WO2009157232A1 - 誘電体磁器およびそれを用いた積層セラミックコンデンサ - Google Patents

誘電体磁器およびそれを用いた積層セラミックコンデンサ Download PDF

Info

Publication number
WO2009157232A1
WO2009157232A1 PCT/JP2009/055699 JP2009055699W WO2009157232A1 WO 2009157232 A1 WO2009157232 A1 WO 2009157232A1 JP 2009055699 W JP2009055699 W JP 2009055699W WO 2009157232 A1 WO2009157232 A1 WO 2009157232A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
dielectric ceramic
dielectric
barium titanate
powder
Prior art date
Application number
PCT/JP2009/055699
Other languages
English (en)
French (fr)
Inventor
洋一 山崎
雅昭 名古屋
勇介 東
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2009157232A1 publication Critical patent/WO2009157232A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a dielectric ceramic composed of crystal particles mainly composed of barium titanate and a multilayer ceramic capacitor using the dielectric ceramic as a dielectric layer.
  • digital electronic devices such as mobile computers and mobile phones have been widely used, and digital terrestrial broadcasting is being developed nationwide in the near future.
  • liquid crystal displays, plasma displays, and the like as digital electronic devices that are receivers for digital terrestrial broadcasting, and many LSIs are used for these digital electronic devices.
  • the dielectric ceramic described in Patent Document 1 described above has a stable temperature characteristic with a maximum change rate of -4.5% in the relative dielectric constant in the temperature range of -55 to 125 ° C.
  • the dielectric constant was as low as about 2500.
  • the dielectric ceramics described in Patent Document 2 and Patent Document 3 have a high relative dielectric constant of 3700 or more at room temperature (25 ° C.).
  • the relative dielectric constant is based on room temperature (25 ° C.) ⁇
  • the maximum change rate of the relative permittivity in the temperature range of 55 to 125 ° C is ⁇ 14% to ⁇ 15%, which is just enough to satisfy the X7R characteristic.
  • the change in the relative permittivity in the temperature range of -55 to 125 ° C The rate did not satisfy within ⁇ 10%.
  • the main object of the present invention is to provide a dielectric ceramic having a high dielectric constant and a specific dielectric constant excellent in temperature characteristics, and a multilayer ceramic capacitor using the dielectric ceramic.
  • the dielectric ceramic of the present invention has crystal grains mainly composed of barium titanate and a grain boundary phase existing between the crystal grains. Furthermore, this dielectric ceramic is selected from 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 and yttrium, dysprosium, holmium, and erbium with respect to 100 mol of barium constituting the barium titanate.
  • the seed rare earth element (RE) is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 .
  • the crystal particles include a first crystal group composed of crystal particles having a calcium concentration of 0.2 atomic% or less, and a second crystal group composed of crystal particles having a calcium concentration of 0.4 atomic% or more.
  • the diffraction intensity of (004) plane showing tetragonal barium titanate is the diffraction intensity of (400) plane showing cubic barium titanate.
  • the Curie temperature is 100 to 120 ° C.
  • the average particle size of the crystal particles is preferably 0.15 to 0.3 ⁇ m.
  • the multilayer ceramic capacitor of the present invention is composed of a laminate of a dielectric layer made of the above dielectric ceramic and an internal electrode layer.
  • the rare earth element RE is based on the rare earth element English notation (Rare earth) in the periodic table.
  • yttrium is included in the rare earth element.
  • the dielectric porcelain of the present invention calcium, vanadium, and rare earth elements (RE) are contained at a predetermined ratio with respect to barium titanate, and the dielectric ceramic crystal particles are divided into two kinds having different calcium concentrations.
  • the diffraction intensity of the (004) plane indicating the tetragonal system of barium titanate is (400) plane indicating the cubic system of barium titanate. The intensity is higher than the diffraction intensity, and the Curie temperature is in the range of 100 to 120 ° C.
  • the dielectric loss can be achieved while the dielectric constant can be increased while the temperature characteristics of the relative permittivity can be stabilized. Can be reduced.
  • the area of the crystal grains constituting the first crystal group and the area of the crystal grains constituting the second crystal group as seen on the polished surface of the dielectric ceramic are b.
  • b / (a + b) is in the range of 0.4 to 0.7, the dielectric constant of the dielectric ceramic can be increased.
  • the above-described dielectric ceramic is applied as the dielectric layer.
  • a multilayer ceramic capacitor having a high dielectric constant and excellent temperature characteristics of relative dielectric constant can be obtained.
  • FIG. 3 It is a cross-sectional schematic diagram which shows the microstructure of the dielectric material ceramic of this invention.
  • A is a sample No. which is a dielectric ceramic of the present invention in Examples. 3 shows an X-ray diffraction chart of No. 3, and
  • (b) shows a sample No. 1 which is a dielectric ceramic of a comparative example in the embodiment. It is a 5 X-ray diffraction chart.
  • Sample No. in the examples. 3 is a graph showing the temperature characteristics of the capacitance of 3; It is a cross-sectional schematic diagram which shows the example of the multilayer ceramic capacitor of this invention.
  • the dielectric ceramic of the present invention is composed of crystal grains mainly composed of barium titanate and a grain boundary phase existing between the crystal grains.
  • the dielectric ceramic composition is 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 with respect to 100 mol of barium constituting barium titanate, and one kind selected from yttrium, dysprosium, holmium and erbium.
  • a rare earth element (RE) is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 .
  • the crystal particles constituting the dielectric ceramic of the present invention include a crystal particle constituting the first crystal group mainly composed of barium titanate having a calcium concentration of 0.2 atomic% or less, and a calcium concentration of 0. And crystal grains constituting the second crystal group mainly composed of 4 atomic% or more of barium titanate.
  • the dielectric ceramic of the present invention has a diffraction intensity of (004) plane indicating tetragonal barium titanate and a diffraction intensity of (400) plane indicating cubic barium titanate.
  • the Curie temperature (Tc) is 100 to 120 ° C.
  • the dielectric porcelain has the above composition
  • the crystal structure of the dielectric porcelain is in the relationship of the diffraction intensity of the X-ray diffraction chart described above, and the Curie temperature is within the above range.
  • the relative permittivity at room temperature (25 ° C.) is 3200 or more
  • the maximum change rate of the relative permittivity in the temperature range of ⁇ 55 to 125 ° C. with respect to the relative permittivity at room temperature (25 ° C.) is ⁇
  • a dielectric ceramic satisfying 10% or less can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing the microstructure of a dielectric ceramic according to the present invention.
  • the dielectric ceramic according to the present invention includes the crystal particles 1a constituting the first crystal group mainly composed of barium titanate having a calcium concentration of 0.2 atomic% or less, and the calcium concentration is 0.1. It is composed of crystal grains 1b constituting a second crystal group mainly composed of 4 atomic% or more of barium titanate and a grain boundary phase 2.
  • the crystal particles constituting the dielectric ceramic are formed by two types of crystal particles 1a and 1b having different calcium concentrations, the case where only the crystal particles 1a having a calcium concentration of 0.2 atomic% or less are present, or the concentration of calcium is
  • the relative dielectric constant of the dielectric ceramic can be increased as compared with the case of only 0.4 atomic% or more of the crystal particles 1b.
  • the calcium concentration of the crystal particles 1b constituting the second crystal group is particularly preferably 0.5 to 2.0 atomic%.
  • concentration of calcium is within this range, the solid solution of calcium in barium titanate can be made sufficient. Further, it is possible to reduce the calcium compound remaining in the grain boundary and the like without being dissolved, thereby obtaining a dielectric ceramic excellent in temperature characteristics of relative permittivity, dielectric loss, and relative permittivity.
  • This dielectric porcelain is composed mainly of barium titanate, and with respect to 100 mol of barium constituting the barium titanate, 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 , yttrium, dysprosium, holmium And one kind of rare earth element (RE) selected from erbium in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 .
  • RE rare earth element
  • the vanadium content is less than 0.05 mol in terms of V 2 O 5 with respect to 100 mol of barium constituting barium titanate, or the rare earth element (RE) in terms of RE 2 O 3
  • the maximum change rate of the relative dielectric constant in the temperature range of ⁇ 55 to 125 ° C. does not satisfy within ⁇ 10.
  • yttrium can be suitably used because they do not easily generate a heterogeneous phase when dissolved in barium titanate, and high insulation is obtained.
  • yttrium is more preferable because the relative permittivity of the dielectric ceramic can be increased.
  • the components dissolved in barium titanate containing barium titanate and calcium are substantially only vanadium and rare earth elements (RE) except for inevitable impurities.
  • the dielectric ceramic of the present invention may contain a glass component and other additive components in the dielectric ceramic at a ratio of 0.5 to 2% by mass as an auxiliary agent for enhancing the sinterability.
  • the diffraction intensity of the (004) plane showing tetragonal barium titanate is higher than the diffraction intensity of the (400) plane showing cubic barium titanate. It is large and has a Curie temperature of 100 to 120 ° C.
  • the crystal structure of the dielectric ceramic according to the present invention will be described in more detail.
  • the dielectric ceramic of the present invention even if vanadium and rare earth element (RE) are dissolved in crystal grains, the dielectric ceramic is almost occupied by a crystal phase close to a single phase exhibiting a tetragonal system.
  • RE vanadium and rare earth element
  • FIG. 2 (a) shows a sample No. which is a dielectric ceramic of the present invention in Table 1 of Examples described later.
  • 3 is an X-ray diffraction chart of FIG. 3
  • FIG. 15 is an X-ray diffraction chart of 15;
  • 3 shows a sample No. in Table 1 of Examples described later.
  • 3 is a graph showing the temperature characteristics of capacitance of the dielectric ceramic No. 3, and the dielectric ceramic of the present invention has the temperature characteristics of capacitance as shown in FIG.
  • the conventional dielectric ceramic described in Patent Document 1 has a core-shell structure in the crystal structure, and corresponds to the X-ray diffraction chart of FIG. That is, in a dielectric ceramic composed of crystal grains having barium titanate as a main component and having a core / shell structure, titanium appearing between the (004) plane and (400) plane showing the tetragonal system of barium titanate.
  • the diffraction intensity Ixc of the (400) plane showing the cubic system of barium oxide (the (040) plane and (004) plane overlap) is the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate. It is larger than Ixt.
  • dielectric ceramics composed of crystal particles having a core-shell structure have a higher proportion of cubic crystal phases than tetragonal crystal phases. Anisotropy is reduced. Therefore, in the X-ray diffraction chart, the (400) plane diffraction lines are shifted to the low angle side and the (004) plane diffraction lines are shifted to the high angle side, so that both diffraction lines overlap each other at least partially. It becomes a wide diffraction line.
  • Such a dielectric ceramic is formed by molding a powder containing barium titanate as a main component and adding an oxide powder such as magnesium or a rare earth element, followed by reduction firing.
  • the crystal particles having the core-shell structure have many components such as magnesium and rare earth elements (RE) dissolved in the shell portion, whereas the core portion has components such as magnesium and rare earth elements (RE). Since there is little solid solution amount, the crystal phase of barium titanate is almost pure. For this reason, the Curie temperature is around 125 ° C. (122 to 126 ° C.).
  • a dielectric ceramic having a core-shell structure and composed of crystal grains having a Curie temperature of around 125 ° C. has a temperature range of ⁇ 55 to 125 ° C. based on room temperature (25 ° C.). Although the maximum rate of change in the relative dielectric constant at is about ⁇ 15%, it cannot satisfy within ⁇ 10%.
  • the dielectric ceramic of the present invention has a (004) plane diffraction intensity Ixt indicating the tetragonal system of barium titanate in the X-ray diffraction chart of the dielectric ceramic. Is larger than the diffraction intensity Ixc of the (400) plane showing the cubic system of barium titanate.
  • the X-ray diffraction peak at around (°) appears clearly and shows the cubic system of barium titanate that appears between the (004) plane and the (400) plane showing the tetragonal system of barium titanate (400)
  • the diffraction intensity Ixc of the plane (the (040) plane and (400) plane overlap) is smaller than the diffraction intensity Ixt of the (004) plane showing the tetragonal system of barium titanate.
  • the crystal structure of the dielectric ceramic of the present invention is different from the conventional X-ray diffraction pattern of the core-shell structure, and as shown in FIG. 3, the Curie temperature (Tc) is in the range of 100 to 120 ° C.
  • the dielectric characteristics are different from those of a dielectric ceramic having a conventional core-shell structure with a Curie temperature of 125 ° C. This is because a predetermined amount of vanadium and rare earth element (RE) are dissolved in the whole crystal grains mainly composed of barium titanate.
  • the maximum change rate of the relative dielectric constant in the temperature range of ⁇ 55 to 125 ° C. with reference to the relative dielectric constant at room temperature (25 ° C.) can be made within ⁇ 10%.
  • the Curie temperature of the dielectric ceramic is measured at a capacitance in the range of ⁇ 55 to 125 ° C., and is a temperature showing the maximum capacitance in the measured temperature range.
  • the average particle diameter of the crystal particles is 0.15 to 0.3 ⁇ m.
  • the relative dielectric constant at room temperature (25 ° C.) is 3500 or more, and ⁇ 55 to 125 ° C. relative to the relative dielectric constant at room temperature (25 ° C.).
  • the dielectric loss at room temperature (25 ° C.) can be reduced to 13% or less while maintaining the maximum change rate of the relative dielectric constant within the temperature range of ⁇ 10%.
  • the average particle size of the crystal particles can be obtained as follows. First, after grinding the fracture surface of the sample, which is a dielectric ceramic after firing, a photograph of the internal structure is taken using a scanning electron microscope. A circle containing 20 to 30 crystal grains is drawn on the photograph, crystal grains covering the circumference and the circumference are selected, and the contour of each crystal grain is image-processed to obtain the area of each grain. Then, the diameter when this is replaced with a circle having the same area is calculated, and the average particle diameter is obtained from the average value.
  • the ratio of the crystal particles 1a constituting the first crystal group to the crystal particles 1b constituting the second crystal group is such that b / (a + b) is 0.4-0. Desirably, it is in the range of .7.
  • the area of the crystal grains constituting the first crystal group seen on the polished surface of the dielectric ceramic is a
  • the area of the crystal grains constituting the second crystal group is b.
  • the crystal grain area ratio b / (a + b) is calculated by distinguishing between the crystal grains 1a constituting the first crystal group and the crystal grains 1b constituting the second crystal group.
  • the area of each crystal particle from which the calcium concentration was determined is calculated from data obtained by the same method as the evaluation of the average particle size.
  • the concentration of calcium in the crystal particles about 50 crystal particles existing on the polished surface obtained by polishing the cross section of the dielectric ceramic were measured using a transmission electron microscope provided with an elemental analysis instrument. Perform analysis. At this time, the spot size of the electron beam is 5 nm, and the location to be analyzed is in the range from the vicinity of the grain boundary of the crystal grain to the center position of the central portion, and is located at substantially equal intervals on a straight line drawn toward the center. And The analysis value is the average value of the values analyzed about 4 to 5 points between the vicinity of the grain boundary and the center. Taking the total amount of Ba, Ti, Ca, V and rare earth element (RE) detected from each measurement point of the crystal particles as 100%, the concentration of calcium at that time is determined.
  • RE rare earth element
  • the crystal particles to be selected are obtained by calculating the area of each particle by image processing from the contour, and calculating the diameter when replaced with a circle having the same area, and the calculated crystal particle diameter is ⁇ of the average crystal grain size.
  • the crystal grains are in the range of 60%.
  • the center part of the crystal grain refers to a range surrounded by a circle whose radius is 1/3 of the radius of the inscribed circle from the center of the inscribed circle of the crystal grain.
  • the vicinity of the grain boundary means a region extending 5 nm from the grain boundary of the crystal grain.
  • barium titanate powder (hereinafter referred to as BT powder) having a purity of 99% or more as a raw material powder, powder in which calcium is dissolved in barium titanate (hereinafter referred to as BCT powder), and V 2 O 5 powder and at least one rare earth element (RE) oxide powder among Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder are prepared.
  • BCT powder barium titanate powder having a purity of 99% or more as a raw material powder
  • BCT powder powder in which calcium is dissolved in barium titanate
  • RE rare earth element
  • BT powder used for manufacturing the dielectric ceramic of the present invention BT powder and BCT powder (Curie temperature: 130 ° C.) having a Curie temperature of 128 to 131 ° C. at the raw material powder stage are used.
  • BT powder having a Curie temperature of 128 ° C. to 131 ° C. is used.
  • a dielectric obtained by adding a predetermined amount of V 2 O 5 powder and rare earth element (RE) oxide powder as compared with the case of using a conventional BT powder having a Curie temperature around 125 ° C.
  • the porcelain has a higher dielectric constant at 125 ° C. because the Curie temperature is higher.
  • the Curie temperature can be set in the range of 100 to 120 ° C, and the maximum change rate of the relative dielectric constant in the temperature range of -55 to 125 ° C when the room temperature (25 ° C) is used as a reference Can be within ⁇ 10%.
  • the Curie temperature of the BT powder is measured by differential scanning calorimetry (DSC).
  • the average particle size of the BT powder and BCT powder is preferably 0.1 to 0.17 ⁇ m.
  • the average particle size of the BT powder and the BCT powder is 0.1 or more, grain growth during sintering can be suppressed, so that there is an advantage that a dielectric loss can be reduced along with an increase in relative dielectric constant.
  • the average particle size of the BT powder and the BCT powder is 0.17 ⁇ m or less, it becomes easy to solidify additives such as vanadium and rare earth elements to the inside of the crystal particles, and as described later, There is an advantage that the ratio of grain growth from BT powder to crystal grains before and after firing can be increased to a predetermined range.
  • V 2 O 5 powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho are added to these raw material powders with respect to 100 mol of barium constituting BT powder and BCT powder.
  • a rare earth element (RE) selected from 2 O 3 powder and Er 2 O 3 powder is blended at a ratio of 0.5 to 1.5 mol in terms of RE 2 O 3 to produce a molded body having a predetermined shape. After degreasing the molded body, it is fired in a reducing atmosphere.
  • RE rare earth element
  • glass powder When producing the dielectric ceramic of the present invention, glass powder may be added as a sintering aid so long as the desired dielectric properties can be maintained.
  • the total amount of a certain BT powder is 100 parts by mass, 0.5 to 2 parts by mass is preferable.
  • Calcination temperature is preferably 1050 to 1150 ° C. in the case of using a sintering aid such as glass powder because it controls the solid solution of the additive in the BT powder and the grain growth of the crystal particles.
  • a sintering aid such as glass powder
  • sintering at a temperature lower than 1050 ° C. is possible in the case of pressure firing such as a hot press method.
  • a BT powder having a Curie temperature of 128 to 131 ° C. and a BCT powder having a Curie temperature of 130 ° C. are added to the above-mentioned additive in a predetermined amount, and the temperature Bake with.
  • the solid solution amounts of various additives with respect to the BT powder and the BCT powder are controlled, and as a result, the obtained dielectric ceramic exhibits (004) plane of tetragonal barium titanate in the X-ray diffraction chart.
  • the diffraction intensity is higher than the diffraction intensity of the (400) plane of cubic barium titanate, and the Curie temperature can be in the range of 100 to 120 ° C.
  • heat treatment is performed again in a weak reducing atmosphere after firing.
  • the temperature is preferably 900 to 1100 ° C. for the purpose of increasing the amount of reoxidation while suppressing further grain growth of crystal grains.
  • FIG. 4 is a schematic cross-sectional view showing an example of the multilayer ceramic capacitor of the present invention.
  • the multilayer ceramic capacitor of the present invention is one in which external electrodes 4 are provided at both ends of a capacitor body 10, and the capacitor body 10 is a multilayer body in which dielectric layers 5 and internal electrode layers 7 are alternately stacked. It is composed of
  • the dielectric layer 5 is formed by the dielectric ceramic of the present invention described above.
  • the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner.
  • the multilayer ceramic capacitor of the present invention has several hundreds of dielectric layers 5 and internal electrode layers 7. A laminated body extending to the layers is formed.
  • the dielectric ceramic of the present invention since it is possible to realize a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, for example, it is possible to reduce a change in electrostatic capacitance when used as a bypass capacitor, and thereby a high capacitance.
  • the function can be enhanced as a capacitor that can input and output electric charges.
  • the thickness of the dielectric layer 5 is preferably 3 ⁇ m or less, and particularly preferably 2.5 ⁇ m or less in order to reduce the size and capacity of the multilayer ceramic capacitor. Furthermore, in the present invention, the thickness of the dielectric layer 5 is more preferably 1 ⁇ m or more in order to stabilize the capacitance variation and capacitance temperature characteristics.
  • a base metal such as nickel (Ni) or copper (Cu) is desirable in that the manufacturing cost can be suppressed even when the number of layers is increased.
  • nickel (Ni) is more preferable because it can be fired simultaneously with the dielectric layer 1 in the present invention.
  • the external electrode 4 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.
  • a ceramic slurry is prepared by adding a dedicated organic vehicle to the raw material powder, and then a ceramic green sheet is formed from the ceramic slurry using a sheet forming method such as a doctor blade method or a die coater method.
  • the thickness of the ceramic green sheet is preferably 1 to 4 ⁇ m from the viewpoint of reducing the thickness of the dielectric layer to increase the capacity and maintaining high insulation.
  • a rectangular internal electrode pattern is printed on the main surface of the obtained ceramic green sheet.
  • Ni, Cu, or an alloy powder thereof is suitable for the conductor paste that forms the internal electrode pattern.
  • the internal electrode pattern in the sheet laminate is shifted by a half pattern in the longitudinal direction.
  • the sheet laminate is cut into a grid and a capacitor body molded body is formed so that the end of the internal electrode pattern is exposed.
  • the internal electrode pattern can be formed so as to be alternately exposed on the end surface of the cut capacitor body molded body.
  • the capacitor body is manufactured by performing heat treatment under the same firing conditions and weak reducing atmosphere as the above dielectric ceramic.
  • the external electrode paste is applied to the opposing ends of the capacitor body and baked to form the external electrode 4. Further, a plating film may be formed on the surface of the external electrode 4 in order to improve mountability.
  • Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 addition amount of the powder and V 2 O 5 powder are ratio BT powder 100 mol. These raw material powders having a purity of 99.9% were used.
  • the average particle sizes of the BT powder and BCT powder are shown in Table 1. Table 1 shows the Curie temperature of the BT powder.
  • BCT powder having a Curie temperature of 130 ° C. was used.
  • Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder and V 2 O 5 powder having an average particle diameter of 0.1 ⁇ m were used.
  • the Ba / Ti ratio of the BT powder and the (Ba + Ca) / Ti ratio of the BCT powder were both 1.
  • the addition amount of the glass powder was 1 part by mass with respect to 100 parts by mass of the total amount of BT powder and BCT powder.
  • Polyvinyl alcohol and ion exchange water were added to these raw material powders and wet mixed using zirconia balls having a diameter of 5 mm.
  • a molded body having a diameter of 16 mm and a thickness of 1.5 mm was produced using this powder, and fired in hydrogen-nitrogen at 1110 to 1130 ° C. for 2 hours (for sample No. 1) 1110 ° C for other samples, 1130 ° C). Thereafter, the temperature was lowered to 1000 ° C., a heat treatment (reoxidation treatment) for 4 hours was performed in a nitrogen atmosphere, and the dielectric ceramic was obtained as an evaluation sample by cooling.
  • a dielectric ceramic for measuring dielectric properties such as capacitance was formed by applying In—Ga on both upper and lower surfaces to form an electrode film.
  • the relative dielectric constant is measured by measuring the electrostatic capacity under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. From the obtained electrostatic capacity, the thickness of the dielectric ceramic, the area of the applied electrode film, and the vacuum Calculated based on the dielectric constant. Dielectric loss was also measured under the same conditions as the capacitance.
  • the temperature characteristic of the relative permittivity was measured by measuring the capacitance in the range of ⁇ 55 to 125 ° C., and the temperature showing the maximum capacitance in the measured temperature range was defined as the Curie temperature.
  • the average particle size of the crystal particles was determined as follows. After polishing the fracture surface of the sintered dielectric porcelain sample, take a picture of the internal structure using a scanning electron microscope and draw a circle containing 20 to 30 crystal particles on the photograph. A crystal grain around the circumference was selected. Next, the contour of each crystal particle was image-processed to determine the area of each particle, the diameter when replaced with a circle having the same area was calculated, and the average value was determined.
  • elemental analysis was performed on about 50 crystal particles existing on the polished surface of the dielectric ceramic whose surface was polished using a transmission electron microscope equipped with an elemental analysis instrument. Asked. At this time, the spot size of the electron beam was 5 nm, and the locations to be analyzed were points located at substantially equal intervals on a straight line drawn from the vicinity of the grain boundary of the crystal grains toward the center. The area to be analyzed is a range from the vicinity of the grain boundary of the crystal grain to the center position of the center part, and the points are located at almost equal intervals on a straight line drawn toward the center, and the analysis values are near the grain boundary and the center.
  • the average value of the values analyzed between 4 and 5 points is taken as 100% of the total amount of Ba, Ti, Ca, V and rare earth elements detected from each measurement point of the crystal particles, and the concentration of calcium at that time is Asked.
  • a crystal particle having a calcium concentration of 0.2 atomic% or less is defined as a crystal particle constituting the first crystal group, and a crystal particle having a calcium concentration of 0.4 atomic% or more is obtained. Crystal grains constituting the second crystal group were used.
  • the crystal particles to be selected are obtained by calculating the area of each particle by image processing from the outline, and calculating the diameter when replaced with a circle having the same area, and thus the crystal particle for which the diameter has been obtained Crystal grains having a diameter of ⁇ 60% of the average particle diameter.
  • the central part of the crystal grain is in the range of 1/3 of the radius from the center of the inscribed circle of the crystal grain, while the vicinity of the grain boundary of the crystal grain is 5 nm inside from the grain boundary of the crystal grain.
  • the inscribed circle of the crystal grains was drawn on the screen of a computer from the image projected by the transmission electron microscope, and the center of the crystal grains was determined from the image on the screen.
  • Area ratio b / (a + b) of crystal grains constituting the first crystal group constituting the dielectric ceramic and the second crystal group (wherein the crystal grain 1a constituting the first crystal group And the area of the crystal particles 1b constituting the second crystal group b) were calculated from the area data obtained by the same method as the average particle diameter of the crystal grains for the above 50 particles.
  • the composition analysis of the obtained dielectric ceramic sample was performed by ICP (Inductively-Coupled-plasma) analysis or atomic absorption analysis.
  • ICP Inductively-Coupled-plasma
  • the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified.
  • the diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.
  • Table 1 shows the composition, firing temperature, and characteristics. In addition, it confirmed from the said composition analysis that the composition of the produced dielectric ceramic was the same as a preparation composition.
  • sample No. 1 to 4, 6 to 9, 12, 13, 16 to 18 and 20 to 24 have a relative dielectric constant of 3200 or more at room temperature (25 ° C.) and ⁇ 55 to 125 ° C. when the room temperature (25 ° C.) is used as a reference It was possible to obtain a dielectric porcelain satisfying a maximum change rate of the relative dielectric constant within a temperature range of ⁇ 10%.
  • dielectric porcelain samples are composed mainly of barium titanate, with respect to 100 moles of barium constituting the barium titanate, 0.05 to 0.3 moles of vanadium in terms of V 2 O 5 , yttrium, dysprosium, A first crystal group comprising a rare earth element selected from holmium and erbium in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , wherein the crystal particles are composed of crystal particles having a calcium concentration of 0.2 atomic% or less; And a second crystal group composed of crystal grains having a calcium concentration of 0.4 atomic% or more, and further shows tetragonal barium titanate in the X-ray diffraction chart of the dielectric ceramic ( The diffraction intensity of the (004) plane is higher than the diffraction intensity of the (400) plane showing cubic barium titanate, and the Curie temperature is 100 to 120 ° C.
  • Sample No. with an average particle size of crystal particles of 0.15 to 0.3 ⁇ m. 2, 3, 6 to 9, 12, 13, 16 to 18 and 20 to 24 have a relative dielectric constant of 3500 or more at room temperature (25 ° C.) and a relative dielectric constant at 125 ° C. based on room temperature (25 ° C.).
  • the rate of change in temperature was within ⁇ 10%, and the dielectric loss at room temperature (25 ° C.) was 13% or less.
  • the area ratio b / (a + b) between the area “a” of the crystal grains constituting the first crystal group and the area “b” of the crystal grains constituting the second crystal group as seen on the polished surface of the dielectric ceramic is 0.
  • the calcium concentration of the crystal particles constituting the second crystal group was 0.5 to 1.5 atomic% in the analyzed range.

Abstract

 チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に存在する粒界相とを有する誘電体磁器であって、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含有するとともに、結晶粒子はカルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群とから構成されており、誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きく、かつキュリー温度が100~120°Cである。            

Description

誘電体磁器およびそれを用いた積層セラミックコンデンサ
 本発明は、チタン酸バリウムを主成分とする結晶粒子により構成される誘電体磁器と、それを誘電体層として用いる積層セラミックコンデンサに関する。
 現在、モバイルコンピュータや携帯電話をはじめとするデジタル方式の電子機器の普及が目覚ましく、近い将来、地上デジタル放送が全国に展開されようとしている。地上デジタル放送用の受信機であるデジタル方式の電子機器として液晶ディスプレイやプラズマディスプレイなどがあるが、これらデジタル方式の電子機器には多くのLSIが用いられている。
 そのため、液晶ディスプレイやプラズマディスプレイなど、これらデジタル方式の電子機器を構成する電源回路にはバイパス用のコンデンサが数多く実装されている。ここで用いられているコンデンサとしては、通常、高い静電容量を必要とするため高誘電率の積層セラミックコンデンサ(特許文献1~3を参照)が採用されている。
 しかしながら、上述した特許文献1に記載された誘電体磁器については、-55~125℃の温度範囲における比誘電率の変化率が最大でも-4.5%と安定な温度特性を有するものの、比誘電率が2500程度と低かった。
 特許文献2および特許文献3に記載された誘電体磁器については、室温(25℃)における比誘電率が3700以上と高いものの、この場合には、室温(25℃)を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率が±14%~±15%と、かろうじてX7R特性を満たす程度であり、この-55~125℃の温度範囲における比誘電率の変化率が±10%以内を満たすものではなかった。
特開2004-210613号公報 特開2002-362970号公報 特開2006-156450号公報
 本発明の主たる目的は、高誘電率かつ比誘電率の温度特性に優れた誘電体磁器と、それを用いた積層セラミックコンデンサを提供することである。
 本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に存在する粒界相とを有する。さらに、この誘電体磁器は、前記チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含有する。また、前記結晶粒子は、カルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、前記カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群とを含有し、前記誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きく、かつキュリー温度が100~120℃である。
 特に、前記結晶粒子の平均粒径は0.15~0.3μmであることが望ましい。
 前記誘電体磁器の研磨面に見られる前記第1の結晶群を構成する結晶粒子の面積をa、前記第2の結晶群を構成する結晶粒子の面積をbとしたときに、b/(a+b)が0.4~0.7であることが望ましい。
 本発明の積層セラミックコンデンサは、上記誘電体磁器からなる誘電体層と内部電極層との積層体から構成されている。
 なお、希土類元素をREとしたのは、周期表における希土類元素の英文表記(Rare earth)に基づくものである。また、本発明では、イットリウムは希土類元素に含まれるものとする。
 本発明の誘電体磁器によれば、チタン酸バリウムに対して、カルシウム、バナジウムおよび希土類元素(RE)をそれぞれ所定の割合で含有するとともに、誘電体磁器の結晶粒子をカルシウム濃度の異なる2種の結晶粒子とを含有し、かつ誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度が、チタン酸バリウムの立方晶系を示す(400)面の回折強度よりも大きいものとし、かつキュリー温度を100~120℃の範囲とする。これにより、高誘電率かつ比誘電率の温度特性に優れた誘電体磁器を得ることができる。
 また、本発明の誘電体磁器において結晶粒子の平均粒径を0.15~0.3μmの範囲としたときは、高誘電率にできるとともに、比誘電率の温度特性を安定にしつつ、誘電損失を低減できる。
 また、本発明の誘電体磁器において、誘電体磁器の研磨面に見られる前記第1の結晶群を構成する結晶粒子の面積をa、前記第2の結晶群を構成する結晶粒子の面積をbとしたときに、b/(a+b)を0.4~0.7の範囲としたときは、誘電体磁器の比誘電率を高めることができる。
 本発明の積層セラミックコンデンサによれば、誘電体層として、上述の誘電体磁器を適用する。これにより、高誘電率で、比誘電率の温度特性に優れた積層セラミックコンデンサを得ることができる。
本発明の誘電体磁器の微構造を示す断面模式図である。 (a)は実施例における本発明の誘電体磁器である試料No.3のX線回折チャートを示すものであり、(b)は実施例における比較例の誘電体磁器である試料No.5X線回折チャートである。 実施例における試料No.3の静電容量の温度特性を示すグラフである。 本発明の積層セラミックコンデンサの例を示す断面模式図である。
符号の説明
 5   誘電体層
 7   内部電極層
 10  コンデンサ本体
 本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、その結晶粒子間に存在する粒界相とから構成される。その誘電体磁器組成は、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含有するものである。
 また、本発明の誘電体磁器を構成する結晶粒子は、カルシウムの濃度が0.2原子%以下のチタン酸バリウムを主体とする第1の結晶群を構成する結晶粒子と、カルシウムの濃度が0.4原子%以上のチタン酸バリウムを主体とする第2の結晶群を構成する結晶粒子とから構成されている。
 さらに、本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きいものであり、かつキュリー温度(Tc)が100~120℃である。
 本発明によれば、誘電体磁器を上記組成とし、誘電体磁器の結晶構造が上述したX線回折チャートの回折強度の関係になるようにし、さらに、キュリー温度を上記範囲にする。これにより、室温(25℃)における比誘電率が3200以上、室温(25℃)における比誘電率を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率が±10%以内を満足する誘電体磁器を得ることができる。
 図1は、本発明の誘電体磁器の微構造を示す断面模式図である。本発明の誘電体磁器は、上述のように、カルシウムの濃度が0.2原子%以下のチタン酸バリウムを主体とする第1の結晶群を構成する結晶粒子1aと、カルシウムの濃度が0.4原子%以上のチタン酸バリウムを主体とする第2の結晶群を構成する結晶粒子1bと、粒界相2とから構成されている。誘電体磁器を構成する結晶粒子をカルシウムの濃度の異なる2種の結晶粒子1aおよび1bにより形成すると、カルシウムの濃度が0.2原子%以下の結晶粒子1aのみの場合、あるいは、カルシウムの濃度が0.4原子%以上の結晶粒子1bのみの場合に比べて、誘電体磁器の比誘電率を高めることができる。
 なお、第2の結晶群を構成する結晶粒子1bのカルシウムの濃度は、特に0.5~2.0原子%であるのが好ましい。カルシウムの濃度がこの範囲内であると、チタン酸バリウムに対するカルシウムの固溶を十分なものにできる。また、固溶せずに粒界等に残存するカルシウムの化合物を低減することができ、これにより比誘電率、誘電損失および比誘電率の温度特性に優れた誘電体磁器を得ることができる。
 この誘電体磁器は、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含む。
 即ち、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムの含有量がV換算で0.05モルよりも少ない場合、または、前記希土類元素(RE)がRE換算で0.5モルよりも少ない場合には、-55~125℃の温度範囲における比誘電率の最大の変化率が±10以内を満足しなくなる。
 チタン酸バリウムを構成するバリウム100モルに対して、バナジウムの含有量がV換算で0.3モルよりも多い場合、または、前記希土類元素(RE)がRE換算で1.5モルよりも多い場合には、室温(25℃)における比誘電率が3200よりも低くなる。
 ところで、希土類元素の中でイットリウム,ジスプロシウム,ホルミウムおよびエルビウムは、チタン酸バリウムに固溶したときに異相が生成し難く、高い絶縁性が得られるから好適に用いることができる。その中でも誘電体磁器の比誘電率を高められるという理由からイットリウムがより好ましい。
 また、チタン酸バリウムおよびカルシウムを含むチタン酸バリウムに固溶している成分は不可避不純物を除き、実質的にバナジウムおよび希土類元素(RE)のみである。
 なお、本発明の誘電体磁器は、焼結性を高めるための助剤としてガラス成分や他の添加成分を誘電体磁器中に0.5~2質量%の割合で含有させても良い。
 本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きく、かつキュリー温度が100~120℃である。
 ここで、本発明の誘電体磁器の結晶構造についてさらに詳細に説明する。本発明の誘電体磁器は、結晶粒子中にバナジウムと希土類元素(RE)が固溶しても、ほとんど正方晶系を示す単相に近い結晶相により占められている。
 図2(a)は後述の実施例の表1における本発明の誘電体磁器である試料No.3のX線回折チャートを示すものであり、図2(b)は同表1における比較例の誘電体磁器である試料No.15のX線回折チャートである。図3は、後述の実施例の表1における試料No.3の誘電体磁器の静電容量の温度特性を示すグラフであり、本発明の誘電体磁器は図3のような静電容量の温度特性を有している。
 ここで、特許文献1に記載された従来の誘電体磁器は、その結晶構造がコア・シェル構造であり、図2(b)のX線回折チャートに相当するものとなっている。即ち、チタン酸バリウムを主成分とし、コア・シェル構造を有する結晶粒子により構成される誘電体磁器では、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(400)面((040)面、(004)面が重なっている。)の回折強度Ixcが、チタン酸バリウムの正方晶系を示す(004)面の回折強度Ixtよりも大きくなっている。
 また、コア・シェル構造を示す結晶粒子により構成される誘電体磁器は、X線回折チャートで見る限り、正方晶系の結晶相に対して立方晶系の結晶相の割合が多いために結晶の異方性が小さくなる。そのために、X線回折チャートは(400)面の回折線が低角度側にシフトするとともに(004)面の回折線が高角度側にシフトし、両回折線は互いに少なくとも一部が重なるようになり幅広の回折線となる。
 このような誘電体磁器は、チタン酸バリウムを主成分とする粉末に、マグネシウムや希土類元素などの酸化物粉末を添加混合したものを成形した後、還元焼成することによって形成される。この場合、コア・シェル構造を有する結晶粒子は、シェル部にマグネシウムや希土類元素(RE)などの成分が多く固溶しているのに対し、コア部はマグネシウムや希土類元素(RE)などの成分の固溶量が少ないことから、純粋に近いチタン酸バリウムの結晶相である。このためにキュリー温度が125℃付近(122~126℃)にある。このように、コア・シェル構造を有し、キュリー温度が125℃付近にある結晶粒子により構成される誘電体磁器は、室温(25℃)を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率が±15%程度にはなるものの±10%以内を満足できない。
 これに対して、本発明の誘電体磁器は、図2(a)に示すように、誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度Ixtが、チタン酸バリウムの立方晶系を示す(400)面の回折強度Ixcよりも大きい。
 即ち、本発明の誘電体磁器は、図2(a)に見られるように、チタン酸バリウムの正方晶系を示す(004)面(2θ=100°付近)と(400)面(2θ=101°付近)のX線回折ピークが明確に現れるものであり、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(400)面((040)面、(400)面が重なっている。)の回折強度Ixcが、チタン酸バリウムの正方晶系を示す(004)面の回折強度Ixtよりも小さくなっている。
 つまり、本発明の誘電体磁器の結晶構造は、従来のコア・シェル構造のX線回折パターンとは異なり、しかも、図3に示すように、キュリー温度(Tc)が100~120℃の範囲であり、キュリー温度が125℃である従来のコア・シェル構造をもつ誘電体磁器とは誘電特性が異なる。これは、チタン酸バリウムを主成分とする結晶粒子の全体にわたりバナジウムと希土類元素(RE)とが所定量固溶しているためである。こうして、室温(25℃)での比誘電率を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率を±10%以内にすることができる。
 なお、誘電体磁器のキュリー温度は、静電容量を-55~125℃の範囲で測定し、測定した温度範囲において最大の静電容量を示す温度とする。
 本発明の誘電体磁器は、結晶粒子の平均粒径が0.15~0.3μmであることが望ましい。結晶粒子の平均粒径が0.15~0.3μmであると、室温(25℃)における比誘電率が3500以上であり、かつ室温(25℃)での比誘電率に対する-55~125℃の温度範囲における比誘電率の最大の変化率を±10%以内に維持した状態で、室温(25℃)における誘電損失を13%以下にできる。
 結晶粒子の平均粒径は、以下のようにして求められる。まず、焼成後の誘電体磁器である試料の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮影する。その写真上で結晶粒子が20~30個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子の輪郭を画像処理して、各粒子の面積を求める。そして、これを同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より平均粒径を求める。
 また、本発明の誘電体磁器において、第1の結晶群を構成する結晶粒子1aと、第2の結晶群を構成する結晶粒子1bとの比率は、b/(a+b)が0.4~0.7の範囲であることが望ましい。ただし、誘電体磁器の研磨面に見られる第1の結晶群を構成する結晶粒子の面積をa、第2の結晶群を構成する結晶粒子の面積をbとする。第1の結晶群を構成する結晶粒子の面積と第2の結晶群を構成する結晶粒子との面積の比率を上記範囲にすると、誘電体磁器の比誘電率を3550以上に高めることができる。
 なお、本発明の誘電体磁器において、第1の結晶群を構成する結晶粒子1aと第2の結晶群を構成する結晶粒子1bとを区別して、結晶粒子の面積比率b/(a+b)を算出するには、選択した各結晶粒子に含まれるカルシウムの濃度を求め、一方で、カルシウムの濃度を求めた各結晶粒子の面積を平均粒径の評価と同様の方法により求めたデータから算出する。
 ここで、結晶粒子中のカルシウムの濃度については、誘電体磁器の断面を研磨した研磨面に存在する約50個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行う。このとき電子線のスポットサイズは5nmとし、分析する箇所は結晶粒子の粒界付近から中央部の中心の位置までの範囲で、その中心へ向けて引いた直線上のほぼ等間隔に位置する点とする。分析値は粒界付近と中心との間で4~5点ほど分析した値の平均値とする。結晶粒子の各測定点から検出されるBa、Ti、Ca、Vおよび希土類元素(RE)の全量を100%として、そのときのカルシウムの濃度を求める。但し、選択する結晶粒子は、その輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、求めた結晶粒子の直径が平均結晶粒径の±60%の範囲にある結晶粒子とする。
 ここで、結晶粒子の中央部とは、当該結晶粒子の内接円の中心から当該内接円の半径の1/3の長さを半径とする円で囲まれる範囲をいい、また、結晶粒子の粒界付近とは、当該結晶粒子の粒界から5nm内側までの領域のことである。そして、結晶粒子の内接円は、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で結晶粒子に対して内接円を描き、結晶粒子の中央部を決定する。
 次に、本発明の誘電体磁器を製造する方法について説明する。まず、原料粉末として、純度が99%以上のチタン酸バリウム粉末(以下、BT粉末という。)およびチタン酸バリウムにカルシウムが固溶した粉末(以下、BCT粉末という。)と、添加成分として、V粉末と、Y粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素(RE)の酸化物粉末とを準備する。
 本発明の誘電体磁器を製造するのに用いるBT粉末として、原料粉末の段階でのキュリー温度が128~131℃を示すBT粉末とBCT粉末(キュリー温度:130℃)とを用いる。本発明では、特に、キュリー温度が128℃~131℃を示すBT粉末を用いる。これにより、キュリー温度が125℃付近にある従来のBT粉末を用いた場合に比較して、所定量のV粉末および希土類元素(RE)の酸化物粉末を添加して得られる誘電体磁器は、キュリー温度が高温側にある分、125℃における比誘電率が高くなる。その結果、キュリー温度を100~120℃の範囲にすることができるとともに、室温(25℃)を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率を容易に±10%以内にできる。なお、BT粉末のキュリー温度は示差走査熱量分析(Differential Scanning Calorimetry:DSC)により測定する。
 BT粉末およびBCT粉末の平均粒径は0.1~0.17μmが好ましい。BT粉末およびBCT粉末の平均粒径が0.1以上であると、焼結時の粒成長を抑制できるために比誘電率の向上とともに誘電損失の低下が図れるという利点がある。
 一方、BT粉末およびBCT粉末の平均粒径が0.17μm以下であると、バナジウムおよび希土類元素などの添加剤を結晶粒子の内部にまで固溶させることが容易となり、また、後述するように、焼成前後における、BT粉末から結晶粒子への粒成長の比率を所定の範囲まで高められるという利点がある。
 添加剤であるV粉末ならびにY粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素(RE)の酸化物粉末についても平均粒径はBT粉末およびBCT粉末と同等、もしくはそれ以下のものを用いることが好ましい。
 次いで、これらの原料粉末を、BT粉末およびBCT粉末を構成するバリウム100モルに対してV粉末を0.05~0.3モル、Y粉末、Dy粉末、Ho粉末およびEr粉末から選ばれる希土類元素(RE)をRE換算で0.5~1.5モルの割合で配合して、所定形状の成形体を作製し、この成形体を脱脂した後、還元雰囲気中にて焼成する。
 なお、本発明の誘電体磁器を製造するに際しては、所望の誘電特性を維持できる範囲であれば、焼結助剤としてガラス粉末を添加しても良く、その添加量は、主な原料粉末であるBT粉末の合計量を100質量部としたときに0.5~2質量部が良い。
 焼成温度は、ガラス粉末等の焼結助剤を用いる場合には、BT粉末への添加剤の固溶と結晶粒子の粒成長を制御するという理由から1050~1150℃が好適である。一方、ガラス粉末等の焼結助剤を用いないで、ホットプレス法等の加圧焼成による場合には1050℃未満の温度での焼結が可能になる。
 本発明では、かかる誘電体磁器を得るために、キュリー温度が128~131℃のBT粉末とキュリー温度が130℃のBCT粉末とを用い、これに上述の添加剤を所定量添加し、上記温度で焼成する。こうしてBT粉末およびBCT粉末に対して各種の添加剤の固溶量が制御され、その結果、得られる誘電体磁器は、X線回折チャートにおいて正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きいものとなり、また、キュリー温度を100~120℃の範囲とすることができる。
 また、本発明では、焼成時に還元されて低下した絶縁抵抗を回復するために、焼成後に、再度、弱還元雰囲気にて熱処理を行う。その温度は結晶粒子の更なる粒成長を抑えつつ再酸化量を高めるという理由から900~1100℃が好ましい。
 図4は、本発明の積層セラミックコンデンサの例を示す断面模式図である。本発明の積層セラミックコンデンサは、コンデンサ本体10の両端部に外部電極4が設けられたものであり、また、コンデンサ本体10は誘電体層5と内部電極層7とが交互に積層された積層体から構成されている。そして、誘電体層5は上述した本発明の誘電体磁器によって形成されている。なお、図4では、誘電体層5と内部電極層7との積層の状態を単純化して示しているが、本発明の積層セラミックコンデンサは、誘電体層5と内部電極層7とが数百層にも及ぶ積層体を形成している。
 このような本発明の積層セラミックコンデンサによれば、誘電体層5として、上記の誘電体磁器を適用することにより、高誘電率であり、また室温(25℃)を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率が±10%以内を満足するものを得ることができる。本発明の誘電体磁器によれば、高誘電率かつ安定な比誘電率の温度特性を実現できることから、例えば、バイパスコンデンサとして用いた時の静電容量の変化を低減でき、これにより高容量の電荷を入出力できるコンデンサとして機能を高められる。
 ここで、誘電体層5の厚みは3μm以下、特に2.5μm以下であることが積層セラミックコンデンサを小型高容量化する上で好ましい。さらに本発明では静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みは1μm以上であることがより望ましい。
 内部電極層7を形成する材料としては、高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましい。特に、本発明における誘電体層1との同時焼成が図れるという点でニッケル(Ni)がより望ましい。
 外部電極4は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成される。
 次に、積層セラミックコンデンサの製造方法について説明する。上記の素原料粉末に専用の有機ビヒクルを加えてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いてセラミックグリーンシートを形成する。この場合、セラミックグリーンシートの厚みは誘電体層の高容量化のための薄層化、高絶縁性を維持するという点で1~4μmが好ましい。
 得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストはNi、Cuもしくはこれらの合金粉末が好適である。
 内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねてシート積層体を形成する。この場合、シート積層体中における内部電極パターンは、長寸方向に半パターンずつずらしてある。
 シート積層体を格子状に切断して、内部電極パターンの端部が露出するようにコンデンサ本体成形体を形成する。このような積層工法により、切断後のコンデンサ本体成形体の端面に内部電極パターンが交互に露出されるように形成できる。
 次に、コンデンサ本体成形体を脱脂したのち、上記した誘電体磁器と同様の焼成条件および弱還元雰囲気での熱処理を行うことによりコンデンサ本体を作製する。
 このコンデンサ本体の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極4を形成する。また、この外部電極4の表面には実装性を高めるためにメッキ膜を形成しても構わない。
 まず、原料粉末として、BT粉末、BCT粉末(組成は(Ba1-xCa)TiO、 X=0.05)、Y粉末、Dy粉末、Ho粉末、Er粉末およびV粉末を準備し、これらの各種粉末を表1に示す割合で混合した。Y粉末、Dy粉末、Ho粉末、Er粉末およびV粉末の添加量は、BT粉末100モルに対する割合である。これらの原料粉末は純度が99.9%のものを用いた。なお、BT粉末およびBCT粉末の平均粒径は表1に示した。また、BT粉末のキュリー温度を表1に示した。BCT粉末はキュリー温度が130℃のものを用いた。Y粉末、Dy粉末、Ho粉末、Er粉末およびV粉末は平均粒径が0.1μmのものを用いた。BT粉末のBa/Ti比およびBCT粉末の(Ba+Ca)/Ti比はいずれも1とした。焼結助剤はSiO=55、BaO=20、CaO=15、LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBT粉末およびBCT粉末の合計量100質量部に対して1質量部とした。
 これらの原料粉末にポリビニルアルコールとイオン交換水とを添加して直径5mmのジルコニアボールを用いて湿式混合した。
 湿式混合した粉末を乾燥させた後、この粉末を用いて直径16mm、厚み1.5mmの成形体を作製し、水素-窒素中、1110~1130℃で2時間焼成した(試料No.1については1110℃、それ以外の試料は1130℃)。この後、1000℃まで降温し、窒素雰囲気中で4時間の加熱処理(再酸化処理)を施し、冷却して評価試料となる誘電体磁器を得た。
 作製した誘電体磁器について以下の評価を行った。評価はいずれも試料数10個とし、その平均値を求めた。静電容量等の誘電特性を測定する際の誘電体磁器は、その上下両面にIn-Gaを塗布して電極膜を形成した。
 比誘電率は静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、得られた静電容量から誘電体磁器の厚みと、塗布した電極膜の面積および真空の誘電率をもとに換算して求めた。誘電損失も静電容量と同条件で測定した。比誘電率の温度特性は静電容量を温度-55~125℃の範囲で測定し、測定した温度範囲において最大の静電容量を示す温度をキュリー温度とした。
 結晶粒子の平均粒径は、以下のようにして求めた。焼成後の誘電体磁器である試料の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上で結晶粒子が20~30個入る円を描き、円内および円周にかかった結晶粒子を選択した。次いで、各結晶粒子の輪郭を画像処理して、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求めた。
 結晶粒子中のカルシウムの濃度については、断面を研磨した誘電体磁器の研磨面に存在する約50個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行って求めた。このとき電子線のスポットサイズは5nmとし、分析する箇所は、結晶粒子の粒界付近から中央部へ向けて引いた直線上のほぼ等間隔に位置する点とした。分析する箇所は結晶粒子の粒界付近から中央部の中心の位置までの範囲で、その中心へ向けて引いた直線上のほぼ等間隔に位置する点とし、分析値は粒界付近と中心との間で4~5点ほど分析した値の平均値とし、結晶粒子の各測定点から検出されるBa、Ti、Ca、Vおよび希土類元素の全量を100%として、そのときのカルシウムの濃度を求めた。このような分析において、カルシウムの濃度が0.2原子%以下を示した結晶粒子を第1の結晶群を構成する結晶粒子とし、カルシウムの濃度が0.4原子%以上を示した結晶粒子を第2の結晶群を構成する結晶粒子とした。また、この場合、選択する結晶粒子は、その輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、このようにして直径を求めた結晶粒子の直径が平均粒径の±60%の範囲にある結晶粒子とした。
 この測定で結晶粒子の中央部は当該結晶粒子の内接円の中心から半径の1/3の長さの範囲とし、一方、結晶粒子の粒界付近は当該結晶粒子の粒界から5nm内側の領域とした。なお、結晶粒子の内接円は透過電子顕微鏡にて映し出されている画像をコンピュータの画面上で内接円を描き、その画面上の画像から結晶粒子の中央部を決定した。
 誘電体磁器を構成する第1の結晶群を構成する結晶粒子および第2の結晶群を構成する結晶粒子の面積割合b/(a+b)(ここで、第1の結晶群を構成する結晶粒子1aの面積をa、第2の結晶群を構成する結晶粒子1bの面積をb)は、上記約50個について結晶粒子の平均粒径と同様の方法により求めた面積のデータから算出した。
 得られた誘電体磁器である試料の組成分析はICP(Inductively Coupled plasma)分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。
 表1に調合組成と焼成温度および特性の結果を示した。なお、作製した誘電体磁器の組成は調合組成と同じであることを上記組成分析より確認した。
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から明らかなように、本発明の試料No.1~4,6~9,12,13,16~18および20~24では、室温(25℃)における比誘電率が3200以上、室温(25℃)を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率が±10%以内を満足する誘電体磁器を得ることができた。これらの誘電体磁器試料は、チタン酸バリウムを主成分とし、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素をRE換算で0.5~1.5モル含み、結晶粒子はカルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、前記カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群とから構成されており、さらに、誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きく、かつキュリー温度が100~120℃である。
 また、結晶粒子の平均粒径を0.15~0.3μmとした試料No.2,3,6~9,12,13,16~18および20~24では、室温(25℃)における比誘電率が3500以上、室温(25℃)を基準にしたときの125℃における比誘電率の温度変化率が±10%以内を満足するとともに、室温(25℃)における誘電損失が13%以下であった。
 さらに、誘電体磁器の研磨面に見られる第1の結晶群を構成する結晶粒子の面積aと、第2の結晶群を構成する結晶粒子の面積bとの面積割合b/(a+b)が0.4~0.7の範囲とした試料No.試料No.2,3,6~9,12,13,16~18,22および23では、誘電体磁器の比誘電率を3550以上に高めることができた。
 また、本発明の誘電体磁器を誘電体層として用いた積層セラミックコンデンサにおいても同様の結果が得られた。
 これに対して、本発明の範囲外の試料No.5,10,11,14,15および19では、比誘電率が3200より低いか、室温(25℃)を基準にしたときの-55~125℃の温度範囲における比誘電率の最大の変化率が±10%以内を満足しないものであった。
 なお、作製した誘電体磁器において、第2の結晶群を構成する結晶粒子のカルシウムの濃度は、分析した範囲において、いずれも0.5~1.5原子%であった。
 

Claims (4)

  1.  チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に存在する粒界相とを有する誘電体磁器であって、
    前記チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05~0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5~1.5モル含有するとともに、
    前記結晶粒子はカルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、前記カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群とを含有し、
    前記誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きく、かつキュリー温度が100~120℃である
    ことを特徴とする誘電体磁器。
  2.  前記結晶粒子の平均粒径が0.15~0.3μmであることを特徴とする請求項1に記載の誘電体磁器。
  3.  前記誘電体磁器の研磨面に見られる前記第1の結晶群を構成する結晶粒子の面積をa、前記第2の結晶群を構成する結晶粒子の面積をbとしたときに、b/(a+b)が0.4~0.7であることを特徴とする請求項2に記載の誘電体磁器。
  4.  請求項1乃至3のうちいずれかに記載の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする積層セラミックコンデンサ。
PCT/JP2009/055699 2008-06-26 2009-03-23 誘電体磁器およびそれを用いた積層セラミックコンデンサ WO2009157232A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-167421 2008-06-26
JP2008167421A JP2010006634A (ja) 2008-06-26 2008-06-26 誘電体磁器およびそれを用いた積層セラミックコンデンサ

Publications (1)

Publication Number Publication Date
WO2009157232A1 true WO2009157232A1 (ja) 2009-12-30

Family

ID=41444304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055699 WO2009157232A1 (ja) 2008-06-26 2009-03-23 誘電体磁器およびそれを用いた積層セラミックコンデンサ

Country Status (2)

Country Link
JP (1) JP2010006634A (ja)
WO (1) WO2009157232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005155A (ja) * 2012-06-21 2014-01-16 Taiyo Yuden Co Ltd 誘電体セラミックス、誘電体セラミックスの製造方法及び積層セラミックコンデンサ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109872B2 (ja) * 2008-08-27 2012-12-26 株式会社村田製作所 積層セラミックコンデンサおよびその製造方法
JP5578882B2 (ja) * 2010-02-25 2014-08-27 京セラ株式会社 積層セラミックコンデンサ
JP6443072B2 (ja) * 2015-01-23 2018-12-26 Tdk株式会社 積層型セラミック電子部品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099534A (ja) * 2005-09-30 2007-04-19 Tdk Corp 誘電体磁器組成物および電子部品
JP2008109019A (ja) * 2006-10-27 2008-05-08 Kyocera Corp 積層セラミックコンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099534A (ja) * 2005-09-30 2007-04-19 Tdk Corp 誘電体磁器組成物および電子部品
JP2008109019A (ja) * 2006-10-27 2008-05-08 Kyocera Corp 積層セラミックコンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI BO ET AL.: "Influence of V205 on the Properties of BaTi03-Y203-MgO Ceramics", WUJI CAILIO XUEBAO, vol. 22, no. 4, July 2007 (2007-07-01), pages 706 - 710 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005155A (ja) * 2012-06-21 2014-01-16 Taiyo Yuden Co Ltd 誘電体セラミックス、誘電体セラミックスの製造方法及び積層セラミックコンデンサ

Also Published As

Publication number Publication date
JP2010006634A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4925958B2 (ja) 積層セラミックコンデンサ
JP5039039B2 (ja) 誘電体磁器およびコンデンサ
JP5483825B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP5210300B2 (ja) 誘電体磁器および積層セラミックコンデンサ
WO2009131221A1 (ja) 積層セラミックコンデンサ
WO2009119444A1 (ja) 積層セラミックコンデンサ
JP5094283B2 (ja) 誘電体磁器および積層セラミックコンデンサ
WO2009119614A1 (ja) 積層セラミックコンデンサ
JP5578882B2 (ja) 積層セラミックコンデンサ
WO2009119613A1 (ja) 積層セラミックコンデンサ
JP4771818B2 (ja) 積層セラミックコンデンサ
JP2008135638A (ja) 積層セラミックコンデンサ
JP5127837B2 (ja) 誘電体磁器および積層セラミックコンデンサ
WO2009157232A1 (ja) 誘電体磁器およびそれを用いた積層セラミックコンデンサ
JP5312275B2 (ja) 積層セラミックコンデンサ
JP2009260200A (ja) 積層セラミックコンデンサ
JP2011132056A (ja) 積層セラミックコンデンサ
JP5159682B2 (ja) 積層セラミックコンデンサ
JP5578881B2 (ja) 積層セラミックコンデンサ
JP5496331B2 (ja) コンデンサ
WO2009157231A1 (ja) 誘電体磁器およびそれを用いた積層セラミックコンデンサ
JP5100592B2 (ja) 積層セラミックコンデンサ
JP5197432B2 (ja) 積層セラミックコンデンサ
JP5084657B2 (ja) 積層セラミックコンデンサ
JP5701013B2 (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769942

Country of ref document: EP

Kind code of ref document: A1