WO2016006315A1 - 3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池 - Google Patents

3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池 Download PDF

Info

Publication number
WO2016006315A1
WO2016006315A1 PCT/JP2015/063578 JP2015063578W WO2016006315A1 WO 2016006315 A1 WO2016006315 A1 WO 2016006315A1 JP 2015063578 W JP2015063578 W JP 2015063578W WO 2016006315 A1 WO2016006315 A1 WO 2016006315A1
Authority
WO
WIPO (PCT)
Prior art keywords
trifluoropropionate
secondary battery
carbonate
aqueous electrolyte
fec
Prior art date
Application number
PCT/JP2015/063578
Other languages
English (en)
French (fr)
Inventor
理 大前
敏明 岡本
Original Assignee
関東電化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東電化工業株式会社 filed Critical 関東電化工業株式会社
Priority to US15/324,044 priority Critical patent/US20170162909A1/en
Priority to CN201580037055.2A priority patent/CN106537680A/zh
Priority to JP2016532476A priority patent/JPWO2016006315A1/ja
Priority to KR1020177002406A priority patent/KR20170028945A/ko
Publication of WO2016006315A1 publication Critical patent/WO2016006315A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel non-aqueous electrolyte and a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte.
  • an ester having a 3,3,3-trifluoropropionate group at both ends represented by the following general formula 1, a fluorinated cyclic carbonate that is 4-fluoroethylene carbonate (FEC) or a derivative thereof, and a cyclic carbonate
  • FEC 4-fluoroethylene carbonate
  • the present invention relates to a non-aqueous electrolyte containing at least one selected from chain carbonates and fluorinated chain carboxylic acid esters, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries, which have been used as power sources for so-called portable electronic devices such as mobile phones and notebook computers, have been increasing the performance of portable electronic devices and driving automobiles. Further expansion of the range of application to automotive on-board power sources, etc., demands higher performance and higher energy density.
  • the electrolyte used for such a non-aqueous electrolyte secondary battery is usually mainly composed of an electrolyte and a non-aqueous solvent.
  • a non-aqueous solvent a mixed solvent in which a cyclic carbonate such as ethylene carbonate and a chain carbonate such as diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate are mixed is used, and LiPF 6 or LiBF 4 is used as the mixed solvent.
  • a solution in which a lithium salt such as is dissolved is used.
  • fluorinated cyclic carbonates such as 4-fluoroethylene carbonate are less stable than vinylene carbonate, which is generally known as a polymer film forming additive for negative electrodes.
  • Deterioration of battery capacity resulting from the reforming reaction and gas generation during long-term storage and high-temperature storage are problems.
  • vinylene carbonate is an outstanding polymer film formation additive, since it is inferior in oxidation resistance, the oxidative decomposition reaction in the positive electrode side has become a problem.
  • a compound having both excellent oxidation resistance and an effect as a polymer film forming additive that contributes to improvement of battery characteristics of a lithium secondary battery is desired.
  • the present invention has been made to solve the above-described problems, and has excellent oxidation resistance, a reaction between a non-aqueous electrolyte and an electrode, and a high voltage at which decomposition is significant in a conventional non-aqueous electrolyte. It is an object of the present invention to provide a non-aqueous electrolyte for a secondary battery that suppresses capacity deterioration even under use conditions such as conditions, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte.
  • An ester having a 3,3,3-trifluoropropionate group at both ends represented by the formula, a fluorinated cyclic carbonate which is 4-fluoroethylene carbonate (FEC) or a derivative thereof, a cyclic carbonate, a chain carbonate and fluorine
  • a non-aqueous electrolyte for a secondary battery comprising: a non-aqueous solvent containing at least one selected from a chain-chain carboxylic acid ester; and a lithium salt as an electrolyte.
  • the ester having a 3,3,3-trifluoropropionate group at both ends is represented by the following formula 2:
  • Non-aqueous electrolysis for a secondary battery characterized in that it is at least one selected from tetramethylene bis (3,3,3-trifluoropropionate) represented by liquid.
  • the ester having a 3,3,3-trifluoropropionate group at both ends is contained in the range of 0.01 to 5 vol% with respect to the whole non-aqueous solvent.
  • the nonaqueous electrolyte for secondary batteries as described.
  • the fluorinated cyclic carbonate which is 4-fluoroethylene carbonate (FEC) or a derivative thereof is contained in the range of 0.1 to 30 vol% with respect to the entire non-aqueous solvent.
  • the nonaqueous electrolyte for secondary batteries as described.
  • the fluorinated chain carboxylic acid ester includes methyl 3,3,3-trifluoropropionate CF 3 CH 2 COOCH 3 , acetic acid 2,2,2-trifluoroethyl CH 3 COOCH 2 CF 3 and these
  • the non-aqueous electrolyte for secondary batteries according to [1] wherein the non-aqueous electrolyte is for at least one selected from a mixture of [6] A negative electrode and a positive electrode capable of occluding and releasing lithium, and the non-aqueous electrolyte for a secondary battery according to any one of [1] to [5] Water electrolyte secondary battery.
  • the non-aqueous electrolyte for secondary battery of the present invention has excellent oxidation resistance, suppresses the reaction between the non-aqueous electrolyte and the electrode, suppresses decomposition even under high voltage conditions, and degrades the capacity of the secondary battery. And gas generation can be suppressed.
  • the graph which shows the result of the cyclic voltammetry (henceforth "CV") measurement of the 3 electrode type test cell of the comparative example 1 which does not contain ethylenebis (3,3,3- trifluoropropionate) in a non-aqueous solvent. It is. It is a graph which shows the result of the CV measurement of the 3 electrode type test cell of Example 1 which contains ethylenebis (3,3,3-trifluoropropionate) in a non-aqueous solvent.
  • CV cyclic voltammetry
  • an ester having a 3,3,3-trifluoropropionate group at both ends represented by the following formula 1, a fluorinated cyclic carbonate that is 4-fluoroethylene carbonate (FEC) or a derivative thereof
  • FEC 4-fluoroethylene carbonate
  • a non-aqueous electrolyte for a secondary battery containing a lithium salt of an electrolyte in a non-aqueous solvent comprising: at least one selected from cyclic carbonate, chain carbonate, and fluorinated chain carboxylic acid ester;
  • a non-aqueous electrolyte secondary battery including an aqueous electrolyte is provided.
  • An ester having a 3,3,3-trifluoropropionate group at both ends represented by Formula 1 is a 3,3,3-trifluoropropionate group that can take a fluorine-containing acrylate structure by deprotonation at the ⁇ -position.
  • a polymer film having an effect of improving the battery characteristics of the lithium secondary battery can be formed on the negative electrode of the lithium secondary battery, and the oxidation resistance is also excellent.
  • the polymer film comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte.
  • the nonaqueous electrolytic solution of the present invention containing a lithium salt of an electrolyte is used as a nonaqueous solvent containing an ester having a 3,3,3-trifluoropropionate group at both ends, thereby allowing nonaqueous electrolysis. It is formed when the liquid secondary battery is charged for the first time.
  • the above-mentioned polymer film formed on the negative electrode can suppress the reaction between the nonaqueous electrolyte and the negative electrode, and can obtain good battery characteristics.
  • an appropriate polymer film is not formed, a decomposition reaction of the non-aqueous electrolyte occurs on the negative electrode, and battery characteristics deteriorate.
  • lithium is not inserted into or extracted from the negative electrode.
  • the amount of the ester having 3,3,3-trifluoropropionate groups at both ends in the non-aqueous solvent is small, a sufficient film cannot be formed on the negative electrode.
  • the amount of the ester is too large, battery characteristics are deteriorated due to excessive film formation and a decrease in conductivity accompanying an increase in the viscosity of the non-aqueous electrolyte. Therefore, the amount of the ester having 3,3,3-trifluoropropionate groups at both ends is preferably in the range of 0.01 to 5 vol%, particularly 0.05 to 3 vol% with respect to the whole non-aqueous solvent. % Is preferable.
  • ester having a 3,3,3-trifluoropropionate group at both ends examples include ethylenebis (3,3,3-trifluoropropionate) represented by the following formula 2, It is preferable to use at least one selected from tetramethylene bis (3,3,3-trifluoropropionate) represented by Formula 3 and mixtures thereof. It is more preferable to use ethylene bis (3,3,3-trifluoropropionate) represented by the following formula 2 because excessive film formation and increase in viscosity of the non-aqueous electrolyte are small.
  • Esters having 3,3,3-trifluoropropionate groups at both ends have 3,3,3-trifluoropropionate groups only at one end, such as methyl 3,3,3-trifluoropropionate Compared with the conventional ester, the stability of the polymer film formed on the negative electrode of the lithium secondary battery is high, and the capacity retention rate of the cycle characteristics of the nonaqueous electrolyte secondary battery is improved.
  • the above-mentioned non-aqueous solvent may further contain a high dielectric constant solvent and a low viscosity solvent.
  • a high dielectric constant solvent include ethylene carbonate, propylene carbonate, 4-fluoroethylene carbonate and the like.
  • Preferred examples of the low viscosity solvent include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, 2,2,2-trifluoroethyl acetate, methyl 3,3,3-trifluoropropionate and the like. Can do.
  • 4-fluoroethylene carbonate, acetic acid 2,2,2-trifluoroethyl acetate, 3,3, which are fluorinated solvents, can improve the oxidation resistance of the non-aqueous electrolyte under high voltage conditions.
  • acetic acid 2,2,2-trifluoroethyl acetate, 3,3, which are fluorinated solvents can improve the oxidation resistance of the non-aqueous electrolyte under high voltage conditions.
  • methyl 3-trifluoropropionate Preferably methyl 3-trifluoropropionate.
  • 4-Fluoroethylene carbonate which is the fluorinated solvent, can be reduced and decomposed at the negative electrode to form a polymer film.
  • the amount of 4-fluoroethylene carbonate can be used as an additive for forming a polymer film by setting the amount of 4-fluoroethylene carbonate to, for example, 0.05 to 3 vol% with respect to the entire non-aqueous solvent.
  • a composite polymer film formed from an ester having 3,3,3-trifluoropropionate groups at both ends represented by Formula 1 and 4-fluoroethylene carbonate is a further reduction of 4-fluoroethylene carbonate. In order to suppress decomposition, it is possible to improve cycle characteristics and to suppress gas generation.
  • the non-aqueous solvent further contains 4-fluoroethylene carbonate, which is a fluorinated solvent
  • 4-fluoroethylene carbonate which is a fluorinated solvent
  • the amount of 4-fluoroethylene carbonate is small, a polymer film formed from 4-fluoroethylene carbonate on the negative electrode is not sufficiently formed, Battery characteristics deteriorate due to reductive decomposition of other non-aqueous solvents or excessive film formation.
  • the amount of 4-fluoroethylene carbonate is preferably in the range of 0.05 to 40 vol%, more preferably in the range of 0.1 to 30 vol% with respect to the entire non-aqueous solvent.
  • the potential of the positive electrode is set to 4.35 V or more on the basis of metallic lithium
  • 4-fluoroethylene carbonate as a high dielectric constant solvent is used from the viewpoint of improving the oxidation resistance of the non-aqueous electrolyte under high voltage conditions.
  • a fluorinated carboxylic acid ester as a low-viscosity solvent are preferably used.
  • such fluorinated carboxylic acid esters include methyl 3,3,3-trifluoropropionate CF 3 CH 2 COOCH 3 , 2,2,2-trifluoroethyl acetate CH 3 COOCH 2 CF 3 or the like can be preferably used.
  • examples of the electrolyte made of a lithium salt dissolved in the nonaqueous solvent include LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiCF 3 SO 3 , LiC (CF 3 SO 2 ) 3 , LiC (FSO 2 ) 3 , LiCF 3 CO 2 , LiB (CF 3 SO 3 ) 4 , LiB (FSO 3 ) 4 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), or the like can be used.
  • the positive electrode active material used for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a material that can occlude and release lithium and has a noble potential, and is commonly used.
  • the positive electrode active material can be used. Examples thereof include metal compounds such as metal oxides, metal hydroxides, metal sulfides, metal halides, and metal phosphate compounds.
  • a lithium transition metal composite oxide having a layered structure such as a metal intercalation compound, a spinel structure, or an olivine structure can be used.
  • Preferred examples of the transition metal element include nickel, cobalt, manganese, titanium, and iron.
  • a transition metal composite oxide obtained by adding or replacing lithium, magnesium, aluminum, or titanium to these transition metal elements may be used.
  • a lithium transition metal composite oxide having a layered structure in order to obtain a non-aqueous electrolyte secondary battery with high energy density, it is preferable to use a lithium transition metal composite oxide having a layered structure. Specific examples include lithium / cobalt composite oxide, lithium / cobalt / nickel / manganese composite oxide, and lithium / cobalt / nickel / aluminum composite oxide.
  • the negative electrode active material used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a material capable of occluding and releasing lithium, and a commonly used negative electrode active material that is generally used Can be used.
  • lithium metal such as lithium metal, lithium-silicon alloy, lithium-tin alloy, tin-silicon alloy, lithium-titanium alloy, tin-titanium alloy, titanium oxide, carbon material, conductive polymer, etc.
  • the carbon material include carbon materials such as graphite (natural, artificial), coke (petroleum, coal), fullerene, carbon nanotube, carbon fiber, and organic fired body.
  • tin-based compound or the titanium-based compound a metal oxide having a potential lower than that of the positive electrode active material such as SnO 2 , SnO, or TiO 2 can be used.
  • a carbon material such as crystalline graphite which has a small volume change associated with insertion and extraction of lithium and is excellent in reversibility.
  • a separator for preventing a short circuit is interposed between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte is used by impregnating the separator.
  • the material and shape of the porous film are not particularly limited as long as it is stable with respect to the electrolytic solution and has excellent liquid retention, and a porous sheet or nonwoven fabric made of polyolefin such as polypropylene or polyethylene is preferable.
  • porous sheet examples include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polycarbonate, polyamide, polyimide, polytetrafluoroethylene, poly (meth) acrylic acid, and copolymers thereof. And mixtures.
  • Steel materials such as aluminum, stainless steel, nickel steel and copper steel can be used for the positive electrode current collector, and copper, nickel, stainless steel, nickel-plated steel, etc. can be used for the negative electrode current collector.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention having the above configuration is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, a square shape, and a pouch shape.
  • GC-2010 used column: DB-1 or DB-5) manufactured by Shimadzu Corporation was used for gas chromatography measurement, and Unity INOVA 500SW manufactured by Varian was used for NMR measurement.
  • the organic phase was separated and washed with 100 mL of 5% aqueous sodium bicarbonate to obtain a crude product of colorless and clear liquid ethylene bis (3,3,3-trifluoropropionate).
  • the yield was 24.3 g and the yield was 85%.
  • the gas chromatography area of ethylenebis (3,3,3-trifluoropropionate) was 97.2%.
  • the crude product was purified by reduced pressure precision distillation (sneader 5 sphere, 0.25 kPa, fraction 80 ° C.) to obtain colorless and clear liquid ethylene bis (3,3,3-trifluoropropionate).
  • the gas chromatographic area of the obtained fraction was 98.7%.
  • the organic phase was separated and washed with 100 mL of 5% aqueous sodium bicarbonate to obtain a crude product of tetramethylene bis (3,3,3-trifluoropropionate) as a light brown liquid.
  • the yield was 23.4 g and the yield was 84%.
  • the gas chromatography area of tetramethylenebis (3,3,3-trifluoropropionate) was 97.3% as measured by gas chromatography.
  • the crude product was purified by vacuum distillation (sneader 5 sphere, 0.3 kPa, fraction 116 ° C.) to obtain colorless and clear liquid tetramethylene bis (3,3,3-trifluoropropionate).
  • the gas chromatographic area of the obtained fraction was 99.8%.
  • a non-aqueous solvent is prepared by mixing 97 wt% of propylene carbonate (PC) with ethylene bis (3,3,3-trifluoropropionate) represented by Formula 2 manufactured in Preparation Example 1 so as to be 3 wt%. did.
  • this non-aqueous solvent lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved at a rate of 1 mol / L to prepare a non-aqueous electrolyte.
  • a three-electrode test cell shown in FIG. 1 was produced.
  • a sealed three-electrode cell manufactured by Keihin Rika Kogyo Co., Ltd. was used, and a natural graphite-coated electrode sheet (negative electrode single layer) manufactured by Piotrek Co. was cut to a predetermined size on the working electrode 1.
  • a lithium metal was used for each of the counter electrode 2 and the reference electrode 3, and a separator 4 was interposed between these electrodes and immersed in the non-aqueous electrolyte 5.
  • Example 2 A mixture of 97 wt% of propylene carbonate (PC) with tetramethylene bis (3,3,3-trifluoropropionate) represented by Formula 3 manufactured in Preparation Example 2 so as to be 3 wt%, and a non-aqueous solvent was added. Prepared. In this non-aqueous solvent, lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved at a rate of 1 mol / L to prepare a non-aqueous electrolyte. Using this nonaqueous electrolytic solution, a three-electrode test cell shown in FIG. 1 was produced.
  • PC propylene carbonate
  • tetramethylene bis (3,3,3-trifluoropropionate) represented by Formula 3 manufactured in Preparation Example 2 so as to be 3 wt%, and a non-aqueous solvent was added.
  • LiPF 6 lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved at
  • Example 1 A three-electrode test cell shown in FIG. 1 was prepared in the same manner as in Examples 1 and 2 except that 100 wt% of propylene carbonate (PC) was used as the non-aqueous solvent.
  • PC propylene carbonate
  • a 2032 type coin cell non-aqueous electrolyte secondary battery shown in FIG. 5 was prepared using an electrolyte containing ethylene bis (3,3,3-trifluoropropionate) (formula 2).
  • a positive electrode material was prepared by mixing 93 wt% of LiCoO 2 as a positive electrode active material, 4 wt% of acetylene black as a conductive material, and 3 wt% of polyvinylidene fluoride (PVDF) as a binder.
  • This positive electrode material was dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry. This slurry was applied to one side of a positive electrode current collector made of aluminum, dried, and press-molded to produce a LiCoO 2 positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 92 wt% as a positive electrode active material, 5 wt% of acetylene black as a conductive material, and 3 wt% of polyvinylidene fluoride (PVDF) as a binder are mixed, did.
  • This positive electrode material was dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry. This slurry was applied to one side of a positive electrode current collector made of aluminum, dried, and press-molded to prepare a LiNi 1/3 Mn 1/3 Co 1/3 O 2 positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • a 2032 type coin cell member made of SUS316L is used, and a LiCoO 2 positive electrode or LiNi 1/3 Mn 1/3 Co 1/3 O 2 positive electrode is used as the positive electrode 6 and a graphite negative electrode is used as the negative electrode 7 respectively. What was cut into the size of was used. Between these electrodes, a polypropylene separator 9 having a thickness of 25 ⁇ m impregnated with a nonaqueous electrolytic solution 8 containing ethylenebis (3,3,3-trifluoropropionate) represented by Formula 2 in Production Example 1 is provided. Hold in the case 10 with the gasket 12 between them, and the spacer 13 and the web washer 14 are overlapped, and the cap 11 is put on, sealed and sealed to produce a 2032 type coin cell non-aqueous electrolyte secondary battery. did.
  • lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved at a rate of 1.1 mol / L to prepare a non-aqueous electrolyte.
  • LiPF 6 lithium hexafluorophosphate
  • LiCoO 2 positive electrode a 2032 type coin cell non-aqueous electrolyte secondary battery shown in FIG. 5 was produced.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 3 except that the mixed solvent mixed in (1) was used.
  • a mixed solvent (EC-EMC) obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of EC: EMC 3: 7 as a non-aqueous solvent and lithium hexafluorophosphate LiPF as an electrolyte 6 was dissolved at a rate of 1.1 mol / L to prepare a non-aqueous electrolyte.
  • EC-EMC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Lithium hexafluorophosphate as an electrolyte in a non-aqueous solvent obtained by mixing ethylenebis (3,3,3-trifluoropropionate) (EBFP) (formula 2) in a volume ratio of EC-EMC: EBFP 99: 1 LiPF 6 was dissolved at a rate of 1.1 mol / L to prepare a non-aqueous electrolyte.
  • EBFP ethylenebis (3,3,3-trifluoropropionate
  • the nonaqueous electrolyte secondary batteries of Examples 3 to 4, Reference Examples 3 to 4, and Comparative Examples 2 and 5 produced as described above were each 4.35 V at a constant current of 3.5 mA at 25 ° C.
  • the battery was further charged at a constant voltage of 4.35 V until the current value reached 0.35 mA. Then, it discharged until it became 2.75V with the constant current of 3.5 mA, and the initial stage discharge capacity was measured. Thereafter, a charge / discharge test up to 300 cycles is performed under the above charge / discharge conditions.
  • the discharge capacity at 100 cycles, 200 cycles, and 300 cycles is set as the initial discharge capacity of each nonaqueous electrolyte secondary battery as 100.
  • the cycle capacity retention rate was calculated as shown in Table 1 below.
  • Example 3 containing ethylenebis (3,3,3-trifluoropropionate) (EBFP) (formula 2) and 4-fluoroethylene carbonate (FEC) as a non-aqueous solvent and
  • EBFP ethylenebis (3,3,3-trifluoropropionate)
  • FEC 4-fluoroethylene carbonate
  • Examples 3 and 4 have an improved capacity retention rate per cycle, and ethylene bis (3,3,3-trifluoropropyl By containing together (Pionate) (EBFP) (Formula 2) and 4-fluoroethylene carbonate (FEC), the effect of 4-fluoroethylene carbonate (FEC) as a polymer film forming additive is improved. I understand that.
  • the above fluorinated solvent 4-fluoroethylene carbonate (FEC) has an effect as a polymer film forming additive, has a high dielectric constant, and excellent oxidation resistance. It is promising as a non-aqueous solvent for batteries.
  • ethylenebis (3,3,3-trifluoropropionate) (EBFP) (formula 2) improved in the effect of 4-fluoroethylene carbonate (FEC) as a polymer film forming additive
  • EBFP ethylenebis (3,3,3-trifluoropropionate)
  • Example 5 4-fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and ethylene bis (3,3,3-trifluoropropionate) (EBFP) (Formula 2) of Production Example 1 as a polymer film forming additive
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • EBFP ethylene bis (3,3,3-trifluoropropionate)
  • FEC ethyl methyl carbonate
  • EBFP ethylene bis (3,3,3-trifluoropropionate)
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • TBFP tetramethylene bis (3,3,3-trifluoropropionate)
  • Example 8 4-fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and tetramethylene bis (3,3,3-trifluoropropionate) (TBFP) of Production Example 2 as a polymer film-forming additive (Formula 3 )
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • TBFP tetramethylene bis (3,3,3-trifluoropropionate)
  • FEC 4-fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • the non-aqueous electrolyte secondary batteries of Examples 5 to 8 and Comparative Examples 6 to 7 prepared as described above were charged to 4.5 V at a constant current of 3.5 mA at 25 ° C., respectively.
  • the battery was charged at a constant voltage until the current value reached 0.35 mA at a constant voltage of 0.5 V. Then, it discharged until it became 2.75V with the constant current of 3.5 mA, and the initial stage discharge capacity of each nonaqueous electrolyte secondary battery was measured. Thereafter, a charge / discharge test up to 200 cycles was performed under the above charge / discharge conditions.
  • the discharge capacities at 50 cycles, 100 cycles, and 200 cycles, respectively, and the initial discharge capacities of each non-aqueous electrolyte secondary battery were set to 100.
  • the cycle capacity retention rate was calculated as shown in Table 2 below.
  • EBFP ethylene bis (3,3,3-trifluoropropionate)
  • TBFP tetramethylene bis (3,3,3) which is an ester represented by formula 1 as a polymer film forming additive -Trifluoropropionate)
  • EBFP ethylene bis (3,3,3-trifluoropropionate)
  • TBFP tetramethylene bis (3,3,3) which is an ester represented by formula 1 as a polymer film forming additive -Trifluoropropionate)
  • VC vinylene carbonate
  • the ester represented by the formula 1 has an effect as a polymer film forming additive for forming a polymer film on the negative electrode.
  • the polymer film formed on the negative electrode by reductive decomposition of 4-fluoroethylene carbonate (FEC) by adding the ester represented by the above formula 1 together with 4-fluoroethylene carbonate (FEC) to the non-aqueous electrolyte to improve battery characteristics such as cycle capacity retention rate.
  • ester represented by the above formula 1 is superior in oxidation resistance to vinylene carbonate (VC), it is used in combination with 4-fluoroethylene carbonate (FEC), which is also excellent in oxidation resistance, and added to the non-aqueous electrolyte.
  • FEC 4-fluoroethylene carbonate
  • Example 9 In this evaluation test, a non-aqueous electrolyte solution containing 4-fluoroethylene carbonate (FEC) was used to fabricate and charge an aluminum laminate type non-aqueous electrolyte secondary battery. Next, the charged electrode was taken out, washed and dried, then sealed in a bag of non-aqueous solvent and aluminum laminate, and stored at 85 ° C. for 4 days to evaluate the amount of gas generated.
  • FEC 4-fluoroethylene carbonate
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used for the positive electrode, and graphite was used for the negative electrode.
  • a LiNi 1/3 Mn 1/3 Co 1/3 O 2 positive electrode was cut into a size of 50 mm ⁇ 50 mm, and an aluminum tab with a sealant was ultrasonically welded.
  • the graphite negative electrode was cut into a size of 50 mm ⁇ 50 mm, and a nickel tab with a sealant was ultrasonically welded.
  • FEC 4-fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved at a rate of 1 mol / L.
  • a polyethylene separator was interposed between the positive electrode and the negative electrode, and the electrodes were fixed and integrated with a tape to prepare an electrode group.
  • the electrode group was vacuum dried at 85 ° C. for 1 hour.
  • the electrode group was accommodated in a cylindrical aluminum laminated bag having both ends opened.
  • the prepared electrolyte solution was dripped inside the aluminum laminate bag from the other opening. After deaeration of the aluminum laminate bag, the other opening was sealed by welding to produce an aluminum laminate battery.
  • the aluminum laminate type secondary battery manufactured as described above is charged at a constant current of 10 mA at 25 ° C. until it reaches 4.4 V, and further charged at a constant voltage of 4.4 V until the current value becomes 1 mA. It was. Thereafter, the battery was discharged at a constant current of 10 mA until it reached 2.70 V, and then charged again at 25 ° C. until it reached 4.4 V at a constant current of 10 mA, and further shifted to a constant voltage charge of 4.4 V. Hold at this voltage for hours.
  • the positive electrode was taken out from the battery that had been charged at a constant voltage for 12 hours, and washed twice with 10 ml of dimethyl carbonate. Then, the positive electrode was dried under reduced pressure to remove dimethyl carbonate. The dried positive electrode was put in an aluminum laminate bag sealed on three sides. From the opening of the aluminum laminate bag, as a non-aqueous solvent, 4-fluoroethylene carbonate (FEC) and ethylenebis (3,3,3-trifluoropropionate) (EBFP) (formula 2) 3 wt% were mixed. 2.5 mL of an aqueous solvent was added dropwise to seal the opening.
  • FEC 4-fluoroethylene carbonate
  • EBFP ethylenebis (3,3,3-trifluoropropionate
  • the negative electrode was taken out from the battery and washed twice with 10 ml of dimethyl carbonate. Then, the negative electrode was dried under reduced pressure to remove dimethyl carbonate. The dried negative electrode was put in an aluminum laminate bag sealed on three sides. From the opening of the aluminum laminate bag, a non-aqueous solvent in which 3 wt% of ethylenebis (3,3,3-trifluoropropionate) (EBFP) (formula 2) is mixed with 4-fluoroethylene carbonate (FEC) is added. 5 mL was dropped and the opening was sealed.
  • EBFP ethylenebis (3,3,3-trifluoropropionate)
  • FEC 4-fluoroethylene carbonate
  • non-aqueous solvent containing 4-fluoroethylene carbonate (FEC) and ethylene bis (3,3,3-trifluoropropionate) (EBFP) (formula 2) is LiNi 1/3 in the charged state of Example 9. It was also confirmed that the amount of gas generated in the storage test with the Mn 1/3 Co 1/3 O 2 positive electrode was the same as that of 4-fluoroethylene carbonate (FEC) in Comparative Example 8, and did not promote gas generation on the positive electrode side. did it.
  • the ester represented by the above formula 1 is preferable from the viewpoint of improving the oxidation resistance of the non-aqueous electrolyte under high voltage conditions, and 4-fluoroethylene carbonate (FEC) as a high dielectric constant solvent and a low viscosity solvent as Evaluation for clarifying that the non-aqueous electrolyte using the fluorinated carboxylic acid ester has the effect of modifying the polymer film was also conducted.
  • FEC 4-fluoroethylene carbonate
  • a non-aqueous electrolyte was prepared by dissolving, and a non-aqueous electrolyte secondary battery of a 2032 type coin cell shown in FIG. 5 was prepared using a LiCoO 2 positive electrode as the positive electrode.
  • the produced non-aqueous electrolyte secondary batteries of Examples 10 to 11 and Comparative Examples 9 to 10 were charged at a constant current of 3.5 mA at 25 ° C. until reaching 4.35 V, respectively, and further regulated to 4.35 V.
  • the battery was charged at a constant voltage until the current value became 0.35 mA. Then, it discharged until it became 2.75V with the constant current of 3.5 mA, and the initial stage discharge capacity of each nonaqueous electrolyte secondary battery was measured. Then, assuming that the initial discharge capacity in the nonaqueous electrolyte secondary battery of Comparative Example 9 was 100, the initial discharge capacity of each nonaqueous electrolyte secondary battery was calculated, and the results are shown in Table 4 below.
  • each of the nonaqueous electrolyte secondary batteries of Examples 10 to 11 and Comparative Examples 9 to 10 was charged to 4.35 V at a constant current of 3.5 mA at 25 ° C.
  • the battery was charged at a constant voltage at a constant voltage of .35 V until the current value became 0.35 mA, and then discharged at a constant current of 3.5 mA until it reached 2.75 V, and the discharge capacity D 1 before storage was measured.
  • each of the non-aqueous electrolyte secondary batteries is charged at 25 ° C. with a constant current of 3.5 mA until it reaches 4.35 V, and further with a constant voltage of 4.35 V, the current value becomes 0.35 mA.
  • the nonaqueous electrolyte secondary battery was stored in a thermostat bath at 60 ° C. for 10 days in this state.
  • Each non-aqueous electrolyte secondary battery after storage was discharged at 25 ° C. at a constant current of 3.5 mA until it reached 2.75 V, and the discharge capacity D 2 after storage was measured.
  • each of the above non-aqueous electrolyte secondary batteries is charged at 25 ° C. with a constant current of 3.5 mA until it reaches 4.35 V, and further with a constant voltage of 4.35 V, the current value becomes 0.35 mA.
  • the battery was charged at a constant voltage until Thereafter, it was measured the return capacity D 3 after storage by discharging until 2.75V with a constant current of 3.5mA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 優れた耐酸化性を有し、非水電解液と電極の反応を抑制し、高電圧条件下でも分解が抑制され、二次電池の容量劣化とガス発生とを抑制することができる二次電池用非水電解液、及びその非水電解液を用いた非水電解液二次電池を、それぞれ提供する。 下記一般式1: で表される3,3,3-トリフルオロプロピオネート基を有するエステルと、4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートと、環状カーボネート、鎖状カーボネート及びフッ素化鎖状カルボン酸エステルから選択される少なくとも1種と、を含む非水系溶媒、及び電解質としてのリチウム塩を含むことを特徴とする二次電池用非水電解液。

Description

3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池
 本発明は、新規な非水電解液及び当該非水電解液を含む非水電解液二次電池に関する。特に、下記一般式1で表される両末端に3,3,3-トリフルオロプロピオネート基を有するエステルと、4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートと、環状カーボネート、鎖状カーボネート及びフッ素化鎖状カルボン酸エステルから選択される少なくとも1種とを含む非水電解液、及び当該非水電解液を用いた非水電解液二次電池に関する。
Figure JPOXMLDOC01-appb-C000004
 従来、携帯電話やノートパソコンなどのいわゆる携帯用電子機器の電源として使われてきたリチウム二次電池などの非水電解液二次電池は、携帯用電子機器の高性能化や、自動車などの駆動用車載電源等への適応範囲拡大により、更なる高性能化、高エネルギー密度化が求められている。
 このような非水電解液二次電池に用いる電解液としては、通常、主として電解質と非水系溶媒とから構成されている。非水系溶媒の主成分としては、エチレンカーボネート等の環状カーボネートと、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネートとを混合させた混合溶媒を用い、この混合溶媒にLiPF6やLiBF4等のリチウム塩を溶解したものが使用されている。
 非水電解液二次電池の高エネルギー密度化に対する要望に応えるため、充電の際の正極電位を高めて充電電圧を上昇させる方法等、電池電圧を上げる検討が成されている。しかし、この方法では電極の反応性も高まるため、上記のような非水電解液が正極や負極と酸化・還元反応を起こし、サイクル特性の低下や充電状態での保存における電池特性の低下を引き起こすという問題があった。こうした非水電解液と電極との反応を抑制するため、下記の特許文献1~2に示されるように、負極で還元分解することで負極を保護する重合皮膜を形成できる耐酸化性に優れる4-フルオロエチレンカーボネート等の各種のフッ素化環状カーボネートを非水電解液の非水系溶媒として用いたり、非水電解液に添加させたりすることが提案されている。
特開2007-504628号公報 特開2008-108689号公報
 しかしながら、4-フルオロエチレンカーボネート等のフッ素化環状カーボネートは、一般的に負極の重合皮膜形成添加剤として知られているビニレンカーボネートに比べて重合皮膜の安定性が低く、溶解もしくは分解した重合皮膜の再形成反応に由来する電池容量の劣化や、長期保存時や高温保存時のガス発生が問題となっている。また上記ビニレンカーボネートは、優れた重合皮膜形成添加剤であるが、耐酸化性に劣るため、正極側での酸化分解反応が問題となっている。優れた耐酸化性、及びリチウム二次電池の電池特性改善に寄与する重合皮膜形成添加剤としての効果を併せ持つ化合物が望まれている。
 本発明は、上記の問題を解決すべくされたものであり、優れた耐酸化性と、非水電解液と電極の反応を抑制し、従来の非水電解液では分解が顕著である高電圧条件等の使用条件でも容量劣化を抑制する二次電池用非水電解液、及びその非水電解液を用いた非水電解液二次電池を、それぞれ提供することを課題とする。
 本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、3,3,3-トリフルオロプロピオネート基をアルキル鎖の両末端に有する新規なエステルがリチウム二次電池用重合皮膜形成添加剤としての効果を有し、当該エステルを4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートと、環状カーボネート、鎖状カーボネート及びフッ素化鎖状カルボン酸エステルから選択される少なくとも1種とを含む電解液中に含有させることによって、上記課題を解決できることを見出し、本発明を完成するに至ったものである。本発明の態様は以下のとおりである。
[1]下記式1:
Figure JPOXMLDOC01-appb-C000005
で表される両末端に3,3,3-トリフルオロプロピオネート基を有するエステルと、4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートと、環状カーボネート、鎖状カーボネート及びフッ素化鎖状カルボン酸エステルから選択される少なくとも1種と、を含む非水系溶媒、及び電解質としてリチウム塩を含むことを特徴とする二次電池用非水電解液。
[2]前記両末端に3,3,3-トリフルオロプロピオネート基を有するエステルが、下記式2:
Figure JPOXMLDOC01-appb-C000006
で表されるエチレンビス(3,3,3-トリフルオロプロピオネート)、下記式3:
Figure JPOXMLDOC01-appb-C000007
で表されるテトラメチレンビス(3,3,3-トリフルオロプロピオネート)及びこれらの混合物から選択される少なくとも1種であることを特徴とする[1]に記載の二次電池用非水電解液。
[3]前記両末端に3,3,3-トリフルオロプロピオネート基を有するエステルは、非水系溶媒全体に対して0.01~5vol%の範囲で含まれることを特徴とする[1]に記載の二次電池用非水電解液。
[4]前記4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートは、非水系溶媒全体に対して0.1~30vol%の範囲で含まれることを特徴とする[1]に記載の二次電池用非水電解液。
[5]前記フッ素化鎖状カルボン酸エステルは、3,3,3,-トリフルオロプロピオン酸メチルCFCHCOOCH、酢酸2,2,2-トリフルオロエチルCHCOOCHCF及びこれらの混合物から選択される少なくとも1種であることを特徴とする[1]に記載の二次電池用非水電解液。
[6]リチウムを吸蔵し且つ放出することが可能な負極及び正極、並びに[1]~[5]のいずれか1項に記載の二次電池用非水電解液を含むことを特徴とする非水電解液二次電池。
 本発明の二次電池用非水電解液は、優れた耐酸化性を有し、非水電解液と電極の反応を抑制し、高電圧条件下でも分解が抑制され、二次電池の容量劣化とガス発生とを抑制することができる。
本発明の一実施態様における3電極式試験セルの模式図である。 非水系溶媒にエチレンビス(3,3,3-トリフルオロプロピオネート)を含まない比較例1の3電極式試験セルのサイクリックボルタンメトリー(以下「CV」と略する。)測定の結果を示すグラフである。 非水系溶媒にエチレンビス(3,3,3-トリフルオロプロピオネート)を含む実施例1の3電極式試験セルのCV測定の結果を示すグラフである。 非水系溶媒にテトラメチレンビス(3,3,3-トリフルオロプロピオネート)を含む実施例2の3電極式試験セルのCV測定の結果を示すグラフである。 本発明の一実施態様における2032型コインセルの模式図である。
好ましい実施形態
 本発明によれば、下記式1で表される両末端に3,3,3-トリフルオロプロピオネート基を有するエステルと、4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートと、環状カーボネート、鎖状カーボネート及びフッ素化鎖状カルボン酸エステルから選択される少なくとも1種と、を含む非水系溶媒に、電解質のリチウム塩を含有させた二次電池用非水電解液及び当該非水電解液を含む非水電解液二次電池が提供される。
Figure JPOXMLDOC01-appb-C000008
 式1で示される両末端に3,3,3-トリフルオロプロピオネート基を有するエステルは、α位の脱プロトン化によって含フッ素アクリル酸エステル構造を取り得る3,3,3-トリフルオロプロピネート基をアルキル鎖の両末端に有しており、リチウム二次電池の負極上に、リチウム二次電池の電池特性改善の効果を持つ重合皮膜を形成することができ、耐酸化性にも優れる。
 上記の重合皮膜は、リチウムを吸蔵し且つ放出することが可能な正極と、リチウムを吸蔵し且つ放出することが可能な負極と、セパレーターと、非水電解液とを備えた非水電解液二次電池において、両末端に3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水系溶媒に、電解質のリチウム塩を含有した本発明の非水電解液を用いることで、非水電解液二次電池の初回充電時に形成される。
 負極上に形成された上記の重合皮膜は、非水電解液と負極との反応を抑制でき、良好な電池特性を得ることができる。適切な重合皮膜が形成されない場合は、負極上で非水電解液の分解反応が生じ、電池特性が低下する。非水系溶媒の種類によっては、負極におけるリチウムの挿入及び脱離が生じない結果となる。
 非水系溶媒中における両末端に3,3,3-トリフルオロプロピオネート基を有するエステルの量が少ないと、負極に十分な皮膜が形成されなくなる。一方、同エステルの量が多くなりすぎると、過剰な皮膜形成や、非水電解液の粘度上昇に伴う導電率低下により、電池特性が低下する。したがって、両末端に3,3,3-トリフルオロプロピオネート基を有するエステルの量を非水系溶媒全体に対して、0.01~5vol%の範囲にすることが好ましく、特に0.05~3vol%の範囲にすることが好ましい。
 本発明において用いることができる両末端に3,3,3-トリフルオロプロピオネート基を有するエステルとしては、下記式2で表されるエチレンビス(3,3,3-トリフルオロプロピオネート)、下記式3で表されるテトラメチレンビス(3,3,3-トリフルオロプロピオネート)及びこれらの混合物から選択される少なくとも1種を用いることが好ましい。過剰な皮膜形成や非水電解液の粘度上昇が少ないことから、下記式2で表されるエチレンビス(3,3,3-トリフルオロプロピオネート)を用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 3,3,3-トリフルオロプロピオネート基を両末端に有するエステルは、3,3,3-トリフルオロプロピオン酸メチルなど、一方の末端にのみ3,3,3-トリフルオロプロピオネート基を有する従来のエステルに比べて、リチウム二次電池の負極上に形成される重合皮膜の安定性が高く、非水電解液二次電池のサイクル特性の容量維持率が改善される。
 本発明の非水電解液においては、上記の非水系溶媒に、高誘電率溶媒及び低粘度溶媒をさらに含むことができる。高誘電率溶媒としては、エチレンカーボネート、プロピレンカーボネート、4-フルオロエチレンカーボネート等を好ましく挙げることができる。低粘度溶媒としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸メチル、酢酸2,2,2-トリフルオロエチル、3,3,3-トリフルオロプロピオン酸メチル等を好ましく挙げることができる。特に、高電圧条件での非水電解液の耐酸化性を向上させることができるという点において、フッ素化溶媒である4-フルオロエチレンカーボネート、酢酸2,2,2-トリフルオロエチル、3,3,3-トリフルオロプロピオン酸メチルを含むことが好ましい。
 上記のフッ素化溶媒である4-フルオロエチレンカーボネートは、負極で還元分解されて重合皮膜を形成できる。4-フルオロエチレンカーボネートの量を非水系溶媒全体に対して、例えば0.05~3vol%として、重合皮膜形成添加剤としても使用することができる。式1で表される両末端に3,3,3-トリフルオロプロピオネート基を有するエステルと、4-フルオロエチレンカーボネートと、から形成される複合重合皮膜は、更なる4-フルオロエチレンカーボネートの還元分解を抑制するため、サイクル特性の改善やガス発生抑制効果を得ることができる。
 非水系溶媒にフッ素化溶媒である4-フルオロエチレンカーボネートをさらに含む場合、4-フルオロエチレンカーボネートの量が少ないと、負極に4-フルオロエチレンカーボネートから形成される重合皮膜が十分に形成されず、他の非水系溶媒の還元分解や過剰な皮膜形成により電池特性が低下する。一方、4-フルオロエチレンカーボネートの量が多くなり過ぎると、非水電解液の粘度が上昇して負荷特性が低下する。このため、4-フルオロエチレンカーボネートの量を非水系溶媒全体に対して0.05~40vol%の範囲にすることが好ましく、0.1~30vol%の範囲にすることがより好ましい。
 また、正極の電位が金属リチウム基準で4.35V以上になるようにした場合、高電圧条件での非水電解液の耐酸化性向上の面から、高誘電率溶媒としての4-フルオロエチレンカーボネートと、低粘度溶媒としてのフッ素化カルボン酸エステルと、を用いることが好ましい。
 本発明の非水電解液において、このようなフッ素化カルボン酸エステルとしては、3,3,3-トリフルオロプロピオン酸メチルCFCHCOOCH、酢酸2,2,2-トリフルオロエチルCHCOOCHCFなどを好ましく用いることができる。
 また、本発明の非水電解液において、上記の非水系溶媒に溶解するリチウム塩からなる電解質としては、LiPF、LiPO、LiBF、LiClO、LiN(CFSO、LiN(FSO、LiCFSO、LiC(CFSO、LiC(FSO、LiCFCO、LiB(CFSO、LiB(FSO、LiB(C、LiBF(C)等を用いることができる。特に、LiPF、LiPO、LiBFから選択される少なくとも1種のリチウム塩を用いると、電気特性が向上するので好ましい。
 本発明の非水電解液二次電池の正極に用いる正極活物質としては、リチウムを吸蔵及び放出することができ、その電位が貴な材料であれば特に限定されず、一般に使用されている公知の正極活物質を用いることができる。例えば、金属酸化物や金属水酸化物、金属硫化物、金属ハロゲン化物、金属リン酸化合物などの金属化合物が挙げられる。また、金属層間化合物などの層状構造や、スピネル型構造や、オリビン型構造を有するリチウム遷移金属複合酸化物を使用することができる。遷移金属元素としては、ニッケル、コバルト、マンガン、チタン、及び鉄などを好ましく挙げることができる。さらに、これらの遷移金属元素に、リチウム、マグネシウム、アルミニウム、チタンを添加または置換した遷移金属複合酸化物であってもよい。特に、高エネルギー密度の非水電解液二次電池を得るためには、層状構造を有するリチウム遷移金属複合酸化物を用いることが好ましい。具体的には、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル・マンガン複合酸化物、リチウム・コバルト・ニッケル・アルミニウム複合酸化物などを挙げることができる。
 また、本発明の非水電解液二次電池の負極に用いる負極活物質としては、リチウムを吸蔵及び放出することができる材料であれば特に限定されず、一般に使用されている公知の負極活物質を用いることができる。例えば、金属リチウム、リチウム-シリコン合金、リチウム-スズ合金等のリチウム合金、スズ-シリコン合金、リチウムーチタン合金、スズ-チタン合金、チタン酸化物、炭素材料、導電性ポリマー等を用いることができる。炭素材料としては、黒鉛(天然、人造)、コークス(石油性、石炭性)、フラーレン、カーボンナノチューブ、炭素繊維、有機物焼成体等の炭素材料を挙げることができる。スズ系化合物やチタン系化合物としては、SnO、SnO、TiO等の電位が正極活物質に比べて卑な金属酸化物を用いることができる。特に、リチウムの吸蔵及び放出に伴う体積変化が少なくて可逆性に優れる結晶性黒鉛などの炭素材料を用いることが好ましい。
 また、正極と負極の間には、短絡を防止するためのセパレーター(多孔膜)を介在させる。この場合、非水電解液はセパレーターに含浸させて用いる。多孔膜の材質や形状は、電解液に対して安定であり、保液性に優れていれば、特に制限はなく、ポリプロピレン、ポリエチレン等のポリオレフィンを原料とする多孔性シート又は不織布が好ましい。
 多孔性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリルニトリル、ポリアクリルアミド、ポリカーボネート、ポリアミド、ポリイミド、ポリテトラフルオロエチレン、ポリ(メタ)アクリル酸、これらの共重合体や混合物などが挙げられる。
 正極の集電体には、アルミニウム、ステンレス鋼、ニッケル鋼や銅鋼などの鋼材を使用し、負極の集電体には、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼などを使用できる。
 上記構成からなる本発明の非水電解液二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型、パウチ型等、種々の形状とすることができる。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各製造例において、ガスクロマトグラフィー測定には島津製作所製、GC-2010(使用カラム:DB-1もしくはDB-5)を用い、NMR測定にはVarian社製、UnityINOVA500SWを用いた。
[製造例1]
<式2で示されるエチレンビス(3,3,3-トリフルオロプロピオネート)の合成>
 分留器を取り付けた50mL反応装置内で、エチレングリコール6.10g(98.3mmol)と3,3,3-トリフルオロプロピオン酸28.2g(220mmol)とを混合した。この混合物に、95%硫酸0.21g(2.1mmol)を加えて、減圧(30kPa)下、反応装置内の温度を100℃に加熱し、水を留去しながら反応させた。7時間反応後、室温まで冷却し、反応生成物に水50mLを加えて撹拌した。有機相を分け取り、5%重曹水100mLで洗浄して、無色澄明液体のエチレンビス(3,3,3-トリフルオロプロピオネート)の粗生成物を得た。収量は24.3g、収率は85%であった。ガスクロマトグラフィーにより測定したところ、エチレンビス(3,3,3-トリフルオロプロピオネート)のガスクロマトグラフィー面積は、97.2%であった。粗生成物を減圧精密蒸留(スニーダー5球,0.25kPa,留分80℃)によって精製し、無色澄明液体のエチレンビス(3,3,3-トリフルオロプロピオネート)を得た。得られた留分のガスクロマトグラフフィー面積は98.7%であった。
[スペクトルデータ]
エチレンビス(3,3,3-トリフルオロプロピオネート)
1H-NMRスペクトル(500MHz,CDCl3) δ(ppm):3.22(4H,q,J=10Hz)、4.42 (4H,s)
19F-NMRスペクトル(470MHz,CDCl3) δ(ppm):-64.0(6F,t,J=10Hz)
[製造例2]
<式3で示されるテトラメチレンビス(3,3,3-トリフルオロプロピオネート)の合成>
 分留器を取り付けた50mL反応装置内で、1,4-ブタンジオール8.11g(90.0mmol)と3,3,3-トリフルオロプロピオン酸23.9g(187mmol)とを混合した。この混合物に、95%硫酸0.16g(1.7mmol)を加えて、減圧(40kPa)下、反応装置内の温度を120℃に加熱し、水を留去しながら反応させた。8時間反応後、室温まで冷却し、反応生成物に水50mLを加えて撹拌した。有機相を分け取り、5%重曹水100mLで洗浄して、淡褐色液体のテトラメチレンビス(3,3,3-トリフルオロプロピオネート)の粗生成物を得た。収量は23.4g、収率は84%であった。ガスクロマトグラフィーにより測定したところ、テトラメチレンビス(3,3,3-トリフルオロプロピオネート)のガスクロマトグラフィー面積は、97.3%であった。粗生成物を減圧精密蒸留(スニーダー5球,0.3kPa,留分116℃)によって精製し、無色澄明液体のテトラメチレンビス(3,3,3-トリフルオロプロピオネート)を得た。得られた留分のガスクロマトグラフフィー面積は99.8%であった。
[スペクトルデータ]
テトラメチレンビス(3,3,3-トリフルオロプロピオネート)
1H-NMRスペクトル(500MHz,CDCl3) δ(ppm):1.76(4H,h,J=2.8Hz)、3.19(4H,q,J=10Hz)、4.22(4H,t,J=5.5Hz)
19F-NMRスペクトル(470MHz,CDCl3) δ(ppm):-63.9(6F,t,J=10Hz)
[実施例1]
 プロピレンカーボネート(PC)97wt%に、製造例1で製造した式2で示されるエチレンビス(3,3,3-トリフルオロプロピオネート)を3wt%となるように混合して、非水系溶媒を調製した。この非水系溶媒に、電解質としてヘキサフルオロリン酸リチウムLiPFを1mol/Lの割合で溶解させて、非水電解液を調製した。この非水電解液を用いて、図1に示す3電極式試験セルを作製した。
 上記の3電極式セルにおいては、京浜理化工業社製の密閉3極セルを使用し、作用極1にパイオトレック社製の天然黒鉛塗布電極シート(負極単層)を所定の大きさに切断したものを用い、対極2及び参照極3にそれぞれ金属リチウムを使用し、これらの電極の間にセパレーター4を介在させて、非水電解液5中に浸漬させた。
[実施例2]
 プロピレンカーボネート(PC)97wt%に、製造例2で製造した式3で示されるテトラメチレンビス(3,3,3-トリフルオロプロピオネート)を3wt%となるように混合して、非水系溶媒を調製した。この非水系溶媒に、電解質としてヘキサフルオロリン酸リチウムLiPFを1mol/Lの割合で溶解させて、非水電解液を調製した。この非水電解液を用いて、図1に示す3電極式試験セルを作製した。
[比較例1]
 非水系溶媒としてプロピレンカーボネート(PC)100wt%を用いた以外は実施例1及び2と同様にして、図1に示す3電極式試験セルを作製した。
 上記の各3電極式試験セルを用い、それぞれ0.5mV/secの走査速度で、初期電位から0Vまで走査させた後、2Vまで走査させてCV測定を行った。比較例1の非水電解液を用いた3電極式試験セルにおけるCV測定の結果を図2に、実施例1~2の非水電解液を用いた3電極式試験セルにおけるCV測定の結果を図3~4にそれぞれ示す。
 図2から、非水系溶媒としてのプロピレンカーボネートのみを用いた比較例1の非水電解液では、0.6~0.5V付近にプロピレンカーボネートの分解に由来する還元電流ピークが観測され、リチウムの挿入及び脱離に伴うピークは観測されなかったことがわかる。このことから、作用極である負極に重合皮膜が形成されていないと考えられる。
 また、図3及び図4から分かるように、上記式1で示されるエステルを含む実施例1~2の非水電解液では、0V付近でリチウムの挿入に伴うマイナスの還元電流ピークが、また0.4V付近でリチウムの脱離に伴うプラスの酸化電流ピークが観測された。このことから、上記式1で示されるエステルによって作用極である負極に重合皮膜が形成されていると考えられる。負極上に重合皮膜を形成する化合物は、リチウムイオン二次電池用皮膜形成添加剤として有用であることは知られており、式1で示されるエステルはリチウムイオン二次電池用被膜形成添加剤として有用であると考えられる。
<非水電解液二次電池の評価試験>
 次に、実施例1~2の結果から、負極への重合皮膜形成能が確認された製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(式2)を含む非水電解液を用いた非水電解液二次電池について、添加効果を確認するための評価試験を実施した。
 本評価試験では、エチレンビス(3,3,3-トリフルオロプロピオネート)(式2)を含む電解液を用い、図5に示す2032型コインセルの非水電解液二次電池を作製した。
<作成手順>
[LiCoO正極の作成]
 正極活物質としてLiCoO 93wt%、導電材としてアセチレンブラック 4wt%、及び結着剤としてポリフッ化ビニリデン(PVDF)3wt%を混合して、正極材料とした。この正極材料をN-メチル-2-ピロリドン(NMP)に分散させてスラリー状とした。このスラリーをアルミニウム製の正極集電体の片面に塗布し、乾燥後、プレス成型してLiCoO正極を作製した。
[LiNi1/3Mn1/3Co1/3正極の作製]
 正極活物質としてLiNi1/3Mn1/3Co1/3 92wt%、導電材としてアセチレンブラック 5wt%、及び結着剤としてポリフッ化ビニリデン(PVDF)3wt%を混合して、正極材料とした。この正極材料をN-メチル-2-ピロリドン(NMP)に分散させてスラリー状とした。このスラリーをアルミニウム製の正極集電体の片面に塗布し、乾燥後、プレス成型してLiNi1/3Mn1/3Co1/3正極を作製した。
[黒鉛負極の作製]
 負極活物質として人造黒鉛97wt%、結着材としてスチレンブタジエンゴム(SBR)2wt%、及びカルボキシメチルセルロース(CMC)1wt%を混合して、負極材料とした。この負極材料を水に分散させてスラリー状とした。このスラリーを銅製の負極集電体の片面に塗布し、乾燥後、プレス成型して黒鉛負極を作成した。
[電池の組み立て]
 上記の2032型コインセルにおいては、SUS316L製の2032型コインセル部材を使用し、正極6にLiCoO正極又はLiNi1/3Mn1/3Co1/3正極、負極7に黒鉛負極をそれぞれ所定の大きさに切断したものを用いた。これらの電極の間に、製造例1の式2で示されるエチレンビス(3,3,3-トリフルオロプロピオネート)を含む非水電解液8を含浸させた厚さ25μmのポリプロピレン製セパレーター9をはさんで、ガスケット12を付したケース10内に保持し、スペーサー13とウェブワッシャー14を重ね、キャップ11を被せて、密閉、封止して2032型コインセルの非水電解液二次電池を作製した。
[実施例3]
 非水系溶媒としてエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7の体積比で混合させた混合溶媒(以下「EC-EMC」と略す。)を用いた。この混合溶媒(EC-EMC)と、皮膜形成添加剤としての4-フルオロエチレンカーボネート(FEC)と、製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、をEC-EMC:FEC:EBFP=99:0.5:0.5の体積比で混合して非水系溶媒を調製した。この非水系溶媒に、電解質としてのヘキサフルオロリン酸リチウムLiPFを1.1mol/Lの割合で溶解させて、非水電解液を調製した。この非水電解液と、LiCoO正極とを用い、図5に示す2032型コインセルの非水電解液二次電池を作製した。
[実施例4]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7の体積比で混合させた混合溶媒(EC-EMC)と、皮膜形成化合物としての4-フルオロエチレンカーボネート(FEC)と、製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、をEC-EMC:FEC:EBFP=99:0.9:0.1の体積比で混合した混合溶媒を用いた以外は、実施例3の場合と同様にして非水電解液二次電池を作製した。
[比較例2]
 非水系溶媒としてエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7の体積比で混合させた混合溶媒(EC-EMC)を用い、電解質としてヘキサフルオロリン酸リチウムLiPFを1.1mol/Lの割合で溶解させて、非水電解液を調製した。この非水電解液と、LiCoO正極とを用い、図5に示す2032型コインセルの非水電解液二次電池を作製した。
[参考例3]
 非水系溶媒としてエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7の体積比で混合させた混合溶媒(EC-EMC)を用い、この混合溶媒と製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)とをEC-EMC:EBFP=99:1の体積比で混合した非水系溶媒に、電解質としてヘキサフルオロリン酸リチウムLiPFを1.1mol/Lの割合で溶解させて、非水電解液を調製した。この非水電解液と、LiCoO正極とを用い、図5に示す2032型コインセルの非水電解液二次電池を作製した。
[参考例4]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7の体積比で混合させた混合溶媒(EC-EMC)と、製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)とをEC-EMC:EBFP=99.9:0.1の体積比で混合した非水系溶媒を用いた以外は、参考例3の場合と同様にして非水電解液二次電池を作製した。
[比較例5]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7の体積比で混合させた混合溶媒(EC-EMC)と、4-フルオロエチレンカーボネート(FEC)をEC-EMC:FEC=99:1の体積比で混合した非水系溶媒を用いた以外は、参考例3の場合と同様にして非水電解液二次電池を作製した。
 上記のように作製した実施例3~4、参考例3~4並びに比較例2及び5の各非水電解液二次電池を、それぞれ25℃において3.5mAの定電流で4.35Vになるまで充電し、さらに4.35Vの定電圧で電流値が0.35mAになるまで定電圧充電させた。その後、3.5mAの定電流で2.75Vになるまで放電して、初期放電容量を測定した。その後、上記の充放電条件で300サイクルまでの充放電試験を行ない、100サイクル時、200サイクル時、300サイクル時におけるそれぞれの放電容量を、各非水電解液二次電池の初期放電容量を100としたサイクル容量維持率として算出し、下記の表1に示した。
Figure JPOXMLDOC01-appb-T000011
 300サイクルの充放電試験の結果、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と4-フルオロエチレンカーボネート(FEC)とを非水系溶媒として含む実施例3及び4の各非水電解液二次電池は、比較例2及び5の各非水電解液二次電池に比べ、サイクル容量維持率が改善しており、サイクル特性が向上していた。
 上記のサイクル容量維持率は、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を単独で含む参考例3及び4では向上効果はあまり認められず、4-フルオロエチレンカーボネート(FEC)との併用で向上効果が発揮されることが認められる。
 また4-フルオロエチレンカーボネート(FEC)を単独で含む比較例5に比べても、実施例3及び4はサイクル毎の容量維持率が向上しており、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と4-フルオロエチレンカーボネート(FEC)とを併用して含むことで、4-フルオロエチレンカーボネート(FEC)の重合皮膜形成添加剤としての効果が改善されていることがわかる。
 上記のフッ素化溶媒である4-フルオロエチレンカーボネート(FEC)は、重合皮膜形成添加剤としての効果を持ち、高誘電率であり、耐酸化性に優れることから、高電圧非水電解液二次電池の非水系溶媒として有望である。実施例3~4の結果から、4-フルオロエチレンカーボネート(FEC)の重合皮膜形成添加剤としての効果を改善したエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)は、4-フルオロエチレンカーボネート(FEC)を含む高電圧非水電解液二次電池用の重合皮膜形成添加剤としても好ましいことがわかる。
<高電圧非水電解液二次電池評価試験>
 実施例3~4の結果から、4-フルオロエチレンカーボネート(FEC)の重合皮膜形成添加剤としての効果を改善し、電池特性向上の効果が確認されたエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)又はテトラメチレンビス(3,3,3-トリフルオロプロピオネート)(TBFP)(式3)、及び4-フルオロエチレンカーボネート(FEC)を非水系溶媒として含む非水電解液を用いた高電圧非水電解液二次電池について、これらの添加効果を確認するための評価試験を実施した。
[実施例5]
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)と、重合皮膜形成添加剤としての製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、をFEC:EMC:EBFP=20:79:1の体積比で混合した非水系溶媒に、電解質としてヘキサフルオロリン酸リチウムLiPFを1mol/Lの割合で溶解させて、非水電解液を調製し、正極にLiCoO正極を用い、図5に示す2032型コインセルの非水電解液二次電池を作製した。
[実施例6]
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)と、重合皮膜形成添加剤としての製造例1のエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)とをFEC:EMC:EBFP=20.0:79.9:0.1の体積比で混合した非水系溶媒を用いた以外は、実施例5の場合と同様にして非水電解液二次電池を作製した。
[実施例7]
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)と、重合皮膜形成添加剤としての製造例2のテトラメチレンビス(3,3,3-トリフルオロプロピオネート)(TBFP)(式3)とをFEC:EMC:TBFP=20:79:1の体積比で混合した非水系溶媒を用いた以外は、実施例5の場合と同様にして非水電解液二次電池を作製した。
[実施例8]
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)と、重合皮膜形成添加剤としての製造例2のテトラメチレンビス(3,3,3-トリフルオロプロピオネート)(TBFP)(式3)とをFEC:EMC:TBFP=20.0:79.9:0.1の体積比で混合した非水系溶媒を用いた以外は、実施例5の場合と同様にして非水電解液二次電池を作製した。
[比較例6]
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)とをFEC:EMC=20:80の体積比で混合した非水系溶媒を用いた以外は、実施例5の場合と同様にして非水電解液二次電池を作製した。
[比較例7]
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)と、重合皮膜形成添加剤としてのビニレンカーボネート(VC)とをFEC:EMC:VC=20:79:1の体積比で混合した非水系溶媒を用いた以外は、実施例5の場合と同様にして非水電解液二次電池を作製した。
 上記のように作製した実施例5~8及び比較例6~7の各非水電解液二次電池を、それぞれ25℃において3.5mAの定電流で4.5Vになるまで充電し、さらに4.5Vの定電圧で電流値が0.35mAになるまで定電圧充電させた。その後、3.5mAの定電流で2.75Vになるまで放電させて、各非水電解液二次電池の初期放電容量を測定した。その後、上記の充放電条件にて200サイクルまでの充放電試験を行ない、それぞれ50サイクル時、100サイクル時、200サイクル時における放電容量を、各非水電解液二次電池の初期放電容量を100としたサイクル容量維持率として算出し、下記の表2に示した。
Figure JPOXMLDOC01-appb-T000012
 表2から、重合皮膜形成添加剤として上記式1で示されるエステルであるエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)もしくはテトラメチレンビス(3,3,3-トリフルオロプロピオネート)(TBFP)(式3)を含む非水系溶媒を用いた実施例5~8の各非水電解液二次電池は、比較例6~7の各非水電解液二次電池に比べ、サイクル容量維持率が改善しており、4.5Vの高電圧条件での充放電サイクル特性が向上することがわかる。
 重合皮膜形成添加剤として効果が知られているビニレンカーボネート(VC)を含む比較例7の非水電解液二次電池は、ビニレンカーボネート(VC)の耐酸化性が劣るため、4.5Vの高電圧条件におけるサイクル容量維持率の改善効果が小さいと考えられる。
 上記式1で示されるエステルは、負極に重合皮膜を形成する重合皮膜形成添加剤としての効果を有する。特に上記式1で示されるエステルを4-フルオロエチレンカーボネート(FEC)と併用して非水電解液に添加することで、4-フルオロエチレンカーボネート(FEC)の還元分解によって負極に形成される重合皮膜を改質し、サイクル容量維持率などの電池特性を向上させる。
 また上記式1で示されるエステルは、ビニレンカーボネート(VC)に比べて耐酸化性に優れるため、同じく耐酸化性に優れる4-フルオロエチレンカーボネート(FEC)と併用して非水電解液に添加することで、高電圧系非水二次電池に適した電解液を提供できると考えられる。
<ガス発生抑制評価試験>
 次に式1で示されるエステルが、4-フルオロエチレンカーボネート(FEC)の還元分解によって形成される重合皮膜を改質することで、ガス発生を抑制する効果を確認するための評価試験を実施した。
[実施例9]
 本評価試験では、4-フルオロエチレンカーボネート(FEC)を含む非水電解液を用い、アルミラミネート型の非水電解液二次電池を作製して充電した。次に、充電した電極を取り出して洗浄、乾燥した後、新たに非水系溶媒とアルミラミネートの袋に封止し、85℃4日間保存してガス発生量を評価した。
 上記のアルミラミネート型電池においては、正極にLiNi1/3Mn1/3Co1/3、負極に黒鉛を使用した。
 LiNi1/3Mn1/3Co1/3正極を50mm×50mmの大きさに切り出し、シーラント付のアルミニウムタブを超音波溶接した。黒鉛負極を50mm×50mmの大きさに切り出し、シーラント付のニッケルタブを超音波溶接した。
 上記の4-フルオロエチレンカーボネート(FEC)を含む電解液は、4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)とをFEC:EMC=2:8の体積比で混合した非水系溶媒に、電解質としてヘキサフルオロリン酸リチウムLiPFを1mol/Lの割合で溶解させて調製した。
 上記正極と負極との間にポリエチレン製セパレーターを介在させ、電極をテープで固定して一体化し、電極群を作成した。電極群は、85℃の真空乾燥を1時間行なった。次に、電極群を、両端が開口した筒状のアルミラミネート袋に収容した。正極と負極にそれぞれ超音波溶接したアルミニウムタブとニッケルタブを一方の開口部から外部に導出した後、この開口部を溶着により封止した。そして調製した電解液を他方の開口部からアルミラミネート袋内側に滴下した。アルミラミネート袋を脱気した後、他方の開口部を溶着により封止し、アルミラミネート型電池を作成した。
 上記のように作製したアルミラミネート型二次電池を、25℃において10mAの定電流で4.4Vになるまで充電し、さらに4.4Vの定電圧で電流値が1mAになるまで定電圧充電させた。その後、10mAの定電流で2.70Vになるまで放電させた後、再度、25℃において10mAの定電流で4.4Vになるまで充電し、さらに4.4Vの定電圧充電に移行し、12時間、この電圧で保持した。
 12時間の定電圧充電を行なった電池から、正極を取り出し、10mlのジメチルカーボネートで洗浄を2回行なった。そして正極を減圧乾燥してジメチルカーボネートを除去した。乾燥した正極を、三方を封止したアルミラミネートの袋に入れた。アルミラミネートの袋の開口部より、非水系溶媒として、4-フルオロエチレンカーボネート(FEC)にエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を3wt%混合した非水系溶媒を2.5mL滴下し、開口部を封止した。
 上記電池から、負極を取り出し、10mlのジメチルカーボネートで洗浄を2回行なった。そして負極を減圧乾燥してジメチルカーボネートを除去した。乾燥した負極を、三方を封止したアルミラミネートの袋に入れた。アルミラミネートの袋の開口部より、4-フルオロエチレンカーボネート(FEC)にエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を3wt%混合した非水系溶媒を2.5mL滴下し、開口部を封止した。
 上記の非水系溶媒を封止したアルミラミネートの袋を85℃で4日間保存後、十分に冷却させた後、水浴に浸して体積を測定し、保存前後の体積変化から発生ガス量を求めた。評価結果を表3に示す。
[比較例8]
 非水系溶媒として4-フルオロエチレンカーボネート(FEC)のみを滴下した以外は、実施例9の場合と同様にして発生ガス量を求めた。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
 表3から、4-フルオロエチレンカーボネート(FEC)及び上記式1で示されるエステルであるエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を含む非水系溶媒は、実施例13の充電状態の人造黒鉛負極との保存試験におけるガス発生量が、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を含まない比較例8の非水系溶媒に比べ半減していることがわかる。上記式1で示されるエステルが、4-フルオロエチレンカーボネート(FEC)の還元分解によって形成される重合皮膜を改質することで、ガス発生を抑制しているといえる。
 また、4-フルオロエチレンカーボネート(FEC)及びエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を含む非水系溶媒は、実施例9の充電状態のLiNi1/3Mn1/3Co1/3正極との保存試験におけるガス発生量が、比較例8の4-フルオロエチレンカーボネート(FEC)と同等であり、正極側でのガス発生を助長しないことも確認できた。
<重合皮膜改質効果評価試験>
 次に上記式1で示されるエステルが、高電圧条件での非水電解液の耐酸化性向上の面から好ましい、高誘電率溶媒としての4-フルオロエチレンカーボネート(FEC)と、低粘度溶媒としてのフッ素化カルボン酸エステルを用いた非水電解液に対しても、重合皮膜を改質する効果があることを明らかにするための評価を実施した。
[実施例10]
 4-フルオロエチレンカーボネート(FEC)と、酢酸2,2,2-トリフルオロエチルCHCOOCHCF(FEA)と、重合皮膜形成添加剤としてのエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、をFEC:FEA:EBFP=20:79:1の体積比で混合した非水系溶媒に、電解質としてヘキサフルオロリン酸リチウムLiPFを1mol/Lの割合で溶解させて、非水電解液を調製し、正極にLiCoO正極を用い、図5に示す2032型コインセルの非水電解液二次電池を作製した。
[実施例11]
 4-フルオロエチレンカーボネート(FEC)と、3,3,3-トリフルオロプロピオン酸メチルCFCHCOOCH(FMP)と、皮膜形成添加剤としてのエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、をFEC:FMP:EBFP=20:79:1の体積比で混合した非水系溶媒とした以外は、実施例10の場合と同様にして非水電解液二次電池を作製した。
[比較例9]
 非水系溶媒として4-フルオロエチレンカーボネート(FEC)と、酢酸2,2,2-トリフルオロエチルCHCOOCHCF(FEA)と、をFEC:FEA=20:80の体積比で混合し、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を添加しなかった以外は、実施例10の場合と同様にして非水電解液二次電池を作製した。
[比較例10]
 非水系溶媒として4-フルオロエチレンカーボネート(FEC)と、3,3,3,-トリフルオロプロピオン酸メチルCFCHCOOCH(FMP)と、をFEC:FMP=20:80の体積比で混合し、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を添加しなかった以外は、実施例10の場合と同様にして非水電解液二次電池を作製した。
 作製した実施例10~11及び比較例9~10の各非水電解液二次電池を、それぞれ25℃において3.5mAの定電流で4.35Vになるまで充電し、さらに4.35Vの定電圧で電流値が0.35mAになるまで定電圧充電させた。その後、3.5mAの定電流で2.75Vになるまで放電させて、各非水電解液二次電池の初期放電容量を測定した。そして、比較例9の非水電解液二次電池における初期放電容量を100として、各非水電解液二次電池の初期放電容量を算出し、結果を下記の表4に示した。
 次に、上記の実施例10~11及び比較例9~10の各非水電解液二次電池について、それぞれ25℃において、3.5mAの定電流で4.35Vになるまで充電し、さらに4.35Vの定電圧で電流値が0.35mAになるまで定電圧充電させた後、3.5mAの定電流で2.75Vになるまで放電させて保存前の放電容量Dを測定した。
 次いで、上記の各非水電解液二次電池をそれぞれ25℃において、3.5mAの定電流で4.35Vになるまで充電し、さらに4.35Vの定電圧で電流値が0.35mAになるまで定電圧充電させ、この状態で各非水電解液二次電池を恒温槽内において60℃で10日間保存した。
 そして、保存前と保存後とにおける各非水電解液二次電池の電池電圧を測定し、電圧変化の結果を下記の表4に示した。
 また、保存後の各非水電解液二次電池について、それぞれ25℃において、3.5mAの定電流で2.75Vになるまで放電させて保存後の放電容量Dを測定した。
 その後、上記の各非水電解液二次電池を、それぞれ25℃において、3.5mAの定電流で4.35Vになるまで充電し、さらに4.35Vの定電圧で電流値が0.35mAになるまで定電圧充電させた。その後、3.5mAの定電流で2.75Vになるまで放電させて保存後の復帰容量Dを測定した。
 そして、上記のように測定した保存前の放電容量D、保存後の残存容量D及び保存後の復帰容量Dに基づき、下記の式により実施例10~11及び比較例9~10の各非水電解液二次電池の保存後における容量残存率(%)及び容量復帰率(%)を求め、その結果を下記の表4に示した。
 容量残存率(%)=(D/D)×100
 容量復帰率(%)=(D/D)×100
Figure JPOXMLDOC01-appb-T000014
 表4から、実施例10~11及び比較例9~10の各非水電解液二次電池においては、同等の初期放電容量が得られ、非水系溶媒として4-フルオロエチレンカーボネート(FEC)と、フッ素化鎖状カルボン酸エステルである酢酸2,2,2-トリフルオロエチルCHCOOCHCF(FEA)もしくは3,3,3-トリフルオロプロピオン酸メチルCFCHCOOCH(FMP)と、重合皮膜形成添加剤として上記式1で示されるエステルであるエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、を含む非水系溶媒を用いた実施例10~11の非水電解液二次電池は、エチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)を含まない比較例9~10の非水電解液二次電池に比べ、電圧変動が少なく、容量残存率及び容量復帰率が共に向上していた。高誘電率溶媒としての4-フルオロエチレンカーボネート(FEC)と、低粘度溶媒としてのフッ素化カルボン酸エステルと、上記式1で示されるエステルであるエチレンビス(3,3,3-トリフルオロプロピオネート)(EBFP)(式2)と、を含む非水系溶媒を用いる非水電解液は、形成される重合皮膜を改質し、優れた電池特性を提供することができるといえる。
 1 作用極
 2 対極
 3 参照極
 4 セパレーター
 5 電解液
 6  正極
 6a 正極集電体
 7  負極
 7a 負極集電体
 8  非水電解液
 9  セパレーター
10  ケース
11  キャップ
12  ガスケット
13  スペーサー
14  ウェブワッシャー

Claims (6)

  1.  下記式1: 
    Figure JPOXMLDOC01-appb-C000001
    で表される3,3,3-トリフルオロプロピオネート基を有するエステルと、
     4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートと、
     環状カーボネート、鎖状カーボネート及びフッ素化鎖状カルボン酸エステルから選択される少なくとも1種と
    を含む非水系溶媒、及び
    電解質としてリチウム塩を含むことを特徴とする二次電池用非水電解液。
  2.  前記3,3,3-トリフルオロプロピオネート基を有するエステルが、下記式2:
    Figure JPOXMLDOC01-appb-C000002
    で表されるエチレンビス(3,3,3-トリフルオロプロピオネート)、下記式3:
    Figure JPOXMLDOC01-appb-C000003
    で表されるテトラメチレンビス(3,3,3-トリフルオロプロピオネート)及びこれらの混合物から選択される少なくとも1種であることを特徴とする請求項1に記載の二次電池用非水電解液。
  3.  前記3,3,3-トリフルオロプロピオネート基を有するエステルは、非水系溶媒全体に対して0.01~5vol%の範囲で含まれることを特徴とする請求項1に記載の二次電池用非水電解液。
  4.  前記4-フルオロエチレンカーボネート(FEC)又はその誘導体であるフッ素化環状カーボネートは、非水系溶媒全体に対して0.1~30vol%の範囲で含まれることを特徴とする請求項1に記載の二次電池用非水電解液。
  5.  前記フッ素化鎖状カルボン酸エステルは、3,3,3-トリフルオロプロピオン酸メチルCFCHCOOCH、酢酸2,2,2-トリフルオロエチルCHCOOCHCF及びこれらの混合物から選択される少なくとも1種であることを特徴とする請求項1に記載の二次電池用非水電解液。
  6.  リチウムを吸蔵し且つ放出することが可能な負極及び正極、並びに請求項1~5のいずれか1項に記載の二次電池用非水電解液を含むことを特徴とする非水電解液二次電池。
PCT/JP2015/063578 2014-07-08 2015-05-12 3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池 WO2016006315A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/324,044 US20170162909A1 (en) 2014-07-08 2015-05-12 Nonaqueous electrolytic solution including ester having 3,3,3-trifluoropropionate group and nonaqueous electrolyte battery using same
CN201580037055.2A CN106537680A (zh) 2014-07-08 2015-05-12 包含具有3,3,3‑三氟丙酸酯基的酯的非水电解液、以及使用其的非水电解液电池
JP2016532476A JPWO2016006315A1 (ja) 2014-07-08 2015-05-12 3,3,3−トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池
KR1020177002406A KR20170028945A (ko) 2014-07-08 2015-05-12 3,3,3-트리플루오로프로피오네이트기를 갖는 에스테르를 포함하는 비수 전해액, 및 그것을 사용한 비수 전해액 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014140460 2014-07-08
JP2014-140460 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016006315A1 true WO2016006315A1 (ja) 2016-01-14

Family

ID=55063959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063578 WO2016006315A1 (ja) 2014-07-08 2015-05-12 3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池

Country Status (5)

Country Link
US (1) US20170162909A1 (ja)
JP (1) JPWO2016006315A1 (ja)
KR (1) KR20170028945A (ja)
CN (1) CN106537680A (ja)
WO (1) WO2016006315A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208186A (ja) * 2016-05-17 2017-11-24 株式会社Gsユアサ 非水電解液二次電池用非水電解液及び非水電解液二次電池
CN111919323A (zh) * 2018-06-01 2020-11-10 松下知识产权经营株式会社 二次电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033869A (zh) * 2017-11-30 2020-04-17 松下电器产业株式会社 非水电解质二次电池
CN108172902B (zh) * 2017-12-26 2021-01-19 深圳先进技术研究院 丙烯酸乙酯类化合物用作电解液添加剂、电解液、基于铝负极的二次电池及其制备方法
CN114556658B (zh) * 2019-10-07 2024-05-28 三菱化学株式会社 非水电解液及非水电解质二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268094A (ja) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp 非水電解液及びリチウムイオン二次電池、並びにフッ素含有エステル化合物
WO2008102638A1 (ja) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. 二次電池用非水電解液及び非水電解液二次電池
JP2012505514A (ja) * 2008-11-11 2012-03-01 エルジー・ケム・リミテッド 非水電解質リチウム二次電池
JP2012104335A (ja) * 2010-11-09 2012-05-31 Sanyo Electric Co Ltd 非水電解液二次電池
JP2012216285A (ja) * 2011-03-31 2012-11-08 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657225B1 (ko) 2003-09-05 2006-12-14 주식회사 엘지화학 전지의 안전성을 향상시키기 위한 전해액 용매 및 이를포함하는 리튬 이차 전지
JP2008108689A (ja) 2006-09-29 2008-05-08 Sanyo Electric Co Ltd 非水電解質二次電池
WO2009116740A2 (en) * 2008-03-18 2009-09-24 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN103618108B (zh) * 2013-11-25 2017-09-29 东莞新能源科技有限公司 锂离子电池及其电解液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268094A (ja) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp 非水電解液及びリチウムイオン二次電池、並びにフッ素含有エステル化合物
WO2008102638A1 (ja) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. 二次電池用非水電解液及び非水電解液二次電池
JP2012505514A (ja) * 2008-11-11 2012-03-01 エルジー・ケム・リミテッド 非水電解質リチウム二次電池
JP2012104335A (ja) * 2010-11-09 2012-05-31 Sanyo Electric Co Ltd 非水電解液二次電池
JP2012216285A (ja) * 2011-03-31 2012-11-08 Sanyo Electric Co Ltd 非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208186A (ja) * 2016-05-17 2017-11-24 株式会社Gsユアサ 非水電解液二次電池用非水電解液及び非水電解液二次電池
CN111919323A (zh) * 2018-06-01 2020-11-10 松下知识产权经营株式会社 二次电池
JPWO2019230077A1 (ja) * 2018-06-01 2021-06-10 パナソニックIpマネジメント株式会社 二次電池
JP7182223B2 (ja) 2018-06-01 2022-12-02 パナソニックIpマネジメント株式会社 二次電池
CN111919323B (zh) * 2018-06-01 2024-03-01 松下知识产权经营株式会社 二次电池

Also Published As

Publication number Publication date
JPWO2016006315A1 (ja) 2017-04-27
US20170162909A1 (en) 2017-06-08
CN106537680A (zh) 2017-03-22
KR20170028945A (ko) 2017-03-14

Similar Documents

Publication Publication Date Title
JP5955629B2 (ja) 非水電解液二次電池
WO2021208955A1 (zh) 电解液添加剂、二次电池电解液、二次电池和终端
JP5605221B2 (ja) 二次電池用非水電解液および二次電池
JP5350243B2 (ja) 非水電解液及びこれを用いた二次電池
JP5391944B2 (ja) 非水系電解液およびそれを用いた電池
JP2004342607A (ja) リチウム電池用非水電解液およびその製造方法ならびにリチウムイオン二次電池
CN108140887B (zh) 非水电解液及非水电解液二次电池
JP6913159B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6600631B2 (ja) モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池
JP2013145702A (ja) 非水電解液二次電池及び二次電池用非水電解液
WO2016006315A1 (ja) 3,3,3-トリフルオロプロピオネート基を有するエステルを含む非水電解液、及びそれを用いた非水電解液電池
KR101431259B1 (ko) 비수전해액 첨가제 및 이를 이용한 이차 전지
JP2017191634A (ja) 非水電解液二次電池、非水電解液及び化合物
JP2007265831A (ja) 非水電解質二次電池
JP5764526B2 (ja) 非水二次電池用電解液及び二次電池
CN108352572B (zh) 非水电解液用添加剂、非水电解液及蓄电装置
JP5335218B2 (ja) 非水電解液二次電池
CN106463773B (zh) 非水电解液及非水电解液二次电池
JP2005268094A (ja) 非水電解液及びリチウムイオン二次電池、並びにフッ素含有エステル化合物
CN117728026A (zh) 一种锂离子电池
JP5150928B2 (ja) 非水電解液および非水電解液二次電池
JP5063448B2 (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6894751B2 (ja) 電池用非水電解液、電池用添加剤、及びリチウム二次電池
CN111066191B (zh) 非水电解液用添加剂、非水电解液及蓄电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532476

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15324044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177002406

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15819039

Country of ref document: EP

Kind code of ref document: A1