WO2009141999A1 - 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ - Google Patents

蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ Download PDF

Info

Publication number
WO2009141999A1
WO2009141999A1 PCT/JP2009/002197 JP2009002197W WO2009141999A1 WO 2009141999 A1 WO2009141999 A1 WO 2009141999A1 JP 2009002197 W JP2009002197 W JP 2009002197W WO 2009141999 A1 WO2009141999 A1 WO 2009141999A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
solvent
electricity storage
nonaqueous
aqueous
Prior art date
Application number
PCT/JP2009/002197
Other languages
English (en)
French (fr)
Inventor
長谷川正樹
竹内崇
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09750361.9A priority Critical patent/EP2278653B1/en
Priority to JP2009541664A priority patent/JP4435866B2/ja
Priority to CN200980118010.2A priority patent/CN102037599B/zh
Publication of WO2009141999A1 publication Critical patent/WO2009141999A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous solvent and a non-aqueous electrolyte used for an electricity storage device that stores or accumulates electrochemical energy, and an electricity storage device such as a lithium secondary battery or an electric double layer capacitor using these.
  • a non-aqueous electrolytic solution using an organic compound as a solvent is used for a high-voltage power storage device. This is because when water is used as the solvent of the electrolytic solution, water is electrolyzed by a high charge voltage and discharge voltage.
  • a nonaqueous electrolytic solution is also used for an electricity storage device that includes an active lithium that reacts with water and includes an electrode that uses insertion and extraction of lithium.
  • Non-aqueous electrolytes are required to have high conductivity and low viscosity in order to enhance the discharge performance of the electricity storage device used.
  • it when used as a solvent for secondary batteries, electric double layer capacitors, etc., it must be chemically and electrochemically stable so that the performance of the electricity storage device does not deteriorate by repeated charge and discharge. Is done.
  • the main solvent of the electrolyte solution of a lithium ion secondary battery is a mixture of a cyclic carbonate represented by ethylene carbonate and a chain carbonate represented by ethylmethyl carbonate or dimethyl carbonate.
  • Systems are conventionally used.
  • a cyclic carbonate typified by propylene carbonate is preferably used as the main solvent of the electrolytic solution of the electric double layer capacitor.
  • the power storage device as described above is widely used as a main power source, backup power source, and electric circuit power source for mobile communication devices and portable electronic devices. These devices are required to be smaller and have higher performance in recent years, and it is required to further improve the volume energy density of the electricity storage device.
  • lithium-containing layered transition metal oxides such as lithium cobaltate and lithium nickelate are generally used.
  • the value of the electric double layer capacitance can be increased by increasing the charging voltage, and the volume capacity density can be increased.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte solution containing a cyclic sulfonate ester in order to suppress oxidative decomposition of chain carbonates and cyclic carbonates under an ultrahigh potential. is doing.
  • a non-aqueous electrolyte secondary battery when the positive electrode is charged to a potential of 4.5 V or higher, the cyclic sulfonic acid ester is oxidized and decomposed on the positive electrode side, and a film is formed on the surface of the positive electrode. By forming this film, decomposition of the solvent on the positive electrode surface is suppressed.
  • Patent Documents 2 and 3 propose that a non-aqueous solvent contains “hydrocarbon compound optionally having fluorine atoms” in an amount of 0.01 wt% to 5 wt%. According to these patent documents, the presence of a hydrocarbon compound that is stable against oxidation and reduction at the active point on the electrode surface suppresses side reactions between the electrolyte component and the electrode active material in a high temperature state. It is described that it can.
  • Nonaqueous electrolyte secondary battery disclosed in Patent Document 1 can suppress the decomposition reaction of chain carbonates and cyclic carbonates, its effect is not sufficient. Furthermore, since a coating film is formed on the positive electrode surface, the charge transfer resistance at the positive electrode active material interface is increased, which raises the problem that the internal resistance of the battery increases and the high rate discharge performance decreases.
  • the “hydrocarbon compound optionally having fluorine atoms” is used as a sub-component between the electrolyte component and the electrode active material in a high temperature state.
  • the content of the hydrocarbon compound is as small as 5% by weight or less.
  • the hydrocarbon compound does not have properties such as adsorption or coordination on the surface of the positive electrode, it does not exist selectively at a high concentration on the surface of the positive electrode. Therefore, in patent documents 2 and 3, it cannot be said that the effect of side reaction suppression is fully acquired.
  • the present invention has been made in view of such a conventional technique, and an object thereof is to provide a nonaqueous solvent and a nonaqueous electrolytic solution for an electricity storage device that are excellent in oxidation resistance. Another object of the present invention is to provide a nonaqueous solvent and a nonaqueous electrolytic solution for an electricity storage device that generate a small amount of gas even when decomposed. Furthermore, by using such a non-aqueous solvent and non-aqueous electrolyte for electricity storage devices, it has high charge / discharge characteristics even when charged at a high voltage, and has high reliability over a long period even at high temperatures. Another object is to provide an electricity storage device.
  • the nonaqueous solvent for an electricity storage device of the present invention contains a fluorine-containing cyclic saturated hydrocarbon represented by the following general formula (1) and having a structure in which one or two substituents R are introduced into a cyclohexane ring.
  • R is represented by C n X 2n + 1 , n is an integer of 1 or more, at least one of 2n + 1 X is F, and the other X is F or H.
  • n 1 or 2.
  • the solvent for a non-aqueous electricity storage device further includes a compound having a relative dielectric constant of 25 or more.
  • the compound having a relative dielectric constant of 25 or more is carbonate or sulfone.
  • the compound having a relative dielectric constant of 25 or more is a cyclic carbonate.
  • the compound having a relative dielectric constant of 25 or more is a sulfone compound represented by the following general formula (2).
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, and may be bonded to each other to form a cyclic structure.
  • the sulfone compound comprises at least one of a chain sulfone and a cyclic sulfone.
  • the chain sulfone is an asymmetric chain sulfone.
  • the fluorine-containing cyclic saturated hydrocarbon is contained in an amount of 10% by weight to 100% by weight as a solvent component.
  • the nonaqueous electrolytic solution for an electricity storage device of the present invention comprises the nonaqueous solvent for an electricity storage device defined in any one of the above and a supporting electrolyte salt.
  • the supporting electrolyte salt is a lithium salt.
  • the supporting electrolyte salt is a quaternary ammonium salt.
  • the electricity storage device of the present invention includes a nonaqueous solvent for an electricity storage device or a nonaqueous electrolytic solution for an electricity storage device defined in any of the above.
  • the lithium ion secondary battery of the present invention includes a nonaqueous solvent for an electricity storage device or a nonaqueous electrolytic solution for an electricity storage device defined in any of the above.
  • the electric double layer capacitor of the present invention includes a nonaqueous solvent for an electricity storage device or a nonaqueous electrolytic solution for an electricity storage device defined in any of the above.
  • the nonaqueous solvent and nonaqueous electrolytic solution for an electricity storage device of the present invention have high oxidation resistance and compatibility with an organic solvent generally used for an electricity storage device by containing a fluorine-containing cyclic saturated hydrocarbon. Since the fluorine-containing cyclic saturated hydrocarbon does not contain oxygen, almost no gas is generated by oxidative decomposition. Further, by further including a compound having a relative dielectric constant of 25 or more, the supporting electrolyte salt can be dissolved at a high concentration.
  • the non-aqueous solvent and non-aqueous electrolyte for an electricity storage device of the present invention are excellent in oxidation resistance under high voltage. Moreover, it has high ionic conductivity. Furthermore, power storage devices such as the lithium ion secondary battery and electric double layer capacitor of the present invention have high charge / discharge characteristics even when charged at a high voltage, and have high reliability over a long period even at high temperatures.
  • (A) is a perspective view which shows embodiment of the lithium ion secondary battery by this invention
  • (b) is sectional drawing along the II line
  • HOMO highest occupied orbital
  • 4 is a graph of a voltage-current curve showing oxidation resistance of Example 2.
  • FIG. 4 is a graph of a voltage-current curve showing oxidation resistance of Example 2.
  • 10 is a flowchart showing a procedure of experiments in Examples 3 and 4;
  • (A) And (b) is a figure which shows the size of the positive electrode and negative electrode in Example 3, 4, respectively.
  • (A) And (b) is a graph which shows the charging / discharging characteristic of the electric double layer capacitor of Example 5 and Comparative Example 6.
  • FIG. (A) And (b) is a graph which shows the charging / discharging characteristic of the electric double layer capacitor of Example 5 and Comparative Example 6.
  • the non-aqueous solvent of this embodiment is used for power storage devices such as lithium ion secondary batteries and electric double layer capacitors.
  • the nonaqueous solvent for an electricity storage device of this embodiment contains a fluorine-containing cyclic saturated hydrocarbon represented by the following general formula (1).
  • This fluorine-containing cyclic saturated hydrocarbon has a structure in which one or more and two or less substituents R are introduced into a cyclohexane ring.
  • the substituent R is represented by C n X 2n + 1 .
  • n is an integer of 1 or more, at least one of 2n + 1 Xs is F, and the other Xs are F or H.
  • the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) has a higher redox potential than that of the cyclic carbonate or chain carbonate, specifically, a redox potential of 4.3 V or more. Increase the oxidation resistance of non-aqueous solvents. In addition, CO 2 is not generated even when decomposed.
  • the inventor of the present application has a low molecular symmetry and a bipolar ratio of 1.6 debye or more, with cyclohexane having a hydrocarbon group in which hydrogen is substituted with fluorine as a substituent. It has been found that since it has a child moment, it has excellent compatibility with polar solvents, and because it has a cyclic saturated hydrocarbon skeleton, it has excellent oxidation resistance.
  • the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) does not have a functional group inferior in oxidation stability in the molecule, it is excellent in oxidation stability. Further, since the fluorine atom bonded to the substituent R has a strong electron-withdrawing effect, the oxidation resistance of the cyclic saturated hydrocarbon can be further improved as compared with the case where fluorine substitution is not performed.
  • the cyclic saturated hydrocarbon is preferably cyclohexane from the viewpoint that it is liquid in the temperature range in which the electricity storage device is used and that it is easily available and handled.
  • a compound in which fluorine is bonded to the substituent R rather than a compound in which a fluorine atom is bonded directly to a cyclohexane ring, such as 1,1,2,2,3,3,4-heptafluorocyclopentane Since the compound of the formula (1) has lower molecular symmetry, the compound of the general formula (1) has a relatively large polarity and dielectric constant. For this reason, the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) is excellent in compatibility with a polar solvent.
  • the substituent R attracts electrons from the cyclohexane ring, so that the oxidation resistance of the cyclohexane ring is improved. Therefore, it is more preferable that the substituent R is a trifluoromethyl group or a pentafluoroethyl group.
  • the number of substituents R is preferably 1 or 2.
  • the introduction position of the substituent R into cyclohexane is not particularly limited. However, from the viewpoint of lowering the melting point, it is preferable to have a molecular structure in which the other substituent R is bonded to the carbon atom adjacent to the carbon atom to which one substituent R is bonded, and two carbon atoms are bonded to the same carbon atom. It is more preferable to have a molecular structure in which the substituent R is bonded.
  • the two substituents R may have the same structure or different structures.
  • the number of substituents R is more than two, the molecular weight increases and the molecular diffusion rate decreases. Further, if the substituent R is too large, the molecular weight increases and the diffusion rate of the molecule decreases, so the carbon number (n) of R is preferably 1 or 2.
  • cyclic saturated hydrocarbon represented by the general formula (1) include, for example, fluoromethylcyclohexane, difluoromethylcyclohexane, trifluoromethylcyclohexane, (2-fluoroethyl) cyclohexane, (2,2- (Difluoroethyl) cyclohexane, (2,2,2-trifluoroethyl) cyclohexane, (1-fluoroethyl) cyclohexane, (1,2-difluoroethyl) cyclohexane, (1,2,2-trifluoroethyl) cyclohexane, ( 1,2,2,2-tetrafluoroethyl) cyclohexane, (1,1-difluoroethyl) cyclohexane, (1,1,2-trifluoroethyl) cyclohexane, (1,1,2,2-tetrafluor
  • fluorine-containing cyclic saturated hydrocarbons include trifluoromethylcyclohexane, (pentafluoroethyl) cyclohexane, 1,1-bis (trifluoromethyl) cyclohexane, 1,1-bis (pentafluoroethyl) cyclohexane. 1,2-bis (trifluoromethyl) cyclohexane, 1,3-bis (trifluoromethyl) cyclohexane, and 1- (pentafluoroethyl) -1- (trifluoromethyl) cyclohexane are particularly preferred.
  • These compounds can be obtained by fluorination using F 2 , NF 3 , or DAST ((diethylamino) sulfur trifluoride), and the corresponding alkylcyclohexane or leaving group (I, Cl, OH, etc.) at the site where the fluorine atom is to be introduced. It can synthesize
  • the nonaqueous solvent for an electricity storage device of this embodiment has high oxidation resistance for the reasons described above.
  • the non-aqueous solvent for an electricity storage device of the present embodiment is added to the non-aqueous electrolyte of the electricity storage device at a high ratio in order to be excellent in compatibility with an organic solvent generally used as a non-aqueous electrolyte for the electricity storage device. Can do. Therefore, the nonaqueous electrolysis can be performed by using the nonaqueous solvent for the electricity storage device of the present embodiment as the nonaqueous electrolyte of the electricity storage device or by adding the nonaqueous solvent for the electricity storage device of the present embodiment to the nonaqueous electrolyte of the electricity storage device.
  • the oxidation resistance of the liquid can be improved.
  • solvents of this embodiment is not accompanied by generation of CO 2 even if oxidative degradation. Therefore, in the electricity storage device using the nonaqueous solvent for an electricity storage device of the present embodiment, it is possible to avoid the problem that the safety mechanism (CID) is activated or the battery expands due to the oxidative decomposition of the solvent.
  • CID safety mechanism
  • the fluorine-containing cyclic hydrocarbon compound represented by the general formula (1) is more preferably contained in the solvent at a content of 5 wt% or more and 100 wt% or less.
  • it is contained at a content of 10 wt% or more and 100 wt% or less. If content in a solvent is 10 weight% or more, the oxidation of a non-aqueous electrolyte will be suppressed effectively and the amount of gas generation will be reduced.
  • the nonaqueous solvent for an electricity storage device of the present embodiment can be suitably used for a device having a high charging voltage (an ultrahigh withstand voltage type nonaqueous electricity storage device).
  • a high charging voltage an ultrahigh withstand voltage type nonaqueous electricity storage device.
  • an electricity storage device such as a lithium ion secondary battery or an electric double layer capacitor
  • the solvent of the present embodiment When the solvent of the present embodiment is used as a nonaqueous electrolytic solution for an electricity storage device such as a lithium ion secondary battery or an electric double layer capacitor, it can be used by mixing with a known supporting electrolyte or solvent. There are no particular limitations on the type of supporting electrolyte or other solvent to be mixed.
  • a salt composed of an anion and a cation is generally used.
  • the anion species include halide anion, perchlorate anion, trifluoromethanesulfonate anion, tetrafluoroborate anion, hexafluorophosphate anion, trifluoromethanesulfonate anion, nonafluoro-1-butanesulfonate anion.
  • Bis (trifluoromethanesulfonyl) imide anion bis (pentafluoroethylsulfonyl) imide anion, etc., as cation species, alkali metal cations such as lithium, sodium and potassium, alkaline earth metal cations such as magnesium, tetraethylammonium And quaternary ammonium cations such as 1,3-ethylmethylimidazolium (EMI).
  • alkali metal cations such as lithium, sodium and potassium
  • alkaline earth metal cations such as magnesium
  • tetraethylammonium And quaternary ammonium cations such as 1,3-ethylmethylimidazolium (EMI).
  • Examples of the salt composed of the above-mentioned anion species and cation species include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , C 2 H 5 ) 4 NBF 4. , (C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , (C 2 H 5 ) 4 NPF 6 , (C 2 H 5 ) 3 CH 3 NN (SO 2 CF 3 ) 2 , (C 2 H 5 ) 4 NN (SO 2 CF 3 ) 2 , and the like, and mixtures thereof.
  • lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , C 2 H 5 ) 4 NBF 4. , (C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , (C
  • Examples of the mixed solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate. Can do.
  • the nonaqueous solvent for an electricity storage device of this embodiment includes a compound having a relative dielectric constant of 25 or more in addition to the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) described in the first embodiment. It is out. Thereby, in addition to the effect of the nonaqueous solvent for an electricity storage device of the first embodiment, there is an effect that the solubility of the supporting electrolyte salt is excellent.
  • the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) is as described in the first embodiment.
  • a compound having a relative dielectric constant of 25 or more refers to a compound having a relative dielectric constant of 25 or more at 25 to 40 ° C.
  • a solvent having a relative dielectric constant of 25 or more has a polarity sufficient to dissociate the supporting electrolyte salt and is suitable for a nonaqueous electrolytic solution of an electricity storage device.
  • a compound having a relative dielectric constant of 25 or more provides a function of dissociating the supporting electrolyte salt into the nonaqueous solvent for an electricity storage device.
  • the compound having a relative dielectric constant of 25 or more is carbonate or sulfone.
  • the carbonate having a relative dielectric constant of 25 or more include cyclic carbonates including ethylene carbonate, propylene carbonate, butylene carbonate and the like.
  • the aforementioned carbonate fluorides such as fluoroethylene carbonate and fluoropropylene carbonate can also be used.
  • R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, and may have a chain structure that is not bonded to each other, or may be bonded to each other to form a cyclic structure. May be. More specifically, in the general formula (2), R 1 and R 2 are methylene groups (CH 2 ), and bonded to each other to form a 5-membered ring containing S, sulfolane (SLF), sulfolane 3-methylsulfolane (3-MeSLF) in which one of hydrogens is substituted with a methyl group, and isopropylmethylsulfone (iPrMeSF) in which R 1 is an isopropyl group and R 2 is a methyl group may be used.
  • SPF sulfolane
  • 3-MeSLF 3-methylsulfolane
  • iPrMeSF isopropylmethylsulfone
  • the compound having a relative dielectric constant of 25 or more may be gamma butyrolactone.
  • the nonaqueous solvent for an electricity storage device of this embodiment may contain two or more compounds having a relative dielectric constant of 25 or more.
  • the relative dielectric constants of these compounds are shown in Table 1.
  • the relative dielectric constant without particularly describing the temperature is a value at 25 ° C., and the one with the temperature described is the relative dielectric constant at that temperature.
  • the relative dielectric constant of these compounds is 25 or more at 25 to 40 ° C.
  • “Hydrocarbon compounds optionally having fluorine atoms” in Patent Documents 2 and 3 have low compatibility with carbonate compounds and are contained in the solution at a content of 0.01 wt% or more and 5 wt% or less. Only. On the other hand, since the fluorine-containing cyclic saturated hydrocarbon of this embodiment has high compatibility with a compound having a relative dielectric constant of 25 or more, it can be dissolved in a solvent at a high content. Therefore, a greater effect can be obtained in terms of both oxidation resistance and ion conductivity.
  • the fluorine-containing cyclic hydrocarbon compound represented by the general formula (1) is contained in the solvent in an amount of 5% by weight or more, the oxidation of the nonaqueous electrolytic solution is effectively suppressed.
  • the content of the fluorine-containing cyclic hydrocarbon compound in the solvent is 50% or less, it is easily compatible with a compound having a relative dielectric constant of 25 or more. Therefore, the fluorine-containing cyclic hydrocarbon compound is more preferably contained in the solvent at 5 wt% or more and 50 wt% or less.
  • the fluorine-containing cyclic hydrocarbon compound is contained in the solvent in an amount of 10% by weight or more and 30% by weight or less, higher efficiency discharge characteristics can be obtained and a phase with a compound having a relative dielectric constant of 25 or more can be obtained. Dissolution becomes even easier.
  • nonaqueous solvent for an electricity storage device of this embodiment high oxidation resistance is obtained by the fluorine-containing cyclic saturated hydrocarbon.
  • a supporting electrolyte salt such as a lithium salt or a quaternary ammonium salt can be dissolved and dissociated at a sufficient concentration by a compound having a relative dielectric constant of 25 or more. Thereby, ion conductivity is kept high.
  • a compound having a relative dielectric constant of 25 or more has high viscosity. Therefore, ion conduction in a solvent in which such a compound is used alone is likely to be hindered, and high ion conductivity is difficult to obtain. On the other hand, since the viscosity of the fluorine-containing cyclic saturated hydrocarbon is low, the effect of further improving the ionic conductivity can be obtained by mixing both.
  • the nonaqueous solvent for an electricity storage device of the present embodiment can be used for a device having a high charging voltage exceeding 4.3 V (an ultrahigh withstand voltage nonaqueous electricity storage device).
  • a device having a high charging voltage exceeding 4.3 V an ultrahigh withstand voltage nonaqueous electricity storage device.
  • an electricity storage device such as a lithium ion secondary battery or an electric double layer capacitor
  • solvents of this embodiment is not accompanied by generation of CO 2 even if oxidative degradation. Therefore, in the electricity storage device using the nonaqueous solvent for an electricity storage device of the present embodiment, it is possible to avoid the problem that the safety mechanism (CID) is activated or the battery expands due to the oxidative decomposition of the solvent.
  • CID safety mechanism
  • the non-aqueous electrolyte of the present embodiment is used for power storage devices such as lithium ion secondary batteries and electric double layer capacitors.
  • the nonaqueous electrolytic solution of the present embodiment includes a nonaqueous solvent and a supporting electrolyte salt dissolved in the nonaqueous solvent.
  • a nonaqueous solvent the nonaqueous solvent of the second embodiment can be used.
  • the supporting electrolyte salt a general one can be used depending on the type of the electricity storage device.
  • the non-aqueous electrolyte of the present embodiment is used for a lithium ion secondary battery
  • the supporting electrolyte salt LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, LiCl, Lithium salts such as LiC 6 H 5 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , C 4 F 9 SO 3 Li and mixtures thereof can be used.
  • the non-aqueous electrolyte of the present embodiment is used as a non-aqueous electrolyte for an electric double layer capacitor, in addition to the lithium salt described above, (C 2 H 5 ) 4 NBF 4 , (C 4 H 9 ) 4 NBF 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , (C 2 H 5 ) 4 NPF 6 , (C 2 H 5 ) 3 CH 3 NN (SO 2 CF 3 ) 2 , (C 2 H 5) 4 N-N ( SO 2 CF 3) 2, can be used quaternary ammonium salts, and mixtures thereof, such as.
  • the non-aqueous electrolyte of this embodiment contains a compound having a relative dielectric constant of 25 or more, the supporting electrolyte salt can be dissolved and separated at a sufficient concentration. Moreover, high oxidation resistance is obtained by the fluorine-containing cyclic saturated hydrocarbon. Thereby, the non-aqueous electrolyte of this embodiment can be used for a device having a high charging voltage exceeding 4.3 V (an ultrahigh withstand voltage non-aqueous storage device).
  • the electricity storage device of this embodiment is a lithium ion secondary battery.
  • the lithium ion secondary battery of the present embodiment includes an electrode group 13, a battery case 14 that houses the electrode group 13, and a non-filled battery case 14.
  • the positive electrode in the electrode group 13 is connected to the positive electrode lead 11, and the negative electrode in the electrode group is connected to the negative electrode lead 12.
  • the positive electrode lead 11 and the negative electrode lead 12 are drawn out of the battery case 14.
  • the nonaqueous electrolytic solution used in the lithium ion secondary battery of the third embodiment is used.
  • it has a solvent in which propylene carbonate (PC) (commercially available battery grade) and trifluoromethylcyclohexane (TFMCH) are mixed in a ratio of 85:15.
  • PC propylene carbonate
  • TFMCH trifluoromethylcyclohexane
  • LiPF 6 commercially available battery grade
  • the electrode group 13 includes a positive electrode 1, a negative electrode 2, and a separator 3 provided between the positive electrode 2 and the negative electrode 2.
  • the positive electrode 1 includes a positive electrode current collector 1a made of aluminum foil having a thickness and a positive electrode active material layer 1b made of LiCoO 2 applied to the surface of the positive electrode current collector 1a.
  • the negative electrode 2 includes a negative electrode current collector 2a made of a stainless steel (SUS304) mesh and metal lithium 2b press-bonded to the surface of the negative electrode current collector 2a.
  • the separator 3 is made of, for example, a polyethylene microporous sheet.
  • a lithium-containing transition metal oxide other than LiCoO 2 may be used as a material for the positive electrode active material layer 1b.
  • any material may be used as long as the potential of the positive electrode 1 during charging exceeds 4 V on the basis of lithium.
  • a plurality of different materials may be mixed and used as the positive electrode active material.
  • the positive electrode active material is a powder, the average particle size is not particularly limited, but is preferably 0.1 to 30 ⁇ m.
  • the positive electrode active material layer 1b usually has a thickness of about 50 ⁇ m to 200 ⁇ m, but the thickness is not particularly limited, and the positive electrode active material layer 1b may have a thickness of 0.1 ⁇ m to 50 ⁇ m.
  • the positive electrode active material layer 1b may contain both a conductive agent and a binder other than the active material, or may contain only one of them. Alternatively, the positive electrode active material layer 1b does not contain either a conductive agent or a conductive agent, and may be composed of only the active material.
  • the conductive agent for the positive electrode 1 may be any electronic conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode 1.
  • conductive fibers such as graphites, carbon blacks, carbon fibers and metal fibers, metal powders, conductive whiskers, conductive metal oxides, or organic conductive materials may be used alone. And may be used as a mixture.
  • the addition amount of the conductive agent is not particularly limited, but is preferably 1 to 50% by weight, and particularly preferably 1 to 30% by weight with respect to the positive electrode material.
  • the binder used for the positive electrode 1 may be either a thermoplastic resin or a thermosetting resin.
  • Preferred binders include, for example, polyolefin resins such as polyethylene and polypropylene, fluororesins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), and the like.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • fillers In addition to the conductive agent and binder, fillers, dispersants, ionic conductors, pressure enhancers, and other various additives can be used.
  • the filler may be any fibrous material that does not cause a chemical change in the lithium ion secondary battery.
  • the material of the positive electrode current collector 1a may be any electronic conductor as long as it does not cause a chemical change at the charge / discharge potential of the positive electrode 1.
  • stainless steel, aluminum, titanium, carbon, conductive resin, or the like can be used.
  • the shape may be any of film, sheet, net, punched material, lath body, porous body, foamed body, fiber group, nonwoven fabric shaped body, and the like in addition to the foil.
  • the thickness is not particularly limited, but is generally 1 to 500 ⁇ m.
  • various natural graphites or various artificial graphites carbon materials such as graphitizable carbon, non-graphitizable carbon, and mixtures thereof may be used, and lithium can be reversibly occluded and released.
  • Composite materials including various materials such as silicon and tin, and various alloy materials may be used. For example, from the group consisting of a silicon simple substance, a silicon alloy, a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a tin simple substance, a tin alloy, a compound containing tin and oxygen, and a compound containing tin and nitrogen It is desirable to use at least one selected.
  • an oxide material capable of reversibly occluding and releasing lithium such as lithium titanate can also be used.
  • the negative electrode current collector 16 for example, a copper foil, a nickel foil, a stainless steel foil or the like may be used.
  • the nonaqueous electrolytic solution 15 has a property that it is difficult to be oxidatively decomposed even when a high charging voltage is applied. Therefore, it can be used as a device (super high withstand voltage type non-aqueous storage device) having a high charge voltage exceeding 4.3V.
  • FIG. 1 shows a sheet-type lithium ion secondary battery
  • the lithium ion secondary battery of this embodiment may have other shapes, such as a cylindrical shape, a rectangular shape, or a large size used for an electric vehicle or the like. You may have the shape of.
  • the lithium ion secondary battery of the present embodiment can be used for a portable information terminal, a portable electronic device, a small household power storage device, a motorcycle, an electric vehicle, a hybrid electric vehicle, etc., but is not limited thereto. It can also be used for other devices.
  • the electricity storage device of this embodiment is an electric double layer capacitor.
  • the electric double layer capacitor of the present embodiment includes disk-shaped electrodes 23a and 23b facing each other and a separator 17 disposed between the two electrodes 23a and 23b.
  • the electrode 23a includes a current collector 16a and an electrode mixture 22a provided on the surface of the current collector 16a.
  • the electrode 23b includes a current collector 16b and an electrode mixture 22b provided on the surface of the current collector 16b.
  • the current collectors 16a and 16b are made of, for example, aluminum foil, and the electrode mixtures 22a and 22b include, for example, activated carbon.
  • the electrode group consisting of the electrodes 23a and 23b and the separator 17 is accommodated in a case 21 having a circular bottom surface.
  • a spacer 18 is disposed on the bottom surface of the case 21, and an electrode group is placed on the spacer 18.
  • the upper part of the case 21 is open, and this opening is sealed with a sealing plate 19.
  • a gap between the case 21 and the sealing plate 19 is filled with a gasket 20.
  • the case 21 and the sealing plate 19 are impregnated with a predetermined amount of non-aqueous electrolyte 24.
  • the non-aqueous electrolyte solution 24 the non-aqueous electrolyte solution used in the electric double layer capacitor of the third embodiment is used.
  • the non-aqueous electrolyte 24 is composed of a mixed solvent in which propylene carbonate (PC) and trifluoromethylcyclohexane (TFMCH) are mixed at a weight ratio of 80:20, and 0.2 mol / L (C 2 H 5 ). 4 and a NBF 4.
  • the nonaqueous electrolytic solution 24 of the present embodiment has a property that it is not easily oxidatively decomposed even when a high charging voltage is applied. Therefore, the electric double layer capacitor of the present embodiment can be used as a device having a high charging voltage exceeding 4.3 V (ultra high withstand voltage type non-aqueous storage device).
  • FIG. 2 shows a coin-type electric double layer capacitor, but the electric double layer capacitor of this embodiment may have other shapes, for example, a cylindrical shape or a square shape.
  • the dipole moment is an index indicating the magnitude of intramolecular polarization, and is related to the compatibility with the polar solvent expressed by the present invention.
  • the maximum occupied orbital energy is an index indicating energy required for extracting one electron from a molecule, and is related to the oxidation resistance performance of the solvent.
  • the dipole moment and the highest occupied orbital energy were calculated using a quantum chemical calculation method. Specifically, the calculation was performed using commercially available first-principles molecular orbital calculation software, and the density functional method (B3LYP) was used as the calculation method, and 6-31G (d) was used as the basis function. In addition, the optimization of energy value was performed by self-intangible field calculation.
  • Table 2 shows the calculation results.
  • Table 3 shows the results of plotting the dipole moment and the highest occupied orbital energy of each fluorine-containing cyclic saturated hydrocarbon.
  • the dipole moment of the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) was a value larger than about 1.6 debye.
  • the fluorine-containing cyclic saturated hydrocarbon having the smallest dipole moment is (1-fluoroethyl) cyclohexane (1FECH), and the dipole moment is 1.66.
  • the dipole moment of methylcyclohexane was 0.08 debye.
  • the highest occupied molecular orbital energy of the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) was smaller than that of methylcyclohexane. Since the oxidation reaction is a reaction that pulls out electrons from the molecule, the smaller the maximum occupied orbital energy (negatively larger), the larger the energy required for pulling out the electrons, and the higher the oxidation resistance. Therefore, it can be seen that all of the fluorine-containing cyclic saturated hydrocarbons of the present invention in which an alkyl group having a fluorine atom is introduced as a substituent in the cyclohexane ring structure have high oxidation resistance.
  • Trifluoromethylcyclohexane A commercially available product was used as trifluorocyclohexane (TFMCH) [CAS RN: 401-75-2].
  • the commercial product was purified by a rotary band type precision fractionator (manufactured by Otsuka Industries). The purity of the purified product obtained was measured by gas chromatography (using a gas chromatograph manufactured by Shimadzu Corporation), and the purity was 99.5%.
  • the dichloromethane was removed by distillation using a Liebig cooler at a bath temperature of 60 ° C.
  • the residue was purified by distillation under reduced pressure four times under the conditions of bath temperature: 100 to 176 ° C, steam temperature: 90 to 145 ° C, and internal pressure: 280 to 420 mmHg. Repeatedly, 11.8 g of colorless liquid was obtained.
  • DAST (diethylamino) sulfur trifluoride) (manufactured by Tokyo Kasei Kogyo) was added to a 1 L reactor containing 360 mL of anhydrous dichloromethane (manufactured by Kanto Chemical), and cooled to ⁇ 10 ° C.
  • a mixed solution obtained by diluting 36.1 g of 1-cyclohexylethanol (Alfa Aesar) in 140 mL of anhydrous dichloromethane (manufactured by Kanto Chemical Co., Inc.) was slowly added dropwise so that the temperature of the reaction vessel would not exceed 0 ° C. Thereafter, the mixture was stirred at ⁇ 10 ° C. for 1 hour.
  • the organic solution was washed with 400 mL of distilled water, allowed to stand and separated into two layers, and the organic layer was taken out with a separatory funnel. To the obtained organic solution was added anhydrous magnesium sulfate and dried. Further, after filtering to remove anhydrous sodium sulfate, the dichloromethane was removed by distillation using a Liebig cooler at a bath temperature of 50 ° C. to obtain 38.1 g of a slightly yellowish colorless liquid.
  • the mixture was allowed to stand and separated into two layers, and the organic layer and the aqueous layer were taken out with a separating funnel.
  • 30 mL of dichloromethane (manufactured by Kanto Chemical Co., Inc.) was added to the extracted aqueous layer, allowed to stand and separated into two layers, and the dichloromethane layer was extracted with a separatory funnel.
  • the taken out dichloromethane layer was separated into the above two layers and mixed with the taken out organic layer, washed with 300 mL of distilled water, and then the organic layer was taken out with a separating funnel. After further washing with 300 mL of saturated saline, the organic layer was taken out with a separatory funnel.
  • 2-cyclohexylethyl methanesulfonate 120 g was placed in a 1 L reactor, and 367 g of tetrabutylammonium fluoride (manufactured by Wako Pure Chemical Industries) and 180 g of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) were added and 50 ° C. The mixture was stirred for 24 hours in the environment. A part of this solution was taken out and analyzed by gas chromatography (using a gas chromatograph manufactured by Shimadzu Corporation), and it was confirmed that the peak of the raw material 2-cyclohexylethyl methanesulfonate had disappeared completely.
  • the residue was purified by distillation under reduced pressure using a rectifying column equipped with a 3-stage Liebig condenser on the inner tube under conditions of bath temperature: 72 ° C., steam temperature: 62 ° C., internal pressure: 32 mmHg, and 39.5 g of colorless liquid was obtained. Obtained.
  • This compound was found to have 15 hydrogen atoms.
  • the number of hydrogen on the carbon to which the fluorine atom is bonded is 2 from the triplet peak of 4.415, 4.430, 4.446 ppm and the triplet peak of 4.534, 4.549, 4.565 ppm.
  • the number of hydrogens on the carbon bonded to the carbon bonded to the fluorine atom was two.
  • 19 F-NMR spectrum (CDCl 3 )
  • a singlet corresponding to one fluorine atom having a peak at ⁇ 218.470 ppm was observed. From the above results, it was found that the colorless liquid was (2-fluoroethyl) cyclohexane.
  • the purity measured by gas chromatography using a gas chromatograph manufactured by Shimadzu Corporation) was 99.2%.
  • TFMCH trifluoromethylcyclohexane
  • PC propylene carbonate
  • methylcyclohexane MCH having no fluorine atom and propylene carbonate
  • the results are shown in Table 7.
  • methylcyclohexane was used by purifying a commercially available product (manufactured by Kanto Chemical Co., Ltd.) with a rotary band type precision fractionator (manufactured by Daishin Kogyo).
  • the purity measured by gas chromatography was 99.5%.
  • the dipole moment of (1-fluoroethyl) cyclohexane is the smallest of the dipole moments of the fluorine-containing cyclic saturated hydrocarbon represented by the general formula (1) shown in Table 2.
  • Table 2 As mentioned above, since compatibility is considered to depend on the dipole moment of the molecule, other fluorine-containing cyclic saturated hydrocarbons in Table 2 that were not evaluated for compatibility are also optional with propylene carbonate. It can be estimated that they are compatible with each other.
  • the tripolar glass cell 30 has a structure in which a working electrode 36, a counter electrode 34 facing the working electrode 36, and a reference electrode 35 are arranged in a glass container 38.
  • the working electrode 36 is a 1 cm ⁇ 1 cm Pt plate (purity: 99.9 wt%)
  • the counter electrode 34 is a 2 cm ⁇ 2 cm stainless steel (SUS304) mesh 33a bonded to a 150 ⁇ m thick Li foil 33b.
  • As the reference electrode 35 a ⁇ 2 mm Li wire was used.
  • the working electrode 36 is connected to the Pt wire 37, and the counter electrode 34 is connected to the stainless wire 32.
  • the Pt wire 37, the reference electrode 35, and the stainless steel wire 32 are fixed by a rubber plug 31.
  • Example 2-1 and Comparative Examples 2-1 and 2-2 were prepared as samples for evaluating oxidation resistance.
  • Example 2-1 In purified TFMCH, LiPF 6 (commercial battery grade) was dissolved as a supporting salt to prepare an electrolyte solution of TFMCH. In the TFMCH non-aqueous electrolyte, the LiPF 6 concentration was 0.1 mol / L.
  • EMC Ethyl methyl carbonate
  • LiPF 6 commercial battery grade
  • LiPF 6 concentration in the EMC electrolyte was 0.1 mol / L.
  • Example 1 and Comparative Examples 1 and 2 were injected into the above-mentioned tripolar glass cell 30 to obtain an evaluation cell.
  • a voltage-current curve was measured by a linear sweep voltammetry (LSV) method using an electrochemical analyzer (manufactured by ALS) having a maximum electrode voltage of 26V. The measurement was performed by sweeping the voltage of the working electrode 36 with respect to the reference electrode 35 from the natural open circuit voltage to 8 V at 5 mV / sec. When the voltage between the working electrode 36 and the reference electrode 35 was 8V, the voltage between the working electrode 36 and the counter electrode 34 was 25V. The measurement results are shown in FIG.
  • Example 2-2 The electrolyte solution of Example 1 was prepared by dissolving LiPF 6 (commercial battery grade) as a supporting salt in a mixed solvent of TFMCH purified in Example 1 and diethyl carbonate (DEC) (commercial battery grade) in a volume ratio of 10:90. It was adjusted. In the above electrolytic solution, the LiPF 6 concentration was 0.1 mol / L.
  • Example 2-3 The electrolyte solution of Example 2 in which LiPF 6 (commercial battery grade) was dissolved as a supporting salt in a mixed solvent of 12BTFMCH synthesized in Example 1 and diethyl carbonate (DEC) (commercial battery grade) in a volume ratio of 10:90 was used. It was adjusted. In the above electrolytic solution, the LiPF 6 concentration was 0.1 mol / L.
  • Example 2-4 The electrolyte solution of Example 3 in which LiPF 6 (commercial battery grade) was dissolved as a supporting salt in a mixed solvent of 2FECH synthesized in Example 1 and diethyl carbonate (DEC) (commercial battery grade) in a volume ratio of 10:90 was used. It was adjusted. In the above electrolytic solution, the LiPF 6 concentration was 0.1 mol / L.
  • Comparative Example 2-3 The electrolyte solution of Comparative Example 1 was prepared by dissolving LiPF 6 (commercial battery grade) as a supporting salt in a mixed solvent of PC (commercial battery grade) and diethyl carbonate (DEC) (commercial battery grade) in a volume ratio of 10:90. did. In the above electrolytic solution, the LiPF 6 concentration was 0.1 mol / L.
  • Comparative Example 2-4 LiPF 6 (commercial battery grade) was dissolved as a supporting salt in a mixed solvent of 10:90 volume ratio of ethyl methyl carbonate (EMC) (commercial battery grade) and diethyl carbonate (DEC) (commercial battery grade). The electrolyte was adjusted. In the above electrolytic solution, the LiPF 6 concentration was 0.1 mol / L.
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the current values of the electrolytic solutions of Examples 2-2 to 2-4 are the same as those of Comparative Examples 2-3 and 2-4 even when the voltage between the working electrode and the reference electrode is increased. This is smaller than the increase behavior of the current value.
  • the current value measured by the LSV method is an index indicating the rate of the oxidation reaction of the solvent, and the small current value means that the oxidation resistance of the solvent is excellent.
  • all of the solvents of the present invention used in the examples are a working electrode and a reference electrode that are important in lithium ion secondary batteries having a charging voltage of 4 to 5 V and electric double layer capacitors that perform charging of 2.5 V or more. It can be seen that the current value is small in the vicinity of the inter-voltage 6V, and it is excellent as a solvent for a high-voltage storage device.
  • LiCoO 2 (average particle diameter 10 ⁇ m, specific surface area 0.38 m 2 / g by BET method) was prepared as a positive electrode active material. To 100 parts by weight of the active material, add 3 parts by weight of acetylene black as a conductive agent, 4 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone, and stir and mix. A slurry-like positive electrode mixture was obtained. Polyvinylidene fluoride was used in a state dissolved in N-methyl-2-pyrrolidone in advance.
  • the slurry-like positive electrode mixture 1b was applied to one side of a current collector 1a made of an aluminum foil having a thickness of 20 ⁇ m, and the coating film was dried and rolled with a roller.
  • the method for preparing LiCoO 2 used as the positive electrode active material is as follows. While stirring the saturated aqueous solution of cobalt sulfate at a low speed, an alkaline solution in which sodium hydroxide was dissolved was added dropwise to obtain a Co (OH) 2 precipitate. The precipitate was filtered, washed with water, and then dried by heating to 80 ° C. in air. The average particle diameter of the obtained hydroxide was about 10 ⁇ m.
  • the obtained hydroxide was subjected to heat treatment at 380 ° C. in air for 10 hours to obtain oxide Co 3 O 4 . It was confirmed by powder X-ray diffraction that the obtained oxide had a single phase.
  • lithium carbonate powder was mixed with the obtained oxide so that the ratio of the number of moles of Co to the number of moles of Li was 1.00: 1.00, and heat treatment was performed at 850 ° C. in dry air.
  • the target LiCoO 2 was obtained. It was confirmed by powder X-ray diffraction (manufactured by Rigaku) that the obtained LiCoO 2 had a single-phase hexagonal layered structure. After pulverization and classification, it was confirmed by observation with a scanning electron microscope (manufactured by Hitachi High-Technologies) that the particle size was about 6 to 15 ⁇ m. In addition, the average particle diameter was calculated
  • the obtained electrode plate was punched out to the dimensions shown in FIG. 8A, and the positive electrode mixture 1b at the tab portion as the lead attachment portion was peeled off to obtain the positive electrode 1.
  • the positive electrode current collector 1a coated with the positive electrode mixture 1b has a rectangular shape of 30 mm ⁇ 40 mm.
  • Step 102 ⁇ Preparation of Negative Electrode (Step 102)> First, a stainless steel (SUS304) mesh was punched out to the dimensions shown in FIG. 8B to form the negative electrode current collector 2a.
  • the negative electrode current collector 2a includes an electrode portion having a rectangular shape of 31 mm ⁇ 41 mm and a lead attachment portion having a square shape of 7 mm ⁇ 7 mm.
  • 150 ⁇ m thick metal lithium 2b was pressure-bonded to obtain the negative electrode 2.
  • Step 103 As shown in FIG. 1 (c), the obtained positive electrode 1 and negative electrode 2 were laminated via a separator 3 to produce an electrode group 13.
  • a separator 3 As the separator, a polyethylene microporous sheet having a thickness of 20 ⁇ m was used.
  • an aluminum positive electrode lead 11 was welded to the positive electrode 1 of the electrode group 13, and a nickel negative electrode lead 12 was welded to the negative electrode 2.
  • the electrode group 13 was housed in a battery case 14 made of an aluminum laminate film having a thickness of 0.12 mm opened in three directions, and fixed to the inner surface of the battery case 14 with a PP tape.
  • the opening including the opening from which the positive electrode lead 11 and the negative electrode lead 12 protrude is thermally welded, and only one opening is left without being thermally welded, so that the battery case 14 has a bag shape.
  • a predetermined amount of electrolytic solution 15 is injected from an opening that is not thermally welded, and the interior of the battery is sealed by thermally welding the opening in a decompressed state after depressurization and deaeration. did.
  • the electrolyte solution 15 is prepared by dissolving LiPF 6 (commercial battery grade) as a supporting salt in a mixed solvent of ethylene carbonate (commercial battery grade) (EC) and EMC (commercial battery grade) having a volume ratio of 1: 3. Using. LiPF 6 was dissolved so that the number of moles in the electrolyte was 1 mol / L.
  • LiPF 6 commercial battery grade
  • EC ethylene carbonate
  • EMC commercial battery grade
  • Step 104 The batteries manufactured in steps 101 to 103 are charged at a constant current of 4.4 mA at a current value of 4 mA, and then kept at a constant voltage charge of 4.4 V until the current value decays to 0.8 mA. It was.
  • Step 105 After completion of charging, the battery was opened in an inert gas atmosphere having a dew point of ⁇ 70 ° C., and the positive electrode 1 to which the positive electrode lead 11 was welded was taken out. Next, the tab portion of the positive electrode 1 taken out was cut, and the positive electrode lead 11 was removed. Furthermore, the positive electrode 1 with the tab portion cut was immersed in dimethyl carbonate (DMC) (commercially available battery grade) to extract and remove the electrolyte contained in the positive electrode 1. Thereafter, the positive electrode 1 was taken out of the DMC, the DMC was removed by vacuum drying at room temperature, and a positive electrode charged at a high voltage was obtained.
  • DMC dimethyl carbonate
  • Example 2-5 The charging positive electrode was housed in a bag-like aluminum laminate film having a width of 50 mm and a height of 100 mm. After injecting 3 ml of purified TFMCH as an evaluation solvent, the aluminum laminate film was sealed by thermally welding the opening in a reduced pressure state.
  • Example 2-6 As a solvent for evaluation, a mixture of purified TFMCH and PC (commercial battery grade) in a weight ratio of 90:10 was used. The other configuration was the same as that of Example 2-5.
  • Example 2--7 As a solvent for evaluation, a mixture of purified TFMCH and PC (commercial battery grade) in a weight ratio of 50:50 was used. The other configuration was the same as that of Example 2-5.
  • Example 2-8 As a solvent for evaluation, a mixture of purified TFMCH and PC (commercial battery grade) in a weight ratio of 10:90 was used. The other configuration was the same as that of Example 2-5.
  • Example 2-9 As a solvent for evaluation, a mixture of purified TFMCH and PC (commercial battery grade) in a weight ratio of 5:95 was used. The other configuration was the same as that of Example 2-5.
  • Example 2-10 Synthesized 12BTFMCH was used as a solvent for evaluation.
  • the other configuration was the same as that of Example 2-5.
  • Example 2-11 Synthesized 2FECH was used as an evaluation solvent.
  • the other configuration was the same as that of Example 2-5.
  • Example 2-6 EMC (commercial battery grade) was used as a solvent for evaluation.
  • the other configuration was the same as that of Example 2-5.
  • Examples 2-5 to 2-11 the amount of gas generated is smaller than those in Comparative Examples 2-5 and 2-6. This is probably because TFMCH, 12BTFMCH and 2FECH used in Examples 2-5, 2-10 and 2-11 are less likely to be oxidized than PC and EMC used in Comparative Examples 2-5 and 2-6. In Examples 2-5, 2-10 and 2-11, almost no gas was generated. The reason why a small amount of gas of 0.02 to 0.05 cm 3 is generated is considered to be that the electrolytic solution (including carbonate) used in producing the charged positive electrode remained and was decomposed.
  • the degree of the effect that the gas generation can be suppressed correlates with the content of TFMCH in the mixed solvent.
  • the degree of the effect that the gas generation can be suppressed correlates with the content of TFMCH in the mixed solvent.
  • the amount of TFMCH added increases, the total amount of gas generated also decreases.
  • the amount of gas generated is significantly suppressed.
  • the solvent preferably contains 5% by weight or more of TFMCH, and more preferably contains 10% by weight or more of TFMCH.
  • TFMCH, 12BTFMCH, and 2FECH have higher reliability than cyclic carbonates typified by PC and chain carbonates typified by EMC.
  • 2FECH is a fluorine-containing cyclic saturated hydrocarbon having a structure in which one or more and two or less substituents R, which are solvents of the present invention, are introduced into a cyclohexane ring (general In the formula (1), R is represented by C n X 2n + 1 , X is F or H, and at least one of 2n + 1 X is F. Occupied orbital energy is the largest. Therefore, it is clear that any solvent having a molecular structure having the highest occupied molecular orbital energy smaller than 2FECH of the present invention has excellent oxidation resistance and does not cause gas generation.
  • propylene carbonate was used as a compound having a dielectric constant of 25 or more.
  • Example 3-1 As Example 3-1, a plurality of types of mixed solvents having different weight ratios of propylene carbonate (PC) and trifluoromethylcyclohexane (TFMCH) were prepared. The weight ratio of each mixed solvent was 97: 3, 95: 5, 90:10, 85:15, and 75:25. Prepare two samples each of the mixed solvent of each weight ratio, dissolve LiPF 6 with a concentration of 0.2 mol / L in one of the two samples, and dissolve LiPF 6 with a concentration of 0.5 mol / L in the other. Electrolytes A1, B1, C1, D1, E1, A2, B2, C2, D2, and E2 were obtained. Table 9 shows the relationship between the electrolyte sample name, the weight ratio, and the concentration.
  • PC propylene carbonate
  • TFMCH trifluoromethylcyclohexane
  • Comparative Example 3-1 As a comparative example, two samples of an electrolytic solution containing only propylene carbonate (PC) as a solvent were prepared. Of LiPF 6 concentration 0.2 mol / L in one of the two samples, by dissolving LiPF 6 at a concentration 0.5 mol / L to the other, thereby preparing an electrolytic solution F1, F2.
  • PC propylene carbonate
  • LiCoO 2 (average particle diameter 10 ⁇ m, specific surface area 0.38 m 2 / g by BET method) was prepared as a positive electrode active material. To 100 parts by weight of the active material, add 3 parts by weight of acetylene black as a conductive agent, 4 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone, and stir and mix. A slurry-like positive electrode mixture was obtained. Polyvinylidene fluoride was used in a state dissolved in N-methyl-2-pyrrolidone in advance.
  • the said slurry-like positive mix 1b was apply
  • the method for preparing LiCoO 2 used as the positive electrode active material is as follows. While stirring the saturated aqueous solution of cobalt sulfate at a low speed, an alkaline solution in which sodium hydroxide was dissolved was added dropwise to obtain a Co (OH) 2 precipitate. The precipitate was filtered, washed with water, and then dried by heating to 80 ° C. in air. The average particle diameter of the obtained hydroxide was about 10 ⁇ m.
  • the obtained hydroxide was subjected to heat treatment at 380 ° C. in air for 10 hours to obtain oxide Co 3 O 4 . It was confirmed by powder X-ray diffraction that the obtained oxide had a single phase.
  • lithium carbonate powder was mixed with the obtained oxide so that the ratio of the number of moles of Co to the number of moles of Li was 1.00: 1.00, and heat treatment at 1000 ° C. was performed in dry air.
  • the target LiCoO 2 was obtained. It was confirmed by powder X-ray diffraction (manufactured by Rigaku) that the obtained LiCoO 2 had a single-phase hexagonal layered structure. After pulverization and classification, it was confirmed by observation with a scanning electron microscope (manufactured by Hitachi High-Technologies) that the particle size was about 10 to 15 ⁇ m. In addition, the average particle diameter was calculated
  • the obtained electrode plate was punched out to the dimensions shown in FIG. 8A, and the positive electrode mixture 1b at the tab portion as the lead attachment portion was peeled off to obtain the positive electrode 1.
  • the positive electrode current collector 1a coated with the positive electrode mixture 1b has a rectangular shape of 30 mm ⁇ 40 mm.
  • the negative electrode current collector 2a includes an electrode portion having a rectangular shape of 31 mm ⁇ 41 mm and a lead attachment portion having a square shape of 7 mm ⁇ 7 mm.
  • 150 ⁇ m thick metal lithium 2b was pressure-bonded to obtain the negative electrode 2.
  • ⁇ Assembly> The obtained positive electrode 1 and negative electrode 2 were laminated via a separator 3 to produce an electrode group 13 as shown in FIG.
  • a separator 3 As the separator, a polyethylene microporous sheet having a thickness of 20 ⁇ m was used.
  • an aluminum positive electrode lead 11 was welded to the positive electrode 1 of the electrode group 13, and a nickel negative electrode lead 12 was welded to the negative electrode 2.
  • the electrode group 13 was housed in a battery case 14 made of an aluminum laminate film having a thickness of 0.12 mm opened in three directions, and fixed to the inner surface of the battery case 14 with a PP tape.
  • the opening including the opening from which the positive electrode lead 11 and the negative electrode lead 12 protrude is thermally welded, and only one opening is left without being thermally welded, so that the battery case 14 has a bag shape.
  • Each of the electrolytic solutions A1 to B2 was injected as the electrolytic solution 15 from the opening not thermally welded, and the inside of the battery was sealed by thermally welding the opening in a reduced pressure state after depressurization and deaeration. From the electrolytes A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, G2, batteries A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, and G2 were obtained.
  • the battery had a size of 0.5 mm in thickness, 50 mm in width, and 100 mm in height, and the design capacity when this battery was charged at 4.3 V was 40 mAh.
  • each battery A1, A2, B1,... G2 in a charged state was held for 3 days in a thermostatic chamber at 85 ° C. At this time, it is considered that CO 2 is generated when the solvent contained in the electrolytic solution is oxidatively decomposed. Then, each battery A1, A2, B1, ... G2 was taken out from the thermostat, and the amount of generated gas was quantified and component analysis was performed by gas chromatography. Table 10 shows the CO 2 generation amount calculated from the results.
  • the batteries F1 and F2 of Comparative Example 3-1 not containing dimethyl carbonate (DMC) were compared with the batteries G1 and G2 of Conventional Example 3-1 containing dimethyl carbonate (DMC).
  • DMC dimethyl carbonate
  • the generation of CO 2 is suppressed, the deterioration of the high rate discharge characteristics is large.
  • the generation of CO 2 is further suppressed as compared with the batteries F1, F2 of Comparative Example 3-1. From this result, it can be seen that oxidation is suppressed if TFMCH is contained even a little.
  • the batteries A1, B1,... E2 of Example 1 the high rate discharge characteristics are also improved as compared with the batteries F1, F2 of Comparative Example 1.
  • the battery containing 5% by weight or more of trifluoromethylcyclohexane (TFMCH) (B1, C1, D1, E1, B2, C2, D2, E2) contains 3 trifluoromethylcyclohexane.
  • the generation of CO 2 is greatly suppressed as compared with those containing only wt% (A1, A2).
  • the amount of CO 2 generated is gradually reduced at 0.65 ml or less.
  • Example 3-1 which contained 10% by weight or more of trifluoromethylcyclohexane (C1, D1, E1, C2, D2, E2)
  • the high rate discharge characteristics increased gradually at 83% or more.
  • the battery of Example 3-1 which contained 10% by weight or more of trifluoromethylcyclohexane (C1, D1, E1, C2, D2, E2)
  • the high rate discharge characteristics increased gradually at 83% or more.
  • by including 10% by weight or more of trifluoromethylcyclohexane particularly good high rate discharge characteristics can be obtained.
  • the fluorine-containing cyclic hydrocarbon compound is preferably contained in the solvent in an amount of 5% by weight or more, more preferably 10% by weight or more.
  • Example 3 the results of producing a lithium ion secondary battery and evaluating its characteristics will be described.
  • sulfone was used as a compound having a dielectric constant of 25 or more.
  • Example 4-1 As Example 4-1, sulfolane (SLF), 3-methylsulfolane (3-MeSLF), and isopropylmethylsulfone (iPrMeSF) as the sulfones, and trifluoromethylcyclohexane (TFMCH) as the fluorine-containing cyclic hydrocarbon compound, A non-aqueous electrolyte was prepared using 1,2-bis (trifluoromethyl) cyclohexane (12BTFMCH) and lithium hexafluorophosphate (LiPF 6 ) as a supporting electrolyte salt.
  • SPF sulfolane
  • 3-MeSLF 3-methylsulfolane
  • iPrMeSF isopropylmethylsulfone
  • TFMCH trifluoromethylcyclohexane
  • a non-aqueous electrolyte was prepared using 1,2-bis (trifluoromethyl) cyclohexane (12BTFMCH) and lithium
  • Table 11 show the sample names and composition ratios of the non-aqueous electrolyte solutions prepared, respectively.
  • the mixing ratio of the solvent is expressed as a weight ratio
  • the concentration of the supporting electrolyte salt is expressed as mol / L.
  • combined were used for TFMCH and 12BTFMCH. All other solvents and supporting electrolyte salts were commercial battery grades.
  • Comparative Example 4-1 As a comparative example, a nonaqueous electrolytic solution containing only propylene carbonate (PC), sulfolane, 3-methylsulfolane, and isopropylmethylsulfone as solvents was prepared.
  • the solvent and supporting electrolyte salt used were both commercially available battery grades.
  • Nonaqueous electrolytic solution containing a mixed solvent in which propylene carbonate and dimethyl carbonate (DMC) were mixed at a weight ratio of 75:25 was prepared.
  • the sample name of the non-aqueous electrolyte prepared in Table 15 and the concentration of the supporting electrolyte salt are shown in mol / L.
  • the solvent and supporting electrolyte salt used were both commercially available battery grades.
  • LiCoO 2 (average particle size 10 ⁇ m, specific surface area 0.38 m 2 / g by BET method) was prepared as a positive electrode active material. To 100 parts by weight of the active material, add 3 parts by weight of acetylene black as a conductive agent, 4 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone, and stir and mix. A slurry-like positive electrode mixture was obtained. Polyvinylidene fluoride was used in a state dissolved in N-methyl-2-pyrrolidone in advance.
  • the said slurry-like positive mix 1b was apply
  • the method for preparing LiCoO 2 used as the positive electrode active material is as follows. While stirring the saturated aqueous solution of cobalt sulfate at a low speed, an alkaline solution in which sodium hydroxide was dissolved was added dropwise to obtain a Co (OH) 2 precipitate. The precipitate was filtered, washed with water, and then dried by heating to 80 ° C. in air. The average particle diameter of the obtained hydroxide was about 10 ⁇ m.
  • the obtained hydroxide was subjected to heat treatment at 380 ° C. in air for 10 hours to obtain oxide Co 3 O 4 . It was confirmed by powder X-ray diffraction that the obtained oxide had a single phase.
  • lithium carbonate powder was mixed with the obtained oxide so that the ratio of the number of moles of Co to the number of moles of Li was 1.00: 1.00, and heat treatment at 1000 ° C. was performed in dry air.
  • the target LiCoO 2 was obtained. It was confirmed by powder X-ray diffraction (manufactured by Rigaku) that the obtained LiCoO 2 had a single-phase hexagonal layered structure. After pulverization and classification, it was confirmed by observation with a scanning electron microscope (manufactured by Hitachi High-Technologies) that the particle size was about 10 to 15 ⁇ m. In addition, the average particle diameter was calculated
  • the obtained electrode plate was punched out to the dimensions shown in FIG. 8A, and the positive electrode mixture 1b at the tab portion as the lead attachment portion was peeled off to obtain the positive electrode 1.
  • the positive electrode current collector 1a coated with the positive electrode mixture 1b has a rectangular shape of 30 mm ⁇ 40 mm.
  • the negative electrode current collector 2a includes an electrode portion having a rectangular shape of 31 mm ⁇ 41 mm and a lead attachment portion having a square shape of 7 mm ⁇ 7 mm.
  • 150 ⁇ m thick metal lithium 2b was pressure-bonded to obtain the negative electrode 2.
  • ⁇ Assembly> The obtained positive electrode 1 and negative electrode 2 were laminated via a separator 3 to produce an electrode group 13 as shown in FIG.
  • a separator 3 As the separator, a polyethylene microporous sheet having a thickness of 20 ⁇ m was used.
  • an aluminum positive electrode lead 11 was welded to the positive electrode 1 of the electrode group 13, and a nickel negative electrode lead 12 was welded to the negative electrode 2.
  • the electrode group 13 was housed in a battery case 14 made of an aluminum laminate film having a thickness of 0.12 mm opened in three directions, and fixed to the inner surface of the battery case 14 with a PP tape.
  • the opening including the opening from which the positive electrode lead 11 and the negative electrode lead 12 protrude is thermally welded, and only one opening is left without being thermally welded, so that the battery case 14 has a bag shape.
  • Each of the electrolyte solutions prepared as the electrolyte solution 15 was injected from the opening portion that was not thermally welded, and the interior of the battery was sealed by thermally welding the opening portion under reduced pressure after depressurization and deaeration.
  • Table 16 shows the relationship between the electrolytic solution used and the obtained battery name.
  • the battery had a size of 0.5 mm in thickness, 50 mm in width, and 100 mm in height, and the design capacity when this battery was charged at 4.3 V was 40 mAh.
  • Table 17 shows the results of measurement with an electric conductivity meter (manufactured by Toa DKK) under an environment of 22 ° C.
  • Table 18 also shows values obtained by converting the initial discharge capacity of each battery as the capacity per unit weight of the positive electrode mixture.
  • Example 5 Preparation of electrolyte>
  • PC propylene carbonate
  • TFMCH trifluoromethylcyclohexane
  • Example 5 propylene carbonate (PC) and trifluoromethylcyclohexane (TFMCH) were mixed at a weight ratio of 80:20 to prepare a mixed solvent.
  • (C 2 H 5 ) 4 NBF 4 was dissolved at a concentration of 0.2 mol / L to obtain an electrolytic solution J.
  • Comparative Example 5 As Comparative Example 5, an electrolytic solution containing only propylene carbonate (PC) as a solvent was prepared, and (C 2 H 5 ) 4 NBF 4 was dissolved at a concentration of 0.2 mol / L to obtain an electrolytic solution K. It was.
  • PC propylene carbonate
  • the electrode was prepared using activated carbon powder (specific surface area 1700 m 2 / g, average particle diameter 2 ⁇ m). 100 mg of activated carbon powder and 20 mg of acetylene black were uniformly mixed, and 20 mg of polyvinylpyrrolidone and 800 mg of methanol were added to obtain a slurry. This slurry-like electrode mixture was applied onto a current collector made of an aluminum foil and vacuum-dried. The application weight of the electrode mixture was 2.2 mg / cm 2 per unit area of the current collector. The obtained electrode plate was punched into a disk shape having a diameter of 12.5 mm to obtain an electrode.
  • activated carbon powder specific surface area 1700 m 2 / g, average particle diameter 2 ⁇ m.
  • a coin-type electric double layer capacitor as shown in FIG. 2 was assembled using electrodes punched into a disk shape.
  • the electrodes 22a and 22b were arranged to face each other through a separator 17 made of a polypropylene non-woven sheet punched into a circle having a diameter of 15 mm to form an electrode group.
  • the electrode group was housed inside the case 20 and impregnated with a predetermined amount of various electrolytes J and K, and then the inside of the capacitor was sealed with a sealing plate 19 fitted with a gasket 20.
  • a sealing plate 19 fitted with a gasket 20.
  • FIG. 9A shows the results of a charge / discharge test of the electric double layer capacitor J
  • FIG. 9B shows the electric double layer capacitor K.
  • the main purpose was to confirm that an electric double layer capacitor equivalent to or better than the conventional one could be produced by using the nonaqueous electrolytic solvent for an electricity storage device and the electrolytic solution of the present invention. No high temperature storage test was conducted. However, like the electrolytic solution in Example 3, the electrolytic solution in Example 5 suppresses the oxidation reaction in a high potential state, and thus the electric double layer capacitor of Example 5 can obtain high reliability. it can.
  • Example 6 sulfolane (SLF) and 1,2-bis (trifluoromethyl) cyclohexane (12BTFMCH) were mixed at a weight ratio of 3: 1 to prepare a mixed solvent.
  • SPF sulfolane
  • 12BTFMCH 1,2-bis (trifluoromethyl) cyclohexane
  • Comparative Example 6 As Comparative Example 6, an electrolyte solution containing only propylene carbonate (PC) as a solvent was prepared, and (C 2 H 5 ) 4 NBF 4 was dissolved at a concentration of 0.2 mol / L to obtain an electrolyte solution M. It was.
  • PC propylene carbonate
  • the electrode was prepared using activated carbon powder (specific surface area 1700 m 2 / g, average particle diameter 2 ⁇ m). 100 mg of activated carbon powder and 20 mg of acetylene black were uniformly mixed, and 20 mg of polyvinylpyrrolidone and 800 mg of methanol were added to obtain a slurry. This slurry-like electrode mixture was applied onto a current collector made of an aluminum foil and vacuum-dried. The application weight of the electrode mixture was 2.2 mg / cm 2 per unit area of the current collector. The obtained electrode plate was punched into a disk shape having a diameter of 12.5 mm to obtain an electrode.
  • activated carbon powder specific surface area 1700 m 2 / g, average particle diameter 2 ⁇ m.
  • a coin-type electric double layer capacitor as shown in FIG. 2 was assembled using electrodes punched into a disk shape.
  • the electrodes 22a and 22b were arranged to face each other through a separator 17 made of a polypropylene non-woven sheet punched into a circle having a diameter of 15 mm to form an electrode group.
  • the electrode group was housed inside the case 20 and impregnated with a predetermined amount of various electrolytes L and M, and then the inside of the capacitor was sealed with a sealing plate 19 fitted with a gasket 20.
  • an electric double layer capacitor L using the electrolytic solution L and an electric double layer capacitor M using the electrolytic solution M were produced.
  • FIG. 10 (a) shows the charge / discharge test results of the electric double layer capacitor of Example 6, and FIG. 10 (b) shows the charge / discharge test results of the electric double layer capacitor of Comparative Example 6.
  • the main purpose was to confirm that an electric double layer capacitor equivalent to or better than the conventional one could be produced by using the nonaqueous electrolytic solvent for an electricity storage device and the electrolytic solution of the present invention. No high temperature storage test was conducted. However, like the electrolytic solution in Example 4, the electrolytic solution in Example 6 suppresses the oxidation reaction in a high potential state, and thus the electric double layer capacitor of Example 6 can obtain high reliability. it can.
  • the nonaqueous solvent for an electricity storage device of the present invention is useful as a solvent for an electrolytic solution for realizing an ultrahigh voltage type nonaqueous electricity storage device having a high energy density. It can also be used as a solvent for conventional voltage-type lithium ion secondary batteries and electric double layer capacitors, and high temperature reliability is realized. In particular, it is suitable as a solvent for an electrolytic solution of a large battery or an electric vehicle battery that requires high reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明の蓄電デバイス用非水溶媒は、下記一般式(1)で表され、かつ、1または2個の置換基Rがシクロヘキサン環に導入された構造を有するフッ素含有環状飽和炭化水素を含む。一般式(1)中、RはCn2n+1で表され、nは1以上の整数であり、2n+1個のXのうちの少なくとも1つはFであり、それ以外のXはFまたはHである。

Description

蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
 本発明は、電気化学エネルギーを貯蔵あるいは蓄積する蓄電デバイスに用いられる非水溶媒および非水電解液と、これらを用いたリチウム二次電池や電気二重層キャパシタなどの蓄電デバイスに関する。
 近年、蓄電素子単体の充電電圧および放電電圧が1.5Vを超える高電圧型の蓄電デバイスの開発が進められており、このような高電圧型の蓄電デバイスとして、リチウム一次電池、リチウムイオン二次電池、リチウムポリマー二次電池、電気二重層キャパシタ等が実用化されている。
 高電圧型の蓄電デバイスには、有機化合物を溶媒とする非水電解液が用いられる。電解液の溶媒として水を用いると、高い充電電圧および放電電圧によって水の電気分解が生じてしまうからである。また、水と反応する活性なリチウムを含み、リチウムの吸蔵または放出を利用する電極を備えた蓄電デバイスにも非水電解液が用いられる。
 非水電解液には、使用される蓄電デバイスの放電性能を高めるため、高い導電性と、粘度の低さが望まれる。また、二次電池や電気二重層キャパシタ等の溶媒として用いられる場合には、充放電を繰り返すことによって蓄電デバイスの性能が劣化しないように、化学的かつ電気化学的に安定であることが必要とされる。
 これらの観点から、例えば、リチウムイオン二次電池の電解液の主溶媒には、エチレンカーボネートに代表される環状カーボネート(炭酸エステル)とエチルメチルカーボネートやジメチルカーボネートに代表される鎖状カーボネートとの混合系が従来より用いられている。また、電気二重層キャパシタの電解液の主溶媒には、プロピレンカーボネートに代表される環状カーボネートが好適に用いられる。 上述したような蓄電デバイスは、移動体通信機器や携帯電子機器の主電源、バックアップ電源および電気回路用電源として広く利用されている。これらの機器は、近年より一層小型で高性能であることが求められており、蓄電デバイスの体積エネルギー密度を、より一層、向上させることが求められている。
 体積エネルギー密度を向上させるためには、平均放電電圧の向上および体積容量密度の向上を図る必要があり、その実現手段の1つとして、充電電圧の高電圧化が検討されている。
 リチウムイオン二次電池の場合、充電電圧を高くすることにより、正極材料のリチウムの利用効率を向上させることが可能になり、体積容量密度が高くなる。正極材料としては、一般的に、コバルト酸リチウムやニッケル酸リチウム等のリチウム含有層状遷移金属酸化物が用いられる。また、電気二重層キャパシタの場合、充電電圧を高くすることにより電気二重層容量の値を大きくすることが可能になり、体積容量密度を高めることができる。
 しかしながら、一対の電極群のいずれか一方の電極をリチウムの溶解析出電位を基準として4.3V以上まで充電した場合、耐酸化性に優れ、高電圧型の蓄電デバイスに適した非水溶媒として知られる従来の鎖状カーボネート類や環状カーボネート類を用いても、これらの酸化分解が起き、ガスが発生する。この分解反応は特に高温状態において顕著に進行し、多量のガス発生を伴う。このため、例えば、電池の過充電に対して充電電流を遮断する内圧感知型電流遮断機構(CID:Current Interrupt Device)が、このような非水溶媒を含む高電圧型のリチウムイオン二次電池に搭載されている場合、CIDが誤作動して、電池としての機能が損失されてしまうことがある。また、CIDが搭載されていない場合には、ガスの発生量が多くなると電池が膨張するといった問題が生じる。
 特許文献1は、鎖状カーボネート類や環状カーボネート類の超高電位下での酸化分解を抑制するために、環状スルホン酸エステルを含有する非水電解液を用いた非水電解質二次電池を開示している。このような非水電解質二次電池では、正極が4.5V以上の電位に充電されると、環状スルホン酸エステルが正極側で酸化分解され、正極表面に被膜が形成される。この被膜が形成されることにより、正極表面での溶媒の分解が抑制される。
 一方、特許文献2および3では、非水溶媒に、「フッ素原子を有していてもよい炭化水素化合物」を0.01重量%以上5重量%以下含有させることを提案している。これらの特許文献によれば、電極表面の活性点に、酸化および還元に対して安定な炭化水素化合物が存在することにより、高温状態での電解液成分と電極活物質との副反応を抑制することができると記載されている。
特開2005-149750号公報 特開2004-111359号公報 特開2006-286650号公報
 しかし、特許文献1に開示されている非水電解質二次電池では、鎖状カーボネート類や環状カーボネート類の分解反応を抑制することができるものの、その効果は十分ではない。さらに、正極表面に被膜が形成されるため、正極活物質界面における電荷移動抵抗が増大し、電池の内部抵抗が上昇するとともに高率放電性能が低下するという問題が発生する。
 また、特許文献2および3に開示されている非水電解質二次電池では、「フッ素原子を有していてもよい炭化水素化合物」によって、高温状態での電解液成分と電極活物質との副反応を抑制することができると記載されているが、炭化水素化合物の含有率は、5重量%以下と少ない。また、炭化水素化合物は、正極表面に吸着または配位等する性質を有しているものでもないため、正極表面に選択的に高濃度で存在するということもない。したがって、特許文献2および3では、副反応抑制の効果が十分に得られるとはいえない。
 本発明はこのような従来技術に鑑み、耐酸化性に優れる蓄電デバイス用非水溶媒および非水電解液を提供することを目的とする。また、本発明は、分解してもガスの発生量が少ない蓄電デバイス用非水溶媒および非水電解液を提供することを目的とする。さらに、このような蓄電デバイス用非水溶媒および非水電解液を用いることにより、高電圧で充電しても、高い充放電特性を有し、かつ、高温状態においても長期にわたり高い信頼性を有する蓄電デバイスを提供することも目的とする。
 本発明の蓄電デバイス用非水溶媒は、下記一般式(1)で表され、かつ、1または2個の置換基Rがシクロヘキサン環に導入された構造を有するフッ素含有環状飽和炭化水素を含む。一般式(1)中、RはCn2n+1で表され、nは1以上の整数であり、2n+1個のXのうちの少なくとも1つはFであり、それ以外のXはFまたはHである。
Figure JPOXMLDOC01-appb-C000001
 ある好ましい実施形態において、前記nは1または2である。
 ある好ましい実施形態において、非水系蓄電デバイス用溶媒は、25以上の比誘電率を有する化合物をさらに含む。
 ある好ましい実施形態において、前記25以上の比誘電率を有する化合物はカーボネートまたはスルホンである。
 ある好ましい実施形態において、前記25以上の比誘電率を有する化合物は環状カーボネートである。
 ある好ましい実施形態において、前記25以上の比誘電率を有する化合物は、下記一般式(2)で表わされるスルホン化合物である。R1、R2は、それぞれ独立した炭素数1以上4以下のアルキル基であり、互いに結合して環状構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000002
 ある好ましい実施形態において、前記スルホン化合物が鎖状スルホンおよび環状スルホンの少なくとも一方からなる。
 ある好ましい実施形態において、前記鎖状スルホンが非対称の鎖状スルホンである。
 ある好ましい実施形態において、溶媒成分として、前記フッ素含有環状飽和炭化水素を10重量%以上100重量%以下含有する。
 本発明の蓄電デバイス用非水電解液は、上記いずれかに規定される蓄電デバイス用非水溶媒と、支持電解質塩とを備える。
 ある好ましい実施形態において、前記支持電解質塩はリチウム塩である。
 ある好ましい実施形態において、前記支持電解質塩は四級アンモニウム塩である。
 本発明の蓄電デバイスは、上記いずれかに規定される蓄電デバイス用非水溶媒または蓄電デバイス用非水電解液を含む。
 本発明のリチウムイオン二次電池は、上記いずれかに規定される蓄電デバイス用非水溶媒または蓄電デバイス用非水電解液を含む。
 本発明の電気二重層キャパシタは、上記いずれかに規定される蓄電デバイス用非水溶媒または蓄電デバイス用非水電解液を含む。
 本発明の蓄電デバイス用非水溶媒および非水電解液は、フッ素含有環状飽和炭化水素を含むことにより高い耐酸化性および蓄電デバイスに一般的に用いられる有機溶媒との相溶性を備えている。フッ素含有環状飽和炭化水素は酸素を含まないため、酸化分解によってガスもほとんど生成しない。また、25以上の比誘電率を有する化合物をさらに含むことによって、高い濃度で支持電解質塩を溶解させることができる。
 したがって、本発明の蓄電デバイス用非水溶媒および非水電解液は、高電圧下における耐酸化性に優れる。また、高いイオン伝導性を有する。さらに、本発明のリチウムイオン二次電池、電気二重層キャパシタなどの蓄電デバイスは、高電圧で充電しても高い充放電特性を有し、かつ、高温状態においても長期にわたり高い信頼性を有する。
(a)は本発明によるリチウムイオン二次電池の実施形態を示す斜視図であり、(b)は、図1(a)のI-I線に沿った断面図であり、(c)は、図1(a)、(b)に示す電極群13の断面を拡大して示す図である。 本発明による電気二重層キャパシタの実施形態を示す断面図である。 本発明の蓄電デバイス用非水溶媒を構成する各フッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道(HOMO)エネルギーを示す図である。 耐酸化性の評価に用いた3極式ガラスセルを示す断面図である。 実施例2の耐酸化性を示す電圧-電流曲線のグラフである 実施例2の耐酸化性を示す電圧-電流曲線のグラフである 実施例3、4、の実験の手順を示すフローチャートである。 (a)および(b)は、それぞれ実施例3、4における正極および負極のサイズを示す図である。 (a)および(b)は、実施例5および比較例6の電気二重層キャパシタの充放電特性を示すグラフである。 (a)および(b)は、実施例5および比較例6の電気二重層キャパシタの充放電特性を示すグラフである。
 (第1の実施形態)
 以下、本発明による蓄電デバイス用非水溶媒の実施形態を説明する。本実施形態の非水溶媒は、リチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスに用いられる。
 本実施形態の蓄電デバイス用非水溶媒は、下記一般式(1)で表されるフッ素含有環状飽和炭化水素を含む。このフッ素含有環状飽和炭化水素は、1つ以上2つ以下の置換基Rがシクロヘキサン環に導入された構造を有する。
 置換基Rは、Cn2n+1で表される。nは1以上の整数であり、2n+1個のXのうちの少なくとも1つはFであり、それ以外のXはFまたはHである。
一般式(1)で表されるフッ素含有環状飽和炭化水素は、環状カーボネートや鎖状カーボネートよりも高い酸化還元電位、具体的には4.3V以上の酸化還元電位を有しており、蓄電デバイス用非水溶媒の耐酸化性を高める。また、分解してもCO2を発生しない。
Figure JPOXMLDOC01-appb-C000003
 一般に、飽和炭化水素は耐酸化性が高い。しかしながら、誘電率が低く極性溶媒との相溶性が低いという性質を有するため、従来から、蓄電デバイスの非水電解液の溶媒として用いることは困難であると考えられてきた。このため、特許文献2および3のように、5重量%以下の少量の飽和炭化水素を溶媒に含有させるといった限定的な使用方法が従来提案されているにすぎなかった。
 しかし、本願発明者は、以下の実施例において詳細に説明するように、水素がフッ素で置換された炭化水素基を置換基として有するシクロヘキサンは、分子の対称性が低く、1.6debye以上の双極子モーメントを有するため極性溶媒との相溶性に優れ、また、環状飽和炭化水素骨格を有するため耐酸化性に優れることを見出した。
 一般式(1)で表されるフッ素含有環状飽和炭化水素は、分子内に酸化安定性に劣る官能基を有していないため、酸化安定性に優れている。また、置換基Rに結合したフッ素原子が強い電子吸引性の効果を有するため、フッ素置換しない場合に比べて、環状飽和炭化水素の耐酸化性をより高めることができる。蓄電デバイスが使用される温度範囲において液体である点および入手や取り扱いが容易である点から、環状飽和炭化水素はシクロヘキサンであることが好ましい。
 また、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンのように、シクロヘキサン環に直接フッ素原子が結合している化合物よりも、置換基Rにフッ素が結合している一般式(1)の化合物の方が、分子の対称性が低くなるため、一般式(1)の化合物は比較的大きな極性および誘電率を有する。このため、一般式(1)で表されるフッ素含有環状飽和炭化水素は、極性溶媒との相溶性に優れる。
 置換基Rにおけるフッ素原子の数が多いほど置換基Rがシクロヘキサン環から電子を吸引するため、シクロヘキサン環の耐酸化性は向上する。したがって、置換基Rがトリフルオロメチル基またはペンタフルオロエチル基であれば、より好ましい。
 また、置換基Rの個数は、1個または2個が好ましい。置換基Rが2個の場合、置換基Rのシクロへキサンへの導入位置に特に制限はない。ただし、融点を低くするという観点からは、1つの置換基Rが結合した炭素原子と隣り合う炭素原子に他方の置換基Rが結合した分子構造を有することが好ましく、同一の炭素原子に2つの置換基Rが結合した分子構造を有することがより好ましい。
 置換基Rが2個の場合、2つの置換基Rは互いに同じ構造を有していてもよいし、異なる構造を有していてもよい。置換基Rの数が2個よりも多い場合には、分子量が大きくなるため、分子の拡散速度が低下する。また、置換基Rが大きくなりすぎると分子量が大きくなり、分子の拡散速度が低下するため、Rの炭素数(n)は、1または2であることが好ましい。
 一般式(1)で表される含有環状飽和炭化水素の具体的な化合物としては、例えば、フルオロメチルシクロヘキサン、ジフルオロメチルシクロヘキサン、トリフルオロメチルシクロヘキサン、(2-フルオロエチル)シクロヘキサン、(2,2-ジフルオロエチル)シクロヘキサン、(2,2,2-トリフルオロエチル)シクロヘキサン、(1-フルオロエチル)シクロヘキサン、(1,2-ジフルオロエチル)シクロヘキサン、(1,2,2-トリフルオロエチル)シクロヘキサン、(1,2,2,2-テトラフルオロエチル)シクロヘキサン、(1,1-ジフルオロエチル)シクロヘキサン、(1,1,2-トリフルオロエチル)シクロヘキサン、(1,1,2,2-テトラフルオロエチル)シクロヘキサン、(ペンタフルオロエチル)シクロヘキサン、1,1-ビス(トリフルオロメチル)シクロヘキサン、1,2-ビス(トリフルオロメチル)シクロヘキサン、1,3-ビス(トリフルオロメチル)シクロヘキサン、1,4-ビス(トリフルオロメチル)シクロヘキサン、1,1-ビス(ペンタフルオロエチル)シクロヘキサン、1,2-ビス(ペンタフルオロエチル)シクロヘキサン、1,3-ビス(ペンタフルオロエチル)シクロヘキサン、1,4-ビス(ペンタフルオロエチル)シクロヘキサン等を挙げることができる。
 耐酸化性の観点から、フッ素含有環状飽和炭化水素として、トリフルオロメチルシクロヘキサン、(ペンタフルオロエチル)シクロヘキサン、1,1-ビス(トリフルオロメチル)シクロヘキサン、1,1-ビス(ペンタフルオロエチル)シクロヘキサン、1,2-ビス(トリフルオロメチル)シクロヘキサン、1,3-ビス(トリフルオロメチル)シクロヘキサン、1-(ペンタフルオロエチル)-1-(トリフルオロメチル)シクロヘキサンを用いることが特に好ましい。これらの化合物は、F2やNF3、DAST((diethylamino)sulfur trifluoride)を用いたフッ素化方法により、対応するアルキルシクロヘキサンやフッ素原子を導入したい部位に脱離基(I、Cl、OHなど)を備えたアルキルシクロヘキサンをフッ素化することによって合成することができる。
 本実施形態の蓄電デバイス用非水溶媒は上述した理由により、高い耐酸化性を有する。また、蓄電デバイスの非水電解液として一般的に用いられる有機溶媒との相溶性に優れるため、本実施形態の蓄電デバイス用非水溶媒を蓄電デバイスの非水電解液に高い割合で添加することができる。したがって、蓄電デバイスの非水電解液として本実施形態の蓄電デバイス用非水溶媒を用いたり、蓄電デバイスの非水電解液に本実施形態の蓄電デバイス用非水溶媒を添加することによって非水電解液の耐酸化性を向上させることができる。
 また、本実施形態の蓄電デバイス用溶媒は、たとえ酸化分解してもCO2の発生を伴わない。したがって、本実施形態の蓄電デバイス用非水溶媒を用いた蓄電デバイスでは、溶媒の酸化分解によって安全機構(CID)が作動したり、電池が膨張するという問題を回避することができる。
 蓄電デバイスにおける非水電解液の酸化は、濃度に依存した反応速度により支配されるため、このような効果は、非水電解液への添加の割合に応じて発揮する。したがって、本実施形態の蓄電デバイス用非水溶媒を含む限り、蓄電デバイスの非水電解液の耐酸化性は向上し、また、ガス発生が抑制される。本発明の顕著な効果を得るためには、一般式(1)で表されるフッ素含有環状炭化水素化合物が溶媒中に5重量%以上100重量%以下の含有率で含まれていることがより好ましく、10重量%以上100重量%以下の含有率で含まれていることがさらに好ましい。溶媒中の含有量が10重量%以上であれば、非水電解液の酸化が効果的に抑制され、ガスの発生量が低減される。
 本実施形態の蓄電デバイス用非水溶媒は、充電電圧の高いデバイス(超高耐電圧型非水系蓄電デバイス)に好適に用いることができる。特に、本実施形態の蓄電デバイス用非水溶媒をリチウムイオン二次電池や電気二重層キャパシタといった蓄電デバイスに用いることにより、高電圧動作、高温保存、および長期にわたる充放電サイクルの繰り返しにおける非水電解液の酸化劣化が抑制される。
 本実施形態の溶媒をリチウムイオン二次電池や電気二重層キャパシタといった蓄電デバイス用の非水電解液として用いる場合には、公知の支持電解質、溶媒と混合して用いることができる。混合される支持電解質や他の溶媒の種類は、特に限定されない。
 支持電解質としては、一般的にアニオンとカチオンとからなる塩が用いられる。例えば、アニオン種としては、ハロゲン化物アニオン、過塩素酸アニオン、トリフルオロメタンスルホン酸アニオン、4フッ化ホウ酸アニオン、6フッ化リン酸アニオン、トリフルオロメタンスルホン酸アニオン、ノナフルオロ-1-ブタンスルホン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエチルスルホニル)イミドアニオンなどが、カチオン種としては、リチウム、ナトリウム、カリウム等のアルカリ金属カチオンや、マグネシウムなどのアルカリ土類金属カチオン、テトラエチルアンモニウムや1、3-エチルメチルイミダゾリウム(EMI)に代表される4級アンモニウムカチオン等が挙げられる。
 上述したアニオン種とカチオン種から構成される塩としては、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiN(CF3SO22などのリチウム塩、C254NBF4、(C494NBF4、(C253CH3NBF4、(C254NPF6、(C253CH3N-N(SO2CF32、(C254N-N(SO2CF32、などの四級アンモニウム塩およびこれらの混合物を用いることができる。
 また、混合溶媒としては、エチレンカーボネ-ト、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート類等を挙げることができる。
  (第2の実施形態)
 以下、本発明による蓄電デバイス用非水溶媒の第2の実施形態を説明する。本実施形態の蓄電デバイス用非水溶媒は、第1の実施形態で説明した一般式(1)で表されるフッ素含有環状飽和炭化水素に加えて、25以上の比誘電率を有する化合物を含んでいる。これにより、第1の実施形態の蓄電デバイス用非水溶媒の効果に加えて、支持電解質塩の溶解性に優れるという効果を奏する。
 一般式(1)で表されるフッ素含有環状飽和炭化水素は、第1の実施形態で説明した通りである。
 「25以上の比誘電率を有する化合物」とは、25℃から40℃における比誘電率が25以上の値を示す化合物のことをいう。一般に25以上の比誘電率を有する溶媒は、支持電解質塩を解離させるのに十分な極性を有し、蓄電デバイスの非水電解液に適している。本実施形態の蓄電デバイス用非水溶媒においても、25以上の比誘電率を有する化合物は、蓄電デバイス用非水溶媒に支持電解質塩を解離させる機能を与える。
 好ましくは、25以上の比誘電率を有する化合物は、カーボネートまたはスルホンである。25以上の比誘電率を有するカーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等をはじめとする環状カーボネートなどが挙げられる。フルオロエチレンカーボネート、フルオロプロピレンカーボネートなど前述したカーボネートフッ素化物を用いることもできる。
 スルホンとしては、以下の一般式(2)で示される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000004
 ここで、R1、R2は、それぞれ独立した炭素数1以上4以下のアルキル基であり、互いに結合していない鎖状構造を有していてもよいし、互いに結合して環状構造を形成してもよい。より具体的には、一般式(2)において、R1およびR2がメチレン基(CH2)であり、互いに結合することによってSを含む5員環を形成しているスルホラン(SLF)、スルホランの水素の1つをメチル基で置換した3-メチルスルホラン(3-MeSLF)、R1がイソプロピル基であり、R2がメチル基であるイソプロピルメチルスルホン(iPrMeSF)であってもよい。
 また、25以上の比誘電率を有する化合物はガンマブチロラクトンであってもよい。さらに、本実施形態の蓄電デバイス用非水溶媒は上述した25以上の比誘電率を有する化合物を2種以上含んでいてもよい。
 これらの化合物の比誘電率を表1に示す。表1において、特に温度を記載していない比誘電率は25℃における値であり、温度の記載のあるものは、その温度における比誘電率である。表1に示すように、これらの化合物の比誘電率は、25℃から40℃において25以上である。
Figure JPOXMLDOC01-appb-T000001
 特許文献2および3における「フッ素原子を有していてもよい炭化水素化合物」は、カーボネート系化合物との相溶性が低く、溶液中に0.01重量%以上5重量%以下の含有率で含まれるのみである。それに対し、本実施形態のフッ素含有環状飽和炭化水素は、25以上の比誘電率を有する化合物との相溶性が高いため、溶媒中に、高い含有率で溶解させることができる。したがって、耐酸化性とイオン伝導性との両面で、より大きな効果を得ることができる。
 一般式(1)で表されるフッ素含有環状炭化水素化合物が溶媒中に5重量%以上含まれている場合には、非水電解液の酸化が効果的に抑制される。一方、フッ素含有環状炭化水素化合物の溶媒中の含有率が50%以下であれば、25以上の比誘電率を有する化合物と相溶しやすい。したがって、フッ素含有環状炭化水素化合物は、溶媒中に、5重量%以上50重量%以下で含有されていることがより好ましい。さらに、フッ素含有環状炭化水素化合物が溶媒中に10重量%以上30重量%以下含まれている場合には、より高い効率放電特性が得られるとともに、25以上の比誘電率を有する化合物との相溶がさらに容易となる。
 本実施形態の蓄電デバイス用非水溶媒では、フッ素含有環状飽和炭化水素により高い耐酸化性が得られる。また、25以上の比誘電率を有する化合物により、リチウム塩や四級アンモニウム塩などの支持電解質塩を十分な濃度で溶解、解離させることができる。これにより、イオン伝導性が高く保持される。
 また、一般に、25以上の比誘電率を有する化合物は高い粘性を有する。したがって、このような化合物が単独で用いられた溶媒中でのイオン伝導は妨げられやすく、高いイオン伝導性は得られにくい。それに対し、フッ素含有環状飽和炭化水素の粘性は低いため、両者を混合することによって、イオン伝導性がさらに向上するといった効果も得られる。
 本実施形態の蓄電デバイス用非水溶媒は、4.3Vを超える高い充電電圧を有するデバイス(超高耐電圧型非水系蓄電デバイス)に用いることができる。特に、本実施形態の蓄電デバイス用非水溶媒をリチウムイオン二次電池や電気二重層キャパシタといった蓄電デバイスに用いることにより、高電圧動作、高温保存、および長期にわたる充放電サイクルの繰り返しにおける非水電解液の酸化劣化が抑制される。
 また、本実施形態の蓄電デバイス用溶媒は、たとえ酸化分解してもCO2の発生を伴わない。したがって、本実施形態の蓄電デバイス用非水溶媒を用いた蓄電デバイスでは、溶媒の酸化分解によって安全機構(CID)が作動したり、電池が膨張するという問題を回避することができる。
  (第3の実施形態)
 以下、本発明による蓄電デバイス用非水電解液の実施形態を説明する。本実施形態の非水電解液は、リチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスに用いられる。
 本実施形態の非水電解液は、非水溶媒と、非水溶媒に溶解された支持電解質塩とを含む。非水溶媒には、第2の実施形態の非水溶媒を用いることができる。支持電解質塩としては、蓄電デバイスの種類に応じて、一般的なものを用いることができる。
 本実施形態の非水電解液がリチウムイオン二次電池に用いられる場合には、支持電解質塩として、LiPF6、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiSbF6、LiSCN、LiCl、LiC65SO3、LiN(CF3SO22、LiC(CF3SO23、C49SO3Li等のリチウム塩およびこれらの混合物を用いることができる。
 一方、本実施形態の非水電解液が電気二重層キャパシタの非水電解液として用いられる場合には、前述のリチウム塩に加えて、(C254NBF4、(C494NBF4、(C253CH3NBF4、(C254NPF6、(C253CH3N-N(SO2CF32、(C254N-N(SO2CF32、などの四級アンモニウム塩およびこれらの混合物を用いることができる。
 本実施形態の非水電解液には25以上の比誘電率を有する化合物が含まれているため、支持電解質塩を十分な濃度で溶解、乖離させることができる。また、フッ素含有環状飽和炭化水素により、高い耐酸化性が得られる。これにより、本実施形態の非水電解液は、4.3Vを超える高い充電電圧を有するデバイス(超高耐電圧型非水系蓄電デバイス)に用いることができる。
  (第4の実施形態)
 以下、本発明による蓄電デバイスの実施形態を説明する。本実施形態の蓄電デバイスは、リチウムイオン二次電池である。
 本実施形態のリチウムイオン二次電池は、図1(a)、(b)に示すように、電極群13と、電極群13を収納する電池ケース14と、電池ケース14内に充填された非水電解液15とを備える。電極群13における正極は正極リード11に接続され、電極群における負極は負極リード12に接続されている。正極リード11および負極リード12は電池ケース14の外部に引き出されている。
 非水電解液15は、第3の実施形態の非水電解液のうちリチウムイオン二次電池に用いられるものを用いる。例えば、プロピレンカーボネート(PC)(市販バッテリーグレード)とトリフルオロメチルシクロヘキサン(TFMCH)とが85:15の比率で混合された溶媒を有する。この溶媒に、支持電解質塩として、0.5mol/Lの濃度でLiPF6(市販バッテリーグレード)が溶解されている。
 電極群13は、図1(c)に示すように、正極1と、負極2と、正極2と負極2との間に設けられたセパレータ3とを備えている。正極1は、厚さアルミニウム箔からなる正極集電体1aと、正極集電体1aの表面に塗布されたLiCoO2からなる正極活物質層1bとを有している。一方、負極2は、ステンレス(SUS304)製メッシュからなる負極集電体2aと、負極集電体2aの表面に圧着された金属リチウム2bとを有している。セパレータ3は、例えばポリエチレン製微多孔質シートからなる。
 正極活物質層1bの材料としては、LiCoO2以外のリチウム含有遷移金属酸化物を用いてもよい。例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうちの少なくとも一種、x=0~1.2、y=0~0.9、z=1.7~2.3)が挙げられる。これらの材料以外でも、充電時の正極1の電位がリチウム基準で4Vを超えるような材料であればよい。また、正極活物質として、複数の異なった材料を混合して用いてもよい。正極活物質が粉末である場合には、平均粒径は特に限定はされないが、特に0.1~30μmであることが好ましい。正極活物質層1bは、通常50μmから200μm程度の厚さを有するが、特に厚さに制約はなく、正極活物質層1bは、0.1μmから50μmの厚さを有していてもよい。
 正極活物質層1bは、活物質以外の導電剤および結着剤の両方を含んでいてもよいし、いずれか一方のみを含んでいてもよい。または、正極活物質層1bは導電剤および導電剤のいずれも含んでおらず、活物質のみから構成されていてもよい。
 正極1用の導電剤は、正極1の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、黒鉛類やカ-ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、金属粉末類、導電性ウィスカー類、導電性金属酸化物あるいは有機導電性材料などを単独で用いてもよいし、混合物として用いてもよい。導電剤の添加量は、特に限定されないが、正極材料に対して1から50重量%が好ましく、特に1から30重量%が好ましい。
 正極1に用いられる結着剤は、熱可塑性樹脂および熱硬化性樹脂のいずれであってもよい。好ましい結着剤としては、例えば、ポリエチレン、ポリプロピレンをはじめとするポリオレフィン樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)をはじめとするフッ素系樹脂やそれらの共重合体樹脂、ポリアクリル酸やその共重合体樹脂などである。
 導電剤や結着剤の他にも、フィラー、分散剤、イオン伝導体、圧力増強剤およびその他の各種添加剤を用いることができる。フィラーは、リチウムイオン二次電池内で化学変化を起こさない繊維状材料であれば何でもよい。
 正極集電体1aの材料は、正極1の充放電電位において化学変化を起こさない電子伝導体であれば何であってもよい。例えば、ステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂などを用いることができる。また、正極集電体1aの表面には、表面処理により凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体などのいずれであってもよい。厚みは、特に限定されないが、一般には1から500μmである。
 負極活物質層2bの材料としては、各種天然黒鉛または各種人造黒鉛、易黒鉛化炭素、難黒鉛化炭素などの炭素材料やこれらの混合物を用いてもよいし、リチウムを可逆的に吸蔵放出可能なシリコンやスズなどの材料を含む複合材料や各種合金材料を用いてもよい。例えば、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種を用いるのが望ましい。さらには、チタン酸リチウムをはじめとするリチウムを可逆的に吸蔵放出可能な酸化物材料を用いることもできる。
 負極集電体16としては、例えば、銅箔やニッケル箔、ステンレス箔などを用いてもよい。
 非水電解液15は、高い充電電圧が印加されても酸化分解されにくい性質を有する。したがって、4.3Vを超える高い充電電圧を有するデバイス(超高耐電圧型非水系蓄電デバイス)として用いることができる。
 図1にはシート型のリチウムイオン二次電池を示したが、本実施形態のリチウムイオン二次電池は他の形状を有していてもよく、円筒形、角形、または電気自動車等に用いる大型の形状を有していてもよい。
 また、本実施形態のリチウムイオン二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いることができるが、これらに限定されず、他の機器などにも用いることができる。
  (第5の実施形態)
 以下、本発明による蓄電デバイスの実施形態を説明する。本実施形態の蓄電デバイスは、電気二重層キャパシタである。
 本実施形態の電気二重層キャパシタは、図2に示すように、互いに対向する円盤形の電極23a、23bと、2枚の電極23a、23bの間に配置するセパレータ17とを備える。電極23aは、集電体16aと、集電体16aの表面に設けられた電極合剤22aとを有する。同様に、電極23bは、集電体16bと、集電体16bの表面に設けられた電極合剤22bとを有する。集電体16a、16bは例えばアルミニウム箔からなり、電極合剤22a、22bは例えば活性炭を含む。
 電極23a、23bおよびセパレータ17からなる電極群は、円形の底面を有するケース21内に収容されている。ケース21の底面の上にはスペーサ18が配置され、スペーサ18の上に電極群が載置されている。ケース21の上部は開口しており、この開口は封止板19によって封止されている。ケース21と封止板19との間の隙間はガスケット20によって埋められている。
 ケース21および封止板19の内部には、所定量の非水電解液24が含浸されている。非水電解液24は、第3の実施形態の非水電解液のうち電気二重層キャパシタに用いられるものを用いる。例えば、非水電解液24は、プロピレンカーボネート(PC)とトリフルオロメチルシクロヘキサン(TFMCH)とが80:20の重量比で混合された混合溶媒と、0.2mol/Lの(C254NBF4とを含む。
 本実施形態の非水電解液24は、高い充電電圧が印加されても酸化分解されにくい性質を有する。したがって、本実施形態の電気二重層キャパシタは、4.3Vを超える高い充電電圧を有するデバイス(超高耐電圧型非水系蓄電デバイス)として用いることができる。
 図2にはコイン型の電気二重層キャパシタを示したが、本実施形態の電気二重層キャパシタは他の形状を有していてもよく、例えば円筒形や角形であってもよい。
1.一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道(HOMO)エネルギーの評価
 一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道エネルギーを計算した。また、比較のため、フッ素を有さないメチルシクロヘキサン(MCH)の双極子モーメントおよび最高被占軌道エネルギーも計算した。
 双極子モーメントは、分子内分極の大きさを示す指標であり、本発明により発現する極性溶媒との相溶性と関係がある。また、最高被占軌道エネルギーは、分子から電子を1個引き抜く際に必要なエネルギーを示す指標であり、溶媒の耐酸化性能と関係がある。
 双極子モーメントおよび最高被占軌道エネルギーは、量子化学的計算手法を用いて計算した。具体的には、市販の第一原理分子軌道計算ソフトウェアで行い、計算手法としては、密度汎関数法(B3LYP)を、基底関数には6-31G(d)を用いた。なお、エネルギー値の最適化は自己無頓着場計算により行った。
 計算結果を表2に示す。また、表3に各フッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道エネルギーをプロットした結果を示す。
Figure JPOXMLDOC01-appb-T000002
 一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントは、いずれも約1.6debyeよりも大きな値となった。最も双極子モーメントが小さいフッ素含有環状飽和炭化水素は、(1-フルオロエチル)シクロへキサン(1FECH)であり、双極子モーメントは1.66である。これに対し、メチルシクロヘキサンの双極子モーメントは0.08debyeであった。
 また、一般式(1)で表されるフッ素含有環状飽和炭化水素の最高被占軌道エネルギーは、いずれもメチルシクロヘキサンより小さい値となった。酸化反応は、分子から電子を引き抜く反応であるので、最高被占軌道エネルギーが小さい(負に大きい)ほど、電子を引く抜くために大きなエネルギーを必要とし、耐酸化性が高いといえる。よって、シクロへキサン環構造にフッ素原子を有するアルキル基を置換基として導入した本発明のフッ素含有環状飽和炭化水素は、いずれも高い耐酸化性を有することが分かる。
2.一般式(1)で表されるフッ素含有環状飽和炭化水素の極性溶媒に対する相溶性の評価
2.1試料の調製
 一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントが大きいほど極性溶媒との相溶性は高くなると考えられる。この点を考慮し、表2に示されるフッ素含有環状飽和炭化水素のうち、これらの中では双極子モーメントが比較的小さい(1-フルオロエチル)シクロへキサン(双極子モーメント:1.66)および(2-フルオロエチル)シクロへキサン(双極子モーメント:1.97)、双極子モーメントが中程度であるトリフルオロメチルシクロへキサン(双極子モーメント:2.33)および双極子モーメントが大きい1,2-ビス(トリフルオロメチル)シクロへキサン(双極子モーメント:3.2)の極性溶媒との相溶性を評価した。これらのフッ素含有環状飽和炭化水素は以下のようにして調整した。
 [トリフルオロメチルシクロへキサン]
 トリフルオロシクロへキサン(TFMCH)[CAS RN:401-75-2]は市販品を用いた。市販品の精製を回転バンド式精密分留装置(大科工業製)により行った。得られた精製物の純度をガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)により測定したところ、純度は99.5%であった。
[1,2-ビス(トリフルオロメチル)シクロへキサン]
 1,2-ビス(トリフルオロメチル)シクロへキサン(12BTFMCH)は、以下に示す合成法により得た。
 テフロン内管の耐酸性オートクレープに酸化白金(Aldrich製)5g、トリフルオロ酢酸(和光純薬製)250mLを加え内部を水素置換した。これを0.2MPaの水素雰囲気下、室温で1時間攪拌した。オートクレープを外し1,2-ジトリフルオロメチルベンゼン(東京化成工業製)25gを加え再び0.8MPaの水素雰囲気下、室温で18時間攪拌した。攪拌終了後、ガスクロマトグラフィー(GC)分析にて原材料である1,2-ジトリフルオロメチルベンゼンのピークが消失していることを確認した。この黒色懸濁液からトリフルオロ酢酸溶液のみデカンデーションで除いた後、残渣をトリフルオロ酢酸にて洗浄した。トリフルオロ酢酸と残渣の混合物に300mLの蒸留水を加え、分液ロートにて2層に分離した。目的物を含む下層を取り出し、100mLのジクロロメタンを添加した後、重曹水を用いて洗浄を行った。ジクロロメタン溶液層を分液ロートで取り出し、無水硫酸ナトリウムを用いて乾燥した。さらに、ろ過して無水硫酸ナトリウムを除いた後、バス温60℃でリービッヒ冷却器を用いて蒸留しジクロロメタンを除去した。残渣を内管3段のリービッヒ冷却器を備えた精留塔を用いて、バス温度:100~176℃、蒸気温度:90~145℃、内圧:280~420mmHgの条件で減圧蒸留精製を4回繰り返して行い無色の液体11.8gを得た。
 1H-NMRスペクトル(CDCl3)の測定より、1.437、1.459、1.470、1.481、1.494、1.515、1.541ppmにピークを持つ水素2原子に相当するマルチプレット、1.630、1.641、1.652、1.685、1.726、1.742、1.754、1.778ppmにピークを持つ水素4原子に相当するマルチプレット、1.977、1.996、2.013、2.024、2.044ppmにピークを持つ水素2原子に相当するマルチプレット、2.493、2.518、2.528、2.539、2.543、2.553、2.564、2.589ppmにピークを持つ水素2原子に相当するマルチプレットが観測され、この化合物の水素原子数は、10個であることが分かった。また、19F-NMRスペクトル(CDCl3)の測定より、-66.191ppmにピークを持つフッ素6原子に相当するシングレットが観測された。以上の結果より、上記の無色の液体は、1,2-ビス(トリフルオロメチル)シクロへキサンであることが分かった。なお、純度をガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)により測定したところ、99.0%であった。
[(1-フルオロエチル)シクロへキサン]
 (1-フルオロエチル)シクロへキサン(1FECH)は、以下に示す合成法により得た。
 360mLの無水ジクロロメタン(関東化学製)を収納した1Lの反応器に50gのDAST((diethylamino)sulfur trifluoride))(東京化成工業製)を加え-10℃に冷却した。この溶液に140mLの無水ジクロロメタン(関東化学製)に36.1gの1-シクロヘキシルエタノール(Alfa Aesar製)を希釈した混合溶液を反応容器の温度が0℃以上にならないようにゆっくりと滴下した。その後、-10℃で1時間攪拌した。-10℃に保った状態でこの溶液に300mLの蒸留水を加え、30分間攪拌した後、静置して2層に分離し有機層を分液ロートで取り出した。この有機溶液に1Nの塩酸400mLを加えて洗浄を行い、静置して2層に分離し有機層を分液ロートで取り出した。この有機溶液に300mLの28重量%アンモニア水を加えて攪拌した後、静置して2層に分離し有機層を分液ロートで取り出した。この有機溶液に400mLの蒸留水を加えて洗浄を行い、静置して2層に分離し有機層を分液ロートで取り出した。得られた有機溶液に無水硫酸マグネシウムを加えて乾燥した。さらに、ろ過して無水硫酸ナトリウムを除いた後、バス温50℃でリービッヒ冷却器を用いて蒸留しジクロロメタンを除去し、38.1gの僅かに黄色を呈した無色の液体を得た。
 1H-NMRスペクトル(CDCl3)の測定より、フッ素原子の核スピンとの相互作用で分裂した水素原子1個に相当する4.303~4.334ppmと4.423~4.455ppmの等価なマルチプレットが観測されたことから、フッ素原子の結合する炭素上の水素の数が1個であることが分かった。また、19F-NMRスペクトル(CDCl3)の測定より、-202.547ppmにピークを持つフッ素1原子に相当するシングレットが観測された。以上の結果より、上記の僅かに黄色を呈した無色の液体は、(1-フルオロエチル)シクロへキサンであることが分かった。なお、純度をガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)により測定したところ、純度は60.1%であった。
[(2-フルオロエチル)シクロへキサン]
(2-フルオロエチル)シクロへキサン(2FECH)は、以下に示す合成法により得た。
 2-シクロヘキシルエタノール(東京化成製)100gとトリエチルアミン(東京化成製)162mL、脱水ジクロロメタン(関東化学製)1Lを2Lの反応器に収納し5℃に氷冷した。この混合溶液にメタンスルホニルクロリド(東京化成製)72.4mLをゆっくりと加え、5℃で1時間攪拌した。その後、薄層クロマトグラフィー(TLC)を用い、原料のスポットが消失し、新たなスポットが生成していることを確認した。この溶液に50mLの蒸留水を加えた後。静置して2層に分離し有機層および水層を分液ロートにて取り出した。取り出した水層にジクロロメタン(関東化学製)30mLを加え、静置して2層に分離し、分液ロートにてジロロメタン層を取り出した。取り出したジロロメタン層を前記の2層に分離し取り出した有機層と混合し、300mLの蒸留水を加えて洗浄した後、有機層を分液ロートにて取り出した。さらに300mLの飽和食塩水を加えて洗浄した後、有機層を分液ロートにて取り出した。得られた有機溶液に無水硫酸マグネシウムを加えて乾燥した後、ろ過により無水硫酸マグネシウムを除き、濃縮して淡橙色の液体165gを得た。この液体を高真空下で乾燥し淡橙色の液体である2-シクロヘキシルエタノールのメシル化体である2-シクロヘキシルエチル メタンスルホネート157gを得た。
 得られた2-シクロヘキシルエチル メタンスルホネートの内、120gを1Lの反応器に収納し、367gのテトラブチルアンモニウムフルオリド(和光純薬製)と180gのアセトニトリル(和光純薬製)とを加え50℃の環境下で24時間攪拌した。この溶液の一部を取り出し、ガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)で分析を行い、原材料である2-シクロヘキシルエチル メタンスルホネートのピークが完全に消失していることを確認した。上記溶液に1Lの蒸留水を加え、300mLのペンタン(関東化学製)で3回、有機層の抽出を行った。得られた有機層に800mLの蒸留水を加えて洗浄した後、有機層を分液ロートにて取り出した。上記の蒸留水での洗浄を再び行った後、800mLの飽和食塩水を加えて洗浄し、有機層を分液ロートにて取り出した。得られた有機溶液に無水硫酸マグネシウムを加えて乾燥した後、ろ過により無水硫酸マグネシウムを除いた。無水硫酸マグネシウムを除いた有機溶液を30℃の環境下で減圧蒸留し、溶媒のペンタンを除去した。残渣を内管3段のリービッヒ冷却器を備えた精留塔を用いて、バス温度:72℃、蒸気温度:62℃、内圧:32mmHgの条件で減圧蒸留精製を行い無色の液体39.5gを得た。
 1H-NMRスペクトル(CDCl3)の測定より、0.886、0.897、0.921、0.948、0.979、0.987ppmにピークを持つ水素2原子に相当するマルチプレット、1.130、1.138、1.145、1.162、1.168、1.176、1.191、1.197、1.204、1.211、1.234、1.242、1.259、1.265、1.297ppmにピークを持つ水素3原子に相当するマルチプレット、1.414、1.424、1.433、1.441、1.451、1.459、1.467ppmにピークを持つ水素1原子に相当するマルチプレット、1.531、1.547、1.551、1.562、1.579、1.595、1.611、1.627、1.639、1.643、1.655、1.661、1.680、1.686、1.695、1.701、1.716、1.720、1.745、1.749、1.753ppmにピークを持つ水素7原子に相当するマルチプレット、4.415、4.430、4.446ppmのトリプレットピークと4.534、4.549、4.565ppmのトリプレットピークで構成される水素2原子に相当する2つのピークが観測され、この化合物の水素原子数は、15個であることが分かった。また、4.415、4.430、4.446ppmのトリプレットピークと4.534、4.549、4.565ppmのトリプレットピークから、フッ素原子の結合する炭素上の水素の数は2個であることが、また、フッ素原子の結合する炭素に結合する炭素上の水素の数は2個であることが分かった。さらに、19F-NMRスペクトル(CDCl3)の測定より、-218.470ppmにピークを持つフッ素1原子に相当するシングレットが観測された。以上の結果より、上記の無色の液体は、(2-フルオロエチル)シクロへキサンであることが分かった。純度をガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)により測定したところ、99.2%であった。
2.2相溶性の評価
 上述した4つのフッ素含有環状飽和炭化水素を、溶媒として一般的に用いられる化合物と混合し、フッ素含有環状飽和炭化水素の相溶性を評価した。
<トリフルオロメチルシクロヘキサンの相溶性>
 精製したトリフルオロメチルシクロヘキサン(TFMCH)を、プロピレンカーボネート(PC)(市販バッテリーグレード)と、5:95、10:90、30:70、50:50、70:30、90:10の混合比で混合し、混合体の状態を観察した。結果を表3に示す。表3および以下の表4から表7では、完全に相溶し透明化したものを「○」と、層分離もしくは完全に相溶せず白濁したものを「×」と表記した。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、すべての混合比で、トリフルオロメチルシクロヘキサンとプロピレンカーボネートとが完全に相溶したことが分かる。
<1,2-ビス(トリフルオロメチル)シクロへキサンの相溶性>
 同様に1,2-ビス(トリフルオロメチル)シクロへキサン(12BTFMCH)とプロピレンカーボネート(PC)との混合体を作製し、混合体の状態を観察した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、すべての混合比で、1,2-ビス(トリフルオロメチル)シクロへキサンとプロピレンカーボネートとが完全に相溶したことが分かる。
<(1-フルオロエチル)シクロへキサンの相溶性>
 同様に(1-フルオロエチル)シクロへキサン(1FECH)とプロピレンカーボネート(PC)との混合体を作製し、混合体の状態を観察した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から、50:50の混合比である場合を除き、(1-フルオロエチル)シクロへキサンとプロピレンカーボネートが完全に相溶したことが分かる。
<(2-フルオロエチル)シクロへキサンの相溶性>
 同様に(2-フルオロエチル)シクロへキサン(2FECH)とプロピレンカーボネート(PC)との混合体を作製し、混合体の状態を観察した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から、すべての混合比で、(2-フルオロエチル)シクロへキサンとプロピレンカーボネートとが完全に相溶したことが分かる。
 比較例として、フッ素原子を持たないメチルシクロへキサン(MCH)とプロピレンカーボネートとの相溶性を評価した。結果を表7に示す。なお、メチルシクロへキサンは市販品(関東化学製)を回転バンド式精密分留装置(大科工業製)にて精製して用いた。純度をガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)により測定したところ、99.5%であった。
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果から、すべての混合比で、メチルシクロへキサンとプロピレンカーボネートとは相溶しなかったことが分かる。
 以上の結果をまとめると、(1-フルオロエチル)シクロへキサンとプロピレンカーボネートとを50:50の比率で混合した場合を除き、4つのフッ素含有環状飽和炭化水素はプロピレンカーボネートと任意の割合で相溶することが分かった。また、メチルシクロヘキサンは、プロピレンカーボネートと全く相溶しないことが分かった。
 (1-フルオロエチル)シクロへキサンの双極子モーメントは、表2に示した一般式(1)で示されるフッ素含有環状飽和炭化水素の双極子モーメントのうち最も小さい。上述したように相溶性は、分子の双極子モーメントに依存していると考えられることから、上記相溶性の評価を行わなかった表2の他のフッ素含有環状飽和炭化水素も少なくともプロピレンカーボネートと任意の割合で相溶すると推定できる。
1.蓄電デバイス用溶媒の耐酸化性の評価I
 本発明による蓄電デバイス用溶媒を用いて非水電解液を調製し、非水電解液に対して電圧を印加して流れる電流値を測定することにより、蓄電デバイス用溶媒の耐酸化性の評価を行った。
 まず、図4に示す3極式ガラスセル30を準備した。3極式ガラスセル30は、ガラス容器38内に、作用極36と、作用極36に対向する対極34と、参照極35とが配置された構造を有する。作用極36としては1cm×1cmのPtプレート(純度:99.9重量%)を、対極34としては2cm×2cmのステンレス(SUS304)製メッシュ33aに厚さ150μmのLi箔33bを圧着したものを、参照極35としてはΦ2mmのLiワイヤーを用いた。作用極36はPtワイヤー37と接続され、対極34はステンレスワイヤー32と接続されている。Ptワイヤー37、参照極35およびステンレスワイヤー32は、ゴム栓31によって固定されている。
 次に、耐酸化性の評価を行うサンプルとして、実施例2-1、比較例2-1および2-2を調製した。
  (実施例2-1)
 精製したTFMCHに、支持塩としてLiPF6(市販バッテリーグレード)を溶解し、TFMCHの電解液を調製した。TFMCHの非水電解液において、LiPF6濃度は0.1mol/Lとした。
  (比較例2-1)
 溶媒としてPC(市販バッテリーグレード)を用いた。PCに、支持塩としてLiPF6(市販バッテリーグレード)を溶解し、PC電解液を調製した。実施例1と同様に、PC電解液におけるLiPF6濃度は0.1mol/Lとした。
  (比較例2-2)
 溶媒としてエチルメチルカーボネート(EMC)(市販バッテリーグレード)を用いた。EMCに、支持塩としてLiPF6(市販バッテリーグレード)を溶解し、EMC電解液を調製した。実施例1と同様に、EMC電解液におけるLiPF6濃度は0.1mol/Lとした。
 上述の3極式ガラスセル30に実施例1、比較例1および2のそれぞれを注入し、評価セルとした。極間最大電圧26Vの電気化学アナライザー(ALS社製)を用い、リニアー・スイープ・ボルタンメトリー(LSV)法により、電圧-電流曲線を測定した。測定は、参照極35に対する作用極36の電圧を、自然開回路電圧から8Vまで、5mV/secで掃引することにより行った。なお、作用極36と参照極35との間の電圧が8Vのとき、作用極36と対極34との間の電圧は25Vであった。測定結果を図5に示す。
 図5に示すように、実施例2-1のサンプルでは、極間電圧が大きくなっても電流値が増大しないのに対して、比較例2-1および2-2では、極間電圧が4Vを越えた辺りから電流値が増大している。これにより、実施例1のTFMCHは極間電圧が増大しても酸化されていないのに対して、比較例1のPCおよび比較例2のEMCは、極間電圧の増大により酸化が進行していることが分かる。このようにTFMCHのほうがPCおよびEMCよりも酸化されにくい理由は、PCおよびEMCにおける酸素よりもTFMCHにおけるフッ素のほうが高い電気陰性度を有するためと考えられる。以上のように、TFMCHは、PCに代表される環状カーボネートやEMCに代表される鎖状カーボネートと比べ高い耐酸化性を有することが明らかとなった。
2.蓄電デバイス用溶媒の耐酸化性の評価II
 評価Iと同様の実験を、評価方法を変えて、TFMCH、12BTFMCH、2FECHを用いて行った。
  (実施例2-2)
 実施例1で精製したTFMCHとジエチルカーボネート(DEC)(市販バッテリーグレード)との体積比10:90の混合溶媒に、支持塩としてLiPF6(市販バッテリーグレード)を溶解した実施例1の電解液を調整した。上記電解液において、LiPF6濃度は0.1mol/Lとした。
  (実施例2-3)
 実施例1で合成した12BTFMCHとジエチルカーボネート(DEC)(市販バッテリーグレード)との体積比10:90の混合溶媒に、支持塩としてLiPF6(市販バッテリーグレード)を溶解した実施例2の電解液を調整した。上記電解液において、LiPF6濃度は0.1mol/Lとした。
  (実施例2-4)
 実施例1で合成した2FECHとジエチルカーボネート(DEC)(市販バッテリーグレード)との体積比10:90の混合溶媒に、支持塩としてLiPF6(市販バッテリーグレード)を溶解した実施例3の電解液を調整した。上記電解液において、LiPF6濃度は0.1mol/Lとした。
  (比較例2-3)
 PC(市販バッテリーグレード)とジエチルカーボネート(DEC)(市販バッテリーグレード)との体積比10:90の混合溶媒に、支持塩としてLiPF6(市販バッテリーグレード)を溶解した比較例1の電解液を調整した。上記電解液において、LiPF6濃度は0.1mol/Lとした。
  (比較例2-4)
 エチルメチルカーボネート(EMC)(市販バッテリーグレード)とジエチルカーボネート(DEC)(市販バッテリーグレード)の体積比10:90の混合溶媒に、支持塩としてLiPF6(市販バッテリーグレード)を溶解した比較例2の電解液を調整した。上記電解液において、LiPF6濃度は0.1mol/Lとした。
 評価Iと同様、図4に示すように、3極式ガラスセル30に実施例2-2~2-4、比較例2-3および2-4のそれぞれの電解液を注入し、評価セルとした。極間最大電圧26Vの電気化学アナライザー(ALS社製)を用い、リニア-・スイープ・ボルタンメトリー(LSV)法により、電圧-電流曲線を測定した。測定は、参照極に対する作用極の電圧を、自然開回路電圧から8Vまで、5mV/secで掃引することによって行った。なお、別途、DEC(市販バッテリーグレード)単溶媒に支持塩として0.1mol/LのLiPF6(市販バッテリーグレード)を溶解したブランク電解液を調整し、LSV法により電圧-電流曲線を測定したものを、実施例2-2~2-4、比較例2-3および2-4の電圧-電流曲線から差し引き、TFMCH、12BTFMCH、2FECH、PC、およびEMCの酸化挙動を示す電圧-電流曲線とした。これらの測定結果を図6に示す。
 図6に示すように、実施例2-2~2-4の電解液の電流値は、作用極-参照極間の電圧が大きくなっても、比較例2-3および2-4の電解液の電流値の増加挙動に比べて小さなものとなっている。LSV法によって測定される電流値は溶媒の酸化反応の速度を示す指標であり、電流値が小さいということは、溶媒の耐酸化性が優れるということである。特に、実施例で用いた本発明の溶媒は、いずれも、充電電圧4~5Vのリチウムイオン二次電池や、2.5V以上の充電を行う電気二重層キャパシタにおいて重要になる作用極-参照極間電圧6V付近において電流値が小さく、高電圧型の蓄電デバイス用溶媒として優れていることが分かる。
3.ガス発生能の評価
 本発明による蓄電デバイス用溶媒と高電圧で充電された正極とを一緒に密封した後に高温で保持した際のガスの発生量を測定した。本実験は、図7に示すフローチャートに従って行った。なお、図7に示すフローチャートのステップ101から103で作製したリチウムイオン二次電池の構造は図1(a)から1(c)に示す通りである。
 以下、図7に示すフローチャートの各ステップについて詳細に説明する。
  <正極の作製(ステップ101)>
 まず、正極活物質としてLiCoO2(平均粒径10μm、BET法による比表面積0.38m2/g)を準備した。100重量部の活物質に、導電剤であるアセチレンブラックを3重量部、結着剤であるポリフッ化ビニリデンを4重量部、および適量のN-メチル-2-ピロリドンを加え、攪拌・混合して、スラリー状の正極合剤を得た。なお、ポリフッ化ビニリデンは、あらかじめN-メチル-2-ピロリドンに溶解した状態で用いた。
 次に、図1(c)に示すように厚さ20μmのアルミニウム箔からなる集電体1aの片面に、上記スラリー状正極合剤1bを塗布し、塗膜を乾燥し、ローラーで圧延した。
 正極活物質として用いたLiCoO2の調製法は以下の通りである。硫酸コバルト飽和水溶液を低速で撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液を滴下して、Co(OH)2の沈殿を得た。この沈殿物をろ過、水洗した後、空気中で80℃に加熱することにより乾燥した。得られた水酸化物の平均粒径は、約10μmであった。
 次に、得られた水酸化物に対して、空気中で380℃の熱処理を10時間行うことにより、酸化物Co34を得た。粉末X線回折により、得られた酸化物が単一相を有することを確認した。
 さらに、得られた酸化物に、Coのモル数とLiのモル数との比が1.00:1.00になるように炭酸リチウムの粉末を混合し、乾燥空気中で850℃の熱処理を10時間行うことにより、目的とするLiCoO2を得た。粉末X線回折(リガク製)により、得られたLiCoO2が単一相の六方晶層状構造を有することを確認した。粉砕および分級の処理を行った後、走査型電子顕微鏡(日立ハイテクノロジーズ製)による観察から、粒径が6~15μm程度であることを確認した。なお、平均粒径は、散乱式粒度分布測定装置(HORIBA製)を用いて求めた。
 得られた極板を、図8(a)に示す寸法に打ち抜いて、リード取り付け部であるタブの部分の正極合剤1bを剥離し正極1を得た。正極合剤1bが塗布された正極集電体1aは30mm×40mmの長方形状を有する。
  <負極の作製(ステップ102)>
 まず、ステンレス(SUS304)製メッシュを図8(b)に示す寸法に打ち抜いて、負極集電体2aを形成した。負極集電体2aは、31mm×41mmの長方形状を有する電極部と、7mm×7mmの正方形状を有するリード取り付け部とを有する。負極集電体2aのうちの電極部の上に、厚さ150μmの金属リチウム2bを圧着して、負極2を得た。
  <組み立て(ステップ103)>
 図1(c)に示すように、得られた正極1および負極2を、セパレータ3を介して積層し、電極群13を作製した。セパレータとしては、厚さ20μmのポリエチレン製微多孔質シートを用いた。
 次に、図1(a)に示すように、電極群13の正極1にアルミニウム製正極リード11を、負極2にニッケル製負極リード12を溶接した。その後、電極群13を、3方向が開口している厚さ0.12mmのアルミラミネートフィルム製電池ケース14の内部に収容し、PP製のテープで電池ケース14の内面に固定した。正極リード11および負極リード12が出ている開口部を含む開口部を熱溶着し、1つの開口部のみを熱溶着せずに残して、電池ケース14を袋状とした。図1(b)に示すように、熱溶着していない開口部から所定量の電解液15を注入し、減圧および脱気後、減圧状態で開口部を熱溶着することにより、電池内部を密封した。
 電解液15としては、体積比1:3のエチレンカーボネート(市販バッテリーグレード)(EC)とEMC(市販バッテリーグレード)との混合溶媒に、支持塩としてLiPF6(市販バッテリーグレード)を溶解したものを用いた。LiPF6は、電解液中のモル数が1mol/Lとなるように溶解させた。
  <充電(ステップ104)>
 ステップ101から103で作製した電池に対して、電流値4mAで4.4Vまで定電流充電を行い、その後、電流値が0.8mAに減衰するまで、4.4Vでの定電圧充電状態を保った。
  <分解(ステップ105)>
 充電終了後の電池を露点-70℃の不活性ガス雰囲気下で開封して、正極リード11が溶接された正極1を取り出した。次に、取り出した正極1のタブ部を切断し正極リード11を除去した。さらに、タブ部を切断した正極1をジメチルカーボネート(DMC)(市販バッテリーグレード)中に浸漬して正極1中に含まれる電解液を抽出除去した。その後、正極1をDMC中から取り出し、室温真空乾燥によりDMCを除去し、高電圧に充電された正極を得た。
  <溶媒と充電正極の高温保存(ステップ106)>
 上記充電正極の存在下における溶媒の高温保存時ガス発生能の評価を行うサンプルとして、実施例2-5から2-11、比較例2-5および2-6の9つのサンプルを次に示す方法で作製した。
  (実施例2-5)
 幅50mm、高さ100mmの一辺が開口した袋状のアルミラミネートフィルムに、上記充電正極を収納した。評価用溶媒として精製したTFMCHを3ml注入した後、減圧状態で開口部を熱溶着することにより、アルミラミネートフィルムを密封した。
  (実施例2-6)
 評価用溶媒として精製したTFMCHとPC(市販バッテリーグレード)の重量比90:10の混合物を用いた。それ以外の構成は実施例2-5と同様とした。
  (実施例2-7)
 評価用溶媒として精製したTFMCHとPC(市販バッテリーグレード)の重量比50:50の混合物を用いた。それ以外の構成は実施例2-5と同様とした。
  (実施例2-8)
 評価用溶媒として精製したTFMCHとPC(市販バッテリーグレード)の重量比10:90の混合物を用いた。それ以外の構成は実施例2-5と同様とした。
  (実施例2-9)
 評価用溶媒として精製したTFMCHとPC(市販バッテリーグレード)の重量比5:95の混合物を用いた。それ以外の構成は実施例2-5と同様とした。
  (実施例2-10)
 評価用溶媒として合成した12BTFMCHを用いた。それ以外の構成は実施例2-5と同様とした。
  (実施例2-11)
 評価用溶媒として合成した2FECHを用いた。それ以外の構成は実施例2-5と同様とした。
  (比較例2-5)
 評価用溶媒としてPC(市販バッテリーグレード)を用いた。それ以外の構成は実施例2-5と同様とした。
  (比較例2-6)
 評価用溶媒としてEMC(市販バッテリーグレード)を用いた。それ以外の構成は実施例2-5と同様とした。
 実施例2-5から2-11、比較例2-5および2-6の9つのサンプル、すなわち、密封されたアルミラミネートフィルムを恒温槽中に入れ、85℃で、3日間保持した。その後、恒温槽中から取り出し、発生したガスの定量分析をガスクロマトグラフィー(島津製作所製ガスクロマトグラフを使用)により行った。その結果から算出されたガスの総発生量を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例2-5から2-11では、比較例2-5および2-6よりもガスの発生量が少ない。これは、実施例2-5、2-10および2-11で用いたTFMCH、12BTFMCHおよび2FECHが比較例2-5および2-6で用いたPCやEMCよりも酸化されにくいためと考えられる。また、実施例2-5、2-10および2-11ではガスがほとんど発生していない。0.02から0.05cm3の微量のガスが発生しているのは、充電正極を作製する際に用いた電解液(カーボネートを含む)が残存し、これらが分解されたためと考えられる。
 これらの結果から、実施例2-5のようにTFMCHのみを溶媒として用いた場合にも、実施例2-6から2-9のようにTFMCHとPCの混合溶媒を溶媒として用いた場合にも、実施例2-10および2-11のように12BTFMCHおよび2FECHを溶媒として用いた場合にも、本発明の効果が発現することが明らかとなった。
 ガスの発生を抑制できるという効果の程度は混合溶媒中のTFMCHの含有率と相関している。実施例2-5から2-9の結果から分かるように、TFMCHの添加量が増えるにつれて、発生するガスの総量も減少している。TFMCHが5重量%以上含まれておれば、有意にガス発生が抑制されており、特に10重量%以上のTFMCHを含む実施例2-5から2-8では、ガスの発生量が1.09cm3以下に低減されている。この結果から、溶媒中に、5重量%以上TFMCHを含むことが好ましく、10重量%以上TFMCHを含むことがより好ましいことが分かる。
 以上のように、TFMCH、12BTFMCHおよび2FECHは、PCに代表される環状カーボネートやEMCに代表される鎖状カーボネートと比べ、高い信頼性を有することが明らかとなった。
 また、2FECHは、表2および図3に示すように、本発明の溶媒である、1つ以上2つ以下の置換基Rがシクロヘキサン環に導入された構造を有するフッ素含有環状飽和炭化水素(一般式(1)中、RはCn2n+1で表され、XはFまたはHであって、2n+1個のXのうちの少なくとも1つはFである。)の構造の中では、最高被占軌道エネルギーが最も大きいものである。したがって、本発明の2FECHよりも小さな最高被占軌道エネルギーを持つ分子構造の溶媒は、いずれも、耐酸化性に優れガス発生を起こさないことが明らかである。
 以下、リチウムイオン二次電池を作製してその特性を評価した結果について説明する。本実施例では、誘電率25以上の化合物としてプロピレンカーボネートを用いた。
 <電解液の調製>
  (実施例3-1)
 実施例3-1として、プロピレンカーボネート(PC)とトリフルオロメチルシクロヘキサン(TFMCH)との重量比率が異なる複数種類の混合溶媒を調製した。それぞれの混合溶媒の重量比率は、97:3、95:5、90:10、85:15、75:25とした。各重量比率の混合溶媒をそれぞれ2サンプルずつ調製し、2サンプルのうちの一方に濃度0.2mol/LのLiPF6を、他方に濃度0.5mol/LのLiPF6を溶解して、10種類の電解液A1、B1、C1、 D1、E1、A2、B2、C2、D2、E2を得た。表9に、電解液のサンプル名と、重量比率および濃度との関係を示す。
  (比較例3-1)
 比較例として、プロピレンカーボネート(PC)のみを溶媒として含む電解液を2サンプル調製した。2サンプルのうちの一方に濃度0.2mol/LのLiPF6を、他方に濃度0.5mol/LのLiPF6を溶解して、電解液F1、F2を得た。
  (従来例3-1)
 従来例として、プロピレンカーボネート(PC)とジメチルカーボネート(DMC)を75:25の重量比率で混合した混合溶媒を含む電解液を2サンプル調整した。2サンプルのうちの一方に濃度0.2mol/LのLiPF6を、他方に濃度0.5mol/LのLiPF6を溶解して、電解液G1、G2を得た。
Figure JPOXMLDOC01-appb-T000009
 <正極の作製>
 まず、正極活物質としてLiCoO2(平均粒径10μm、BET法による比表面積0.38m2/g)を準備した。100重量部の活物質に、導電剤であるアセチレンブラックを3重量部、結着剤であるポリフッ化ビニリデンを4重量部、および適量のN-メチル-2-ピロリドンを加え、攪拌・混合して、スラリー状の正極合剤を得た。なお、ポリフッ化ビニリデンは、あらかじめN-メチル-2-ピロリドンに溶解した状態で用いた。
 次に、図1(c)に示すように、厚さ20μmのアルミニウム箔からなる集電体1aの片面に、上記スラリー状正極合剤1bを塗布し、塗膜を乾燥し、ローラーで圧延した。
 正極活物質として用いたLiCoO2の調製法は以下の通りである。硫酸コバルト飽和水溶液を低速で撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液を滴下して、Co(OH)2の沈殿を得た。この沈殿物をろ過、水洗した後、空気中で80℃に加熱することにより乾燥した。得られた水酸化物の平均粒径は、約10μmであった。
 次に、得られた水酸化物に対して、空気中で380℃の熱処理を10時間行うことにより、酸化物Co34を得た。粉末X線回折により、得られた酸化物が単一相を有することを確認した。
 さらに、得られた酸化物に、Coのモル数とLiのモル数との比が1.00:1.00になるように炭酸リチウムの粉末を混合し、乾燥空気中で1000℃の熱処理を10時間行うことにより、目的とするLiCoO2を得た。粉末X線回折(リガク製)により、得られたLiCoO2が単一相の六方晶層状構造を有することを確認した。粉砕および分級の処理を行った後、走査型電子顕微鏡(日立ハイテクノロジーズ製)による観察から、粒径が10~15μm程度であることを確認した。なお、平均粒径は、散乱式粒度分布測定装置(HORIBA製)を用いて求めた。
 得られた極板を、図8(a)に示す寸法に打ち抜いて、リード取り付け部であるタブの部分の正極合剤1bを剥離し正極1を得た。正極合剤1bが塗布された正極集電体1aは30mm×40mmの長方形状を有する。
 <負極の作製>
 まず、ステンレス(SUS304)製メッシュを図8(b)に示す寸法に打ち抜いて、負極集電体2aを形成した。負極集電体2aは、31mm×41mmの長方形状を有する電極部と、7mm×7mmの正方形状を有するリード取り付け部とを有する。負極集電体2aのうちの電極部の上に、厚さ150μmの金属リチウム2bを圧着して、負極2を得た。
 <組み立て>
 得られた正極1および負極2を、セパレータ3を介して積層し、図1(c)に示すような電極群13を作製した。セパレータとしては、厚さ20μmのポリエチレン製微多孔質シートを用いた。
 次に、図1(a)に示すように、電極群13の正極1にアルミニウム製正極リード11を、負極2にニッケル製負極リード12を溶接した。その後、電極群13を、3方向が開口している厚さ0.12mmのアルミラミネートフィルム製電池ケース14の内部に収容し、PP製のテープで電池ケース14の内面に固定した。正極リード11および負極リード12が出ている開口部を含む開口部を熱溶着し、1つの開口部のみを熱溶着せずに残して、電池ケース14を袋状とした。熱溶着していない開口部から、電解液15として電解液A1からB2のそれぞれを注入し、減圧および脱気後、減圧状態で開口部を熱溶着することにより、電池内部を密封した。電解液A1、A2、B1、B2、C1、C2、D1、D2、E1、E2、F1、F2、G1、G2から、電池A1、A2、B1、B2、C1、C2、D1、D2、E1、E2、F1、F2、G1、G2を得た。厚さ0.5mm、幅50mm、高さ100mmのサイズを有し、この電池が4.3Vで充電された時の設計容量は40mAhであった。
 <高率放電特性>
 作製した各電池A1、A2、B1・・・G2を用いて高率放電特性の評価を行った。
 25℃の環境下において、電流値2mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。その後、電流値0.4mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を初期放電容量とした。次に、電流値2mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。その後さらに、電流値4mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を高率放電容量とした。各電池の初期放電容量に対する高率放電容量の割合を高率放電特性(高率放電特性=高率放電容量/初期放電容量)とし、その百分率を表10に示す。
 <高温保存>
 作製した各電池を用いて高温保存試験を行った。
 25℃の環境下において、電流値2mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。次に、充電状態の各電池A1、A2、B1・・・G2を恒温槽中85℃の環境下で3日間保持した。このとき、電解液に含まれる溶媒が酸化分解されるとCO2が発生すると考えられる。その後、恒温槽中から各電池A1、A2、B1・・・・G2を取り出し、発生したガス量の定量とガスクロマトグラフィーによる成分分析を行った。その結果から算出されたCO2の発生量を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、ジメチルカーボネート(DMC)を含んでいない比較例3-1の電池F1、F2では、ジメチルカーボネート(DMC)を含んでいる従来例3-1の電池G1、G2と比較してCO2の発生が抑制されているが、高率放電特性の低下が大きい。本実施例3-1の電池A1、B1・・・E2では、比較例3-1の電池F1、F2と比較して、CO2の発生がさらに抑制されている。この結果から、TFMCHを少しでも含んでいれば、酸化が抑制されることが分かる。また、本実施例1の電池A1、B1・・・E2では、比較例1の電池F1、F2と比較して、高率放電特性も改善されている。
 特に、実施例3-1の電池のうちトリフルオロメチルシクロヘキサン(TFMCH)を5重量%以上含むもの(B1、C1、D1、E1、B2、C2、D2、E2)では、トリフルオロメチルシクロヘキサンを3重量%だけ含むもの(A1、A2)と比較して、CO2の発生が大きく抑制されている。また、トリフルオロメチルシクロヘキサンを5重量%以上含む電池では、CO2の発生量が0.65ml以下でゆるやかに減少している。このように、トリフルオロメチルシクロヘキサンを5重量%以上含むことにより、電解液の酸化が効果的に抑制される。
 一方、実施例3-1の電池のうちトリフルオロメチルシクロヘキサンを10重量%以上含むもの(C1、D1、E1、C2、D2、E2)では、高率放電特性が83%以上でゆるやかに増加している。このように、トリフルオロメチルシクロヘキサンを10重量%以上含むことにより、特に良好な高率放電特性が得られる。
 以上の結果から、フッ素含有環状炭化水素化合物は、溶媒中に5重量%以上含有されていることが好ましく、10重量%以上含有されていることがさらに好ましい。
 以下、実施例3と同様、リチウムイオン二次電池を作製してその特性を評価した結果について説明する。本実施例では、誘電率25以上の化合物としてスルホンを用いた。
 <非水電解液の調製>
  (実施例4-1)
 実施例4-1として、スルホン類としてスルホラン(SLF)、3-メチルスルホラン(3-MeSLF)、およびイソプロピルメチルスルホン(iPrMeSF)を、またフッ素含有環状炭化水素化合物としてトリフルオロメチルシクロヘキサン(TFMCH)、および1,2-ビス(トリフルオロメチル)シクロヘキサン(12BTFMCH)を、さらに支持電解質塩として六フッ化リン酸リチウム(LiPF6)を用いて非水電解液を調製した。表11、表12、表13のそれぞれに調製した非水電解液のサンプル名と組成比率を示す。溶媒の混合比率は重量比率で、支持電解質塩の濃度はmol/Lで示す。なお、TFMCHおよび12BTFMCHには、実施例1において精製したものおよび合成したものを用いた。その他の溶媒および支持電解質塩はいずれも市販のバッテリーグレードとした。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
  (比較例4-1)
 比較例として、プロピレンカーボネート(PC)、スルホラン、3-メチルスルホラン、およびイソプロピルメチルスルホンのみを溶媒として含む非水電解液を調製した。表14に調製した非水電解液のサンプル名と支持電解質塩の濃度はmol/Lで示す。なお、用いた溶媒および支持電解質塩はいずれも市販のバッテリーグレードとした。
Figure JPOXMLDOC01-appb-T000014
  (従来例4-1)
 従来例として、プロピレンカーボネートとジメチルカーボネート(DMC)を75:25の重量比率で混合した混合溶媒を含む非水電解液を調整した。表15に調製した非水電解液のサンプル名と支持電解質塩の濃度はmol/Lで示す。なお、用いた溶媒および支持電解質塩はいずれも市販のバッテリーグレードとした。
Figure JPOXMLDOC01-appb-T000015
 <正極の作製>
 まず、正極活物質としてLiCoO2(平均粒径10μm、BET法による比表面積0.38m2/g)を準備した。100重量部の活物質に、導電剤であるアセチレンブラックを3重量部、結着剤であるポリフッ化ビニリデンを4重量部、および適量のN-メチル-2-ピロリドンを加え、攪拌・混合して、スラリー状の正極合剤を得た。なお、ポリフッ化ビニリデンは、あらかじめN-メチル-2-ピロリドンに溶解した状態で用いた。
 次に、図1(c)に示すように、厚さ20μmのアルミニウム箔からなる集電体1aの片面に、上記スラリー状正極合剤1bを塗布し、塗膜を乾燥し、ローラーで圧延した。
 正極活物質として用いたLiCoO2の調製法は以下の通りである。硫酸コバルト飽和水溶液を低速で撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液を滴下して、Co(OH)2の沈殿を得た。この沈殿物をろ過、水洗した後、空気中で80℃に加熱することにより乾燥した。得られた水酸化物の平均粒径は、約10μmであった。
 次に、得られた水酸化物に対して、空気中で380℃の熱処理を10時間行うことにより、酸化物Co34を得た。粉末X線回折により、得られた酸化物が単一相を有することを確認した。
 さらに、得られた酸化物に、Coのモル数とLiのモル数との比が1.00:1.00になるように炭酸リチウムの粉末を混合し、乾燥空気中で1000℃の熱処理を10時間行うことにより、目的とするLiCoO2を得た。粉末X線回折(リガク製)により、得られたLiCoO2が単一相の六方晶層状構造を有することを確認した。粉砕および分級の処理を行った後、走査型電子顕微鏡(日立ハイテクノロジーズ製)による観察から、粒径が10~15μm程度であることを確認した。なお、平均粒径は、散乱式粒度分布測定装置(HORIBA製)を用いて求めた。
 得られた極板を、図8(a)に示す寸法に打ち抜いて、リード取り付け部であるタブの部分の正極合剤1bを剥離し正極1を得た。正極合剤1bが塗布された正極集電体1aは30mm×40mmの長方形状を有する。
 <負極の作製>
 まず、ステンレス(SUS304)製メッシュを図8(b)に示す寸法に打ち抜いて、負極集電体2aを形成した。負極集電体2aは、31mm×41mmの長方形状を有する電極部と、7mm×7mmの正方形状を有するリード取り付け部とを有する。負極集電体2aのうちの電極部の上に、厚さ150μmの金属リチウム2bを圧着して、負極2を得た。
 <組み立て>
 得られた正極1および負極2を、セパレータ3を介して積層し、図1(c)に示すような電極群13を作製した。セパレータとしては、厚さ20μmのポリエチレン製微多孔質シートを用いた。
 次に、図1(a)に示すように、電極群13の正極1にアルミニウム製正極リード11を、負極2にニッケル製負極リード12を溶接した。その後、電極群13を、3方向が開口している厚さ0.12mmのアルミラミネートフィルム製電池ケース14の内部に収容し、PP製のテープで電池ケース14の内面に固定した。正極リード11および負極リード12が出ている開口部を含む開口部を熱溶着し、1つの開口部のみを熱溶着せずに残して、電池ケース14を袋状とした。熱溶着していない開口部から、電解液15として調製した各電解液のそれぞれを注入し、減圧および脱気後、減圧状態で開口部を熱溶着することにより、電池内部を密封した。用いた電解液と、得られた電池名の関係を表16に示す。厚さ0.5mm、幅50mm、高さ100mmのサイズを有し、この電池が4.3Vで充電された時の設計容量は40mAhであった。
Figure JPOXMLDOC01-appb-T000016
 <イオン伝導度>
 調製した実施例および比較例の電解液のイオン電導度の測定を行った。
 22℃の環境下において、の電気伝導率計(東亜DKK製)により測定した結果を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 <高率放電特性>
 作製した実施例、比較例、従来例の電池を用いて高率放電特性の評価を行った。
 25℃の環境下において、電流値1mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。その後、電流値0.4mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を初期放電容量とした。次に、電流値1mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。その後さらに、電流値2mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を高率放電容量とした。評価を行った電池の初期放電容量に対する高率放電容量の割合を高率放電特性(高率放電特性=高率放電容量/初期放電容量)とし、その百分率を表18に示す。また、表18には各電池の初期放電容量を正極合剤の単位重量当たりの容量として換算した値も示す。
Figure JPOXMLDOC01-appb-T000018
 <高温保存>
 作製した各電池を用いて高温保存試験を行った。
 25℃の環境下において、電流値1mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。次に、充電状態の電池を恒温槽中85℃の環境下で3日間保持した。このとき、電解液に含まれる溶媒が酸化分解されるとCO2が発生すると考えられる。その後、恒温槽中から各電池を取り出し、発生したガス量の定量とガスクロマトグラフィーによる成分分析を行った。その結果から算出されたCO2の発生量を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 表19に示すように、カーボネート類を含んでいない本発明の電池では、充電状態の正極が共存する高温保存においてもCO2の発生が見られず、ガス抑制の効果が得られている。これに対して、比較例E-1のPC、従来例I-1のPCおよびDMCの混合溶媒を用いた電池では多量のCO2の発生が生じている。したがって、本発明によれば、溶媒の酸化およびこれに伴うガスの発生が低減できることが分かる。
 比較例F-1、G-1、H-1のスルホン類のみを用いた電池でも、CO2の発生は起こっていない。しかしながら、電解液のイオン伝導度を比較すると表17に示すように、スルホン類のみを溶媒として用いた電解液(F-1、F-2、G-1、G-2、H-1、H-2)では、フッ素含有環状飽和炭化水素を混合した溶媒を用いた場合と比較して値が小さくなっている。スルホン類は比較的高粘度を有する溶媒であり、このことがイオン伝導度を低下させる要因の一つとなっていると考えられる。しかし、スルホン類にフッ素含有環状飽和炭化水素を混合することによって粘度を低下させる効果があり、その結果、イオン伝導度が向上していると推測することができる。
 表18に示した各電池の放電特性から、初期放電容量は、スルホン類のみを溶媒とした電解液およびスルホン類とフッ素含有環状飽和炭化水素との混合物を溶媒とした電解液を用いた電池のいずれにおいても、従来例のカーボネート類を溶媒とした電解液を用いた電池と同等であった。しかし、高率放電特性はスルホン類のみを溶媒とした電解液を用いた電池と比較して、フッ素含有環状飽和炭化水素を混合した溶媒を含む電解液を用いた電池が優れており、フッ素含有環状飽和炭化水素とスルホン類との混合によるイオン伝導度の向上による効果が見られる。
 また、スルホン類のみを溶媒として用いた電解液として、スルホランを用いた場合についても電池を作製したが、電極およびセパレータの濡れ性が低く、注液時に十分に電解液を浸透させることができなかったため、充放電を行うことができなかった。これに対して、スルホランと1,2-ビス(トリフルオロメチル)シクロヘキサンの混合溶媒を用いた電解液では、良好な濡れ性を有しており優れた充放電特性が得られた。このように、フッ素含有環状飽和炭化水素との混合溶媒とすることで、濡れ性、注液性の面でも良好な結果が得られる。
 以上の結果から、フッ素含有環状炭化水素化合物とスルホン類を含有する溶媒を電解液溶媒とすることで、耐酸化性に優れ、ガス発生も少なく、良好な充放電特性を有する非水電解液二次電池を得ることができる。
 以下、誘電率25以上の化合物としてプロピレンカーボネートを用い、電気二重層キャパシタを作製してその特性を評価した結果について説明する。
 <電解液の調製>
  (実施例5)
 実施例5として、プロピレンカーボネート(PC)とトリフルオロメチルシクロヘキサン(TFMCH)とを重量比率80:20で混合して、混合溶媒を調製した。この混合溶媒に、0.2mol/Lの濃度で(C254NBF4を溶解させて電解液Jを得た。
  (比較例5)
 比較例5として、プロピレンカーボネート(PC)のみを溶媒として含む電解液を調製して、(C254NBF4を0.2mol/Lの濃度で溶解することにより、電解液Kを得た。
 <電極の作製>
 電極は活性炭粉末(比表面積1700m2/g、平均粒子径2μm)を用いて作製した。活性炭粉末100mgとアセチレンブラック20mgとを均一に混合し、ポリビニルピロリドン20mg、メタノール800mgを加えてスラリーを得た。このスラリー状の電極合剤をアルミニウム箔からなる集電体上に塗布し、真空乾燥を行った。電極合剤の塗布重量は、集電体の単位面積あたり2.2mg/cm2であった。得られた極板を、直径12.5mmの円盤状に打ち抜いて電極とした。
 <組み立て>
 円盤状に打ち抜いた電極を用いて、図2に示すようなコイン型電気二重層キャパシタを組み立てた。まず、直径15mmの円形に打ち抜いたポリプロピレン製不織布シートからなるセパレータ17を介して電極22a、22bを互いに対向させて配置させ、電極群とした。電極群をケース20の内部に収容し、所定量の各種電解液J、Kを含浸させた後、ガスケット20を装着した封口板19により、キャパシタ内部を密封した。これにより、電解液Jを用いた電気二重層キャパシタJ、電解液Kを用いた電気二重層キャパシタKを作製した。
 <充放電試験>
 作製した電気二重層キャパシタJ、Kに対して、25℃の環境下において、0.1mAの定電流で0Vから2.0Vの電圧範囲での充放電試験を行った。図9(a)に電気二重層キャパシタJ、図9(b)に電気二重層キャパシタKの充放電試験結果を示す。
 図9(a)および図9(b)に示すように、実施例5の電気二重層キャパシタJおよび比較例5の電気二重層キャパシタKのいずれを用いた場合においても、ほぼ同等の特性が得られている。したがって、本発明の蓄電デバイス用非水電解溶媒および電解液は、電気二重層キャパシタにも好適に用いることができることが分かる。
 本実施例では本発明の蓄電デバイス用非水電解溶媒および電解液を用いることによって従来と同等以上の電気二重層キャパシタが作製できることを確認することが主たる目的であったため、作製した電気二重層キャパシタの高温保存試験は行っていない。しかし、実施例3における電解液と同様に、本実施例5における電解液では高電位状態での酸化反応が抑制されるため、本実施例5の電気二重層キャパシタでは高い信頼性を得ることができる。
 以下、誘電率25以上の化合物としてスルホンを用い、実施例6と同様に電気二重層キャパシタを作製してその特性を評価した結果について説明する。
 <電解液の調製>
  (実施例6)
 実施例6として、スルホラン(SLF)と1,2-ビス(トリフルオロメチル)シクロヘキサン(12BTFMCH)とを重量比率3:1で混合して、混合溶媒を調製した。この混合溶媒に、0.2mol/Lの濃度で(C254NBF4を溶解させて電解液Lを得た。
  (比較例6)
 比較例6として、プロピレンカーボネート(PC)のみを溶媒として含む電解液を調製して、(C254NBF4を0.2mol/Lの濃度で溶解することにより、電解液Mを得た。
 <電極の作製>
 電極は活性炭粉末(比表面積1700m2/g、平均粒子径2μm)を用いて作製した。活性炭粉末100mgとアセチレンブラック20mgとを均一に混合し、ポリビニルピロリドン20mg、メタノール800mgを加えてスラリーを得た。このスラリー状の電極合剤をアルミニウム箔からなる集電体上に塗布し、真空乾燥を行った。電極合剤の塗布重量は、集電体の単位面積あたり2.2mg/cm2であった。得られた極板を、直径12.5mmの円盤状に打ち抜いて電極とした。
 <組み立て>
 円盤状に打ち抜いた電極を用いて、図2に示すようなコイン型電気二重層キャパシタを組み立てた。まず、直径15mmの円形に打ち抜いたポリプロピレン製不織布シートからなるセパレータ17を介して電極22a、22bを互いに対向させて配置させ、電極群とした。電極群をケース20の内部に収容し、所定量の各種電解液L、Mを含浸させた後、ガスケット20を装着した封口板19により、キャパシタ内部を密封した。これにより、電解液Lを用いた電気二重層キャパシタL、電解液Mを用いた電気二重層キャパシタMを作製した。
 <充放電試験>
 作製した電気二重層キャパシタに対して、25℃の環境下において、0.1mAの定電流で0Vから2.0Vの電圧範囲での充放電試験を行った。図10(a)に実施例6の電気二重層キャパシタ、図10(b)に比較例6の電気二重層キャパシタの充放電試験結果を示す。
 図10(a)および(b)に示すように、実施例6の電気二重層キャパシタおよび比較例6の電気二重層キャパシタのいずれを用いた場合においても、ほぼ同等の特性が得られている。したがって、本発明の蓄電デバイス用非水電解溶媒および電解液は、電気二重層キャパシタにも好適に用いることができることが分かる。
 本実施例では本発明の蓄電デバイス用非水電解溶媒および電解液を用いることによって従来と同等以上の電気二重層キャパシタが作製できることを確認することが主たる目的であったため、作製した電気二重層キャパシタの高温保存試験は行っていない。しかし、実施例4における電解液と同様に、本実施例6における電解液では高電位状態での酸化反応が抑制されるため、本実施例6の電気二重層キャパシタでは高い信頼性を得ることができる。
 本発明の蓄電デバイス用非水溶媒は、高エネルギー密度を有する超高電圧型非水系蓄電デバイスを具現化するための電解液の溶媒として有用である。また、従来電圧型のリチウムイオン二次電池や電気二重層キャパシタの溶媒として用いることも可能であり、高い高温信頼性が実現される。特に、高い信頼性が求められる大型電池や電気自動車用電池の電解液の溶媒として好適である。
  1       正極
  1a      正極集電体
  1b      正極合剤
  2       負極
  2a      負極集電体
  2b      金属リチウム
  3       セパレータ
  11      正極リード
  12      負極リード
  13      電極群
  14      電池ケース
  15      電解液
  16a、16b アルミニウム集電体
  17      セパレータ
  18      スペーサ
  19      封口板
  20      ガスケット
  21      ケース
  22a、22b 電極合剤
  23a、23b 電極
  31      ゴム栓
  32      ステンレスワイヤー
  33a     ステンレスメッシュ
  33b     Li箔
  34      対極
  35      参照極
  36      作用極
  37      Ptワイヤー
  38      ガラス容器
  30      3極式ガラスセル

Claims (15)

  1.  下記一般式(1)で表され、かつ、1または2個の置換基Rがシクロヘキサン環に導入された構造を有するフッ素含有環状飽和炭化水素を含む蓄電デバイス用非水溶媒(一般式(1)中、RはCn2n+1で表され、nは1以上の整数であり、2n+1個のXのうちの少なくとも1つはFであり、それ以外のXはFまたはHである。)。
    Figure JPOXMLDOC01-appb-C000005
  2.  前記nは1または2である請求項1に記載の蓄電デバイス用非水溶媒。
  3.  25以上の比誘電率を有する化合物をさらに含む請求項2に記載の非水系蓄電デバイス用溶媒。
  4.  前記25以上の比誘電率を有する化合物はカーボネートまたはスルホンである請求項3に記載の蓄電デバイス用非水溶媒。
  5.  前記25以上の比誘電率を有する化合物は環状カーボネートである請求項4に記載の蓄電デバイス用非水溶媒。
  6.  前記25以上の比誘電率を有する化合物は、下記一般式(2)で表わされるスルホン化合物である請求項4に記載の蓄電デバイス用非水溶媒。
    Figure JPOXMLDOC01-appb-C000006
     (R1、R2は、それぞれ独立した炭素数1以上4以下のアルキル基であり、互いに結合して環状構造を形成してもよい。)
  7.  前記スルホン化合物が鎖状スルホンおよび環状スルホンの少なくとも一方からなる請求項6に記載の蓄電デバイス用非水溶媒。
  8.  前記鎖状スルホンが非対称の鎖状スルホンである請求項7に記載の蓄電デバイス用非水溶媒。
  9.  溶媒成分として、前記フッ素含有環状飽和炭化水素を10重量%以上100重量%以下含有する請求項1または2に記載の蓄電デバイス用非水溶媒。
  10.  請求項1から9のいずれかに記載の蓄電デバイス用非水溶媒と、
     支持電解質塩とを備える蓄電デバイス用非水電解液。
  11.  前記支持電解質塩はリチウム塩である請求項10に記載の蓄電デバイス用非水電解液。
  12.  前記支持電解質塩は四級アンモニウム塩である、請求項10に記載の蓄電デバイス用非水電解液。
  13.  請求項1から9のいずれかに記載の蓄電デバイス用非水溶媒または請求項10から12のいずれかに記載の蓄電デバイス用非水電解液を含む蓄電デバイス。
  14.  請求項1から9のいずれかに記載の蓄電デバイス用非水溶媒または請求項10から12のいずれかに記載の蓄電デバイス用非水電解液を含むリチウムイオン二次電池。
  15.  請求項1から9のいずれかに記載の蓄電デバイス用非水溶媒または請求項10から12のいずれかに記載の蓄電デバイス用非水電解液を含む電気二重層キャパシタ。
PCT/JP2009/002197 2008-05-19 2009-05-19 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ WO2009141999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09750361.9A EP2278653B1 (en) 2008-05-19 2009-05-19 Non-aqueous solvent and non-aqueous electrolyte for an electricity storage device, non-aqueous electricity storage device employing the same, such as lithium secondary battery or electric double-layer capacitor
JP2009541664A JP4435866B2 (ja) 2008-05-19 2009-05-19 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
CN200980118010.2A CN102037599B (zh) 2008-05-19 2009-05-19 蓄电装置用非水溶剂和蓄电装置用非水电解液以及采用了它们的非水系蓄电装置、锂二次电池和双电层电容器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008131175 2008-05-19
JP2008131174 2008-05-19
JP2008-131174 2008-05-19
JP2008-131175 2008-05-19

Publications (1)

Publication Number Publication Date
WO2009141999A1 true WO2009141999A1 (ja) 2009-11-26

Family

ID=41339939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002197 WO2009141999A1 (ja) 2008-05-19 2009-05-19 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Country Status (5)

Country Link
US (1) US8211577B2 (ja)
EP (1) EP2278653B1 (ja)
JP (2) JP4435866B2 (ja)
CN (1) CN102037599B (ja)
WO (1) WO2009141999A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023330A (ja) * 2009-06-18 2011-02-03 Panasonic Corp 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
WO2012066770A1 (ja) 2010-11-16 2012-05-24 パナソニック株式会社 蓄電デバイス用非水溶媒
CN102870268A (zh) * 2010-04-26 2013-01-09 三井化学株式会社 含有环状砜化合物的非水电解液及锂二次电池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141999A1 (ja) 2008-05-19 2009-11-26 パナソニック株式会社 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP5421253B2 (ja) * 2008-10-21 2014-02-19 パナソニック株式会社 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
EP2530779B1 (en) * 2010-01-28 2019-08-14 Japan Carlit Co., Ltd. Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
CN102742064B (zh) * 2010-02-10 2015-11-25 Nec能源元器件株式会社 非水性电解质溶液,和具有所述非水性电解质溶液的锂离子二次电池
JP5175906B2 (ja) 2010-09-07 2013-04-03 株式会社東芝 非水電解質二次電池及び電池パック
CN103004007B (zh) * 2011-06-15 2016-10-26 松下知识产权经营株式会社 蓄电装置用非水溶剂和非水电解液、以及使用它们的蓄电装置、锂二次电池和双电层电容器
WO2014013948A1 (ja) * 2012-07-18 2014-01-23 株式会社村田製作所 二次電池
US9928970B2 (en) * 2015-04-23 2018-03-27 Jtekt Corporation Lithium ion capacitor
KR20190027601A (ko) * 2017-09-07 2019-03-15 현대자동차주식회사 전극용 슬러리, 이를 포함하는 전극 및 리튬 이차전지
US11501927B2 (en) * 2018-05-02 2022-11-15 Jtekt Corporation Alkali metal ion capacitor
CN112074985A (zh) * 2018-05-02 2020-12-11 株式会社捷太格特 锂离子二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058746A1 (en) * 2001-12-28 2003-07-17 Quallion Llc Electrolyte system and energy storage device using same
JP2004111359A (ja) 2002-07-24 2004-04-08 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液
JP2005149750A (ja) 2003-11-11 2005-06-09 Nec Corp 非水電解質二次電池
JP2005206600A (ja) * 2004-01-23 2005-08-04 Air Products & Chemicals Inc 1,1−ジフルオロビニル脂環式化合物の製造方法
JP2005327785A (ja) * 2004-05-12 2005-11-24 Honda Motor Co Ltd 電気二重層キャパシタ用電解液および電気二重層キャパシタ
JP2006286650A (ja) 2002-07-24 2006-10-19 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856583B2 (ja) * 1999-02-01 2006-12-13 三井化学株式会社 二次電池用非水電解液および非水電解液二次電池
JP3721857B2 (ja) 1999-06-04 2005-11-30 株式会社日立製作所 不燃性電解液及びこれを用いたリチウム2次電池
JP2001085058A (ja) 1999-09-20 2001-03-30 Hitachi Ltd 非水電解液及びこれを用いたリチウム1次電池及びリチウム2次電池及び電気化学キャパシタ及び高分子電解質及びこれを用いたポリマ2次電池
JP2001143749A (ja) * 1999-11-19 2001-05-25 Nippon Zeon Co Ltd 非水電解液含有電気化学素子
JP4212301B2 (ja) * 2002-05-16 2009-01-21 三菱化学株式会社 非水系電解液二次電池
EP2133895A1 (en) 2004-01-15 2009-12-16 Panasonic Corporation Nonaqueous electrolyte for electrochemical devices
JP4728647B2 (ja) 2004-01-15 2011-07-20 パナソニック株式会社 非水電解液を含む電気二重層コンデンサもしくは二次電池
EP1560236B1 (en) 2004-01-28 2006-06-07 Honda Motor Co., Ltd. Electric double layer capacitor and electrolyte solution therefor
JP2005217008A (ja) * 2004-01-28 2005-08-11 Honda Motor Co Ltd 電気二重層キャパシタ用電解液および電気二重層キャパシタ
JP5088918B2 (ja) 2006-01-24 2012-12-05 国立大学法人鳥取大学 イオン液体およびその製造方法、ならびに該イオン液体を含む電解コンデンサ
WO2009141999A1 (ja) 2008-05-19 2009-11-26 パナソニック株式会社 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058746A1 (en) * 2001-12-28 2003-07-17 Quallion Llc Electrolyte system and energy storage device using same
JP2004111359A (ja) 2002-07-24 2004-04-08 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液
JP2006286650A (ja) 2002-07-24 2006-10-19 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液
JP2005149750A (ja) 2003-11-11 2005-06-09 Nec Corp 非水電解質二次電池
JP2005206600A (ja) * 2004-01-23 2005-08-04 Air Products & Chemicals Inc 1,1−ジフルオロビニル脂環式化合物の製造方法
JP2005327785A (ja) * 2004-05-12 2005-11-24 Honda Motor Co Ltd 電気二重層キャパシタ用電解液および電気二重層キャパシタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2278653A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023330A (ja) * 2009-06-18 2011-02-03 Panasonic Corp 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
CN102870268A (zh) * 2010-04-26 2013-01-09 三井化学株式会社 含有环状砜化合物的非水电解液及锂二次电池
WO2012066770A1 (ja) 2010-11-16 2012-05-24 パナソニック株式会社 蓄電デバイス用非水溶媒

Also Published As

Publication number Publication date
EP2278653B1 (en) 2014-03-05
JPWO2009141999A1 (ja) 2011-09-29
EP2278653A4 (en) 2013-04-10
CN102037599A (zh) 2011-04-27
EP2278653A1 (en) 2011-01-26
JP4435866B2 (ja) 2010-03-24
CN102037599B (zh) 2014-10-29
US20090297954A1 (en) 2009-12-03
US8211577B2 (en) 2012-07-03
JP2010108940A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4435866B2 (ja) 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP5308314B2 (ja) 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP5421253B2 (ja) 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP5948646B2 (ja) 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP7116311B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
US20040002002A1 (en) Material for electrolytic solutions and use thereof
JP5306749B2 (ja) 電気化学デバイス
JPWO2005003108A1 (ja) 第4級アンモニウム塩および電解質並びに電気化学デバイス
JP2004342607A (ja) リチウム電池用非水電解液およびその製造方法ならびにリチウムイオン二次電池
JP6913159B2 (ja) 電池用非水電解液及びリチウム二次電池
JP5165862B2 (ja) 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
JP5335218B2 (ja) 非水電解液二次電池
WO2016006315A1 (ja) 3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池
JP7345502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP5059987B2 (ja) 蓄電デバイス用非水溶媒
JP2018170217A (ja) 電池用非水電解液及びリチウム二次電池
JP2018170238A (ja) 電池用非水電解液及びリチウム二次電池
JP7395816B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
WO2014097618A1 (ja) 蓄電デバイス用非水溶媒、非水電解液、ならびにこれを用いた蓄電デバイスおよびリチウム二次電池
KR101175134B1 (ko) 실리콘 화합물을 포함하는 전해질 조성물 및 이를 함유하는 리튬 전지
JP2018190569A (ja) 電池用非水電解液、電池用添加剤、及びリチウム二次電池
JP7206556B2 (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118010.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009541664

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009750361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7245/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE