞれ維持し、またはそれぞれを徐々に変化させながら密着層の組成で構成される合金製ターゲット(図示しない)に100Aのアーク電流を供給した。これにより、合金製ターゲットからそれぞれ金属イオンを発生させ、所定の時間が経過したところでアーク電流の供給を止めて、基材12の表面上に表4に示す組成および厚みを有する密着層を形成した。
Figure JPOXMLDOC01-appb-T000004
 以上のようにして、実施例1~23および比較例1~9の表面被覆切削工具を製造した。
 <表面被覆切削工具の寿命評価>
 ≪連続切削試験≫
 上述のようにして得た実施例および比較例の表面被覆切削工具に対し、以下の条件で連続切削試験を行ない、逃げ面摩耗幅が0.2mmを超えるまでに切削した距離(単位は、m)を測定することにより、工具寿命を評価した。その結果を表4に示す。切削距離の値が大きいほど寿命がより長いことを示す。
 連続切削試験条件:
 切削材              : SCM435
 切削速度v(m/min)     : 250
 送り速度f(mm/刃)      : 0.3
 切り込み量ap(mm)      : 2.0
 半径方向の切り込み量as(mm) : 50。
 ≪断続切削試験≫
 さらに、実施例および比較例の表面被覆切削工具に対し、以下の条件で乾式の断続切削試験を行ない、刃先が欠損するまでに切削した距離(単位は、m)を測定することにより、工具寿命を評価した。その結果を表4に示す。切削距離の値が大きいほど寿命がより長いことを示す。
 乾式の断続切削試験条件:
 切削材              : SUS316
 切削速度v(m/min)     : 200
 送り速度f(mm/刃)      : 0.2
 切り込み量ap(mm)      : 2
 半径方向の切り込み量as(mm) : 50。
 ≪評価結果≫
 表4に示すように、各実施例に係る表面被覆切削工具は、各比較例の表面被覆切削工具に比べ、工具寿命が向上していることが明らかである。その理由は、第1層および第2層からなる第1交互層により、耐摩耗性が向上し、第3層および第4層からなる第2交互層により、耐チッピング性が向上したことによるものと考えられる。したがって、実施例に係る表面被覆切削工具はそれぞれ、優れた耐チッピング性および耐摩耗性を示し、過酷な切削条件に耐え、優れた刃先品位を得ることができる。
 特に、第2層~第4層を構成するAlの原子数比が所定の関係にあること、第2層~第4層を構成するTiの原子数比が所定の関係にあること、第1交互層の最下層が第1層または第2層であること、第1交互層の最上層が第2層であること、λ1/λ2、λ3/λ4が所定の範囲にあることなどにより、工具寿命が向上する傾向は、より強く認められた。さらに、所定の組成の密着層を備えることにより、さらに工具寿命は向上した。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および実施例の構成を適宜組み合わせたり、様々に変形したりすることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 表面被覆切削工具、11 被膜、111 密着層、112 第1交互層、113 第2交互層、12 基材、2 チャンバ、20 回転テーブル、21 基材ホルダ、22 ガス導入口、23 ガス排出口、30 イオンボンバーメント用蒸発源、31 蒸発源、32 蒸発源、33 蒸発源、34 蒸発源、41 アーク電源、42 バイアス電源。

Claims (12)

  1.  基材と、該基材の表面に形成された被膜とを備える表面被覆切削工具であって、
     前記被膜は、第1交互層と、該第1交互層上に形成された第2交互層とを含み、
     前記第1交互層は、第1層と第2層とを含み、
     前記第2交互層は、第3層と第4層とを含み、
     前記第1層と前記第2層とは、交互にそれぞれ1層以上積層され、
     前記第3層と前記第4層とは、交互にそれぞれ1層以上積層され、
     前記第1層は、AlaCrbM11-a-bの窒化物または炭窒化物からなり、前記第1層を構成する各金属原子の原子数比は、0.5≦a≦0.9、0<b≦0.4、および0≦1-a-b≦0.1の関係を満たし、
     前記第2層は、AlcTidM21-c-dの窒化物または炭窒化物からなり、前記第2層を構成する各金属原子の原子数比は、0.35≦c≦0.7、0.3≦d≦0.7、および0≦1-c-d≦0.1の関係を満たし、
     前記第3層は、AleTifM31-e-fの窒化物または炭窒化物からなり、前記第3層を構成する各金属原子の原子数比は、0.35≦e≦0.7、0.3≦f≦0.7、および0≦1-e-f≦0.1の関係を満たし、
     前記第4層は、AlgTihM41-g-hの窒化物または炭窒化物からなり、前記第4層を構成する各金属原子の原子数比は、0.35≦g≦0.7、0.3≦h≦0.7、および0≦1-g-h≦0.1の関係を満たし、
     前記第3層を構成するAlの原子数比eおよび前記第4層を構成するAlの原子数比gは、0.05≦|g-e|≦0.2の関係を満たし、
     前記第3層を構成するTiの原子数比fおよび前記第4層を構成するTiの原子数比hは、0.05≦|h-f|≦0.2の関係を満たし、
     前記M1、前記M2、前記M3および前記M4は、それぞれ独立してCr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である、表面被覆切削工具。
  2.  前記第2層を構成するAlの原子数比c、前記第3層を構成するAlの原子数比eおよび前記第4層を構成するAlの原子数比gは、e≦c≦gの関係を満たし、
     前記第2層を構成するTiの原子数比d、前記第3層を構成するTiの原子数比fおよび前記第4層を構成するTiの原子数比hは、h≦d≦fの関係を満たす、請求項1に記載の表面被覆切削工具。
  3.  前記第1交互層は、最上層が前記第2層である、請求項1または請求項2に記載の表面被覆切削工具。
  4.  前記第1交互層は、最下層が前記第1層または前記第2層である、請求項1~請求項3のいずれか1項に記載の表面被覆切削工具。
  5.  前記第1層の厚みλ1および前記第2層の厚みλ2は、それぞれ0.005μm以上2μm以下であり、
     前記第1層と前記第2層との厚みの比であるλ1/λ2は、1≦λ1/λ2≦5の関係を満たす、請求項1~請求項4のいずれか1項に記載の表面被覆切削工具。
  6.  前記第3層の厚みλ3および前記第4層の厚みλ4は、それぞれ0.005μm以上2μm以下であり、
     前記第3層と前記第4層との厚みの比であるλ3/λ4は、1≦λ3/λ4≦5の関係を満たす、請求項1~請求項5のいずれか1項に記載の表面被覆切削工具。
  7.  前記被膜は、全体の厚みが0.5μm以上15μm以下である、請求項1~請求項6のいずれか1項に記載の表面被覆切削工具。
  8.  前記被膜は、前記第1交互層よりも前記基材側に密着層を含み、
     前記密着層は、厚みが0.5nm以上20nm以下であり、
     前記密着層は、前記基材を構成する元素からなる群より選択される1種以上の元素と、第1元素と、第2元素とを含む炭化物、窒化物または炭窒化物であり、
     前記第1元素は、Cr、Ti、ZrおよびNbを除く周期表の第4族元素、第5族元素、第6族元素、Al、SiおよびBからなる群より選択される1種以上の元素であり、
     前記第2元素は、Cr、Ti、ZrおよびNbからなる群より選択される1種以上の元素であり、
     前記基材を構成する元素からなる群より選択される1種以上の元素は、少なくともWを含み、前記Wが前記密着層に拡散している、請求項1~請求項7のいずれか1項に記載の表面被覆切削工具。
  9.  前記基材は、WCを含む硬質粒子と、該硬質粒子同士を結合する結合相とを含み、
     前記結合相は、Coを含み、
     前記密着層は、W、Cr、Ti、AlおよびM5を含む炭化物、窒化物または炭窒化物であり、
     前記M5は、W、Cr、Tiを除く周期表の第4族元素、第5族元素、第6族元素、SiおよびBからなる群より選択される1種以上の元素である、請求項8に記載の表面被覆切削工具。
  10.  前記第1交互層および前記第2交互層は、結晶構造が立方晶である、請求項1~請求項9のいずれか1項に記載の表面被覆切削工具。
  11.  請求項1~請求項10のいずれか1項に記載の表面被覆切削工具の製造方法であって、
     前記基材を準備する第1工程と、
     前記第1層と前記第2層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、前記第1交互層を形成する第2工程と、
     前記第1交互層上に、前記第3層と前記第4層とを物理的蒸着法を用いて交互にそれぞれ1層以上積層することにより、前記第2交互層を形成する第3工程とを含む、表面被覆切削工具の製造方法。
  12.  前記物理的蒸着法は、カソードアークイオンプレーティング法、バランスドマグネトロンスパッタリング法およびアンバランスドマグネトロンスパッタリング法からなる群より選択される少なくとも1種である、請求項11に記載の表面被覆切削工具の製造方法。
PCT/JP2017/008300 2016-03-28 2017-03-02 表面被覆切削工具、およびその製造方法 WO2017169498A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17774043.8A EP3269479B1 (en) 2016-03-28 2017-03-02 Surface-coated cutting tool and method for manufacturing same
US15/567,149 US11872636B2 (en) 2016-03-28 2017-03-02 Surface-coated cutting tool and method for manufacturing same
CN201780001560.0A CN107848040B (zh) 2016-03-28 2017-03-02 表面被覆切削工具及其制造方法
KR1020177031889A KR102268364B1 (ko) 2016-03-28 2017-03-02 표면 피복 절삭 공구 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-063935 2016-03-28
JP2016063935A JP6222675B2 (ja) 2016-03-28 2016-03-28 表面被覆切削工具、およびその製造方法

Publications (1)

Publication Number Publication Date
WO2017169498A1 true WO2017169498A1 (ja) 2017-10-05

Family

ID=59964034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008300 WO2017169498A1 (ja) 2016-03-28 2017-03-02 表面被覆切削工具、およびその製造方法

Country Status (6)

Country Link
US (1) US11872636B2 (ja)
EP (1) EP3269479B1 (ja)
JP (1) JP6222675B2 (ja)
KR (1) KR102268364B1 (ja)
CN (1) CN107848040B (ja)
WO (1) WO2017169498A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230166A1 (ja) * 2018-05-30 2019-12-05 三菱日立ツール株式会社 被覆切削工具及びその製造方法
WO2022176057A1 (ja) * 2021-02-17 2022-08-25 住友電工ハードメタル株式会社 切削工具

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228726A1 (en) * 2016-04-08 2017-10-11 Seco Tools Ab Coated cutting tool
JP6737442B2 (ja) 2016-04-19 2020-08-12 住友電工ハードメタル株式会社 表面被覆切削工具
EP3404126B1 (en) * 2017-05-19 2019-10-16 Walter Ag Metal cutting tool with multi-layer coating
JP6984108B2 (ja) * 2018-03-07 2021-12-17 住友電工ハードメタル株式会社 表面被覆切削工具及びその製造方法
WO2019181135A1 (ja) * 2018-03-22 2019-09-26 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
WO2019239654A1 (ja) 2018-06-15 2019-12-19 住友電工ハードメタル株式会社 表面被覆切削工具、及びその製造方法
EP3808477B1 (en) * 2018-06-15 2022-11-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing same
JP6995202B2 (ja) * 2018-08-01 2022-01-14 オーエスジー株式会社 硬質被膜および硬質被膜被覆部材
DE112018007875T5 (de) * 2018-08-01 2021-04-22 Osg Corporation Hartbeschichtung und mit Hartbeschichtung bedecktes Element
JP7081466B2 (ja) * 2018-12-03 2022-06-07 株式会社タンガロイ 穴あけ加工用被覆切削工具
CN113874143A (zh) * 2019-05-09 2021-12-31 株式会社Moldino 包覆切削工具
CN112239846B (zh) * 2019-07-19 2023-01-31 株洲钻石切削刀具股份有限公司 一种多元复合涂层切削刀具
JP7140163B2 (ja) * 2020-08-07 2022-09-21 株式会社タンガロイ 被覆切削工具
KR102497483B1 (ko) * 2020-12-17 2023-02-08 한국야금 주식회사 절삭공구용 경질피막
JP7319600B6 (ja) * 2021-12-10 2023-08-18 株式会社タンガロイ 被覆切削工具
CN114472947B (zh) * 2022-03-22 2023-03-14 常德职业技术学院 一种基于金属陶瓷的耐超高温切削刀具
CN115125479A (zh) * 2022-05-30 2022-09-30 东莞市华升真空镀膜科技有限公司 硬质合金涂层刀具及其制备方法
JP7338827B1 (ja) * 2022-06-15 2023-09-05 住友電工ハードメタル株式会社 切削工具
JP7380978B1 (ja) * 2022-06-15 2023-11-15 住友電工ハードメタル株式会社 切削工具
WO2024062611A1 (ja) * 2022-09-22 2024-03-28 住友電気工業株式会社 切削工具
CN116372206B (zh) * 2023-03-09 2024-03-19 株洲肯特硬质合金股份有限公司 一种刀具用纳米涂层及涂层刀具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152321A (ja) * 2004-11-25 2006-06-15 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材及びその被覆方法
JP2009248238A (ja) * 2008-04-04 2009-10-29 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2010188460A (ja) * 2009-02-17 2010-09-02 Sumitomo Electric Ind Ltd 表面被覆切削工具
US20110033723A1 (en) * 2008-04-24 2011-02-10 Korloy Inc. Multi-layer hard file for indexable insert
WO2015186503A1 (ja) * 2014-06-06 2015-12-10 住友電工ハードメタル株式会社 表面被覆工具およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792379B2 (ja) * 1993-03-03 1998-09-03 住友金属工業株式会社 耐摩耗性に優れたTi合金部材とその製造方法
JP2793773B2 (ja) 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 耐摩耗性に優れた硬質皮膜、硬質皮膜被覆工具及び硬質皮膜被覆部材
US5652045A (en) * 1994-10-20 1997-07-29 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
JP4268558B2 (ja) 2004-04-20 2009-05-27 住友電工ハードメタル株式会社 被覆切削工具
CN100528430C (zh) * 2004-06-18 2009-08-19 三菱麻铁里亚尔株式会社 表面被覆切削刀具及其制造方法
WO2006070509A1 (ja) 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具および表面被覆切削工具の製造方法
WO2006070730A1 (ja) 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具および表面被覆切削工具の製造方法
SE0700800L (sv) 2006-12-15 2008-06-16 Sandvik Intellectual Property Belagt skärverktyg
JP5074772B2 (ja) * 2007-01-09 2012-11-14 住友電気工業株式会社 表面被覆切削工具
EP2208560B2 (en) * 2007-10-12 2017-09-20 Hitachi Tool Engineering, Ltd. Process for the production of the member covered with hard coating
CN102099137A (zh) * 2008-07-14 2011-06-15 Osg株式会社 硬质被膜及硬质被膜被覆工具
WO2010150335A1 (ja) * 2009-06-22 2010-12-29 株式会社タンガロイ 被覆立方晶窒化硼素焼結体工具
KR101284766B1 (ko) * 2011-11-30 2013-07-17 한국야금 주식회사 절삭공구용 경질피막
US9211588B2 (en) * 2012-06-29 2015-12-15 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2014025057A1 (ja) * 2012-08-10 2014-02-13 株式会社タンガロイ 被覆工具
JP5618429B2 (ja) * 2012-12-28 2014-11-05 住友電工ハードメタル株式会社 表面被覆部材およびその製造方法
US10265775B2 (en) 2014-03-27 2019-04-23 Tungaloy Corporation Coated tool
KR101579039B1 (ko) * 2015-04-02 2015-12-18 한국야금 주식회사 절삭공구용 경질피막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152321A (ja) * 2004-11-25 2006-06-15 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材及びその被覆方法
JP2009248238A (ja) * 2008-04-04 2009-10-29 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
US20110033723A1 (en) * 2008-04-24 2011-02-10 Korloy Inc. Multi-layer hard file for indexable insert
JP2010188460A (ja) * 2009-02-17 2010-09-02 Sumitomo Electric Ind Ltd 表面被覆切削工具
WO2015186503A1 (ja) * 2014-06-06 2015-12-10 住友電工ハードメタル株式会社 表面被覆工具およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269479A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230166A1 (ja) * 2018-05-30 2019-12-05 三菱日立ツール株式会社 被覆切削工具及びその製造方法
JPWO2019230166A1 (ja) * 2018-05-30 2021-02-12 株式会社Moldino 被覆切削工具及びその製造方法
US11511352B2 (en) 2018-05-30 2022-11-29 Moldino Tool Engineering, Ltd. Coated cutting tool and production method therefor
WO2022176057A1 (ja) * 2021-02-17 2022-08-25 住友電工ハードメタル株式会社 切削工具

Also Published As

Publication number Publication date
JP6222675B2 (ja) 2017-11-01
US20180099335A1 (en) 2018-04-12
CN107848040B (zh) 2019-04-05
EP3269479A4 (en) 2018-12-26
JP2017177239A (ja) 2017-10-05
KR102268364B1 (ko) 2021-06-25
EP3269479A1 (en) 2018-01-17
US11872636B2 (en) 2024-01-16
EP3269479B1 (en) 2022-08-03
KR20180127165A (ko) 2018-11-28
CN107848040A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6222675B2 (ja) 表面被覆切削工具、およびその製造方法
JP5395454B2 (ja) 表面被覆切削工具
JP5315533B2 (ja) 表面被覆切削工具
JP2006181706A (ja) 表面被覆切削工具およびその製造方法
WO2019239654A1 (ja) 表面被覆切削工具、及びその製造方法
JP6641610B1 (ja) 切削工具及びその製造方法
JP7067689B2 (ja) 表面被覆切削工具及びその製造方法
JP5416429B2 (ja) 表面被覆切削工具
WO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
JP6583763B1 (ja) 表面被覆切削工具、及びその製造方法
JP2015110256A (ja) 表面被覆切削工具
JP5376375B2 (ja) 表面被覆切削工具
JP7055961B2 (ja) 表面被覆切削工具及びその製造方法
JP5315532B2 (ja) 表面被覆切削工具
WO2020075356A1 (ja) 切削工具及びその製造方法
JP5376374B2 (ja) 表面被覆切削工具
JP5050277B2 (ja) 表面被覆切削工具
JP2017166011A (ja) 被膜、切削工具および被膜の製造方法
WO2020075355A1 (ja) 切削工具及びその製造方法
JP5321361B2 (ja) 表面被覆切削工具
JP2010115761A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15567149

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177031889

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE