WO2009139046A1 - 数値制御方法及びその装置 - Google Patents

数値制御方法及びその装置 Download PDF

Info

Publication number
WO2009139046A1
WO2009139046A1 PCT/JP2008/058760 JP2008058760W WO2009139046A1 WO 2009139046 A1 WO2009139046 A1 WO 2009139046A1 JP 2008058760 W JP2008058760 W JP 2008058760W WO 2009139046 A1 WO2009139046 A1 WO 2009139046A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
control
axis
synchronization
main
Prior art date
Application number
PCT/JP2008/058760
Other languages
English (en)
French (fr)
Inventor
喜範 山田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200880129176XA priority Critical patent/CN102027426B/zh
Priority to DE112008003859T priority patent/DE112008003859T5/de
Priority to JP2010511810A priority patent/JP4947214B2/ja
Priority to PCT/JP2008/058760 priority patent/WO2009139046A1/ja
Priority to US12/992,198 priority patent/US8676358B2/en
Publication of WO2009139046A1 publication Critical patent/WO2009139046A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4141Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by a controller or microprocessor per axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50234Synchronize two spindles, axis, electronic transmission, line shafting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/10Process of turning

Definitions

  • the present invention relates to a numerical control (hereinafter referred to as NC) method and apparatus capable of performing spindle position control, and in particular, two NC lathes in which a first spindle and a second spindle are installed facing each other.
  • NC numerical control
  • the present invention relates to synchronous control between spindles for gripping the same workpiece between spindles and performing machining.
  • FIG. 8 shows a block diagram of the main part of a conventional NC device.
  • the NC apparatus 101 includes an analysis processing unit 111, an interpolation control unit 112, a ladder circuit unit 121, a machine control signal processing unit 122, axis control units 211 and 221 and a spindle synchronization control unit 151.
  • the analysis processing unit 111 performs analysis processing of a machining program such as a position command such as positioning and cutting feed of an axis for performing contour control (hereinafter referred to as an NC axis), a speed command for the spindle, an auxiliary command for performing machine control, and the like.
  • the interpolation control unit 112 that has received the result generates an interpolation position pulse or a spindle speed command, and the generated interpolation position pulse or spindle speed command is sent to the axis control units 211 and 221 that control the corresponding axes. Sent.
  • the commanded auxiliary command code is passed to the machine control signal processing unit 122 via the interpolation control unit 112, and the ladder circuit unit 121 controls the corresponding auxiliary command.
  • the NC device 101 also has a control unit that controls the NC axes such as the X axis and the Z axis. However, in FIG. 8, for simplicity, an axis control unit 211 that controls the first main shaft 314 and a second main shaft Only the axis control unit 221 that controls 324 is extracted and shown.
  • the first spindle 314 is controlled by the spindle position controller 311 by speed control and position control of the spindle motor 312 that drives the first spindle 314 by a position feedback signal detected by the spindle position detector 313.
  • the second spindle 324 is controlled by the spindle position control unit 321 by speed control and position control of the spindle motor 322 that drives the second spindle 324 by a position feedback signal detected by the spindle position detector 323. Position controlled.
  • a corresponding spindle speed command is generated by the interpolation control unit 112 in accordance with the S command of the machining program, and a forward rotation signal or a reverse rotation signal for the spindle is determined in accordance with the M3 and M4 commands of the machining program. Is output via the interpolation control unit 112, the ladder circuit unit 121, and the machine control signal processing unit 122, thereby controlling forward rotation or reverse rotation at a commanded speed.
  • a corresponding spindle C-axis selection signal 123 (for example, generated by an M18 command of a machining program) is output to the machine control signal processing unit 122, a position command such as positioning or cutting feed is sent to the corresponding spindle.
  • contour control C axis control
  • contour control can be performed in cooperation with the NC axis (X axis, Z axis, etc.) for driving the tool post or the like.
  • the spindle C axis of the first spindle 314 is output by outputting a C axis selection signal 123 corresponding to the first spindle 314.
  • the control switching unit 212 switches the axis control from the spindle control unit 213 that performs control based on the speed command to the NC axis control unit 214 that performs position control using the interpolation position pulse output from the interpolation control unit 112.
  • the spindle position control unit 311 is switched from the spindle control mode for performing speed control to the C-axis control position control mode for performing position control with a position loop gain dedicated to C-axis control.
  • an interpolation position pulse for each NC axis is generated so that the command position of one or a plurality of NC axes is interpolated in association with the position command and feed speed command commanded by the machining program, and the first spindle
  • the interpolation position pulse output to the NC axis corresponding to 314 is subjected to acceleration / deceleration processing or the like by the NC axis control unit 214, and a position command corresponding to the spindle position control unit 311 is output to perform position control.
  • C-axis machining such as drilling or milling can be performed on the work side surface (circumferential surface) with a rotary tool.
  • the NC axis synchronization control unit 113 performs synchronous control with other NC axes by outputting an interpolation position pulse for the NC axis in accordance with a position command commanded by the machining program in synchronization with the other NC axes. For example, when the first main shaft 314 and the second main shaft 324 are switched to the C-axis control position control mode and the position control is performed as the C1 axis and the C2 axis, respectively, the C1 axis and the C2 axis are positioned at predetermined positions.
  • the C2 axis moves in synchronization with the same movement amount as the C1 axis moves.
  • the C1 axis and the C2 axis are positioned at a predetermined angle, and after the workpieces are gripped with each other, the synchronization polarity of the NC axis is reversed.
  • the C2 axis By specifying and controlling the C2 axis to the C1 axis in synchronization with the NC axis, the C2 axis also rotates in the same direction in synchronization with the position command for the C1 axis, so one work piece is composed of the first main spindle 314 and the second main spindle 324. While the workpieces are held together, the workpiece side surface (circumferential surface) can be machined (C-axis machining such as drilling or milling) while positioning the workpiece at a predetermined angle.
  • the spindle control mode when the spindle control mode is selected, where the spindle is not controlled by the NC axis (positioning or cutting feed, etc.) but the speed is controlled by the speed command, the spindle is synchronized with the machining program.
  • the master spindle that is the reference for synchronous control hereinafter referred to as the reference spindle
  • the spindle that is designated as the slave spindle that operates in synchronization with the reference spindle hereinafter referred to as the synchronous spindle
  • the main spindle synchronous control position control mode for performing position control with the position loop gain is switched, and the reference main spindle performs position control in accordance with the main spindle synchronous position command generated by integrating the given speed command.
  • the main spindle synchronization control unit 151 receives the main spindle synchronization position command of the reference main axis, and the synchronous main axis is rotated in synchronization with the position control in synchronization with the rotation of the reference main axis.
  • phase alignment is performed on the synchronization spindle side so that the phase difference between the spindles becomes a predetermined angle, so that the first spindle 314 and the second spindle 324 are In the NC machine tools installed facing each other, the work can be transferred from the first main spindle 314 to the second main spindle 324 while each main spindle rotates.
  • the spindle is selected from either a spindle control mode in which a speed command is given or a position control mode for C-axis control in which position control is performed as a contour control axis (hereinafter referred to as an NC axis). Therefore, in an NC machine tool in which the first main shaft 314 and the second main shaft 324 are installed to face each other, when one workpiece is grasped by two main shafts and processed, the first main shaft 314 and the first main shaft 314 are moved at a commanded speed.
  • the spindle control mode is selected in advance, and then the spindle synchronization control command is given, whereby the first spindle 314 and the second spindle 324 are moved to the spindle. It is necessary to switch to synchronous control, and the first main shaft 314 and the second main shaft 324 are positioned in synchronization with a given angle, and the work side surface (circumferential surface) is drilled with a rotary tool.
  • the first spindle 314 and the second spindle 324 are each selected in the C-axis control position control mode in advance, and the workpiece is gripped with their respective angles positioned, and then It was necessary to switch to NC axis synchronous control by giving an NC axis synchronous control command.
  • the related spindles are respectively switched to a spindle control mode or a C-axis control position control mode.
  • spindle synchronous control When switching from spindle synchronous control to C axis synchronous control or when switching from C axis synchronous control to spindle synchronous control, cancel spindle synchronous control or cancel NC axis synchronous control.
  • C axis synchronous control When switching from spindle synchronous control to C axis synchronous control or when switching from C axis synchronous control to spindle synchronous control, cancel spindle synchronous control or cancel NC axis synchronous control.
  • the workpiece is transferred from the first main shaft 314 to the second main shaft 324 between the two main shafts facing each other, and the workpiece surface processed by the first main shaft 314 is transferred to the second main shaft 324.
  • the workpiece is received after positioning or phasing both in advance so that the origin position of the first spindle 314 and the origin position of the second spindle 324 are matched. It was necessary to pass the operation time for adjusting the phase between the main axes.
  • Patent Documents 1 and 2 can perform machining with C-axis control on a workpiece while the workpiece is held by two spindles. Must be canceled temporarily, the sequence for synchronously controlling a plurality of spindles becomes complicated, and processing must be performed at the same time with a lot of waiting between the systems controlling each C axis. In some cases, the cycle time becomes longer.
  • the present invention has been made to solve such problems.
  • an NC machine tool in which two main shafts are opposed to each other, one workpiece is held from both sides by two main shafts.
  • CNC that moves the turret or turret with the rotating tool associated with the given speed command
  • An object of the present invention is to obtain an NC control method and apparatus capable of continuously performing milling and the like for machining a groove extending in the axial direction and the circumferential direction by interpolating the axis and the C axis.
  • an NC control method and apparatus capable of smoothly delivering and automatically determining the origin position in the C-axis control of the other spindle and accurately performing the secondary machining with the other spindle relative to the position of machining with the one spindle The purpose is that.
  • the numerical control method of the present invention includes a C-axis control position control mode for controlling the position with the main axis as a contour control axis, and a main-spindle synchronous control position control mode for synchronously controlling the two main spindles, the reference main axis and the synchronous main axis.
  • the position control modes in the numerical control method for controlling the spindle with different position control gains, the reference spindle and the synchronous spindle are controlled in synchronization with the spindle, and the reference spindle is rotated while being rotated at the command speed given to the reference spindle.
  • the reference main shaft is switched to the contour control axis while maintaining the position control mode in which both main shafts are selected during the main shaft synchronous control.
  • the reference spindle and the synchronous spindle are synchronously controlled by the spindle, and the C-axis control switching command is handled as the contour control axis for the reference spindle while rotating at the command speed given to the reference spindle.
  • the position control mode of both spindles is changed from the position control mode for spindle synchronous control. It is characterized by simultaneously switching to the C-axis control position control mode.
  • the phase difference between the reference spindle and the synchronization spindle is calculated in advance during the spindle synchronization control, and when the switching instruction to the C axis control is given to the synchronization spindle,
  • the C-axis origin position shift amount of the synchronization spindle is determined from the C-axis origin shift amount from the position detector reference point of the reference spindle, the calculated phase difference, and the C-axis origin shift amount from the position detector reference point of the synchronization spindle.
  • the C-axis origin position of the synchronization spindle is corrected based on the calculated C-axis origin position shift amount of the synchronization spindle.
  • the phase difference between the reference spindle and the synchronization spindle is the difference between the command phase difference between the reference spindle and the synchronization spindle, and the position control deviation amount of the reference spindle and the position control deviation amount of the synchronization spindle. It is characterized by calculating more.
  • the numerical control device includes a C-axis control position control mode for position control with the main axis as a contour control axis, and a main-synchronous control position control mode for synchronous control of the two main spindles, the reference main axis and the synchronous main axis.
  • a spindle control unit that performs speed control
  • an NC axis control unit that performs position control as a contour control axis
  • the main spindle C-axis control switching section that switches to the NC axis control section at the time of contour control, the main spindle synchronous control is performed on the reference main spindle and the synchronous main spindle, and the synchronous main spindle is rotating at the command speed given to the reference main spindle.
  • both spindles When a C-axis control switching command to be handled as a contour control axis is made with respect to the reference spindle, both spindles retain the position control mode selected during spindle synchronous control. And switching means for switching the reference spindle to contour control axis, it is made comprising a.
  • the switching means controls the reference main shaft and the synchronous main shaft as the main shaft synchronous control, and handles the reference main shaft as a contour control shaft while rotating at the command speed given to the reference main shaft.
  • both spindles are decelerated and stopped while maintaining the position control mode selected during spindle synchronization control.
  • the position control mode for both spindles is used for spindle synchronization control. It is means for simultaneously switching from the position control mode to the C-axis control position control mode.
  • the switching means includes a spindle position control mode switching unit that switches between a position control mode for spindle synchronization control and a position control mode for C axis control, and the reference spindle and the synchronization spindle are
  • the main spindle position control mode switching section is The position control mode selected during spindle synchronous control is maintained for both spindles, and after both spindles stop, the position control mode for both spindles is changed from the position control mode for spindle synchronization control to the position control mode for C-axis control.
  • a spindle-synchronized position control mode switching means for switching at the same time.
  • the numerical control device of the present invention stores a spindle phase difference calculating unit that calculates a phase difference between a reference spindle that simultaneously holds one workpiece and a synchronous spindle, and a phase difference calculated by the spindle phase difference calculating unit.
  • the spindle phase difference memory and the synchronous spindle are switched to C-axis control, the C-axis origin position shift amount of the synchronous spindle is changed to the C-axis origin shift from the position detector reference point of the reference spindle.
  • the C axis of the synchronization spindle C-axis origin position correcting means for correcting the origin position is further provided.
  • the spindle phase difference calculating means calculates the phase difference between the reference spindle and the synchronization spindle, the command phase difference between the reference spindle and the synchronization spindle, the position control deviation amount of the reference spindle and the synchronization spindle. It is calculated from the difference from the position control deviation amount.
  • the two spindles are installed facing each other.
  • NC machine tools with one workpiece held by both spindles, turning in accordance with the speed command, drilling with a rotary tool after positioning the workpiece at a predetermined angle, given speed
  • the turret or rotary tool-attached turret or other NC axis that moves the tool post can be interpolated with the command and milling can be performed continuously, so the setup for switching the machining process This has the effect of reducing wasted time.
  • the phase difference between the two spindles when one workpiece is gripped is calculated, and after passing the workpiece from one spindle to the other spindle, the phase difference between the two spindles Since the C-axis origin position of the other spindle is corrected with respect to the C-axis origin position of the other spindle, the workpiece can be delivered without performing phase alignment of both spindles. There is an effect that the non-cutting time can be shortened.
  • FIG. Embodiment 1 of the present invention will be described below with reference to FIGS.
  • FIG. 1 is a block diagram showing a configuration example of an NC apparatus 101 according to Embodiment 1 of the present invention, in which 111 is an analysis processing unit, 112 is an interpolation processing unit, 113 is an NC axis synchronization control unit, and 121 is a ladder circuit.
  • 122 is a machine control signal processing unit
  • 123 is a C-axis selection signal
  • 124 is a C-axis position control mode selection signal during spindle synchronization
  • 211 is an axis control unit for the first spindle 314, and 212 is a spindle for the first spindle 314.
  • C axis control switching unit 213 is a main axis control unit of the first main shaft 314, 214 is an NC axis control unit of the first main shaft 314, 215 is a main shaft position control mode switching unit of the first main shaft 314, 221 is the second main shaft 324 Axis control unit, 222 is a spindle C-axis control switching unit of the second spindle 324, 223 is a spindle control unit of the second spindle 324, 224 is an NC axis controller of the second spindle 324, and 225 is a spindle position of the second spindle 324 Control mode off , 151 is a spindle synchronization controller, 152 is a position control mode switching means during spindle synchronization, 311 is a spindle position controller of the first spindle 314, 312 is a spindle motor of the first spindle 314, and 313 is a position of the first spindle 314.
  • Detector 314 is a first spindle
  • 321 is a spindle position controller of a second spindle 324
  • 322 is a spindle motor of a second spindle 324
  • 323 is a position detector of a second spindle 324
  • 324 is a second spindle.
  • the hardware configuration of the NC device 101 is the same as the hardware configuration of a general NC device, and most of the components of the NC device 101 are configured by software.
  • the analysis processing unit 111 performs analysis processing of machining programs such as position commands such as NC axis positioning and cutting feed, speed commands for the spindle, and auxiliary commands for performing machine control, and the interpolation control unit 112 that receives the analysis results performs analysis processing.
  • the interpolation position pulse or the spindle speed command is generated, and the generated interpolation position pulse or spindle speed command is sent to the axis controllers 211 and 221 for controlling the corresponding axes.
  • the commanded auxiliary command code is passed to the machine control signal processing unit 122 via the interpolation control unit 112, and the ladder circuit unit 121 controls the corresponding auxiliary command.
  • the NC device 101 also has a control unit that controls NC axes such as the X axis and the Z axis.
  • an axis control unit 211 that controls the first main shaft 314 and a second main shaft are provided. Only the axis control unit 221 that controls 324 is extracted and shown.
  • the first spindle 314 is controlled by the spindle position controller 311 by speed control and position control of the spindle motor 312 that drives the first spindle 314 by a position feedback signal detected by the spindle position detector 313.
  • the second spindle 324 is controlled by the spindle position control unit 321 by speed control and position control of the spindle motor 322 that drives the second spindle 324 by a position feedback signal detected by the spindle position detector 323. Position controlled.
  • the spindle of the NC device 101 generates a corresponding spindle speed command by the interpolation control unit 112 in response to the machining program S command, and a normal rotation signal or a reverse rotation signal to the spindle in response to the M3 or M4 command in the machining program.
  • the ladder circuit unit 121, and the machine control signal processing unit 122 control to rotate forward or reverse at a commanded speed is performed.
  • a corresponding spindle C-axis selection signal 123 (for example, generated by an M18 command of a machining program) is output to the machine control signal processing unit 122, a position command such as positioning or cutting feed is sent to the corresponding spindle.
  • contour control C axis control
  • contour control can be performed in cooperation with the NC axis (X axis, Z axis, etc.) for driving the tool post or the like.
  • the C axis corresponding to the first spindle 314 By outputting the selection signal 123, the spindle C-axis control switching unit 212 of the first spindle 314 is interpolated by the interpolation control unit 112 from the spindle control unit 213 that controls the axis according to the speed command. Switching is performed to the NC axis control unit 214 that performs position control by pulses.
  • the spindle position control mode switching unit 215 changes the position control mode of the spindle position control unit 311 from the spindle control mode that performs speed control to C axis control that performs position control with a position loop gain dedicated to C axis control. Switch to position control mode.
  • an interpolation position pulse for each NC axis is generated so that the command position of one or a plurality of NC axes is interpolated in association with the position command and feed speed command commanded by the machining program, and the first spindle
  • the interpolation position pulse output to the NC axis corresponding to 314 is subjected to acceleration / deceleration processing or the like by the NC axis control unit 214, and a position command corresponding to the spindle position control unit 311 is output to perform position control.
  • C-axis machining such as drilling or milling can be performed on the work side surface (circumferential surface) with a rotary tool.
  • the spindle control mode in which the spindle is not controlled as a NC axis, but is rotated by a speed command to perform speed control, if a spindle synchronization control command is issued by a machining program, etc., it is designated as the reference spindle and the synchronized spindle
  • the main spindle is switched to the main spindle synchronous control position control mode that performs position control with the position loop gain dedicated to main spindle synchronous control, and the reference main spindle is position controlled according to the main spindle synchronous position command generated by integrating the given speed command. I do.
  • the axis controller 211 of the first spindle 314 is driven by the spindle position control mode switching unit 215.
  • the position control mode 311 is switched to a position control mode for spindle synchronous control in which position control is performed with a position loop gain dedicated to spindle synchronous control.
  • the axis controller 221 of the second spindle 324 is used for spindle synchronization control in which the position control mode of the spindle position controller 321 is controlled by a position loop gain dedicated to spindle synchronization control by the spindle position control mode switching unit 225.
  • the axis control unit 221 of the second spindle 324 receives the spindle synchronization position command of the reference spindle from the spindle synchronization control unit 151, performs position control in synchronization with the rotation of the reference spindle, and rotates at a synchronized speed. Spindle synchronous control is in progress.
  • the machine control signal processing unit 122 outputs the C-axis selection signal 123 corresponding to the spindle during the spindle synchronization control.
  • the first main spindle 314 is a reference main spindle in which main spindle synchronous control is being performed and the second main spindle 324 is a synchronous main spindle in main spindle synchronous control
  • a C-axis selection signal corresponding to the first main spindle 314 that is the reference main spindle in main spindle synchronization a C-axis selection signal corresponding to the first main spindle 314 that is the reference main spindle in main spindle synchronization.
  • the spindle C-axis control switching unit 212 of the first spindle 314 controls the axis according to the interpolation position pulse output from the interpolation control unit 112 from the spindle control unit 213 that performs control according to the speed command. Switching to the NC axis control unit 214 that performs position control is performed.
  • the main spindle position control mode switching section 215 is based on the information from the main spindle synchronous position control mode switching means 152.
  • the position control mode is maintained without switching the main axis synchronous control position control mode for performing position control with the position loop gain dedicated to the main axis synchronous control that is currently selected. Then, the C-axis origin return is performed in this mode state, and then the first main shaft 314 is positioned at a predetermined angle. During this time, the second spindle 324 operates in synchronization with the position command of the first spindle 314.
  • the C-axis position control is performed in the first main spindle 314 that is the reference main spindle in the main spindle synchronization control by the C-axis position control mode selection signal 124 during main spindle synchronization.
  • the main spindle position control unit 311 of the first main spindle 314 and the main spindle position control unit 321 of the second main spindle 324 synchronized with the first main spindle 314 are in a position dedicated to main spindle synchronization control.
  • the spindle synchronous control position control mode for performing position control with loop gain is maintained.
  • the C-axis control is performed on the first main shaft 314 which is the reference main shaft in the main shaft synchronization control by the C-axis position control mode selection signal 124 during main shaft synchronization.
  • the spindle position control mode switching unit 215 determines the spindle position of the first spindle 314 based on the information of the spindle synchronization position control mode switching means 152 that has received this selection.
  • the position control mode of the control unit 311 is switched to a position control mode for C axis control that performs position control with a position loop gain dedicated to C axis control.
  • the position control mode of the second spindle 324) that is the synchronization spindle is set to a position control mode for C-axis control that performs position control with a position loop gain dedicated to C-axis control. It switched to a de.
  • an interpolation position pulse for each NC axis is generated so that the command position of one or a plurality of NC axes is interpolated in association with the position command and the feed speed command commanded by the machining program, and the first main spindle 314 is generated.
  • the interpolation position pulse output to the NC axis corresponding to is subjected to acceleration / deceleration processing or the like by the NC axis control unit 214, and a position command corresponding to the spindle position control unit 311 is output to perform position control.
  • the second main spindle 324 which is the synchronous main spindle during the main spindle synchronous control, also operates.
  • the position control mode of the spindle related to the spindle synchronization control coincides with the mode designated by the C-axis position control mode selection signal 124 during the spindle synchronization.
  • the position command and the feed speed command instructed by the machining program are used for the reference main spindle in the same manner as the C axis control.
  • the command position of one or a plurality of NC axes can be controlled so as to interpolate and move.
  • the C-axis selection signal 123 is output to the machine control signal processing unit 122, the corresponding main shaft is switched to the C-axis control position control mode, and the NC axis for performing position commands such as positioning and cutting feed is switched.
  • An example of operation when a spindle synchronization control command is issued to the same spindle while performing contour control with the NC axis that drives a table or the like will be described.
  • the spindle C-axis control switching unit 212 of the first spindle 314 is output by outputting the C-axis selection signal 123 corresponding to the first spindle 314.
  • the control is switched from the spindle control unit 213 that performs control based on the speed command to the NC axis control unit 214 that performs position control using the interpolation position pulse output from the interpolation control unit 112. Accordingly, the spindle position control mode switching unit 215 changes the position control mode of the spindle position control unit 311 from the spindle control mode that performs speed control to C axis control that performs position control with a position loop gain dedicated to C axis control. Switch to position control mode.
  • an interpolation position pulse for each NC axis is generated so that the command position of one or a plurality of NC axes is interpolated in association with the position command and feed speed command commanded by the machining program, and the first spindle
  • the interpolation position pulse output to the NC axis corresponding to 314 is subjected to acceleration / deceleration processing and the like by the NC axis control unit 214, and a position command corresponding to the spindle position control unit 311 is output to perform position control.
  • the first spindle 314 When the first spindle 314 is switched to the C-axis control position control mode, a spindle synchronization control command is issued by a machining program or the like, and the first spindle 314 is designated as the reference spindle and the second spindle 324 is designated as the synchronization spindle.
  • the selection of switching to the C-axis control position control mode is not specified for the first main spindle 314 which is the reference main spindle under spindle synchronization control by the C-axis position control mode selection signal 124 during spindle synchronization (in other words, The main spindle position of the first main spindle 314 based on the information of the main spindle synchronizing position control mode switching means 152 that receives this selection information.
  • the control mode switching unit 215 controls the position control mode of the main shaft position control unit 311 of the first main shaft 314 with the position loop gain dedicated for main shaft synchronous control. It switched to the spindle synchronization control for position control mode.
  • the axis control unit 221 of the second main shaft 324 serving as a synchronization main shaft with respect to the first main shaft 314 changes the position control mode of the main shaft position control unit 321 by the main shaft position control mode switching unit 225 to a position loop gain dedicated for main shaft synchronization control. To switch to the spindle synchronous control position control mode.
  • the axis control unit 221 of the second spindle 324 receives the spindle synchronization position command of the reference spindle from the spindle synchronization control unit 151, performs position control in synchronization with the rotation of the reference spindle, and rotates at a synchronized speed. Spindle synchronous control is in progress.
  • an interpolation position pulse for each NC axis is generated so that the command position of one or a plurality of NC axes is interpolated and moved in association with the position command and feed speed command commanded by the machining program, and the first spindle
  • the interpolation position pulse output to the NC axis corresponding to 314 is subjected to acceleration / deceleration processing and the like by the NC axis control unit 214, and a position command corresponding to the spindle position control unit 311 is output to perform position control.
  • the second main spindle 324 which is the synchronous main spindle during the main spindle synchronous control, also operates.
  • a spindle synchronization control command is issued by a machining program or the like while the first spindle 314 is switched to the C-axis control position control mode, and the first spindle 314 is designated as a reference spindle and the second spindle 324 is designated as a synchronization spindle.
  • the selection of switching to the C-axis control position control mode is designated in the first main spindle 314 which is the reference main spindle in the spindle synchronous control by the C-axis position control mode selection signal 124 during the spindle synchronization (in other words, In this case, when the selection to switch to the position control mode for spindle synchronization control is not designated), the spindle position control mode switching unit 215 of the first spindle 314 is changed by the spindle synchronization position control mode switching means 152 to the first
  • the position control mode of the spindle position control unit 311 for the spindle 314 is a C axis control position control mode for performing position control with a position loop gain dedicated to C axis control. To hold.
  • the axis control unit 221 of the second spindle 324 serving as a synchronization spindle with respect to the first spindle 314 receives the C-axis position control mode selection signal 124 during synchronization of the spindle in the first spindle 314 that is the reference spindle during spindle synchronization control. Since selection of switching to the position control mode for C-axis control is specified, the position control mode of the spindle position control unit 321 is controlled by the spindle position control mode switching unit 225 with the position loop gain dedicated to C-axis control. Switch to C-axis control position control mode.
  • the axis control unit 221 of the second spindle 324 receives the spindle synchronization position command of the reference spindle from the spindle synchronization control unit 151, and performs position control in synchronization with the C axis movement command of the reference spindle. Interpolated position pulses for each NC axis are generated so that the command position of one or more NC axes is interpolated in association with the C-axis position command and feed speed command of the reference spindle commanded by the machining program.
  • the interpolation position pulse output to the NC axis corresponding to one spindle 314 is subjected to acceleration / deceleration processing and the like by the NC axis controller 214, and a position command corresponding to the spindle position controller 311 is output to perform position control.
  • the second main spindle 324 which is the synchronous main spindle during the main spindle synchronous control, also operates.
  • the main spindle C-axis control switching unit 212 of the first main spindle 314 that is the reference main spindle controls the axis. Then, switching is performed from the NC axis control unit 214 that performs position control by the interpolation position pulse output from the interpolation control unit 112 to the main axis control unit 213 that performs control according to the speed command.
  • the spindle position control mode switching unit 215 of the first spindle 314 causes the position control mode of the spindle position control unit 311 to control the position control mode of the spindle position control unit 311 with a position loop gain dedicated to spindle synchronization control by the position control mode switching unit 152 during spindle synchronization.
  • the main shaft position control mode switching unit 225 of the second main shaft 324 that is synchronized with the first main shaft 314 is switched to the main shaft synchronous control position control mode for performing the main shaft synchronization control. Switch to the position control mode for spindle synchronous control that performs position control with the position loop gain dedicated to control.
  • the first main shaft 314 is rotated by a speed command for the first main shaft 314 that is the reference main shaft, and the second main shaft 324 that is the synchronous main shaft with respect to the first main shaft 314 rotates in synchronization with the position of the first main shaft 314.
  • the spindles designated as the reference spindle and the synchronization spindle are simultaneously switched to a spindle synchronization control position control mode in which position control is performed with a position loop gain dedicated to spindle synchronization control, and the spindle synchronization control is in progress.
  • FIG. 2 shows operations of the first main shaft 314 and the second main shaft 324 when the program of FIG. 3 is executed.
  • the first spindle 314 is rotated at 4000 min ⁇ 1 by the command of the N10 block, and the spindle synchronization control is performed by using the first spindle 314 as the reference spindle and the second spindle 324 as the synchronization spindle by the command of the N20 block.
  • the first main shaft 314 is switched to the main shaft synchronization position control
  • the second main shaft 324 is rotated to the command speed of the first main shaft 314, and is switched to the main shaft synchronization position control.
  • the second spindle 324 is advanced by the command of the N30 block, and the workpiece is chucked while rotating on the second spindle 324 as well. Thereafter, turning is performed while holding a single workpiece with chucks from both sides by the first main shaft 314 and the second main shaft 324.
  • a program for turning is omitted here.
  • the C-axis control is selected for the first spindle 314 as the reference spindle by the command of the N40 block, and the origin is returned to the C-axis origin position of the first spindle 314.
  • the second main shaft 324 follows and synchronizes with the position command for the home position return operation of the first main shaft 314.
  • both the first spindle 314 and the second spindle 324 are continuously synchronized with the spindle.
  • the first spindle 314 is moved by the C-axis interpolation command (in this program, moved to a position rotated by 90 ° from the C-axis origin position) while maintaining the position control, and the C-axis interpolation movement of the first spindle 314 is performed. Synchronously with this, the second spindle 324 also moves.
  • both the first main shaft 314 and the second main shaft 324 are stopped and C The position is switched to the axis position control, and the second spindle 324 moves in synchronization with the movement of the first spindle 314 by the C-axis interpolation command.
  • C-axis processing such as drilling or milling is performed on the side surface of the workpiece.
  • both the first main spindle 314 and the second main spindle 324 are stopped and simultaneously switched to the main spindle synchronization position control.
  • the second spindle 324 rotates in synchronization with the spindle at a speed synchronized with the first spindle 314.
  • the first main spindle 314 and the second main spindle 324 maintain the main spindle synchronization control, and in the state where one workpiece is grasped simultaneously from both sides, the rotation synchronization by the speed command or the interpolation position of the reference main spindle with respect to the C axis
  • the synchronous spindle operates in synchronization with the commanded interpolation movement.
  • the C-axis interpolation command operation is performed while maintaining the spindle synchronization position control gain for both the reference spindle and the synchronization spindle.
  • Switching from spindle control by speed command to position control by C-axis command while the first spindle 314 and second spindle 324 rotate synchronously and hold one workpiece from both sides Can be done smoothly.
  • FIG. 4 shows an example of the configuration of the NC apparatus 101 according to the second embodiment of the present invention.
  • the NC apparatus 101 described in the first embodiment includes a chuck close determination means 125, a spindle phase difference calculation means 153, and the like.
  • a C-axis phase difference memory 160 and a C-axis origin coordinate correcting means 161 are added.
  • the chuck closing determination unit 125 determines that the chuck is closed by checking a chuck opening / closing signal output from the ladder circuit unit 121.
  • FIG. 5 is a flowchart when the spindle is selected for C-axis control in the NC apparatus 101 having the configuration of the second embodiment.
  • the spindle C-axis control switching units 212 and 222 determine whether or not the spindle is a synchronized spindle during spindle synchronization control in step S101. In the case where the main spindle synchronous control is in progress, the main spindle synchronous control is given priority in the case of the synchronous main spindle, so that alarm processing is performed in step S109.
  • step S102 it is determined whether or not the main shaft is a reference main shaft during main shaft synchronization control.
  • step S104 the spindle position control mode switching units 215 and 225 switch the spindle position control mode to a C-axis control position control mode in which position control is performed with a position loop gain dedicated to C-axis control. Accordingly, in step S105, the spindle control mode is switched to the C-axis control position control mode.
  • the C-axis origin coordinate correction unit 161 checks the C-axis origin position correction request signal 127 of the machine control signal processing unit 122 to determine whether there is a C-axis origin position correction request, and determines whether there is a C-axis origin position correction request. If there is no position correction request, the C-axis coordinate value is set to the origin coordinate value in step S107. If there is a C-axis origin position correction request, the C-axis phase difference memory 160 is determined from the origin coordinate value in step S108. A coordinate value obtained by shifting the phase difference stored in advance is set.
  • step S110 the spindle C-axis control switching units 212 and 222 switch the spindle position command to the NC axis control units 214 and 224, and C Position to the axis origin.
  • step S111 the spindle position control mode switching units 215 and 225 maintain the spindle position control mode as the spindle synchronization control position control mode in which position control is performed with the position loop gain for spindle synchronization control.
  • step S112 the C-axis coordinate value is set to the origin coordinate.
  • FIG. 6 shows an example in the case of performing an operation of transferring a workpiece from the first main spindle 314 and the second main spindle 324 which are installed facing each other in the NC machine tool controlled by the NC apparatus 101 having the configuration of the second embodiment. It is a flowchart.
  • step S201 the chuck of the first spindle 314 is closed to grip the workpiece.
  • step S202 the workpiece gripped by the first spindle 314 is processed.
  • the opposite second main shaft 324 is reversely rotated in step S204.
  • step S205 spindle synchronization control is performed between the first spindle 314 and the second spindle 324. At this time, it is not necessary to perform phase alignment unless the workpiece needs to specify the position to be grasped by the second spindle 324.
  • step S206 the second spindle 324 is advanced and approached to a position where the workpiece can be grasped.
  • step S207 the chuck of the second spindle 324 is closed. As a result, both the first main shaft 314 and the second main shaft 324 are in a state of being synchronously rotated by holding one workpiece.
  • step S208 the main shaft phase difference calculating means 153 checks the phase difference calculation request signal 126. If there is a phase difference calculation request, the first main shaft 314 (reference main shaft) and the second main shaft 324 are detected in step S209. The phase difference between the (synchronous main axes) is calculated, and the phase difference between the C axis origin of the first main axis 314 and the C axis origin of the second main axis 324 is stored in the C axis phase difference memory 160.
  • step S210 the chuck of the first main shaft 314 is opened, and the work held by the first main shaft 314 is released.
  • the workpiece may be cut off with a cutting tool and transferred to the second spindle 324 while the chuck of the first spindle 314 is closed. Thereafter, in step S211, the second spindles 324 are retracted. In step S212, spindle synchronization cancellation is performed, and machining on the second spindle 324 is started.
  • the C-axis origin coordinate correction unit 161 checks the C-axis origin position correction signal 127 in step S214 to determine whether there is a C-axis origin position correction request. Do.
  • step S216 the C-axis origin coordinate correction unit 161 returns the C-axis coordinate value after the second main shaft 324 returns to the C-axis origin position. Is preset to the coordinate value obtained by shifting the C-axis phase difference stored in the C-axis phase difference memory in step S209 from the predetermined origin coordinate value, and the C-axis origin coordinate value is corrected. Thereafter, in step S217, the second main spindle 324 performs C-axis control of the second main spindle 324 according to the interpolation command instructed by the program to perform machining.
  • FIG. 7 is a diagram for calculating the phase difference of the main shaft phase difference calculating means 153 when calculating the phase difference between the first main shaft 314 (reference main shaft) and the second main shaft 324 (synchronous main shaft) in step S209 of FIG.
  • a flowchart is shown.
  • step S301 it is confirmed that the main spindle synchronous control is being performed by the first main spindle 314 and the second main spindle 324. It is confirmed that the spindle synchronization control is performed by holding one workpiece with the reference spindle and the synchronization spindle while the chucks 324 are both closed.
  • step S303 the command angle A1 in one rotation of the position command with respect to the reference spindle is read from the spindle synchronization position command of the reference spindle, and at the same time, from the spindle synchronization position command of the synchronization spindle in step S304, The command angle A2 in one rotation of the position command is read, and in step S305, the difference angle between the command angle A1 in one rotation of the reference main shaft and the command angle A2 in one rotation of the synchronous main shaft is calculated.
  • the phase difference P1 of the command angle in the spindle synchronous control of the two spindles 324 is calculated.
  • the tracking delay amount (hereinafter referred to as the droop amount) of the spindle control of the reference spindle is read in step S306.
  • the droop amount of the synchronous spindle is read in step S307.
  • step S308 the difference between the droop amount of the reference spindle and the droop amount of the synchronous spindle is calculated, so that the twist amount P2 of the chuck position generated when the workpiece is chucked by the second spindle 324 from the command synchronized state by the spindle synchronous control. Is calculated.
  • step S309 the main spindle phase difference calculating unit 153 adds P1 and P2, so that the chuck position viewed from the Z phase reference point of the first main spindle 314 and the chuck viewed from the Z phase reference point of the second main spindle 324 are obtained.
  • the position phase difference is calculated.
  • step S310 the origin shift amount E1 of the C-axis coordinate system from the Z-phase reference point when the first spindle 314 (reference spindle) is C-axis controlled, which is set by parameters or the like, is read, and step S311 is executed.
  • E1 + P1 + P2 it is calculated as an origin shift amount of the C-axis coordinate of the synchronous main spindle corresponding to the C-axis original coordinate of the reference main spindle in a state where the reference main spindle and the synchronous main spindle hold and control one workpiece.
  • the C-axis phase difference memory 160 Stored in the C-axis phase difference memory 160.
  • the rotational polarities of the main spindles may be in the opposite direction. Needless to say, it is necessary to calculate it.
  • the reference spindle C-axis coordinate system can be set so that the synchronization spindle C-axis origin coincides with the reference spindle C-axis origin based on the phase difference during spindle synchronization control between the synchronization spindle and the spindle in step S205. It is not necessary to perform the phase matching operation in the synchronous control. Since the spindle performs acceleration / deceleration and phase adjustment time can be reduced, the workpiece delivery time can be reduced.
  • the spindle synchronization control position is not switched to the C-axis control position control mode.
  • the control mode is maintained, and the position command for the synchronous spindle is configured to synchronize with the position command for the reference spindle, so the same workpiece is gripped by the reference spindle and the synchronous spindle and is synchronously rotated at the command speed.
  • the reference spindle can be switched to C-axis control, and the machining process such as turning by spindle synchronous control, drilling of the side of the workpiece and milling by C-axis control can be performed immediately while holding one workpiece with the opposing spindle. There is an effect that switching and dead time can be eliminated.
  • the spindle synchronization control position is not switched to the C-axis control position control mode.
  • the control mode is maintained, and the position command for the synchronous spindle is configured to synchronize with the position command for the reference spindle, the reference spindle is switched to the contour control axis, and the position control of both spindles is performed after the reference spindle and the synchronous spindle are stopped.
  • the gain is switched to the position control gain for C-axis control
  • the same spindle is held by the reference spindle and the synchronous spindle, and the reference spindle is switched to C-axis control from the state of synchronous rotation at the command speed.
  • the machining process such as turning by spindle synchronous control and drilling or milling of the workpiece side face by C axis control is immediately cut.
  • it can be eliminated the dead time, further, with respect to the cutting load in the C-axis control, the effect obtained by the C-axis control equivalent response at a single spindle.
  • the difference between the workpiece gripping position of the first spindle 314 and the workpiece gripping position of the second spindle 324 is calculated, and the C-axis origin position of the second spindle 324 is the C-axis of the first spindle 314. Since the position is corrected so that the phase difference between the first main shaft 314 and the second main shaft 324 is added to the origin position, before the first main shaft 314 and the second main shaft 324 grip one workpiece, Even if the phases of the main spindles are not matched, the workpiece can be changed from the first main spindle 314 to the second main spindle 324 and machining can be performed continuously with the second main spindle 324, eliminating the time for phase alignment between the main spindles. This has the effect of improving production efficiency.
  • the phase difference when one workpiece is gripped by the first spindle 314 and the second spindle 324 is determined, the command phase difference between the reference spindle and the synchronization spindle during spindle synchronization control, and the position of the reference spindle Since it is calculated from the difference between the control deviation amount and the position control deviation amount of the synchronous spindle, the phase difference between the spindles can be calculated with high accuracy, and the origin position after delivering the workpiece can be determined more accurately. .
  • the numerical control method and the numerical control device according to the present invention are suitable for use in controlling an NC lathe in which the first main shaft and the second main shaft are opposed to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

 二つの主軸が対向して設置された数値制御装置工作機械において、速度指令に従った旋削加工と、ワークを所定の角度に位置決めして回転工具で穴あけを行う穴あけ加工等とを、両主軸で1つのワークをつかんだ状態を保持したまま、連続して行えるようにするため、基準主軸(314)と同期主軸(324)が主軸同期制御され、同期主軸(324)が基準主軸(314)に与えられた指令速度で回転中に、基準主軸(314)に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸が主軸同期制御中に選択されている位置制御モードを保持したまま、基準主軸(314)を輪郭制御軸に切り換える切換手段(152、215、225)を設けた。

Description

数値制御方法及びその装置
 この発明は、主軸位置制御を行うことができる数値制御(Numerical Control;以下NCという)方法及びその装置に係り、特に第1主軸と第2主軸が対向して設置されたNC旋盤における、2つの主軸間で同一のワークをつかみ、加工を行うための主軸間の同期制御に関するものである。
 図8は、従来のNC装置の要部ブロック図を示している。NC装置101は、解析処理部111と、補間制御部112と、ラダー回路部121と、機械制御信号処理部122と、軸制御部211、221と、主軸同期制御部151とを有している。解析処理部111は、輪郭制御を行う軸(以下NC軸という)の位置決めや切削送り等の位置指令、主軸に対する速度指令、機械制御を行う補助指令等の加工プログラムの解析処理を行い、この解析結果を受けた補間制御部112により、補間位置パルス、あるいは主軸の速度指令が生成され、この生成された補間位置パルス、あるいは主軸の速度指令は対応する軸を制御する軸制御部211、221に送られる。また、指令された補助指令コードが、補間制御部112を介して機械制御信号処理部122に渡され、ラダー回路部121により対応する補助指令の制御が行われる。なお、NC装置101は、X軸、Z軸などのNC軸を制御する制御部も有するが、図8では、簡素化のため、第1主軸314を制御する軸制御部211と、第2主軸324を制御する軸制御部221のみを抜粋して示している。
 第1主軸314は、主軸位置制御部311で、主軸位置検出器313より検出される位置フィードバック信号により第1主軸314を駆動する主軸モータ312が速度制御並びに位置制御されることにより、速度制御並びに位置制御される。第2主軸324は、主軸位置制御部321で、主軸位置検出器323より検出される位置フィードバック信号により第2主軸324を駆動する主軸モータ322が速度制御並びに位置制御されることにより、速度制御並びに位置制御される。
 従来のNC装置101における主軸は、加工プログラムのS指令により、補間制御部112で対応する主軸の速度指令が生成されるとともに、加工プログラムのM3,M4指令により、主軸に対する正転信号または逆転信号が、補間制御部112、ラダー回路部121、機械制御信号処理部122を介して出力されることにより、指令された速度で正回転または逆回転する制御がなされる。
 また、機械制御信号処理部122に、対応する主軸のC軸選択信号123(例えば、加工プログラムのM18指令により生成される)を出力すると、対応する主軸を、位置決めや切削送り等の位置指令を行うNC軸に切り換えて、刃物台等を駆動するNC軸(X軸、Z軸など)と協同して輪郭制御(C軸制御)を行うことができる。第1主軸314をNC軸として位置制御する(以下C軸制御用位置制御モードという)場合、第1主軸314に対応するC軸選択信号123を出力することにより、第1主軸314の主軸C軸制御切換部212は、軸の制御を、速度指令により制御を行う主軸制御部213から、補間制御部112より出力される補間位置パルスにより位置制御を行うNC軸制御部214に切り換えを行う。
 これに伴い、主軸位置制御部311は、速度制御を行う主軸制御モードから、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換えられる。切り換え後、加工プログラムで指令された位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように、各NC軸に対する補間位置パルスが生成され、第1主軸314に対応するNC軸に出力された補間位置パルスは、NC軸制御部214で加減速処理等が行われ、主軸位置制御部311に対応する位置指令を出力し位置制御を行う。この制御により、ワーク側面(周面)に、回転工具で、穴あけやミル等のC軸加工を行うことができる。
 また、NC軸同期制御部113は、加工プログラムより指令される位置指令によるNC軸に対する補間位置パルスを、他のNC軸に同期して出力して他のNC軸と同期制御を行う。例えば、第1主軸314と第2主軸324をC軸制御用位置制御モードに切り換え、それぞれ、C1軸、C2軸として位置制御を行っているとき、C1軸及びC2軸を所定の位置に位置決めを行い、C2軸をC1軸にNC軸同期制御を行うと、C1軸の移動に伴い、C2軸も同一の移動量で同期して移動を行う。第1主軸314と第2主軸324が対向して設置されたNC工作機械において、C1軸とC2軸を所定の角度に位置決めし、お互いにワークをつかんだ後、NC軸の同期極性を逆に指定してC2軸をC1軸にNC軸同期制御することで、C1軸に対する位置指令に同期して、C2軸も同方向に回転するので、第1主軸314と第2主軸324で1つのワークをお互いにつかんだ状態で、ワークを所定の角度に位置決めしながら、ワーク側面(周面)の加工(穴あけやミル等のC軸加工)を行うことができる。
 また、主軸をNC軸(位置決めや切削送り等の位置指令を行う軸)として位置制御せず、速度指令により回転させ速度制御を行う主軸制御モードが選択されている時、加工プログラム等により主軸同期制御指令がなされると、同期制御の基準となるマスター主軸(以下基準主軸という)と、基準主軸に同期して動作するスレーブ主軸(以下同期主軸という)として指定された主軸は、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り替わり、基準主軸は、与えられた速度指令を積分して生成した主軸同期位置指令に従い位置制御を行う。
 また、同期主軸は、主軸同期制御部151により、基準主軸の主軸同期位置指令が渡され、基準主軸の回転に同期して位置制御が行われ、同期した速度で回転する。これにより、第1主軸314と第2主軸324が対向して設置されたNC工作機械において、一つのワークを両側からつかんだ状態で、旋削加工を行うことができる。
 また、主軸同期制御指令において、位相合わせ指令がなされると、主軸間の位相差が所定の角度になるように同期主軸側で位相合わせが行われるので、第1主軸314と第2主軸324が対向して設置されたNC工作機械においては、各主軸が回転しながら、第1主軸314から第2主軸324へワークの受渡しをすることができる。
 上記のような従来のNC装置101では、主軸は、速度指令が与えられる主軸制御モード、または輪郭制御軸(以下NC軸という)として位置制御するC軸制御用位置制御モードのいずれか一方が選択されるので、第1主軸314と第2主軸324が対向して設置されたNC工作機械において、2つの主軸で1つのワークをつかみ、加工を行う際、指令された速度で第1主軸314と第2主軸324が同期して回転し、旋削加工を行う場合は、予め主軸制御モードを選択しておき、その後主軸同期制御指令を与えることにより、第1主軸314及び第2主軸324を、主軸同期制御に切り換える必要があり、また、与えられた角度に第1主軸314と第2主軸324が同期して位置決めを行い、ワーク側面(周面)を、回転工具で、穴あけやミル等のC軸加工を行う場合は、予め、第1主軸314と第2主軸324をそれぞれC軸制御用位置制御モードに選択しておき、お互いの角度を位置決めした状態でワークをつかみ、その後NC軸同期制御指令を与えることにより、NC軸同期制御に切り換える必要があった。
 また、速度指令により同期制御を行う主軸同期制御と、位置指令により同期制御を行うNC軸同期制御を切り換えるためには、関連する主軸を、それぞれ、主軸制御モード、もしくはC軸制御用位置制御モードに予め切り換えておく必要があるため、主軸同期制御からC軸同期制御に切り換える場合、もしくはC軸同期制御から主軸同期制御に切り換える場合、一旦、主軸同期制御をキャンセル、もしくはNC軸同期制御をキャンセルしなければならない。
 また、1つのワークを対向する2つの主軸で両側から把持し同期制御を行う場合、両主軸の位置制御ゲインが同一でないと、速度に応じて、各主軸の理論位置偏差量に差異が生じ、各主軸でお互いに位置制御の補償動作によるトルクが発生し、ワークをねじってしまう問題があるため、主軸同期制御中の基準主軸及び同期主軸に対しては、他の位置制御(例えば、基準主軸のみを、主軸制御モードの位置制御ゲインとは異なる位置制御ゲインで制御するC軸制御用位置制御モードに切り換える位置制御)に切り換えることができない。よって、速度指令により同期制御を行う主軸同期制御と、位置指令により同期制御を行うNC軸同期制御を切り換えるため、一旦同期制御をキャンセルする必要があって2つの主軸間の同期が維持できず、ひいてはワーク両端をチャックで把持したまま、旋削加工と、回転工具による加工(穴あけやミル等のC軸加工)を、連続して行うことができなかった。
 また、1つのワークを対向する2つの主軸間で第1主軸314から第2主軸324に受け渡し、第1主軸314での加工したワークの加工面に対し、第2主軸324に受け渡した後、二次加工を行うためには、ワークをつかみかえる際に、予め、第1主軸314の原点位置と第2主軸324の原点位置を合わせるように、ともに位置決め、もしくは位相合わせを行ってからワークを受け渡さなければならず、主軸間の位相を合わせるための動作時間を要していた。
 このような問題点の一部を解決しようとするものとして、主軸をC軸制御し、C軸原点復帰を行う際、一方の主軸が連れ回るように自由回転状態にして、主軸の回転角度位置データをリセットして、C軸を原点復帰するものが提案されている(例えば、特許文献1、特許文献2参照)。
 また、異形材ワークを2主軸間でつかみかえるため、異形材の形状に合ったチャック位置となるように、位相差算出により、主軸同期制御の位相合わせを行う角度を即時に決めることで、加工サイクル毎の主軸同期制御の位相あわせのための段取り時間を短縮するものが提案されている(例えば、特許文献3参照)。
特開平3-239402号公報 特開平3-239403号公報 特開平10-232705号公報
 しかしながら、前記特許文献1、2に開示されているものであっても、1つのワークを2つの主軸で保持した状態で、当該ワークに対するC軸制御を伴う加工を行うことができるが、位置制御を一時キャンセルする必要があり、複数の主軸を同期制御するためのシーケンスが複雑になり、各C軸を制御する系統間で、待ち合わせを多用して、タイミングを合わせて加工を行わなければならず、サイクルタイムが長くなる場合があった。
 また、前記特許文献3に開示されているものにおいても、ワークをつかみかえた後、第2主軸でC軸制御に切り換えると、第2主軸の位置検出器Z相基準で原点が確立されるので、第1主軸のC軸原点におけるワーク位置と、第2主軸のC軸原点におけるワーク位置が異なるため、第1主軸で加工した位置に対し、第2主軸で二次加工を行うことができなかった。
 この発明は、かかる問題点を解決するためになされたもので、二つの主軸が対向して設置されたNC工作機械において、1つのワークを、二つの主軸で両側からにつかんだ状態を保持したまま、速度指令に従った旋削加工と、ワークを所定の角度に位置決めして回転工具で穴あけを行う穴あけ加工、与えられた速度指令に関連付けて回転工具を取り付けたタレットもしくは刃物台を移動させるNC軸とC軸とを補間して、軸方向及び周方向に延びる溝などを加工するミル加工等とを、連続して行うことができるNC制御方法及びその装置を得ることを目的としている。
 また、この発明は、二つの主軸が対向して設置されたNC工作機械において、ワークを、一方の主軸から他方の主軸につかみかえる際に、主軸間の位相合わせ動作を行うことなく、ワークをスムーズに受け渡し、かつ他方の主軸のC軸制御における原点位置を自動的に定め、一方の主軸で加工を行った位置に対する他方の主軸による2次加工を的確に行えるNC制御方法及びその装置を得ることを目的としている。
 この発明の数値制御方法は、主軸を輪郭制御軸として位置制御するC軸制御用位置制御モードと、基準主軸と同期主軸の2つの主軸を同期制御する主軸同期制御用位置制御モードとを有し、各位置制御モードではそれぞれ異なる位置制御ゲインで主軸を制御する数値制御方法において、前記基準主軸と同期主軸が主軸同期制御され、基準主軸に与えられた指令速度で回転中に、前記基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸が主軸同期制御中に選択されている位置制御モードを保持したまま、前記基準主軸を輪郭制御軸に切り換えるものである。
 また、この発明の数値制御方法は、前記基準主軸と同期主軸が主軸同期制御され、基準主軸に与えられた指令速度で回転中に、前記基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸を主軸同期制御中に選択されている位置制御モードを保持したまま減速停止させ、両主軸が停止後、両主軸の位置制御モードを、主軸同期制御用位置制御モードからC軸制御用位置制御モードに同時に切り換えることを特徴とするものである。
 また、この発明の数値制御方法は、主軸同期制御中に、基準主軸と同期主軸との間の位相差を予め算出しておき、同期主軸に対しC軸制御への切換指令がなされた場合、同期主軸のC軸原点位置シフト量を、基準主軸の位置検出器基準点からのC軸原点シフト量、前記算出した位相差及び同期主軸の位置検出器基準点からのC軸原点シフト量とから算出し、この算出した同期主軸のC軸原点位置シフト量に基づいて同期主軸のC軸原点位置を補正することを特徴とするものである。
 また、この発明の数値制御方法は、前記基準主軸と同期主軸の位相差は、基準主軸と同期主軸の指令位相差と、基準主軸の位置制御偏差量と同期主軸の位置制御偏差量との差分より算出することを特徴とするものである。
 また、この発明の数値制御装置は、主軸を輪郭制御軸として位置制御するC軸制御用位置制御モードと、基準主軸と同期主軸の2つの主軸を同期制御する主軸同期制御用位置制御モードとを有し、各位置制御モードではそれぞれ異なる位置制御ゲインで主軸を制御する数値制御装置において、速度制御する主軸制御部と、輪郭制御軸として位置制御するNC軸制御部と、速度制御時には前記主軸制御部に切り換え、輪郭制御時には前記NC軸制御部に切り換える主軸C軸制御切換部と、前記基準主軸と同期主軸が主軸同期制御され、同期主軸が基準主軸に与えられた指令速度で回転中に、前記基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸が主軸同期制御中に選択されている位置制御モードを保持したまま、前記基準主軸を輪郭制御軸に切り換える切換手段と、を備えてなるものである。
 また、この発明の数値制御装置は、前記切換手段が、前記基準主軸と同期主軸が主軸同期制御され、基準主軸に与えられた指令速度で回転中に、基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸を主軸同期制御中に選択されている位置制御モードを保持したまま減速停止させ、両主軸が停止後、両主軸の位置制御モードを、主軸同期制御用位置制御モードからC軸制御用位置制御モードに同時に切り換える手段であることを特徴とするものである。
 また、この発明の数値制御装置は、前記切換手段が、主軸同期制御用位置制御モードとC軸制御用位置制御モードとの切り換えを行う主軸位置制御モード切換部と、前記基準主軸と同期主軸が主軸同期制御され、同期主軸が基準主軸に与えられた指令速度で回転中に、基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、前記主軸位置制御モード切換部に対し、両主軸を主軸同期制御中に選択されている位置制御モードを保持させ、且つ両主軸が停止後、両主軸の位置制御モードを、主軸同期制御用位置制御モードからC軸制御用位置制御モードに同時に切り換えさせる主軸同期中位置制御モード切換手段と、を有することを特徴とするものである。
 また、この発明の数値制御装置は、1つのワークを同時に把持した基準主軸と同期主軸の位相差を算出する主軸位相差算出手段と、この主軸位相差算出手段にて算出した位相差を記憶する主軸位相差メモリと、前記同期主軸に対しC軸制御への切換指令がなされた場合、前記同期主軸のC軸原点位置シフト量を、前記基準主軸の位置検出器基準点からのC軸原点シフト量、前記記憶した位相差及び前記同期主軸の位置検出器基準点からのC軸原点シフト量から算出し、この算出した前記同期主軸のC軸原点位置シフト量に基づいて前記同期主軸のC軸原点位置を補正するC軸原点位置補正手段と、を、更に備えてなるものである。
 また、この発明の数値制御装置は、前記主軸位相差算出手段が、基準主軸と同期主軸の位相差を、基準主軸と同期主軸の指令位相差と、基準主軸の位置制御偏差量と同期主軸の位置制御偏差量との差分より算出することを特徴とするものである。
 この発明によれば、基準主軸と同期主軸が主軸同期制御中に、両主軸の位置制御モードが同一のモードのままC軸制御に切り替わるようにしたので、二つの主軸が対向して設置されたNC工作機械において、1つのワークを、両主軸でともにつかんだ状態で、速度指令に従った旋削加工と、ワークを所定の角度に位置決めして回転工具で穴あけを行う穴あけ加工、与えられた速度指令に関連付けて回転工具を取り付けたタレットもしくは刃物台を移動させる他のNC軸とC軸とを補間してミル加工等とを、連続して行うことができるため、加工工程を切り換えるための段取りの無駄時間を削減できる効果がある。
 またこの発明によれば、二つの主軸で1つのワークを把持しているときの両者の位相差を算出し、一方の主軸から他方の主軸にワークを受け渡し後、両主軸の位相差から、一方の主軸のC軸原点位置に対し、他方の主軸のC軸原点位置を補正するようにしたので、両主軸の位相合わせを行うことなく、ワークを受け渡せるので、ワークを両主軸でつかむ際の非切削時間を短縮できる効果がある。
この発明の実施の形態1に係るNC装置の一構成例を示すブロック図である。 この発明の実施の形態1に係る主軸の動作例を示す図である。 この発明の実施の形態1に係る主軸の動作例におけるプログラム例を示す図である。 この発明の実施の形態2に係るNC装置の一構成例を示すブロック図である。 この発明の実施の形態2に係る、主軸のC軸制御選択時の動作を示すフローチャートである。 この発明の実施の形態2に係る、第1主軸から第2主軸へワークを受け渡す動作を示すフローチャートである。 この発明の実施の形態2に係る主軸位相差算出のフローチャートである。 従来のNC装置の構成を示すブロック図である。
符号の説明
101 NC装置
111 解析処理部
112 補間制御部
113 NC軸同期制御部
121 ラダー回路部
122 機械制御信号処理部
123 C軸選択信号
124 主軸同期中C軸用位置制御モード選択信号
125 チャック閉判定手段
151 主軸同期制御部
152 主軸同期中位置制御モード切換手段
153 主軸位相差算出手段
160 C軸位相差メモリ
161 C軸原点座標補正手段
211、221 軸制御部
212、222 主軸C軸制御切換部
213、223 主軸制御部
214、224 NC軸制御部
215、225 主軸位置制御モード切換部
311、321 主軸位置制御部
312、322 主軸モータ
313、223 主軸位置検出器
実施の形態1.
 以下、この発明の実施の形態1を、図1~図3を用いて説明する。
 図1はこの発明の実施の形態1に係るNC装置101の一構成例を示すブロック図であり、111は解析処理部、112は補間処理部、113はNC軸同期制御部、121はラダー回路部、122は機械制御信号処理部、123はC軸選択信号、124は主軸同期中C軸用位置制御モード選択信号、211は第1主軸314の軸制御部、212は第1主軸314の主軸C軸制御切換部、213は第1主軸314の主軸制御部、214は第1主軸314のNC軸制御部、215は第1主軸314の主軸位置制御モード切換部、221は第2主軸324の軸制御部、222は第2主軸324の主軸C軸制御切換部、223は第2主軸324の主軸制御部、224は第2主軸324のNC軸制御部、225は第2主軸324の主軸位置制御モード切換部、151は主軸同期制御部、152は主軸同期中位置制御モード切換手段、311は第1主軸314の主軸位置制御部、312は第1主軸314の主軸モータ、313は第1主軸314の位置検出器、314は第1主軸、321は第2主軸324の主軸位置制御部、322は第2主軸324の主軸モータ、323は第2主軸324の位置検出器、324は第2主軸を示す。なお、このNC装置101のハードウエア構成は、一般のNC装置のハードウエア構成と同様であり、またNC装置101の前記構成要素の殆どは、ソフトウエアにより構成されている。
 解析処理部111は、NC軸の位置決めや切削送り等の位置指令、主軸に対する速度指令、機械制御を行う補助指令等の加工プログラムの解析処理を行い、この解析結果を受けた補間制御部112により、補間位置パルス、あるいは主軸の速度指令が生成され、この生成された補間位置パルス、あるいは主軸の速度指令は対応する軸を制御する軸制御部211、221に送られる。また、指令された補助指令コードが、補間制御部112を介して機械制御信号処理部122に渡され、ラダー回路部121により対応する補助指令の制御が行われる。なお、NC装置101は、X軸、Z軸などのNC軸を制御する制御部も有するが、図1では、簡素化のため、第1主軸314を制御する軸制御部211と、第2主軸324を制御する軸制御部221のみを抜粋して示している。第1主軸314は、主軸位置制御部311で、主軸位置検出器313より検出される位置フィードバック信号により第1主軸314を駆動する主軸モータ312が速度制御並びに位置制御されることにより、速度制御並びに位置制御される。第2主軸324は、主軸位置制御部321で、主軸位置検出器323より検出される位置フィードバック信号により第2主軸324を駆動する主軸モータ322が速度制御並びに位置制御されることにより、速度制御並びに位置制御される。
 NC装置101の主軸は、加工プログラムのS指令により、補間制御部112で対応する主軸の速度指令が生成されるとともに、加工プログラムのM3,M4指令により、主軸に対する正転信号または逆転信号が、補間制御部112、ラダー回路部121、機械制御信号処理部122を介して出力されることにより、指令された速度で正回転または逆回転する制御がなされる。
 また、機械制御信号処理部122に、対応する主軸のC軸選択信号123(例えば、加工プログラムのM18指令により生成される)を出力すると、対応する主軸を、位置決めや切削送り等の位置指令を行うNC軸に切り換えて、刃物台等を駆動するNC軸(X軸、Z軸など)と協同して輪郭制御(C軸制御)を行うことができる。例えば、速度指令により主軸を回転させて速度制御を行う主軸制御モードから、第1主軸314をNC軸として位置制御するC軸制御用位置制御モードに切り換える場合、第1主軸314に対応するC軸選択信号123を出力することにより、第の主軸314の主軸C軸制御切換部212は、軸の制御を、速度指令により制御を行う主軸制御部213から、補間制御部112より出力される補間位置パルスにより位置制御を行うNC軸制御部214に切り換えを行う。
 これに伴い、主軸位置制御モード切換部215は、主軸位置制御部311の位置制御モードを、速度制御を行う主軸制御モードから、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換える。切り換え後、加工プログラムで指令された位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように、各NC軸に対する補間位置パルスが生成され、第1主軸314に対応するNC軸に出力された補間位置パルスは、NC軸制御部214で加減速処理等が行われ、主軸位置制御部311に対応する位置指令を出力し位置制御を行う。この制御により、ワーク側面(周面)に、回転工具で、穴あけやミル等のC軸加工を行うことができる。
 主軸をNC軸として位置制御せず、速度指令により回転させて速度制御を行う主軸制御モードが選択されている時、加工プログラム等により主軸同期制御指令がなされると、基準主軸及び同期主軸として指定された主軸は、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り替わり、基準主軸は、与えられた速度指令を積分して生成した主軸同期位置指令に従い位置制御を行う。例えば、第1主軸314を基準主軸、第2主軸324を同期主軸として主軸同期制御を行った場合、第1主軸314の軸制御部211は、主軸位置制御モード切換部215により、主軸位置制御部311の位置制御モードを、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換える。また、第2主軸324の軸制御部221は、主軸位置制御モード切換部225により、主軸位置制御部321の位置制御モードを、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換える。第2主軸324の軸制御部221は、主軸同期制御部151により、基準主軸の主軸同期位置指令が渡され、基準主軸の回転に同期して位置制御が行われ、同期した速度で回転したところで、主軸同期制御中となる。
 次いで、機械制御信号処理部122において、主軸同期制御中の主軸に対応するC軸選択信号123を出力した場合の動作例について説明する。例えば、第1主軸314が主軸同期制御中の基準主軸、第2主軸324が主軸同期制御中の同期主軸である場合、主軸同期中の基準主軸である第1主軸314に対応するC軸選択信号123を出力することにより、第1主軸314の主軸C軸制御切換部212は、軸の制御を、速度指令により制御を行う主軸制御部213から、補間制御部112より出力される補間位置パルスにより位置制御を行うNC軸制御部214に切り換えを行う。このとき、第1主軸314は主軸同期制御中の基準主軸であることから、主軸同期中位置制御モード切換手段152からの情報に基づき、主軸位置制御モード切換部215は、主軸位置制御部311の位置制御モードを、現在選択されている主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードを切り換えずにそのモード状態を保持する。そしてこのモード状態のままで、C軸原点復帰を行い、しかる後、第1主軸314は所定の角度に位置決めを行う。この間、第2主軸324は、第1主軸314の位置指令に同期して動作する。
 第1主軸314及び第2主軸324が同期して停止した時、主軸同期中C軸用位置制御モード選択信号124により、主軸同期制御中の基準主軸である第1主軸314においてC軸用位置制御モードへの切り換えの選択を指定されていない場合、第1主軸314の主軸位置制御部311及び第1主軸314に同期している第2主軸324の主軸位置制御部321は、主軸同期制御専用位置ループゲインで位置制御を行う主軸同期制御用位置制御モードを維持する。
 また、第1主軸314及び第2主軸324が同期して停止した時、主軸同期中C軸用位置制御モード選択信号124により主軸同期制御中の基準主軸である第1主軸314においてC軸制御用位置制御モードへの切り換えの選択を指定されている場合、この選択を受けた主軸同期中位置制御モード切換手段152の情報に基づき、主軸位置制御モード切換部215は、第1主軸314の主軸位置制御部311の位置制御モードを、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換えるとともに、主軸位置制御モード切換部225は、主軸同期制御の関連軸(本実施例の場合、同期主軸である第2主軸324)の位置制御モードを、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換える。
 そして、加工プログラムで指令された位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように、各NC軸に対する補間位置パルスが生成され、第1主軸314に対応するNC軸に出力された補間位置パルスは、NC軸制御部214により加減速処理等が行われ、主軸位置制御部311に対応する位置指令を出力し位置制御を行う。これに同期して、主軸同期制御中の同期主軸である第2主軸324も動作する。
 このとき、主軸同期制御に関連している主軸の位置制御モードは、主軸同期中C軸用位置制御モード選択信号124により指定されたモードに合わせて一致しているので、主軸同期制御により第1主軸314と第2主軸324でワークを把持した状態で、主軸同期制御により同期位置制御が実行中に、基準主軸を、C軸制御と同様に、加工プログラムで指令された位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように制御できる。
 次いで、機械制御信号処理部122に、C軸選択信号123を出力し、対応する主軸をC軸制御用位置制御モードに切り換え、位置決めや切削送り等の位置指令を行うNC軸に切り換えて、刃物台等を駆動するNC軸と輪郭制御を行っているとき、同主軸に対し、主軸同期制御指令を行った場合の動作例について説明する。
 第1主軸314をC軸制御用位置制御モードに切り換える場合、第1主軸314に対応するC軸選択信号123を出力することにより、第1主軸314の主軸C軸制御切換部212は、軸の制御を、速度指令により制御を行う主軸制御部213から、補間制御部112より出力される補間位置パルスにより位置制御を行うNC軸制御部214に切り換えを行う。これに伴い、主軸位置制御モード切換部215は、主軸位置制御部311の位置制御モードを、速度制御を行う主軸制御モードから、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換える。切り換え後、加工プログラムで指令された位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように、各NC軸に対する補間位置パルスが生成され、第1主軸314に対応するNC軸に出力された補間位置パルスは、NC軸制御部214により加減速処理等が行われ、主軸位置制御部311に対応する位置指令を出力し位置制御を行う。
 第1主軸314がC軸制御用位置制御モードに切り替わっている状態で、加工プログラム等により主軸同期制御指令がなされ、第1主軸314を基準主軸、第2主軸324を同期主軸として指定されたとき、主軸同期中C軸用位置制御モード選択信号124により主軸同期制御中の基準主軸である第1主軸314に対しC軸制御用位置制御モードへの切り換えの選択を指定されていない場合(換言すれば、主軸同期制御用位置制御モードへの切り換えの選択を指定されている場合)、この選択の情報を受けた主軸同期中位置制御モード切換手段152の情報に基づき、第1主軸314の主軸位置制御モード切換部215は、第1主軸314の主軸位置制御部311の位置制御モードを、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換える。また、第1主軸314に対する同期主軸となる第2主軸324の軸制御部221は、主軸位置制御モード切換部225により、主軸位置制御部321の位置制御モードを、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換える。
 第2主軸324の軸制御部221は、主軸同期制御部151により、基準主軸の主軸同期位置指令が渡され、基準主軸の回転に同期して位置制御が行われ、同期した速度で回転したところで、主軸同期制御中となる。このとき、加工プログラムで指令された位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように、各NC軸に対する補間位置パルスが生成され、第1主軸314に対応するNC軸に出力された補間位置パルスは、NC軸制御部214により加減速処理等が行われ、主軸位置制御部311に対応する位置指令を出力し位置制御を行う。これに同期して、主軸同期制御中の同期主軸である第2主軸324も動作する。
 また、第1主軸314がC軸制御用位置制御モードに切り替わっている状態で、加工プログラム等により主軸同期制御指令がなされ、第1主軸314を基準主軸及び第2主軸324を同期主軸として指定されたとき、主軸同期中C軸用位置制御モード選択信号124により主軸同期制御中の基準主軸である第1主軸314においてC軸制御用位置制御モードへの切り換えの選択を指定されている場合(換言すれば、主軸同期制御用位置制御モードへの切り換えの選択を指定されていない場合)、主軸同期中位置制御モード切換手段152により、第1主軸314の主軸位置制御モード切換部215は、第1主軸314の主軸位置制御部311の位置制御モードを、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードを保持する。
 また、第1主軸314に対する同期主軸となる第2主軸324の軸制御部221は、主軸同期制御中の基準主軸である第1主軸314において、主軸同期中C軸用位置制御モード選択信号124によりC軸制御用位置制御モードへの切り換えの選択を指定されているので、主軸位置制御モード切換部225により、主軸位置制御部321の位置制御モードを、C軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換える。
 第2主軸324の軸制御部221は、主軸同期制御部151により、基準主軸の主軸同期位置指令が渡され、基準主軸のC軸移動指令に同期して位置制御が行われる。加工プログラムで指令された基準主軸のC軸位置指令及び送り速度指令に関連付けて、1つもしくは複数のNC軸の指令位置が補間移動するように、各NC軸に対する補間位置パルスが生成され、第1主軸314に対応するNC軸に出力された補間位置パルスは、NC軸制御部214により加減速処理等が行われ、主軸位置制御部311に対応する位置指令を出力し位置制御を行う。これに同期して、主軸同期制御中の同期主軸である第2主軸324も動作する。
 この主軸同期制御中の状態で、基準主軸である第1主軸314のC軸選択信号123をオフした場合、基準主軸である第1主軸314の主軸C軸制御切換部212は、軸の制御を、補間制御部112より出力される補間位置パルスにより位置制御を行うNC軸制御部214から、速度指令により制御を行う主軸制御部213に切り換えを行う。このとき、主軸同期中位置制御モード切換手段152により、第1主軸314の主軸位置制御モード切換部215は、主軸位置制御部311の位置制御モードを、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換え、同時に、第1主軸314に同期している第2主軸324の主軸位置制御モード切換部225は、主軸位置制御部321の位置制御モードを、主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換える。基準主軸である第1主軸314に対する速度指令により、第1主軸314を回転させ、第1主軸314に対する同期主軸である第2主軸324は、第1主軸314の位置に同期して回転する。基準主軸及び同期主軸として指定された主軸は、同時に主軸同期制御専用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードに切り換り、主軸同期制御中となる。
 次に、図1の構成によるNC装置101の具体的動作について、図2、図3を参照しながら説明する。図2は、図3のプログラムを実行したときの、第1主軸314及び第2主軸324の動作を示している。N10ブロックの指令で、第1主軸314を4000min-1で回転しており、N20ブロックの指令で、第1主軸314を基準主軸、第2主軸324を同期主軸として、主軸同期制御を行う。このとき、第1主軸314は、主軸同期用位置制御に切り替わり、第2主軸324は、第1主軸314の指令速度に回転し、主軸同期用位置制御に切り替わり、速度が一致したところで、主軸同期制御中となる。主軸同期の完了後、N30ブロックの指令で、第2主軸324を前進させ、第2主軸324においても、回転しながらワークをチャックする。この後、第1主軸314と第2主軸324で1つのワークを両側からチャックで掴みながら、旋削加工を行う。但し、ここでは説明を簡略化するため、旋削加工するためのプログラムを省略してある。この旋削加工が終了した後、N40ブロックの指令で、基準主軸である第1主軸314がC軸制御を選択され、第1主軸314のC軸原点位置に原点復帰を行う。このとき、第2主軸324は、第1主軸314の原点復帰動作のための位置指令に同期して、追従して動作を行う。
 次いで、N50ブロックの指令で、主軸同期中C軸用位置制御モード選択信号124により、C軸制御モードが選択されていない場合、継続して、第1主軸314及び第2主軸324ともに、主軸同期用位置制御を保持したまま、第1主軸314はC軸補間指令による移動(このプログラムの場合、C軸原点位置より90°回転した位置に移動)がなされ、第1主軸314のC軸補間移動に同期して、第2主軸324も移動を行う。次いで、N51ブロックの指令で、主軸同期中C軸用位置制御モード選択信号124により、C軸制御モードが選択された場合、第1主軸314及び第2主軸324ともに、停止した状態で、同時にC軸用位置制御に切り替わり、第1主軸314に対するC軸補間指令による移動に同期して、第2主軸324は移動を行う。この第1主軸314及び第2主軸324の移動時に、プログラムでは省略してあるが、ワークの側面に穴あけ加工、ミル加工などのC軸加工を行う。N60ブロックの指令で、第1主軸314のC軸選択が解除されると、第1主軸314及び第2主軸324ともに、停止した状態で、同時に主軸同期用位置制御に切り替わり、第1主軸314は速度指令による回転に戻り、第2主軸324は、第1主軸314に同期した速度で主軸同期回転する。
 上記のようにして、第1主軸314と第2主軸324は主軸同期制御を維持し、1つのワークを両側から同時につかんだ状態で、速度指令による回転同期、または基準主軸のC軸に対する補間位置指令による補間移動に同期して同期主軸が動作する。
 この実施の形態1によれば、主軸同期制御中の基準主軸に対しC軸制御指令がなされたとき、基準主軸、同期主軸ともに、主軸同期用位置制御ゲインを維持したまま、C軸補間指令動作に切り換えることができ、第1主軸314と第2主軸324が同期回転して1つのワークを両側から把持した状態のまま、速度指令による主軸の制御から、C軸指令による位置の制御への切換をスムーズに行うことができる。
実施の形態2.
 次にこの発明の実施の形態2を図4~図7を用いて説明する。
 図4はこの発明の実施の形態2に係るNC装置101の一構成例を示すもので、実施の形態1で説明したNC装置101に、チャック閉判定手段125と、主軸位相差算出手段153と、C軸位相差メモリ160と、C軸原点座標補正手段161とが追加されている。
 なお、チャック閉判定手段125は、ラダー回路部121から出力されるチャック開閉信号をチェックすることにより、チャックが閉じていることを判定する。
 次にこのように構成されたNC装置101の動作について、図5、図6、図7を参照しながら説明する。なおここでは、追加された、チャック閉判定手段125、主軸位相差算出手段153、C軸位相差メモリ160及びC軸原点座標補正手段161の動作について主に説明し、それ以外の構成要素の動作については、実施の形態1で説明した動作と同様であるので、その説明は省略する。
 図5は、実施の形態2の構成のNC装置101において、主軸をC軸制御に選択する際のフローチャートである。
 主軸をC軸制御に切り換えるC軸選択信号123が出力されたとき、主軸C軸制御切換部212、222は、ステップS101で、当該主軸が主軸同期制御中の同期主軸かどうか判定を行う。主軸同期制御中の同期主軸である場合は主軸同期制御を優先するため、ステップS109でアラーム処理を行う。次いで、ステップS102で、当該主軸が主軸同期制御中の基準主軸かどうか判定を行う。主軸同期制御中の基準主軸でもない場合は、主軸同期制御中の主軸でないと判断できるので、ステップS103で、C軸原点復帰を行う。ステップS104で、主軸位置制御モード切換部215,225が、主軸の位置制御モードをC軸制御専用の位置ループゲインで位置制御を行うC軸制御用位置制御モードに切り換える。これに伴い、ステップS105で、主軸制御モードからC軸制御用位置制御モードに切り替わる。
 次いで、ステップS106で、C軸原点座標補正手段161は、機械制御信号処理部122のC軸原点位置補正要求信号127をチェックしてC軸原点位置補正要求があるかどうか判定し、C軸原点位置補正要求がない場合は、ステップS107でC軸座標値を原点座標値にセットし、C軸原点位置補正要求がある場合は、ステップS108で、原点座標値より、C軸位相差メモリ160に予め記憶しておいた位相差をシフトした座標値をセットする。また、ステップS102で主軸同期制御中の基準主軸であると判定した場合、ステップS110で、主軸C軸制御切換部212、222は、主軸の位置指令をNC軸制御部214,224に切り換え、C軸原点に位置決めを行う。このとき、ステップS111で、主軸位置制御モード切換部215、225により、主軸の位置制御モードを、主軸同期制御用の位置ループゲインで位置制御を行う主軸同期制御用位置制御モードを維持する。ステップS112でC軸座標値を原点座標にセットする。
 図6は、実施の形態2の構成のNC装置101で制御するNC工作機械において、対向して設置された第1主軸314から第2主軸324へワークを受け渡す動作を行う場合の例を示したフローチャートである。ステップS201で第1主軸314のチャックを閉じワークを把持する。ステップS202で、第1主軸314でつかんだワークの加工を行う。次いで、ステップS203で第1主軸314を正回転している状態から、ワークを第1主軸314から第2主軸324に受け渡すために、ステップS204で対向する第2主軸324を逆回転させ、ステップS205で第1主軸314と第2主軸324間で主軸同期制御を行う。このとき、第2主軸324でつかむ位置を特定する必要があるワークでなければ、位相合わせを行う必要はない。ステップS206で第2主軸324台を前進させ、ワークをつかめる位置までアプローチしたところで、ステップS207で第2主軸324のチャックを閉じる。これにより、第1主軸314と第2主軸324でともに1つのワークをつかんで同期回転している状態となる。
 次に、ステップS208で、主軸位相差算出手段153が、位相差算出要求信号126をチェックし、位相差算出要求があった場合、ステップS209で第1主軸314(基準主軸)と第2主軸324(同期主軸)間の位相差を算出し、第1主軸314のC軸原点と第2主軸324のC軸原点との位相差を、C軸位相差メモリ160に記憶する。次に、ステップS210で第1主軸314のチャックを開き、第1主軸314はつかんでいたワークを離す。自動旋盤の場合は、第1主軸314のチャックを閉じたまま、ワークを突っ切りバイトで切断して第2主軸324に受け渡す場合もある。この後、ステップS211で第2主軸324台は後退し、ステップS212で主軸同期キャンセルを行い、第2主軸324での加工を開始する。ステップS213で第2主軸324をC軸選択したとき、ステップS214で、C軸原点座標補正手段161が、C軸原点位置補正信号127をチェックし、C軸原点位置補正要求があるかどうか判定を行う。ステップS205で予め位相合わせを行っている等の、C軸原点位置補正を行う必要がない場合は、ステップS215で、通常に第2主軸324のC軸原点復帰を行い、原点座標値にプリセットする。ステップS209で位相差を記憶してC軸原点位置補正を行う場合、ステップS216で、C軸原点座標補正手段161は、第2主軸324がC軸原点位置に復帰した後、C軸の座標値を、所定の原点座標値よりステップS209でC軸位相差メモリに記憶したC軸位相差をシフトした座標値にプリセットし、C軸原点座標値の補正を行う。この後、ステップS217で第2主軸324はプログラムで指令された補間指令に従い、第2主軸324のC軸制御を行い、加工を行う。
 図7は、図6のステップS209において、第1主軸314(基準主軸)と第2主軸324(同期主軸)間の位相差を算出する場合、主軸位相差算出手段153の位相差算出のためのフローチャートを示す。ステップS301で、第1主軸314と第2主軸324で主軸同期制御中であることを確認し、主軸同期制御中の場合、チャック閉判定手段125により、ステップS302で第1主軸314と第2主軸324がともにチャックを閉じた状態で、基準主軸と同期主軸で1つのワークをつかんで主軸同期制御を行っている状態にあることを確認する。確認ができた場合、ステップS303で基準主軸の主軸同期位置指令から、基準主軸に対する位置指令の1回転内指令角度A1を読出し、同時に、ステップS304で同期主軸の主軸同期位置指令から、同期主軸に対する位置指令の1回転内指令角度A2を読出し、ステップS305で基準主軸の1回転内指令角度A1と同期主軸の1回転内指令角度A2との差分の角度を算出して、第1主軸314と第2主軸324の主軸同期制御における、指令角度の位相差P1を算出する。
 更に、第1主軸314のチャック位置と、第2主軸324のチャック位置の相対角度を精度良く算出するため、ステップS306で基準主軸の主軸位置制御の追従遅れ量(以下ドループ量という)を読出し、同時に、ステップS307で同期主軸のドループ量を読み出す。ステップS308で、基準主軸のドループ量と同期主軸のドループ量の差分を算出することで、主軸同期制御により指令同期した状態からワークを第2主軸324でチャックしたときに生じるチャック位置のねじれ量P2を算出する。主軸位相差算出手段153は、ステップS309で、P1とP2を加算することで、第1主軸314のZ相基準点から見たチャック位置と、第2主軸324のZ相基準点から見たチャック位置の位相差を算出する。更に、ステップS310で、パラメータ等で設定されている、第1主軸314(基準主軸)をC軸制御する場合の、Z相基準点からのC軸座標系の原点シフト量E1を読出し、ステップS311で、E1+P1+P2によって、基準主軸と同期主軸で1つのワークをつかんで同期制御している状態における、基準主軸のC軸原点座標に対応する、同期主軸のC軸座標の原点シフト量として算出し、C軸位相差メモリ160に記憶する。上記の位相差の算出の過程において、対向する主軸で1つのワークをつかむように同期して回転している場合は、各主軸の回転極性は逆方向になる場合があるので、同期極性を考慮して算出する必要があることは言うまでもない。
 この実施の形態2によれば、上記のようにして算出したC軸位相差を元に、図6のステップS216で第2主軸324のC軸原点シフト量を補正するようにしたので、基準主軸と同期主軸で主軸同期制御中の位相差より、基準主軸のC軸原点に対し、同期主軸のC軸原点が一致するように、同期主軸のC軸座標系を設定できるため、ステップS205の主軸同期制御において位相合わせ動作を行わなくても良い。主軸が加減速を行い、位相合わせを行う時間を削減できるので、ワークの受渡しの時間を短縮することができる。
 第1の発明によれば、主軸同期制御中の基準主軸に対するC軸制御切換指令がなされたとき、関連する主軸の位置制御モードをC軸制御用位置制御モードに切り換えずに主軸同期制御用位置制御モードを保持し、同期主軸に対する位置指令は、基準主軸に対する位置指令に同期するように構成したので、基準主軸と同期主軸で同一のワークを把持して、指令速度で同期回転している状態から、基準主軸をC軸制御に切り換えられ、1つのワークを対向する主軸で把持したまま、主軸同期制御による旋削と、C軸制御によるワーク側面の穴あけ加工やミル加工等の加工工程を即時に切り換え、無駄時間を排除できるという効果がある。
 第2の発明によれば、主軸同期制御中の基準主軸に対するC軸制御切換指令がなされたとき、関連する主軸の位置制御モードをC軸制御用位置制御モードに切り換えずに主軸同期制御用位置制御モードを保持し、同期主軸に対する位置指令は、基準主軸に対する位置指令に同期するように構成し、基準主軸を輪郭制御軸に切り換えて、基準主軸及び同期主軸が停止後に、両主軸の位置制御ゲインをC軸制御用位置制御ゲインに切り換えるように構成したので、基準主軸と同期主軸で同一のワークを把持して、指令速度で同期回転している状態から、基準主軸をC軸制御に切り換えられ、1つのワークを対向する主軸で把持したまま、主軸同期制御による旋削と、C軸制御によるワーク側面の穴あけ加工やミル加工等の加工工程を即時に切り換え、無駄時間を排除でき、更に、C軸制御中の切削負荷に対し、単独の主軸でのC軸制御と同等の応答性を得られる効果がある。
 第3の発明によれば、第1主軸314のワーク把持位置と、第2主軸324のワーク把持位置の差を算出し、第2主軸324のC軸原点位置が、第1主軸314のC軸原点位置に対し、第1主軸314と第2主軸324の位相差を加算した位置となるように補正されるので、第1主軸314と第2主軸324で1つのワークを把持する前に、お互いの主軸の位相を合わせなくても、ワークを第1主軸314から第2主軸324に持ち替えて、第2主軸324で継続して加工を行うことができ、主軸間の位相合わせを行う時間を排除でき、生産効率が向上するという効果がある。
 第4の発明によれば、第1主軸314と第2主軸324で1つのワークを把持した際の位相差を、主軸同期制御中の基準主軸と同期主軸の指令位相差と、基準主軸の位置制御偏差量と同期主軸の位置制御偏差量との差分より算出するようにしたので、精度良く主軸間の位相差を算出でき、ワークを受け渡した後の原点位置をより正確に決定できる効果がある。
 この発明の数値制御方法及び数値制御装置は、第1主軸と第2主軸が対向して設置されたNC旋盤の制御に用いられるのに適している。

Claims (9)

  1.  主軸を輪郭制御軸として位置制御するC軸制御用位置制御モードと、基準主軸と同期主軸の2つの主軸を同期制御する主軸同期制御用位置制御モードとを有し、各位置制御モードではそれぞれ異なる位置制御ゲインで主軸を制御する数値制御方法において、
     前記基準主軸と同期主軸が主軸同期制御され、基準主軸に与えられた指令速度で回転中に、前記基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸が主軸同期制御中に選択されている位置制御モードを保持したまま、前記基準主軸を輪郭制御軸に切り換えることを特徴とする数値制御方法。
  2.  前記基準主軸と同期主軸が主軸同期制御され、基準主軸に与えられた指令速度で回転中に、前記基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸を主軸同期制御中に選択されている位置制御モードを保持したまま減速停止させ、両主軸が停止後、両主軸の位置制御モードを、主軸同期用位置制御モードからC軸制御用位置制御モードに同時に切り換えることを特徴とする請求項1に記載の数値制御方法。
  3.  主軸同期制御中に、基準主軸と同期主軸との間の位相差を予め算出しておき、同期主軸に対しC軸制御への切換指令がなされた場合、同期主軸のC軸原点位置シフト量を、前記基準主軸の位置検出器基準点からのC軸原点シフト量、前記算出した位相差及び前記同期主軸の位置検出器基準点からのC軸原点シフト量から算出し、この算出した同期主軸のC軸原点位置シフト量に基づいて同期主軸のC軸原点位置を補正することを特徴とする請求項1または2に記載の数値制御方法。
  4.  前記基準主軸と同期主軸の位相差は、基準主軸と同期主軸の指令位相差と、基準主軸の位置制御偏差量と同期主軸の位置制御偏差量との差分より算出することを特徴とする請求項3に記載の数値制御方法。
  5.  主軸を輪郭制御軸として位置制御するC軸制御用位置制御モードと、基準主軸と同期主軸の2つの主軸を同期制御する主軸同期制御用位置制御モードとを有し、各位置制御モードではそれぞれ異なる位置制御ゲインで主軸を制御する数値制御装置において、
     速度制御する主軸制御部と、
     輪郭制御軸として位置制御するNC軸制御部と、
     速度制御時には前記主軸制御部に切り換え、輪郭制御時には前記NC軸制御部に切り替える主軸C軸制御切換部と、
     前記基準主軸と同期主軸が主軸同期制御され、同期主軸が基準主軸に与えられた指令速度で回転中に、前記基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸が主軸同期制御中に選択されている位置制御モードを保持したまま、前記基準主軸を輪郭制御軸に切り換える切換手段と、
    を備えてなる数値制御装置。
  6.  前記切換手段は、前記基準主軸と同期主軸が主軸同期制御され、基準主軸に与えられた指令速度で回転中に、基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、両主軸を主軸同期制御中に選択されている位置制御モードを保持したまま減速停止させ、両主軸が停止後、両主軸の位置制御モードを、主軸同期用位置制御モードからC軸制御用位置制御モードに同時に切り換える手段であることを特徴とする請求項5に記載の数値制御装置。
  7.  前記切換手段は、
     主軸同期用位置制御モードとC軸制御用位置制御モードとの切り換えを行う主軸位置制御モード切換部と、
     前記基準主軸と同期主軸が主軸同期制御され、同期主軸が基準主軸に与えられた指令速度で回転中に、基準主軸に対し輪郭制御軸として扱うC軸制御切換指令がなされたとき、前記主軸位置制御モード切換部に対し、両主軸を主軸同期制御中に選択されている位置制御モードを保持させ、且つ両主軸が停止後、両主軸の位置制御モードを、主軸同期用位置制御モードからC軸制御用位置制御モードに同時に切り換えさせる主軸同期中位置制御モード切換手段と、
    を有することを特徴とする請求項6に記載の数値制御装置。
  8.  1つのワークを同時に把持した基準主軸と同期主軸の位相差を算出する主軸位相差算出手段と、
     この主軸位相差算出手段にて算出した位相差を記憶する主軸位相差メモリと、
     前記同期主軸に対しC軸制御への切換指令がなされた場合、前記同期主軸のC軸原点位置シフト量を、基準主軸の位置検出器基準点からのC軸原点シフト量、前記記憶した位相差及び前記同期主軸の位置検出器基準点からのC軸原点シフト量から算出し、この算出した同期主軸のC軸原点位置シフト量に基づいて前記同期主軸のC軸原点位置を補正するC軸原点位置補正手段と、
    を、更に備えてなる請求項5~7の何れかに記載の数値制御装置。
  9.  前記主軸位相差算出手段は、基準主軸と同期主軸の位相差を、基準主軸と同期主軸の指令位相差と、基準主軸の位置制御偏差量と同期主軸の位置制御偏差量との差分より算出することを特徴とする請求項8に記載の数値制御装置。
PCT/JP2008/058760 2008-05-13 2008-05-13 数値制御方法及びその装置 WO2009139046A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200880129176XA CN102027426B (zh) 2008-05-13 2008-05-13 数控方法及其装置
DE112008003859T DE112008003859T5 (de) 2008-05-13 2008-05-13 Numerisches Steuerverfahren und numerische Steuervorrichtung
JP2010511810A JP4947214B2 (ja) 2008-05-13 2008-05-13 数値制御方法及びその装置
PCT/JP2008/058760 WO2009139046A1 (ja) 2008-05-13 2008-05-13 数値制御方法及びその装置
US12/992,198 US8676358B2 (en) 2008-05-13 2008-05-13 Numerical control method and numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058760 WO2009139046A1 (ja) 2008-05-13 2008-05-13 数値制御方法及びその装置

Publications (1)

Publication Number Publication Date
WO2009139046A1 true WO2009139046A1 (ja) 2009-11-19

Family

ID=41318429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058760 WO2009139046A1 (ja) 2008-05-13 2008-05-13 数値制御方法及びその装置

Country Status (5)

Country Link
US (1) US8676358B2 (ja)
JP (1) JP4947214B2 (ja)
CN (1) CN102027426B (ja)
DE (1) DE112008003859T5 (ja)
WO (1) WO2009139046A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984379A (zh) * 2010-10-25 2011-03-09 武汉华中数控股份有限公司 一种基于指令序列的数控车削加工过程振动抑制方法
CN103370661A (zh) * 2011-02-03 2013-10-23 三菱电机株式会社 数控装置
CN111961481A (zh) * 2020-08-10 2020-11-20 包头钢铁(集团)有限责任公司 一种配料皮带系统联锁工艺的优化装置及优化方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120790B2 (ja) * 2007-06-26 2013-01-16 株式会社安川電機 トルク制御装置とその制御方法
US8090468B2 (en) * 2008-09-05 2012-01-03 Mag Ias, Llc Multi-spindle phase controlled machining
CN102959483B (zh) * 2011-06-14 2014-08-06 三菱电机株式会社 数控装置
WO2013118169A1 (ja) * 2012-02-08 2013-08-15 三菱電機株式会社 数値制御装置
JP5852467B2 (ja) * 2012-02-23 2016-02-03 オークマ株式会社 数値制御装置
JP5722400B2 (ja) * 2013-08-22 2015-05-20 ファナック株式会社 主軸を有する工作機械の制御装置
JP5987081B1 (ja) 2015-04-02 2016-09-06 ファナック株式会社 基準軸を切り替えて学習制御を行うサーボ制御装置
JP6088581B2 (ja) * 2015-06-04 2017-03-01 ファナック株式会社 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
TWI620616B (zh) * 2016-11-15 2018-04-11 新代科技股份有限公司 協同數控方法與系統
WO2019014863A1 (zh) * 2017-07-19 2019-01-24 深圳配天智能技术研究院有限公司 一种控制机床轴移动的方法及相关设备
CN107728579B (zh) * 2017-11-07 2020-05-08 新代科技(苏州)有限公司 用于相异形态的主轴协同数控系统及其方法
JP7156897B2 (ja) * 2018-10-10 2022-10-19 シチズン時計株式会社 工作機械
JP7124696B2 (ja) * 2018-12-27 2022-08-24 オムロン株式会社 同期制御装置、同期制御システム、同期制御方法及びシミュレーション装置
JP6589189B1 (ja) * 2019-03-06 2019-10-16 トキワケミカル工業株式会社 押出成形品の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239402A (ja) * 1990-02-19 1991-10-25 Yamazaki Mazak Corp 対向スピンドル旋盤におけるc軸原点復帰方法
JPH03239403A (ja) * 1990-02-19 1991-10-25 Yamazaki Mazak Corp 対向スピンドル旋盤におけるc軸原点復帰方法
JPH08202420A (ja) * 1995-01-30 1996-08-09 Fanuc Ltd 数値制御装置の同期制御方式
JPH10201279A (ja) * 1997-01-07 1998-07-31 Fanuc Ltd モータの同期回転制御方法
JPH10232705A (ja) * 1997-02-19 1998-09-02 Mitsubishi Electric Corp 数値制御装置
WO2000039646A1 (fr) * 1998-12-24 2000-07-06 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande numerique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134605A (ja) * 1987-11-20 1989-05-26 Fanuc Ltd 数値制御装置
JPH02220103A (ja) * 1989-02-22 1990-09-03 Fanuc Ltd 主軸制御指令方式
JP2692274B2 (ja) * 1989-06-22 1997-12-17 三菱電機株式会社 主軸位置・速度制御装置
JP2692011B2 (ja) * 1990-02-09 1997-12-17 三菱電機株式会社 数値制御自動プログラミング装置
JPH0828037B2 (ja) * 1991-10-31 1996-03-21 富士通株式会社 スピンドルシンク制御方式
US5841604A (en) * 1993-12-15 1998-11-24 Cirrus Logic, Inc. Masterless spindle synchronization in a multiple disk drive storage system
US5999357A (en) * 1996-05-30 1999-12-07 International Business Machines Corporation Method and apparatus for spindle synchronization to reduce drive to drive runout
KR100335317B1 (ko) * 1997-07-02 2002-05-06 다니구찌 이찌로오, 기타오카 다카시 서보모터의 동기제어장치
JP4361071B2 (ja) * 2005-07-08 2009-11-11 ファナック株式会社 サーボ制御装置
JP4116640B2 (ja) * 2005-10-28 2008-07-09 ファナック株式会社 多系統制御機能を有する数値制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239402A (ja) * 1990-02-19 1991-10-25 Yamazaki Mazak Corp 対向スピンドル旋盤におけるc軸原点復帰方法
JPH03239403A (ja) * 1990-02-19 1991-10-25 Yamazaki Mazak Corp 対向スピンドル旋盤におけるc軸原点復帰方法
JPH08202420A (ja) * 1995-01-30 1996-08-09 Fanuc Ltd 数値制御装置の同期制御方式
JPH10201279A (ja) * 1997-01-07 1998-07-31 Fanuc Ltd モータの同期回転制御方法
JPH10232705A (ja) * 1997-02-19 1998-09-02 Mitsubishi Electric Corp 数値制御装置
WO2000039646A1 (fr) * 1998-12-24 2000-07-06 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande numerique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984379A (zh) * 2010-10-25 2011-03-09 武汉华中数控股份有限公司 一种基于指令序列的数控车削加工过程振动抑制方法
CN103370661A (zh) * 2011-02-03 2013-10-23 三菱电机株式会社 数控装置
CN111961481A (zh) * 2020-08-10 2020-11-20 包头钢铁(集团)有限责任公司 一种配料皮带系统联锁工艺的优化装置及优化方法

Also Published As

Publication number Publication date
DE112008003859T5 (de) 2011-06-01
CN102027426B (zh) 2013-06-12
US20110088523A1 (en) 2011-04-21
CN102027426A (zh) 2011-04-20
US8676358B2 (en) 2014-03-18
JP4947214B2 (ja) 2012-06-06
JPWO2009139046A1 (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4947214B2 (ja) 数値制御方法及びその装置
TWI474142B (zh) 數值控制裝置
US6742422B1 (en) Numerically controlled lathe and method of cutting workpiece on the numerically controlled lathe
WO2020105383A1 (ja) 旋盤
EP0267288A1 (en) Numerical control apparatus
US5027680A (en) Machine tool with two spindles
EP0401375B1 (en) Method of controlling synchronized operation of a machine tool
WO1991008851A1 (en) Work exchange system
JP7448637B2 (ja) 工作機械の制御装置、制御システム、及び制御方法
JP2807823B2 (ja) 2主軸対向型cnc旋盤のワーク加工装置
JP2814278B2 (ja) 2主軸対向型cnc旋盤及びワーク加工方法
JPH03225505A (ja) 重畳制御機能を有する数値制御装置
JPH02109605A (ja) 数値制御旋盤における同期回転制御方式
JPH0698521B2 (ja) 複合加工旋盤用数値制御装置
JP3753026B2 (ja) 多軸タップ加工装置
JPH0283102A (ja) 対向型2スピンドル旋盤の同期回転時のフリーラン方法
JP2654228B2 (ja) 数値制御装置
JPH10113801A (ja) 2主軸対向型cnc旋盤のワーク加工装置
JPH0398703A (ja) 2主軸対向旋盤におけるワーク加工方法
JPS62224520A (ja) タツピング加工制御方式
KR940008497B1 (ko) 공작기계의 동기운전 제어방법 및 그 장치
JPH0241693A (ja) 主軸の同期運転制御装置
JPH04115850A (ja) Nc工作機械の制御装置ならびに制御方法
JPH10156601A (ja) 対向2軸旋盤の突切り確認装置
JPH09192929A (ja) 工作機械の制御装置および制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129176.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511810

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12992198

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008003859

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08752640

Country of ref document: EP

Kind code of ref document: A1