WO2009145001A1 - 誘電体磁器および積層セラミックコンデンサ - Google Patents

誘電体磁器および積層セラミックコンデンサ Download PDF

Info

Publication number
WO2009145001A1
WO2009145001A1 PCT/JP2009/055984 JP2009055984W WO2009145001A1 WO 2009145001 A1 WO2009145001 A1 WO 2009145001A1 JP 2009055984 W JP2009055984 W JP 2009055984W WO 2009145001 A1 WO2009145001 A1 WO 2009145001A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
dielectric
terms
barium titanate
dielectric ceramic
Prior art date
Application number
PCT/JP2009/055984
Other languages
English (en)
French (fr)
Inventor
勇介 東
洋一 山崎
雅昭 名古屋
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2009145001A1 publication Critical patent/WO2009145001A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a dielectric ceramic composed of crystal particles mainly composed of barium titanate and a multilayer ceramic capacitor using the dielectric ceramic as a dielectric layer.
  • an electrostatic temperature change (hereinafter referred to as a relative dielectric constant temperature change) has an EIA standard X7R characteristic ( ⁇ 55 to Patent Documents 1 and 2 disclose dielectric ceramics that satisfy 125 ° C. and a change rate of a relative dielectric constant within ⁇ 15%) and are intended to improve life characteristics in a high-temperature load test of insulation resistance. .
  • the dielectric ceramic disclosed in Patent Document 2 adjusts the valence of vanadium to be dissolved in barium titanate so as to be in a range close to tetravalent, thereby moving electrons present in crystal grains.
  • High temperature load test by suppressing excessive diffusion of vanadium and barium compound precipitation to barium titanate while forming a core-shell structure with a shell phase with an appropriate concentration gradient of vanadium in the crystal particles This is intended to improve life characteristics at
  • the dielectric ceramics disclosed in Patent Documents 1 and 2 described above have a high dielectric constant and a temperature change in relative permittivity of EIA standard X7R characteristics ( ⁇ 55 to 125 ° C., relative permittivity change rate of ⁇ 15 %), But there is a problem that the dielectric loss is large.
  • the applied voltage is low, a high insulation resistance can be obtained, but there is a problem that the decrease in the insulation resistance increases when the applied voltage is increased.
  • the dielectric ceramic of the present invention has crystal grains mainly composed of barium titanate and a grain boundary phase existing between the crystal grains, and vanadium with respect to 100 moles of barium constituting the barium titanate.
  • magnesium is 0 to 0.1 mol in terms of MgO
  • manganese is 0 to 0.5 mol in terms of MnO
  • One kind of rare earth element (RE) is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 .
  • this dielectric ceramic has a diffraction intensity of (004) plane showing tetragonal barium titanate higher than that of (004) plane showing cubic barium titanate.
  • the crystal grains are large and the average grain size is 0.21 to 0.28 ⁇ m.
  • the magnesium is preferably 0 mol in terms of MgO.
  • the manganese is preferably 0 mol in terms of MnO.
  • the dielectric ceramic preferably further contains 0.3 mol or less of terbium in terms of Tb 4 O 7 with respect to 100 mol of barium constituting the barium titanate.
  • the dielectric ceramic further contains 0.3 to 0.7 mol of ytterbium in terms of Yb 2 O 3 with respect to 100 mol of barium constituting the barium titanate.
  • the multilayer ceramic capacitor of the present invention is composed of a laminate of a dielectric layer made of the above dielectric ceramic and an internal electrode layer.
  • the rare earth element RE is based on the rare earth element English notation (Rare earth) in the periodic table.
  • yttrium is included in the rare earth element.
  • the dielectric ceramic of the present invention vanadium, magnesium, rare earth elements and manganese are contained in a predetermined ratio with respect to barium titanate, and in the X-ray diffraction chart of the dielectric ceramic,
  • the diffraction intensity of the (004) plane showing the tetragonal system is larger than the diffraction intensity of the (004) plane showing the cubic system of barium titanate, and the average grain size of these crystal grains is set within a predetermined range.
  • the dielectric constant is high, the dielectric loss is small, and the temperature change of the relative dielectric constant can satisfy the X7R characteristic of the EIA standard.
  • a high dielectric resistance can be obtained even when the applied voltage is low, and a dielectric ceramic can be obtained in which the decrease in insulation resistance when the voltage is increased is small (the voltage dependence of the insulation resistance is small).
  • the dielectric ceramic according to the present invention when the magnesium content is 0 mol in terms of MgO, the dielectric constant is high and the dielectric loss is small, and the temperature change of the relative dielectric constant satisfies the X7R characteristic of the EIA standard. In addition, a higher insulation resistance can be obtained even when the applied voltage is low, and the voltage dependency of the insulation resistance is further reduced.
  • the dielectric ceramic according to the present invention when the content of manganese is 0 mol in terms of MnO, a dielectric ceramic having a small voltage dependency of insulation resistance can be obtained and dielectric loss can be further reduced. .
  • the insulating property of the dielectric ceramic is further improved. it can.
  • the dielectric ceramic according to the present invention when 0.3 to 0.7 mol of ytterbium in terms of Yb 2 O 3 is further added to 100 mol of barium constituting barium titanate, the dielectric when the firing temperature is changed Changes in the relative permittivity of the body porcelain can be reduced. Therefore, even if a large firing furnace having a variation in furnace temperature is used, variation in relative permittivity can be reduced and yield can be improved.
  • the temperature change of the relative permittivity satisfies the X7R characteristic of the EIA standard with high dielectric constant and low dielectric loss. It can be used, and even if the dielectric layer is made thin, high insulation can be ensured, so it has excellent life characteristics in a high temperature load test.
  • (A) is a sample No. which is a dielectric ceramic of the present invention in Examples. 4 shows an X-ray diffraction chart of 1-4, and (b) shows a sample No. 1 which is a dielectric ceramic of a comparative example in the embodiment. It is an X-ray diffraction chart of 1-27. It is a cross-sectional schematic diagram which shows the example of the multilayer ceramic capacitor of this invention.
  • the dielectric porcelain of the present invention is composed of crystal particles mainly composed of barium titanate. Vanadium is converted to 0.05 to 0.00 in terms of V 2 O 5 with respect to 100 moles of barium constituting the barium titanate. 3 mol, 0 to 0.1 mol of magnesium in terms of MgO, 0 to 0.5 mol of manganese in terms of MnO, and one rare earth element selected from yttrium, dysprosium, holmium and erbium to 0 in terms of RE 2 O 3 .5 to 1.5 moles.
  • the diffraction intensity of the (004) plane indicating tetragonal barium titanate is the diffraction intensity of the (004) plane indicating cubic barium titanate.
  • the average particle size of the crystal grains is 0.21 to 0.28 ⁇ m.
  • the dielectric ceramic has the above composition, and the crystal structure of the crystal grains constituting the dielectric ceramic is prepared so as to have the relationship of the diffraction intensity of the X-ray diffraction chart described above.
  • the diameter is within the above range.
  • the dielectric constant is 3500 or more, the dielectric loss is 15% or less, the temperature change of the dielectric constant satisfies the X7R characteristic of the EIA standard, and the value of the DC voltage applied per unit thickness (1 ⁇ m) is 3.
  • the insulation resistance when changing from 15 V / ⁇ m to 12.5 V / ⁇ m is 5 ⁇ 10 8 ⁇ or more, and the insulation resistance at 3.15 V / ⁇ m and the insulation resistance at 12.5 V / ⁇ m
  • a dielectric ceramic having a small difference of 0.2 ⁇ 10 8 ⁇ or less can be obtained.
  • the dielectric ceramic of the present invention is mainly composed of barium titanate, with respect to 100 mol of barium constituting the barium titanate, 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 and MgO as MgO. 0 to 0.1 mol in terms of conversion, 0 to 0.5 mol in terms of manganese in terms of MnO, and one rare earth element (RE) selected from yttrium, dysprosium, holmium, and erbium in an amount of 0.5 to 0.5 in terms of RE 2 O 3 Contains 1.5 moles.
  • RE rare earth element
  • the value of the DC voltage applied per unit thickness (1 ⁇ m) is 3.
  • the insulation resistance is greatly reduced.
  • the high temperature load life may be reduced.
  • the value of the DC voltage applied per unit thickness (1 ⁇ m) is 12.
  • the insulation resistance when the voltage is 5 V / ⁇ m is 1.5 ⁇ 10 8 ⁇ or less, and the decrease of the insulation resistance is larger than the value of the insulation resistance when the DC voltage is 3.15 V / ⁇ m.
  • the rare earth element (RE) content relative to 100 mol of barium constituting barium titanate is more than 1.5 mol in terms of RE 2 O 3 , or the manganese content is more than 0.5 mol in terms of MnO. In both cases, the relative dielectric constant is lower than 3500.
  • the temperature change of the relative dielectric constant does not satisfy the X7R characteristic of the EIA standard, and the unit Compared to the insulation resistance when the value of the DC voltage applied per thickness (1 ⁇ m) is set to 3.15 V / ⁇ m, the decrease in the insulation resistance when it is 12.5 V / ⁇ m is large, and the high temperature load test The life characteristics at the time are reduced.
  • 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 is contained with respect to 100 mol of barium constituting barium titanate as a main component, and manganese. Is 0.5 mol or less in terms of MnO, and when the rare earth element selected from yttrium, dysprosium, holmium and erbium is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , magnesium is 0 mol in terms of MgO. It is desirable.
  • the insulation resistance is reduced when the values of the DC voltage applied per unit thickness (1 ⁇ m) of the dielectric layer are measured as 3.15 V / ⁇ m and 12.5 V / ⁇ m. It is possible to obtain a dielectric ceramic having a high insulating property and a small dielectric loss that shows an increasing tendency (positive change).
  • the dielectric ceramic according to the present invention 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 is contained with respect to 100 mol of barium constituting barium titanate as a main component, and yttrium.
  • Dysprosium, holmium, and erbium containing a rare earth element selected from 0.5 to 1.5 mol in terms of RE 2 O 3 magnesium is 0 mol in terms of MgO and manganese is 0 mol in terms of MnO It is desirable. By setting it as the said composition, the dielectric loss of a dielectric ceramic can be reduced further.
  • each component has a detection limit. This refers to the case (0.5 ⁇ g / g or less).
  • yttrium can be suitably used because they do not easily generate a heterogeneous phase when dissolved in barium titanate, and high insulation is obtained.
  • yttrium is more preferable because the relative permittivity of the dielectric ceramic can be increased.
  • the dielectric ceramic of the present invention further contains terbium in a range of 0.3 mol or less in terms of Tb 4 O 7 with respect to 100 mol of barium constituting barium titanate. Is desirable. Further, when terbium is contained in an amount of 0.3 mol or less in terms of Tb 4 O 7 , the insulation resistance of the dielectric ceramic can be increased, and when the above dielectric ceramic is applied to the dielectric layer of the multilayer ceramic capacitor, a high temperature load is applied. It becomes possible to further improve the life characteristics in the test.
  • the content of terbium is more than 0.3 mol in terms of Tb 4 O 7 , the relative permittivity of the dielectric ceramic is lowered, so that it is preferably contained in the range of 0.3 mol or less.
  • 0.05 mol or more of terbium is preferably contained.
  • the dielectric ceramic according to the present invention further contains ytterbium in the range of 0.3 to 0.7 mol in terms of Yb 2 O 3 with respect to 100 mol of barium constituting barium titanate in addition to the above-described composition. It is desirable to do.
  • ytterbium in a range of 0.3 mol or more in terms of Yb 2 O 3 , it becomes possible to suppress a change in relative dielectric constant even when the firing temperature changes by about 35 ° C., and using a large firing furnace However, it is possible to improve the yield by reducing the variation in relative permittivity.
  • the insulation resistance at 125 ° C. required for the X7R characteristic can be increased to 5 ⁇ 10 6 ⁇ or more. However, if the amount is more than 0.7 mol, the life characteristics in the high temperature load test are deteriorated. Therefore, it is preferable to contain ytterbium in the range of 0.7 mol or less.
  • a glass component or other additive component is added to the dielectric ceramic as an auxiliary agent for enhancing the sinterability as long as desired dielectric characteristics can be maintained. You may make it contain in the ratio.
  • the average particle diameter of the crystal particles is 0.21 to 0.28 ⁇ m. That is, when the average particle size of the crystal particles is smaller than 0.21 ⁇ m, the relative dielectric constant is lower than 3500, and when the average particle size is larger than 0.28 ⁇ m, the relative dielectric constant becomes higher. This is because the loss becomes larger than 15%.
  • the average grain size of the crystal grains is determined by drawing a diagonal line on the screen of a polished surface obtained by polishing (ion milling) a dielectric ceramic and capturing an image displayed by a transmission electron microscope.
  • the image of the contours of the crystal grains existing on the diagonal line is image-processed, the area of each particle is obtained, the diameter when replaced with a circle having the same area is calculated, and the average of about 50 calculated crystal grains is calculated. Calculate from the value.
  • the diffraction intensity of the (004) plane indicating tetragonal barium titanate is the diffraction intensity of the (004) plane indicating cubic barium titanate. It is important to be larger than.
  • the dielectric ceramic according to the present invention is a single-phase crystal almost exhibiting a tetragonal system even when vanadium is dissolved in crystal grains. Occupied by a phase.
  • FIG. 1 (a) shows a sample No. which is a dielectric ceramic of the present invention in Tables 1 to 3 of Examples described later.
  • 1-4 shows an X-ray diffraction chart of 1-4.
  • FIG. 1B shows a sample No. 1 as a dielectric ceramic of a comparative example in Tables 1 to 3. It is an X-ray diffraction chart of 1-27.
  • the crystal structure is a core-shell structure, which corresponds to the X-ray diffraction chart of FIG. .
  • dielectric porcelain composed of crystal grains having a core-shell structure has a higher proportion of cubic crystal phases than tetragonal crystal phases, as seen from the X-ray diffraction chart.
  • the sex becomes smaller. Therefore, in the X-ray diffraction chart, the (400) plane diffraction lines are shifted to the low angle side and the (004) plane diffraction lines are shifted to the high angle side, so that both diffraction lines overlap each other at least partially. It becomes a wide diffraction line.
  • Such a dielectric porcelain is formed by molding a powder containing barium titanate as a main component and adding an oxide powder such as magnesium or a rare earth element, followed by reduction firing.
  • the crystal particle having the core-shell structure is in a state containing many defects such as oxygen vacancies inside the crystal particle because the solid solution amount of components such as magnesium and rare earth elements in the core part is small. Therefore, it is considered that when a DC voltage is applied, oxygen vacancies or the like in the crystal grains are likely to be carriers that carry charges, and the insulation of the dielectric ceramic is lowered.
  • the dielectric ceramic of the present invention has a (004) plane diffraction intensity indicating the tetragonal system of barium titanate in the X-ray diffraction chart of the dielectric ceramic.
  • the diffraction intensity of the (004) plane showing the cubic system of barium titanate is larger.
  • the X-ray diffraction peak at around (°) appears clearly, and shows the cubic system of barium titanate appearing between these (004) plane and (400) plane showing the tetragonal system of barium titanate (004).
  • Plane (the (040) plane and (400) plane overlap) is smaller than the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate.
  • the dielectric ceramic of the present invention in particular, when the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate is Ixt and the diffraction intensity of the (004) plane showing the cubic system of barium titanate is Ixc.
  • the Ixt / Ixc ratio is desirably 1.4 or more. When the Ixt / Ixc ratio is 1.4 or more, the ratio of the tetragonal crystal phase increases, and the relative permittivity can be increased.
  • the dielectric ceramic according to the present invention has a substantially uniform crystal phase of tetragonal system even if it contains vanadium, such crystal particles have solid solution of vanadium and other additive components throughout. is doing. For this reason, the generation of defects such as oxygen vacancies is suppressed inside the crystal grains and the number of carriers that carry charges is small, so it is considered possible to suppress the decrease in the insulation of the dielectric ceramic when a DC voltage is applied. .
  • the oxygen vacancies in the dielectric ceramic according to the present invention are electrically neutralized by the vanadium atoms substituted and dissolved in the titanium sites being electrically coupled with the oxygen vacancies to form defect pairs. For this reason, the contribution to electric conduction by electric field application is reduced, and even if oxygen vacancies are present, the mobility of the oxygen vacancies is lowered, which seems to prevent the insulation resistance from being lowered in the high temperature load test.
  • barium titanate powder (hereinafter referred to as BT powder) having a purity of 99% or more as a raw material powder, V 2 O 5 powder and MgO powder as additive components, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder, at least one rare earth oxide powder and MnCO 3 powder are prepared.
  • BT powder barium titanate powder
  • Tb 4 O 7 powder is used as an oxide of the rare earth element.
  • Yb 2 O 3 powder is used as the rare earth element oxide.
  • the average particle size of the BT powder is preferably 0.13 to 0.17 ⁇ m, particularly preferably 0.15 to 0.17 ⁇ m.
  • the average particle size of the BT powder is 0.13 ⁇ m or more, the crystal particles become highly crystalline, and the grain growth at the time of sintering can be suppressed, so that the dielectric constant can be improved and the dielectric loss can be reduced. There is.
  • the average particle size of the BT powder is 0.17 ⁇ m or less, it becomes easy to solidify additives such as magnesium, rare earth elements and manganese into the crystal particles, and as described later, There is an advantage that the ratio of grain growth from BT powder to crystal grains before and after can be increased to a predetermined range.
  • these raw material powders were mixed with 0.05 to 0.3 mol of V 2 O 5 powder, 0 to 0.1 mol of MgO powder, 0 to 0.1 mol of MnCO 3 powder with respect to 100 mol of barium constituting the BT powder.
  • a ratio of 0.5 to 1.5 mol of a rare earth element selected from 0.5 mol, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder in terms of RE 2 O 3 To form a molded body having a predetermined shape, degreased, and then fired in a reducing atmosphere.
  • glass powder may be added as a sintering aid so long as the desired dielectric properties can be maintained, and the addition amount is the main raw material powder.
  • the total amount of BT powder is 100 parts by mass, 0.5 to 2 parts by mass is preferable.
  • Calcination temperature is preferably 1050 to 1150 ° C. in the case of using a sintering aid such as glass powder because it controls the solid solution of the additive in the BT powder and the grain growth of the crystal particles.
  • a sintering aid such as glass powder
  • sintering at a temperature lower than 1050 ° C. is possible in the case of pressure firing such as a hot press method.
  • BT powder containing various additives is obtained by using a fine BT powder, adding a predetermined amount of the above-mentioned additive thereto, and firing at the above temperature. Is fired so that the average particle size of the powder becomes about 1.4 to 2.2 times before and after firing. By firing so that the average particle size of the crystal particles after firing is 1.4 to 2.2 times the average particle size of BT powder containing vanadium and other additives, the crystal particles are entirely vanadium. As a result, it is considered that the generation of defects such as oxygen vacancies is suppressed inside the crystal particles, and a state where few carriers carry charges is formed.
  • heat treatment is performed again in a weak reducing atmosphere after firing.
  • This heat treatment is performed to re-oxidize the reduced dielectric ceramics during firing in a reducing atmosphere, and to recover the reduced insulation resistance that was reduced during firing.
  • 900 to 1100 ° C. is preferable because the amount of reoxidation is increased while suppressing the above.
  • FIG. 2 is a schematic cross-sectional view showing an example of the multilayer ceramic capacitor of the present invention.
  • the multilayer ceramic capacitor of the present invention is such that external electrodes 4 are provided at both ends of a capacitor body 10.
  • the capacitor body 10 is composed of a laminated body in which a plurality of dielectric layers 5 and internal electrode layers 7 are alternately laminated. It is important that the dielectric layer 5 is formed by the above-described dielectric ceramic of the present invention.
  • the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner, but the multilayer ceramic capacitor of the present invention has several hundreds of dielectric layers 5 and internal electrode layers 7. A laminated body extending to the layers is formed.
  • the multilayer ceramic capacitor of the present invention by applying the above dielectric ceramic as the dielectric layer 5, the dielectric constant is low and the dielectric constant is high, and the temperature change of the relative dielectric constant is EIA standard. X7R characteristics are satisfied, and even if the dielectric layer 5 is thinned, high insulation can be ensured, and a multilayer ceramic capacitor having excellent life characteristics in a high temperature load test can be obtained.
  • the dielectric ceramic of the present invention since a high dielectric constant and a low dielectric loss can be realized, for example, energy loss when used as a bypass capacitor can be reduced, thereby functioning as a capacitor capable of inputting and outputting a high-capacity charge. There is an advantage that can be increased.
  • the thickness of the dielectric layer 5 is preferably 3 ⁇ m or less, and particularly preferably 2.5 ⁇ m or less in order to reduce the size and capacity of the multilayer ceramic capacitor. Furthermore, in the present invention, the thickness of the dielectric layer 5 is more preferably 1 ⁇ m or more in order to stabilize the capacitance variation and capacitance temperature characteristics.
  • the material for forming the internal electrode layer 7 is preferably a base metal such as nickel (Ni) or copper (Cu) in that the manufacturing cost can be suppressed even when the number of layers is increased.
  • nickel (Ni) is more desirable in that it can be fired simultaneously.
  • the external electrode 4 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.
  • a ceramic slurry is prepared by adding a dedicated organic vehicle to the raw material powder, and then a ceramic green sheet is formed from the ceramic slurry using a sheet forming method such as a doctor blade method or a die coater method.
  • the thickness of the ceramic green sheet is preferably 1 to 4 ⁇ m from the viewpoint of reducing the thickness of the dielectric layer to increase the capacity and maintaining high insulation.
  • Ni, Cu, or an alloy powder thereof is suitable for the conductor paste that forms the internal electrode pattern.
  • the internal electrode pattern in the sheet laminate is shifted by a half pattern in the longitudinal direction.
  • the sheet laminate is cut into a lattice shape to form a capacitor body molded body so that the end of the internal electrode pattern is exposed.
  • the internal electrode pattern can be formed so as to be alternately exposed on the end surface of the cut capacitor body molded body.
  • the capacitor body is manufactured by performing heat treatment under the same firing conditions and weak reducing atmosphere as the above dielectric ceramic.
  • the external electrode paste is applied to the opposing ends of the capacitor body and baked to form the external electrode 4. Further, a plating film may be formed on the surface of the external electrode 4 in order to improve mountability.
  • Example 1 First, as raw material powders, BT powder, MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 4 O 7 powder (second rare earth element), MnCO 3 Powder and V 2 O 5 powder were prepared, and these various powders were mixed at the ratio shown in Table 1. These raw material powders having a purity of 99.9% were used. The average particle size of the BT powder is shown in Table 1.
  • MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 4 O 7 powder, MnCO 3 powder and V 2 O 5 powder have an average particle size of 0.1 ⁇ m.
  • the Ba / Ti ratio of the BT powder was 1.
  • the addition amount of the glass powder was 1 part by mass with respect to 100 parts by mass of the BT powder.
  • these raw material powders were wet mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirconia balls having a diameter of 5 mm.
  • a polyvinyl butyral resin and a mixed solvent of toluene and alcohol are added to the wet-mixed powder, and a ceramic slurry is prepared by wet-mixing using a zirconia ball having the same diameter of 5 mm.
  • a ceramic green sheet having a thickness of 2.5 ⁇ m is prepared by a doctor blade method. Produced.
  • the conductor paste used for the internal electrode pattern was prepared by using Ni powder having an average particle size of 0.3 ⁇ m and adding 30 parts by mass of BT powder used for a green sheet as a co-material to 100 parts by mass of Ni powder. A thing was used.
  • the laminated molded body was heated at a heating rate of 10 ° C./h and treated to remove the binder at 300 ° C. in the atmosphere, and then heated at a heating rate of 300 ° C./h to be 1115 ° C. in hydrogen-nitrogen. For 2 hours. Thereafter, the temperature was lowered to 1000 ° C., a heat treatment (reoxidation treatment) for 4 hours was performed in a nitrogen atmosphere, and the capacitor body was produced by cooling.
  • the size of the capacitor body was 0.95 ⁇ 0.48 ⁇ 0.48 mm 3
  • the thickness of the dielectric layer was 2 ⁇ m
  • the effective area of one internal electrode layer was 0.3 mm 2 .
  • the effective area is the area of the overlapping portion of the internal electrode layers that are alternately formed in the stacking direction so as to be exposed at different end faces of the capacitor body.
  • the sintered capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body, followed by baking at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.
  • these multilayer ceramic capacitors were evaluated as follows. In each evaluation, the number of samples was 10 and the average value was obtained.
  • the relative dielectric constant was measured by measuring the capacitance under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. From the obtained capacitance, the thickness of the dielectric layer, the effective area of the internal electrode layer, and the vacuum dielectric Calculated based on the rate. Dielectric loss was also measured under the same conditions as the capacitance.
  • the temperature characteristic of the relative dielectric constant was obtained by measuring the capacitance in the temperature range of ⁇ 55 to 125 ° C.
  • the insulation resistance was evaluated under the conditions of a DC voltage of 3.15 V / ⁇ m and 12.5 V / ⁇ m. The insulation resistance was read 1 minute after the DC voltage was applied.
  • the high temperature load test was performed at a temperature of 170 ° C. under an applied voltage of 30 V (15 V / ⁇ m). The number of samples in the high temperature load test was 20 samples.
  • the average grain size of the crystal grains is calculated by taking the image displayed on the transmission electron microscope on the polished surface obtained by polishing (ion milling) to a state where the cross section of the dielectric ceramic can be observed with the transmission electron microscope. , Draw a diagonal line on the screen, image the outline of the crystal grains present on the diagonal line, find the area of each grain, calculate the diameter when replaced with a circle with the same area, and calculate the calculated crystal grain It calculated
  • the composition analysis of the sample which was the obtained multilayer ceramic capacitor was performed by ICP (Inductively-Coupled-plasma) analysis or atomic absorption analysis.
  • ICP Inductively-Coupled-plasma
  • the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified.
  • the diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.
  • Preparation composition and firing temperature are shown in Table 1, composition in terms of oxides of each element in the dielectric ceramic is shown in Table 2, and characteristic results are shown in Table 3, respectively.
  • the case where each component was below the detection limit (0.5 ⁇ g / g or less) was defined as 0 mol.
  • the sample No. 1-3 to 1-8, 1-10, 1-11, 1-14 to 1-17, 1-20 to 1-21, 1-23 to 1-26, 1-28 to 1-30 The dielectric constant is 3500 or more, the dielectric loss is 15% or less, and the temperature change of the relative dielectric constant satisfies the X7R characteristic of the EIA standard.
  • the decrease in insulation resistance is small when the DC voltage applied per unit thickness (1 ⁇ m) is 3.15 V / ⁇ m and 12.5 V / ⁇ m (in Table 3, between the mantissa part and the exponent part). E is indicated by an exponent notation), and a dielectric ceramic having a smaller voltage dependency of the insulation resistance can be obtained.
  • the lifetime characteristic in the high temperature load test was 60 hours or more under the conditions of 170 ° C. and 15 V / ⁇ m.
  • These samples are mainly composed of barium titanate, with respect to 100 mol of barium constituting barium titanate, vanadium is 0.05 to 0.3 mol in terms of V 2 O 5 and magnesium is 0 to 0 in terms of MgO.
  • the diffraction intensity of the (004) plane showing tetragonal barium titanate is larger than the diffraction intensity of the (004) plane showing cubic barium titanate, and crystal grains
  • the average particle size was 0.21 to 0.28 ⁇ m.
  • rare earth element selected from yttrium, dysprosium, holmium and erbium is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 and magnesium is 0 mol in terms of MgO It is.
  • RE rare earth element
  • the main component is barium titanate, and the vanadium is selected from 0.1 to 0.3 mol in terms of V 2 O 5 and yttrium, dysprosium, holmium and erbium with respect to 100 mol of barium constituting the barium titanate.
  • Sample No. 2 containing 0.5 to 1.5 mol of rare earth element (RE) in terms of RE 2 O 3 , magnesium being 0 mol in terms of MgO, and manganese being 0 mol in terms of MnO.
  • RE rare earth element
  • vanadium, rare earth element, magnesium and manganese are contained in an amount specified in the present invention with respect to 100 mol of barium constituting barium titanate, and terbium is added in an amount of 0.05 to 0.3 in terms of Tb 4 O 7.
  • sample no. 1-1, 1-2, 1-9, 1-12, 1-13, 1-18, 1-19, 1-22, and 1-27 have a relative dielectric constant lower than 3500 or Whether the temperature change does not satisfy the X7R characteristic of the EIA standard, or the insulation resistance is lower than 10 8 ⁇ when the value of the DC voltage applied per unit thickness (1 ⁇ m) is 12.5 V / ⁇ m, The life characteristic of the high temperature load test was 8 hours or less.
  • 0.35 mol of ytterbium in terms of Yb 2 O 3 was further added to each composition as the sample of the present invention shown in Example 1, and a sample was prepared and evaluated in the same manner as in Example 1. (Sample Nos. 2-1 to 2-21).
  • sample No. With respect to 1-3 0 to 0.9 mol of ytterbium was added in terms of Yb 2 O 3 , and the sample was prepared and evaluated in the same manner as in Example 1 at a firing temperature of 1150 ° C. (Sample No. 2- 22 to 2-28).
  • Table 4 shows the composition and firing temperature
  • Table 5 shows the composition of each element in the dielectric ceramic in terms of oxide
  • Table 6 shows the result of the characteristics.
  • sample No. 1 was obtained by further adding 0.35 mol of ytterbium in terms of Yb 2 O 3 to each of the compositions of the present invention shown in Example 1.
  • sample No. 1 was obtained by further adding 0.35 mol of ytterbium in terms of Yb 2 O 3 to each of the compositions of the present invention shown in Example 1.
  • the same characteristics as those of the samples having a composition not containing ytterbium were obtained for any of the compositions.
  • sample No. Sample No. 1 prepared by adding 0 to 0.9 mol of ytterbium in terms of Yb 2 O 3 and firing at 1150 ° C. with respect to 1-3.
  • Sample Nos. 2-22 to 2-28 containing 0.3 to 0.7 mol of ytterbium in terms of Yb 2 O 3 . 2-24 to 2-27 are Sample Nos.
  • the relative dielectric constant with respect to the firing temperature is smaller than that of the sample with a relative dielectric constant of 130 or less and the ytterbium content is 0.2 mol or less (Sample Nos. 2-22 and 2-23).
  • the change in rate was small, and the insulation resistance at 125 ° C. was as high as 2.1 ⁇ 10 7 ⁇ or more.
  • Sample No. 1 containing 0.9 mol of ytterbium in terms of Yb 2 O 3 was used. Compared to 2-28, the life characteristics in the high temperature load test were as high as 45 hours or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に存在する粒界相とを有する誘電体磁器であって、チタン酸バリウムを主成分として、バナジウム、マグネシウム、マンガンおよび希土類元素を所定量含み、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、かつ前記結晶粒子の平均粒径が0.21~0.28μmである。          

Description

誘電体磁器および積層セラミックコンデンサ
 本発明は、チタン酸バリウムを主成分とする結晶粒子により構成される誘電体磁器と、それを誘電体層として用いる積層セラミックコンデンサに関する。
 近年、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化、大容量化が急速に進んでいる。それに伴い、積層セラミックコンデンサにおける1層あたりの誘電体層の薄層化が進み、薄層化してもコンデンサとしての信頼性を維持できる誘電体磁器が求められている。特に、高い定格電圧で使用される中耐圧用コンデンサの小型化、大容量化には、誘電体磁器に対して非常に高い信頼性が要求される。
 そこで、従来より、積層セラミックコンデンサを構成する誘電体層用の誘電体磁器として、静電容量の温度変化(以下、比誘電率の温度変化とする。)がEIA規格のX7R特性(-55~125℃、比誘電率の変化率が±15%以内)を満足し、しかも絶縁抵抗の高温負荷試験での寿命特性の向上を図ろうとする誘電体磁器が特許文献1、2に開示されている。
 特許文献1に開示された誘電体磁器は、当該誘電体磁器を構成する結晶粒子の主成分であるチタン酸バリウムにマグネシウム、希土類元素(RE)およびバナジウムなどを含有させ、X線回折チャートにおいて、(200)面の回折線と(002)面の回折線とが一部重なって幅広の回折線となる結晶構造(いわゆるコアシェル構造)とすることで、絶縁破壊電圧や絶縁抵抗の高温負荷試験での寿命特性の改善を図ったものである。
 また、特許文献2に開示された誘電体磁器は、チタン酸バリウムに固溶させるバナジウムの価数を4価に近い範囲になるように調整することで、結晶粒子中に存在する電子の移動を抑制しつつ、チタン酸バリウムへのバナジウムの過剰な拡散やバナジウム化合物の析出を抑え、結晶粒子中にバナジウムの適度な濃度勾配があるシェル相を持ったコアシェル構造を形成することにより、高温負荷試験での寿命特性の向上を図ったものである。
 しかしながら、上述した特許文献1、2に開示された誘電体磁器は、高誘電率で比誘電率の温度変化がEIA規格のX7R特性(-55~125℃、比誘電率の変化率が±15%以内)を満足するものの、誘電損失が大きいという問題がある。また、印加する電圧が低い場合には、高い絶縁抵抗が得られるものの、印加する電圧を増加させたときに絶縁抵抗の低下が大きくなるという問題があった。
 また、これらの誘電体磁器を誘電体層として備える積層セラミックコンデンサでは、誘電体磁器の絶縁抵抗の低下に起因して、誘電体層が薄層化された場合に高温負荷試験での寿命特性を満足させることが困難であった。
特開平8-124785号公報 特開2006-347799号公報
 本発明の主たる目的は、高誘電率で、かつ誘電損失が小さく、比誘電率の温度変化がEIA規格のX7R特性を満足し、印加する電圧が低い場合にも高い絶縁抵抗が得られるとともに、電圧を増加させた際の絶縁抵抗の低下が小さい誘電体磁器を提供することである。本発明の他の目的は、このような誘電体磁器を誘電体層として備え、高温負荷試験での寿命特性に優れる積層セラミックコンデンサを提供することである。
 本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に存在する粒界相とを有し、前記チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マグネシウムをMgO換算で0~0.1モル、マンガンをMnO換算で0~0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含有する。さらに、この誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、かつ前記結晶粒子の平均粒径が0.21~0.28μmである。
 特に、前記マグネシウムはMgO換算で0モルであることが望ましい。前記マンガンはMnO換算で0モルであることが望ましい。また、前記誘電体磁器は、前記チタン酸バリウムを構成するバリウム100モルに対して、さらにテルビウムをTb換算で0.3モル以下含有することが望ましい。
 さらに、前記誘電体磁器では、前記チタン酸バリウムを構成するバリウム100モルに対して、さらにイッテルビウムをYb換算で0.3~0.7モル含有することが望ましい。
 本発明の積層セラミックコンデンサは、上記誘電体磁器からなる誘電体層と内部電極層との積層体から構成されている。
 なお、希土類元素をREとしたのは、周期表における希土類元素の英文表記(Rare earth)に基づくものである。また、本発明では、イットリウムは希土類元素に含まれるものとする。
 本発明の誘電体磁器によれば、チタン酸バリウムに対して、バナジウム,マグネシウム,希土類元素およびマンガンをそれぞれ所定の割合で含有させるとともに、かつ誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度が、チタン酸バリウムの立方晶系を示す(004)面の回折強度よりも大きいものとし、さらに、これら結晶粒子の平均粒径を所定の範囲とする。これにより、高誘電率で、かつ誘電損失が小さく、比誘電率の温度変化がEIA規格のX7R特性を満足するものにできる。また、印加する電圧が低い場合にも高い絶縁抵抗が得られるとともに、電圧を増加させた際の絶縁抵抗の低下が小さい(絶縁抵抗の電圧依存性が小さい)誘電体磁器を得ることができる。
 また、本発明の誘電体磁器において、マグネシウムの含有量をMgO換算で0モルとするときは、高誘電率でかつ誘電損失が小さく、比誘電率の温度変化がEIA規格のX7R特性を満足するものにできるとともに、印加する電圧が低い場合にもさらに高い絶縁抵抗が得られ、かつ絶縁抵抗の電圧依存性がさらに小さくなる。
 本発明の誘電体磁器において、マンガンの含有量をMnO換算で0モルとしたときは、絶縁抵抗の電圧依存性の小さい誘電体磁器を得ることができるとともに、誘電損失をさらに低減させることができる。
 本発明の誘電体磁器において、チタン酸バリウムを構成するバリウム100モルに対して、さらにテルビウムをTb換算で0.3モル以下含有させると、誘電体磁器の絶縁性をさらに高めることができる。
 本発明の誘電体磁器において、チタン酸バリウムを構成するバリウム100モルに対して、さらにイッテルビウムをYb換算で0.3~0.7モル含有させると、焼成温度が変化したときの誘電体磁器の比誘電率の変化を小さくできる。そのため炉内温度のばらつきのある大型の焼成炉を用いても比誘電率のばらつきを低減して歩留まりを向上できる。
 本発明の積層セラミックコンデンサによれば、誘電体層として、上述の誘電体磁器を適用することにより、高誘電率かつ低誘電損失で、比誘電率の温度変化がEIA規格のX7R特性を満足するものにでき、誘電体層を薄層化しても高い絶縁性を確保できることから高温負荷試験における寿命特性に優れる。
(a)は実施例における本発明の誘電体磁器である試料No.1-4のX線回折チャートを示すものであり、(b)は実施例における比較例の誘電体磁器である試料No.1-27のX線回折チャートである。 本発明の積層セラミックコンデンサの例を示す断面模式図である。
符号の説明
 5   誘電体層
 7   内部電極層
 10  コンデンサ本体
 本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子により構成され、該チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マグネシウムをMgO換算で0~0.1モル、マンガンをMnO換算で0~0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素をRE換算で0.5~1.5モル含む。さらに、本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、結晶粒子の平均粒径が0.21~0.28μmである。
 本発明によれば、誘電体磁器を上記組成とし、この誘電体磁器を構成する結晶粒子の結晶構造が上述したX線回折チャートの回折強度の関係になるように調製し、結晶粒子の平均粒径を上記範囲にする。これにより、比誘電率が3500以上、誘電損失が15%以下であり、比誘電率の温度変化がEIA規格のX7R特性を満足するとともに、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmから12.5V/μmまで変化させたときの絶縁抵抗が5×10Ω以上であり、かつ3.15V/μmでの絶縁抵抗と12.5V/μmでの絶縁抵抗の差が0.2×10Ω以下と小さい誘電体磁器を得ることができる。
 本発明の誘電体磁器は、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マグネシウムをMgO換算で0~0.1モル、マンガンをMnO換算で0~0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含む。
 即ち、チタン酸バリウムを構成するバリウム100モルに対するバナジウムの含有量がV換算で0.05モルよりも少ない場合には、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmから12.5V/μmまで変化させたときの絶縁抵抗の低下が大きくなり、このような誘電体磁器を誘電体層とした積層セラミックコンデンサにおいては高温負荷寿命が低下するおそれがある。
 チタン酸バリウムを構成するバリウム100モルに対する前記希土類元素(RE)がRE換算で0.5モルよりも少ない場合には、単位厚み(1μm)当たりに印加する直流電圧の値を12.5V/μmとしたときの絶縁抵抗が1.5×10Ω以下となり、直流電圧の値を3.15V/μmとしたときの絶縁抵抗の値に比較して絶縁抵抗の低下が大きくなる。
 チタン酸バリウムを構成するバリウム100モルに対するバナジウムの含有量がV換算で0.3モルよりも多くなると、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとしたときの絶縁抵抗がいずれも1×10Ωよりも低くなってしまう。
 チタン酸バリウムを構成するバリウム100モルに対する前記希土類元素(RE)の含有量がRE換算で1.5モルよりも多いか、または、マンガンの含有量がMnO換算で0.5モルよりも多い場合には、いずれも比誘電率が3500よりも低くなってしまう。
 チタン酸バリウムを構成するバリウム100モルに対するマグネシウムの含有量がMgO換算で0.1モルよりも多い場合には、比誘電率の温度変化がEIA規格のX7R特性を満足しないものとなり、また、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmと設定したときの絶縁抵抗に比較して、12.5V/μmとしたときの絶縁抵抗の低下が大きくなり、高温負荷試験での寿命特性が低下する。
 また、本発明の誘電体磁器において、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マンガンをMnO換算で0.5モル以下、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素をRE換算で0.5~1.5モル含む場合に、マグネシウムがMgO換算で0モルであることが望ましい。
 誘電体磁器をこのような組成にすることにより、誘電体層の単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとして測定したときに絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性でかつ誘電損失の小さい誘電体磁器を得ることができる。
 さらに、本発明の誘電体磁器において、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素をRE換算で0.5~1.5モル含む場合に、マグネシウムがMgO換算で0モルであるとともに、マンガンがMnO換算で0モルであることが望ましい。上記組成とすることにより、さらに誘電体磁器の誘電損失を低減することができる。
 なお、マグネシウムがMgO換算で0モルまたはマンガンがMnO換算で0モルとは、マグネシウムやマンガンを実質的に含有していないことをいい、例えば、誘電体磁器のICP分析において、各成分が検出限界以下(0.5μg/g以下)である場合をいう。
 ところで、希土類元素の中でイットリウム,ジスプロシウム,ホルミウムおよびエルビウムはチタン酸バリウムに固溶したときに異相が生成し難く、高い絶縁性が得られるから好適に用いることができる。その中でも誘電体磁器の比誘電率を高められるという理由からイットリウムがより好ましい。
 また、本発明の誘電体磁器は、上述した組成に加え、チタン酸バリウムを構成するバリウム100モルに対して、さらに、テルビウムをTb換算で0.3モル以下の範囲で含有することが望ましい。さらにテルビウムをTb換算で0.3モル以下含有させると、誘電体磁器の絶縁抵抗を高めることができ、上述の誘電体磁器を積層セラミックコンデンサの誘電体層に適用したときに高温負荷試験における寿命特性をさらに向上させることが可能になる。ただし、テルビウムの含有量がTb換算で0.3モルよりも多くなると、誘電体磁器の比誘電率の低下がおこるため、0.3モル以下の範囲で含有することが好ましい。ただし、テルビウムを含有することによる十分な効果を得るためにはテルビウムを0.05モル以上含有させることがよい。
 さらに、本発明の誘電体磁器は、上述した組成に加え、チタン酸バリウムを構成するバリウム100モルに対して、さらにイッテルビウムをYb換算で0.3~0.7モルの範囲で含有することが望ましい。イッテルビウムをYb換算で0.3モル以上の範囲で含有させることで、焼成温度が約35℃変化しても比誘電率の変化を抑えることが可能となり、大型の焼成炉を用いても比誘電率のばらつきを低減して歩留まりを向上できる。また、X7R特性に要求される125℃における絶縁抵抗を5×10Ω以上に高めることができる。ただし、0.7モルよりも多いと高温負荷試験での寿命特性の低下がおこるため、0.7モル以下の範囲でイッテルビウムを含有することが好ましい。
 なお、本発明の誘電体磁器では所望の誘電特性を維持できる範囲であれば焼結性を高めるための助剤としてガラス成分や他の添加成分を誘電体磁器中に0.5~2質量%の割合で含有させても良い。
 また、本発明の誘電体磁器は、結晶粒子の平均粒径が0.21~0.28μmであることが重要である。即ち、結晶粒子の平均粒径が0.21μmよりも小さい場合には比誘電率が3500よりも低いものとなり、平均粒径が0.28μmよりも大きい場合には比誘電率は高くなるものの誘電損失が15%よりも大きくなるからである。
 ここで、結晶粒子の平均粒径は、誘電体磁器の断面を研磨(イオンミリング)した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求めて、これと同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値より求める。
 さらに、本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きいことが重要である。
 ここで、本発明の誘電体磁器の結晶構造についてさらに詳細に説明すると、本発明の誘電体磁器は、結晶粒子中にバナジウムが固溶しても、ほとんど正方晶系を示す単相に近い結晶相により占められている。
 図1(a)は後述の実施例の表1~3における本発明の誘電体磁器である試料No.1-4のX線回折チャートを示すものであり、図1(b)は同表1~3における比較例の誘電体磁器である試料No.1-27のX線回折チャートである。
 ここで、特許文献1および特許文献2にそれぞれ記載される従来の誘電体磁器は、その結晶構造がコアシェル構造であり、図1の(b)のX線回折チャートに相当するものとなっている。
 即ち、チタン酸バリウムを主成分とし、コアシェル構造を有する結晶粒子により構成される誘電体磁器では、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(004)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(004)面の回折強度よりも大きくなっている。
 また、コアシェル構造を示す結晶粒子により構成される誘電体磁器は、X線回折チャートで見る限り、正方晶系の結晶相に対して立方晶系の結晶相の割合が多いために結晶の異方性が小さくなる。そのために、X線回折チャートは(400)面の回折線が低角度側にシフトするとともに(004)面の回折線が高角度側にシフトし、両回折線は互いに少なくとも一部が重なるようになり幅広の回折線となる。
 このような誘電体磁器は、チタン酸バリウムを主成分とする粉末に、マグネシウムや希土類元素などの酸化物粉末を添加混合したものを成形した後、還元焼成することによって形成されるものであるが、この場合、コアシェル構造を有する結晶粒子は、コア部におけるマグネシウムや希土類元素などの成分の固溶量が少ないことから、結晶粒子の内部において、酸素空孔などの欠陥を多く含んだ状態であり、このため直流電圧を印加した場合に、結晶粒子の内部において酸素空孔などが電荷を運ぶキャリアになりやすく誘電体磁器の絶縁性を低下させると考えられる。
 これに対して、本発明の誘電体磁器は、図1(a)に示すように、誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度が、チタン酸バリウムの立方晶系を示す(004)面の回折強度よりも大きい。
 即ち、本発明の誘電体磁器は、図1(a)に見られるように、チタン酸バリウムの正方晶系を示す(004)面(2θ=100°付近)と(400)面(2θ=101°付近)のX線回折ピークが明確に現れるものであり、チタン酸バリウムの正方晶系を示すこれら(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(004)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(004)面の回折強度よりも小さくなっている。
 本発明の誘電体磁器では、特に、チタン酸バリウムの正方晶系を示す(004)面の回折強度をIxt、チタン酸バリウムの立方晶系を示す(004)面の回折強度をIxcとしたときに、Ixt/Ixc比が1.4以上であることが望ましい。Ixt/Ixc比が1.4以上であると、正方晶系の結晶相の割合が多くなり、比誘電率を高めることが可能になる。
 このような本発明の誘電体磁器は、バナジウムを含有しても正方晶系のほぼ均一な結晶相となっていることから、そのような結晶粒子は全体にわたってバナジウムや他の添加成分が固溶している。そのため結晶粒子の内部において酸素空孔などの欠陥の生成が抑制され電荷を運ぶキャリアが少ないことから、直流電圧を印加した際の誘電体磁器の絶縁性の低下を抑えることが可能になると考えられる。
 つまり、本発明の誘電体磁器における酸素空孔は、チタンサイトに置換固溶したバナジウム原子が、酸素空孔と電荷的に結合し、欠陥対を生成することで電気的に中和される。そのため電場印加による伝導への寄与が低減されるため、酸素空孔が存在していても、その移動度が低下するため、高温負荷試験における絶縁抵抗の低下が妨げられているものと思われる。
 次に、本発明の誘電体磁器を製造する方法について説明する。まず、原料粉末として、純度が99%以上のチタン酸バリウム粉末(以下、BT粉末という。)と、添加成分として、V粉末とMgO粉末、さらに、Y粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素の酸化物粉末およびMnCO粉末とを準備する。なお、誘電体磁器に希土類元素としてテルビウムを含有させる場合には、希土類元素の酸化物としてTb粉末を用いる。また、誘電体磁器に第3の希土類元素としてイッテルビウムを含有させる場合には希土類元素の酸化物としてYb粉末を用いる。
 BT粉末の平均粒径は0.13~0.17μm、特に、0.15~0.17μmが好ましい。BT粉末の平均粒径が0.13μm以上であると、結晶粒子が高結晶性になるとともに、焼結時の粒成長を抑制できるために比誘電率の向上とともに誘電損失の低下が図れるという利点がある。
 一方、BT粉末の平均粒径が0.17μm以下であると、マグネシウム、希土類元素およびマンガンなどの添加剤を結晶粒子の内部にまで固溶させることが容易となり、また、後述するように、焼成前後における、BT粉末から結晶粒子への粒成長の比率を所定の範囲まで高められるという利点がある。
 添加剤であるY粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素の酸化物粉末、Tb粉末、Yb粉末,V粉末、MgO粉末、およびMnCO粉末についても平均粒径はBT粉末などの誘電体粉末と同等、もしくはそれ以下のものを用いることが好ましい。
 次いで、これらの原料粉末を、BT粉末を構成するバリウム100モルに対してV粉末を0.05~0.3モル、MgO粉末を0~0.1モル、MnCO粉末を0~0.5モル、Y粉末、Dy粉末、Ho粉末およびEr粉末から選ばれる希土類元素をRE換算で0.5~1.5モルの割合で配合して、所定形状の成形体を作製し、この成形体を脱脂した後、還元雰囲気中にて焼成する。
 なお、本発明の誘電体磁器を製造するに際しては、所望の誘電特性を維持できる範囲であれば焼結助剤としてガラス粉末を添加しても良く、その添加量は、主な原料粉末であるBT粉末の合計量を100質量部としたときに0.5~2質量部が良い。
 焼成温度は、ガラス粉末等の焼結助剤を用いる場合には、BT粉末への添加剤の固溶と結晶粒子の粒成長を制御するという理由から1050~1150℃が好適である。一方、ガラス粉末等の焼結助剤を用いないで、ホットプレス法等の加圧焼成による場合には1050℃未満の温度での焼結が可能になる。
 本発明では、かかる誘電体磁器を得るために、微粒のBT粉末を用い、これに上述の添加剤を所定量添加し、上記温度で焼成することで、各種の添加剤を含ませたBT粉末の平均粒径が焼成前後で1.4~2.2倍程度になるように焼成する。焼成後における結晶粒子の平均粒径がバナジウムや他の添加剤を含ませたBT粉末の平均粒径の1.4~2.2倍になるように焼成することで、結晶粒子は全体にわたってバナジウムや他の添加成分が固溶し、その結果、結晶粒子の内部において酸素空孔などの欠陥の生成が抑制され、電荷を運ぶキャリアが少ない状態が形成されていると考えられる。
 また、本発明では、焼成後に、再度、弱還元雰囲気にて熱処理を行う。この熱処理は還元雰囲気中での焼成において還元された誘電体磁器を再酸化し、焼成時に還元されて低下した絶縁抵抗を回復するために行うものであり、その温度は結晶粒子の更なる粒成長を抑えつつ再酸化量を高めるという理由から900~1100℃が好ましい。
 図2は、本発明の積層セラミックコンデンサの例を示す断面模式図である。本発明の積層セラミックコンデンサは、コンデンサ本体10の両端部に外部電極4が設けられたものである。コンデンサ本体10は複数の誘電体層5と内部電極層7とが交互に積層された積層体から構成されている。そして、誘電体層5は上述した本発明の誘電体磁器によって形成されることが重要である。なお、図2では、誘電体層5と内部電極層7との積層の状態を単純化して示しているが、本発明の積層セラミックコンデンサは、誘電体層5と内部電極層7とが数百層にも及ぶ積層体を形成している。
 このような本発明の積層セラミックコンデンサによれば、誘電体層5として、上記の誘電体磁器を適用することにより、高誘電率かつ低誘電損失であり、また比誘電率の温度変化がEIA規格のX7R特性を満足するものとなり、誘電体層5を薄層化しても高い絶縁性を確保でき、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを得ることができる。本発明の誘電体磁器によれば、高誘電率かつ低誘電損失を実現できることから、例えば、バイパスコンデンサとして用いた時のエネルギー損失を低減でき、これにより高容量の電荷を入出力できるコンデンサとして機能を高められるという利点がある。
 ここで、誘電体層5の厚みは3μm以下、特に、2.5μm以下であることが積層セラミックコンデンサを小型高容量化する上で好ましい。さらに本発明では静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みは1μm以上であることがより望ましい。
 内部電極層7を形成する材料としては、高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、本発明における誘電体層1との同時焼成が図れるという点でニッケル(Ni)がより望ましい。
 外部電極4は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成される。
 次に、積層セラミックコンデンサの製造方法について説明する。上記の素原料粉末に専用の有機ビヒクルを加えてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いてセラミックグリーンシートを形成する。この場合、セラミックグリーンシートの厚みは誘電体層の高容量化のための薄層化、高絶縁性を維持するという点で1~4μmが好ましい。
 次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストはNi、Cuもしくはこれらの合金粉末が好適である。
 内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねてシート積層体を形成する。この場合、シート積層体中における内部電極パターンは、長寸方向に半パターンずつずらしてある。
 次に、シート積層体を格子状に切断して、内部電極パターンの端部が露出するようにコンデンサ本体成形体を形成する。このような積層工法により、切断後のコンデンサ本体成形体の端面に内部電極パターンが交互に露出されるように形成できる。
 次に、コンデンサ本体成形体を脱脂したのち、上記した誘電体磁器と同様の焼成条件および弱還元雰囲気での熱処理を行うことによりコンデンサ本体を作製する。
 このコンデンサ本体の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極4を形成する。また、この外部電極4の表面には実装性を高めるためにメッキ膜を形成しても構わない。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例によって限定されるものではない。
[実施例1]
 まず、原料粉末として、BT粉末、MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末(第2希土類元素)、MnCO粉末およびV粉末を準備し、これらの各種粉末を表1に示す割合で混合した。これらの原料粉末は純度が99.9%のものを用いた。なお、BT粉末の平均粒径は表1に示した。MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末は平均粒径が0.1μmのものを用いた。BT粉末のBa/Ti比は1とした。焼結助剤はSiO=55、BaO=20、CaO=15、LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBT粉末100質量部に対して1質量部とした。
 次に、これらの原料粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。
 湿式混合した粉末にポリビニルブチラール樹脂およびトルエンとアルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により厚み2.5μmのセラミックグリーンシートを作製した。
 次に、このセラミックグリーンシートの上面にNiを主成分とする矩形状の内部電極パターンを複数形成した。内部電極パターンに用いた導体ペーストは、平均粒径が0.3μmのNi粉末を用い、共材としてグリーンシートに用いたBT粉末をNi粉末100質量部に対して30質量部添加して調製したものを用いた。
 次に、内部電極パターンを印刷したセラミックグリーンシートを360枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で一括積層し、所定の寸法に切断して積層成形体を形成した。
 この積層成形体を10℃/hの昇温速度で加熱して大気中300℃にて脱バインダ処理し、次いで、300℃/hの昇温速度で加熱して、水素-窒素中、1115℃で2時間焼成した。この後、1000℃まで降温し、窒素雰囲気中で4時間の加熱処理(再酸化処理)を施し、冷却してコンデンサ本体を作製した。このコンデンサ本体の大きさは0.95×0.48×0.48mm、誘電体層の厚みは2μm、内部電極層の1層の有効面積は0.3mmであった。なお、有効面積とは、コンデンサ本体の異なる端面にそれぞれ露出するように積層方向に交互に形成された内部電極層同士の重なる部分の面積のことである。
 次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行って外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。
 次に、これらの積層セラミックコンデンサについて以下の評価を行った。評価はいずれも試料数10個とし、その平均値を求めた。比誘電率は静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、得られた静電容量から誘電体層の厚み、内部電極層の有効面積および真空の誘電率をもとに換算して求めた。誘電損失も静電容量と同条件で測定した。また、比誘電率の温度特性は静電容量を温度-55~125℃の範囲で測定して求めた。絶縁抵抗は直流電圧3.15V/μmおよび12.5V/μmの条件にて評価した。絶縁抵抗は直流電圧を印加1分後の値を読み取った。
 高温負荷試験は温度170℃において、印加電圧30V(15V/μm)の条件で行った。高温負荷試験での試料数は各試料20個とした。
 結晶粒子の平均粒径は、誘電体磁器の断面を透過電子顕微鏡にて観察可能となる状態まで研磨(イオンミリング)した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値として求めた。また、誘電体粉末からの粒成長の割合を評価した。
 また、得られた積層セラミックコンデンサである試料の組成分析はICP(Inductively Coupled plasma)分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。
 調合組成と焼成温度を表1に、誘電体磁器中の各元素の酸化物換算での組成を表2に、特性の結果を表3にそれぞれ示した。ここで、誘電体磁器のICP分析において、各成分が検出限界以下(0.5μg/g以下)である場合を0モルとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
 表1~3の結果から明らかなように、本発明の試料No.1-3~1-8、1-10、1-11、1-14~1-17、1-20~1-21、1-23~1-26、1-28~1-30では、比誘電率が3500以上、誘電損失が15%以下、比誘電率の温度変化がEIA規格のX7R特性を満足するものとなる。また、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとしたときの絶縁抵抗の低下が小さく(表3では、仮数部と指数部の間にEを入れる指数表記で示した。)、絶縁抵抗の電圧依存性のさらに小さい誘電体磁器を得ることができた。また、高温負荷試験での寿命特性が170℃、15V/μmの条件で60時間以上であった。これらの試料は、チタン酸バリウムを主成分とし、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マグネシウムをMgO換算で0~0.1モル、マンガンをMnO換算で0~0.5モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5~1.5モル含み、誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、かつ結晶粒子の平均粒径が0.21~0.28μmであった。
 また、試料No.1-3~1-5、1-10、1-11、1-14~1-17、1-20~1-21、1-23~1-26、1-28~1-30では、誘電損失を10.7%以下にでき、また、印加する直流電圧が誘電体層の単位厚み(1μm)当たりに3.15V/μmと12.5V/μmとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性の誘電体磁器を得ることができた。これらの試料は、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マンガンをMnO換算で0~0.5モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5~1.5モル含ませて、マグネシウムをMgO換算で0モルとしたものである。
 また、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.1~0.3モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5~1.5モル含ませて、マグネシウムをMgO換算で0モルおよびマンガンをMnO換算で0モルとした試料No.1-3~1-5、1-14~1-17、1-20、1-21、1-23~1-26、1-28~1-30では誘電損失を10.6%以下に低減できた。
 また、チタン酸バリウムを構成するバリウム100モルに対して、バナジウム、希土類元素、マグネシウムおよびマンガンを本発明で規定する量だけ含有させて、テルビウムをTb換算で0.05~0.3モル含有させた試料No.1-3~1-8、1-10、1-11、1-14~1-17、1-20~1-21、1-23~1-26、1-28~1-30では、テルビウムを含有しない試料No.1-23に比較して誘電体磁器の絶縁抵抗を高めることができ、上記の誘電体磁器を積層セラミックコンデンサの誘電体層に適用したときに高温負荷試験における寿命特性がさらに向上した。
 これに対して、本発明の範囲外の試料No.1-1、1-2、1-9、1-12、1-13、1-18、1-19、1-22、1-27では、比誘電率が3500より低いか、比誘電率の温度変化がEIA規格のX7R特性を満足しないか、または、絶縁抵抗が単位厚み(1μm)当たりに印加する直流電圧の値を12.5V/μmとして測定したときに10Ωよりも低いか、高温負荷試験の寿命特性が8時間以下であった。
[実施例2]
 次に、実施例1に示した本発明の試料である各組成に、さらにイッテルビウムをYb換算で0.35モル添加して、実施例1と同様の方法で試料を作製し評価した(試料No.2-1~2-21)。
 また、実施例1の試料No.1-3に対して、イッテルビウムをYb換算で0~0.9モル添加し、焼成温度を1150℃として実施例1と同様の方法で試料を作製し評価した(試料No.2-22~2-28)。
 調合組成と焼成温度を表4に、誘電体磁器中の各元素の酸化物換算での組成を表5に、特性の結果を表6にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 
 表4~6の結果から明らかなように、実施例1に示した本発明の試料である各組成に、さらにイッテルビウムをYb換算で0.35モル含有させた試料No.2-1~21は、いずれの組成についてもイッテルビウムを含有しない組成の試料と同等の特性が得られた。
 また、実施例1の試料No.1-3に対して、さらに、イッテルビウムをYb換算で0~0.9モル添加して、1150℃の温度で焼成して作製した試料No.2-22~2-28のうち、イッテルビウムをYb換算で0.3~0.7モル含有する試料No.2-24~2-27は、試料No.1-3との比誘電率の差が130以下と小さく、イッテルビウムの含有量が0.2モル以下の試料(試料No.2-22,2-23)に比較して、焼成温度に対する比誘電率の変化が小さく、125℃における絶縁抵抗が2.1×10Ω以上と高かった。また、イッテルビウムをYb換算で0.9モル含有する試料No.2-28に比較して、高温負荷試験での寿命特性が45時間以上と高かった。
 以上、本発明にかかる誘電体磁器および積層セラミックコンデンサについて詳しく説明したが、本発明の範囲はこれらの説明に拘束されることはなく、本発明の趣旨を損なわない範囲で適宜変更または改善しうるものである。
 

Claims (6)

  1.  チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に存在する粒界相とを有する誘電体磁器であって、
    前記チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、マグネシウムをMgO換算で0~0.1モル、マンガンをMnO換算で0~0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含有するとともに、
    X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、
    かつ前記結晶粒子の平均粒径が0.21~0.28μmである、
    ことを特徴とする誘電体磁器。
  2.  前記マグネシウムがMgO換算で0モルであることを特徴とする請求項1に記載の誘電体磁器。
  3.  前記マンガンがMnO換算で0モルであることを特徴とする請求項2に記載の誘電体磁器。
  4.  前記チタン酸バリウムを構成するバリウム100モルに対して、さらにテルビウムをTb換算で0.3モル以下含有することを特徴とする請求項1乃至3のうちいずれかに記載の誘電体磁器。
  5.  前記チタン酸バリウムを構成するバリウム100モルに対して、さらにイッテルビウムをYb換算で0.3~0.7モル含有することを特徴とする請求項1乃至4のうちいずれかに記載の誘電体磁器。
  6.  請求項1乃至5のうちいずれかに記載の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする積層セラミックコンデンサ。
PCT/JP2009/055984 2008-05-28 2009-03-25 誘電体磁器および積層セラミックコンデンサ WO2009145001A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-139329 2008-05-28
JP2008139329A JP5241328B2 (ja) 2008-05-28 2008-05-28 誘電体磁器および積層セラミックコンデンサ

Publications (1)

Publication Number Publication Date
WO2009145001A1 true WO2009145001A1 (ja) 2009-12-03

Family

ID=41376887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055984 WO2009145001A1 (ja) 2008-05-28 2009-03-25 誘電体磁器および積層セラミックコンデンサ

Country Status (3)

Country Link
JP (1) JP5241328B2 (ja)
TW (1) TWI416561B (ja)
WO (1) WO2009145001A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580349B1 (ko) * 2012-01-31 2015-12-24 삼성전기주식회사 적층 세라믹 전자 부품 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145791A (ja) * 2003-11-19 2005-06-09 Tdk Corp 電子部品、誘電体磁器組成物およびその製造方法
JP2007099534A (ja) * 2005-09-30 2007-04-19 Tdk Corp 誘電体磁器組成物および電子部品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210300B2 (ja) * 2007-04-20 2013-06-12 京セラ株式会社 誘電体磁器および積層セラミックコンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145791A (ja) * 2003-11-19 2005-06-09 Tdk Corp 電子部品、誘電体磁器組成物およびその製造方法
JP2007099534A (ja) * 2005-09-30 2007-04-19 Tdk Corp 誘電体磁器組成物および電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI BO ET AL.: "Influence of V205 on the Properties of BaTi03-Y203-MgO Ceramics", WUJI CAILIAO XUEBAO, vol. 22, no. 4, July 2007 (2007-07-01), pages 706 - 710 *

Also Published As

Publication number Publication date
TWI416561B (zh) 2013-11-21
JP5241328B2 (ja) 2013-07-17
JP2009286648A (ja) 2009-12-10
TW200949874A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
TWI501273B (zh) Laminated ceramic capacitors
JP5483825B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP5210300B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP2008239407A (ja) 誘電体磁器および積層セラミックコンデンサ
JP5211262B1 (ja) 積層セラミックコンデンサ
TWI441791B (zh) 介電質陶瓷及積層陶瓷電容器
KR20130122781A (ko) 유전체 세라믹 및 적층 세라믹 콘덴서
JP5685931B2 (ja) 積層セラミックコンデンサ
JP2013227196A (ja) 誘電体磁器組成物および積層セラミックコンデンサ
JP4999988B2 (ja) 積層セラミックコンデンサ
JP5094283B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP5106626B2 (ja) 積層セラミックコンデンサ
JP5127837B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP2012094696A (ja) 積層セラミックコンデンサ
JP2010208905A (ja) 誘電体セラミックの製造方法と誘電体セラミック、及び積層セラミックコンデンサの製造方法と積層セラミックコンデンサ
WO2009157232A1 (ja) 誘電体磁器およびそれを用いた積層セラミックコンデンサ
JP5241328B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP5372034B2 (ja) 誘電体磁器および積層型電子部品
JP2011207696A (ja) 誘電体磁器組成物および電子部品
JP5164687B2 (ja) 誘電体磁器およびそれを用いた積層セラミックコンデンサ
JP5084657B2 (ja) 積層セラミックコンデンサ
JP5322723B2 (ja) 積層セラミックコンデンサ
JP5197432B2 (ja) 積層セラミックコンデンサ
JP5701013B2 (ja) 積層セラミックコンデンサ
WO2014203327A1 (ja) 誘電体磁器組成物および積層セラミックコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754509

Country of ref document: EP

Kind code of ref document: A1