WO2009142433A2 - 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법 - Google Patents

중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법 Download PDF

Info

Publication number
WO2009142433A2
WO2009142433A2 PCT/KR2009/002644 KR2009002644W WO2009142433A2 WO 2009142433 A2 WO2009142433 A2 WO 2009142433A2 KR 2009002644 W KR2009002644 W KR 2009002644W WO 2009142433 A2 WO2009142433 A2 WO 2009142433A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
hollow fiber
substituted
independently
Prior art date
Application number
PCT/KR2009/002644
Other languages
English (en)
French (fr)
Other versions
WO2009142433A3 (ko
Inventor
정철호
한상훈
이영무
박호범
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to JP2011510421A priority Critical patent/JP5598679B2/ja
Priority to RU2010149304/04A priority patent/RU2461671C9/ru
Priority to CN2009801281584A priority patent/CN102099513B/zh
Priority to MX2010012598A priority patent/MX2010012598A/es
Priority to EP09750755.2A priority patent/EP2281925B1/en
Publication of WO2009142433A2 publication Critical patent/WO2009142433A2/ko
Publication of WO2009142433A3 publication Critical patent/WO2009142433A3/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/32Polythiazoles; Polythiadiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/025Finger pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/156Methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the present disclosure relates to a hollow fiber, a dope solution composition for forming hollow fiber, and a method for manufacturing hollow yarn using the same.
  • the permeability is the rate at which the permeable material permeates through the separator
  • the selectivity is defined as the ratio of the permeation rate between two different components.
  • Separation membranes can be divided into reverse osmosis membranes, ultrafiltration membranes, microfiltration membranes, gas separation membranes and the like according to the separation performance, and can be divided into flat membranes and hollow fiber membranes depending on the form.
  • the asymmetric hollow fiber membrane has the highest membrane area per unit volume and is widely used as a separation membrane for gas separation.
  • the process of separating a particular gas component from the various gas components in the gas mixture is very important.
  • a pressure swing adsorption process and a cryogenic process, as well as a membrane separation process are used.
  • the pressure-variable adsorption method and the deep cooling method of the separation process have been widely used in the design and operation of the process and are widely used at present.
  • the gas separation using the membrane separation method has a relatively short history.
  • Gas separation membranes used in the membrane separation method are various gases such as hydrogen, helium, oxygen, nitrogen, carbon monoxide, carbon dioxide, water vapor, ammonia, sulfur compounds, methane, ethane, ethylene, propane, propylene, butane, butylene It is used to separate and concentrate light hydrocarbon gas and the like.
  • gases such as hydrogen, helium, oxygen, nitrogen, carbon monoxide, carbon dioxide, water vapor, ammonia, sulfur compounds, methane, ethane, ethylene, propane, propylene, butane, butylene It is used to separate and concentrate light hydrocarbon gas and the like.
  • gas separation can be applied, such as separation of oxygen or nitrogen from air and water removal from compressed air.
  • the principle of gas separation using a membrane is based on the difference in permeability of each component in two or more gas mixtures that permeate the membrane. This undergoes a dissolution-diffusion process in which the gas mixture is in contact with one side of the membrane to selectively dissolve at least one of the gas components. In the interior of the membrane a selective diffusion process is carried out through which the gaseous components are passed faster than at least one gaseous component of the gas mixture. Relatively low permeability gas components penetrate the membrane more slowly than at least one or more components of the gas mixture.
  • the gas mixture is separated into two streams, which are selectively permeate gas streams and those which are not permeate gas streams. Therefore, in order to properly separate the gas mixture, a technique of selecting a film-forming material having high permeability and selectivity for a specific gas component and controlling the structure to exhibit sufficient permeation performance is required.
  • the membrane structure In order to selectively separate and concentrate gases through this membrane separation method, the membrane structure generally has to have an asymmetric structure composed of a dense selective separation layer on the membrane surface and a porous support having a minimum permeation resistance at the bottom of the membrane.
  • the selectivity which is a characteristic of the membrane, depends on the structure of the selective separation layer, and the permeability depends on the thickness of the selective separation layer and the degree of porosity of the porous support, which is the substructure of the asymmetric membrane.
  • the surface of the separation layer In order to selectively separate the mixed gas, the surface of the separation layer must be free of defects, and the pore size must be 1 nm or less, that is, pico units.
  • the process of manufacturing the asymmetric hollow fiber membrane by the phase transition method is a wet spinning method or dry, wet spinning method.
  • the typical hollow fiber manufacturing process by dry and wet spinning method includes (1) hollow fiber spinning step of polymer dope solution, (2) evaporation of volatile components by contact with air, (3) precipitation step of coagulation bath, (4 ) It can be divided into four stages of post-treatment process such as washing and drying.
  • a hollow fiber membrane material for gas separation is mainly an organic polymer material, such as polysulfone, polycarbonate, polypyrrolone, polyarylate, cellulose acetate And polyimide.
  • organic polymer material such as polysulfone, polycarbonate, polypyrrolone, polyarylate, cellulose acetate And polyimide.
  • Various efforts have been made to give high permeability and selectivity for specific gas species from polyimide membranes having high chemical and thermal stability among these various gas separation polymer materials.
  • the permeability and selectivity tend to be inversely proportional to each other.
  • US Pat. No. 4,880,442 discloses a polyimide membrane that provides high free volume to polymer chains using non-rigid anhydride and improves permeation performance.
  • U.S. Patent No. 4,717,393 also discloses polyimide membranes having high gas selectivity and high stability compared to conventional polyimide gas separation membranes using crosslinked polyimide.
  • U.S. Patent Nos. 4,851,505 and 4,912,197 disclose polyimide gas separation membranes that have excellent solubility in common general purpose solvents, thereby reducing the difficulty of processing polymers generated in the process.
  • WO2005 / 007277 proposes a defect-free asymmetric membrane comprising one polymer selected from the group consisting of polyimide and polyvinylpyrrolidone, sulfonated polyetheretherketone and mixtures thereof. .
  • One embodiment of the present invention is to provide a hollow fiber having excellent gas permeability and selectivity.
  • Another embodiment of the present invention is to provide a dope solution composition for forming hollow fiber for producing the hollow fiber.
  • Another embodiment of the present invention is to provide a method for producing a hollow fiber using the dope solution composition for forming hollow fiber.
  • One embodiment of the present invention includes a cavity located in the center of the hollow yarn, macropores present around the cavity, and mesopores and picopores present around the macropores, wherein the picopores are three-dimensionally It provides a hollow fiber having a structure connected to form a three-dimensional network.
  • the hollow fiber comprises a polymer derived from a polyamic acid, wherein the polyamic acid comprises repeating units prepared from aromatic diamines and dianhydrides comprising at least one functional group present at the ortho position relative to the amine group.
  • the hollow yarn may include a dense layer made of picopores on the surface portion, and the dense layer may be formed in a structure in which the number of picopores increases as the surface is closer to the surface.
  • the three-dimensional network structure formed by connecting two or more picopores three-dimensionally may be an hourglass shaped structure forming a narrow valley at a connection portion.
  • the functional groups present at the ortho position relative to the amine group include OH, SH or NH 2 .
  • the polymer derived from the polyamic acid may have a fractional free volume (FFV) of 0.15 to 0.40, and is measured by an X-ray diffractometer (X-Ray Diffractometer, XRD). May range from 580 pm to 800 pm.
  • FMV fractional free volume
  • the polymer derived from the polyamic acid includes picopores, wherein the picopores have a full width at half maximum (FWHM) of 10 pm to positron annihilation lifetime spectroscopy (PALS) measurement. Pore distribution in the range of 40 pm.
  • FWHM full width at half maximum
  • PALS positron annihilation lifetime spectroscopy
  • the polymer derived from the polyamic acid may have a BET surface area of 100 to 1,000 m 2 / g.
  • the polyamic acid may be selected from the group consisting of polyamic acid represented by the following Chemical Formulas 1 to 4, polyamic acid copolymers represented by the following Chemical Formulas 5 to 8, copolymers thereof, and blends thereof.
  • Y is the same or different from each other in each repeat unit, and each independently OH, SH or NH 2 ,
  • n is an integer satisfying 20 ⁇ n ⁇ 200,
  • n is an integer satisfying 10 ⁇ m ⁇ 400
  • l is an integer satisfying 10 ⁇ l ⁇ 400.
  • the polymer may include a polymer represented by one of the following Chemical Formulas 19 to 32 or a copolymer thereof.
  • Ar 1, Ar 2, Q, n, m and l are the same as described in each of the formulas (1) to Ar 1, Ar 2, Q, n, m and l in the formula (8),
  • Y '' is O or S.
  • the hollow fiber may be used as a gas separation membrane for at least one gas selected from the group consisting of He, H 2 , N 2 , CH 4 , O 2 , N 2 , and CO 2 .
  • O of the hollow yarn 2 / N 2 Selectivity is 4 or more, CO 2 / CH 4 Selectivity is over 30, H 2 / N 2 Selectivity is over 30, H 2 / CH 4 Selectivity is over 50, CO 2 / N 2 Selectivity is over 20, He / N 2 The selectivity is 40 or more. More specifically, O 2 / N 2 Selectivity is 4-20, CO 2 / CH 4 Selectivity 30 to 80, H 2 / N 2 Selectivity is 30 to 80, H 2 / CH 4 Selectivity is 50-90, CO 2 / N 2 Selectivity is 20-50, He / N 2 Selectivity is 40 to 120.
  • Another embodiment of the present invention provides a hollow fiber formation comprising a polyamic acid, an organic solvent and an additive having a repeating unit prepared from an aromatic diamine and a dianhydride including at least one functional group present at an ortho position relative to an amine group.
  • a dope solution composition To a dope solution composition.
  • the organic solvent is dimethyl sulfoxide; N-methyl-2-pyrrolidone; N, N-dimethylformamide; N, N-dimethylacetamide; Alcohols selected from the group consisting of methanol, ethanol, 2-methyl-1-butanol and 2-methyl-2-butanol; ketones selected from the group consisting of ⁇ -butyrolactone, cyclohexanone, 3-hexanone, 3-heptanone, 3-octanone, acetone and methyl ethyl ketone; Tetrahydrofuran; Trichloroethane; And combinations thereof may be selected from the group.
  • the additive is water; Alcohols selected from the group consisting of glycerol, ethylene glycol, propylene glycol and diethylene glycol; A polymer compound selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyethylene glycol, polypropylene glycol, chitosan, chitin, dextran and polyvinylpyrrolidone; Salts selected from the group consisting of lithium chloride, sodium chloride, calcium chloride, lithium acetate, sodium sulfate and sodium hydroxide; And combinations thereof may be selected from the group.
  • Alcohols selected from the group consisting of glycerol, ethylene glycol, propylene glycol and diethylene glycol
  • a polymer compound selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyethylene glycol, polypropylene glycol, chitosan, chitin, dextran and polyvinylpyrrolidone
  • Salts selected from the group consisting of
  • the functional groups present at the ortho position relative to the amine group include OH, SH or NH 2 .
  • the dope solution composition for hollow fiber formation may include 10 to 45 wt% of the polyamic acid, 25 to 70 wt% of the organic solvent, and 5 to 40 wt% of the additive.
  • the dope solution composition for hollow fiber formation may have a viscosity of 2 Pa ⁇ s to 200 Pa ⁇ s.
  • the polyamic acid may have a weight average molecular weight (Mw) of 10,000 to 200,000.
  • the polyamic acid is composed of a polyamic acid represented by Formula 1 to Formula 4, a polyamic acid copolymer represented by Formula 5 to Formula 8, copolymers thereof and blends thereof It can be selected from the group.
  • Another embodiment of the present invention is to prepare a polyamic acid-based hollow fiber by spinning the dope solution composition for hollow fiber formation, to obtain a polyimide-based hollow fiber by imidating the polyamic acid-based hollow fiber
  • a hollow fiber manufacturing method comprising the step of obtaining a hollow fiber comprising a rearranged polymer obtained by heat-treating the polyimide hollow fiber.
  • the hollow yarn includes a cavity located at the center of the hollow yarn, macropores present around the cavity, and mesopores and picopores present around the macropores, and the picopores are connected three-dimensionally to three-dimensionally. It has a structure that forms a network.
  • the rearranged polymer may include a polymer represented by any one of Formulas 19 to 32 or a copolymer thereof.
  • the polyimide hollow yarn may include one selected from the group consisting of polyimide represented by the following Chemical Formulas 33 to 40, copolymers thereof, and blends thereof.
  • Ar 1, Ar 2, Q, Y, n, m and l are as described in each of the above formulas (1) to Ar 1, Ar 2, Q, Y, n, m and l in the formula (8).
  • the heat treatment may be performed after the imidization, the temperature is raised to 400 to 550 °C at a temperature increase rate of 10 to 30 °C / min, and at that temperature under inert atmosphere for 1 minute to 1 hour.
  • examples of Ar 1 may be selected from those represented by the following formulas.
  • W 1 and W 2 are the same or different and are each independently O, S, or C ( ⁇ O),
  • Z 1 is O, S, CR 1 R 2 or NR 3 , wherein R 1 , R 2 and R 3 are the same or different from each other and are each independently hydrogen or a C1 to C5 alkyl group,
  • Z 2 and Z 3 are the same or different from each other and each independently N or CR 4 , wherein R 4 is hydrogen or a C 1 to C 5 alkyl group, but not CR 4 simultaneously.
  • examples of Ar 2 may be selected from those represented by the following formulas.
  • W 1 and W 2 are the same or different and are each independently O, S, or C ( ⁇ O),
  • Z 1 is O, S, CR 1 R 2 or NR 3 , wherein R 1 , R 2 and R 3 are the same or different from each other and are each independently hydrogen or a C1 to C5 alkyl group,
  • Z 2 and Z 3 are the same or different from each other and each independently N or CR 4 , wherein R 4 is hydrogen or a C 1 to C 5 alkyl group, but not CR 4 simultaneously.
  • Ar 1 may be a functional group represented by Formula A, B or C
  • Ar 2 may be a functional group represented by Formula D or E
  • Q is C (CF 3 ) 2 Can be.
  • Ar 1 may be a functional group represented by Formula A, B or C
  • Ar 1 ′ may be a functional group represented by Formula F, G or H
  • Ar 2 may be represented by Formula May be a functional group represented by D or E
  • Q may be C (CF 3 ) 2 .
  • the molar ratio between each repeating unit in the copolymer of the polyamic acid represented by Formulas 1 to 4 or the molar ratio of m: l in Formulas 5 to 8 may be 0.1: 9.9 to 9.9: 0.1.
  • the hollow fiber of the present invention is excellent in permeability, selectivity, mechanical strength and chemical stability to gas, and can withstand even harsh conditions such as long working time, acidic conditions and high humidity.
  • FIG. 1 is an electron scanning micrograph at 100 times magnification of a partial cross section of the hollow fiber prepared in Example 1.
  • FIG. 1 is an electron scanning micrograph at 100 times magnification of a partial cross section of the hollow fiber prepared in Example 1.
  • FIG. 2 is an electron scanning microscope photograph of 500 times the partial cross section of the hollow fiber prepared in Example 1.
  • FIG. 2 is an electron scanning microscope photograph of 500 times the partial cross section of the hollow fiber prepared in Example 1.
  • Example 3 is an electron scanning microscope photograph of 5,000 times the partial cross section of the hollow fiber prepared in Example 1;
  • FIG. 4 is an electron scanning microscope photograph at a magnification of 100 times of a partial cross section of the hollow fiber prepared in Example 14.
  • FIG. 4 is an electron scanning microscope photograph at a magnification of 100 times of a partial cross section of the hollow fiber prepared in Example 14.
  • FIG. 5 is an electron scanning microscope photograph at a magnification of 1,000 times a portion of the hollow fiber prepared in Example 14.
  • FIG. 6 is an electron scanning microscope photograph at a magnification of 10,000 times a portion of the hollow fiber prepared in Example 14.
  • FIG. 7 is a graph comparing oxygen permeability and oxygen / nitrogen selectivity of the GPU units of the hollow yarns prepared in Examples 1 to 17 and Comparative Examples 1 to 3 (1 ′ to 3 ′: Comparative Examples 1 to 3, 1-17: Examples 1-17).
  • surface portion refers to an outer surface portion, an inner surface portion, or an outer surface portion / inner surface portion of a hollow yarn
  • surface refers to an outer surface, inner surface, or hollow surface of a hollow yarn. It refers to the outer surface / inner surface.
  • picopores means pores having an average diameter of several hundred picometers, specifically 100 pm to 1000 pm
  • mesopores means pores having an average diameter of pores of 2 nm to 50 nm
  • Macropores means pores with an average diameter of pores greater than 50 nm.
  • substituted or “substituted” means that the hydrogen atom in the compound or functional group is composed of C1 to C10 alkyl group, C1 to C10 alkoxy group, C1 to C10 haloalkyl group, and C1 to C10 haloalkoxy group
  • substituents selected from “hetero ring group” is a substituted or unsubstituted hetero ring containing an element selected from the group consisting of O, S, N, P, Si and combinations thereof Means a flag.
  • copolymer means a block copolymer or a random copolymer.
  • Hollow yarn according to an embodiment of the present invention includes a cavity located in the center, macropores present around the cavity, mesopores and picopores present around the macropores, the picopores are three-dimensional It is a hollow fiber having a structure that is connected to each other to form a three-dimensional network.
  • the hollow fiber comprises a polymer derived from a polyamic acid, wherein the polyamic acid comprises repeating units prepared from aromatic diamines and dianhydrides comprising at least one functional group present at the ortho position relative to the amine group.
  • the hollow yarn may include a dense layer made of picopores in the surface portion. Due to the presence of this dense layer, the hollow yarns can selectively and efficiently separate gases.
  • the dense layer may have a thickness of 50 nm to 1 ⁇ m, but is not limited thereto.
  • the dense layer may have a structure in which the number of picopores increases as the surface is closer to the surface. This effectively allows selective gas separation at the surface of the hollow fiber and can effectively concentrate the gas at the bottom of the membrane.
  • the three-dimensional network structure formed by connecting two or more picopores three-dimensionally may be an hourglass shaped structure forming a narrow valley at a connection portion.
  • the gas to be separated can be selectively separated, and the separated gas can move quickly in the picopores relatively wider than the valley region.
  • the functional groups present at the ortho position relative to the amine group include OH, SH or NH 2 .
  • the polyamic acid may be prepared according to a general method.
  • the polyamic acid may be prepared by reacting tetracarboxylic anhydride with an aromatic diamine including an OH, SH, or NH 2 group present at an ortho position with respect to an amine group.
  • the polyamic acid may be converted into a polymer such as polybenzoxazole, polybenzthiazole, and polypyrrolone having high free volume by thermal conversion through a manufacturing process to be described later.
  • polyhydroxyamic acid having a functional group OH present at an ortho position relative to the amine group is polybenzoxazole
  • polythiolamic acid having a functional group SH present at an ortho position relative to the amine group is polybenzthia
  • polyaminoamic acids having a functional group NH 2 present at the ortho position relative to the amine group are converted to polypyrrolone.
  • the hollow fiber according to the exemplary embodiment of the present invention may include a polymer such as polybenzoxazole, polybenzthiazole, and polypyrrolone having a high free volume as described above.
  • the polymer derived from the polyamic acid may have a free volume (FFV) of 0.15 to 0.40, and the interplanar distance by XRD measurement may be in the range of 580 pm to 800 pm.
  • FV free volume
  • the polymer derived from the polyamic acid may have excellent gas permeability, and the hollow fiber including the polymer derived from the polyamic acid may selectively and effectively separate gas.
  • the polymer derived from the polyamic acid includes picopores, the average diameter of the picopores may be 600 pm to 800 pm.
  • the picopores may have a full width at half maximum (FWHM) of 10 pm to 40 pm by positron annihilation lifetime spectroscopy (PALS) measurement.
  • FWHM full width at half maximum
  • PALS positron annihilation lifetime spectroscopy
  • the PALS data is obtained by investigating positrons generated from 22 Na isotopes. The time difference between ⁇ 0 of 1.27MeV generated at generation and ⁇ 1 , ⁇ 2 of 0.511MeV generated at extinction ⁇ 1 , ⁇ 2 , ⁇ 3 And the like can be obtained.
  • the polymer derived from the polyamic acid may have a surface area of Brunauer-Emmett-Teller (BET) of 100 to 1,000 m 2 / g. If the BET surface area is in the above range, it is possible to secure a suitable surface area for gas adsorption.
  • BET Brunauer-Emmett-Teller
  • the hollow yarn thereby exhibits excellent selectivity and permeability in separating gases by dissolution-diffusion mechanism.
  • the polyamic acid may be selected from the group consisting of polyamic acid represented by the following Chemical Formulas 1 to 4, polyamic acid copolymers represented by the following Chemical Formulas 5 to 8, copolymers thereof, and blends thereof, but is not limited thereto. It is not.
  • Y is the same or different from each other in each repeat unit, and each independently OH, SH or NH 2 ,
  • n is an integer satisfying 20 ⁇ n ⁇ 200,
  • n is an integer satisfying 10 ⁇ m ⁇ 400
  • l is an integer satisfying 10 ⁇ l ⁇ 400.
  • Examples of the copolymer of the polyamic acid represented by Formulas 1 to 4 include polyamic acid copolymers represented by the following Formulas 9 to 18.
  • Ar 1 , Q, n, m and l are the same as defined in Formula 1 to Formula 8,
  • Y and Y ' are different from each other, and are each independently OH, SH or NH 2 .
  • examples of Ar 1 may be selected from those represented by the following formulas.
  • W 1 and W 2 are the same or different and are each independently O, S, or C ( ⁇ O),
  • Z 1 is O, S, CR 1 R 2 or NR 3 , wherein R 1 , R 2 and R 3 are the same or different from each other and are each independently hydrogen or a C1 to C5 alkyl group,
  • Z 2 and Z 3 are the same or different from each other and each independently N or CR 4 , wherein R 4 is hydrogen or a C 1 to C 5 alkyl group, but not CR 4 simultaneously.
  • Ar 2 may be selected from those represented by the following formulas, but is not limited thereto.
  • W 1 and W 2 are the same or different and are each independently O, S, or C ( ⁇ O),
  • Z 1 is O, S, CR 1 R 2 or NR 3 , wherein R 1 , R 2 and R 3 are the same or different from each other and are each independently hydrogen or a C1 to C5 alkyl group,
  • Z 2 and Z 3 are the same or different from each other and each independently N or CR 4 , wherein R 4 is hydrogen or a C 1 to C 5 alkyl group, but not CR 4 simultaneously.
  • Ar 1 may be a functional group represented by Formula A, B, or C
  • Ar 2 may be a functional group represented by Formula D or E
  • Q is C (CF 3 ) 2 It may be, but is not limited thereto.
  • the polyamic acid represented by Chemical Formulas 1 to 4 may be prepared through a general manufacturing method.
  • the monomer is prepared by reacting tetracarboxylic anhydride with an aromatic diamine including OH, SH, or NH 2 groups.
  • the polyamic acid represented by the above formulas (1) to (4) is thermally converted through a manufacturing process to be described later, and converted to polybenzoxazole, polybenzthiazole or polypyrrolone having a high free volume.
  • polybenzthiazole derived of polythiolamic acid of Y of SH and polyaminoamic acid of Y of NH 2
  • Hollow yarns comprising the derived polypyrrolone are prepared.
  • the polyamic acid copolymer represented by Chemical Formulas 5 to 8 is imidized and thermally converted through a manufacturing process to be described later, thereby having a high free volume poly (benzoxazole-imide) copolymer and poly (benzthiazole -Imide) copolymers or poly (pyrrolone-imide) copolymers, thereby forming hollow fibers comprising such copolymers.
  • a high free volume poly (benzoxazole-imide) copolymer and poly (benzthiazole -Imide) copolymers or poly (pyrrolone-imide) copolymers thereby forming hollow fibers comprising such copolymers.
  • the copolymerization ratio molar ratio
  • the copolymer of the polyamic acid represented by the formula (9) to (18) is imidized and thermally converted through a manufacturing process to be described later, to a copolymer of polybenzoxazole, polybenzthiazole and polypyrrolone having a high free volume Converted to form a hollow fiber comprising such a copolymer.
  • a copolymer of polybenzoxazole, polybenzthiazole and polypyrrolone having a high free volume Converted to form a hollow fiber comprising such a copolymer.
  • the interblock copolymerization ratio (molar ratio) m: l of the polyamic acid copolymer represented by Formulas 5 to 18 is 0.1: 9.9 to 9.9 to 0.1, specifically 2: 8 to 8: 2, more specifically 5: Can be adjusted to 5.
  • This copolymerization ratio affects the morphology of the hollow fiber produced, which is related to gas permeability and selectivity.
  • the manufactured hollow yarn may have excellent gas permeability and selectivity.
  • the polymer derived from the polyamic acid may include a polymer represented by any one of the following Chemical Formulas 19 to 32 or a copolymer thereof, but is not limited thereto.
  • Ar 1, Ar 2, Q, n, m and l are the same as described in each of the formulas (1) to Ar 1, Ar 2, Q, n, m and l in the formula (8),
  • Y '' is O or S.
  • Ar 1 may be a functional group represented by Formula A, B or C
  • Ar 1 ′ may be a functional group represented by Formula F, G or H
  • Ar 2 may be represented by Formula It may be a functional group represented by D or E
  • Q may be C (CF 3 ) 2 , but is not limited thereto.
  • the hollow fiber can be used for gas separation for one or more gases selected from the group consisting of He, H 2 , N 2 , CH 4 , O 2 , N 2 , CO 2, and combinations thereof.
  • the hollow yarn may be used in the form of a gas separation membrane.
  • Specific examples of the mixed gas may include O 2 / N 2 , CO 2 / CH 4 , H 2 / N 2 , H 2 / CH 4 , CO 2 / N 2, and He / N 2 , but are not limited thereto. no.
  • the hollow fiber may have a selectivity of 4 or more, specifically, 4 to 20 when the mixed gas is O 2 / N 2 , and 30 or more, specifically, 30 to 80 when the mixed gas is CO 2 / CH 4 . It may have a selectivity, and when the mixed gas is H 2 / N 2 It may have a selectivity of 30 or more, specifically 30 to 80, when the mixed gas is H 2 / CH 4 50 or more, specifically It may have a selectivity of 50 to 90, 20 or more when the mixed gas is CO 2 / N 2 , specifically, may have a selectivity of 20 to 50, 40 or more when the mixed gas is He / N 2 , Specifically, it may have a selectivity of 40 to 120.
  • the dope solution composition for hollow fiber formation is a polyamic acid, organic having repeating units prepared from aromatic diamines and dianhydrides including at least one functional group present at an ortho position relative to an amine group. Solvents and additives.
  • the organic solvent is dimethyl sulfoxide; N-methyl-2-pyrrolidone; N, N-dimethylformamide; N, N-dimethylacetamide; Alcohols selected from the group consisting of methanol, ethanol, 2-methyl-1-butanol and 2-methyl-2-butanol; ketones selected from the group consisting of ⁇ -butyrolactone, cyclohexanone, 3-hexanone, 3-heptanone, 3-octanone, acetone and methyl ethyl ketone; Tetrahydrofuran; Trichloroethane; And combinations thereof may be selected from the group, but is not limited thereto.
  • the organic solvent is dimethyl sulfoxide; N-methyl-2-pyrrolidone; N, N-dimethylformamide; N, N-dimethylacetamide and combinations thereof.
  • the organic solvent is used, the polymer can be easily dissolved, and by mixing well with the following additives, it is possible to form a meta-stable state, from which an excellent hollow fiber having a thin effective film thickness can be formed.
  • the additive is water; Alcohols selected from the group consisting of glycerol, ethylene glycol, propylene glycol and diethylene glycol; A polymer compound selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyethylene glycol, polypropylene glycol, chitosan, chitin, dextran and polyvinylpyrrolidone; Salts selected from the group consisting of lithium chloride, sodium chloride, calcium chloride, lithium acetate, sodium sulfate and sodium hydroxide; And combinations thereof may be selected from the group, but is not limited thereto.
  • the additive may be selected from the group consisting of water, glycerol, propylene glycol, polyethylene glycol, polyvinylpyrrolidone and combinations thereof.
  • the additive may not be used alone because it does not have good solubility with the polyamic acid polymer, but if properly mixed with an organic solvent, a meta-stable dope solution composition may be prepared, and the cost in the coagulation bath when spinning the dope solution composition Non-solvents can quickly diffuse into the dope solution composition to form thin, uniform thin films, as well as to make macropores of the sub-layers much more advantageous.
  • the functional group present in the ortho position relative to the amine group includes OH, SH or NH 2 .
  • the dope solution composition for hollow fiber formation may include 10 to 45 wt% of the polyamic acid, 25 to 70 wt% of the organic solvent, and 5 to 40 wt% of the additive.
  • the content of the polyamic acid is within the above range, it is possible to maintain the strength of the hollow fiber and the permeability of the gas excellently.
  • the organic solvent serves to dissolve the polyamic acid.
  • the content of the organic solvent is within the above range, it is possible to maintain the viscosity of the dope solution composition for hollow fiber formation to facilitate the production of hollow yarns and to improve the permeability of the hollow yarns.
  • the dope solution composition for hollow fiber formation may have a viscosity of 2 Pa ⁇ s to 200 Pa ⁇ s.
  • the viscosity of the dope solution composition for hollow fiber formation is in the said range, the dope solution composition for hollow fiber formation can be easily spun through a nozzle, and hollow fiber can be easily solidified through a phase transition phenomenon.
  • the additive may be used for controlling the viscosity of the dope solution composition for forming the phase separation temperature or hollow fiber.
  • the additive can be used as long as it is used in the field of the present invention, and is not particularly limited.
  • the polymer compound may be used as a pore control agent, and the salt may be used as a pore former.
  • the hollow fiber can be easily manufactured, and the dense layer can be easily formed by appropriately adjusting the size of the surface pores of the hollow yarns.
  • the weight average molecular weight (Mw) of the polyamic acid may be 10,000 to 200,000.
  • Mw weight average molecular weight
  • the synthesis thereof is easy, and the viscosity of the dope solution composition for hollow fiber formation including the same is properly maintained, thereby excellent in processability, and the polymer derived from the polyamic acid has a mechanical strength and The property can be kept good.
  • the polyamic acid is composed of a polyamic acid represented by Formula 1 to Formula 4, a polyamic acid copolymer represented by Formula 5 to Formula 8, copolymers thereof and blends thereof It can be selected from the group.
  • a method of manufacturing a hollow yarn is a method of manufacturing a polyamic acid hollow fiber by spinning the dope solution composition for forming hollow fiber, and imidizing the polyamic acid hollow fiber to polyimide hollow Obtaining a yarn and obtaining a hollow fiber comprising a rearranged polymer obtained by the heat treatment of the polyimide hollow fiber.
  • Hollow yarn prepared according to the manufacturing method includes a cavity located in the center, macropores present around the cavity, and mesopores and picopores present around the macropores, wherein the picopores are three-dimensionally It is connected to each other to form a three-dimensional network.
  • the rearranged polymer may include a polymer represented by any one of Formulas 19 to 32 or a copolymer thereof, but is not limited thereto.
  • the polyimide hollow yarn may include one selected from the group consisting of polyimide represented by the following Chemical Formulas 33 to 40, copolymers thereof, and blends thereof, but is not limited thereto.
  • Ar 1, Ar 2, Q, Y, n, m and l are as described in each of the above formulas (1) to Ar 1, Ar 2, Q, Y, n, m and l in the formula (8).
  • Examples of the copolymer of the polyimide represented by Chemical Formulas 33 to 36 include polyimide copolymers represented by the following Chemical Formulas 41 to 50.
  • Ar 1, Q, Y, Y ', n, m and l are each of the formulas (1) to Ar 1, Q, Y, Y of formula 18' as previously described, n, m and l.
  • the spinning may use a method generally used in the art, specifically dry spinning or dry and wet spinning Can be.
  • a solvent exchange method using a solution spinning method is mainly used. This is because the dope solution composition for hollow fiber formation is dissolved in a solvent and spun by a dry or dry and wet spinning method, and then the solvent and the non-solvent are exchanged in the non-solvent to form micropores. An asymmetric film or the same symmetric film is formed inside and outside.
  • a hollow fiber is prepared according to an embodiment of the present invention.
  • the flow rate at which the internal coagulant is discharged through the inner nozzle may be 1 to 10 ml / min, and specifically 1 to 3 ml / min.
  • the outer diameter of the double nozzle may be 0.1 to 2.5 mm. The flow rate of this internal coagulant and the outer inner diameter of the double nozzle can be adjusted within the above range according to the use and operating conditions of the hollow yarns.
  • the air gap from the nozzle to the coagulation bath may be 1 cm to 100 cm, specifically 10 cm to 50 cm.
  • the spinning temperature is 5 to 120 ° C., and the spinning speed is passed through the hot spinning nozzle while maintaining the range of 5 to 50 m / min, and then induces phase transition in the coagulation bath.
  • Such spinning temperature and spinning speed can be changed within the above range depending on the use and operating conditions of the hollow fiber to be manufactured.
  • the spinning temperature is within the above range, the viscosity of the dope solution composition for hollow fiber formation can be properly maintained to easily spin the dope solution composition for hollow fiber formation, and the evaporation of the solvent is also suppressed to continuously manufacture hollow fiber. have.
  • the spinning speed is within the above range, the flow rate is properly maintained and the mechanical properties and chemical stability of the hollow fiber can be improved.
  • the temperature of the coagulation bath may be 0 to 50 ° C.
  • the temperature of the coagulation bath is in the above range, volatilization of the coagulation bath solvent can be suppressed, and phase transition can be sufficiently achieved, and hollow fiber can be produced smoothly.
  • the external coagulant in the coagulation bath may be any solvent as long as it is non-solvent for the polymer material and is compatible with the solvent and the additive.
  • water, glycerin, propylene glycol or mixtures thereof can be used.
  • a washing process and a drying process may be performed to remove the solvent, the additive, and the coagulating solution remaining on the inside and the surface of the solidified hollow yarn.
  • Water or hot water may be used as the washing liquid, and the washing time may be performed for 1 to 24 hours, but is not limited thereto.
  • the drying process may be performed for 3 to 72 hours in the range of 20 to 100 °C.
  • the imidization may be made by a thermal imidization process, but is not limited thereto.
  • the thermal imidization may be performed at 150 to 300 ° C. for 30 minutes to 2 hours under an inert atmosphere. If the temperature of imidation is less than the said range, the imidation of the polyamic acid which is a precursor is insignificant, On the contrary, even if it exceeds the said range, there is no big increase in effect and it is uneconomical.
  • the imidization condition is Ar, which is a functional group of the polyamic acid.
  • Ar 2 is a functional group of the polyamic acid.
  • One , Ar 2 It can adjust suitably according to the kind of Q, Y, and Y '.
  • a hollow fiber including a polymer rearranged through a thermal conversion reaction may be obtained.
  • the hollow fiber including the rearranged polymer has a reduced density, an increased free volume, and an increased interplanar distance as the picopores are well connected to each other as compared with the polyimide hollow fiber.
  • the hollow fiber including the rearranged polymer may have excellent gas permeability and selectivity.
  • the heat treatment is carried out after the imidization, the temperature is raised to 400 to 550 °C, specifically 450 to 500 °C at a temperature increase rate of 10 to 30 °C / min, at that temperature in an inert atmosphere for 1 minute to 1 hour, specifically 10 It may be performed for minutes to 30 minutes. In this case, if the temperature is within the above range, the heat conversion reaction may be sufficiently performed.
  • Ar 1 , Ar 1 ′, Ar 2 , Q, Y, Y ′′, n, m, and l are the same as defined in Chemical Formulas 1 to 50 above.
  • the polyamic acid-based hollow yarns including the polyamic acid represented by Formula 1, Formula 2, Formula 3, and Formula 4 are subjected to the above-mentioned imidization, respectively, to Formula 33, Formula 34, Formula 35, and Formula
  • the polyimide hollow fiber containing the polyimide represented by 36 is formed.
  • the polyimide-based hollow yarns including the polyimide represented by Formula 33, Formula 34, Formula 35, and Formula 36 through the above-described heat treatment are polybenzoxazole and polybenzthiazole represented by Formula 19 to Formula 25.
  • hollow fiber comprising a polypyrrolone polymer. Preparation of the hollow fiber including the polymer as described above is made through the CO 2 removal reaction in the polyimide represented by the formula (33) to (36).
  • the polyaminoamic acid in which Y of Formula 1 to Formula 4 is NH 2 is thermally converted to polypyrrolone represented by Formula 20, Formula 22, and Formula 25.
  • the polyamic acid-based hollow yarns including the polyamic acid copolymer represented by Formula 5, Formula 6, Formula 7 and Formula 8 are subjected to imidization, respectively, to Formula 37, Formula 38, Formula 39 and Formula
  • the polyimide hollow fiber containing the polyimide represented by 40 is formed.
  • the polyimide-based hollow yarn including the polyimide represented by Formula 37, Formula 38, Formula 39, and Formula 40 undergoes a CO 2 removal reaction in the polyimide to be represented by Formula 26 to Formula 32. It is made of hollow fiber containing polymer.
  • the polyaminoamic acid in which Y of Formula 5 to Formula 8 is NH 2 is thermally converted to a poly (pyrrolone-imide) copolymer represented by Formula 27, Formula 29, and Formula 32.
  • the polyamic acid-based hollow fiber including the copolymer of the polyamic acid represented by the above formulas (9) to (18) of the present invention is a polyimide-based hollow fiber including polyimides having different imide blocks by imidating each block. Subsequently, through the heat treatment, each imide block is thermally converted into polybenzoxazole, polybenzthiazole, polypyrrolone according to the type of Y, and copolymers thereof, that is, copolymers of polymers represented by Chemical Formulas 19 to 25. To form a hollow fiber comprising a.
  • the hollow yarn may be manufactured in a sponge-type having a stable membrane performance by controlling the manufacturing process, and thus no macropores are present on a finger-type or a cross-section in which macropores are formed.
  • the manufacturing process can be adjusted to produce symmetrical or asymmetrical forms.
  • by adjusting the polymer design in consideration of the properties of Ar 1 , Ar 1 ′, Ar 2 and Q in the chemical structure it is possible to control the gas permeability and selectivity for various gas species.
  • the hollow fiber thus prepared may include a polymer represented by Formula 19 to Formula 32 or a copolymer thereof, but is not limited thereto.
  • Hollow yarn according to an embodiment of the present invention can withstand not only in mild conditions but also in harsh conditions such as long working time, acidic conditions and high humidity due to the rigid polymer backbone present in the polymer. That is, the hollow fiber according to the embodiment of the present invention has excellent chemical stability and mechanical properties.
  • the polymers represented by Formulas 19 to 32 or copolymers thereof are designed to have an appropriate weight average molecular weight in the preparation step, and preferably, the weight average molecular weight is 10,000 to 200,000.
  • the weight average molecular weight thereof is less than 10,000, the physical properties of the polymer are poor, and when the weight average molecular weight exceeds 200,000, the viscosity of the dope solution composition for hollow fiber formation is greatly increased, making it difficult to spin the dope solution composition for hollow fiber formation using a pump. There is a problem.
  • the hollow fiber according to an embodiment of the present invention includes a cavity located in the center thereof, macropores present around the cavity, and mesopores and picopores present around the macropores, wherein the picopores are three-dimensional.
  • the picopores are three-dimensional.
  • the permeability and selectivity for at least one gas selected from the group consisting of He, H 2 , N 2 , CH 4 , O 2 , N 2 , CO 2, and combinations thereof are excellent.
  • Example and comparative example of this description are described.
  • the following examples are merely examples of the present disclosure, and the present disclosure is not limited by the following examples.
  • a hollow fiber including polybenzoxazole represented by the following Chemical Formula 51 was prepared from the dope solution composition for forming hollow fibers including polyhydroxyamic acid as shown in Scheme 3 below.
  • Bubbles in the prepared dope solution composition for hollow fiber formation were removed at room temperature and reduced pressure for 24 hours, and foreign materials were removed using a glass filter (60 ⁇ m in diameter). Subsequently, after holding at 25 °C was carried out through a double annular nozzle. In this case, distilled water was used as the internal coagulating solution, and the distance of the air gap was set to 50 cm.
  • the spun hollow fiber was coagulated in a coagulation bath having a water temperature of 25 ° C. and wound up at a speed of 30 m / min.
  • the prepared hollow yarn was washed and then naturally dried at room temperature for 3 days. After imidizing at 300 ° C.
  • the polybenzoxazole represented by the above formula (51) was heated by heating at a heating rate of 15 ° C./min at 500 ° C. for 10 minutes in an inert atmosphere.
  • a hollow fiber was prepared.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Hollow fibers including polybenzthiazole represented by the following Chemical Formula 52 were prepared from the dope solution composition for forming hollow fibers including polythiolamic acid through the following reaction.
  • the weight average molecular weight of the prepared hollow fiber was 14,500, and FT-IR analysis showed a band of 1484 cm -1 (CS) and 1404 cm -1 (CS), which were polybenzthiazole characteristic bands, which were not present in the polyimide. .
  • the free volume of the manufactured hollow fiber was 0.26, and the distance between planes was 610 pm.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Hollow fiber including polypyrrolone represented by the following formula (53) was prepared from the dope solution composition for forming hollow fiber containing polyaminoamic acid through the following reaction.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Hollow fiber containing polybenzoxazole represented by the following formula (54) was prepared from the dope solution composition for forming hollow fiber containing polyhydroxyamic acid through the following reaction.
  • N-methylpyrrolidone N-methylpyrrolidone
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Hollow fibers including polypyrrolone represented by the following Chemical Formula 55 were prepared from the dope solution composition for forming hollow fibers including polyaminoamic acid through the following reaction.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the free volume of the manufactured hollow fiber was 0.27, and the interplanar distance was 620 pm.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the free volume of the manufactured hollow fiber was 0.2 and the interplanar distance was 600 pm.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the free volume of the manufactured hollow fiber was 0.22, and the interplanar distance was 640 pm.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the weight average molecular weight of the prepared hollow fiber was 22,360, and the bands and polys of 1484 cm -1 (CS) and 1404 cm -1 (CS), which are characteristic bands of polybenzthiazole, did not exist in the polyimide according to FT-IR analysis.
  • the free volume of the manufactured hollow fiber was 0.23, and the interplanar distance was 650 pm.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the free volume of the manufactured hollow fiber was 0.21, and the interplanar distance was 600 pm.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Example 1 5 wt% of tetrahydrofuran and 5 wt% of polyvinylpyrrolidone were added and mixed as an additive, and the same process as in Example 1 was conducted.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Example 2 5 wt% and 15 wt% of tetrahydrofuran and propylene glycol were added and mixed as an additive, and the same process as in Example 1 was performed except that a uniform solution was prepared.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • the additive was added in the same manner as in Example 1 except that 15 wt% of polyethylene glycol (Aldrich, molecular weight 2000) was added and mixed to prepare a uniform solution.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Example 2 After imidization at 300 ° C. for 1 hour, the same process as in Example 1 was conducted except that heat treatment was performed at 450 ° C. for 30 minutes.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Example 2 After imidizing at 300 ° C. for 1 hour, the same process as in Example 1 was conducted except that the mixture was heat-treated at 400 ° C. for 30 minutes.
  • the interplanar distance was measured by XRD.
  • the XRD measurement was performed using a film sample, CuK ⁇ was used as the light source, and was measured at intervals of 0.05 degrees at 10 to 40 degrees.
  • Hollow fiber was prepared in the same manner as in Example 1, except that the heat treatment process was not performed.
  • PAA polyamic acid
  • ODA 4,4'-diaminodiphenyl ether
  • BTDA benzophenone tetracarboxylic acid dianhydride
  • NMP methylpyrrolidone
  • PVP polyvinylpyrrolidone
  • GLY Glycerol
  • N-methylpyrrolidone were then added to the solution.
  • the final solution contained 13/1/17/69% by weight of polyamic acid / polyvinylpyrrolidone / glycerol / N-methylpyrrolidone (PAA / PVP / GLY / NMP), respectively.
  • the spinning solution was mixed for 12 hours before spinning.
  • the prepared polyimide / PVP film had an outer diameter of 2.2 mm and a film thickness of 0.3 mm.
  • FIG. 1 is a drawing of the hollow fiber prepared in Example 1, the wall thickness of which is uniformly manufactured to about 120 micrometers, and shows that an effective thin film layer may exist on the inner and outer surfaces of the hollow fiber.
  • 3 is a cross-sectional view of the outer surface of the hollow fiber prepared in Example 1 shows that the effective thin film layer of the level of 2 micrometers uniformly formed.
  • Example 4 is electron scanning micrographs in which a partial cross section of the hollow fiber prepared in Example 14 of the present invention is magnified 100 times, 1,000 times, and 10,000 times.
  • the hollow fiber prepared in Example 14 from Figure 4 can be seen that the thickness of the four sides in a concentric circle is uniform, the macropores and mesopores are uniformly distributed.
  • the hollow fiber prepared in Example 14 from Figure 5 has a thickness of about 80 micrometers, it can be seen that formed of a sponge structure does not exist macropores.
  • the hollow fiber prepared in Example 14 from FIG. 6 can identify a sponge structure composed of mesopores as an effective thin film layer and sub-layer having a thickness of about 3 microns on the outer surface.
  • the hollow yarn of the present invention does not have a defect on the surface of the separation layer.
  • Gas permeability is an index indicating the permeation rate of the gas to the membrane, to prepare a membrane module for measuring the gas permeability with the manufactured hollow fiber and to measure the permeate flow rate for the gas by the following equation (1).
  • a GPU Gas Permeation Unit, 1 ⁇ 10 ⁇ 6 cm 3 / cm 2 ⁇ sec ⁇ cmHg
  • Selectivity is expressed as the ratio of permeability measured by individual gases alone with the same membrane.
  • P represents gas permeability
  • dp / dt is the rate of pressure increase under steady state
  • V is the bottom volume
  • P f is the pressure difference between the top and bottom.
  • T is the temperature at measurement
  • a eff is the effective area
  • P 0 and T 0 are the standard pressure and temperature.
  • Example 1 1,417 396 1,821 4.6 39.6
  • Example 2 671 125 314 5.4 17.4
  • Example 3 396 92 378 4.2 36.3
  • Example 4 86 5.2 18.6 6.4 48.9
  • Example 5 149 41 175 6.6 48.6
  • Example 6 417 67 289 6.4 43.1
  • Example 7 512 148 451 4.4 19.3
  • Example 8 200 40 209 5.1 36.7
  • Example 9 1,100 247 462 6.5 21.6
  • Example 10 509 110 364 6.1 33.1
  • Example 11 350 89 451 5.6 41.0
  • Example 12 3,200 790 3,011 4.0 20.5
  • Example 13 640 127 401 4.7 21.0
  • Example 14 2,153 607 2,842 5.0 42.4
  • Example 15 2,957 852 3,651 4.5 29.4
  • Example 16 648 103 476 5.0 52.3
  • Example 17 138 15 60 7.1 49.8 Compar
  • FIG. 7 is a graph illustrating oxygen permeability and oxygen / nitrogen selectivity of the GPU unit of the hollow yarns prepared in Examples 1 to 17 and Comparative Examples 1 to 3 of the present invention.
  • FIG. 8 is a graph illustrating carbon dioxide permeability and carbon dioxide / methane selectivity of the GPU unit of the hollow yarns prepared in Examples 1 to 17 and Comparative Examples 1 to 3 of the present invention.
  • the hollow fiber of the present invention is very excellent in permeability compared to the comparative example having a similar oxygen / nitrogen selectivity or carbon dioxide / methane selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

중공사의 중앙부에 위치하는 공동, 상기 공동 주변에 존재하는 매크로기공, 그리고 상기 매크로기공 주변에 존재하는 메조기공 및 피코기공을 포함하고, 상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가지는 중공사를 제공한다. 상기 중공사는 폴리아믹산으로부터 유도되는 고분자를 포함하고, 상기 폴리아믹산은 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 포함한다.

Description

중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법
본 기재는 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법에 관한 것이다.
분리막을 상업화하여 산업에 적용하기 위해서는 우수한 열적, 화학적, 기계적 안정성 및 높은 투과도와 높은 선택도를 가져야 한다. 이때, 투과도는 투과물질이 분리막을 통하여 투과해 나오는 속도이고, 선택도는 서로 다른 두 성분 간의 투과속도의 비로 정의된다.
분리막은 분리 성능에 따라 역삼투막, 한외 여과막, 정밀 여과막, 기체분리막 등으로 나눌 수 있고, 형태에 따라 평막과 중공사막으로 크게 나눌 수 있다. 그 중에서 비대칭 중공사막의 경우 단위 부피당 막 면적이 가장 높아 기체 분리를 위한 분리막으로 많이 이용되고 있다.
기체 혼합물 중 여러 가지 기체 성분들로부터 특정 기체 성분을 분리하는 공정은 매우 중요하다. 이러한 기체에 대한 분리공정에는 막 분리법(membrane process) 뿐만 아니라 압력가변식 흡착법(pressure swing adsorption process) 및 심냉법(cryogenic process) 등이 사용되고 있다. 이러한 분리 공정 중 압력가변식 흡착법과 심냉법은 그 공정에 대한 설계 및 운전법 등이 이미 개발되어 현재 널리 사용되고 있는 보편화된 기술이지만, 상대적으로 막 분리법을 이용한 기체분리는 그 역사가 상대적으로 짧다.
막 분리법에 이용되는 기체 분리막은 여러 가지 기체들, 예를 들면 수소, 헬륨, 산소, 질소, 일산화탄소, 이산화탄소, 수증기, 암모니아, 황화합물, 메탄, 에탄, 에틸렌, 프로판, 프로필렌, 부탄, 부틸렌과 같은 가벼운 탄화수소 기체 등을 분리, 농축하기 위하여 사용된다. 기체분리가 적용될 수 있는 분야는 공기 중의 산소 또는 질소의 분리, 압축공기 중의 수분제거 등 여러 분야가 있다.
막을 이용한 기체분리의 원리는 막을 투과하는 2개 이상의 기체 혼합물 중의 각 성분의 투과도 차이에 의한다. 이는 용해-확산 과정을 거치는데 기체혼합물은 막의 한쪽 면과 접촉하여 기체 성분들 중의 최소한 한 성분이 선택적으로 용해된다. 막의 내부에서는 선택적 확산과정이 진행되며 이를 통해 투과되는 기체 성분은 기체 혼합물 중 최소한 하나 이상의 기체 성분보다 더 빠르게 통과하게 된다. 상대적으로 투과도가 낮은 기체 성분들은 기체 혼합물 중 최소한 하나 이상의 성분들보다 더 느리게 막을 투과한다. 이러한 원리에 의해서 기체 혼합물은 선택적으로 투과된 기체가 많은 흐름과 투과되지 못한 기체 성분들이 많은 흐름 두 가지로 분리된다. 따라서 기체 혼합물을 적절하게 분리하기 위해서는 특정 기체 성분에 대해 높은 투과도 및 선택도를 갖는 막 형성물질을 선택하여 충분한 투과 성능을 보일 수 있는 구조로 제어하는 기술이 필요하다.
이러한 막 분리법을 통해 선택적으로 기체를 분리, 농축하기 위해서 일반적으로 분리막의 구조는 막 표면의 치밀한 선택 분리층과 막 하부에 최소의 투과저항을 갖는 다공성 지지체로 이루어지는 비대칭 구조를 가져야만 한다. 막의 특성인 선택도는 선택 분리층의 구조에 따라 결정되며, 투과도는 상기 선택 분리층의 두께 및 비대칭 막의 하부 구조인 다공성 지지체의 다공성 정도에 의존한다. 또한 혼합기체를 선택적으로 분리하기 위해서는 분리층의 표면에 결함이 없어야 하며, 기공 크기가 1nm 이하, 즉 피코단위 이어야 한다.
고분자막을 사용한 기체 분리 공정은 1977년에 Monsanto사에서 Prism이라는 상품명의 기체 분리막 모듈을 사용한 시스템을 개발하여 최초로 상업화되기에 이르렀고, 이는 기존의 공법에 비해 에너지 소비와 설비투자가 적어 매년 기체분리시장에서 차지하는 규모가 나날이 증가하고 있다.
미국특허 제3,133,132호에 비대칭성 구조를 가진 셀룰로오스 아세테이트 반투막이 개발된 이래로, 고분자 막에 대한 연구가 많이 이루어졌고, 상전이법(phase inversion method)을 응용하여 다양한 고분자를 중공사로 제조하고 있다.
일반적으로 비대칭 중공사막을 상전이법으로 제조하는 과정은 습식 방사법 또는 건·습식 방사법이 있다. 대표적인 건·습식 방사법에 의한 중공사 제조공정은 (1) 고분자 도프 용액의 중공사 방사단계, (2) 대기와의 접촉에 의한 휘발성분의 증발단계, (3) 응고조로의 침전단계, (4) 세척, 건조 등의 후처리 공정단계의 4단계로 구분할 수 있다.
현재까지 기체분리용 중공사막 소재로 폭넓게 이용된 것은, 주로 유기 고분자 재료로서 폴리술폰(polysulfone), 폴리카보네이트(polycarbonate), 폴리피롤론(polypyrrolone), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate) 및 폴리이미드(polyimide) 등이 있다. 이러한 다양한 기체 분리용 고분자 재료들 중 높은 화학적, 열적 안정성을 갖는 폴리이미드 막으로부터 특정 기체 종에 대한 높은 투과도 및 선택도를 부여하고자 다양한 노력이 이루어져 왔다. 그러나 일반적인 고분자 막의 경우 투과도와 선택도가 서로 반비례하는 경향을 보인다.
일 예로, 미국특허 제4,880,442호에는 비경직성 무수물을 이용하여 고분자 사슬에 높은 자유 체적도를 부여하고 투과 성능의 향상시킨 폴리이미드 막이 개시되어 있다. 또한 미국특허 제4,717,393호에는 가교 폴리이미드를 사용하여 기존의 폴리이미드 기체 분리막에 비해 높은 기체 선택도와 높은 안정성을 갖는 폴리이미드 막이 개시되어 있다. 또한 미국특허 제4,851,505호 및 제4,912,197호에는 일반적인 범용 용매에 우수한 용해성을 가져 공정상에서 발생하는 고분자 가공의 어려움을 줄인 폴리이미드 기체 분리막이 개시되어 있다. 또한 국제특허공개 제WO2005/007277호에는 폴리이미드와 폴리비닐피롤리돈, 술폰화된 폴리에테르에테르케톤 및 이들의 혼합물로 이루어진 군에서 선택된 1종의 고분자를 포함하는 결함이 없는 비대칭 막을 제안하고 있다.
그러나 기체분리에 있어 상업적으로 이용 가능한 막 성능(공기분리의 경우, 산소 투과도는 1 배러(barrer) 이상, 산소/질소 선택도는 6.0 이상)을 가지는 고분자 재료는 상당히 소수에 국한되어 있다. 그 이유는 고분자의 구조를 개선하기에 상당한 제약이 따르고 투과도와 선택도 사이에 강한 양립 관계가 성립하여 어느 상한선 이상의 분리 및 투과 성능을 가지기 힘들기 때문이다.
또한 기존의 고분자막 소재는 그 투과 및 분리특성에 있어 상당히 제한적이며, 또한 이러한 고분자막들은 고압 및 고온공정이나 탄화수소, 방향족 그리고 극성용매를 함유한 기체혼합물에 장기간 노출되면 분해되거나 노화(aging)되어 초기의 막 성능이 현저히 감소하는 단점이 있다. 이러한 문제점으로 인해 기체분리공정의 높은 경제적 가치에도 불구하고 그 응용이 아직까지는 상당히 제한적인 수준에 머물고 있다.
따라서 높은 투과도와 높은 선택도를 동시에 만족시킬 수 있는 고분자 소재와 이러한 소재를 이용한 새로운 기체 분리막의 개발이 절실히 요구되고 있다.
이러한 요구에 따라 높은 기체 투과도 및 선택도를 갖고 소정 크기의 기공을 갖는 이상적 구조로 고분자를 개질하기 위한 많은 연구가 수행되어 왔다.
본 발명의 일 구현예는 기체의 투과도와 선택도가 우수한 중공사를 제공하기 위한 것이다.
본 발명의 다른 일 구현예는 상기 중공사를 제조하기 위한 중공사 형성용 도프 용액 조성물을 제공하기 위한 것이다.
본 발명의 또 다른 일 구현예는 상기 중공사 형성용 도프 용액 조성물을 이용하는 중공사의 제조방법을 제공하기 위한 것이다.
본 발명의 일 구현예는 중공사의 중앙부에 위치하는 공동, 상기 공동 주변에 존재하는 매크로기공, 그리고 상기 매크로기공 주변에 존재하는 메조기공 및 피코기공을 포함하고, 상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가지는 중공사를 제공한다. 상기 중공사는 폴리아믹산으로부터 유도되는 고분자를 포함하고, 상기 폴리아믹산은 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 포함한다.
상기 중공사는 표면부에 피코기공으로 이루어지는 치밀층을 포함할 수 있고, 상기 치밀층은 표면에 가까울수록 피코기공의 수가 많아지는 구조로 형성될 수 있다.
상기 2개 이상의 피코기공이 3차원적으로 연결되어 형성된 3차원 네트워크 구조는 연결부위가 좁은 골을 형성하는 모래시계 모양(hourglass shaped)의 구조일 수 있다.
상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기는 OH, SH 또는 NH2를 포함한다.
상기 폴리아믹산으로부터 유도되는 고분자는 0.15 내지 0.40의 자유 체적도(fractional free volume, FFV)를 가질 수 있으며, X-선 회절장치(X-Ray Diffractometer, XRD)로 측정한 면간 거리(d-spacing)가 580 pm 내지 800 pm의 범위에 있을 수 있다.
또한 상기 폴리아믹산으로부터 유도되는 고분자는 피코기공을 포함하고, 상기 피코기공은 양전자 소멸시간 분광분석(positron annihilation lifetime spectroscopy, PALS) 측정에 의한 반가폭(full width at half maximum, FWHM)이 10 pm 내지 40 pm의 범위에 있는 기공분포를 가진다.
또한 상기 폴리아믹산으로부터 유도되는 고분자는 100 내지 1,000 m2/g의 BET 표면적을 가질 수 있다.
상기 폴리아믹산은 하기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산, 하기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택될 수 있다.
[화학식 1]
Figure PCTKR2009002644-appb-I000001
[화학식 2]
Figure PCTKR2009002644-appb-I000002
[화학식 3]
Figure PCTKR2009002644-appb-I000003
[화학식 4]
Figure PCTKR2009002644-appb-I000004
[화학식 5]
Figure PCTKR2009002644-appb-I000005
[화학식 6]
Figure PCTKR2009002644-appb-I000006
[화학식 7]
Figure PCTKR2009002644-appb-I000007
[화학식 8]
Figure PCTKR2009002644-appb-I000008
상기 화학식 1 내지 화학식 8에서,
Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
Ar2는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
Y는 각각의 반복 단위에서 동일하거나 서로 상이하며, 각각 독립적으로 OH, SH 또는 NH2이고,
n은 20≤n≤200을 만족하는 정수이고,
m은 10≤m≤400을 만족하는 정수이고,
l은 10≤l≤400을 만족하는 정수이다.
상기 고분자는 하기 화학식 19 내지 화학식 32 중 어느 하나로 표시되는 고분자 또는 이들의 공중합체를 포함할 수 있다.
[화학식 19]
Figure PCTKR2009002644-appb-I000009
[화학식 20]
Figure PCTKR2009002644-appb-I000010
[화학식 21]
Figure PCTKR2009002644-appb-I000011
[화학식 22]
Figure PCTKR2009002644-appb-I000012
[화학식 23]
Figure PCTKR2009002644-appb-I000013
[화학식 24]
Figure PCTKR2009002644-appb-I000014
[화학식 25]
Figure PCTKR2009002644-appb-I000015
[화학식 26]
Figure PCTKR2009002644-appb-I000016
[화학식 27]
Figure PCTKR2009002644-appb-I000017
[화학식 28]
Figure PCTKR2009002644-appb-I000018
[화학식 29]
Figure PCTKR2009002644-appb-I000019
[화학식 30]
Figure PCTKR2009002644-appb-I000020
[화학식 31]
Figure PCTKR2009002644-appb-I000021
[화학식 32]
Figure PCTKR2009002644-appb-I000022
상기 화학식 19 내지 화학식 32에서,
Ar1, Ar2, Q, n, m 및 l은 각각 상기 화학식 1 내지 화학식 8의 Ar1, Ar2, Q, n, m 및 l에서 설명된 바와 같고,
Ar1'는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
Y''는 O 또는 S 이다.
상기 중공사는 He, H2, N2, CH4, O2, N2, CO2로 이루어진 군에서 선택되는 군에서 선택되는 1종 이상의 기체에 대한 기체 분리막으로 사용할 수 있다.
상기 중공사의 O2/N2 선택도는 4 이상이고, CO2/CH4 선택도는 30 이상이고, H2/N2 선택도는 30 이상이고, H2/CH4 선택도는 50 이상이고, CO2/N2 선택도는 20 이상이고, He/N2 선택도는 40 이상이다. 보다 구체적으로, O2/N2 선택도는 4 내지 20이고, CO2/CH4 선택도는 30 내지 80이고, H2/N2 선택도는 30 내지 80이고, H2/CH4 선택도는 50 내지 90이고, CO2/N2 선택도는 20 내지 50이고, He/N2 선택도는 40 내지 120이다.
본 발명의 다른 일 구현예는 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 가지는 폴리아믹산, 유기용매 및 첨가제를 포함하는 중공사 형성용 도프 용액 조성물을 제공한다.
상기 유기용매는 디메틸설폭사이드; N-메틸-2-피롤리돈; N,N-디메틸포름아미드; N,N-디메틸아세트아미드; 메탄올, 에탄올, 2-메틸-1-부탄올 및 2-메틸-2-부탄올로 이루어진 군에서 선택된 알코올; γ-부티로락톤, 사이클로헥사논, 3-헥사논, 3-헵타논, 3-옥타논, 아세톤 및 메틸 에틸 케톤으로 이루어진 군에서 선택된 케톤; 테트라하이드로퓨란; 트리클로로에탄; 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 첨가제는 물; 글리세롤, 에틸렌 글리콜, 프로필렌글리콜 및 디에틸렌 글리콜로 이루어진 군에서 선택된 알코올; 폴리비닐알코올, 폴리아크릴산, 폴리아크릴아마이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 키토산, 키틴, 덱스트란 및 폴리비닐피롤리돈으로 이루어진 군에서 선택된 고분자 화합물; 염화리튬, 염화나트륨, 염화칼슘, 리튬아세테이트, 황산나트륨 및 수산화나트륨으로 이루어진 군에서 선택된 염; 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기는 OH, SH 또는 NH2를 포함한다.
상기 중공사 형성용 도프 용액 조성물은 상기 폴리아믹산 10 내지 45 중량%, 상기 유기 용매 25 내지 70 중량% 및 상기 첨가제 5 내지 40 중량%를 포함할 수 있다.
상기 중공사 형성용 도프 용액 조성물은 점도가 2 Pa·s 내지 200 Pa·s 일 수 있다.
상기 중공사 형성용 도프 용액 조성물에서, 상기 폴리아믹산은 중량평균 분자량(Mw)이 10,000 내지 200,000일 수 있다.
상기 중공사 형성용 도프 용액 조성물에서, 상기 폴리아믹산은 상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산, 상기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택될 수 있다.
본 발명의 또 다른 일 구현예는 상기 중공사 형성용 도프 용액 조성물을 방사하여 폴리아믹산계 중공사를 제조하는 단계, 상기 폴리아믹산계 중공사를 이미드화하여 폴리이미드계 중공사를 얻는 단계 및 상기 폴리이미드계 중공사를 열처리하여 얻어진 재배열된 고분자를 포함하는 중공사를 얻는 단계를 포함하는 중공사의 제조방법을 제공한다. 상기 중공사는 중공사의 중앙부에 위치하는 공동, 상기 공동 주변에 존재하는 매크로기공, 그리고 상기 매크로 기공 주변에 존재하는 메조기공 및 피코기공을 포함하고, 상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가진다.
상기 재배열된 고분자는 상기 화학식 19 내지 화학식 32중 어느 하나로 표시되는 고분자 또는 이들의 공중합체를 포함할 수 있다.
상기 폴리이미드계 중공사는 하기 화학식 33 내지 화학식 40으로 표시되는 폴리이미드, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택된 1종을 포함할 수 있다.
[화학식 33]
Figure PCTKR2009002644-appb-I000023
[화학식 34]
Figure PCTKR2009002644-appb-I000024
[화학식 35]
Figure PCTKR2009002644-appb-I000025
[화학식 36]
Figure PCTKR2009002644-appb-I000026
[화학식 37]
Figure PCTKR2009002644-appb-I000027
[화학식 38]
Figure PCTKR2009002644-appb-I000028
[화학식 39]
Figure PCTKR2009002644-appb-I000029
[화학식 40]
Figure PCTKR2009002644-appb-I000030
상기 화학식 33 내지 화학식 40에서,
Ar1, Ar2, Q, Y, n, m 및 l은 각각 상기 화학식 1 내지 화학식 8의 Ar1, Ar2, Q, Y, n, m 및 l에서 설명된 바와 같다.
상기 열처리는 상기 이미드화 후, 10 내지 30 ℃/min의 승온 속도로 400 내지 550 ℃까지 승온하고, 그 온도로 비활성 분위기 하에서 1 분 내지 1 시간 동안 수행할 수 있다.
상기 화학식 1 내지 화학식 8 및 화학식 19 내지 화학식 40에서, Ar1의 예는 하기 식으로 표시된 것 중에서 선택될 수 있다.
Figure PCTKR2009002644-appb-I000031
상기 식에서,
X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
상기 화학식 1 내지 화학식 8 및 화학식 19 내지 화학식 40에서, Ar1의 구체적인 예는 하기 식으로 표시된 것 중에서 선택될 수 있다.
Figure PCTKR2009002644-appb-I000032
Figure PCTKR2009002644-appb-I000033
상기 화학식 1 내지 화학식 8 및 화학식 19 내지 화학식 40에서, Ar2의 예는 하기 식으로 표시된 것 중에서 선택될 수 있다.
Figure PCTKR2009002644-appb-I000034
상기 식에서,
X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
상기 화학식 1 내지 화학식 8 및 화학식 19 내지 화학식 40에서, Ar2의 구체적인 예는 하기 식으로 표시된 것 중에서 선택될 수 있다.
Figure PCTKR2009002644-appb-I000035
Figure PCTKR2009002644-appb-I000036
Figure PCTKR2009002644-appb-I000037
상기 화학식 1 내지 화학식 8 및 화학식 19 내지 화학식 40에서, Q의 예는 C(CH3)2, C(CF3)2, O, S, S(=O)2 또는 C(=O) 중에서 선택될 수 있다.
상기 화학식 19 내지 화학식 32에서, Ar1'의 예 및 구체적인 예는 상기 화학식 1 내지 화학식 8 및 화학식 19 내지 화학식 40의 Ar2의 예 및 구체적인 예로 언급된 것과 동일하다.
상기 화학식 1 내지 화학식 8에서, Ar1은 하기 화학식 A, B 또는 C로 표시되는 작용기일 수 있고, Ar2는 하기 화학식 D 또는 E로 표시되는 작용기일 수 있고, Q는 C(CF3)2일 수 있다.
[화학식 A]
Figure PCTKR2009002644-appb-I000038
[화학식 B]
Figure PCTKR2009002644-appb-I000039
[화학식 C]
Figure PCTKR2009002644-appb-I000040
[화학식 D]
Figure PCTKR2009002644-appb-I000041
[화학식 E]
Figure PCTKR2009002644-appb-I000042
상기 화학식 19 내지 화학식 32에서, Ar1은 상기 화학식 A, B 또는 C로 표시되는 작용기일 수 있고, Ar1'는 하기 화학식 F, G 또는 H로 표시되는 작용기일 수 있고, Ar2는 상기 화학식 D또는 E로 표시되는 작용기일 수 있고, Q는 C(CF3)2일 수 있다.
[화학식 F]
Figure PCTKR2009002644-appb-I000043
[화학식 G]
Figure PCTKR2009002644-appb-I000044
[화학식 H]
Figure PCTKR2009002644-appb-I000045
상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산의 공중합체에서의 각 반복 단위 사이의 몰비 또는 상기 화학식 5 내지 화학식 8에서 m:l의 몰비는 0.1:9.9 내지 9.9:0.1일 수 있다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명의 중공사는 기체에 대한 투과도, 선택도, 기계적 강도 및 화학적 안정성이 우수하고, 긴 작업 시간, 산성 조건 및 고습과 같은 가혹한 조건하에서도 견딜 수 있다.
도 1은 실시예 1에서 제조된 중공사의 일부 단면을 100배 확대한 전자주사현미경 사진이다.
도 2는 실시예 1에서 제조된 중공사의 일부 단면을 500배 확대한 전자주사현미경 사진이다.
도 3은 실시예 1에서 제조된 중공사의 일부 단면을 5,000배 확대한 전자주사현미경 사진이다.
도 4는 실시예 14에서 제조된 중공사의 일부 단면을 100배 확대한 전자주사현미경 사진이다.
도 5는 실시예 14에서 제조된 중공사의 일부 단면을 1,000배 확대한 전자주사현미경 사진이다.
도 6은 실시예 14에서 제조된 중공사의 일부 단면을 10,000배 확대한 전자주사현미경 사진이다.
도 7은 실시예 1 내지 17 및 비교예 1 내지 비교예 3에서 제조된 중공사의 GPU 단위의 산소 투과도 및 산소/질소 선택도를 비교한 그래프이다(1' 내지 3': 비교예 1 내지 3, 1 내지 17: 실시예 1 내지 17).
도 8은 실시예 1 내지 17 및 비교예 1 내지 비교예 3에서 제조된 중공사의 GPU 단위의 이산화탄소 투과도 및 이산화탄소/메탄 선택도를 비교한 그래프이다(1' 내지 3': 비교예 1 내지 3, 1 내지 17: 실시예 1 내지 17).
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 별도의 정의가 없는 한, "표면부"는 중공사의 외측 표면부, 내측 표면부, 또는 외측 표면부/내측 표면부를 지칭하는 것이고, "표면"은 중공사의 외측 표면, 내측 표면, 또는 외측 표면/내측 표면을 지칭하는 것이다. 또한 "피코기공"은 기공의 평균 직경이 수백 피코미터, 구체적으로는 100 pm 내지 1000 pm인 기공을 의미하고, "메조기공"은 기공의 평균 직경이 2 nm 내지 50 nm인 기공을 의미하고, "매크로기공"은 기공의 평균 직경이 50 nm 보다 큰 기공을 의미한다.
본 명세서에서 별도의 정의가 없는 한, "치환" 또는 "치환된"이란 화합물 또는 작용기 중의 수소 원자가 C1 내지 C10 알킬기, C1 내지 C10 알콕시기, C1 내지 C10 할로알킬기 및 C1 내지 C10 할로알콕시기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환된 것을 의미하고, "헤테로 고리기"란 O, S, N, P, Si 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하는 치환 또는 비치환된 헤테로 고리기를 의미한다. 또한 "공중합체"란 블록 공중합체 내지 랜덤 공중합체를 의미한다.
본 발명의 일 구현예에 따른 중공사는 그의 중앙부에 위치하는 공동, 상기 공동 주변에 존재하는 매크로기공, 그리고 상기 매크로기공 주변에 존재하는 메조기공 및 피코기공을 포함하고, 상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가지는 중공사이다. 상기 중공사는 폴리아믹산으로부터 유도되는 고분자를 포함하고, 상기 폴리아믹산은 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 포함한다.
상기 중공사는 표면부에 피코기공으로 이루어지는 치밀층을 포함할 수 있다. 이러한 치밀층의 존재로 인해 상기 중공사는 기체를 선택적이면서도 효율적으로 분리할 수 있다. 상기 치밀층의 두께는 50 ㎚ 내지 1 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
상기 치밀층은 표면에 가까울수록 피코기공의 수가 많아지는 구조로 형성될 수 있다. 이로써 상기 중공사 표면에서의 선택적인 기체 분리가 효과적으로 이루어지고, 막 하부에서의 기체의 농축이 효과적으로 이루어질 수 있다.
상기 2개 이상의 피코기공이 3차원적으로 연결되어 형성된 3차원 네트워크 구조는 연결부위가 좁은 골을 형성하는 모래시계 모양(hourglass shaped)의 구조일 수 있다. 상기 2개 이상의 피코기공의 연결부위에 좁은 골 영역이 존재함으로써, 분리하고자 하는 기체를 선택적으로 분리할 수 있고, 상기 골 영역에 비해 상대적으로 넓은 피코기공에서는 분리된 기체가 빠르게 이동할 수 있다.
상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기는 OH, SH 또는 NH2를 포함한다. 상기 폴리아믹산은 일반적인 방법에 따라 제조할 수 있다. 일 예로, 상기 폴리아믹산은 아민기에 대하여 오르쏘 위치에 존재하는 OH, SH 또는 NH2기를 포함하는 방향족 디아민과 테트라카르복실산 무수물을 반응시켜 제조할 수 있다.
상기 폴리아믹산은 후술할 제조공정을 통해 열전환되어, 높은 자유 체적도를 갖는 폴리벤즈옥사졸, 폴리벤즈티아졸, 폴리피롤론과 같은 고분자로 변화될 수 있다. 예를 들어, 상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기가 OH인 폴리하이드록시아믹산은 폴리벤즈옥사졸로, 상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기가 SH인 폴리티올아믹산은 폴리벤즈티아졸로, 상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기가 NH2인 폴리아미노아믹산은 폴리피롤론으로 전환된다. 이로써 본 발명의 일 구현예에 따른 중공사는 상기와 같은 높은 자유 체적도를 갖는 폴리벤즈옥사졸, 폴리벤즈티아졸, 폴리피롤론과 같은 고분자를 포함할 수 있다.
상기 폴리아믹산으로부터 유도되는 고분자는 0.15 내지 0.40의 자유 체적도(FFV)를 가질 수 있고, XRD 측정에 의한 면간 거리가 580 pm 내지 800 pm의 범위에 있을 수 있다. 이로써 상기 폴리아믹산으로부터 유도되는 고분자는 우수한 기체 투과도를 가질 수 있으며, 상기 폴리아믹산으로부터 유도되는 고분자를 포함하는 중공사는 기체를 선택적이며 효과적으로 분리할 수 있다.
또한 상기 폴리아믹산으로부터 유도되는 고분자는 피코기공을 포함하고,상기 피코기공의 평균 직경은 600 pm 내지 800 pm일 수 있다. 상기 피코기공은 양전자 소멸시간 분광분석(positron annihilation lifetime spectroscopy, PALS) 측정에 의한 반가폭(full width at half maximum, FWHM)이 10 pm 내지 40 pm의 범위에 있을 수 있다. 이는 생성되는 피코기공의 크기가 상당히 균일함을 나타내는 것이다. 이로써 상기 폴리아믹산으로부터 유도되는 고분자를 포함하는 중공사는 기체를 선택적이고 안정적으로 분리할 수 있다. 상기 PALS 데이터는 22Na 동위원소로부터 발생되는 양전자를 조사하여 생성시에 발생되는 1.27MeV의 γ0와 소멸시에 생성되는 0.511MeV의 γ1, γ2의 시간차이 τ1, τ2, τ3 등을 이용하여 얻을 수 있다.
상기 폴리아믹산으로부터 유도되는 고분자는 100 내지 1,000 m2/g의 BET(Brunauer-Emmett-Teller) 표면적을 가질 수 있다. BET 표면적이 상기 범위 내이면 기체가 흡착될 수 있는 적절한 표면적을 확보할 수 있다. 이에 의해 상기 중공사는 용해-확산 메커니즘에 의해 기체를 분리함에 있어서, 우수한 선택도 및 투과도를 나타낸다.
상기 폴리아믹산은 하기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산, 하기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
[화학식 1]
Figure PCTKR2009002644-appb-I000046
[화학식 2]
Figure PCTKR2009002644-appb-I000047
[화학식 3]
Figure PCTKR2009002644-appb-I000048
[화학식 4]
Figure PCTKR2009002644-appb-I000049
[화학식 5]
Figure PCTKR2009002644-appb-I000050
[화학식 6]
Figure PCTKR2009002644-appb-I000051
[화학식 7]
Figure PCTKR2009002644-appb-I000052
[화학식 8]
Figure PCTKR2009002644-appb-I000053
상기 화학식 1 내지 화학식 8에서,
Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
Ar2는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
Y는 각각의 반복 단위에서 동일하거나 서로 상이하며, 각각 독립적으로 OH, SH 또는 NH2이고,
n은 20≤n≤200을 만족하는 정수이고,
m은 10≤m≤400을 만족하는 정수이고,
l은 10≤l≤400을 만족하는 정수이다.
상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산의 공중합체의 예로는 하기 화학식 9 내지 화학식 18로 표시되는 폴리아믹산 공중합체를 들 수 있다.
[화학식 9]
Figure PCTKR2009002644-appb-I000054
[화학식 10]
Figure PCTKR2009002644-appb-I000055
[화학식 11]
Figure PCTKR2009002644-appb-I000056
[화학식 12]
Figure PCTKR2009002644-appb-I000057
[화학식 13]
Figure PCTKR2009002644-appb-I000058
[화학식 14]
Figure PCTKR2009002644-appb-I000059
[화학식 15]
Figure PCTKR2009002644-appb-I000060
[화학식 16]
Figure PCTKR2009002644-appb-I000061
[화학식 17]
Figure PCTKR2009002644-appb-I000062
[화학식 18]
Figure PCTKR2009002644-appb-I000063
상기 화학식 9 내지 화학식 18에서,
Ar1, Q, n, m 및 l은 상기 화학식 1 내지 화학식 8에서 정의한 바와 같고,
Y 및 Y' 는 서로 상이하며, 각각 독립적으로 OH, SH 또는 NH2이다.
상기 화학식 1 내지 화학식 18에서, Ar1의 예는 하기 식으로 표시된 것 중에서 선택될 수 있다.
Figure PCTKR2009002644-appb-I000064
상기 식에서,
X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
상기 화학식 1 내지 화학식 18에서, Ar1의 구체적인 예는 하기 식으로 표시된 것 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2009002644-appb-I000065
Figure PCTKR2009002644-appb-I000066
상기 화학식 1 내지 화학식 18에서, Ar2는 하기 식으로 표시된 것 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2009002644-appb-I000067
상기 식에서,
X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
상기 화학식 1 내지 화학식 18에서, Ar2의 구체적인 예는 하기 식으로 표시된 것 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2009002644-appb-I000068
Figure PCTKR2009002644-appb-I000069
Figure PCTKR2009002644-appb-I000070
상기 화학식 1 내지 화학식 18에서, Q의 예는 C(CH3)2, C(CF3)2, O, S, S(=O)2 또는 C(=O) 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 화학식 1 내지 화학식 18에서, Ar1은 하기 화학식 A, B 또는 C로 표시되는 작용기일 수 있고, Ar2는 하기 화학식 D 또는 E로 표시되는 작용기일 수 있고, Q는 C(CF3)2 일 수 있으나 이에 한정되는 것은 아니다.
[화학식 A]
Figure PCTKR2009002644-appb-I000071
[화학식 B]
Figure PCTKR2009002644-appb-I000072
[화학식 C]
Figure PCTKR2009002644-appb-I000073
[화학식 D]
Figure PCTKR2009002644-appb-I000074
[화학식 E]
Figure PCTKR2009002644-appb-I000075
상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산은 일반적인 제조방법을 통해 제조가 가능하다. 일 예로, 단량체로 테트라카르복시산 무수물과 OH, SH 또는 NH2기를 포함하는 방향족 디아민을 반응시켜 제조한다.
이러한 화학식 1 내지 화학식 4로 표시되는 폴리아믹산은 후술할 제조공정을 통해 열전환되어, 높은 자유 체적도를 갖는 폴리벤즈옥사졸, 폴리벤즈티아졸 또는 폴리피롤론으로 전환된다. 이때 상기화학식 1 내지 화학식 4의 Y가 OH인 폴리하이드록시아믹산으로부터 유도된 폴리벤즈옥사졸, Y가 SH인 폴리티올아믹산으로부터 유도된 폴리벤즈티아졸, Y가 NH2인 폴리아미노아믹산으로부터 유도된 폴리피롤론을 포함하는 중공사가 제조된다.
상기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체는 후술할 제조공정을 통해 이미드화 및 열전환되어, 높은 자유 체적도를 갖는 폴리(벤즈옥사졸-이미드) 공중합체, 폴리(벤즈티아졸-이미드) 공중합체 또는 폴리(피롤론-이미드) 공중합체로 전환되고, 이로써 상기와 같은 공중합체를 포함하는 중공사를 형성할 수 있다. 이때 분자내 및 분자간 재배열에 의해 폴리벤즈옥사졸, 폴리벤즈티아졸 또는 폴리피롤론으로 열전환되는 블럭과 폴리이미드로 되는 블럭간의 공중합비(몰비)를 조절하여, 제조된 중공사의 물성 제어가 가능하다.
상기 화학식 9 내지 화학식 18로 표시되는 폴리아믹산의 공중합체는 후술할 제조공정을 통해 이미드화 및 열전환되어, 높은 자유 체적도를 갖는 폴리벤즈옥사졸, 폴리벤즈티아졸 및 폴리피롤론의 공중합체로 전환되고, 이로써 상기와 같은 공중합체를 포함하는 중공사를 형성할 수 있다. 이때 각각 폴리벤즈옥사졸, 폴리벤즈티아졸 및 폴리피롤론으로 열전환되는 블럭간의 공중합비(몰비)를 조절하여, 제조된 중공사의 물성 제어가 가능하다.
상기 화학식 5 내지 화학식 18로 표시되는 폴리아믹산 공중합체의 블럭간 공중합비(몰비) m:l은 0.1:9.9 내지 9.9 내지 0.1, 구체적으로는 2:8 내지 8:2, 더욱 구체적으로는 5:5로 조절할 수 있다. 이러한 공중합비는 제조된 중공사의 모폴로지에 영향을 주는데, 이러한 모폴로지 변화는 기체 투과도 및 선택도와 관련되어 있다. 상기 블록간의 공중합비가 상기 범위 내일 경우, 제조된 중공사는 우수한 기체 투과도 및 선택도를 가질 수 있다.
상기 중공사에서, 상기 폴리아믹산으로부터 유도되는 고분자는 하기 화학식 19 내지 화학식 32 중 어느 하나로 표시되는 고분자 또는 이들의 공중합체를 포함할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 19]
Figure PCTKR2009002644-appb-I000076
[화학식 20]
Figure PCTKR2009002644-appb-I000077
[화학식 21]
Figure PCTKR2009002644-appb-I000078
[화학식 22]
Figure PCTKR2009002644-appb-I000079
[화학식 23]
Figure PCTKR2009002644-appb-I000080
[화학식 24]
Figure PCTKR2009002644-appb-I000081
[화학식 25]
Figure PCTKR2009002644-appb-I000082
[화학식 26]
Figure PCTKR2009002644-appb-I000083
[화학식 27]
Figure PCTKR2009002644-appb-I000084
[화학식 28]
Figure PCTKR2009002644-appb-I000085
[화학식 29]
Figure PCTKR2009002644-appb-I000086
[화학식 30]
Figure PCTKR2009002644-appb-I000087
[화학식 31]
Figure PCTKR2009002644-appb-I000088
[화학식 32]
Figure PCTKR2009002644-appb-I000089
상기 화학식 19 내지 화학식 32에서,
Ar1, Ar2, Q, n, m 및 l은 각각 상기 화학식 1 내지 화학식 8의 Ar1, Ar2, Q, n, m 및 l에서 설명된 바와 같고,
Ar1'는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
Y''는 O 또는 S 이다.
상기 화학식 19 내지 화학식 32에서, Ar1, Ar2 및 Q의 예 및 구체적인 예는 각각 상기 화학식 1 내지 화학식 18의 Ar1, Ar2 및 Q의 예 및 구체적인 예로 언급된 것과 동일하다.
또한 상기 화학식 19 내지 화학식 32에서, Ar1'의 예 및 구체적인 예는 상기 화학식 1 내지 화학식 18의 Ar2의 예 및 구체적인 예로 언급된 것과 동일하다.
상기 화학식 19 내지 화학식 32에서, Ar1은 상기 화학식 A, B 또는 C로 표시되는 작용기일 수 있고, Ar1'는 하기 화학식 F, G 또는 H로 표시되는 작용기일 수 있고, Ar2는 상기 화학식 D또는 E로 표시되는 작용기일 수 있고, Q는 C(CF3)2일 수 있으나, 이에 한정되는 것은 아니다.
[화학식 F]
Figure PCTKR2009002644-appb-I000090
[화학식 G]
Figure PCTKR2009002644-appb-I000091
[화학식 H]
Figure PCTKR2009002644-appb-I000092
상기 중공사는 He, H2, N2, CH4, O2, N2, CO2 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 기체에 대한 기체 분리용으로 사용할 수 있다. 이때 상기 중공사는 기체 분리막의 형태로 사용될 수 있다. 상기 혼합기체의 구체적인 예로는 O2/N2, CO2/CH4, H2/N2, H2/CH4, CO2/N2 및 He/N2를 들 수 있으나, 이에 한정되는 것은 아니다.
상기 중공사는 혼합기체가 O2/N2인 경우 4 이상, 구체적으로는 4 내지 20의 선택도를 가질 수 있고, 혼합기체가 CO2/CH4인 경우 30 이상, 구체적으로는 30 내지 80의 선택도를 가질 수 있고, 혼합기체가 H2/N2인 경우 30 이상, 구체적으로는 30 내지 80의 선택도를 가질 수 있고, 혼합기체가 H2/CH4인 경우 50 이상, 구체적으로는 50 내지 90의 선택도를 가질 수 있고, 혼합기체가 CO2/N2인 경우 20 이상, 구체적으로는 20 내지 50의 선택도를 가질 수 있고, 혼합기체가 He/N2인 경우 40 이상, 구체적으로는 40 내지 120의 선택도를 가질 수 있다.
본 발명의 다른 일 구현예에 따른 중공사 형성용 도프 용액 조성물은 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 가지는 폴리아믹산, 유기용매 및 첨가제를 포함한다.
상기 유기용매는 디메틸설폭사이드; N-메틸-2-피롤리돈; N,N-디메틸포름아미드; N,N-디메틸아세트아미드; 메탄올, 에탄올, 2-메틸-1-부탄올 및 2-메틸-2-부탄올로 이루어진 군에서 선택된 알코올; γ-부티로락톤, 사이클로헥사논, 3-헥사논, 3-헵타논, 3-옥타논, 아세톤 및 메틸 에틸 케톤으로 이루어진 군에서 선택된 케톤; 테트라하이드로퓨란; 트리클로로에탄; 및 이들의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로 상기 유기용매는 디메틸설폭사이드; N-메틸-2-피롤리돈; N,N-디메틸포름아미드; N,N-디메틸아세트아미드 및 이들의 조합으로부터 선택될 수 있다. 상기 유기용매를 사용하면 고분자를 쉽게 용해시킬 수 있으며, 하기 첨가제와 잘 섞임으로써 불안정한(meta-stable) 상태를 형성할 수 있고, 이로부터 얇은 유효막 두께를 가지는 우수한 중공사를 형성할 수 있다.
상기 첨가제는 물; 글리세롤, 에틸렌 글리콜, 프로필렌글리콜 및 디에틸렌 글리콜로 이루어진 군에서 선택된 알코올; 폴리비닐알코올, 폴리아크릴산, 폴리아크릴아마이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 키토산, 키틴, 덱스트란 및 폴리비닐피롤리돈으로 이루어진 군에서 선택된 고분자 화합물; 염화리튬, 염화나트륨, 염화칼슘, 리튬아세테이트, 황산나트륨 및 수산화나트륨으로 이루어진 군에서 선택된 염; 및 이들의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로, 상기 첨가제는 물, 글리세롤, 프로필렌글리콜, 폴리에틸렌글리콜, 폴리비닐피롤리돈 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 상기 첨가제는 폴리아믹산 고분자와 용해도가 우수한 것은 아니므로 홀로 사용될 수 없지만, 유기용매와 적절히 혼합되면 불안정한(meta-stable) 도프 용액 조성물을 제조할 수 있으며, 도프 용액 조성물을 방사할 때 응고조 내의 비용매(non-solvent)가 도프 용액 조성물 내로 빠르게 확산되어, 얇고 균일한 박막을 형성하는 것은 물론, 서브-레이어(sub-layer)의 매크로기공 제조에도 훨씬 유리할 수 있다.
상기 중공사 형성용 도프 용액 조성물에서, 상기 아민기에 대하여 오르쏘 위치에 존재하는 작용기는 OH, SH 또는 NH2를 포함한다.
상기 중공사 형성용 도프 용액 조성물은 상기 폴리아믹산 10 내지 45 중량%, 상기 유기 용매 25 내지 70 중량% 및 상기 첨가제 5 내지 40 중량%를 포함할 수 있다.
상기 폴리아믹산의 함량이 상기 범위 내인 경우, 중공사의 강도 및 기체의 투과도를 우수하게 유지할 수 있다.
상기 유기용매는 상기 폴리아믹산을 용해하는 역할을 수행한다. 상기 유기용매의 함량이 상기 범위 내인 경우, 중공사 형성용 도프 용액 조성물의 점도를 적절히 유지하여 중공사의 제조를 용이하게 하고 중공사의 투과도를 향상시킬 수 있다.
상기 중공사 형성용 도프 용액 조성물은 점도는 2 Pa·s 내지 200 Pa·s 일 수 있다. 중공사 형성용 도프 용액 조성물의 점도가 상기 범위 내이면 중공사 형성용 도프 용액 조성물을 노즐을 통하여 용이하게 방사할 수 있고, 중공사를 상전이 현상을 통해 용이하게 고형으로 응고시킬 수 있다.
상기 첨가제는 상분리 온도 또는 중공사 형성용 도프 용액 조성물의 점성 조절을 위해 사용될 수 있다.
상기 첨가제는 본 발명의 분야에서 사용하는 것이라면 어느 것이든 사용할 수 있으며, 특별히 한정되지 않는다. 상기 고분자 화합물은 공극 조절제로 사용할 수 있고, 상기 염은 기공 형성제로 사용할 수 있다.
첨가제의 함량이 상기 범위 내인 경우, 중공사를 용이하게 제조할 수 있고, 또한 중공사의 표면 기공의 크기를 적절히 조절하여 치밀층을 용이하게 형성할 수 있다.
상기 중공사 형성용 도프 용액 조성물에서, 상기 폴리아믹산의 중량평균 분자량(Mw)은 10,000 내지 200,000일 수 있다. 폴리아믹산의 중량평균 분자량이 상기 범위 내이면 이의 합성이 용이하고, 이를 포함하는 중공사 형성용 도프 용액 조성물의 점도가 적절하게 유지되어 가공성이 우수하며, 상기 폴리아믹산으로부터 유도되는 고분자는 기계적 강도 및 특성이 우수하게 유지될 수 있다.
상기 중공사 형성용 도프 용액 조성물에서, 상기 폴리아믹산은 상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산, 상기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택될 수 있다.
본 발명의 또 다른 일 구현예에 따른 중공사의 제조방법은 상기 중공사 형성용 도프 용액 조성물을 방사하여 폴리아믹산계 중공사를 제조하는 단계, 상기 폴리아믹산계 중공사를 이미드화하여 폴리이미드계 중공사를 얻는 단계 및 상기 폴리이미드계 중공사를 열처리하여 얻어진 재배열된 고분자를 포함하는 중공사를 얻는 단계를 포함한다. 상기 제조방법에 따라 제조된 중공사는 그의 중앙부에 위치하는 공동, 상기 공동 주변에 존재하는 매크로기공, 그리고 상기 매크로 기공 주변에 존재하는 메조기공 및 피코기공을 포함하고, 상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가진다.
상기 재배열된 고분자는 상기 화학식 19 내지 화학식 32중 어느 하나로 표시되는 고분자 또는 이들의 공중합체를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리이미드계 중공사는 하기 화학식 33 내지 화학식 40으로 표시되는 폴리이미드, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택된 1종을 포함할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 33]
Figure PCTKR2009002644-appb-I000093
[화학식 34]
Figure PCTKR2009002644-appb-I000094
[화학식 35]
Figure PCTKR2009002644-appb-I000095
[화학식 36]
Figure PCTKR2009002644-appb-I000096
[화학식 37]
Figure PCTKR2009002644-appb-I000097
[화학식 38]
Figure PCTKR2009002644-appb-I000098
[화학식 39]
Figure PCTKR2009002644-appb-I000099
[화학식 40]
Figure PCTKR2009002644-appb-I000100
상기 화학식 33 내지 화학식 40에서,
Ar1, Ar2, Q, Y, n, m 및 l은 각각 상기 화학식 1 내지 화학식 8의 Ar1, Ar2, Q, Y, n, m 및 l에서 설명된 바와 같다.
상기 화학식 33 내지 화학식 36으로 표시되는 폴리이미드의 공중합체의 예로는 하기 화학식 41 내지 화학식 50으로 표시되는 폴리이미드 공중합체를 들 수 있다.
[화학식 41]
Figure PCTKR2009002644-appb-I000101
[화학식 42]
Figure PCTKR2009002644-appb-I000102
[화학식 43]
Figure PCTKR2009002644-appb-I000103
[화학식 44]
Figure PCTKR2009002644-appb-I000104
[화학식 45]
Figure PCTKR2009002644-appb-I000105
[화학식 46]
Figure PCTKR2009002644-appb-I000106
[화학식 47]
Figure PCTKR2009002644-appb-I000107
[화학식 48]
Figure PCTKR2009002644-appb-I000108
[화학식 49]
Figure PCTKR2009002644-appb-I000109
[화학식 50]
Figure PCTKR2009002644-appb-I000110
상기 화학식 41 내지 화학식 50에서,
Ar1, Q, Y, Y', n, m 및 l은 각각 상기 화학식 1 내지 화학식 18의 Ar1, Q, Y, Y', n, m 및 l에서 설명된 바와 같다.
상기 중공사 형성용 도프 용액 조성물을 방사하여 폴리아믹산계 중공사를 제조하는 단계에서, 상기 방사는 당해 분야에서 일반적으로 사용되는 방법을 이용할 수 있으며, 구체적으로는 건식 방사 또는 건·습식 방사법을 이용할 수 있다.
일반적인 중공사 제조방법은 용액 방사법에 의한 용매교환법이 주로 사용되고 있다. 이는 중공사 형성용 도프 용액 조성물을 용매에 용해시켜 건식 또는 건·습식 방사법에 의해 방사한 후 비용매 속에서 용매와 비용매가 교환되어 미세공이 형성되도록 하며 용매가 응고조인 비용매로 확산되는 과정에서 비대칭막 또는 외부와 내부에 동일한 대칭막이 형성된다.
일 예로, 건·습식 방사법을 이용하여 중공사를 제조하는 경우, a1) 중공사 형성용 도프 용액 조성물을 제조하는 단계, a2) 제조된 중공사 형성용 도프 용액 조성물을 내부 응고제와 접촉시켜 중공사의 내부를 응고시키면서 공기 중으로 방사하여 폴리아믹산계 중공사를 형성하는 단계, a3) 형성된 폴리아믹산계 중공사를 응고조 내에서 응고시키는 단계, a4) 응고된 폴리아믹산계 중공사를 세척액으로 세척한 후 건조하는 단계, a5) 건조된 폴리아믹산계 중공사를 이미드화하여 폴리이미드계 중공사를 얻는 단계 및 a6) 폴리이미드계 중공사를 열처리하여 재배열된 고분자를 포함하는 중공사를 얻는 단계를 거침으로써, 본 발명의 일 구현예에 따른 중공사가 제조된다.
이때 안쪽 노즐을 통해 내부 응고제가 토출되는 유량은 1 내지 10 ml/min일 수 있고, 구체적으로는 1 내지 3 ml/min일 수 있다. 또한 이중 노즐의 바깥쪽 내경은 0.1 내지 2.5 mm일 수 있다. 이러한 내부 응고제의 유량과 이중 노즐의 바깥쪽 내경은 중공사의 용도 및 운전 조건에 따라 상기 범위 내에서 조절될 수 있다.
노즐로부터 응고조까지의 에어갭은 1 cm 내지 100 cm 일 수 있고, 구체적으로는 10 cm 내지 50 cm일 수 있다.
방사 온도는 5 내지 120 ℃, 방사 속도는 5 내지 50 m/min 범위를 유지하면서 고온의 방사 노즐을 통과한 후, 응고조 내에서 상전이를 유도한다. 이러한 방사 온도와 방사 속도는 제조되는 중공사의 용도 및 운전 조건에 따라 상기 범위 내에서 변경이 가능하다.
이때 방사 온도가 상기 범위 내이면 중공사 형성용 도프 용액 조성물의 점도가 적절히 유지되어 중공사 형성용 도프 용액 조성물을 용이하게 방사할 수 있으며, 용매의 증발도 억제되어 중공사를 연속적으로 제조할 수 있다. 또한 방사 속도가 상기 범위 내이면 유량이 적절히 유지되고 제조되는 중공사의 기계적 물성 및 화학적 안정성을 향상시킬 수 있다.
응고조의 온도는 0 내지 50 ℃일 수 있다. 응고조의 온도가 상기 범위 내이면 응고조 용매의 휘발을 억제하고, 상전이가 충분히 이루어지게 할 수 있어 중공사를 원활하게 제조할 수 있다.
상기 응고조 내의 외부 응고제는 고분자 물질에 대해 비용매이고, 용매 및 첨가제와 상용성이 있는 것이라면 어느 것이든 사용 가능하다. 대표적으로 물, 글리세린, 프로필렌글리콜 또는 이들의 혼합물을 사용할 수 있다.
이후에 응고된 중공사의 내부 및 표면에 잔류한 용매, 첨가제 및 응고액의 제거를 위한 세척 과정 및 건조 과정을 수행할 수 있다. 세척액으로는 물 또는 열수를 사용할 수 있으며, 세척시간은 1 시간 내지 24 시간 동안 수행할 수 있으나, 이에 한정되는 것은 아니다.
세척 후 건조 과정은 20 내지 100 ℃ 범위에서 3 내지 72 시간 동안 수행할 수 있다.
상기 중공사의 제조방법에서, 상기 이미드화는 열적 이미드화 공정으로 이루어질 수 있으나, 이에 한정되는 것은 아니다.
상기 열적 이미드화는 비활성 분위기 하에 150 내지 300 ℃에서 30 분 내지 2시간 동안 수행할 수 있다. 이미드화의 온도가 상기 범위 미만이면 전구체인 폴리아믹산의 이미드화가 미미하고, 이와 반대로 상기 범위를 초과하더라도 효과상의 큰 증가가 없어 비 경제적이다.
상기 이미드화의 조건은 상기 폴리아믹산의 작용기인 Ar1, Ar2, Q, Y 및 Y'의 종류에 따라 적절히 조절할 수 있다.
상기 폴리이미드계 중공사를 열처리하면 열전환 반응을 통해 재배열된 고분자를 포함하는 중공사를 얻을 수 있다. 상기 재배열된 고분자를 포함하는 중공사는 상기 폴리이미드계 중공사에 비해 감소된 밀도, 피코 기공이 커지면서 서로 잘 연결됨에 따라 증가된 자유 체적도 및 증가된 면간 거리를 가진다. 이로써 상기 재배열된 고분자를 포함하는 중공사는 우수한 기체 투과도 및 선택도를 가질 수 있다.
상기 열처리는 상기 이미드화 후, 10 내지 30 ℃/min의 승온 속도로 400 내지 550 ℃, 구체적으로는 450 내지 500 ℃까지 승온하고, 그 온도로 비활성 분위기 하에서 1 분 내지 1시간, 구체적으로는 10 분 내지 30분 동안 수행할 수 있다. 이때 온도가 상기 범위 내이면 열전환 반응이 충분히 이루어질 수 있다.
이하, 상기 이미드화 단계 및 열처리 단계를 하기 반응식 1 및 반응식 2를 통해 구체적으로 설명한다.
[반응식 1]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-386
[반응식 2]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-388
상기 반응식 1 및 반응식 2에서,
Ar1, Ar1', Ar2, Q, Y, Y'', n, m, 및 l은 상기 화학식 1 내지 화학식 50에서 정의한 바와 같다.
상기 반응식 1을 참조하면, 상기 화학식 1, 화학식 2, 화학식 3 및 화학식 4로 표시되는 폴리아믹산을 포함하는 폴리아믹산계 중공사는 상술한 이미드화를 거쳐 각각 상기 화학식 33, 화학식 34, 화학식 35 및 화학식 36으로 표시되는 폴리이미드를 포함하는 폴리이미드계 중공사를 형성한다.
이어서, 상술한 열처리를 통해, 상기 화학식 33, 화학식 34, 화학식 35 및 화학식 36으로 표시되는 폴리이미드를 포함하는 폴리이미드계 중공사는 화학식 19 내지 화학식 25로 표시되는 폴리벤즈옥사졸, 폴리벤즈티아졸 또는 폴리피롤론 고분자를 포함하는 중공사로 제조된다. 상기와 같은 고분자를 포함하는 중공사의 제조는 화학식 33 내지 화학식 36으로 표시되는 폴리이미드 내의 CO2 제거반응을 통해 이루어진다.
이때, 상기 화학식 1 내지 화학식 4의 Y가 OH인 폴리하이드록시아믹산 또는 Y가 SH인 폴리티올아믹산은 각각 화학식 19, 화학식 21, 화학식 23 및 화학식 24로 표시되는 폴리벤즈옥사졸(Y''=O) 또는 폴리벤즈티아졸(Y''=S)로 열전환된다. 또한 상기 화학식 1 내지 화학식 4의 Y가 NH2인 폴리아미노아믹산은 화학식 20, 화학식 22 및 화학식 25로 표시되는 폴리피롤론으로 열전환된다.
상기 반응식 2를 참조하면, 상기 화학식 5, 화학식 6, 화학식 7 및 화학식 8로 표시되는 폴리아믹산 공중합체를 포함하는 폴리아믹산계 중공사는 이미드화를 거쳐 각각 상기 화학식 37, 화학식 38, 화학식 39 및 화학식 40으로 표시되는 폴리이미드를 포함하는 폴리이미드계 중공사를 형성한다.
이어서, 상술한 열처리를 통해, 상기 화학식 37, 화학식 38, 화학식 39 및 화학식 40으로 표시되는 폴리이미드를 포함하는 폴리이미드계 중공사는 폴리이미드 내의 CO2 제거반응을 거쳐 화학식 26 내지 화학식 32로 표시되는 고분자를 포함하는 중공사로 제조된다.
이때, 상기 화학식 5 내지 화학식 8의 Y가 OH인 폴리하이드록시아믹산 또는 Y가 SH인 폴리티올아믹산은 각각 화학식 26, 화학식 28, 화학식 30 및 화학식 31로 표시되는 폴리(벤즈옥사졸(Y''=O)-이미드) 공중합체 또는 폴리(벤즈티아졸(Y''=S)-이미드) 공중합체로 열전환된다. 또한 상기 화학식 5 내지 화학식 8의 Y가 NH2인 폴리아미노아믹산은 화학식 27, 화학식 29 및 화학식 32으로 표시되는 폴리(피롤론-이미드) 공중합체로 열전환된다.
본 발명의 상기 화학식 9 내지 화학식 18로 표시되는 폴리아믹산의 공중합체를 포함하는 폴리아믹산계 중공사는 각 블록이 이미드화되어 서로 다른 이미드 블록을 갖는 폴리이미드를 포함하는 폴리이미드계 중공사로 된다. 이어서, 열처리를 통해, 각 이미드 블록은 Y의 종류에 따라 폴리벤즈옥사졸, 폴리벤즈티아졸, 폴리피롤론으로 열전환되어 이들의 공중합체, 즉 화학식 19 내지 화학식 25로 표시되는 고분자들의 공중합체를 포함하는 중공사를 형성한다.
이때 중공사는 제조 공정을 조절하여, 거대기공(macrovoid)이 형성된 핑거형 또는 단면상에 거대기공이 존재하지 아니하여 안정된 막 성능을 갖는 스폰지형으로 제조할 수 있다. 또한, 제조 공정을 조절하여 대칭형, 비대칭형으로도 제조할 수 있다. 또한 화학 구조 내 Ar1, Ar1', Ar2 및 Q의 특성을 고려하여 고분자 설계를 조절하여, 각종 기체 종에 대한 기체 투과도 및 선택도에 대한 제어를 할 수 있다.
이렇게 제조된 중공사는 상기 화학식 19 내지 화학식 32로 표시되는 고분자 또는 이들의 공중합체를 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따른 중공사는 고분자 내 존재하는 딱딱한 고분자 주쇄로 인해 온화한 조건에서뿐만 아니라 긴 작업 시간, 산성 조건 및 고습과 같은 가혹한 조건하에서도 견딜 수 있다. 즉 본 발명의 일 구현예에 따른 중공사는 화학적 안정성 및 기계적 물성이 우수하다.
이때 상기 화학식 19 내지 화학식 32로 표시되는 고분자 또는 이들의 공중합체는 제조 단계에서 적절한 중량평균 분자량을 갖도록 설계하며, 바람직하기로 중량평균 분자량이 10,000 내지 200,000이 되도록 한다. 이들의 중량평균 분자량이 10,000 미만인 때에는 고분자의 물성이 열악하고, 200,000을 초과하는 경우 중공사 형성용 도프 용액 조성물의 점성이 크게 증가하여 펌프를 이용하여 상기 중공사 형성용 도프 용액 조성물을 방사하기 어려운 문제점이 있다.
또한 본 발명의 일 구현예에 따른 중공사는 그의 중앙부에 위치하는 공동, 상기 공동 주변에 존재하는 매크로기공, 그리고 상기 매크로기공 주변에 존재하는 메조기공 및 피코기공을 포함하고, 상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조로 형성됨으로써, 높은 자유 체적도를 가져 기체의 선택도 및 기체 투과도가 우수하다. 예를 들면, He, H2, N2, CH4, O2, N2, CO2 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 기체에 대한 투과도 및 선택도가 우수하다.
실시예
이하 본 기재의 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 기재의 일 실시예일뿐이며, 본 기재가 하기 실시예에 의해 한정되는 것은 아니다.
(실시예 1)
하기 반응식 3으로 표시되는 바에 따라 폴리하이드록시아믹산을 포함하는 중공사 형성용 도프 용액 조성물로부터 하기 화학식 51로 표시되는 폴리벤즈옥사졸을 포함하는 중공사를 제조하였다.
[반응식 3]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-408
(1) 폴리하이드록시아믹산 제조
2,2-비스(3-아미노-4-하이드록시페닐)헥사플루오로프로판 36.6 g(0.1 mol)과 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 44.4 g(0.1 mol)을 N-메틸피롤리돈(NMP) 189 g(70 중량%)에 넣고 15 ℃에서 4시간 반응시켜 연노란색의 점도가 있는 폴리아믹산을 제조하였다.
(2) 중공사 형성용 도프 용액 조성물 제조
상기 제조된 폴리아믹산에 용매의 제거 없이 첨가제로서 테트라하이드로퓨란 5 중량%를 첨가한 후 혼합하여 균일한 중공사 형성용 도프 용액 조성물을 제조하였다.
(3) 중공사 제조
제조된 중공사 형성용 도프 용액 조성물 내의 기포를 24 시간 동안 상온 및 감압 하에서 제거하고, 유리 필터(공경 60 μm)를 이용하여 이물질을 제거하였다. 이어서 25 ℃에서 유지 후 이중 환상노즐을 통해 방사를 실시하였다. 이때 내부 응고액은 증류수를 사용하였고, 에어갭의 거리는 50 cm으로 설정하였다. 방사된 중공사를 물의 온도가 25 ℃인 응고조에서 응고시켜, 30 m/min의 속도로 권취하였다. 제조된 중공사는 세척 후, 상온에서 3 일간 자연건조하였다. 가열로를 이용하여 비활성 분위기에서 300 ℃, 1 시간 이미드화한 후, 15 ℃/min의 승온속도로 가열, 비활성 분위기에서 500 ℃, 10분 열처리함으로써, 상기 화학식 51로 표시되는 폴리벤즈옥사졸을 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 22,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.31, 면간 거리는 700 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 2)
하기 반응을 통해 폴리티올아믹산을 포함하는 중공사 형성용 도프 용액 조성물로부터 하기 화학식 52로 표시되는 폴리벤즈티아졸을 포함하는 중공사를 제조하였다.
[화학식 52]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-52
출발물질로 2,5-디아미노-1,4-벤젠디티올 디하이드로클로라이드 20.8 g(0.1 mol)와4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 44.4 g(0.1 mol)을 반응시킴에 의해 티올기(-SH)를 갖는 폴리아믹산을 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 52로 표시되는 폴리벤즈티아졸을 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 14,500이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈티아졸 특성밴드인 1484 cm-1(C-S), 1404 cm-1(C-S)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.26, 면간 거리는 610 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 3)
하기 반응을 통해 폴리아미노아믹산을 포함하는 중공사 형성용 도프 용액 조성물로부터 하기 화학식 53으로 표시되는 폴리피롤론을 포함하는 중공사를 제조하였다.
[화학식 53]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-53
출발물질로 3,3'-디아미노벤지딘 21.4 g(0.1 mol)와 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 44.4 g(0.1 mol)을 반응시켜 아민기(-NH2)를 갖는 폴리아믹산을 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 53으로 표시되는 폴리피롤론을 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 18,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리피롤론 특성밴드인 1758 cm-1(C=O), 1625 cm-1(C=N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.28, 면간 거리는 630 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 4)
하기 반응을 통해 폴리하이드록시아믹산을 포함하는 중공사 형성용 도프 용액 조성물로부터 하기 화학식 54로 표시되는 폴리벤즈옥사졸을 포함하는 중공사를 제조하였다.
[화학식 54]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-54
출발물질로 3,3'-디하이드록시벤지딘 21.6 g(0.1 mol)와 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 44.4 g(0.1 mol)을 N-메틸피롤리돈(NMP) 264 g(80 중량%)에 넣고 4 시간 정도 반응시켜 연노란색의 점도가 있는 폴리아믹산을 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 54로 표시되는 폴리벤즈옥사졸을 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 19,000이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1595 cm-1(C=N), 1052 cm-1(C=O)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.18, 면간 거리는 580 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 5)
하기 반응을 통해 폴리아미노아믹산을 포함하는 중공사 형성용 도프 용액 조성물로부터 하기 화학식 55로 표시되는 폴리피롤론을 포함하는 중공사를 제조하였다.
[화학식 55]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-55
출발물질로 벤젠-1,2,4,5-테트라아민 테트라하이드로클로라이드 28.4 g(0.1 mol)와 옥시디프탈릭 안하이드라이드 31.0 g(0.1 mol)을 N-메틸피롤리돈(NMP) 139 g(70 중량%)에 넣고 4 시간 정도 반응시켜 연노란색의 점도가 있는 폴리아미노아믹산을 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 55로 표시되는 폴리피롤론을 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 12,460이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리피롤론 특성밴드인 1758 cm-1(C=O), 1625 cm-1(C=N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.24, 면간 거리는 610 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 6)
하기 반응을 통해 하기 화학식 56으로 표시되는 폴리(벤즈옥사졸-벤즈옥사졸) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 56]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-56
출발물질로 2,2-비스(3-아미노-4-하이드록시페닐)헥사플루오로프로판 36.6g(0.1mol)과 3,3'-디하이드록시벤지딘 21.6 g(0.1 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 272 g(70 중량%)을 첨가하여 완전히 용해시킨 후 4,4'-바이프탈릭 안하이드라이드 58.8g(0.2 mol)을 천천히 주입하여 폴리(하이드록시아믹산-하이드록시아믹산) 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 56으로 표시되는 폴리(벤즈옥사졸-벤즈옥사졸) 공중합체(몰비인 m:l은 5:5)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 18,290이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸의 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.27, 면간 거리는 620 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 7)
하기 반응을 통해 하기 화학식 57로 표시되는 폴리(벤즈옥사졸-이미드) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 57]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-57
출발물질로 2,2-비스(3-아미노-4-하이드록시페닐)헥사플루오로프로판 58.60 g(0.16mol)과 4,4'-디아미노디페닐에테르 8.01 g(0.04 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 393 g(70 중량%)을 첨가하여 완전히 용해시킨 후 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드 64.45 g(20 mol)을 천천히 주입하여 폴리하이드록시아믹산 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 57로 표시되는 폴리(벤즈옥사졸-이미드) 공중합체(몰비인 m:l은 8:2)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 24,210이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸의 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드 및 폴리이미드의 특성밴드인 1720 cm-1(C=O), 1580 cm-1(C=O)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.2, 면간 거리는 600 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 8)
하기 반응을 통해 하기 화학식 58로 표시되는 폴리(피롤론-이미드) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 58]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-58
출발물질로 3,3'-디아미노벤지딘 17.1 g(0.08mol)과 4,4'-디아미노디페닐에테르 4.0 g(0.02 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 196.5 g(75 중량%)을 첨가하여 완전히 용해시킨 후 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 44.4 g(0.1 mol)을 천천히 주입하여 폴리아미노아믹산 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 58로 표시되는 폴리(피롤론-이미드) 공중합체(몰비인 m:l은 8:2)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 19,140이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리피롤론의 특성밴드인 1758 cm-1(C=O), 1625 cm-1(C=N)의 밴드 및 폴리이미드의 특성밴드인 1720 cm-1(C=O), 1580 cm-1(C=O)가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.22, 면간 거리는 640 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 9)
하기 반응을 통해 하기 화학식 59로 표시되는 폴리(벤즈티아졸-이미드) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 59]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-59
출발물질로 2,5-디아미노-1,4-벤젠디티올 디하이드로클로라이드 33.30 g(0.16 mol)과 4,4'-디아미노디페닐에테르 8.0 g(0.04 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 390.3 g(75 중량%)을 첨가하여 완전히 용해시킨 후 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 88.8 g(0.1 mol)을 천천히 주입하여 폴리티올아믹산 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 59로 표시되는 폴리(벤즈티아졸-이미드) 공중합체(몰비인 m:l은 8:2)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 22,360이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈티아졸의 특성밴드인 1484 cm-1(C-S), 1404 cm-1(C-S)의 밴드 및 폴리이미드의 특성밴드인 1720 cm-1(C=O), 1580 cm-1(C=O)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.23, 면간 거리는 650 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 10)
하기 반응을 통해 하기 화학식 60으로 표시되는 폴리(벤즈옥사졸-벤즈티아졸) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 60]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-60
출발물질로 3,3'-디하이드록시벤지딘 10.8 g(0.05 mol)과 2,5-디아미노-1,4-벤젠디티올 디하이드로클로라이드 10.9 g(0.05 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 198.3 g(75 중량%)을 첨가하여 완전히 용해시킨 후 4,4'-바이프탈릭 안하이드라이드 29.4 g(0.1 mol)을 천천히 주입하여 폴리(하이드록시아믹산-티올아믹산) 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 60으로 표시되는 폴리(벤즈옥사졸-벤즈티아졸) 공중합체(몰비인 m:l은 5:5)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 26,850이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸의 특성밴드인 1595 cm-1(C=N), 1052 cm-1(C-N)의 밴드 및 폴리벤즈티아졸의 특성밴드인 1484 cm-1(C-S), 1404 cm-1(C-S)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.22, 면간 거리는 590 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 11)
하기 반응을 통해 하기 화학식 61로 표시되는 폴리(피롤론-피롤론) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 61]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-61
출발물질로 3,3'-디아미노벤지딘 34.2 g(0.16 mol)과 벤젠-1,2,4,5-테트라아민 테트라하이드로클로라이드 11.4 g(0.04 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 403.2 g(75 중량%)을 첨가하여 완전히 용해시킨 후 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 88.8 g(20 mmol)을 천천히 주입하여 폴리(아미노아믹산-아미노아믹산) 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 61로 표시되는 폴리(피롤론-피롤론) 공중합체(몰비인 m:l은 8:2)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 13,270이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리피롤론의 특성밴드인 1758 cm-1(C=O), 1625 cm-1(C=N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.21, 면간 거리는 600 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 12)
하기 반응을 통해 하기 화학식 62로 표시되는 폴리(벤즈옥사졸-벤즈티아졸) 공중합체를 포함하는 중공사를 제조하였다.
[화학식 62]
[규칙 제26조에 의한 보정 23.07.2009] 
Figure WO-DOC-62
출발물질로 2,5-디아미노-1,4-벤젠디티올 디하이드로클로라이드 21.8 g(0.1 mol)과 2,2-비스(3-아미노-4-하이드록시페닐)헥사플루오로프로판 36.6 g(0.16 mol)을 넣고, 용매로서 N-메틸피롤리돈(NMP) 441.6 g(75 중량%)을 첨가하여 완전히 용해시킨 후 4,4'-(헥사플루오로이소프로필리덴)디프탈릭 안하이드라이드 88.8 g(20 mmol)을 천천히 주입하여 폴리(하이드록시아믹산-티올아믹산) 공중합체를 제조한 것을 제외하고, 실시예 1과 동일한 방법으로 상기 화학식 62로 표시되는 폴리(벤즈옥사졸-벤즈티아졸) 공중합체(몰비인 m:l은 8:2)를 포함하는 중공사를 제조하였다.
제조된 중공사의 중량평균 분자량은 16,190이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸의 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드 및 폴리벤즈티아졸의 특성밴드인 1484 cm-1(C-S), 1404 cm-1(C-S)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.29, 면간 거리는 710 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 13)
첨가제로 테트라하이드로퓨란 5 중량%, 폴리비닐피롤리돈 5 중량%를 첨가, 혼합하여 균일한 용액을 제조한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
제조된 중공사의 중량평균 분자량은 22,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.31, 면간 거리는 720 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 14)
첨가제로 테트라하이드로퓨란과 프로필렌글리콜을 5 중량%, 15 중량%를 첨가, 혼합하여 균일한 용액을 제조한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
제조된 중공사의 중량평균 분자량은 22,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.31, 면간 거리는 710 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 15)
공극 조절제로서 첨가제를 폴리에틸렌글리콜(Aldrich, 분자량 2000) 15 중량%를 첨가, 혼합하여 균일한 용액을 제조한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
제조된 중공사의 중량평균 분자량은 22,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.31, 면간 거리는 710 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 16)
300 ℃ 1 시간 이미드화한 후, 450 ℃ 30분간 열처리한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
제조된 중공사의 중량평균 분자량은 22,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.26, 면간 거리는 620 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(실시예 17)
300 ℃에서 1 시간 이미드화한 후, 400 ℃에서 30분간 열처리한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
제조된 중공사의 중량평균 분자량은 22,000 이였고, FT-IR 분석결과 폴리이미드에서는 존재하지 않았던 폴리벤즈옥사졸 특성밴드인 1620 cm-1(C=N), 1058 cm-1(C-N)의 밴드가 확인되었다. 또한 제조된 중공사의 자유체적도는 0.22, 면간 거리는 570 pm였다.
상기 면간 거리는 XRD로 측정하였다. XRD 측정시 필름상태의 샘플을 사용하였고, 광원으로 CuKα를 사용하였고, 10도 내지 40도에서, 0.05도 간격으로 측정하였다.
(비교예 1)
대한민국특허공개 제2002-0015749호에 따라 폴리에테르술폰(Sumitomo, sumikaexcel) 35 중량%를 45 중량%의 NMP에 녹인 후 첨가제로 테트라하이드로퓨란과 에탄올을 5중량%, 15 중량%를 첨가하여 균일한 용액을 제조 후 10 cm 에어갭, 이중노즐을 통해 방사하였다. 흐르는 물에 2 일간 세척하고 진공에서 3 시간 이상 건조하여 중공사를 제조하였다.
(비교예 2)
열처리 공정을 수행하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 중공사를 제조하였다.
(비교예 3)
국제특허공개 제WO2005/007277호에 따라 4,4'-디아미노디페닐 에테르(ODA)와 벤조페논 테트라카르복시산 디안하이드라이드(BTDA)을 반응시켜 제조된 폴리아믹산(PAA) 19 중량%를 N-메틸피롤리돈(NMP)로 용해시킨 용액을 준비하였다. N-메틸피롤리돈에 폴리비닐피롤리돈(PVP) 50 중량%로 용해된 첨가제 용액을 상기 폴리아믹산(PAA) 함유 용액에 추가하였다. 이어서 글리세롤(GLY)과 N-메틸피롤리돈을 상기 용액에 첨가하였다. 최종 제조된 용액은 폴리아믹산/폴리비닐피롤리돈/글리세롤/N-메틸피롤리돈(PAA/PVP/GLY/NMP)을 각각 13/1/17/69 중량%로 포함하였다. 상기 방사 용액은 방사 전 12 시간 동안 혼합하였다.
내부 응고제로 20 ℃의 물을 사용하였고, 방사 용액은 방사 구금을 통해 방사되었다. 내부 응고제의 유량은 12 ml/min으로 조절하였다. 중공사는 에어캡에서의 체류 시간이 6 초가 되도록 4 cm/s의 방사속도로 방사되었다. 이때 막은 30 ℃, 100% 물에서 응고되었다. 이어서, 상온에서 잔류 용매 및 글리세롤의 추출이 완료될 때까지 2 내지 4 시간 동안 물로 세척하였다. 그리고 공기에서 건조하였다. 그 다음 질소 퍼지를 구비한 오븐 내에서 이미드화하였다. 3 시간 동안 150 ℃까지 승온 가열, 150 ℃에서 1 시간 동안 가열, 2 시간 동안 250 ℃까지 승온 가열, 250 ℃에서 2 시간 동안 가열하였고, 4 시간 동안 상온에서 서서히 냉각하였다. 제조된 폴리이미드/PVP 막은 외경이 2.2 mm이고, 막 두께가 0.3 mm 이었다.
(실험예 1) 전자주사현미경 분석
도 1, 도 2 및 도 3은 본 발명의 실시예 1에서 제조된 중공사의 일부 단면을 100배, 500배, 5,000배 확대한 전자주사현미경 사진이다. 도 1로부터 실시예 1에서 제조된 중공사는 동심원으로 사방의 두께가 균일하고, 매크로기공 및 메조기공이 균일하게 분포되어 있음을 확인할 수 있다. 도 2는 실시예 1에서 제조된 중공사의 도면으로 벽 두께가 120마이크로미터 정도로 균일하게 제조되었으며, 중공사 내외부 표면에 유효 박막층이 존재할 수 있음을 보여준다. 도 3은 실시예 1에서 제조된 중공사의 바깥쪽 표면에 대한 단면으로 2 마이크로미터 수준의 유효박막층이 균일하게 형성되었음을 잘 나타낸다.
도 4, 도 5 및 도 6은 본 발명의 실시예 14에서 제조된 중공사의 일부 단면을 100배, 1,000배, 10,000배 확대한 전자주사현미경 사진이다. 도 4로부터 실시예 14에서 제조된 중공사는 동심원으로 사방의 두께가 균일하고, 매크로기공 및 메조기공이 균일하게 분포되어 있음을 확인할 수 있다. 도 5로부터 실시예 14에서 제조된 중공사는 80 마이크로미터 내외의 두께를 가지고 있으며, 매크로기공이 존재하지 않는 스펀지 구조로 형성된 것을 확인할 수 있다. 도 6으로부터 실시예 14에서 제조된 중공사는 바깥쪽 표면에서 3마이크론 내외의 두께를 가지는 유효박막층과 서브-레이어(sub-layer)로써 메조기공으로 구성된 스펀지 구조를 확인할 수 있다.
또한 도 1 내지 도 6을 참조하면, 본 발명의 중공사는 분리층의 표면에 결함이 존재하지 않음을 알 수 있다.
(실험예 2) 기체 투과도 및 선택도 측정
실시예 1 내지 17 및 비교예 1 내지 3으로부터 제조된 중공사의 기체 투과도 및 선택도를 알아보기 위해 하기와 같이 수행하고, 그 결과를 표 1, 도 7 및 도 8에 나타내었다.
기체 투과도는 막에 대한 기체의 투과속도를 나타내는 지수로, 제조된 중공사로 기체 투과도 측정용 분리막 모듈을 제조하고 하기 수학식 1에 의해 기체에 대한 투과유량을 측정하였다. 기체투과단위는 GPU(Gas Permeation Unit, 1×10-6 cm3/cm2·sec·cmHg)를 사용하였다.
선택도는 동일한 막으로 개별기체 단독으로 측정된 투과도의 비율로 나타내었다.
[수학식 1]
Figure PCTKR2009002644-appb-I000125
상기 수학식 1에서,
P는 기체 투과도를 나타내고, dp/dt는 정상상태 하에서 압력 증가율이고, V는 하부 부피이고, Pf는 상부와 하부 사이의 압력차이다.
T는 측정시의 온도이고, Aeff는 유효면적이며 P0와 T0는 표준 압력과 온도이다.
표 1
구분 H2투과도(GPU) O2투과도(GPU) CO2투과도(GPU) O2/N2선택도 CO2/CH4선택도
실시예 1 1,417 396 1,821 4.6 39.6
실시예 2 671 125 314 5.4 17.4
실시예 3 396 92 378 4.2 36.3
실시예 4 86 5.2 18.6 6.4 48.9
실시예 5 149 41 175 6.6 48.6
실시예 6 417 67 289 6.4 43.1
실시예 7 512 148 451 4.4 19.3
실시예 8 200 40 209 5.1 36.7
실시예 9 1,100 247 462 6.5 21.6
실시예 10 509 110 364 6.1 33.1
실시예 11 350 89 451 5.6 41.0
실시예 12 3,200 790 3,011 4.0 20.5
실시예 13 640 127 401 4.7 21.0
실시예 14 2,153 607 2,842 5.0 42.4
실시예 15 2,957 852 3,651 4.5 29.4
실시예 16 648 103 476 5.0 52.3
실시예 17 138 15 60 7.1 49.8
비교예 1 65 16 52 5.0 31.1
비교예 2 21.7 1.42 23.6 4.9 20.7
비교예 3 12.1 0.66 2.47 6.0 30.9
상기 표 1을 참조하면, 본 발명의 실시예 1 내지 17에 따른 중공사의 경우 비교예 1 내지 3과 비교하여 H2, O2, CO2 등의 기체 종에 대한 기체 투과도가 매우 우수하다는 것을 알 수 있다.
도 7은 본 발명의 실시예 1 내지 17 및 비교예 1 내지 3에서 제조된 중공사의 GPU 단위의 산소 투과도 및 산소/질소 선택도를 비교하여 나타낸 그래프이다.
도 8은 본 발명의 실시예 1 내지 17 및 비교예 1 내지 3에서 제조된 중공사의 GPU 단위의 이산화탄소 투과도 및 이산화탄소/메탄 선택도를 비교하여 나타낸 그래프이다.
도 7 및 도 8을 참조하면, 본 발명의 중공사는 유사한 산소/질소 선택도 또는 이산화탄소/메탄 선택도를 갖는 비교예와 비교하여, 투과도가 매우 우수하다는 것을 알 수 있다.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (44)

  1. 중공사의 중앙부에 위치하는 공동,
    상기 공동 주변에 존재하는 매크로기공, 그리고
    상기 매크로기공 주변에 존재하는 메조기공 및 피코기공을 포함하고,
    상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가지는 중공사로서,
    상기 중공사는 폴리아믹산으로부터 유도되는 고분자를 포함하고,
    상기 폴리아믹산은 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 포함하는 것인, 중공사.
  2. 제1항에 있어서,
    상기 중공사는 표면부에 피코기공으로 이루어지는 치밀층을 포함하는 것인 중공사.
  3. 제2항에 있어서,
    상기 치밀층은 표면에 가까울수록 피코기공의 수가 많아지는 구조로 형성되는 것인 중공사.
  4. 제1항에 있어서,
    상기 2개 이상의 피코기공이 3차원적으로 연결되어 형성된 3차원 네트워크 구조는 연결부위가 좁은 골을 형성하는 모래시계 모양(hourglass shaped)의 구조인 중공사.
  5. 제1항에 있어서,
    상기 작용기는 OH, SH 또는 NH2를 포함하는 것인 중공사.
  6. 제1항에 있어서,
    상기 고분자는 0.15 내지 0.40의 자유 체적도(FFV)를 가지는 것인 중공사.
  7. 제1항에 있어서,
    상기 고분자는 XRD 측정에 의한 면간 거리가 580 pm 내지 800 pm의 범위에 있는 것인 중공사.
  8. 제1항에 있어서,
    상기 고분자는 피코기공을 포함하고,
    상기 피코기공은 양전자 소멸시간 분광분석(positron annihilation lifetime spectroscopy, PALS) 측정에 의한 반가폭(full width at half maximum, FWHM)이 10 pm 내지 40 pm의 범위에 있는 것인 중공사.
  9. 제1항에 있어서,
    상기 고분자는 100 내지 1,000 m2/g의 BET 표면적을 가지는 것인 중공사.
  10. 제1항에 있어서,
    상기 폴리아믹산은 하기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산, 하기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택되는 것인 중공사:
    [화학식 1]
    Figure PCTKR2009002644-appb-I000126
    [화학식 2]
    Figure PCTKR2009002644-appb-I000127
    [화학식 3]
    Figure PCTKR2009002644-appb-I000128
    [화학식 4]
    Figure PCTKR2009002644-appb-I000129
    [화학식 5]
    Figure PCTKR2009002644-appb-I000130
    [화학식 6]
    Figure PCTKR2009002644-appb-I000131
    [화학식 7]
    Figure PCTKR2009002644-appb-I000132
    [화학식 8]
    Figure PCTKR2009002644-appb-I000133
    상기 화학식 1 내지 화학식 8에서,
    Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Ar2는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
    Y는 각각의 반복 단위에서 동일하거나 서로 상이하며, 각각 독립적으로 OH, SH 또는 NH2이고,
    n은 20≤n≤200을 만족하는 정수이고,
    m은 10≤m≤400을 만족하는 정수이고,
    l은 10≤l≤400을 만족하는 정수이다.
  11. 제10항에 있어서,
    상기 Ar1은 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000134
    상기 식에서,
    X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
    W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
    Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
    Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
  12. 제11항에 있어서,
    상기 Ar1은 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000135
    Figure PCTKR2009002644-appb-I000136
  13. 제10항에 있어서,
    상기 Ar2는 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000137
    상기 식에서,
    X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
    W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
    Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
    Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
  14. 제13항에 있어서,
    상기 Ar2는 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000138
    Figure PCTKR2009002644-appb-I000139
    Figure PCTKR2009002644-appb-I000140
  15. 제10항에 있어서,
    상기 Q는 C(CH3)2, C(CF3)2, O, S, S(=O)2 또는 C(=O) 중에서 선택된 것인 중공사.
  16. 제10항에 있어서,
    상기 Ar1은 하기 화학식 A, B 또는 C로 표시되는 작용기이고, 상기 Ar2는 하기 화학식 D 또는 E로 표시되는 작용기이고, 상기 Q는 C(CF3)2인 것인 중공사:
    [화학식 A]
    Figure PCTKR2009002644-appb-I000141
    [화학식 B]
    Figure PCTKR2009002644-appb-I000142
    [화학식 C]
    Figure PCTKR2009002644-appb-I000143
    [화학식 D]
    Figure PCTKR2009002644-appb-I000144
    [화학식 E]
    Figure PCTKR2009002644-appb-I000145
  17. 제10항에 있어서,
    상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산의 공중합체에서의 각 반복 단위 사이의 몰비 또는 상기 화학식 5 내지 화학식 8에서 m:l의 몰비는 0.1:9.9 내지 9.9:0.1인 것인 중공사.
  18. 제1항에 있어서,
    상기 고분자는 하기 화학식 19 내지 화학식 32 중 어느 하나로 표시되는 고분자 또는 이들의 공중합체를 포함하는 것인 중공사:
    [화학식 19]
    Figure PCTKR2009002644-appb-I000146
    [화학식 20]
    Figure PCTKR2009002644-appb-I000147
    [화학식 21]
    Figure PCTKR2009002644-appb-I000148
    [화학식 22]
    Figure PCTKR2009002644-appb-I000149
    [화학식 23]
    Figure PCTKR2009002644-appb-I000150
    [화학식 24]
    Figure PCTKR2009002644-appb-I000151
    [화학식 25]
    Figure PCTKR2009002644-appb-I000152
    [화학식 26]
    Figure PCTKR2009002644-appb-I000153
    [화학식 27]
    Figure PCTKR2009002644-appb-I000154
    [화학식 28]
    Figure PCTKR2009002644-appb-I000155
    [화학식 29]
    Figure PCTKR2009002644-appb-I000156
    [화학식 30]
    Figure PCTKR2009002644-appb-I000157
    [화학식 31]
    Figure PCTKR2009002644-appb-I000158
    [화학식 32]
    Figure PCTKR2009002644-appb-I000159
    상기 화학식 19 내지 화학식 32에서,
    Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Ar1' 및 Ar2는 동일하거나 서로 상이하며 각각 독립적으로 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
    Y''는 O 또는 S 이고,
    n은 20≤n≤200을 만족하는 정수이고,
    m은 10≤m≤400을 만족하는 정수이고,
    l은 10≤l≤400을 만족하는 정수이다.
  19. 제18항에 있어서,
    상기 Ar1은 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000160
    상기 식에서,
    X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
    W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
    Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
    Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
  20. 제19항에 있어서,
    상기 Ar1은 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000162
  21. 제18항에 있어서,
    상기 Ar1' 및 Ar2는 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000163
    상기 식에서,
    X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
    W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
    Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
    Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
  22. 제21항에 있어서,
    상기 Ar1' 및 Ar2는 하기 식으로 표시된 것 중에서 선택되는 것인 중공사:
    Figure PCTKR2009002644-appb-I000164
    Figure PCTKR2009002644-appb-I000165
    Figure PCTKR2009002644-appb-I000166
  23. 제18항에 있어서,
    상기 Q는 C(CH3)2, C(CF3)2, O, S, S(=O)2 또는 C(=O) 중에서 선택된 것인 중공사.
  24. 제18항에 있어서,
    상기 Ar1은 하기 화학식 A, B 또는 C로 표시되는 작용기이고, 상기 Ar1'는 하기 화학식 F, G 또는 H로 표시되는 작용기이고, 상기 Ar2는 하기 화학식 D또는 E로 표시되는 작용기이고, 상기 Q는 C(CF3)2인 것인 중공사:
    [화학식 A]
    Figure PCTKR2009002644-appb-I000167
    [화학식 B]
    Figure PCTKR2009002644-appb-I000168
    [화학식 C]
    Figure PCTKR2009002644-appb-I000169
    [화학식 D]
    Figure PCTKR2009002644-appb-I000170
    [화학식 E]
    Figure PCTKR2009002644-appb-I000171
    [화학식 F]
    Figure PCTKR2009002644-appb-I000172
    [화학식 G]
    Figure PCTKR2009002644-appb-I000173
    [화학식 H]
    Figure PCTKR2009002644-appb-I000174
  25. 제1항에 있어서,
    상기 중공사는 He, H2, N2, CH4, O2, N2, CO2 및 이들의 조합으로 이루어진 군에서 선택되는 1종 이상의 기체에 대한 기체 분리막으로 사용하는 것인 중공사.
  26. 제25항에 있어서,
    상기 중공사의 O2/N2 선택도는 4 이상이고, CO2/CH4 선택도는 30 이상이고, H2/N2 선택도는 30 이상이고, H2/CH4 선택도는 50 이상이고, CO2/N2 선택도는 20 이상이고, He/N2 선택도는 40 이상인 중공사.
  27. 제26항에 있어서,
    상기 중공사의 O2/N2 선택도는 4 내지 20이고, CO2/CH4 선택도는 30 내지 80이고, H2/N2 선택도는 30 내지 80이고, H2/CH4 선택도는 50 내지 90이고, CO2/N2 선택도는 20 내지 50 이고, He/N2 선택도는 40 내지 120인 중공사.
  28. 아민기에 대하여 오르쏘 위치에 존재하는 적어도 하나의 작용기를 포함하는 방향족 디아민 및 디안하이드라이드로부터 제조된 반복단위를 가지는 폴리아믹산;
    유기용매; 및
    첨가제를 포함하고,
    상기 유기용매는 디메틸설폭사이드; N-메틸-2-피롤리돈; N,N-디메틸포름아미드; N,N-디메틸아세트아미드; 메탄올, 에탄올, 2-메틸-1-부탄올 및 2-메틸-2-부탄올로 이루어진 군에서 선택된 알코올; γ-부티로락톤, 사이클로헥사논, 3-헥사논, 3-헵타논, 3-옥타논, 아세톤 및 메틸 에틸 케톤으로 이루어진 군에서 선택된 케톤; 테트라하이드로퓨란; 트리클로로에탄; 및 이들의 조합으로 이루어진 군에서 선택되는 것이고,
    상기 첨가제는 물; 글리세롤, 에틸렌 글리콜, 프로필렌글리콜 및 디에틸렌 글리콜로 이루어진 군에서 선택된 알코올; 폴리비닐알코올, 폴리아크릴산, 폴리아크릴아마이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 키토산, 키틴, 덱스트란 및 폴리비닐피롤리돈으로 이루어진 군에서 선택된 고분자 화합물; 염화리튬, 염화나트륨, 염화칼슘, 리튬아세테이트, 황산나트륨 및 수산화나트륨으로 이루어진 군에서 선택된 염; 및 이들의 조합으로 이루어진 군에서 선택되는 것인 중공사 형성용 도프 용액 조성물.
  29. 제28항에 있어서,
    상기 작용기는 OH, SH 또는 NH2를 포함하는 것인 중공사 형성용 도프 용액 조성물.
  30. 제28항에 있어서,
    상기 폴리아믹산 10 내지 45 중량%, 상기 유기 용매 25 내지 70 중량% 및 상기 첨가제 5 내지 40 중량%를 포함하는 것인 중공사 형성용 도프 용액 조성물.
  31. 제28항에 있어서,
    상기 중공사 형성용 도프 용액 조성물은 점도가 2 Pa·s 내지 200 Pa·s 인 중공사 형성용 도프 용액 조성물.
  32. 제28항에 있어서,
    상기 폴리아믹산은 중량평균 분자량(Mw)이 10,000 내지 200,000인 중공사 형성용 도프 용액 조성물.
  33. 제28항에 있어서,
    상기 폴리아믹산은 하기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산, 하기 화학식 5 내지 화학식 8로 표시되는 폴리아믹산 공중합체, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택되는 것인 중공사 형성용 도프 용액 조성물:
    [화학식 1]
    Figure PCTKR2009002644-appb-I000175
    [화학식 2]
    Figure PCTKR2009002644-appb-I000176
    [화학식 3]
    Figure PCTKR2009002644-appb-I000177
    [화학식 4]
    Figure PCTKR2009002644-appb-I000178
    [화학식 5]
    Figure PCTKR2009002644-appb-I000179
    [화학식 6]
    Figure PCTKR2009002644-appb-I000180
    [화학식 7]
    Figure PCTKR2009002644-appb-I000181
    [화학식 8]
    Figure PCTKR2009002644-appb-I000182
    상기 화학식 1 내지 화학식 8에서,
    Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Ar2는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
    Y는 각각의 반복 단위에서 동일하거나 서로 상이하며, 각각 독립적으로 OH, SH 또는 NH2이고,
    n은 20≤n≤200을 만족하는 정수이고,
    m은 10≤m≤400을 만족하는 정수이고,
    l은 10≤l≤400을 만족하는 정수이다.
  34. 제33항에 있어서,
    상기 Ar1은 하기 식으로 표시된 것 중에서 선택되는 것인 중공사 형성용 도프 용액 조성물:
    Figure PCTKR2009002644-appb-I000183
    상기 식에서,
    X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
    W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
    Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
    Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
  35. 제34항에 있어서,
    상기 Ar1은 하기 식으로 표시된 것 중에서 선택되는 것인 중공사 형성용 도프 용액 조성물:
    Figure PCTKR2009002644-appb-I000184
    Figure PCTKR2009002644-appb-I000185
  36. 제33항에 있어서,
    상기 Ar2는 하기 식으로 표시된 것 중에서 선택되는 것인 중공사 형성용 도프 용액 조성물:
    Figure PCTKR2009002644-appb-I000186
    상기 식에서,
    X1, X2, X3 및 X4는 동일하거나 서로 상이하며 각각 독립적으로 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이고,
    W1 및 W2는 동일하거나 서로 상이하며 각각 독립적으로 O, S, 또는 C(=O)이고,
    Z1은 O, S, CR1R2 또는 NR3이고, 여기서 R1, R2 및 R3는 동일하거나 서로 상이하며 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이고,
    Z2 및 Z3는 동일하거나 서로 상이하며 각각 독립적으로 N 또는 CR4(여기서, R4는 수소 또는 C1 내지 C5 알킬기이다)이나 동시에 CR4는 아니다.
  37. 제36항에 있어서,
    상기 Ar2는 하기 식으로 표시된 것 중에서 선택되는 것인 중공사 형성용 도프 용액 조성물:
    Figure PCTKR2009002644-appb-I000187
    Figure PCTKR2009002644-appb-I000188
    Figure PCTKR2009002644-appb-I000189
  38. 제33항에 있어서,
    상기 Q는 C(CH3)2, C(CF3)2, O, S, S(=O)2 또는 C(=O) 중에서 선택된 것인 중공사 형성용 도프 용액 조성물.
  39. 제33항에 있어서,
    상기 Ar1은 하기 화학식 A, B 또는 C로 표시되는 작용기이고, 상기 Ar2는 하기 화학식 D 또는 E로 표시되는 작용기이고, 상기 Q는 C(CF3)2인 것인 중공사 형성용 도프 용액 조성물:
    [화학식 A]
    Figure PCTKR2009002644-appb-I000190
    [화학식 B]
    Figure PCTKR2009002644-appb-I000191
    [화학식 C]
    Figure PCTKR2009002644-appb-I000192
    [화학식 D]
    Figure PCTKR2009002644-appb-I000193
    [화학식 E]
    Figure PCTKR2009002644-appb-I000194
  40. 제33항에 있어서,
    상기 화학식 1 내지 화학식 4로 표시되는 폴리아믹산의 공중합체에서의 각 반복 단위 사이의 몰비 또는 상기 화학식 5 내지 화학식 8에서 m:l의 몰비는 0.1:9.9 내지 9.9:0.1인 중공사 형성용 도프 용액 조성물.
  41. 제28항 내지 제40항 중 어느 하나의 항에 따른 중공사 형성용 도프 용액 조성물을 방사하여 폴리아믹산계 중공사를 제조하는 단계;
    상기 폴리아믹산계 중공사를 이미드화하여 폴리이미드계 중공사를 얻는 단계; 및
    상기 폴리이미드계 중공사를 열처리하여 얻어진 재배열된 고분자를 포함하는 중공사를 얻는 단계를 포함하고,
    중공사의 중앙부에 위치하는 공동,
    상기 공동 주변에 존재하는 매크로기공, 그리고
    상기 매크로 기공 주변에 존재하는 메조기공 및 피코기공을 포함하고,
    상기 피코기공은 3차원적으로 서로 연결되어 3차원 네트워크를 형성하고 있는 구조를 가지는 중공사의 제조방법.
  42. 제41항에 있어서,
    상기 재배열된 고분자는 하기 화학식 19 내지 화학식 32중 어느 하나로 표시되는 고분자 또는 이들의 공중합체를 포함하는 것인 중공사의 제조방법:
    [화학식 19]
    Figure PCTKR2009002644-appb-I000195
    [화학식 20]
    Figure PCTKR2009002644-appb-I000196
    [화학식 21]
    Figure PCTKR2009002644-appb-I000197
    [화학식 22]
    Figure PCTKR2009002644-appb-I000198
    [화학식 23]
    Figure PCTKR2009002644-appb-I000199
    [화학식 24]
    Figure PCTKR2009002644-appb-I000200
    [화학식 25]
    Figure PCTKR2009002644-appb-I000201
    [화학식 26]
    Figure PCTKR2009002644-appb-I000202
    [화학식 27]
    Figure PCTKR2009002644-appb-I000203
    [화학식 28]
    Figure PCTKR2009002644-appb-I000204
    [화학식 29]
    Figure PCTKR2009002644-appb-I000205
    [화학식 30]
    Figure PCTKR2009002644-appb-I000206
    [화학식 31]
    Figure PCTKR2009002644-appb-I000207
    [화학식 32]
    Figure PCTKR2009002644-appb-I000208
    상기 화학식 19 내지 화학식 32에서,
    Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Ar1' 및 Ar2는 동일하거나 서로 상이하며, 각각 독립적으로 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
    Y''는 O 또는 S 이고,
    n은 20≤n≤200을 만족하는 정수이고,
    m은 10≤m≤400을 만족하는 정수이고,
    l은 10≤l≤400을 만족하는 정수이다.
  43. 제41항에 있어서,
    상기 폴리이미드계 중공사는 하기 화학식 33 내지 화학식 40으로 표시되는 폴리이미드, 이들의 공중합체 및 이들의 블렌드로 이루어진 군으로부터 선택된 1종을 포함하는 것인 중공사의 제조방법:
    [화학식 33]
    Figure PCTKR2009002644-appb-I000209
    [화학식 34]
    Figure PCTKR2009002644-appb-I000210
    [화학식 35]
    Figure PCTKR2009002644-appb-I000211
    [화학식 36]
    Figure PCTKR2009002644-appb-I000212
    [화학식 37]
    Figure PCTKR2009002644-appb-I000213
    [화학식 38]
    Figure PCTKR2009002644-appb-I000214
    [화학식 39]
    Figure PCTKR2009002644-appb-I000215
    [화학식 40]
    Figure PCTKR2009002644-appb-I000216
    상기 화학식 33 내지 화학식 40에서,
    Ar1은 치환 또는 비치환된 4가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 4가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합(fused)되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Ar2는 치환 또는 비치환된 2가의 C6 내지 C24 아릴렌기 및 치환 또는 비치환된 2가의 C4 내지 C24 헤테로 고리기에서 선택되는 방향족 고리기이고, 상기 방향족 고리기는 단독으로 존재하거나; 2개 이상이 서로 접합되어 축합 고리를 형성하거나; 2개 이상이 단일결합, O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2 또는 C(=O)NH의 작용기에 의해 연결되어 있고,
    Q는 O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)p(여기서, 1≤p≤10), (CF2)q(여기서, 1≤q≤10), C(CH3)2, C(CF3)2, C(=O)NH, C(CH3)(CF3), 또는 치환 또는 비치환된 페닐렌기(여기서 치환된 페닐렌기는 C1 내지 C6 알킬기 또는 C1 내지 C6 할로알킬기로 치환된다)이고, 이때 상기 Q는 양쪽 방향족 고리와 m-m, m-p, p-m, 또는 p-p 위치로 연결되고,
    Y는 각각의 반복 단위에서 동일하거나 서로 상이하며, 각각 독립적으로 OH, SH 또는 NH2이고,
    n은 20≤n≤200을 만족하는 정수이고,
    m은 10≤m≤400을 만족하는 정수이고,
    l은 10≤l≤400을 만족하는 정수이다.
  44. 제41항에 있어서,
    상기 열처리는 상기 이미드화 후, 10 내지 30 ℃/min의 승온 속도로 400 내지 550 ℃까지 승온하고, 그 온도로 비활성 분위기 하에서 1 분 내지 1 시간 동안 수행하는 것인 중공사의 제조방법.
PCT/KR2009/002644 2008-05-19 2009-05-19 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법 WO2009142433A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011510421A JP5598679B2 (ja) 2008-05-19 2009-05-19 中空糸、中空糸形成用ドープ溶液組成物、およびそれを用いた中空糸の製造方法
RU2010149304/04A RU2461671C9 (ru) 2008-05-19 2009-05-19 Полое волокно, композиция прядильного раствора для формования полого волокна и способ получения полого волокна с использованием этой композиции
CN2009801281584A CN102099513B (zh) 2008-05-19 2009-05-19 中空纤维、用于形成中空纤维的掺杂溶液组合物和使用所述掺杂溶液组合物制备中空纤维的方法
MX2010012598A MX2010012598A (es) 2008-05-19 2009-05-19 Fibra hueca, composicion de solucion con aditivo para formar una fibra hueca y metodo para fabricar una fibra hueca usando la misma.
EP09750755.2A EP2281925B1 (en) 2008-05-19 2009-05-19 Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0046115 2008-05-19
KR20080046115 2008-05-19
KR2008002861 2008-05-22
KRPCT/KR2008/002861 2008-05-22

Publications (2)

Publication Number Publication Date
WO2009142433A2 true WO2009142433A2 (ko) 2009-11-26
WO2009142433A3 WO2009142433A3 (ko) 2010-03-04

Family

ID=41340676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002644 WO2009142433A2 (ko) 2008-05-19 2009-05-19 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법

Country Status (6)

Country Link
EP (1) EP2281925B1 (ko)
JP (1) JP5598679B2 (ko)
CN (1) CN102099513B (ko)
MX (1) MX2010012598A (ko)
RU (1) RU2461671C9 (ko)
WO (1) WO2009142433A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126152B2 (en) 2013-09-27 2015-09-08 Uop Llc Polybenzoxazole membranes from self-cross-linkable aromatic polyimide membranes
US9211508B2 (en) 2013-09-27 2015-12-15 Uop Llc Polybenzoxazole membranes from self-cross-linkable aromatic polyimide membranes
CN105713213A (zh) * 2015-11-19 2016-06-29 江西师范大学 一种基于分子组装的聚吡咙薄膜的制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041909A2 (ko) * 2008-10-09 2010-04-15 한양대학교 산학협력단 고분자 및 이의 제조방법
WO2010043705A1 (en) * 2008-10-17 2010-04-22 Solvay Advanced Polymers, L.L.C. Fiber or foil from polymers with high tg and process for their manufacture
JP2015051407A (ja) * 2013-09-09 2015-03-19 富士フイルム株式会社 ガス分離複合膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
KR101571393B1 (ko) * 2013-09-26 2015-11-24 한양대학교 산학협력단 막 증류용 열전환 폴리(벤즈옥사졸-이미드) 공중합체 분리막 및 그 제조방법
WO2015091122A1 (de) * 2013-12-17 2015-06-25 Evonik Fibres Gmbh Hochselektive polyimidmembranen mit erhöhter permeanz aus blockcopolyimiden
MX2017001075A (es) 2014-07-24 2017-05-04 Toray Industries Pelicula de carbono para separacion de fluidos, modulo de pelicula de separacion de fluidos y metodo para producir pelicula de carbono para separacion de fluidos.
US10888822B2 (en) * 2014-09-30 2021-01-12 Toray Industries, Inc. Separation membrane
WO2016136404A1 (ja) * 2015-02-27 2016-09-01 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
CN105821662B (zh) * 2015-09-29 2018-07-13 江西师范大学 一种基于分子组装的聚吡咙/tpe复合材料的制备方法
CN105714408B (zh) * 2015-09-29 2018-08-21 江西师范大学 一种基于分子组装的聚吡咙/聚酰亚胺/氧化石墨烯三元纳米复合材料的制备方法
CN105714406B (zh) * 2015-09-29 2018-08-21 江西师范大学 一种基于分子组装的聚吡咙/尼龙纤维复合材料的制备方法
CN105714409B (zh) * 2015-09-29 2019-01-29 江西师范大学 一种基于电纺的分子组装聚吡咙/聚酰亚胺复合纳米纤维的制备方法
CN105714411B (zh) * 2015-10-09 2018-07-17 江西师范大学 一种聚吡咙/聚醚砜/碳纳米管三元复合材料的制备方法
CN105714410B (zh) * 2015-10-09 2018-08-21 江西师范大学 一种基于分子组装的聚吡咙/聚酰亚胺复合纤维的制备方法及其制品
CN105734715B (zh) * 2015-11-19 2018-08-21 江西师范大学 一种基于分子组装的聚吡咙纤维的制备方法
CN110205820B (zh) * 2019-04-30 2020-06-12 东华大学 一种功能纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133132A (en) 1960-11-29 1964-05-12 Univ California High flow porous membranes for separating water from saline solutions
US4717393A (en) 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4851505A (en) 1988-04-13 1989-07-25 E. I. Du Pont De Nemours And Company Highly soluble aromatic polyimides
US4880442A (en) 1987-12-22 1989-11-14 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4912197A (en) 1987-08-14 1990-03-27 E. I. Du Pont De Nemours And Company Highly soluble clear polyimides
KR20020015749A (ko) 2000-08-23 2002-03-02 하성용 이중 상분리유도 법을 이용한 기체분리막 제조방법
WO2005007277A1 (en) 2003-07-18 2005-01-27 UNIVERSITé LAVAL Solvent resistant asymmetric integrally skinned membranes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN149938B (ko) * 1977-11-30 1982-06-12 Monsanto Co
JPH01159024A (ja) * 1987-12-16 1989-06-22 Central Glass Co Ltd 気体分離膜
RU1814737C (ru) * 1988-06-29 1993-05-07 Е.И.Дюпон Де Немур Энд Компани Способ изготовлени электропровод щей полиимидной пленки
US5034026A (en) * 1990-04-20 1991-07-23 The Dow Chemical Company Polybenzazole polymers containing indan moieties
US5413852A (en) * 1991-08-01 1995-05-09 Hoechst Celanese Corp. SIXEF™-durene polyimide hollow fibers
US5558936A (en) * 1991-08-01 1996-09-24 Hoechst Celanese Corp High selectivity hollow fibers
US5591250A (en) * 1993-08-09 1997-01-07 Gas Research Institute Material and process for separating carbon dioxide from methane
JP2828001B2 (ja) * 1995-01-11 1998-11-25 財団法人韓國化學研究所 水/有機溶媒分離または気体分離用の非対称中空繊維膜とその製造方法
JPH08290046A (ja) * 1995-02-24 1996-11-05 Dainippon Ink & Chem Inc ポリイミダゾピロロン中空糸複合膜及びその製造方法
JPH08243367A (ja) * 1995-03-13 1996-09-24 Dainippon Ink & Chem Inc ポリイミド複合膜の製造方法
JP3361655B2 (ja) * 1995-05-10 2003-01-07 エヌオーケー株式会社 多孔質セラミックス複合中空糸膜およびその製造法
US5753008A (en) * 1995-07-12 1998-05-19 Bend Research, Inc. Solvent resistant hollow fiber vapor permeation membranes and modules
US5725769A (en) * 1995-07-18 1998-03-10 Bend Research, Inc. Solvent-resistant microporous polymide membranes
RU2169803C2 (ru) * 1996-07-23 2001-06-27 Кимберли-Кларк Уорлдвайд, Инк. Микропористое волокно
US6383258B1 (en) * 2000-12-19 2002-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Copolyimide gas separation membranes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133132A (en) 1960-11-29 1964-05-12 Univ California High flow porous membranes for separating water from saline solutions
US4717393A (en) 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4912197A (en) 1987-08-14 1990-03-27 E. I. Du Pont De Nemours And Company Highly soluble clear polyimides
US4880442A (en) 1987-12-22 1989-11-14 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4851505A (en) 1988-04-13 1989-07-25 E. I. Du Pont De Nemours And Company Highly soluble aromatic polyimides
KR20020015749A (ko) 2000-08-23 2002-03-02 하성용 이중 상분리유도 법을 이용한 기체분리막 제조방법
WO2005007277A1 (en) 2003-07-18 2005-01-27 UNIVERSITé LAVAL Solvent resistant asymmetric integrally skinned membranes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALDRICH, MOLECULAR WEIGHT, 2000
See also references of EP2281925A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126152B2 (en) 2013-09-27 2015-09-08 Uop Llc Polybenzoxazole membranes from self-cross-linkable aromatic polyimide membranes
US9211508B2 (en) 2013-09-27 2015-12-15 Uop Llc Polybenzoxazole membranes from self-cross-linkable aromatic polyimide membranes
CN105713213A (zh) * 2015-11-19 2016-06-29 江西师范大学 一种基于分子组装的聚吡咙薄膜的制备方法
CN105713213B (zh) * 2015-11-19 2018-11-06 江西师范大学 一种基于分子组装的聚吡咙薄膜的制备方法

Also Published As

Publication number Publication date
CN102099513A (zh) 2011-06-15
EP2281925B1 (en) 2018-08-22
WO2009142433A3 (ko) 2010-03-04
RU2461671C2 (ru) 2012-09-20
JP2011523589A (ja) 2011-08-18
RU2461671C9 (ru) 2013-02-27
CN102099513B (zh) 2012-12-12
RU2010149304A (ru) 2012-06-27
EP2281925A2 (en) 2011-02-09
JP5598679B2 (ja) 2014-10-01
EP2281925A4 (en) 2011-08-31
MX2010012598A (es) 2011-04-26

Similar Documents

Publication Publication Date Title
WO2009142433A2 (ko) 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법
WO2009142434A2 (ko) 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법
WO2010041909A2 (ko) 고분자 및 이의 제조방법
US4932982A (en) Copolyimide gas separation membranes derived from substituted phenylene diamines and substituted methylene dianilines
US4717394A (en) Polyimide gas separation membranes
US4880442A (en) Polyimide gas separation membranes
US4912197A (en) Highly soluble clear polyimides
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2013133508A1 (ko) 두 개의 치환기를 비대칭 구조로 포함하는 디아민 화합물, 이를 사용하여 제조된 중합체
US4932983A (en) Copolyimide gas separation membranes derived from substituted methylene dianilines and unsubstituted diamines
JPS62244419A (ja) ポリイミド気体分離膜
JPH053327B2 (ko)
JP2609683B2 (ja) 高度に可溶性の芳香族ポリイミド
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2011004938A1 (ko) 높은 패킹구조를 갖는 폴리아믹산 수지 조성물로부터 제조된 저온경화형 폴리이미드 절연체 및 이를 이용한 낮은 히스테리스 특성 보유 전유기박막트랜지스터 소자
WO2016175344A1 (ko) 폴리이미드 수지 및 이를 이용한 필름
WO2014104557A1 (ko) 낮은 열팽창 계수를 갖는 신규한 폴리아미드이미드
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
WO2014069786A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2017146457A2 (ko) 열전환 폴리(벤즈옥사졸-이미드) 공중합체 기반의 초박형 복합막 및 그 제조방법
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2015182925A1 (ko) 신규 디아민 합성 및 이를 이용한 액정 배향제
WO2015072692A1 (ko) 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체, 이를 포함하는 기체분리막 및 그 제조방법
WO2013172554A1 (ko) 고분자, 이의 제조 방법 및 상기 고분자를 포함하는 성형품
WO2011040760A2 (ko) 사슬 내부에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에터) 공중합체로 이루어진 고분자 염제거막

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128158.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750755

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/012598

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011510421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7546/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009750755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010149304

Country of ref document: RU