WO2009142206A1 - ラウロラクタムの製造方法 - Google Patents

ラウロラクタムの製造方法 Download PDF

Info

Publication number
WO2009142206A1
WO2009142206A1 PCT/JP2009/059197 JP2009059197W WO2009142206A1 WO 2009142206 A1 WO2009142206 A1 WO 2009142206A1 JP 2009059197 W JP2009059197 W JP 2009059197W WO 2009142206 A1 WO2009142206 A1 WO 2009142206A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
rearrangement
cyclododecanone oxime
water
trichlorotriazine
Prior art date
Application number
PCT/JP2009/059197
Other languages
English (en)
French (fr)
Inventor
釘本 純一
暢宏 井伊
隆志 土井
悟 藤津
忠士 五嶋
下村 秀雄
良太 安松
河井 譲治
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2010513027A priority Critical patent/JP5585445B2/ja
Priority to US12/993,451 priority patent/US8338589B2/en
Priority to ES09750568.9T priority patent/ES2562797T3/es
Priority to EP09750568.9A priority patent/EP2292599B1/en
Publication of WO2009142206A1 publication Critical patent/WO2009142206A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D225/00Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom
    • C07D225/02Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom not condensed with other rings

Definitions

  • the present invention relates to a method for producing laurolactam from cyclododecanone oxime by an industrially advantageous and simple process.
  • a method for industrially producing an amide compound a method of Beckmann rearrangement of a corresponding oxime compound is common.
  • industrially useful ⁇ -caprolactam is produced by Beckmann rearrangement of cyclohexanone oxime. Concentrated sulfuric acid and fuming sulfuric acid are used as the rearrangement catalyst, but these strong acids are required in excess of the stoichiometric amount, and a large amount of ammonium sulfate is by-produced during neutralization.
  • Laurolactam which is a raw material of nylon 12, is produced in the same manner, but the production process is more complicated because the intermediate product cyclododecanone oxime has a high melting point.
  • both cyclohexanone oxime and ⁇ -caprolactam have relatively low melting points, so that oximation and rearrangement can be carried out without solvent, but in the production of laurolactam, a reaction solvent is required.
  • This reaction solvent must have high solubility of cyclododecanone oxime, and must not react with concentrated sulfuric acid or fuming sulfuric acid, and its selection is very limited.
  • Patent Document 1 The method described in Patent Document 1 is as follows. Cyclododecanone oxime is oximeated using isopropylcyclohexane as a solvent, and then a solution of cyclododecanone oxime obtained by liquid separation is added gradually to concentrated sulfuric acid at low temperature to add cyclododecanone oxime sulfate adduct After the isopropylcyclohexane is separated and recovered, the temperature of the sulfuric acid solution of the remaining cyclododecanone oxime sulfate adduct is raised to perform Beckmann rearrangement of the oxime.
  • Patent Document 2 The method described in Patent Document 2 is as follows. A mixed solution of cyclododecanone and cyclohexanone and an aqueous hydroxylamine solution are mixed to perform oximation. Since the produced cyclohexanone oxime has a low melting point and is a good solvent for cyclododecanone oxime, the reaction can be carried out at 100 ° C. or lower and normal pressure. In addition, since cyclohexanone oxime has appropriate hydrophilicity, the oximation reaction proceeds rapidly, and the cyclohexanone and cyclododecanone are sent to the rearrangement step without remaining. Concentrated sulfuric acid and fuming sulfuric acid are used as the rearrangement catalyst.
  • the produced laurolactam has a high melting point, it has a high solubility in the low melting point caprolactam produced at the same time, so that the reaction can be carried out even at a temperature of 100 ° C. or lower.
  • the obtained rearrangement reaction liquid is neutralized with aqueous ammonia and extracted with an organic solvent.
  • Caprolactam exhibits some water solubility, but is extracted to the organic solvent side by the salting-out effect of ammonium sulfate generated by neutralization.
  • a large amount of water is added to the solution containing the extracted laurolactam and caprolactam, and caprolactam is extracted to the aqueous phase side.
  • An organic solvent is recovered from the separated organic phase, and laurolactam is distilled and purified.
  • the aqueous phase is concentrated, then impurities are removed, and caprolactam is purified.
  • This method is an excellent method capable of producing both laurolactam and caprolactam, but the laurolactam production process has the following problems.
  • a large amount of equipment costs are required for the separation and purification of caprolactam, resulting in poor investment efficiency. Also, energy efficiency such as concentration of caprolactam aqueous solution is poor.
  • the production ratio of laurolactam / caprolactam is limited.
  • Caprolactam has a lower added value than laurolactam, and the utilization efficiency of hydroxylamine is also low.
  • Patent Document 3 includes (1) a carbon atom having at least one carbon atom having a leaving group as an atom constituting an aromatic ring, and (2) a carbon atom having a heteroatom or an electron withdrawing group as an atom constituting an aromatic ring. (3) two of the carbon atoms having a heteroatom or an electron withdrawing group are located in the ortho or para position of the carbon atom having the leaving group.
  • a method for performing Beckmann rearrangement of an oxime compound in a polar solvent using an aromatic ring-containing compound as a rearrangement catalyst is described.
  • Non-Patent Document 1 describes details of the rearrangement reaction using the rearrangement catalyst disclosed in Patent Document 3.
  • Patent Documents 4, 5 and 6 focus on the low rearrangement yield when using a nonpolar solvent in Nonpatent Document 1, and improve this to expand the range of usable solvents to nonpolar solvents. ing.
  • nonpolar solvents are more thermally and chemically stable than polar solvents, have a low boiling point, and have a low latent heat of vaporization, making it easy to recover and recycle solvents, while dissolving highly polar organic and inorganic substances. hard.
  • the inventors selected trichlorotriazine among the catalysts disclosed in Patent Document 3, and examined the reaction with cyclododecanone oxime in detail.
  • ketoxime R 1 —C (—R 2 ) ⁇ N—OH: where R 1 and R 2 represent an alkyl group and may be linked to form a cycloalkane.
  • the catalytic mechanism of trichlorotriazine (R 3 -Cl: where R 3 represents a dichlorotriazyl group) in the Beckmann rearrangement of.) Is explained as follows.
  • MOCT cyclododecylideneaminoxydichlorotriazine
  • Trichlorotriazine is known to be hydrolyzed with water to produce trioxytriazine.
  • Trioxytriazine has no rearrangement catalytic ability.
  • trichlorotriazine has three detachable chlorine atoms, and it is not clear how many of them are hydrolyzed to lose the activity as a rearrangement catalyst. Therefore, if the water in the cyclododecanone oxime solution used for the rearrangement reaction is completely removed, it is speculated that the rearrangement reaction can be completed even when a small amount of trichlorotriazine is added.
  • cyclododecanone oxime has a hydrophilic oxime group, it easily adsorbs water, and it is not easy to dry the cyclododecanone oxime solution completely.
  • the inventors first analyzed the reaction solution over time to elucidate the mechanism of dislocation reaction termination. As a result, it was found that when the rearrangement reaction of cyclododecanone oxime proceeds, trichlorotriazine is regenerated and gradually changed to trioxytriazine.
  • the chemical structure of trichlorotriazine which is a rearrangement catalyst added in the rearrangement step, changes, and the one that loses the rearrangement activity and precipitates as a solid is called an inert precipitate, and there is no change in the chemical structure.
  • What is dissolved in the reaction solution is called a residual catalyst to be distinguished.
  • a chemical structure that changes but has catalytic activity is called an active intermediate.
  • the catalyst is used as a comprehensive name including the above three.
  • the inventors have studied the rearrangement reaction of cyclododecanone oxime using trichlorotriazine as a catalyst, and as a result, the following invention has been achieved.
  • the present invention relates to the following matters.
  • the first aspect of the present invention that solves the above-mentioned problem is to use the water in the cyclododecanone oxime solution.
  • a method for producing laurolactam is characterized in that dehydration is carried out to 2 mol or less of trichlorotriazine.
  • a rearrangement reaction in which trichlorotriazine is used as a rearrangement catalyst, and liquid phase rearrangement of cyclododecanone oxime is carried out in a nonpolar solvent so that the conversion rate is 80% or more and less than 99%.
  • a method for producing laurolactam comprising: a step; (b) a post-heating step for completing the rearrangement reaction; and (c) a catalyst removal step for removing the inert precipitate, the active intermediate, and the residual catalyst. It is in.
  • the first aspect has a high selectivity without stopping the reaction at a constant conversion rate.
  • laurolactam can be produced in a high yield.
  • precipitation of the inert precipitate generated from trichlorotriazine within the reaction step is prevented, and the inert precipitate, the active intermediate, and the residual The catalyst can be removed and laurolactam can be produced industrially stably.
  • FIG. 30 is a schematic diagram of Example 28.
  • the present invention relates to a method for producing laurolactam from cyclododecanone oxime by liquid phase rearrangement reaction using trichlorotriazine as a rearrangement catalyst.
  • the raw material cyclododecanone oxime can be produced by a conventional method.
  • a method for producing dodecanone oxime (photonitrosation) is mentioned.
  • a method of producing N-hydroxyphthalimide as a catalyst from cyclododecane and nitrite is known, but the most industrially established production method is to react cyclododecanone with hydroxylamine. Is the method.
  • both the oximation and rearrangement reactions must be performed using a solvent.
  • the solvents for the oximation and the rearrangement reaction are the same, the solvent used in the oximation reaction can be used as it is for the rearrangement reaction.
  • those suitable as a solvent for the rearrangement reaction include nitrile compounds such as acetonitrile and benzonitrile, ester compounds such as ethyl acetate and butyl acetate, carboxylic acids such as acetic acid and propionic acid, benzene, toluene and xylene. And aromatic hydrocarbons such as cyclooctane, cyclododecane and isopropylcyclohexane, and hydrogenated products of condensed aromatic compounds such as decalin and tetralin.
  • nitrile compounds such as acetonitrile and benzonitrile
  • ester compounds such as ethyl acetate and butyl acetate
  • carboxylic acids such as acetic acid and propionic acid
  • benzene toluene and xylene.
  • aromatic hydrocarbons such as cyclooctane, cyclododecane and isopropylcycl
  • aromatic hydrocarbons such as benzene, toluene and xylene, cycloaliphatic hydrocarbons such as cyclooctane, cyclododecane and isopropylcyclohexane, and hydrogenated products of condensed aromatic compounds such as decalin and tetralin are oximed. It can also be used as a solvent for the reaction, and it is preferable because there is no need for solvent exchange.
  • non-polar solvents of aromatic hydrocarbons such as benzene, toluene and xylene are particularly preferred because they have high solubility of cyclododecanone oxime, a rearrangement apparatus is compact, and energy for solvent recovery and recycling can be saved.
  • those suitable as the solvent for the rearrangement reaction are the same as in the first embodiment, such as nitrile compounds, carboxylic acids, aromatic hydrocarbons, alicyclic hydrocarbons, hydrogenated products of condensed aromatic compounds, etc. Is mentioned.
  • nonpolar solvents such as aromatic hydrocarbons, alicyclic hydrocarbons, hydrogenated condensed aromatic compounds, etc. can also be used as solvents for oximation reactions, so solvent exchange is necessary. It is preferable because there is no.
  • these are nonpolar solvents they can be easily separated from the aqueous phase when the catalyst is washed away with water.
  • aromatic hydrocarbons such as benzene, toluene, and xylene are particularly preferable because cyclododecanone oxime has high solubility and the rearrangement apparatus becomes compact.
  • cyclododecanone oxime production method from cyclododecanone and hydroxylamine consists of a solution prepared by dissolving oil-soluble cyclododecanone in the solvent and an aqueous solution of water-soluble hydroxylamine.
  • This is an oil / water two-phase reaction, and cyclododecanone oxime having an oxime group, which is a hydrophilic group, is easy to cover water. For this reason, 4000 to 10,000 ppm of water is present in the cyclododecanone oxime solution after separation of the aqueous phase.
  • the method for removing the water dissolved in the cyclododecanone oxime solution is not particularly limited, but the most common method is a method of distilling it off together with the solvent.
  • the solid cyclododecanone oxime may be dried by heating under reduced pressure to remove water, and the rearrangement solvent may be added to perform the rearrangement reaction.
  • dehydration may be carried out by employing a method of adding a dehydrating agent such as molecular sieves or a method using a dehumidifying film on the condition that the rearrangement reaction is not inhibited.
  • the residual amount of water in the cyclododecanone oxime solution after dehydration is 2 mol or less, preferably equimolar or less of trichlorotriazine as a rearrangement catalyst.
  • the residual amount of water in the cyclododecanone oxime solution after dehydration is preferably 2 mols or less, more preferably equimolar or less of trichlorotriazine. If there is too much water remaining, trioxytriazine is likely to be generated by hydrolysis of trichlorotriazine.
  • the rearrangement reaction is not completed, and cyclododecanone oxime remains in the rearrangement reaction solution to deteriorate the productivity, and a step of separating cyclododecanone oxime and laurolactam is required, which may be undesirable.
  • the suitable residual amount of water in the cyclododecanone oxime solution is indicated by the concentration, in the first and second embodiments, it is preferably 2000 ppm or less, more preferably 600 ppm or less.
  • the allowable water content depends on the ratio to the trichlorotriazine used, so increasing the amount of trichlorotriazine increases the allowable water range, but if the water concentration in the cyclododecanone oxime solution is too high, a large amount of trichlorotriazine is used. And the cost of the catalyst increases. In addition, hydrolysis of cyclododecanone oxime also proceeds. Therefore, if the water concentration is too high, the laurolactam yield decreases.
  • cyclododecanone oxime The higher the concentration of cyclododecanone oxime, the better the productivity and the better, but it is limited by the solubility of cyclododecanone.
  • the upper limit of the cyclododecanone oxime concentration is 60% by weight.
  • the amount of trichlorotriazine used varies depending on the type of solvent, the water content, and the concentration of cyclododecanone oxime, but is 0.05 mol% or more and 5.0 mol% or less with respect to cyclododecanone oxime.
  • the concentration of cyclododecanone oxime is 50% by weight
  • the water concentration in the cyclododecanone oxime solution is 600 ppm, 0.3 mol% or more with respect to cyclododecanone oxime. It is 0 mol% or less, preferably 0.4 mol% or more and 1.0 mol% or less.
  • the rearrangement reaction rate can be improved by adding an acid such as hydrogen chloride as a promoter.
  • Lewis acid is preferable because it can improve the rearrangement reaction rate without accelerating the hydrolysis of cyclododecanone oxime.
  • the Lewis acid is not particularly limited and includes zinc chloride, aluminum chloride, antimony pentachloride, tin tetrachloride, etc., but zinc chloride and tin tetrachloride are preferred, and zinc chloride is particularly effective in improving the reaction rate. Is remarkable and preferable.
  • the amount of the Lewis acid used is 0.1 mol% or more and 10 mol% or less, preferably 0.2 mol% or more and 5 mol% or less with respect to cyclododecanone oxime.
  • the amount of Lewis acid used is too small, the effect of improving the rearrangement reaction rate is not recognized, which is not preferable.
  • the amount of Lewis acid used is excessive, no further improvement effect of the rearrangement reaction rate is observed, and the catalyst removal device becomes excessive for removing excess Lewis acid, and the operation such as waste water treatment becomes complicated. .
  • the reaction temperature of the rearrangement reaction is 50 ° C. to 160 ° C., preferably 80 ° C. to 110 ° C.
  • the temperature is from 50 ° C to 160 ° C, preferably from 70 ° C to 110 ° C. If the reaction temperature is too low, the reaction rate is slow and the reaction time is prolonged, which is not preferable. On the other hand, when the reaction temperature is too low, the solubility of cyclododecanone oxime in the rearrangement solvent is lowered, the amount of the solvent is increased, and the amount of recovery / recycle is increased.
  • reaction temperature when the reaction temperature is too high, the temperature rapidly rises due to the exothermic heat of the rearrangement reaction, which is not preferable in terms of reaction control. Furthermore, if the reaction temperature is too high, side reactions such as condensation reactions occur, which not only lowers the yield of the rearrangement reaction but also undesirably deteriorates the product quality such as coloring.
  • the reaction time of the rearrangement reaction is usually 5 minutes to 10 hours, preferably 20 minutes to 4 hours. Although the reaction time varies depending on the catalyst concentration and reaction temperature, the reaction time is adjusted under the above reaction conditions so that the reaction can be easily controlled and the reactor volume does not become excessive.
  • the reaction may be performed under reduced pressure, normal pressure, or increased pressure.
  • the adoption of the closed process is a preferable process because it reduces the adsorption and detoxification equipment of hydrogen chloride desorbed from trichlorotriazine and promotes the rearrangement reaction with hydrogen chloride itself as a cocatalyst.
  • a commonly used reaction apparatus such as a batch reaction apparatus, a tubular continuous reaction apparatus, a stirred tank type continuous reaction apparatus or the like can be used, but from the viewpoint of productivity and ease of operation such as temperature control.
  • a stirred tank type continuous reaction apparatus is particularly suitable.
  • the inventor has found that trioxytriazine is likely to be generated when the conversion of cyclododecanone oxime increases.
  • a nonpolar solvent is used as a rearrangement solvent
  • trioxytriazine is difficult to dissolve in a nonpolar solvent, and thus settles as an inert precipitate and easily adheres to the reactor wall. Adhesion of deposits to the wall lowers the thermal conductivity of the wall and makes it difficult to remove a large amount of reaction heat generated by the rearrangement reaction by heat exchange. . Therefore, it is necessary to prevent the precipitation of trioxytriazine in the rearrangement reaction step, and the upper limit of the cyclododecanone oxime conversion rate is less than 99%, preferably less than 98%.
  • the reaction liquid extracted from the rearrangement reaction step is heated and matured in the next postheating step to complete the rearrangement reaction.
  • the reactor used in the rearrangement reaction step and the reactor used in the postheating step are: Preferably they are different.
  • the conversion rate of cyclododecanone oxime in the rearrangement step is too low, heat generation in the post-heating step is large, and active heat removal is required, which is not preferable.
  • there exists a minimum in the conversion rate of cyclododecanone oxime in a rearrangement reaction process and it is 80% or more, More preferably, it is 90% or more.
  • both the rearrangement reaction step and the post-heating step are steps for producing laurolactam by the rearrangement reaction of cyclododecanone oxime, but the former actively removes heat to control the reaction rate.
  • the purpose of this method is to selectively produce laurolactam, while the latter is to retain the rearrangement reaction solution only by heat retention or slight heating / cooling to complete the rearrangement reaction of cyclododecanone oxime. It is aimed. Therefore, precipitation of trioxytriazine or the like has a serious adverse effect on the former, but hardly affects the latter.
  • the temperature of the post-heating step is 60 ° C. to 150 ° C., preferably 70 ° C. to 110 ° C. If the heating temperature is too high, the yield of laurolactam is decreased due to side reactions such as condensation, and the quality of laurolactam such as coloring is deteriorated, which is not preferable. When the heating temperature is too low, laurolactam settles together with inert precipitates, and an apparatus for separating them is required, which is not preferable. In addition, the post-heating apparatus becomes undesirably long in order to complete the rearrangement reaction.
  • the residence time in the post-heating step is not particularly limited as long as a sufficient time is secured for the conversion of cyclododecanone oxime to be preferably 99.8% or more. Even if the conversion rate of cyclododecanone oxime in the post-heating step is low, high-quality laurolactam can be produced by distillation purification, but the cost of distillation equipment and utilities for cyclododecanone oxime removal and recovery are also possible. Considering the cost, it is preferably 99.8% or more. *
  • the shape of the post-heating device is not particularly limited, and any type such as a tank type, a saddle type, and a tube type may be selected, but a tank type reaction that easily discharges precipitated trichlorotriazine.
  • the device is particularly suitable. Although it is not an essential requirement to provide a stirrer, it is effective to prevent the deposit of inert deposits on the wall, and scraping off the inert deposits that have settled by attaching a scraper is a particularly preferred embodiment.
  • the floating inert precipitate may be extracted from the upper part of the post-heating device by overflow and sent to the catalyst removal step described later.
  • the inert precipitate deposited from the bottom of the device is extracted together with the laurolactam solution, More preferably, the part is circulated again to the post-heating step, and the remainder is discharged to the catalyst removal step described later. In addition, you may filter and remove the catalyst residue etc. in an extraction liquid in order to reduce the load of a catalyst removal process.
  • the shape is tapered toward the extraction port in order to prevent deposition of precipitates at the bottom. Since the amount of heat generated in the post-heating process is smaller than that in the dislocation process, it is possible to control the temperature by natural heat dissipation, but it is more preferable to provide a simple heating and cooling device such as a jacket.
  • the rearrangement reaction solution sent to the catalyst removal step is washed with water under heating.
  • the residual catalyst, active intermediate, and inert precipitate derived from the trichlorotriazine, which is the rearrangement catalyst added to the rearrangement step are all hydrolyzed to be separated and removed by dissolving in water as trioxytriazine.
  • the treatment temperature in the catalyst removal step is 70 ° C. or higher, preferably 80 ° C. or higher, and the feed amount of washing water is 35 times or more, preferably 100 times or more, the feed amount of trichlorotriazine in the rearrangement step.
  • the treatment temperature is too low, or if the amount of water used is too small, residual catalyst, active intermediates and inert precipitates may remain, which is not preferable.
  • Some of the remaining catalyst, active intermediate, and inert precipitate have a cyclododecylideneaminoxychlorotriazine structure derived from cyclododecanone oxime and trichlorotriazine, and these remained without being hydrolyzed. In this case, the yield of laurolactam is reduced, which is not preferable.
  • the presence of a triazine structure impurity or a chlorine compound in laurolactam is not preferable because it leads to a reduction in the quality of laurolactam.
  • the chlorotriazine compound since the chlorotriazine compound generates hydrogen chloride by thermal decomposition, it causes undesired corrosion of the apparatus in the distillation step.
  • a pressure device is required at 95 ° C. or higher to prevent azeotropy of the treatment liquid.
  • the use of 1000 times weight or more of washing water is not preferable because it only increases the amount of waste water.
  • a processing apparatus is provided with the oil-water mixing part and the oil-water separation part, there will be no restriction
  • the acids used as the cocatalyst are also water-soluble and can be removed in this step. Further, for the purpose of removing chlorine-containing impurities that may remain as traces, it may be washed with an aqueous alkaline solution such as aqueous ammonia or aqueous sodium hydroxide if desired.
  • distillation operations including extraction as a distillate, extraction as a bottom, and rectification
  • the rearrangement reaction solvent generally has a lower boiling point than laurolactam, it can be purified by extracting the residue from the rearrangement (recovered liquid) recovered from the rearrangement reaction by distillation and performing the distillation operation one or more times.
  • Distillation conditions and distillation apparatus in solvent recovery and purification are not particularly limited, but in order to prevent laurolactam ring-opening and polymerization, the degree of vacuum is 10 torr or less so that the bottom temperature is 250 ° C. or less, preferably 220 ° C. or less. It is desirable to distill under reduced pressure.
  • a present Example shows an example of the embodiment of this invention, and this invention is not limited to a present Example.
  • Toluene was added to the reaction solution at 0.5 kg / h, followed by liquid separation to obtain an oil phase composed of cyclododecanone oxime and toluene.
  • the aqueous phase was fed to the second oximation reactor.
  • the second oximation reactor is a pillow type reactor of 15 L and divided into four chambers.
  • the oximation reaction solution aqueous phase and 25 wt% cyclododecanone toluene solution 2 kg / h (to the first reactor). was fed to the same reactor, the reaction temperature was set to 95 ° C., and 25 wt% aqueous ammonia was fed to each chamber at 16 g / h to carry out an oximation reaction.
  • the obtained reaction liquid was separated, and the oil phase was fed to the first oximation reactor.
  • Toluene was added to the aqueous phase at 325 g / h, and cyclododecanone oxime dissolved in water was recovered by countercurrent extraction and combined with the oil phase obtained from the first reactor.
  • the oil phase was measured using a Karl Fischer type moisture measuring device (Hiranuma AQ-2100 type trace moisture measuring device). As a result, it contained 4000 ppm by weight of moisture.
  • ppm indicates weight ppm and the component ratio indicates molar ratio.
  • Example 1 to 27 and Comparative Examples 1 to 13 the purpose of the first aspect was to clarify the relationship between the water content in the cyclododecanone oxime solution used for the rearrangement reaction and the yield of laurolactam. .
  • Example 1 50 g of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.), 10 g of dry cyclododecanone oxime obtained in Reference Example 2, 0.467 g of trichlorotriazine (manufactured by Wako Pure Chemical Industries, Ltd.) (concentration of cyclododecanone oxime of 16.6% by weight, trichloro) Triazine / cyclododecanone oxime (mol / mol); 0.05) was dissolved to prepare a reaction raw material solution.
  • the water content in acetonitrile As a result of measuring the water content in acetonitrile, it contained 450 ppm of water, and the water content in the reaction raw material liquid was 375 ppm. The water / trichlorotriazine ratio in the reaction raw material liquid was 0.50.
  • the reaction raw material solution was adjusted and the water content in the solvent was measured in a dry box.
  • the sealed reaction raw material liquid was taken out from the dry box, heated with stirring in an oil bath in a nitrogen atmosphere, reacted at 80 ° C. for 2 hours, and subjected to gas chromatography analysis (hereinafter, examples, comparisons). The same analysis was carried out in the examples.)
  • the conversion of cyclododecanone oxime was 100% and the yield of laurolactam was 98.0%.
  • Example 2 The reaction was performed in the same manner as in Example 1 except that the reaction solvent was changed to benzonitrile containing 250 ppm of water (manufactured by Wako Pure Chemical Industries, Ltd.) and the amount of trichlorotriazine added was reduced to 0.093 g.
  • Example 1 The reaction was performed in the same manner as in Example 2 except that the reaction solvent was changed to acetonitrile (water content 450 ppm) used in Example 1 and the reaction time was extended to 4 hours.
  • Example 3 The molecular sieves 4A (manufactured by Wako Pure Chemical Industries, Ltd.) calcined on acetonitrile used in Comparative Example 1 (300 ° C., 8 hours) was added and dried for 24 hours. The water content was reduced to 60 ppm. Using this dry acetonitrile, the reaction was carried out in the same manner as in Comparative Example 1 with a reaction time of 2 hours. As shown in Table 1, the cyclododecanone yield decreased.
  • Example 4 The reaction was performed in the same manner as in Example 1 except that the reaction solvent was changed to toluene (water content 310 ppm) and the reaction time was 3.5 hours.
  • Example 5 The reaction was conducted in the same manner as in Example 4 except that the amount of trichlorotriazine added was reduced to 0.28 g.
  • Example 6 In addition to 10 g of cyclododecanone oxime and 0.093 g of trichlorotriazine, 0.069 g of zinc chloride was added as a co-catalyst, and 50 g of toluene (water content 40 ppm) dried in the same manner as the dry acetonitrile of Example 3 was used as a solvent. The reaction was conducted at 95 ° C. for 1 hour.
  • Example 7 Toluene having a water content of 336 ppm was prepared by adding water to the dry toluene used in Example 6. The reaction was performed in the same manner as in Example 6 except that this adjusted toluene was used as a solvent.
  • Example 3 Toluene having a water content of 825 ppm was prepared by adding water to the dry toluene used in Example 6. The reaction was performed in the same manner as in Example 6 except that this adjusted toluene was used as a solvent.
  • Example 8 Toluene with a water content of 1000 ppm was prepared by adding water to the dry toluene used in Example 6. The reaction was conducted in the same manner as in Example 6 except that this adjusted toluene was used as a solvent and that trichlorotriazine was increased to 0.262 g and zinc chloride to 0.194 g.
  • Example 9 20 g of cyclododecanone oxime, 0.187 g of trichlorotriazine and 0.138 g of zinc chloride were added to 46.3 g of dried toluene (water content 34 ppm) in the same manner as in the dry acetonitrile of Example 3 to carry out the reaction.
  • Example 10 Toluene having a water content of 390 ppm was prepared by adding water to the dry toluene used in Example 9. The reaction was performed in the same manner as in Example 9 except that this adjusted toluene was used as a solvent.
  • Example 11 Toluene having a water content of 770 ppm was prepared by adding water to the dry toluene used in Example 9. The reaction was performed in the same manner as in Example 9 except that this adjusted toluene was used as a solvent.
  • Example 4 Toluene having a water content of 1020 ppm was prepared by adding water to the dry toluene used in Example 9. The reaction was performed in the same manner as in Example 9 except that this adjusted toluene was used as a solvent.
  • Example 5 Toluene having a water content of 1910 ppm was prepared by adding water to the dry toluene used in Example 9. The reaction was performed in the same manner as in Example 9 except that this adjusted toluene was used as a solvent.
  • Example 12 50 g of cyclododecanone oxime, 0.467 g of trichlorotriazine and 0.346 g of zinc chloride were added to 51 g of dried toluene (water content 35 ppm) in the same manner as in Example 3 to carry out the reaction.
  • Example 13 Toluene having a water content of 1600 ppm was prepared by adding water to the dry toluene used in Example 12. The reaction was conducted in the same manner as in Example 12 except that this adjusted toluene was used as a solvent.
  • Example 6 Toluene having a water content of 2500 ppm was prepared by adding water to the dry toluene used in Example 12. The reaction was conducted in the same manner as in Example 12 except that this adjusted toluene was used as a solvent.
  • Example 14 The reaction was performed in the same manner as in Example 9 except that methylcyclohexane (water concentration 45 ppm) dried with molecular sieves 4A was used as a solvent instead of the dry toluene used in Example 9.
  • Example 15 Water was added to the dry methylcyclohexane used in Example 14 to prepare methylcyclohexane having a water content of 620 ppm. The reaction was conducted in the same manner as in Example 14 except that this adjusted methylcyclohexane was used as a solvent.
  • Example 7 Water was added to the dry methylcyclohexane used in Example 14 to prepare methylcyclohexane having a water content of 890 ppm. The reaction was carried out in the same manner as in Example 14 except that this adjusted methylcyclohexane was used as a solvent (water concentration of 622 ppm in the reaction raw material solution, water / trichlorotriazine; 2.27).
  • Example 16 The reaction was performed in the same manner as in Example 9 except that isopropylcyclohexane (moisture concentration 55 ppm) dried with molecular sieves 4A was used as a solvent instead of the dry toluene used in Example 9.
  • Example 17 Water was added to the dry isopropylcyclohexane used in Example 16 to prepare isopropylcyclohexane having a water content of 700 ppm. The reaction was conducted in the same manner as in Example 16 except that this adjusted isopropylcyclohexane was used as a solvent.
  • Example 8 Water was added to the dry isopropylcyclohexane used in Example 16 to prepare isopropylcyclohexane having a water content of 1100 ppm. The reaction was conducted in the same manner as in Example 16 except that this adjusted isopropylcyclohexane was used as a solvent.
  • Example 18 The reaction was carried out in the same manner as in Example 9 except that cyclooctane (water concentration 35 ppm) dried with molecular sieves 4A was used as a solvent instead of the dry toluene used in Example 9.
  • Example 19 Water was added to the dry cyclooctane used in Example 18 to prepare cyclooctane having a water content of 770 ppm. The reaction was conducted in the same manner as in Example 18 except that this prepared cyclooctane was used as a solvent.
  • Example 20 The reaction was carried out in the same manner as in Example 9 except that decalin (water concentration 30 ppm) dried with Molecular Sieves 4A was used as a solvent instead of the dry toluene used in Example 9.
  • Example 21 Decalin having a water content of 685 ppm was prepared by adding water to the dry decalin used in Example 20. The reaction was performed in the same manner as in Example 20 except that this adjusted decalin was used as a solvent.
  • Example 10 Water was added to the dry decalin used in Example 20 to prepare decalin having a water content of 1020 ppm. The reaction was performed in the same manner as in Example 20 except that this adjusted decalin was used as a solvent.
  • Example 22 The reaction was carried out in the same manner as in Example 9 except that cyclododecane (water concentration 55 ppm) dried by adding molecular sieves 4A in a molten state instead of the dry toluene used in Example 9 was used as a solvent.
  • cyclododecane water concentration 55 ppm
  • Example 23 The dry cyclododecane used in Example 22 was melted, and water was added to prepare cyclododecane having a water content of 650 ppm. The reaction was conducted in the same manner as in Example 22 except that this prepared cyclododecane was used as a solvent.
  • Example 11 The dry cyclododecane used in Example 22 was melted, and water was added to prepare cyclododecane having a water content of 1050 ppm. The reaction was conducted in the same manner as in Example 22 except that this prepared cyclododecane was used as a solvent.
  • Example 24 Using cyclododecanone oxime (water concentration 15 ppm) and toluene (water concentration 35 ppm) used in Example 12, 30 g cyclododecanone oxime, 0.072 g trichlorotriazine, 0.419 g zinc chloride, and 57.83 g toluene were added and reacted. The raw materials were adjusted and reacted at 100 ° C. for 1 hour.
  • Example 25 The reaction was conducted in the same manner as in Example 24 except that 0.034 g of trichlorotriazine and 35.25 g of toluene were changed.
  • Toluene having a water concentration of 440 ppm was prepared by adding water to the toluene used in Example 24. 30 g of cyclododecanone oxime, 0.102 g of trichlorotriazine, 0.635 g of zinc chloride and 45.88 g of adjusted toluene were added to prepare a reaction raw material, and the reaction was performed at 100 ° C. for 1 hour.
  • Example 26 The reaction was performed in the same manner as in Comparative Example 12 except that the amount of trichlorotriazine was increased to 0.225 g.
  • TCT represents trichlorotriazine
  • Ox12 represents cyclododecanone oxime
  • Lc12 represents laurolactam
  • CDON represents cyclododecanone (the same applies to Table 2).
  • Example 27 Water dissolved in the toluene solution of cyclododecanone oxime obtained in Reference Example 1 was distilled off together with toluene and dehydrated. The water content in the toluene solution of cyclododecanone oxime after dehydration was 135 ppm, and the concentration of cyclododecanone oxime was 46% by weight. This cyclododecanone oxime solution was fed at a rate of 1.17 kg / h to a rearrangement reactor in which three tank reactors equipped with 1.5 L stirring blades were connected in series.
  • a toluene solution of 5% by weight of trichlorotriazine is 0.1 kg / h
  • a toluene solution of 5% by weight of zinc chloride and a laurolactam solution (the weight ratio of toluene / laurolactam is 1/1).
  • Feed at 0.075 kg / h The water content in the trichlorotriazine solution and the zinc chloride solution was 80 ppm and 800 ppm, respectively. Therefore, the water / trichlorotriazine ratio fed to the rearrangement reactor was 0.46.
  • the rearrangement reaction was controlled at 95 ° C., and gas chromatographic analysis was performed on the third reactor outlet liquid. As a result, cyclododecanone oxime was not detected, and the yield of laurolactam (the laurolactam used for dissolving zinc chloride) The minute was corrected) of 96.6%, and the cyclododecanone yield was 0.3%.
  • the toluene solution 3.04 kg of cyclododecanone oxime obtained in Reference Example 1 was placed in a 10 L evaporator, water was distilled off together with toluene, and the mixture was concentrated to 1.80 kg.
  • the obtained toluene solution of cyclododecanone oxime was subjected to moisture measurement using a Karl Fischer moisture meter. As a result, it contained 340 ppm of moisture. Further, as a result of quantifying cyclododecanone oxime by gas chromatography (TC-1, manufactured by GL Science, using 30m capillary column), the cyclododecanone oxime concentration was 30.0% by weight.
  • Example 28 Cyclododecanone obtained in Reference Example 3 by connecting 0.17 L glass stirred tank reactor with propeller type stirrer (with baffle plate and heating / cooling jacket inside) in series.
  • Toluene solution of oxime (hereinafter referred to as solution a) 0.256 kg / h, 5 wt% of trichlorotriazine in toluene solution (hereinafter referred to as solution b) 0.016 kg / h, zinc chloride 5% by weight, laurolactam 47.5% by weight,
  • solution c A zinc chloride solution (hereinafter referred to as “solution c”) 0.011 kg / h consisting of 47.5% by weight of toluene was fed to the first tank, and was sequentially fed to the subsequent reaction tank by overflow.
  • the reaction liquid discharged from the third reaction tank was sent to a 0.17 L post-heating tank.
  • a Teflon (registered trademark) scraper is attached to a vertical stirring blade, scraping off the inert precipitate while rotating at a low speed of 30 rpm, discharging the reaction solution from the lower discharge port, and passing the filter through the filter. After being filtered off, it was pumped up and circulated in a post-heating tank.
  • an overflow outlet is provided in the middle of the post-treatment tank, and the discharged reaction solution is sent to a 0.2 L catalyst removal tank, washed with 0.03 L / h of water, separated into oil and water, and an oil phase is obtained. did.
  • the temperature of the post-heating tank and the catalyst removal tank was 90 ° C.
  • the conversion of cyclododecanone oxime was 99.9% and the laurolactam yield was 99.4%.
  • deposits and deposits were not observed in the reaction tanks 1 to 3 and the post-heating tank.
  • the filter was washed with hot water, and dissolved trioxytriazine was quantified with an absorptiometer with automatic wavelength selection function (DR890 model manufactured by HACH). As a result, 10.3 mol% was detected with respect to trichlorotriazine fed to the rearrangement process. It was.
  • Table 2 shows the experimental conditions of Examples and Comparative Examples, the cyclododecanone oxime conversion rate and the laurolactam yield in each reaction solution.
  • Example 29 The reaction was performed in the same manner as in Example 28 under the conditions shown in Table 2. Adhesion and deposition of deposits were not observed in the reaction tank and the post-heating tank.
  • the trioxytriazine collected by the filter is 1.4 mol% with respect to the trichlorotriazine fed to the rearrangement step, and the trioxytriazine dissolved in the washing water is 97.5 mol% with respect to the trichlorotriazine fed to the rearrangement step. From the crude laurolactam, trioxytriazine and trichlorotriazine were not detected.
  • Example 14 The reaction was performed in the same manner as in Example 29 under the conditions shown in Table 2. No deposits or deposits were observed in the first and second tanks of the rearrangement reaction, but solid deposits were observed on the vessel wall in the third tank. As a result of dissolving the 3rd tank deposit and the filter collection thing with hot water and analyzing trioxytriazine, it is 5.6% (3rd tank deposit) and 4.8% (filter) with respect to the fed trichlorotriazine. (Collected matter).
  • Comparative Example 15 The reaction was performed in the same manner as in Comparative Example 14 under the conditions shown in Table 2. The deposit was not observed only in the first tank, and solid deposits were observed in the second and third tanks. As a result of dissolving the 2nd tank deposit, the 3rd tank deposit, and the filter collection thing with hot water, and analyzing trioxytriazine, 4.0% (2nd tank deposit) with respect to the fed trichlorotriazine, They were 8.9% (3rd tank deposit
  • Example 30 Toluene was further distilled off from the liquid a, and cyclododecanone oxime was concentrated. Zinc chloride was added to this solution to prepare a toluene solution (hereinafter referred to as “d liquid”) containing 49.8% by weight of cyclododecanone oxime and 0.34% by weight of zinc chloride, and transferred to the rearrangement reaction tank at 0.58 kg / h. Feeded. At the same time, the liquid b was fed to the rearrangement reaction tank at a rate of 0.039 kg / h. The reaction was performed by setting the temperature of each reaction tank and the post-heating tank to 90, 90, 80, and 100 ° C.
  • the temperature of the heat medium circulating in the jacket was 80, 81.5, 76.1, 100.2 ° C, and the 1-3 reaction tanks were kept at the set temperature by cooling, but the post-heating tank was There was no need for heating and cooling, and temperature control was easy.
  • the results are shown in Table 2. Adhesion and deposition of deposits were not observed in the reaction tank and the post-heating tank.
  • the trioxytriazine collected by the filter was 0.9 mol% with respect to the trichlorotriazine fed to the rearrangement step, and the trioxytriazine dissolved in the washing water was 98.0 mol% with respect to the trichlorotriazine fed to the rearrangement step. From the crude laurolactam, trioxytriazine and trichlorotriazine were not detected.

Abstract

本発明は、トリクロロトリアジンを転位触媒として用い、シクロドデカノンオキシムから液相転位反応によりラウロラクタムを製造する方法に関する。本方法によれば、一定の転化率で反応が停止することを解決し、トリクロロトリアジンから生成する不活性析出物の反応工程内での析出を防止し、不活性析出物、活性中間体および残存触媒を除去する方法を提供することができる。

Description

ラウロラクタムの製造方法
 本発明は、シクロドデカノンオキシムから、工業的に有利で簡便なプロセスによりラウロラクタムを製造する方法に関する。
 工業的にアミド化合物を製造する方法としては、対応するオキシム化合物をベックマン転位する方法が一般的である。例えば、工業的に有用であるε-カプロラクタムはシクロヘキサノンオキシムのベックマン転位によって製造される。転位触媒には濃硫酸および発煙硫酸が用いられるが、これらの強酸は化学量論量以上に必要であり、中和の際に大量の硫酸アンモニウムが副生する。ナイロン12の原料であるラウロラクタムも同様の方法で製造されるが、中間生成物であるシクロドデカノンオキシムが高融点であるため、製造プロセスはさらに複雑である。ε-カプロラクタムの製造では、シクロヘキサノンオキシム、ε-カプロラクタムとも比較的低融点であるため、無溶媒でオキシム化、転位を行うことができるが、ラウロラクタムの製造では反応溶媒が必要となる。この反応溶媒はシクロドデカノンオキシムの溶解度が高いこと、濃硫酸、発煙硫酸と反応しないことが必須であり、その選択は非常に制約される。
 シクロドデカノンとヒドロキシルアミン水溶液から、ラウロラクタムを工業的に製造する方法としては、以下の文献に記載の方法が知られている。
 特許文献1に記載の方法は以下の通りである。イソプロピルシクロヘキサンを溶媒に用いてシクロドデカノンをオキシム化した後、分液して得られたシクロドデカノンオキシムのイソプロピルシクロヘキサン溶液を低温下で濃硫酸中に徐々に加えてシクロドデカノンオキシム硫酸付加体の硫酸溶液をつくり、イソプロピルシクロヘキサンを分離回収後、残存するシクロドデカノンオキシム硫酸付加体の硫酸溶液を昇温して、オキシムのベックマン転位を行う。転位反応後、水を加えて硫酸を希釈した後、生成したラウロラクタムを有機溶媒で抽出する。ここで、抽出溶媒としては、イソプロピルシクロヘキサンまたはシクロドデカノンが用いられる。得られた抽出溶液から抽出溶媒を蒸留・回収し、残渣中のラウロラクタムを蒸留精製する。
 この方法では、転位反応工程での硫酸アンモニウムの副生はないが、大量の廃希硫酸の処理に膨大な設備とエネルギーが必要である。また、シクロドデカノンは濃硫酸と反応し、副生物が生成するため、シクロドデカノンが残存しないようにオキシム化反応を完結させる必要があるが、イソプロピルシクロヘキサンが疎水性のため、油/水界面での物質移動速度が遅く、オキシム化に長時間を要する。なお、プロセス全体をみても、溶媒の分離、回収、リサイクル工程が多く、多大な設備費とエネルギーが必要なプロセスである。
 特許文献2に記載の方法は以下の通りである。シクロドデカノンとシクロヘキサノンの混合液とヒドロキシルアミン水溶液を混合し、オキシム化を行う。生成するシクロヘキサノンオキシムは融点が低く、シクロドデカノンオキシムの良溶媒であるため、反応は100℃以下、常圧で行うことができる。また、シクロヘキサノンオキシムは適度な親水性を有するため、オキシム化反応は速やかに進行し、シクロヘキサノン、シクロドデカノンは残存することなく、転位工程に送られる。転位触媒としては濃硫酸および発煙硫酸が用いられる。生成するラウロラクタムは高融点であるが、同時に生成する低融点のカプロラクタムへの溶解性が高いため、100℃以下の温度でも反応を行うことができる。得られた転位反応液はアンモニア水で中和し、有機溶媒で抽出する。カプロラクタムはある程度の水溶性を示すが、中和によって生じた硫酸アンモニウムの塩析効果によって、有機溶媒側に抽出される。次に、抽出されたラウロラクタムおよびカプロラクタムを含む溶液に大量の水を加え、カプロラクタムを水相側に抽出する。分離された有機相からは有機溶媒を回収し、ラウロラクタムを蒸留・精製する。一方、水相は濃縮後、不純物を除去し、カプロラクタムを精製する。
 この方法はラウロラクタムとカプロラクタムを併産できる優れた方法であるが、ラウロラクタム製造プロセスとしては、次のような問題がある。(1)カプロラクタムの分離・精製に多大な設備費が必要であり、投資効率が悪い。また、カプロラクタム水溶液の濃縮等エネルギー効率も悪い。(2)ラウロラクタム/カプロラクタムの生産比率に制約がある。(3)カプロラクタムはラウロラクタムより低付加価値であり、ヒドロキシルアミンの利用効率も低い。
 特許文献3には、(1)芳香環を構成する原子として、脱離基を有する炭素原子を少なくとも1つ含み、(2)芳香環を構成する原子として、ヘテロ原子または電子吸引基を有する炭素原子のいずれかの一方または両方を少なくとも3つ含み、(3)前記のヘテロ原子または電子吸引基を有する炭素原子のうち2つが、前記脱離基を有する炭素原子のオルトあるいはパラ位に位置する芳香環含有化合物を転位触媒として、極性溶媒中でオキシム化合物のベックマン転位を行う方法が記載されている。また、非特許文献1には、特許文献3で開示された転位触媒を用いた転位反応の詳細が記載されている。
特許文献4、5及び6は、非特許文献1において非極性溶媒を用いた場合、転位収率が低い点に着目し、これを改良して使用可能な溶媒の範囲を非極性溶媒まで拡大している。一般的に非極性溶媒は極性溶媒に比べ熱的、化学的に安定であり、沸点が低く、蒸発潜熱も小さいため、溶媒の回収・リサイクルが容易である一方、極性の高い有機物や無機物を溶かし難い。
発明者らは特許文献3で開示された触媒のうち、トリクロロトリアジンを選択し、シクロドデカノンオキシムとの反応について詳細に検討を行った。
 特許文献3及び非特許文献1ではケトキシム(R1-C(-R2)=N-OH:ここでR1、R2はアルキル基を示し、連結してシクロアルカンを形成していてもよい。)のベックマン転位におけるトリクロロトリアジン(R3-Cl:ここでR3はジクロロトリアジル基を示す。)の触媒作用機構について以下のように説明されている。
 まず、トリクロロトリアジンとケトキシムから塩化水素が脱離し、R1-C(-R2)=N-O-R3(エーテル体)を形成する。このエーテル体が転位反応によって、R1-N=C(-R2)-O-R3となり、これにケトキシムが付加し、マイゼンハイマーコンプレックス(R1-N=C(-R2)-O-R3 --O+-(H)-N=C(R2)-R1)を経由して、アミド(R1-NH-C(=O)-R)が脱離生成すると共にR1-C(-R2)=N-O-R3が再生される。
上記機構に従えば、トリクロロトリアジンは反応初期に速やかに消費され、シクロドデシリデンアミノキシジクロルトリアジン( R1-C(-R2)=N-O-R3に相当、以下MOCTと略記する)を形成し、上記反応サイクルに沿って反応が進行するため、反応開始時に触媒量のトリクロロトリアジンを添加すれば、本反応サイクルは完成されるはずである。しかし、触媒量のトリクロロトリアジンを用いてシクロドデカノンオキシムの反応を行った場合、一定の転化率で反応が停止することがわかった。
トリクロロトリアジンは水によって加水分解されトリオキシトリアジンを生成することが知られている。トリオキシトリアジンは転位触媒能を持たない。また、トリクロロトリアジンは脱離しうる3個の塩素原子を有しており、そのうち何個が加水分解されれば、転位触媒としての活性を失うか明確にされていない。
従って、転位反応に供されるシクロドデカノンオキシム溶液中の水を完全に除去すれば、少量のトリクロロトリアジン添加においても転位反応を完結することは可能と推測される。しかし、シクロドデカノンオキシムは親水性のオキシム基を有するため水を吸着しやすく、シクロドデカノンオキシム溶液を絶乾することは容易ではない。 
一方、上記反応機構に従えば、MOCTの生成とトリクロロトリアジンの加水分解は競走反応となるため、MOCTの生成速度がトリクロロトリアジンの加水分解速度と比べて速ければ、必ずしもシクロドデカノンオキシム溶液を絶乾する必要はない。
発明者らは、まず反応液を経時的に分析し、転位反応停止の機構解明を行った。その結果、シクロドデカノンオキシムの転位反応が進行すると、トリクロロトリアジンが再生され、それが、次第にトリオキシトリアジンに変化していくことが判明した。
つまり、原料であるシクロドデカノンオキシムが十分な量存在している反応初期は上記反応サイクルに沿って反応が進行するが、反応終盤ではシクロドデカノンオキシム濃度が低くなるためマイゼンハイマーコンプレックスの生成速度が遅くなり、2-アザシクロトリデカノキシジクロルトリアジン(R1-N=C(-R2)-O-R3に相当)にトリクロロトリアジンとシクロドデカノンオキシムとからMOCTが生成する際に発生した塩化水素が反応して、ラウロラクタムが生成すると共にトリクロロトリアジンが再生され、その加水分解が進行してトリオキシトリアジンが生成し、転位反応が停止したものと推定した。
 また、トリクロロトリアジンの加水分解の結果生じたトリオキシトリアジン及びその前駆体の非極性溶媒中での溶解度は極めて低いため、反応器内で析出し器壁に付着する。固形物の反応器内での析出は、反応容器の熱伝導率を低下させるため、商業装置における安定した運転を困難にし、好ましくない。従来の文献等においては、斯かる触媒残渣の反応器内での析出を回避する手段を開示したものは見当たらない。
 なお、本発明においては、転位工程に添加された転位触媒であるトリクロロトリアジンの化学構造が変化し、転位活性を失うと共に固体として析出するものを不活性析出物と呼び、化学構造の変化がなく、反応液中に溶解しているものを残存触媒と呼んで区別する。また、化学構造が変化するが、触媒活性を有するものを活性中間体と呼ぶ。また、触媒とは、前記3者を含む総合的な呼称として用いる。
特公昭52-033118 特開平5-4964 特開2006-219470号公報 DE102006058190 特開2007-284415号公報 特開2008-156277号公報
K.Ishihara,et.al.,Journal of American Chemical Society,pp.11240-11241(2005)
 トリクロロトリアジンを転位触媒として用い、シクロドデカノンオキシムから液相転位反応によりラウロラクタムを製造する方法において、一定の転化率で反応が停止することを解決し、および/またはトリクロロトリアジンから生成する不活性析出物の反応工程内での析出を防止し、不活性析出物、活性中間体および残存触媒を除去する方法を提供する。
 発明者らは、トリクロロトリアジンを触媒に用いたシクロドデカノンオキシムの転位反応について検討した結果、以下の発明に至った。
即ち本発明は以下の事項に関する。
上記課題を解決する本発明の第1の態様は、トリクロロトリアジンを転位触媒として用いて、シクロドデカノンオキシムの液相転位反応によりラウロラクタムを製造する方法において、シクロドデカノンオキシム溶液中の水分をトリクロロトリアジンの2倍モル以下まで脱水することを特徴とするラウロラクタムの製造方法にある。
 本発明の第2の態様は、(a)トリクロロトリアジンを転位触媒として用い、非極性溶媒中でシクロドデカノンオキシムを転化率が80%以上、99%未満となるように液相転位させる転位反応工程と、(b)転位反応を完結させる後加熱工程と、(c)不活性析出物、活性中間体、残存触媒を除去する触媒除去工程とを有することを特徴とする、ラウロラクタムの製造方法にある。
 本発明により、トリクロロトリアジンを転位触媒として用い、シクロドデカノンオキシムから液相転位反応によりラウロラクタムを製造する方法において、第1の態様では、一定の転化率で反応が停止することなく高選択率、高収率でラウロラクタムを製造することができ、第2の態様では、トリクロロトリアジンから生成する不活性析出物の反応工程内での析出を防止し、不活性析出物、活性中間体および残存触媒を除去し、ラウロラクタムを工業的に安定して製造することができる。
実施例28の概略図である。
 本発明は、トリクロロトリアジンを転位触媒として用い、シクロドデカノンオキシムから液相転位反応によりラウロラクタムを製造する方法に関する。
以下の説明では、特に言及しないかぎり、第1及び第2の態様に共通して適用される。
 原料であるシクロドデカノンオキシムは通常の方法で製造することができる。例えば、シクロドデカノンに過酸化水素水及びアンモニア水を加えて触媒存在下でアンモ酸化し製造する方法やシクロドデカンを塩化水素の共存下、光エネルギーを利用して塩化ニトロシルと反応させて、シクロドデカノンオキシムを製造する方法(光ニトロソ化)が挙げられる。最近ではN‐ヒドロキシフタルイミドを触媒に用い、シクロドデカンと亜硝酸エステルから製造する方法等が知られているが、最も工業的に確立されている製造方法はシクロドデカノンとヒドロキシルアミンとを反応させる方法である。
 シクロドデカノンオキシムは融点が高いためオキシム化と転位のいずれの反応も溶媒を用いて行う必要がある。オキシム化と転位の反応の溶媒が同一の場合はオキシム化反応で用いられた溶媒を転位反応にそのまま用いる事ができるが、異なる場合には溶媒交換を行う。
第1の態様において、転位反応の溶媒として適しているものは、アセトニトリル、ベンゾニトリル等のニトリル化合物、酢酸エチル、酢酸ブチル等のエステル化合物、酢酸、プロピオン酸等のカルボン酸、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロオクタン、シクロドデカン、イソプロピルシクロヘキサン等の脂環式炭化水素、デカリン、テトラリン等の縮合芳香族化合物の水添物等が挙げられる。これらの溶媒のうち、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロオクタン、シクロドデカン、イソプロピルシクロヘキサン等の脂環式炭化水素、デカリン、テトラリン等の縮合芳香族化合物の水添物はオキシム化反応の溶媒としても使用することができ、溶媒交換の必要がなく好ましい。さらに、ベンゼン、トルエン、キシレン等の芳香族炭化水素の非極性溶媒はシクロドデカノンオキシムの溶解度が高く、転位装置がコンパクトになり、溶媒の回収、リサイクルのためのエネルギーも節約できるため特に好ましい。
第2の態様において、転位反応の溶媒として適しているものは、第1の態様と同様、ニトリル化合物、カルボン酸、芳香族炭化水素、脂環式炭化水素、縮合芳香族化合物の水添物等が挙げられる。これらの溶媒のうち、芳香族炭化水素、脂環式炭化水素、縮合芳香族化合物の水添物等の非極性溶媒は、オキシム化反応の溶媒としても使用することができるため、溶媒交換の必要が無く好ましい。また、これらは非極性溶媒であることから触媒の水洗除去の際、水相との分離が容易である。さらに、加熱安定性が高く、蒸発潜熱も小さいため、溶媒の回収、リサイクルが容易である。とりわけ、ベンゼン、トルエン、キシレン等の芳香族炭化水素はシクロドデカノンオキシムの溶解度が高く、転位装置がコンパクトになるため特に好ましい。
 これらの転位溶媒は、市販されている試薬であっても、大気中の水分を吸収し100~300ppmの水分を通常含んでいる。また、最も一般的なシクロドデカノンオキシムの製法であるシクロドデカノンとヒドロキシルアミンからの製法は、油溶性のシクロドデカノンを前記溶媒に溶解させた溶液と、水溶性のヒドロキシルアミンの水溶液との油/水2相系の反応であり、親水基であるオキシム基を有するシクロドデカノンオキシムは包水しやすい。このため、水相を分離した後のシクロドデカノンオキシム溶液中には4000~10000ppmの水が存在する。
シクロドデカノンオキシム溶液中に溶解している水分を除去する方法は特に限定されるものではないが、最も一般的な方法は、溶媒と共に留去する方法である。また、オキシム化溶媒を全量留去した後、固体となったシクロドデカノンオキシムを減圧下で加熱乾燥し水を除去し、乾燥した転位溶媒を加えて転位反応を行ってもよい。また、転位反応を阻害しないことを条件にモレキュラーシブスなどの脱水剤を添加する方法や、除湿膜を用いる方法を採用して脱水を行ってもよい。
 第1の態様において、脱水後のシクロドデカノンオキシム溶液中の水分残存量は、転位触媒であるトリクロロトリアジンの2倍モル以下、好ましくは等モル以下である。第2の態様において、脱水後のシクロドデカノンオキシム溶液中の水分残存量は、好ましくはトリクロロトリアジンの2倍モル以下、より好ましくは等モル以下である。水分残存量が多すぎるとトリクロロトリアジンの加水分解によってトリオキシトリアジンが生成しやすくなる。さらには、転位反応が完結せず転位反応液中にシクロドデカノンオキシムが残存して生産性が悪化するとともに、シクロドデカノンオキシムとラウロラクタムを分離する工程が必要となり好ましくない場合もある。一方、シクロドデカノンオキシム溶液中の好適な水分残存量を濃度で示せば、第1及び第2の態様において、好ましくは2000ppm以下、より好ましくは600ppm以下である。許容される水分量は使用するトリクロロトリアジンとの比によって決まるため、トリクロロトリアジンの使用量を増やせば、許容水分範囲も広がるが、シクロドデカノンオキシム溶液中の水分濃度が高すぎると大量のトリクロロトリアジンが必要となり、触媒コストが増大する。また、シクロドデカノンオキシムの加水分解も進行する。従って、水分濃度が高すぎる場合、ラウロラクタム収率が低下する。
 シクロドデカノンオキシムの濃度は高いほど生産性が向上し好ましいが、シクロドデカノンの溶解度によって制約される。例えば、トルエンを溶媒に用い常圧下で反応を行う場合(沸点110℃)、シクロドデカノンオキシム濃度の上限は60重量%である。
 トリクロロトリアジンの使用量は溶媒の種類、水分含有量、シクロドデカノンオキシムの濃度によって異なるが、シクロドデカノンオキシムに対して0.05モル%以上、5.0モル%以下である。特に、トルエンを溶媒に用い、シクロドデカノンオキシムの濃度を50重量%、シクロドデカノンオキシム溶液中の水分濃度を600ppmとした場合、シクロドデカノンオキシムに対して、0.3モル%以上2.0モル%以下、好ましくは0.4モル%以上1.0モル%以下である。
 トリクロロトリアジン使用量が過少の場合、反応速度が遅くなり、好ましくない。一方、トリクロロトリアジン使用量が過多の場合、触媒コストが増大するだけでなく、ラウロラクタムを精製する際の触媒の除去のためのコストが増大し好ましくない。
 なお、塩化水素等の酸類を助触媒として添加することによって、転位反応速度を向上させることができる。特にルイス酸はシクロドデカノンオキシムの加水分解を加速することなく、転位反応速度を向上させる事ができ好ましい。ルイス酸としては、特に制限はなく、塩化亜鉛、塩化アルミニウム、五塩化アンチモン、四塩化スズ等が挙げられるが、塩化亜鉛、四塩化スズが好適であり、特に塩化亜鉛は反応速度を向上させる効果が顕著であり、好ましい。ルイス酸の使用量はシクロドデカノンオキシムに対して0.1モル%以上、10モル%以下、好ましくは0.2モル%以上5モル%以下である。ルイス酸使用量が過少の場合、転位反応速度の向上効果が認められず好ましくない。ルイス酸使用量が過多の場合、それ以上の転位反応速度の向上効果は認められず、過剰のルイス酸除去のため触媒除去装置が過大になり、廃水処理等の操作も煩雑になるため好ましくない。
 転位反応の反応温度は、第1の態様では、50℃から160℃、好ましくは80℃から110℃である。第2の態様では、50℃から160℃、好ましくは70℃から110℃である。反応温度が低すぎる場合、反応速度が遅く、反応時間が長くなるため好ましくない。また、反応温度が低すぎる場合、シクロドデカノンオキシムの転位溶媒への溶解度が低くなり、溶媒量が増加し、その回収・リサイクル量が増大するため好ましくない。一方、反応温度が高すぎる場合、転位反応の発熱によって温度が急上昇するため、反応の制御上、好ましくない。更に、反応温度が高すぎる場合、縮合反応等の副反応を生じるため転位反応の収率が低下するのみならず、着色等製品品質が低下するため好ましくない。
 転位反応の反応時間は、通常、5分から10時間、好ましくは20分から4時間である。反応時間は、触媒濃度、反応温度によって異なるが、反応の制御が容易で、反応器容積が過大にならないように前記反応条件において調整する。
 反応は減圧、常圧、加圧のいずれで行っても差し支えない。
 クローズドプロセスの採用はトリクロロトリアジンから脱離した塩化水素の吸着・除害設備を軽減すると共に、塩化水素自身が助触媒として転位反応を促進するため、好ましいプロセスである。
 なお、転位反応装置は回分式反応装置、管型連続反応装置、攪拌槽型連続反応装置等の一般に用いられる反応装置を使用することができるが、生産性と温度制御等の運転の容易性から、攪拌槽型連続反応装置が特に好適である。
 第2の態様において、発明者は、シクロドデカノンオキシムの転化率が高くなるとトリオキシトリアジンが生成しやすくなる事を見出した。トリオキシトリアジンは非極性溶媒を転位溶媒として用いた場合、非極性溶媒に溶け難いため不活性析出物として沈降し、反応器の器壁に付着しやすい。沈積物の器壁付着は器壁の熱伝導率を低下させ、転位反応によって生じる大量の反応熱を熱交換により除去することが困難になるため、商業設備においては運転安定性を悪化させ好ましくない。従って、転位反応工程におけるトリオキシトリアジンの析出を防止する必要があり、そのためのシクロドデカノンオキシム転化率の上限は99%未満、好ましくは98%未満である。第2の態様で、転位反応工程から抜き出した反応液は次の後加熱工程で加熱熟成し、転位反応を完結するが、転位反応工程に用いる反応装置と、後加熱工程に用いられる反応装置は異なることが好ましい。ここで、転位工程でのシクロドデカノンオキシムの転化率が低すぎる場合、後加熱工程での発熱が大きく、積極的な除熱が必要となり好ましくない。この為、転位反応工程でのシクロドデカノンオキシムの転化率には下限があり、80%以上、より好ましくは90%以上である。
 なお、第2の態様において、転位反応工程、後加熱工程ともにシクロドデカノンオキシムの転位反応によってラウロラクタムを製造する工程であるが、前者が積極的に除熱することによって、反応速度をコントロールし、選択的にラウロラクタムを生成させることを目的としているのに対し、後者は保温又は若干の加熱・冷却を行うのみで転位反応液を滞留させ、シクロドデカノンオキシムの転位反応を完結させることを目的にしている。従って、トリオキシトリアジン等の析出は前者にとっては深刻な悪影響を及ぼすのに対し、後者にとっては、殆ど影響を与えない。 
 第2の態様において、後加熱工程の温度は60℃から150℃、好ましくは70℃から110℃である。加熱温度が高すぎる場合、縮合等の副反応のためラウロラクタム収率が低下するとともに、着色等のラウロラクタム品質の悪化に繋がり好ましくない。加熱温度が低すぎる場合、ラウロラクタムが不活性析出物と共に沈降し、両者の分離のための装置が必要になり好ましくない。また、転位反応を完結させるために後加熱装置が長大になり好ましくない。後加熱工程の滞留時間はシクロドデカノンオキシムの転化率が好ましくは99.8%以上となるのに十分な時間が確保されればよく、特に制限はない。なお、後加熱工程でのシクロドデカノンオキシムの転化率が低くても、蒸留精製によって、高品質のラウロラクタムの製造は可能であるが、シクロドデカノンオキシム除去回収のための蒸留設備費やユーティリティーコストを考慮すると99.8%以上であることが好ましい。 
 第2の態様において、後加熱装置の形状は特に制約はなく、槽型、竪型、管型等いずれの形式を選定しても差し支えないが、析出したトリクロロトリアジンの排出が容易な槽型反応装置が特に適している。攪拌装置を備えることは必須要件ではないが不活性析出物の器壁付着を防止するために有効であり、スクレイパーを取り付けて沈降した不活性析出物を掻き取ることは特に好ましい態様である。浮遊している不活性析出物は後加熱装置上部よりオーバーフローで抜き出し、後述の触媒除去工程に送液してもよいが、装置底部より沈積した不活性析出物をラウロラクタムの溶液と共に抜き出し、一部を再度、後加熱工程に循環させ、残部を後述の触媒除去工程に排出することがより好ましい。なお、触媒除去工程の負荷を軽減する目的で抜き出し液中の触媒残渣等をろ過し、除去してもよい。
 第2の態様において、底部での析出物の沈積を防ぐため、抜き出し口に向けてテーパー状になっていることが好ましい。後加熱工程の発熱量は転位工程に比べて小さいため、自然放熱によって、温度制御を行うことも可能であるが、ジャケット等の簡単な加熱冷却装置を備えることがより好ましい。
 第2の態様において、触媒除去工程に送られた転位反応液は加熱下で水洗される。水洗により、転位工程に添加された転位触媒であるトリクロロトリアジン由来の残存触媒、活性中間体、不活性析出物を全て加水分解してトリオキシトリアジンとして、水に溶解させることによって分離・除去される。触媒除去工程の処理温度は70℃以上、好ましくは80℃以上、洗浄水のフィード量は転位工程におけるトリクロロトリアジンのフィード量の35重量倍以上、好ましくは100重量倍以上である。処理温度が低すぎる場合、又は使用する水分量が過少の場合、残存触媒、活性中間体、不活性析出物が残存する場合があり好ましくない。残存触媒、活性中間体、不活性析出物の一部はシクロドデカノンオキシムとトリクロロトリアジンから誘導されるシクロドデシリデンアミノキシクロロトリアジン構造を有しており、これらが加水分解されずに残存した場合、ラウロラクタムの収率低下に繋がり好ましくない。また、ラウロラクタム中にトリアジン構造の不純物や塩素化合物が存在することはラウロラクタムの品質低下に繋がり好ましくない。さらに、クロロトリアジン化合物は熱分解で塩化水素を発生するため蒸留工程で装置の経年腐食の原因になるため好ましくない。より高温での水洗処理又は洗浄水の大量使用は残存触媒を除去する意味において全く問題はないが、95℃以上では処理液の共沸を防ぐため、加圧装置が必要になる。また、1000重量倍以上の洗浄水の使用は廃水が増えるのみであり好ましくない。処理装置は油水混合部分と油水分離部分を備えていれば、特に制約はなく、例えば、攪拌混合槽と槽型分離槽を連結して用いることができる。なお、助触媒として用いる酸類も水溶性であり、当工程で除去することができる。また、痕跡程度残存する可能性がある含塩素不純物を除去する目的で所望により、さらにアンモニア水や水酸化ナトリウム水溶液などのアルカリ水溶液を用いて洗浄しても差し支えない。
 ラウロラクタムをさらに精製するには、典型的には、蒸留操作(留出液として抜き出すこと、缶出液として抜き出すこと、および精留等を含む)を、好ましくは多段で組み合わせて行う。一般的に転位反応の溶媒はラウロラクタムより低沸点であるため、蒸留によって転位反応の溶媒を回収した釜残(缶出液)を抜き出し、蒸留操作を一回以上行うことで精製することができる。
 溶媒回収及び精製における蒸留条件および蒸留装置は特に制約を受けないが、ラウロラクタムの開環および重合を防止するため、ボトム温度が250℃以下、好ましくは220℃以下となるよう10torr以下の真空度で減圧蒸留することが望ましい。
 次に実施例を挙げて本発明を具体的に説明する。なお、本実施例は本発明の実施態様の一例を示すものであり、本発明は本実施例に限定されるものではない。
 [参考例1:シクロドデカノンオキシムの製造]
 内部が4室に分割され、各室毎に攪拌翼が設けられた液相部容積30Lの枕型オキシム化第1反応器に、ヒドロキシルアミン硫酸塩(和光純薬工業社製)の15重量%水溶液を1.5kg/h及びオキシム化第2反応器から送液される油相をフィードした。反応温度を95℃に設定し、各室に25重量%アンモニア水を32g/hでフィードしオキシム化反応を行った。反応液には0.5kg/hでトルエンを加えた後分液し、シクロドデカノンオキシムとトルエンからなる油相を得た。水相はオキシム化第2反応器へフィードした。オキシム化第2反応器は15Lで内部が4室に分割された枕型反応器で、前記オキシム化反応液水相と25重量%のシクロドデカノンのトルエン溶液2kg/h(第1反応器へのヒドロキシルアミン硫酸塩と等モル量)を同反応器にフィードし、反応温度を95℃に設定し、各室に25重量%アンモニア水を16g/hでフィードしオキシム化反応を行った。得られた反応液は分液し、油相はオキシム化第1反応器にフィードした。水相には325g/hでトルエンを加え、向流抽出で水中に溶解しているシクロドデカノンオキシムを回収し、第1反応器から取得した油相に合した。同油相をカールフィッシャー型水分測定器(平沼AQ-2100型微量水分測定装置)を用いて測定した結果、4000重量ppmの水分を含有していた。なお、以下の参考例、実施例、比較例においては特にことわりのない限りppmは重量ppmを示し、成分比はモル比を示す。
 実施例1~27及び比較例1~13では、第1の態様において、転位反応に用いるシクロドデカノンオキシム溶液中の水分量とラウロラクタムの収率との関係を明らかにすることを目的とした。
 また、実施例28~30及び比較例14~17では、第2の態様において、シクロドデカノンオキシムの転化率とラウロラクタムの収率との関係を明らかにするとともに、反応工程における析出物の発生の有無を観測することを目的とした。
<転位原料中の水分量とラウロラクタムの収率の関係>
 [参考例2:シクロドデカノンオキシムの乾燥]
 実施例1~27及び比較例1~13に用いるシクロドデカノンオキシムを以下のように調製した。
 参考例1で得たシクロドデカノンオキシムのトルエン溶液4kgを10Lのエバポレータに入れ、トルエンを留去し、790gのシクロドデカノンオキシムを得た。得られたシクロドデカノンオキシムを真空乾燥機に入れ、150Paの減圧下120℃で24時間乾燥して、乾燥シクロドデカノンオキシム740gを得た。カールフィッシャー型水分測定器を用いドライボックス内で水分測定を行った結果15ppmの水分を含有していた。
 [実施例1]
 アセトニトリル(和光純薬工業社製)50gに参考例2で得た乾燥シクロドデカノンオキシム10g、トリクロロトリアジン(和光純薬工業社製)0.467g(シクロドデカノンオキシム濃度16.6重量%、トリクロロトリアジン/シクロドデカノンオキシム(モル/モル);0.05)を溶かし反応原料液を調整した。アセトニトリル中の水分を測定した結果450ppmの水分を含有しており、反応原料液中の水分量は375ppmとなった。反応原料液中の水/トリクロロトリアジン比は0.50であった。なお、反応原料液の調整及び溶媒中の水分測定はドライボックス中で行った。密閉した反応原料液をドライボックスから取り出し、窒素雰囲気下油浴中で攪拌しながら昇温し、80℃にて2時間反応を行い、ガスクロマトグラフィー分析を行った結果(以下、実施例、比較例おいて同様に分析を行った)、シクロドデカノンオキシムの転化率は100%、ラウロラクタム収率は98.0%であった。なお、シクロドデカノンオキシムの加水分解により生成したと思われるシクロドデカノン収率は0.7%であった。反応条件及び結果を表1に示す。以下実施例2~26、比較例1~12の反応結果も表1に示す。
 [実施例2]
 反応溶媒を水250ppmを含むベンゾニトリル(和光純薬工業社製)に変え、トリクロロトリアジン添加量を0.093gに減量した以外は実施例1と同様に反応をおこなった。
 [比較例1]
 反応溶媒を実施例1で用いたアセトニトリル(水分含有量450ppm)に変え、反応時間を4時間に延長した以外は実施例2と同様に反応を行った。
 [実施例3]
 比較例1で用いたアセトニトリルに焼成した(300℃、8時間)モレキュラーシブス4A(和光純薬工業社製)を加え24時間乾燥した。水分含有量は60ppmまで低下した。この乾燥アセトニトリルを用い、反応時間を2時間として比較例1と同様に反応を行った。表1に示したとおり、シクロドデカノン収率が低下した。
 [実施例4]
 反応溶媒をトルエン(水分含有量310ppm)に変え、反応時間を3.5時間とした以外は実施例1と同様に反応を行った。
 [実施例5]
 トリクロロトリアジンの添加量を0.28gに減量した以外は実施例4と同様に反応を行った。
 [比較例2]
 トリクロロトリアジンの添加量を0.065gに減量し、反応時間を6時間とした以外は実施例4と同様に反応を行った。
 [実施例6]
 シクロドデカノンオキシム10gとトリクロロトリアジン0.093gのほかに助触媒として塩化亜鉛0.069gを加え、実施例3の乾燥アセトニトリルと同様にして乾燥させたトルエン(水分含有量40ppm)50gを溶媒に用いて、95℃で1時間反応を行った。
 [実施例7]
 実施例6で用いた乾燥トルエンに水を添加して水分含有量336ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例6と同様に反応をおこなった。
 [比較例3]
 実施例6で用いた乾燥トルエンに水を添加して水分含有量825ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例6と同様に反応をおこなった。
 [実施例8]
 実施例6で用いた乾燥トルエンに水を添加して水分含有量1000ppmのトルエンを調整した。この調整トルエンを溶媒に用いたこと及びトリクロロトリアジンを0.262g、塩化亜鉛を0.194gに増量したこと以外は実施例6と同様に反応をおこなった。
 [実施例9]
 シクロドデカノンオキシム20g、トリクロロトリアジン0.187g、塩化亜鉛0.138gを、実施例3の乾燥アセトニトリルと同様にして乾燥したトルエン(水分含有量34ppm)46.3gに加え、反応を行った。
 [実施例10]
 実施例9で用いた乾燥トルエンに水を添加して水分含有量390ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [実施例11]
 実施例9で用いた乾燥トルエンに水を添加して水分含有量770ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [比較例4]
 実施例9で用いた乾燥トルエンに水を添加して水分含有量1020ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [比較例5]
 実施例9で用いた乾燥トルエンに水を添加して水分含有量1910ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [実施例12]
 シクロドデカノンオキシム50g、トリクロロトリアジン0.467g、塩化亜鉛0.346gを、実施例3と同様にして乾燥したトルエン(水分含有量35ppm)51gに加え、反応を行った。
 [実施例13]
 実施例12で用いた乾燥トルエンに水を添加して水分含有量1600ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例12と同様に反応をおこなった。
 [比較例6]
 実施例12で用いた乾燥トルエンに水を添加して水分含有量2500ppmのトルエンを調整した。この調整トルエンを溶媒に用いた以外は実施例12と同様に反応をおこなった。
 [実施例14]
 実施例9で用いた乾燥トルエンのかわりにモレキュラーシブス4Aで乾燥したメチルシクロヘキサン(水分濃度45ppm)を溶媒に用いた以外は実施例9と同様(に反応をおこなった。
 [実施例15]
 実施例14で用いた乾燥メチルシクロヘキサンに水を添加して水分含有量620ppmのメチルシクロヘキサンを調整した。この調整メチルシクロヘキサンを溶媒に用いた以外は実施例14と同様に反応をおこなった。
 [比較例7]
 実施例14で用いた乾燥メチルシクロヘキサンに水を添加して水分含有量890ppmのメチルシクロヘキサンを調整した。この調整メチルシクロヘキサンを溶媒に用いた以外は実施例14と同様(反応原料溶液中の水分濃度622ppm、水/トリクロロトリアジン;2.27)に反応をおこなった。
 [実施例16]
 実施例9で用いた乾燥トルエンのかわりにモレキュラーシブス4Aで乾燥したイソプロピルシクロヘキサン(水分濃度55ppm)を溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [実施例17]
 実施例16で用いた乾燥イソプロピルシクロヘキサンに水を添加して水分含有量700ppmのイソプロピルシクロヘキサンを調整した。この調整イソプロピルシクロヘキサンを溶媒に用いた以外は実施例16と同様に反応をおこなった。
 [比較例8]
 実施例16で用いた乾燥イソプロピルシクロヘキサンに水を添加して水分含有量1100ppmのイソプロピルシクロヘキサンを調整した。この調整イソプロピルシクロヘキサンを溶媒に用いた以外は実施例16と同様に反応をおこなった。
 [実施例18]
 実施例9で用いた乾燥トルエンのかわりにモレキュラーシブス4Aで乾燥したシクロオクタン(水分濃度35ppm)を溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [実施例19]
 実施例18で用いた乾燥シクロオクタンに水を添加して水分含有量770ppmのシクロオクタンを調整した。この調整シクロオクタンを溶媒に用いた以外は実施例18と同様に反応をおこなった。
 [比較例9]
 実施例18で用いた乾燥シクロオクタンに水を添加して水分含有量920ppmのシクロオクタンを調整した。この調整シクロオクタンを溶媒に用いた以外は実施例18と同様に反応をおこなった。
 [実施例20]
 実施例9で用いた乾燥トルエンのかわりにモレキュラーシブス4Aで乾燥したデカリン(水分濃度30ppm)を溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [実施例21]
 実施例20で用いた乾燥デカリンに水を添加して水分含有量685ppmのデカリンを調整した。この調整デカリンを溶媒に用いた以外は実施例20と同様に反応をおこなった。
 [比較例10]
 実施例20で用いた乾燥デカリンに水を添加して水分含有量1020ppmのデカリンを調整した。この調整デカリンを溶媒に用いた以外は実施例20と同様に反応をおこなった。
 [実施例22]
 実施例9で用いた乾燥トルエンのかわりに溶融状態でモレキュラーシブス4Aを加えて乾燥したシクロドデカン(水分濃度55ppm)を溶媒に用いた以外は実施例9と同様に反応をおこなった。
 [実施例23]
 実施例22で用いた乾燥シクロドデカンを溶融し、水を添加して水分含有量650ppmのシクロドデカンを調整した。この調整シクロドデカンを溶媒に用いた以外は実施例22と同様に反応をおこなった。
 [比較例11]
 実施例22で用いた乾燥シクロドデカンを溶融し、水を添加して水分含有量1050ppmのシクロドデカンを調整した。この調整シクロドデカンを溶媒に用いた以外は実施例22と同様に反応をおこなった。
 [実施例24]
 実施例12で用いたシクロドデカノンオキシム(水分濃度15ppm)、トルエン(水分濃度35ppm)を用い、シクロドデカノンオキシム30g、トリクロロトリアジン0.072g、塩化亜鉛0.419g、トルエン57.83gを加え反応原料を調整し、100℃で1時間反応を行った。
 [実施例25]
 トリクロロトリアジンを0.034g、トルエンを35.25gに変えた以外は実施例24と同様に反応を行った。
 [比較例12]
 実施例24に用いたトルエンに水を添加し水分濃度440ppmのトルエンを調整した。シクロドデカノンオキシム30g、トリクロロトリアジン0.102g、塩化亜鉛0.635g、調整トルエン45.88gを加え反応原料を調整し、100℃で1時間反応を行った。
 [実施例26]
 トリクロロトリアジンを0.225gに増量した以外は比較例12と同様に反応を行った。
 以上、実施例1~26及び比較例1~12の反応結果を表1に示した。
 なお、表中、TCTはトリクロロトリアジン、Ox12はシクロドデカノンオキシム、Lc12はラウロラクタム、CDONはシクロドデカノンをそれぞれ表わす(表2においても同じ)。
Figure JPOXMLDOC01-appb-T000001
 [実施例27]
 参考例1で得たシクロドデカノンオキシムのトルエン溶液に溶解している水をトルエンと共に留去し、脱水した。脱水後のシクロドデカノンオキシムのトルエン溶液中の水分は135ppmであり、シクロドデカノンオキシムの濃度は46重量%であった。このシクロドデカノンオキシム溶液を1.5Lの攪拌翼のついた槽型反応器を3槽直列に連結した転位反応器に1.17kg/hの速度でフィードした。また、転位反応器第1槽には5重量%のトリクロロトリアジンのトルエン溶液を0.1kg/h、5重量%の塩化亜鉛のトルエン、ラウロラクタム溶液(トルエン/ラウロラクタムの重量比は1/1)0.075kg/hでフィードした。なお、トリクロロトリアジン溶液および塩化亜鉛溶液中の水分はそれぞれ80ppm、800ppmであった。従って、転位反応槽にフィードされる水/トリクロロトリアジン比は0.46であった。転位反応は95℃にコントロールして行い第3反応槽出口液についてガスクロマトグラフィー分析を行った結果、シクロドデカノンオキシムは検出されず、ラウロラクタムの収率(塩化亜鉛の溶解に用いたラウロラクタム分は補正)は96.6%、シクロドデカノン収率は0.3%であった。
 [比較例13]
 シクロドデカノンオキシムのトルエン溶液の脱水を行わなかった以外は実施例27と同様に転位反応を行った。転位反応槽にフィードされる水/トリクロロトリアジン比は9.70であった。反応槽出口液についてガスクロマトグラフィー分析を行った結果、シクロドデカノンオキシムの転化率は42.0%、ラウロラクタム収率は35.7%、シクロドデカノン収率は0.3%であった。また、各槽には白色の沈殿物が付着しており、マススペクトル分析の結果、トリオキシトリアジン(シアヌル酸)であった。
<シクロドデカノンオキシムの転化率とラウロラクタムの収率の関係>
 [参考例3:シクロドデカノンオキシム溶液の脱水]
 実施例28~30及び比較例14~17に用いるシクロドデカノンオキシムを下記のように調製した。
 参考例1で得たシクロドデカノンオキシムのトルエン溶液3.04kgを10Lのエバポレータに入れ、トルエンと共に水を留去し、1.80kgまで濃縮した。得られたシクロドデカノンオキシムのトルエン溶液をカールフィッシャー型水分測定器を用いて水分測定を行った結果340ppmの水分を含有していた。また、ガスクロマトグラフィー(GLサイエンス社製TC-1、30mキャピラリーカラム使用)にて、シクロドデカノンオキシムを定量した結果、シクロドデカノンオキシム濃度は30.0重量%であった。なお、以下の実施例、比較例では、参考例1及び3の方法で製造したシクロドデカノンオキシム溶液を用いたが、水分含有量には若干のバラツキがあり、また、触媒、助触媒溶液中にも水が存在するため、実験毎に転位反応槽フィード液採取し、水分量測定を行った。
 [実施例28]
 プロペラ型攪拌装置の付いた0.17Lのガラス製攪拌槽型反応装置(槽内部に邪魔板及び加熱・冷却用ジャケット付)を3槽直列に連結し、参考例3で得られたシクロドデカノンオキシムのトルエン溶液(以下、a液)0.256kg/h、5重量%トリクロロトリアジンのトルエン溶液(以下、b液)0.016kg/h、塩化亜鉛5重量%、ラウロラクタム47.5重量%、トルエン47.5重量%からなる塩化亜鉛溶液(以下、c液)0.011kg/hを第1槽にフィードし、オーバーフローにて順次後段の反応槽にフィードした。各槽の温度は全て80℃、攪拌機の回転数は500rpmで反応を行った。また、転位反応槽フィード液中の水分は472ppm、水分/トリクロロトリアジンのフィードモル比は1.66であった。反応が定常状態になった後、各槽出口液を採取し、ガスクロマトグラフィー分析(参考例2と同一カラム使用)を行った結果、1,2,3槽のシクロドデカノンオキシム転化率は、順に、43.2%、76.8%、97.8%であり、ラウロラクタム収率は42.8%、76.4%、96.8%であった。第3反応槽から排出された反応液は0.17Lの後加熱槽に送られた。後加熱槽には錨型攪拌翼にテフロン(登録商標)製スクレイパーを取付け30rpmの低速で回転させながら不活性析出物を掻き取ると共に、下部の排出口より反応液を排出し、フィルターを通して析出物をろ別した後、ポンプアップし、後加熱槽に循環させた。一方、後処理槽の中段にはオーバーフローによる排出口を設け、排出された反応液は0.2Lの触媒除去槽に送られ0.03L/hの水で水洗後、油水分離され、油相を取得した。これを粗ラウロラクタム溶液という。なお、後加熱槽、触媒除去槽の温度は90℃であった。粗ラウロラクタム溶液のガスクロマトグラフィー分析を行った結果、シクロドデカノンオキシムの転化率は99.9%、ラウロラクタム収率は99.4%であった。また、反応槽1~3槽及び後加熱槽には、析出物の付着、沈積は認められなかった。フィルターを熱水で洗浄し、溶解したトリオキシトリアジンを自動波長選択機能付吸光光度計(HACH社製DR890型)で定量した結果、転位工程にフィードしたトリクロロトリアジンに対し10.3mol%が検出された。同様に洗浄水中のトリオキシトリアジンを定量した結果、転位工程にフィードしたトリクロロトリアジンに対し、88.5mol%が検出された。一方、粗ラウロラクタム中のトリオキシトリアジン、トリクロロトリアジンは液体クロマトグラフィー分析で測定したが検出されなかった。
 以下、実施例及び比較例の実験条件及び各反応液中のシクロドデカノンオキシム転化率とラウロラクタム収率を表2に示す。
 [実施例29]
 表2に示した条件で実施例28と同様に反応を行った。反応槽及び後加熱槽には、析出物の付着、沈積は認められなかった。また、フィルターで捕集されたトリオキシトリアジンは転位工程にフィードしたトリクロロトリアジンに対し1.4mol%、洗浄水に溶解したトリオキシトリアジンは転位工程にフィードしたトリクロロトリアジンに対し97.5mol%であり、粗ラウロラクタムからはトリオキシトリアジン及びトリクロロトリアジンは検出されなかった。
 [比較例14]
 表2に示した条件で実施例29と同様に反応を行った。転位反応第1槽、第2槽には析出物の付着、沈積は認められなかったが、第3槽には器壁に固体の付着が観測された。第3槽付着物、及びフィルター捕集物を熱水で溶解し、トリオキシトリアジンを分析した結果、フィードしたトリクロロトリアジンに対し5.6%(第3槽付着物)、4.8%(フィルター捕集物)であった。
 [比較例15]
 表2に示した条件で比較例14と同様に反応をおこなった。析出物の付着が認められなかったのは第1槽のみで、第2、第3槽には固体の付着が観測された。第2槽付着物、第3槽付着物、及びフィルター捕集物を熱水で溶解し、トリオキシトリアジンを分析した結果、フィードしたトリクロロトリアジンに対し4.0%(第2槽付着物)、8.9%(第3槽付着物)、1.0%(フィルター捕集物)であった。
 [比較例16]
 参考例1で得られたシクロドデカノンオキシムのトルエン溶液に無水硫酸ナトリウムを加え乾燥した結果、水分濃度が1200ppmまで低下した。このシクロドデカノンオキシムのトルエン溶液を用いて比較例15と同様に反応を行った。また、第3槽でトリオキシトリアジンの析出が見られた。
[実施例30]
 a液から、さらにトルエンを留去し、シクロドデカノンオキシムを濃縮した。この溶液に塩化亜鉛を加え、シクロドデカノンオキシム49.8重量%、塩化亜鉛0.34重量%を含有するトルエン溶液(以下、d液)を調整し、 0.58kg/hで転位反応槽にフィードした。同時に0.039kg/hの速度でb液を転位反応槽にフィードした。各反応槽及び後加熱槽の温度を90,90,80,100℃に設定し、反応を行った。ジャケットに流通している熱媒の温度は80、81.5、76.1、100.2℃であり、1~3反応槽は冷却することによって、設定温度に保ったが、後加熱槽は加熱・冷却の必要がなく、温度コントロールは容易であった。結果を表2に示す。反応槽及び後加熱槽には、析出物の付着、沈積は認められなかった。また、フィルターで捕集されたトリオキシトリアジンは転位工程にフィードしたトリクロロトリアジンに対し0.9mol%、洗浄水に溶解したトリオキシトリアジンは転位工程にフィードしたトリクロロトリアジンに対し98.0mol%であり、粗ラウロラクタムからはトリオキシトリアジン及びトリクロロトリアジンは検出されなかった。
 [比較例17]
 転位反応槽へのd液、及びb液のフィード量を0.70kg/h、0.040kg/hとした以外は実施例30と同様に反応を行った。各反応槽及び後加熱槽の設定温度が90、90、80、100℃であるのに対し、ジャケットに流通している熱媒の温度は82.7、84.7、77.4、95.1℃であり、後加熱槽でも除熱のための冷却が必要であった。
結果を表2に示す。反応槽及び後加熱槽には、析出物の付着、沈積は認められず、フィルターにもトリオキシトリアジンは捕集されなかったが、洗浄水に溶解したトリオキシトリアジンは転位工程にフィードしたトリクロロトリアジンに対し80.1mol%と低かった。
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1. トリクロロトリアジンを転位触媒として用いて、シクロドデカノンオキシムの液相転位反応によりラウロラクタムを製造する方法において、シクロドデカノンオキシム溶液中の水分がトリクロロトリアジンの2倍モル以下となる条件で液相転位反応を行うことを特徴とするラウロラクタムの製造方法。
  2. (a)トリクロロトリアジンを転位触媒として用い、非極性溶媒中でシクロドデカノンオキシムを転化率が80%以上、99%未満となるように液相転位させる転位反応工程と、
    (b)転位反応を完結させる後加熱工程と、
    (c)不活性析出物、活性中間体、残存触媒を除去する触媒除去工程
    とを有することを特徴とする、ラウロラクタムの製造方法。
  3. 前記転位反応工程に用いる反応装置と、前記後加熱工程に用いる反応装置が異なることを特徴とする、請求項2に記載の方法。
  4. 液相転位に用いるシクロドデカノンオキシム溶液中の水分がトリクロロトリアジンの2倍モル以下であることを特徴とする請求項2または3に記載の方法。
  5. 液相転位に用いるシクロドデカノンオキシム溶液中の水分が2000ppm以下であることを特徴とする請求項1~4のいずれかに記載の方法。
  6. 液相転位に用いるシクロドデカノンオキシム溶液中の水分が600ppm以下であることを特徴とする請求項1~5のいずれかに記載の方法。
  7. 前記後加熱工程において、シクロドデカノンオキシム転化率を99.8%以上とすることを特徴とする請求項2~6のいずれかに記載の方法。
  8. 前記触媒除去工程において、水洗工程を含むことを特徴とする請求項2~7のいずれかに記載の方法。
PCT/JP2009/059197 2008-05-20 2009-05-19 ラウロラクタムの製造方法 WO2009142206A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010513027A JP5585445B2 (ja) 2008-05-20 2009-05-19 ラウロラクタムの製造方法
US12/993,451 US8338589B2 (en) 2008-05-20 2009-05-19 Process for producing laurolactam
ES09750568.9T ES2562797T3 (es) 2008-05-20 2009-05-19 Procedimiento para producir laurolactama
EP09750568.9A EP2292599B1 (en) 2008-05-20 2009-05-19 Process for producing laurolactam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008131425 2008-05-20
JP2008-131425 2008-05-20
JP2008269262 2008-10-20
JP2008-269262 2008-10-20

Publications (1)

Publication Number Publication Date
WO2009142206A1 true WO2009142206A1 (ja) 2009-11-26

Family

ID=41340139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059197 WO2009142206A1 (ja) 2008-05-20 2009-05-19 ラウロラクタムの製造方法

Country Status (5)

Country Link
US (1) US8338589B2 (ja)
EP (1) EP2292599B1 (ja)
JP (1) JP5585445B2 (ja)
ES (1) ES2562797T3 (ja)
WO (1) WO2009142206A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095211A2 (en) 2013-12-16 2015-06-25 Massachusetts Institute Of Technology Optimal design of a lower limb exoskeleton or orthosis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516941B (zh) * 2017-09-20 2020-08-28 万华化学集团股份有限公司 一种十二内酰胺的生产方法
KR102551766B1 (ko) * 2017-12-28 2023-07-06 한화솔루션 주식회사 라우로락탐의 정제 방법 및 이의 정제 장치
KR102560093B1 (ko) * 2019-12-06 2023-07-27 한화솔루션 주식회사 라우로락탐의 제조방법, 이의 합성장치, 이에 의해 제조된 라우로락탐 조성물, 이를 이용한 폴리라우로락탐의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342174A (ja) * 2000-06-01 2001-12-11 Mitsubishi Chemicals Corp アミド化合物の製造方法
JP2006219470A (ja) 2005-01-14 2006-08-24 Univ Nagoya オキシム化合物のベックマン転位反応用触媒、及びそれを用いたアミド化合物の製造方法
DE102006058190A1 (de) 2006-04-28 2007-10-31 Degussa Gmbh Verfahren zur Herstellung von Amiden aus Ketoximen
JP2007284415A (ja) 2006-03-10 2007-11-01 Daicel Chem Ind Ltd アミド又はラクタムの製造法
JP2008156277A (ja) 2006-12-22 2008-07-10 Daicel Chem Ind Ltd ラクタム化合物の製造方法
WO2008096873A1 (ja) * 2007-02-09 2008-08-14 National University Corporation Nagoya University ラウロラクタムの製造方法
WO2009069522A1 (ja) * 2007-11-29 2009-06-04 Ube Industries, Ltd. ラウロラクタムの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1545697C3 (de) * 1965-02-03 1973-11-08 Chemische Werke Huels Ag, 4370 Marl Verfahren zur kontinuierlichen Her stellung von Launnlactam in flussiger Phase
JPS523118B1 (ja) 1969-03-13 1977-01-26
JPH054964A (ja) 1990-11-21 1993-01-14 Ube Ind Ltd カプロラクタムとラウロラクタムの製造方法
US8354527B2 (en) * 2008-05-02 2013-01-15 Ube Industries, Ltd. Process for producing amide or lactam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342174A (ja) * 2000-06-01 2001-12-11 Mitsubishi Chemicals Corp アミド化合物の製造方法
JP2006219470A (ja) 2005-01-14 2006-08-24 Univ Nagoya オキシム化合物のベックマン転位反応用触媒、及びそれを用いたアミド化合物の製造方法
JP2007284415A (ja) 2006-03-10 2007-11-01 Daicel Chem Ind Ltd アミド又はラクタムの製造法
DE102006058190A1 (de) 2006-04-28 2007-10-31 Degussa Gmbh Verfahren zur Herstellung von Amiden aus Ketoximen
WO2007125002A1 (en) * 2006-04-28 2007-11-08 Evonik Degussa Gmbh Process for preparing amides from ketoximes
JP2008156277A (ja) 2006-12-22 2008-07-10 Daicel Chem Ind Ltd ラクタム化合物の製造方法
WO2008096873A1 (ja) * 2007-02-09 2008-08-14 National University Corporation Nagoya University ラウロラクタムの製造方法
WO2009069522A1 (ja) * 2007-11-29 2009-06-04 Ube Industries, Ltd. ラウロラクタムの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. ISHIHARA, JOURNAL OF AMERICAN CHEMICAL SOCIETY, 2005, pages 11240 - 11241
See also references of EP2292599A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095211A2 (en) 2013-12-16 2015-06-25 Massachusetts Institute Of Technology Optimal design of a lower limb exoskeleton or orthosis

Also Published As

Publication number Publication date
ES2562797T3 (es) 2016-03-08
US8338589B2 (en) 2012-12-25
JPWO2009142206A1 (ja) 2011-09-29
EP2292599A4 (en) 2012-04-04
US20110065913A1 (en) 2011-03-17
EP2292599A1 (en) 2011-03-09
JP5585445B2 (ja) 2014-09-10
EP2292599B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5446872B2 (ja) ラウロラクタムの製造方法
JP5462488B2 (ja) ラウロラクタムの製造方法
US10590096B2 (en) Acesulfame potassium compositions and processes for producing same
US6433166B2 (en) Process for producing ε-caprolactam
US10577312B2 (en) Process for purifying alkanesulfonic acids
JP5585445B2 (ja) ラウロラクタムの製造方法
KR20180081795A (ko) 알칸설폰산의 재가공 방법
JP2008500389A (ja) 1,3−ジブロモアセトン、1,3−ジクロロアセトン及びエピクロロヒドリンの製造方法
CN114341105A (zh) 制备4,4’-二氯二苯砜的方法
KR102551766B1 (ko) 라우로락탐의 정제 방법 및 이의 정제 장치
CN113454061A (zh) 获得4,4’-二氯二苯亚砜的方法
EP0102297B1 (fr) Procédé de décomposition d&#39;un complexe d&#39;acide ortho-benzoyl-benzoique, de fluorure d&#39;hydrogène et de trifluorure de bore
WO2004009520A1 (ja) 3級炭素塩素化炭化水素の製造方法
JPS6340184B2 (ja)
JP4218277B2 (ja) アミド化合物の製造方法
JP5640985B2 (ja) 新規化合物およびそれを用いたアミド化合物の製造方法
JP3039600B2 (ja) 2,6−ナフタレンジカルボン酸ジメチルの製造法
JP2003212810A (ja) アダマンタノンの製造方法
ZA200507200B (en) Process for the recovery of oxazole
JP2003238520A (ja) スルホン酸の製造方法及びそれを利用したアミド化合物の製造方法
JP2991273B2 (ja) 2,6−ナフタレンジカルボン酸ジメチルの製造法
CN115814854A (zh) 一种用于制备2,2&#39;-联苯二酚的催化剂及其制备方法和用途
JP2003104969A (ja) アミド化合物の製造方法
JP2004189630A (ja) レジスト用モノマーを精製する方法
JP2003104968A (ja) アミド化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010513027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12993451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009750568

Country of ref document: EP