WO2009130770A1 - 自動車用エンジンにおける位相可変装置 - Google Patents

自動車用エンジンにおける位相可変装置 Download PDF

Info

Publication number
WO2009130770A1
WO2009130770A1 PCT/JP2008/057857 JP2008057857W WO2009130770A1 WO 2009130770 A1 WO2009130770 A1 WO 2009130770A1 JP 2008057857 W JP2008057857 W JP 2008057857W WO 2009130770 A1 WO2009130770 A1 WO 2009130770A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotator
control
relative
cam
camshaft
Prior art date
Application number
PCT/JP2008/057857
Other languages
English (en)
French (fr)
Inventor
美千広 亀田
真康 永洞
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to JP2010508999A priority Critical patent/JP5047356B2/ja
Priority to US12/988,585 priority patent/US8418665B2/en
Priority to CN200880128779.8A priority patent/CN102016242B/zh
Priority to PCT/JP2008/057857 priority patent/WO2009130770A1/ja
Priority to KR1020107023531A priority patent/KR101433153B1/ko
Priority to EP08740796A priority patent/EP2282019B1/en
Publication of WO2009130770A1 publication Critical patent/WO2009130770A1/ja
Priority to HK11110161.9A priority patent/HK1155789A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/04Reducing noise

Definitions

  • the present invention relates to an automobile engine in which a rotation operation force is applied to a rotating drum by a rotation operation force applying means, and a rotation phase of a camshaft with respect to a sprocket driven by a crankshaft is changed to change a valve opening / closing timing.
  • This is a technique related to a phase variable device.
  • Patent Document 1 As this type of conventional technology, there is a valve timing control device shown in Patent Document 1 below.
  • the assembly angle of the camshaft 1 with respect to the drive plate 2 (sprocket) driven by the driving force from the crankshaft of the engine is set to the advance side (rotation direction of the drive plate 2) or the retard side.
  • This is a device that changes the valve opening / closing timing of an internal combustion engine that is opened and closed by a cam (changed in the direction opposite to the rotation direction of the drive plate 2).
  • the drive plate 2 is assembled so as to be rotatable relative to the spacer 8 integrated with the camshaft 1.
  • a lever shaft 13 having three levers 12 extending radially is fixed to the camshaft 1 together with the spacer 8 by a bolt 18 in front of the spacer 8.
  • One end of a link arm 14 is rotatably connected to the lever 12 by a connecting pin 16, and the movable operation member 11 is rotatably attached to the other end of the arm 14 by a connecting pin 17.
  • the front surface of the drive plate 2 is provided with a radial guide 10 composed of a pair of parallel guide walls 9a and 9b whose wall surfaces are provided along the radial direction, and the movable operation member 11 is provided between the guide walls 9a and 9b. It is slidably assembled to. Further, a hemispherical recess 21 is provided on the front side of the movable operation member 11, and a ball 22 as a rolling member is accommodated and held so as to be able to roll.
  • a guide plate 24 is rotatably supported at the front end portion of the lever shaft 13 via a bearing 23.
  • the guide plate 24 is formed with a spiral groove 28 (spiral guide) in which the diameter of the spiral gradually decreases along the rotation direction of the drive plate 2, and the ball 22 held by the movable operation member 11 is engaged with the guide plate 24. ing.
  • the movable operation member 11 becomes the radial guide. 10 and the spiral groove 28 are moved radially inward.
  • the assembly angle between the camshaft 1 and the drive plate 2 is such that the camshaft 1 is integrated with the lever shaft 13 and the link action between the link arm 14 and the lever 12.
  • the camshaft 1 rotates relative to the drive plate 2 in the advance direction, and is changed to the advance side (advance direction).
  • the movable operation member 11 when the guide plate 24 receives torque while the ball 22 is engaged and rotates relative to the drive plate 2 in the advance direction (rotation direction of the drive plate 2), the movable operation member 11 is The spiral groove 28 moves outward in the radial direction.
  • the assembly angle of the camshaft 1 and the drive plate 2 is set to the retard side (slow as the camshaft 1 rotates relative to the drive plate 2 in the retard direction). Is changed to (corner direction).
  • the device of Patent Document 1 applies torque to the guide plate 24 and rotates the guide plate 24 relative to the drive plate 2 in either the retard direction or the advance direction, thereby causing the cam plate 1 and It is a device that changes the assembly angle of the drive plate 2 to either the advance side or the retard side.
  • the torque for rotating the guide plate 24 relative to the drive plate 2 is applied by combining the planetary gear mechanism 25 shown below with the first and second electromagnetic brakes (26, 27).
  • a sun gear 30 in which a braking flange 34 is integrated with a front end portion of a lever shaft 13 via a bearing 29 is rotatably supported, and a ring gear 31 is formed on an inner peripheral surface of a front end recess of the guide plate 24.
  • a carrier plate 32 fixed to the lever shaft 13 is provided between the bearings 23 and 29, and a plurality of planetary gears 33 engaged with the sun gear 30 and the ring gear 31 are rotatably supported on the carrier plate 32. It is configured.
  • the first and second electromagnetic brakes (26, 27) are disposed so as to face the front end surfaces of the guide plate 24 and the brake flange 34, thereby braking these rotations.
  • the guide plate 24 receives torque that rotates relative to the drive plate 2 in the retard direction by receiving a braking force from the first electromagnetic brake 26.
  • the sun gear 30 receives a braking force from the second electromagnetic brake 27 and rotates relative to the carrier plate 32 in the retard direction.
  • the planetary gear 33 rotates the ring gear 31 by rotating. Therefore, the guide plate 24 receives torque that rotates relative to the drive plate 2 in the forward direction when the sun gear 30 receives the braking force from the second electromagnetic brake 27.
  • the assembly angle between the camshaft 1 and the drive plate 2 is changed to either the advance side or the retard side according to the direction of the torque received by the guide plate 24.
  • the rotating shaft 12 driven by the crankshaft is supported on the output shaft 22 integrated with the camshaft 4 so as to be relatively rotatable, and the operating shaft 72 is integrated by the electric motor 70.
  • the eccentric shaft 18 is rotated, and the output shaft 22 is rotated by the eccentric shaft 18 via the planetary gear 30 and the ring gear 14 that rotate relative to the rotation direction of the eccentric shaft 18, and the rotating member 12 supported by the output shaft 22.
  • the camshaft 4 is relatively rotated to change the assembly angle between the two, thereby changing the valve opening / closing timing.
  • a planetary gear mechanism 25 is employed as a mechanism for rotating the guide plate 24 relative to the drive plate 2, and the planetary gear mechanism 25 includes a sun gear 30, a plurality of planetary gears 33, and a ring gear 31. It is comprised by the gear of this. In general, gears tend to have a high manufacturing unit price when the tooth portion is molded.
  • the apparatus of Patent Document 1 has a problem in that the manufacturing cost of the relative rotation mechanism of the guide plate 24 that employs a large number of gears increases.
  • the gear generates a rattling sound when the meshing tooth portions collide with each other at the time of operation, but the gear rattling noise hinders the quietness of the apparatus at the time of operation.
  • the apparatus of Patent Document 1 has a problem in that, by adopting a combination of a large number of gears, an operation sound due to a large number of rattling noises is increased when the valve timing is changed.
  • the rattling noise can be reduced by improving the molding accuracy of each tooth part and reducing the backlash between the tooth parts, but in this case, there is a problem in that the manufacturing cost is further increased.
  • the present invention makes it possible to easily and inexpensively manufacture a relative rotation mechanism of a member corresponding to the guide plate 24 and to change the phase angle between the camshaft and the crankshaft side.
  • the present invention provides an engine phase varying device in which the operation sound of the relative rotation mechanism is quieter, and an engine phase varying device capable of quickly changing the phase angle.
  • the invention of claim 1 is characterized in that a drive rotating body driven to rotate by a crankshaft, a first intermediate rotating body integrated with a camshaft, and a first control rotating body are rotated relative to each other.
  • the first control is provided with a rotation operation force applying means that is arranged on the same rotation center axis and is capable of rotating the first control rotator relative to the drive rotator and the first intermediate rotator.
  • the rotation operation force applying means is a substantially circumferential groove formed in the first control rotator, and the first operation is to reduce the diameter along any one of the rotation directions of the first control rotator.
  • the guide groove, the intermediate rotating body and the driving rotating body A first braking means for relatively rotating the control rotator; a substantially radial guide groove integrated with the camshaft and penetrating in the axial direction; adjacent to the first control rotator; A second intermediate rotating body disposed coaxially with the control rotating body and capable of relative rotation, and a second guide groove that is a substantially circumferential groove having a diameter reduced in a direction opposite to the first guide groove; A second control rotator disposed coaxially and relatively rotatably with the second intermediate rotator, and a second rotating the second control rotator relative to the second intermediate rotator and the first control rotator.
  • Each of the guide grooves based on relative rotation between the first control rotator and the second control rotator.
  • the first control rotating body rotates integrally with the first intermediate rotating body integrated with the camshaft and the driving rotating body that receives the driving force from the crankshaft.
  • the first control rotator is rotated relative to the drive rotator and the first intermediate rotator by a rotating operation force applying means.
  • the first intermediate rotator rotates relative to the drive rotator based on the relative rotation direction of the first control rotator.
  • the phase angle of the first intermediate rotator (camshaft side) with respect to the drive rotator (crankshaft side) is advanced according to the relative rotation direction of the first control rotator (rotation direction of the drive rotator).
  • the same applies hereinafter) or the retarded direction the direction opposite to the rotation direction of the drive rotor, hereinafter the same).
  • the phase angle of the first intermediate rotator with respect to the drive rotator becomes , It is changed to either the advance direction or the retard direction.
  • the second control rotator receives a braking force from the second braking means to cause a rotation delay with respect to the first control rotator and the second intermediate rotator, together with the second guide groove formed on the rear surface. Relatively rotates in the retard direction.
  • the mover engages with the second guide groove, which is a circumferential groove whose diameter is reduced along any one of the rotation directions, and the radial guide groove of the second intermediate rotating body, and these guides.
  • the first control rotator has a second control rotation when a first guide groove formed as a circumferential groove having a diameter reduced in a direction opposite to the second guide groove receives a force from a mover moving in the radial direction.
  • the body and the second intermediate rotator are relatively rotated in the advance direction, and at the same time, the drive rotator and the first rotator are relatively rotated in the advance direction.
  • the phase angle of the first intermediate rotator with respect to the drive rotator is changed in the opposite direction to that during braking by the first braking means.
  • the first control rotator, the second intermediate rotator, the second control rotator and the mover have a simple configuration based on a circle, they are easy to process. Further, when changing the phase angle between the drive rotator and the first intermediate rotator, the mover is silently displaced while always slidingly contacting each guide groove. Further, after the phase angle is changed, the first and second braking means can be de-energized. Further, a speed reduction mechanism for changing the phase angle is unnecessary.
  • the invention according to claim 2 is directed to a drive rotating body driven to rotate by a crankshaft, a first intermediate rotating body integrated with a camshaft, and the first control rotating body relative to each other.
  • a rotation operation force applying means disposed on the same rotation center axis so as to be rotatable, and for rotating the first control rotating body relative to the driving rotating body and the first intermediate rotating body;
  • an engine phase varying device that relatively rotates the first intermediate rotator and the first control rotator according to the relative rotation direction of one control rotator to change the phase angle between the camshaft and the drive rotator.
  • the turning operation force applying means includes a first braking means for rotating the first control rotator relative to the first intermediate rotator and the drive rotator, and the rotation from the first control rotator. Project along the direction of the center axis of movement, and the center axis A first eccentric circular cam that is eccentric from a central axis, and a second eccentric circular cam that protrudes along the direction of the rotational central axis, and whose central axis is eccentric from the rotational central axis.
  • a second control rotator having a moving center axis coaxially and relatively rotatable, a longitudinal direction substantially perpendicular to the camshaft axial direction, and the first eccentric circular cam and the second eccentric circular cam are the longitudinal direction
  • a cam guide plate supported in an impossible manner, and a second braking means for rotating the second control rotator relative to the cam guide plate and the first control rotator, the first eccentric circular cam And the second eccentric circular cam connects the center of the cam and the center of rotation.
  • Straight line wherein arranged to have an inclination from the swinging direction of the cam guide plate, and were arranged substantially symmetrically about said swing direction.
  • the first control rotator receives a braking force from the first braking means, causes a rotation delay with respect to the drive rotator and the first intermediate rotator, and relatively rotates in the retarded direction.
  • the phase angle of the first intermediate rotator with respect to the rotator is changed to either the advance direction or the retard direction according to the relative rotation direction of the first control rotator.
  • the second control rotating body receives a braking force from the second braking means to cause a rotation delay with respect to the first control rotating body and the cam guide plate, and in the retard direction together with the second eccentric circular cam on the rear surface.
  • the second eccentric circular cam is displaced in the longitudinal direction of the oblong hole while being in sliding contact with the oblong hole on the front surface of the cam guide plate, and the cam guide plate receives a force from the sliding surface of the displaced second eccentric circular cam.
  • it is displaced in a direction substantially perpendicular to the longitudinal direction of the stepped elliptical hole and in a direction perpendicular to the camshaft axial direction.
  • the first eccentric circular cam on the front surface of the first control rotator is disposed inclined with respect to the displacement direction of the cam guide plate and is disposed substantially symmetrically with the second eccentric circular cam across the displacement direction.
  • the guide plate When the guide plate is displaced, it receives a force from the oblong hole on the rear surface of the cam guide plate to be engaged, and rotates in the direction opposite to the second eccentric circular cam, that is, the advance direction. Therefore, the first control rotator rotates relative to the second control rotator and the cam guide plate in the advance direction, and simultaneously rotates relative to the drive rotator and the first rotation body in the advance direction.
  • the phase angle of the first intermediate rotator with respect to the drive rotator is changed in the opposite direction to that during braking by the first braking means.
  • the first control rotator, the cam guide plate, and the second control rotator have a simple configuration based on a circular shape, and therefore are easy to process.
  • the first and second eccentric circular cams when changing the phase angle between the drive rotator and the first intermediate rotator are silently displaced while being always in sliding contact with the cam guide plate. Further, after the phase angle is changed, the first and second braking means can be de-energized. Further, a speed reduction mechanism for changing the phase angle is unnecessary.
  • the mechanism can be manufactured easily and inexpensively, and the operating noise when changing the phase angle is reduced.
  • power can be saved by turning off the braking means after the phase angle conversion is completed, and a rapid phase angle change can be realized by not employing a speed reduction mechanism.
  • FIG. 1 is an exploded perspective view of a phase varying device in an automobile engine according to a first embodiment of the present invention as seen from the front
  • FIG. 2 is an exploded perspective view of the device as seen from the rear
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3, which is an axial cross-sectional view of the apparatus.
  • FIG. 5 is a radial cross-sectional view of the apparatus
  • FIG. 4B is a sectional view taken along the line CC of FIG. 4
  • FIG. 6C is a sectional view taken along the line DD of FIG. 4
  • FIG. 6 is an axial sectional view of FIG. 7 is a cross-sectional view taken along line FF in FIG. 6, FIG.
  • FIG. 8 is a cross-sectional view taken along line GG in FIG. 6,
  • FIG. 9 is a cross-sectional view taken along line HH in FIG. It is operation
  • FIG. 12 is an exploded perspective view of the phase varying device in the automobile engine according to the second embodiment as viewed from the front
  • FIG. 12 is an exploded perspective view of the device as viewed from the rear
  • FIG. 13 is a front view of the device
  • FIG. 13 which is an axial sectional view of the apparatus
  • FIG. 15 is an explanatory view of the phase conversion member
  • (a) is a perspective view of the phase conversion member
  • FIG. 16 is an exploded perspective view of the phase conversion member
  • FIG. 16 is a radial cross-sectional view of the phase varying device
  • (a) a cross-sectional view taken along the line II of FIG. 14, and
  • (b) a JJ of FIG. 14 is a cross-sectional view taken along the line KK of FIG. 14
  • FIG. 17 is a cross-sectional view taken along the line LL of FIG. 14
  • FIG. 18 is a cross-sectional view taken along the line MM of FIG. FIG.
  • the engine phase varying device shown in the first and second embodiments is used in a form integrated with the engine, and the rotation of the crankshaft is changed to the camshaft so that the intake and exhaust valves are opened and closed in synchronization with the rotation of the crankshaft. It is a device for transmitting and changing the opening / closing timing of the intake / exhaust valve of the engine according to the operating state such as the engine load and the rotational speed.
  • the configuration of the apparatus of the first embodiment will be described with reference to FIGS. 1 to 10.
  • the apparatus of the first embodiment (for convenience of explanation, the direction of the second electromagnetic clutch 60 described later is the front side, and the direction of the camshaft 40 is the rear side).
  • a first intermediate rotator (a guide plate of a first control rotator 45 described later) 43 that is fixed to the center shaft 42 so as not to rotate relative to the drive shaft 41 and rotates relative to the drive rotator 41.
  • a control rotator 45 supported in a state of being rotatable relative to the center shaft 42 inside the front end portion of the first intermediate rotator 43, and an engine case (not shown). It is provided with a first electromagnetic clutch 44 for braking the rotation of the first control rotor 45 on the same rotational axis L1.
  • the first control rotator 45 is provided with an eccentric circular cam 46 that is integrated with the first control rotator 45 and rotates eccentrically around the central axis L1 on the rear surface.
  • a cam guide plate 47 that is supported by an eccentric circular cam 46 through a mating oval hole 54 and reciprocally swings in a direction orthogonal to the central axis L1 is disposed.
  • the center shaft 42 is integrated with the cam shaft 40 in a state in which the hole 42 a engages with the tip 40 a of the cam shaft 40 and is not relatively rotatable.
  • the sprocket 41a and the drive plate 41b can rotate relative to the front and rear cylindrical portions (42c, 42d) of the flange 42b formed on the outer periphery of the center shaft 42 through the holes (41c, 41d). It is configured to be supported by a plurality of coupling pins 48.
  • the drive plate 41b is formed with a pair of curved guide grooves 51 in a substantially circumferential direction around the rotation center axis L1, and the guide groove 51 in the first embodiment is the rotation direction D1 of the drive rotating body 41. It is formed so as to decrease in diameter in the clockwise direction when viewed from the front of the apparatus (hereinafter the same).
  • the first intermediate rotating body 43 is formed in a cylindrical shape, and a pair of long-hole-shaped radial grooves 49 (escape grooves) in which a square hole 43b and a slide pin 50 described later are displaced in a non-contact state are formed in the bottom 43a. ) And guide pins 43c to 43f having the same outer diameter that are engaged with the engagement holes 43g to 43j.
  • the first intermediate rotating body 43 is fixed in a state in which the square hole 43 b engages with the flat engagement surface 42 e and is not rotatable relative to the center shaft 42.
  • the direction of the straight line connecting the centers of the guide pins 43c and 43d (or 43e and 43f) is parallel to the extending direction of the radial groove 49.
  • the first control rotator 45, the eccentric circular cam 46, and the cam guide plate 47 are arranged inside the cylindrical portion 43k of the first intermediate rotator 43.
  • the first control rotator 45 is provided with a through hole 45a through which the center is L1 on the front surface and the tip lead head portion 42f of the center shaft 42 is inserted, and the rear surface is an axis whose distance from the rotation center axis L1 is d1.
  • An eccentric circular hole 45b centered on L2 is provided.
  • the eccentric circular cam 46 is centered on the front eccentric circular cam 52 that engages with the eccentric circular hole 45b with the axis L2 as the center, and the axis L3 whose distance from the rotation central axis L1 is d2 larger than d1.
  • the side eccentric circular cam 53 is integrated in the axial direction and includes a through-hole 46a centered on L1.
  • the eccentric circular cam 46 is supported in a state in which it can rotate relative to the tip cylindrical portion 42f of the center shaft 42 through the through-hole 46a.
  • the first control rotator 45 is formed in a disk shape substantially the same as the inner diameter of the tip step surface 43l of the cylindrical portion 43k of the intermediate rotator, and the outer peripheral surface 45c is substantially inscribed in the step surface 431.
  • the outer shape of the eccentric circular cams (52, 53) is not limited to the circular shape as in the present embodiment, but may be a cam shape having a special peripheral edge.
  • the rotating body guide plate 47 includes a pair of engagement holes 47a and a long hole 54 into which the rear eccentric cam 53 is inserted and slid.
  • the cam guide plate 47 includes a plurality of slide pins (slide members) 50 that protrude rearward from the pair of engagement holes 47a.
  • the slide pin 50 is formed by inserting a thin round shaft 50a inside the hollow round shaft 50b. One end of the thin round shaft 50a is engaged with the engagement hole 47a, and the hollow round shaft 50b is The intermediate rotor 43 is inserted in a state of non-contact with the radial groove 49, and the other end engages with a guide groove 51, which is a substantially circumferential groove formed in the drive plate 41b, in a displaceable state.
  • the long hole 54 extends in a direction substantially perpendicular to a straight line connecting the centers of the pair of engagement holes 47a (extension direction of the radial guide 49).
  • the rear eccentric circular cam 53 reciprocates in the longitudinal direction while sliding with the inner peripheral edge of the long hole 54.
  • flat surfaces (47b, 47c) that respectively contact the guide pins (43c, 43d) and (43e, 43f) are formed on both sides of the rotating body guide plate 47.
  • a first electromagnetic clutch 44 having a friction material 55 disposed on the rear surface is disposed in front of the first control rotator 45, and the electromagnetic clutch 44 energizes the coil 44 a so that the suction surface 45 d of the first control rotator 45 is placed on the suction surface 45 d. By making sliding contact with the friction material 55, the rotation of the first control rotor 45 is braked.
  • a second intermediate rotator 56 In front of the first control rotator 45, a second intermediate rotator 56, a second control rotator 57, a disc spring 58, a spring holder 59 and a second electromagnetic clutch 60 are arranged in order.
  • the first control rotator 45 is a pair of curved grooves (see FIG. 9) formed in a substantially circumferential direction around the rotation center axis L1, and is D2 opposite to the rotation direction of the drive rotator 41.
  • a first guide groove 61 whose diameter is reduced in a direction (counterclockwise direction when viewed from the front of the apparatus, the same applies hereinafter) on the front surface, and the second control rotator 57 has a substantially circumferential shape around the rotation center axis L1.
  • a pair of curved grooves (see FIG. 7) formed in the direction (see FIG. 7), the rear surface is provided with a second guide groove 62 whose diameter decreases in the clockwise direction D1.
  • the second intermediate rotating body 56 is formed with radial guide grooves 63 on both sides with a square hole 56a formed in the center.
  • the second intermediate rotating body 56 is fixed in a non-rotatable state with respect to the center shaft 42 by engaging the square hole 56a with the second flat engaging surface 42g of the center shaft 42.
  • the second control rotator 57 is supported so as to be rotatable with respect to the center shaft 42 through a circular hole 57a formed at the center and a small cylindrical portion 42h at the tip of the center shaft 42.
  • a pair of slide pins 64 that displace the respective guide grooves are engaged with the guide grooves (61 to 63), and the slide pins 64 are arranged in the same manner as the slide pins 50 with the narrow round shaft 64a inside the hollow thick round shaft 64b. It is configured to be inserted into. Both ends of the fine round shaft 64a engage with the first and second guide grooves (61, 62) in a displaceable state, and the hollow thick round shaft 64b engages with the radial guide 63 in a displaceable state. .
  • the outer diameter of the thick round shaft 64b is made larger than the outer diameter of the thin round shaft 64a and the slide pin 64 is formed in a flange shape, so that the front and rear surfaces of the thick round shaft 64b are formed on the first control rotor 45. And the rear surface of the second control rotator 57. Therefore, since the slide pin 64 is maintained in the posture without being inclined with respect to the axial direction, the slide pin 64 does not fall down during the displacement along each guide groove, and the slide pin 64 is offset from the engaged guide grooves (61 to 63). Wear and friction are prevented from occurring.
  • a disc spring 58 is disposed in the stepped circular hole 57a on the front surface of the second control rotating body 57, a spring holder 59 is disposed in the stepped cylindrical portion 42i in front of the second control rotator 57, and the center of the components from the spring holder 59 to the drive plate 41b.
  • Bolts 65 are inserted into these holes and fixed to the screw holes 40 b of the camshaft 40.
  • the components from the second control rotator 57 to the drive plate 41b are arranged without falling forward by fixing the spring holder 59 to the step cylindrical portion 42i.
  • the second electromagnetic clutch 60 is disposed so as to face the front surface of the second control rotator 57 in a state of being fixed to an engine case (not shown), energizes the coil 60a, and sucks the suction surface 57b of the second control rotator 57. By sliding with the friction material 66, the rotation of the second control rotator 57 is braked.
  • the second control rotator 57 is braked even if the suction surface 57b is protruded forward from the suction surface 45d of the first control rotator 45 as in Example 2 described later. However, it is desirable to arrange the suction surface 57b flush with the suction surface 45d as shown in the first embodiment (see FIG. 6).
  • the second control rotator 57 When the second control rotator 57 is disposed inside the coil 44 a, the second control rotator 57 may be magnetized under the influence of the magnetic field of the first electromagnetic clutch 44, and the operation becomes unstable when the first electromagnetic clutch 44 is activated. Sometimes. Therefore, the second control rotating body 57 can be kept away from the magnetic field generated by the first electromagnetic clutch 44 by making the attracting surfaces (45d, 57b) flush with each other, and can prevent the magnetization phenomenon.
  • the slide pin 64 which is a mover may have a form having a bearing, for example, and may roll inside the groove when the guide grooves (61 to 63) are displaced. It is also possible to replace with. In that case, the frictional resistance at the time of displacement of the slide pin is lowered and the displacement becomes easy, and the power consumption of each electromagnetic clutch is reduced.
  • the first and second guide grooves (61, 62) preferably have a V-shaped or R-shaped cross section in the axial direction. When the ball is displaced, a thrust force is generated in the direction of the rotation axis L1. The thrust force can be canceled out by the disc spring 58. Further, the manufacturing cost of the ball can be kept lower than that of the thrust pin.
  • the second intermediate rotator 56 be formed of a nonmagnetic material.
  • the magnetic force generated when one of the control rotators (45, 57) is attracted and braked is applied to the other through the second intermediate rotator 56. The problem of being transmitted to the control rotating body and sucked together can be solved.
  • the second control rotator 57 When changing the phase angle of the camshaft 40 with respect to the drive rotator 41 in the advance direction (clockwise D1 direction when viewed from the front of the apparatus; the same applies hereinafter), the second control rotator 57 is braked.
  • the second control rotator 57 When the second control rotator 57 is braked by the second electromagnetic clutch 60, the second control rotator 57 causes a rotation delay with respect to the second intermediate rotator 56 and the first control rotator 45, and the retard direction (reverse to the device front view). Relative rotation in the clockwise direction D2 (hereinafter the same).
  • the second guide groove 62 shown in each drawing of FIG. 10 rotates relative to the second intermediate rotating body 56 and the first control rotating body 45 in the retarding direction (D2 direction).
  • the slide pin 64 is displaced along the first guide groove 61 of the first control rotator 45 and the radial guide groove 63 of the second intermediate rotator 56 to thereby radially inner the rotator (FIG. 10).
  • D3 direction The first control rotator 45 is advanced with respect to the second intermediate rotator 56 and the second control rotator 57 by receiving a force from the slide pin 64 in which the first guide groove 61 moves inward in the radial direction. Rotate relative to (D1 direction).
  • the first control rotator 45 shown in FIG. 5 rotates relative to the first intermediate rotator 43 and the drive rotator 41 in the advance direction D1, and the front eccentric circular cam 52 moves the center axis L1. It rotates eccentrically in the clockwise direction D1 as the center.
  • the rear-side eccentric circular cam 53 reciprocally swings in the longitudinal direction of the long hole 54 while sliding with the inner peripheral surface of the long hole 54, thereby causing the radial guide 49 to move relative to the cam guide plate 47. Apply a force in the direction of stretching.
  • the cam guide plate 47 has flat surfaces (47 b, 47 c) that are in sliding contact with the guide pins (43 c to 43 f), and the slide member 50 descends along the radial groove 49 of the intermediate rotating body 43.
  • the cam guide plate 47 and the first intermediate rotating body 43 cannot be rotated relative to each other by the guide pins (43c to 43f). Accordingly, the first intermediate rotating body 43 is a cam that receives a force from the first guide 51 that is reduced in diameter in the D1 direction when the slide pin 50 descends and is displaced in the D1 direction along the first guide groove 51.
  • the guide plate 47 rotates relative to the drive rotating body 41 in the D1 direction, the guide plate 47 is integrally displaced with the cam guide plate 47 in the D1 direction.
  • the phase angle between the camshaft 40 integrated with the first intermediate rotator 43 and the drive rotator 41 driven by the crankshaft is changed to the advance direction (D1 direction).
  • the first control rotator 45 is braked by the first electromagnetic clutch 44.
  • the braked first control rotator 45 and the rear eccentric cam 53 rotate relative to the drive rotator 41 and the first intermediate rotator 43 in the counterclockwise direction D2.
  • the cam guide plate 47 receives a force in the direction opposite to that during the operation of the second electromagnetic clutch 60 from the rear eccentric circular cam 53 that reciprocally swings in the long hole 54, thereby moving along the radial guide 49.
  • the first intermediate rotator 43 is integrated with the cam guide plate 47 that receives the force from the first guide 51 as the slide pin 50 rises and is displaced in the D2 direction along the first guide groove 51. Relative displacement in the D2 direction. As a result, the phase angle between the camshaft 40 and the drive rotor 41 driven by the crankshaft is returned to the retarded direction (D2 direction).
  • the slide pin 64 has a diameter equal to that of the first guide groove 61 when the first control rotator 45 is relatively rotated in the counterclockwise direction D2 with respect to the second intermediate rotator 56 and the second control rotator 57. It moves radially outward along the direction guide groove 63. At this time, the second control rotator 57 is returned in the clockwise D1 direction with respect to the second intermediate rotator 56 and the second control rotator 57 when the second guide groove 62 receives a force from the slide pin 64. (Relatively rotates).
  • the phase angle between the camshaft 40 returned to the retarded direction (D2 direction) and the drive rotating body 41 is advanced by braking the second control rotating body 57 returned to the D1 direction with the electromagnetic clutch 60 again.
  • the direction can be changed (clockwise D1 direction).
  • the apparatus of the second embodiment (for convenience of explanation, the direction of the second electromagnetic clutch 84 described later is the front side) is the engine crankshaft (not shown). ) Is rotated by receiving a driving force from the center shaft 73 fixed to the camshaft 40 and rotated relative to the center shaft 73, and is supported by the center shaft 73 in front of the drive rotator 71.
  • the first intermediate rotating body 74 fixed so as not to rotate relative to the first intermediate rotating body 75 and the first control rotating body 75 supported at the front end of the center shaft 73 so as to be relatively rotatable and braked by the electromagnetic clutch 44 are identical. It is provided on the rotation center axis L1.
  • the tip 40a of the camshaft 40 is fixed to the circular hole 73a of the center shaft 73.
  • the sprocket 71a and the drive plate 71b constituting the drive rotator 71 are connected to the cylindrical portions (73c, 73d) before and after the flange portion 73b provided on the outer periphery of the center shaft 73 via the central circular holes (71c, 71d).
  • the drive plate 71b is formed with a pair of first guide grooves 71e that are substantially circumferential grooves that reduce in the counterclockwise direction D2.
  • the disc-shaped first intermediate rotating body 74 has a rectangular hole 74a penetrating in the axial direction, a pair of inclined guide grooves 74b inclined in the radial direction from the upper right to the lower left of the front of the apparatus, and parallel to the inclined guide grooves. Relief grooves 74c are respectively formed.
  • the inclined guide groove 74b is formed to be inclined by an angle ⁇ in the advance direction (clockwise D1 direction) with respect to the vertical axis L7 passing through the rotation center axis L1.
  • the first intermediate rotating body 74 is fixed in a state in which it cannot rotate relative to the center shaft 73 by engaging the square hole 74 a with the flat engagement surface 73 e of the center shaft 73.
  • the first control rotator 75 is formed with a through hole 75a and a pair of second guide grooves 75b, which are substantially circumferential grooves whose diameter is reduced in the clockwise direction D1.
  • the first control rotating body 75 is supported so as to be rotatable relative to the cylindrical portion 73f of the center shaft 73 through a circular hole 75a.
  • the coil 44a is energized to attract the suction surface 75g of the first control rotator 75 and slide against the friction material 55, thereby braking the first control rotator 75.
  • the electromagnetic clutch 44 is fixed to an engine case (not shown).
  • the phase conversion member 76 shown in FIG. 15 is engaged with the first guide groove 71e, the inclined guide groove 74b, and the second guide groove 75b.
  • the phase conversion member 76 is composed of a block 77, a first slide member 78, and a second slide member 79.
  • the block portion 77 is formed in a longitudinal shape along the curve of the second guide groove 75b, the convex surface 77a is made to coincide with the curvature of the outer inner peripheral surface 75c of the second guide groove 75b, and the concave surface 77b is made to the inner inner peripheral surface 75d.
  • the second guide groove 75b is formed to be displaceable along the curve.
  • the first slide member 78 includes a coupling shaft 78a supported by the block portion 77 through a circular hole 77c, and a slide shaft 78b that engages with the inclined guide groove 74b and is displaced along the groove 74b.
  • the second slide member 79 includes a coupling shaft 79a supported by the block portion 77 through a circular hole 77d, and a slide shaft 79b that engages with the second guide groove 71e and is displaced along the groove 71e.
  • the coupling shaft 79a has an outer diameter smaller than the groove width of the escape groove 74c, and is inserted into the escape groove 74c in a non-contact manner.
  • the slide shafts (78b, 79b) can be fixed together with the coupling shafts (78a, 79a) in the circular holes (77c, 77d) and slid with the guide grooves (74b, 71e) when displaced.
  • (78b, 79b) engages the coupling shafts (78a, 79a) with respect to the circular holes (77c, 77d) or allows the slide shafts (78b, 79b) to engage with the coupling shafts (78a, 79a). It is more desirable to roll the inside of the guide grooves (74b, 71e) at the time of displacement. In this case, wear when the slide shafts (78b, 79b) displace the guide grooves (74b, 71e) is reduced, and the displacement is performed smoothly.
  • a cam guide plate 80, a second control rotator 81, a disc spring 82, a spring holder 83, and a second electromagnetic clutch 84 are arranged in order.
  • the first control rotator 75 is rotatably supported by the center shaft 73 via a through-hole 75a formed at the center and a cylindrical portion 73f.
  • the first control rotator 75 has a central axis L4 that protrudes forward along the central axis L1 from the bottom 75f of the stepped circular hole 75e formed on the front surface and has a central axis L4 that is separated from the rotational central axis L1 by a distance S1.
  • An eccentric circular cam 85 is provided around the circular hole 75a.
  • the second control rotator 81 is rotatably supported by the center shaft 73 via a through-hole 81a formed at the center and a cylindrical portion 73h.
  • the second control rotator 81 protrudes rearward along the central axis L1 and has a second eccentric circular cam 86 having a central axis L5 that is separated from the rotational central axis L1 by a distance of approximately S1 around the circular hole 81a.
  • a second eccentric circular cam 86 having a central axis L5 that is separated from the rotational central axis L1 by a distance of approximately S1 around the circular hole 81a.
  • the cam guide plate 80 is provided with stepped elliptical holes (80a, 80b) in contact with the first and second eccentric circular cams (85, 86) on the rear surface and the front surface, respectively, and the stepped elliptical holes (80a, 80b). ) In the direction substantially perpendicular to the longitudinal direction, and a rectangular rectangular hole 80c penetrating in the axial direction is provided at the center.
  • the cam guide plate 80 is fixed in a state in which it cannot rotate relative to the center shaft 73 by engaging the elongated hole 80c with the second flat engagement surface 73g, and the horizontal surface 73g1 of the second flat engagement surface. Are attached so as to be displaceable in the longitudinal direction of the rectangular hole 80c. Also, a disc spring 82 is disposed in the step circular hole 81b in front of the second control rotator 81, and a spring holder 83 is disposed in the step cylindrical portion 73i in front of the second control rotator 81, and the drive plate 71b is moved from the spring holder 83 to the drive plate 71b.
  • each component part extending from the second control rotating body 81 to the drive plate 71b is arranged without falling forward.
  • the second electromagnetic clutch 84 is disposed so as to face the front surface of the second control rotator 81 while being fixed to an engine case (not shown), and the adsorbing surface 81c of the adsorbed second control rotator 81 is slid with the friction material 84a.
  • the second control rotator 81 is braked by contacting.
  • the cam guide plate 80 is disposed at the right end of the inner peripheral surface of the stepped circular hole 75e, and the first eccentric circular cam 85 rotates with the central axis L4 as shown in FIG.
  • a straight line L8 connecting the central axis L1 is disposed in a state of being inclined at an angle of approximately ⁇ in the counterclockwise direction D2 from the right side of the horizontal axis L6, and the second eccentric circular cam 86 rotates with the central axis L5 as shown in FIG.
  • a straight line L9 connecting the movement center axis L1 is arranged in a state inclined at an angle of ⁇ in the clockwise direction D1 from the right side of the horizontal axis L6.
  • the first and second eccentric circular cams (85, 86) engage with the stepped oblong holes (80a, 80b), respectively, and the first and second control rotators (75, 81) are in contact with the cam guide plate 80. When it is relatively rotated, it swings in the longitudinal direction while making sliding contact with the stepped elliptical holes (80a, 80b).
  • the suction surface 81c is disposed so as to protrude forward from the suction surface 75g of the first control rotating body 75. Even when arranged in this way, braking of the second control rotator 81 can be obtained, but the attracting surface 81c is disposed flush with the attracting surface 75g so that the second control rotator 81 is not magnetized by the electromagnetic clutch 44. It is more desirable to do.
  • the cam guide plate 80 be formed of a nonmagnetic material.
  • the cam guide plate 80 is formed of a magnetic body, the magnetic force generated when one of the control rotators (75, 81) is attracted and braked is applied via the cam guide plate 80 to the other control rotator. It is possible to eliminate the problem of being transmitted to and sucked together.
  • phase variable operation related to the apparatus of the second embodiment will be described.
  • the phase angle of the first intermediate rotator 74 integrated with the camshaft 40 is retarded from the initial state with no phase angle displacement with respect to the drive rotator 71 rotated in the clockwise direction D1 by the crankshaft. Displacement to the side (counterclockwise D2 direction that causes rotation delay) (retard angle specification).
  • the first control rotator 75 rotates in the direction D1 together with the drive rotator 41.
  • the first control rotator 75 rotates counterclockwise D2 with respect to the drive rotator 71 and the first intermediate rotator 74. Relative rotation in the direction.
  • the block portion 77 is a substantially circumferential groove centered on the central axis L1, and is displaced in the clockwise direction D1 along the second guide groove 75b whose diameter is reduced in the clockwise direction D1.
  • the entire member 76 moves in the radial inner direction D3 through the block portion 77 (see FIG. 16).
  • the first slide shaft 78b is displaced in the substantially radial inner direction D4 (inclination direction of the groove) while engaging with the inclined guide groove 74b, and the second slide shaft 79b is engaged. It is displaced in the counterclockwise direction D2 along the first guide groove 71e.
  • the first intermediate rotating body 74 receives the force from the first slide shaft 78b on the inclined guide groove 74b, thereby causing the first intermediate rotating body 74 to move in the first guide groove 71e with respect to the drive rotating body 71 rotating in the clockwise direction D1.
  • a rotation delay corresponding to the amount of displacement of the two slide shafts 79b occurs, and the two slide shafts 79b rotate relatively in the retarding direction (D2 direction). Accordingly, the phase angle between the camshaft 40 integrated with the first intermediate rotator 74 and the drive rotator 71 rotated by the crankshaft is changed to the retarded direction (D2 direction).
  • the cam guide plate 80 and the second control rotator 81 rotate in the clockwise direction D1 together with the first control rotator 75 in the initial state without phase change.
  • the first electromagnetic clutch 44 is actuated, the first eccentric circular cam 85 rotates counterclockwise D2 around the rotation center axis L1 from the state shown in FIG. 17, and the cam center axis L4 becomes the horizontal axis L6. Rotation is terminated by setting the position inclined at an angle of approximately 180 ° - ⁇ in the counterclockwise direction D2 from the right side of.
  • the first eccentric circular cam 85 reciprocally swings inside the stepped elliptical hole 80a that is in sliding contact with the cam guide plate 80 in a direction perpendicular to the extending direction of the elliptical holes (80a, 80b). Is granted.
  • the cam guide plate 80 moves inside the stepped circular hole 75e toward the left end (D8 direction) by the engagement of the long hole 80c and the flat engaging portion 73g1 (see FIG. 18).
  • the second eccentric circular cam 86 receives a force from the oblong hole 80b of the moving cam guide plate 80, and rotates in the clockwise D1 direction opposite to the first eccentric circular cam 85 (see FIG. 19).
  • the second control rotator 81 integrated with the second eccentric circular cam 86 rotates relative to the first control rotator 75 in the clockwise direction D1 from the state shown in FIG. Rotation is terminated with the position inclined at an angle of approximately 180 ° - ⁇ in the clockwise direction D1 from the right of the horizontal axis L6 as a maximum.
  • the second electromagnetic clutch 84 is energized.
  • the second control rotator 81 is braked.
  • the second eccentric circular cam 86 rotates relative to the first control rotating body 75 in the counterclockwise direction D2, and swings up and down while sliding on the inner peripheral surface of the oval hole 80b.
  • the cam guide plate 80 moves toward the right end of the stepped circular hole 75e (in the direction opposite to D8).
  • the first control rotator 75 receives a force from the cam guide plate 80 through the oblong hole 80a with which the first eccentric circular cam 85 is slidably contacted, and rotates in the clockwise D1 direction opposite to the second eccentric circular cam 86. By rotating, relative rotation in the clockwise D1 direction with respect to the second control rotator 81 is performed. At the same time, since the control rotator 75 rotates relative to the drive rotator 71 in the clockwise direction D1, the phase changing member 76 moves radially outward as opposed to when the first electromagnetic clutch 44 is operated.
  • the first slide shaft 78b is displaced radially outward (in the opposite direction to D4) in the groove 74b, and the second slide shaft 79b is displaced in the clockwise direction D1 along the first guide groove 71e.
  • the first intermediate rotator 74 rotates relative to the drive rotator 71 in the advance direction (D1 direction) when the inclined guide groove 74b receives a force from the first slide shaft 78b.
  • the phase angle of the camshaft 40 integrated with the first intermediate rotator 74 with respect to the drive rotator 71 is returned to the advance direction (clockwise D1 direction).
  • the first control rotator (45, 75) and the second control rotator (57, 81) are braked by the electromagnetic clutch (44, 60, 84).
  • a rotation operation force (braking force) can also be applied to each control rotator using a hydraulic clutch or the like.
  • FIG. 4 is a cross-sectional view taken along line AA of FIG. 3 showing an axial cross section of the same device. 4 is a radial sectional view of the phase varying device, where (a) is a BB sectional view of FIG. 4 showing a vertical section on the rear surface side of the first control rotating body, and (b) is an intermediate rotating body and a cam guide plate.
  • FIG. 4C is a sectional view taken along the line CC of FIG. 4 showing a vertical section, and FIG.
  • FIG. 4C is a sectional view taken along the line DD of FIG.
  • FIG. 4 is an EE sectional view of FIG. 3 showing an axial section of the same device.
  • FIG. 7 is a cross-sectional view taken along the line FF in FIG. 6 which is a vertical cross section of the second control rotator.
  • FIG. 7 is a cross-sectional view taken along the line GG in FIG. 6, which is a cross section of the second intermediate rotating body.
  • FIG. 7 is a cross-sectional view taken along the line HH in FIG. 6, which is a vertical cross section on the front side of the first control rotator. It is operation
  • movement explanatory drawing of the apparatus of 1st Example, (a) is a figure showing the initial state before a phase displacement.
  • FIG. 14 is a cross-sectional view taken along the line HH of FIG. 13 showing an axial cross section of the same device. It is explanatory drawing of a phase conversion member, (a) is a perspective view of a phase conversion member, (b) is a disassembled perspective view of a phase conversion member.
  • FIG. 14A and 14B are radial cross-sectional views of the phase varying device, where FIG. 14A is a cross-sectional view taken along the line II of FIG. 14 showing a vertical cross section on the rear surface side of the first control rotator, and FIG. FIG. 14 is a sectional view taken along line JJ in FIG. 14, and FIG. 14C is a sectional view taken along line KK in FIG.
  • FIG. 15 is a cross-sectional view taken along the line LL in FIG. 14, which is a vertical cross section of the first eccentric circular cam.
  • FIG. 15 is a cross-sectional view taken along line MM in FIG. 14, which is a vertical cross section of the cam guide plate.
  • FIG. 15 is a cross-sectional view taken along line NN in FIG. 14, which is a vertical cross section of the second eccentric circular cam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 【課題】製造が容易かつ安価で、動作音が静かで、カムシャフトとクランクシャフト側との位相角を迅速に変更可能にする相対回動機構を含むエンジンの位相可変装置の提供。 【解決手段】第一制御回転体の回動を制御し、該制御の方向に応じてクランクシャフトとカムシャフトの相対位相角を進角側又は遅角側のいずれかに変更させるエンジンの位相可変装置において、前記位相可変装置は、第一制御回転体を一方に回動させる第一の制動手段と、第二制御回転体を制動し、該制動によってガイド溝を変位する可動子(または回動する偏心円カム)から力を受けて変位する第二中間回転体(またはカムガイドプレート)を介し、前記第一の制御手段と逆方向に前記第一制御回転体を回動させる第二の制動手段とを備えることによって前記第一回転体の回動を制御する。 

Description

自動車用エンジンにおける位相可変装置
 本発明は、回動操作力付与手段により回転ドラムに回動操作力を付与して、クランクシャフトで駆動するスプロケットに対するカムシャフトの回転位相を変化させてバルブの開閉タイミングを変化させる自動車用エンジンにおける位相可変装置に係わる技術である。
 この種の従来技術としては、下記特許文献1に示すバルブタイミング制御装置がある。下記特許文献1の装置は、エンジンのクランクシャフトから駆動力を受けて駆動する駆動プレート2(スプロケット)に対するカムシャフト1の組付角を進角側(駆動プレート2の回転方向)または遅角側(駆動プレート2の回転方向と逆方向)に変更し、カムによって開閉する内燃機関のバルブの開閉タイミングを変更する装置である。
 特許文献1の装置は、駆動プレート2が、カムシャフト1に一体化されたスペーサ8に対して相対回動可能に組付けられている。また、スペーサ8の前方には、放射方向に延出する三つのレバー12を有するレバー軸13がボルト18によって前記スペーサ8と共にカムシャフト1に固定されている。レバー12には、連結ピン16によりリンクアーム14の一端が回動自在に連結され、アーム14の他端には、連結ピン17により可動操作部材11が回動自在に取り付けられている。駆動プレート2の前面には、壁面が半径方向に沿って設けられた平行な一対のガイド壁9a,9bからなる径方向ガイド10が設けられ、可動操作部材11は、ガイド壁9a,9bの間に摺動自在に組み付けられている。また、可動操作部材11の前面側には、半球状の凹部21が設けられ、転動部材である球22が転動可能に収容保持されている。
 一方、レバー軸13の前端部には、ベアリング23を介してガイドプレート24が回転可能に支持されている。ガイドプレート24には、駆動プレート2の回転方向に沿って渦巻きが次第に縮径する渦巻き溝28(渦巻き状ガイド)が後面側に形成され、可動操作部材11に保持された球22が係合している。
 球22が係合した状態で外力を受けてガイドプレート24が駆動プレート2に対して遅角方向(駆動プレート2の回転方向と逆方向)に相対回転すると、可動操作部材11は、径方向ガイド10と渦巻き溝28に沿って半径方向内側に移動する。可動操作部材11が半径方向内側に移動すると、カムシャフト1と駆動プレート2の組付角は、カムシャフト1がレバー軸13に一体化されていることと、リンクアーム14とレバー12のリンク作用により、カムシャフト1が駆動プレート2に対して進角方向に相対回動し、進角側(進角方向)に変更される。
 一方前記と逆に、球22が係合した状態でトルクを受けてガイドプレート24が駆動プレート2に対して進角方向(駆動プレート2の回転方向)に相対回転すると、可動操作部材11は、渦巻き溝28により半径方向外側に移動する。可動操作部材11が半径方向外側に移動すると、カムシャフト1と駆動プレート2の組付角は、カムシャフト1が駆動プレート2に対して遅角方向に相対回動することによって遅角側(遅角方向)に変更される。
 即ち、特許文献1の装置は、ガイドプレート24にトルクを付加し、ガイドプレート24を駆動プレート2に対して前記遅角方向または進角方向のいずれかに相対回転させることにより、カムシャフト1と駆動プレート2の組付角を進角側または遅角側のいずれかに変更する装置である。ガイドプレート24を駆動プレート2に対して相対回転させる前記トルクは、以下に示す遊星歯車機構25に第1及び第2電磁ブレーキ(26,27)を組み合わせることによって付加される。
 遊星歯車機構25は、レバー軸13の前端部にベアリング29を介して制動フランジ34を一体化したサンギヤ30が回転自在に支持され、ガイドプレート24の前端凹部の内周面にリングギヤ31が形成され、ベアリング23と29との間にレバー軸13に固定されたキャリアプレート32が設けられ、キャリアプレート32にサンギヤ30とリングギヤ31に噛合される複数のプラネタリギヤ33が回動自在に支持されることによって構成されている。また、第1及び第2電磁ブレーキ(26,27)は、ガイドプレート24と制動フランジ34の前端面に対峙して配置されることにより、これらの回転を制動する。
 即ち、ガイドプレート24は、第一電磁ブレーキ26から制動力を受けることにより、駆動プレート2に対して遅角方向に相対回転するトルクを受ける。一方サンギヤ30は、第二電磁ブレーキ27から制動力を受けてキャリアプレート32に対して遅角方向に相対回転する。その際、プラネタリギヤ33は、自転することによりリングギヤ31を増速させる。従って、ガイドプレート24は、サンギヤ30が第二電磁ブレーキ27から制動力を受けることにより、駆動プレート2に対して進み側に相対回転するトルクを受ける。カムシャフト1と駆動プレート2との組付角は、ガイドプレート24受ける前記トルクの方向に応じて進角側または遅角側のいずれかに変更される。
 一方、特許文献2のバルブタイミング調整装置は、カムシャフト4と一体化した出力軸22にクランクシャフトによって駆動する回転部材12を相対回動可能に支持させ、電動機70により作用軸72に一体化した偏心軸18を回動させ、偏心軸18によってその回転方向と逆方向に相対回転する遊星歯車30とリングギヤ14とを介して出力軸22を回動させ、出力軸22に支持された回転部材12に対してカムシャフト4を相対回動させることにより、両者の組付角を変更し、バルブの開閉タイミングを変更する装置である。
特開2006-77779号 特開2004-3419号
 特許文献1の装置では、駆動プレート2に対してガイドプレート24を相対回動させる機構に遊星歯車機構25を採用し、遊星歯車機構25は、サンギヤ30,複数のプラネタリギヤ33及びリングギヤ31からなる多数の歯車によって構成されている。一般に歯車は、歯部を成型する上で製造単価が高くなりがちである。特許文献1の装置は、多数の歯車を採用するガイドプレート24の相対回動機構の製造コストが高くなる点で問題がある。
 また一般に歯車は、かみ合う歯部同士が動作時に衝突することによって歯打ち音を発生させるが、前記歯打ち音は、動作時の装置の静音性を妨げる。特許文献1の装置は、多数の歯車の組み合わせを採用することにより、バルブタイミングの変更時に多数の歯打ち音を原因とした動作音が大きくなる点で問題がある。一方、歯打ち音は、各歯部の成型精度を向上させ、歯部間のガタツキが減らすことによって小さく出来るが、その場合、製造コストが更に高くなる点で問題がある。
 また、特許文献2の装置は、位相変換終了後に電動機70(モータ)の通電を切ると、回転し続ける作用軸72とコイル90との間に回生作用(発電効果)が発生して回転部材12に抵抗トルクが発生する。従って、作用軸72は、位相変換の有無にかかわらず回転部材12と同期して回転させなければならないため、電動機70の通電は、切ることが出来ない。従って、電動機の採用は、導入コストが高いだけでなく消費電力が大きな点で問題がある。また、エンジンの位相可変装置に採用する電動機は、配置スペースの関係上、小型のものが必要となる。カムシャフトとクランクシャフト側との位相角を変更するため、小型のモータで大きなトルクを発生させるためには、減速機構(この場合遊星歯車30)を介在させる必要があるが、かかる減速機構は、クランクシャフト側に対するカムシャフトの位相角を変更する際におけるレスポンス性を低下させるため、迅速な位相角の変更を実現する面で問題がある。
 本願発明は、上述した問題を考慮し、前記ガイドプレート24に相当する部材の相対回動機構を容易かつ安価に製造可能にすると共に、カムシャフトとクランクシャフト側との位相角を変更する際の前記相対回動機構の動作音がより静かなエンジンの位相可変装置を提供するものであり、前記位相角の変更を迅速に行うことが出来るエンジンの位相可変装置を提供するものである。
 前記目的を達成するために、請求項1の発明は、クランクシャフトによって回転駆動する駆動回転体と、カムシャフトに一体化された第一中間回転体と、第一制御回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一制御回転体を前記駆動回転体と第一中間回転体に対して相対回動させる回動操作力付与手段を備え、前記第一制御回転体の相対回動方向に応じて前記第一中間回転体と第一制御回転体を相対回動させ、前記カムシャフトと駆動回転体との位相角を変更するエンジンの位相可変装置において、前記回動操作力付与手段は、前記第一制御回転体に形成された略円周方向溝であって、前記第一制御回転体の回動方向のいずれか一方向に沿って縮径する第一ガイド溝と、前記中間回転体と駆動回転体に対して前記第一制御回転体を相対回動させる第一の制動手段と、前記カムシャフトに一体化され、軸方向に貫通する略径方向ガイド溝を有し、前記第一制御回転体に隣接し、該第一制御回転体と同軸かつ相対回動可能に配置された第二中間回転体と、前記第一ガイド溝と逆方向に縮径する略円周方向溝である第二ガイド溝が形成され、該第二中間回転体と同軸かつ相対回動可能に配置された第二制御回転体と、前記第二制御回転体を前記第二中間回転体と第一制御回転体に対して相対回動させる第二の制動手段と、前記第一ガイド溝、径方向ガイド溝及び第二ガイド溝に係合し、前記第一制御回転体と、前記第二制御回転体との相対回動に基づき前記各ガイド溝に沿って変位する可動子を備えた。
 (作用)初期状態において第一制御回転体は、カムシャフトに一体化された第一中間回転体とクランクシャフトから駆動力を受ける駆動回転体と一体になって回転する。また、前記第一制御回転体は、回動操作力付与手段により、前記駆動回転体と第一中間回転体に対して相対回動する。その際、第一中間回転体は、前記第一制御回転体の相対回動方向に基づき駆動回転体に対して相対回動する。その結果、前記駆動回転体(クランクシャフト側)に対する第一中間回転体(カムシャフト側)の位相角は、第一制御回転体の相対回転方向に応じて進角方向(駆動回転体の回転方向。以下同じ)または遅角方向(駆動回転体の回転方向と逆方向。以下同じ)のいずれかに変更される。
 第一制御回転体が第一の制動手段から制動力を受けて前記駆動回転体と第一中間回転体に対して回転遅れを生じることにより、駆動回転体に対する第一中間回転体の位相角は、進角方向または遅角方向のいずれかに変更される。一方、第二制御回転体は、第二の制動手段から制動力を受けることにより第一制御回転体と第二中間回転体に対して回転遅れを生じ、後面に形成された第二ガイド溝と共に遅角方向に相対回動する。その際、可動子は、回動方向のいずれか一方向に沿って縮径する円周方向溝である第二ガイド溝と第二中間回転体の径方向ガイド溝と係合し、かつこれらガイド溝に沿って変位することによって前記回転体の半径方向に移動する。第一制御回転体は、第二ガイド溝と逆方向に縮径する円周方向溝として形成された第一ガイド溝が、半径方向に移動する可動子から力を受けることにより、第二制御回転体と第二中間回転体に対して進角方向に相対回動し、同時に駆動回転体と第一回転体に対して進角方向に相対回動する。その結果、駆動回転体に対する第一中間回転体の位相角は、第一制動手段による制動時と逆方向に変更される。
 第一制御回転体、第二中間回転体、第二制御回転体及び可動子は、円形を基調とした単純な構成であるため、加工が容易である。また、駆動回転体と第一中間回転体との位相角を変更する際に可動子は、各ガイド溝と常時摺接しながら静かに変位する。また、位相角変更後には、第一及び第二の制動手段の通電を切ることが出来る。また、位相角変更用の減速機構が不要である。
 また前記目的を達成するために、請求項2の発明は、クランクシャフトによって回転駆動する駆動回転体と、カムシャフトに一体化された第一中間回転体と、前記第一制御回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一制御回転体を前記駆動回転体と第一中間回転体に対して相対回動させる回動操作力付与手段を備え、前記第一制御回転体の相対回動方向に応じて前記第一中間回転体と第一制御回転体を相対回動させ、前記カムシャフトと駆動回転体との位相角を変更するエンジンの位相可変装置において、前記回動操作力付与手段は、前記第一中間回転体と駆動回転体に対して前記第一制御回転体を相対回動させる第一の制動手段と、前記第一制御回転体から前記回動中心軸方向に沿って突出し、中心軸が前記回動中心軸から偏心した第一偏心円カムと、前記回動中心軸方向に沿って突出し、中心軸が前記回動中心軸から偏心した第二偏心円カムを備え、前記第一制御回転体と回動中心軸が同軸かつ相対回動可能に配置された第二制御回転体と、長手方向が前記カムシャフト軸方向に略直交し、前記第一偏心円カムと第二偏心円カムが前記長手方向に対して変位自在に係合する一対の長円孔を有し、前記カムシャフトに対して前記長手方向とカムシャフト軸方向にそれぞれ略交する方向に揺動自在に支持され、かつ相対回動不能に支持されたカムガイドプレートと、前記カムガイドプレートと第一制御回転体に対して前記第二制御回転体を相対回動させる第二の制動手段と、を備え、前記第一偏心円カムと第二偏心円カムは、カム中心と回動中心とを結ぶ直線が前記カムガイドプレートの前記揺動方向から傾きを持つように配置され、かつ前記揺動方向を中心として略対称に配置されるようにした。
 (作用)第一制御回転体は、第一の制動手段から制動力を受けることにより駆動回転体と第一中間回転体に対して回転遅れを生じて遅角方向に相対回動し、前記駆動回転体に対する第一中間回転体の位相角は、第一制御回転体の前記相対回動方向に応じて進角方向または遅角方向のいずれかに変更される。
 一方、第二制御回転体は、第二の制動手段から制動力を受けることにより第一制御回転体とカムガイドプレートに対して回転遅れを生じ、後面の第二偏心円カムと共に遅角方向に相対回動する。第二偏心円カムは、カムガイドプレート前面の長円孔に摺接しつつ該長円孔の長手方向に変位し、カムガイドプレートは、変位する第二偏心円カムの摺接面から力を受けて前記段差長円孔の長手方向と略直交する方向かつカムシャフト軸方向に直交する方向に変位する。
 第一制御回転体前面の第一偏心円カムは、カムガイドプレートの変位方向から傾いて配置され、かつ前記変位方向を挟んで第二偏心円カムと略対称に配置されているため、前記カムガイドプレートが変位すると、係合するカムガイドプレート後面の長円孔から力を受けることによって第二偏心円カムと逆方向、即ち進角方向に回動する。従って第一制御回転体は、第二制御回転体とカムガイドプレートに対して進角方向に相対回動し、同時に駆動回転体と第一回転体に対して進角方向に相対回動する。その結果、駆動回転体に対する第一中間回転体の位相角は、第一の制動手段による制動時と逆方向に変更される。
 第一制御回転体、カムガイドプレート、第二制御回転体は、円形を基調とした単純な構成であるため、加工が容易である。また、駆動回転体と第一中間回転体との位相角を変更する際の第一及び第二偏心円カムは、カムガイドプレートと常時摺接しながら静かに変位する。また、位相角変更後には、第一及び第二の制動手段の通電を切ることが出来る。また、位相角変更用の減速機構が不要である。
 (効果)請求項1及び2の発明によれば、歯車より回動操作力付与手段の構成部品の加工が容易で、高コストとなるモータを採用しないため、第一制御回転体の相対回動機構を容易かつ安価に製造出来、位相角変更時の動作音が低減される。また、位相角の変換終了後に制動手段の通電を切ることが出来ることによって節電が出来、減速機構を採用しないことによって迅速な位相角の変更を実現することが出来る。
 次に、本発明の実施の形態を実施例1と2によって説明する。
 図1は、本発明の第1実施例である自動車用エンジンにおける位相可変装置を前方から見た分解斜視図、図2は、同装置を後方から見た分解斜視図、図3は、同装置の正面図、図4は、同装置の軸方向断面図である図3のA-A断面図、図5は、同装置の半径方向断面図であって、(a)図は、図4のB-B断面図、(b)図は、図4のC-C断面図、(c)図は、図4のD-D断面図、図6は、図3の軸方向断面図であるE-E断面図、図7は、図6のF-F断面図、図8は、図6のG-G断面図、図9は、図6のH-H断面図、図10は、第1実施例の装置の動作説明図であって、(a)図は、位相変位前の初期状態を表す図、(b)図は、位相変位中の状態を表す図、(c)図は、位相を最大変位した状態の図、図11は、本発明の第2実施例である自動車用エンジンにおける位相可変装置を前方から見た分解斜視図、図12は、同装置を後方から見た分解斜視図、図13は、同装置の正面図、図14は、同装置の軸方向断面図である図13のH-H断面図、図15は、位相変換部材の説明図であり、(a)図は、位相変換部材の斜視図、(b)図は、位相変換部材の分解斜視図、図16は、位相可変装置の半径方向断面図であり、(a)図は、図14のI-I断面図、(b)図は、図14のJ-J断面図、(c)図は、図14のK-K断面図、図17は、図14のL-L断面図、図18は、図14のM-M断面図、図19は、図14のN-N断面図である。
 実施例1と2に示すエンジンの位相可変装置は、エンジンに組み付け一体化された形態で用いられ、クランクシャフトの回転に同期して吸排気弁が開閉するようにクランクシャフトの回転をカムシャフトに伝達するとともに、エンジンの負荷や回転数などの運転状態によってエンジンの吸排気弁の開閉のタイミングを変化させるための装置である。
 図1~10により実施例1の装置の構成について説明すると、実施例1の装置(説明の便宜上、後述する第二電磁クラッチ60の方向を前側、カムシャフト40の方向を後側としている。)は、エンジンのクランクシャフト(図示しない)から駆動力を受けて回転する駆動回転体41と、カムシャフト40に固定され、前記駆動回転体41を相対回動可能な状態で支持するセンターシャフト42と、駆動回転体41の前方でセンターシャフト42に相対回動不能に固定され、駆動回転体41に対して相対回動する第一中間回転体(後述する第一制御回転体45のガイドプレート)43と、第一中間回転体43の前端部内側でセンターシャフト42に対して相対回動可能な状態で支持された制御回転体45と、図示しないエンジンケースに固定され、第一制御回転体45の回転を制動する第一電磁クラッチ44を同一の回動中心軸L1上に備えている。
 第一制御回転体45は、これと一体になって中心軸L1の周囲を偏心回動する偏心円カム46を後面に備え、第一制御回転体45の後方には、偏心円カム46が係合する長円孔54を介して偏心円カム46に支持され、中心軸L1と直交する方向に往復揺動するカムガイドプレート47が配置されている。
 センターシャフト42は、孔42aがカムシャフト40の先端40aに係合し、カムシャフト40と相対回動不能な状態で一体化されている。駆動回転体41は、スプロケット41aと駆動プレート41bが、孔(41c,41d)を介してセンターシャフト42の外周に形成されたフランジ42bの前後の円筒部(42c、42d)にそれぞれ相対回動可能な状態で支持され、複数の結合ピン48によって結合されて構成されている。駆動プレート41bには、回動中心軸L1を中心とする略円周方向に一対の曲線溝であるガイド溝51が形成され、実施例1におけるガイド溝51は、駆動回転体41の回転方向D1(装置正面から見て時計回り方向、以下同じ)に向けて縮径するように形成している。
 第一中間回転体43は、円筒形状に形成され、その底部43aには、角穴43bと、後述するスライドピン50が非接触状態で変位する長孔状の一対の径方向溝49(逃げ溝)と、係合孔43g~43jに係合する外径同一のガイドピン43c~43fが設けられている。第一中間回転体43は、角穴43bが平坦係合面42eに係合し、センターシャフト42に対して相対回動不能な状態で固定されている。尚、ガイドピン43cと43d(または43eと43f)の中心を結ぶ直線の方向は、径方向溝49の伸張方向と平行にする。
 第一制御回転体45、偏心円カム46及びカムガイドプレート47は、第一中間回転体43の円筒部43kの内側に配置されている。第一制御回転体45は、前面に中心をL1とし、センターシャフト42の先端鉛頭部42fを挿通させる貫通円孔45aを備え、後面に回動中心軸L1からの離間距離がd1となる軸L2を中心とする偏心円孔45bを備える。偏心円カム46は、前記軸L2を中心として偏心円孔45bに係合する前側偏心円カム52と、回動中心軸L1からの離間距離がd1より大きなd2となる軸L3を中心とする後側偏心円カム53が、軸方向に一体化され、L1を中心とする貫通円孔46aを備える。偏心円カム46は、貫通円孔46aを介してセンターシャフト42の先端円筒部42fに対して相対回動可能な状態で支持される。また、第一制御回転体45は、中間回転体の円筒部43kの先端段差面43lの内径と略同一の円盤形状に形成され、外周面45cが前記段差面43lに略内接する。尚、偏心円カム(52,53)の外形は、本実施例のような円形状に限らず、特殊な周縁を持つカム形状にしてもよい。
 回転体ガイドプレート47は、一対の係合孔47aと、後側偏心円カム53を挿入して摺動させる長孔54を備える。カムガイドプレート47は、一対の係合孔47aから後方に突出する複数のスライドピン(スライド部材)50を備えている。スライドピン50は、中空太丸軸50bの内側に細丸軸50aを挿入して形成され、細丸軸50aの一端は、前記係合孔47aに係合し、中空太丸軸50bが、第一中間回転体43の径方向溝49と非接触の状態で挿通され、他端は、駆動プレート41bに形成された略円周溝であるガイド溝51と変位可能な状態で係合する。
 長孔54は、一対の係合孔47aの中心を結ぶ直線と略直交する方向(径方向ガイド49の伸張方向)に伸張する。また、後側偏心円カム53は、長孔54の内周縁と摺動しつつ長手方向を往復する。また、回転体ガイドプレート47の両側には、ガイドピン(43c,43d)と(43e,43f)にそれぞれ当接する平坦面(47b,47c)が形成されている。
 第一制御回転体45の前方には、摩擦材55を後面に配置した第一電磁クラッチ44を配置し、電磁クラッチ44は、コイル44aに通電し、第一制御回転体45の吸着面45dを摩擦材55に摺接させることにより、第一制御回転体45の回動を制動する。
 また、第一制御回転体45の前方には、順番に第二中間回転体56、第二制御回転体57、皿バネ58、バネホルダー59及び第二電磁クラッチ60がそれぞれ配置されている。
 第一制御回転体45は、回動中心軸L1を中心する略円周方向に形成された一対の曲線溝(図9を参照)であって、駆動回転体41の回転方向と逆向きのD2方向(装置正面から見て反時計回り方向、以下同じ)に向けて縮径する第一ガイド溝61を前面に備え、第二制御回転体57は、回動中心軸L1を中心する略円周方向に形成された一対の曲線溝(図7を参照)であって、時計回り方向D1に向けて縮径する第二ガイド溝62を後面に備える。第二中間回転体56は、中央に形成された角穴56aを挟んで両側に径方向ガイド溝63が形成されている。
 第二中間回転体56は、角穴56aがセンターシャフト42の第二平坦係合面42gと係合することによってセンターシャフト42に対して回動不能な状態で固定されている。第二制御回転体57は、中央に形成された円孔57aと、センターシャフト42先端の小円筒部42hを介し、センターシャフト42に対して回動可能な状態で支持されている。ガイド溝(61~63)には、前記各ガイド溝を変位する一対のスライドピン64が係合し、スライドピン64は、スライドピン50と同様に細丸軸64aを中空太丸軸64bの内側に挿入して構成されている。細丸軸64aの両端は、第一及び第二ガイド溝(61,62)と変位可能な状態で係合し、中空太丸軸64bは、径方向ガイド63と変位可能な状態で係合する。
 尚、太丸軸64bの外径を細丸軸64aの外径よりも大きく形成してスライドピン64をフランジ状に形成することにより、太丸軸64bの前後面は、第一制御回転体45の前面と第二制御回転体57の後面との間に挟まれる。従ってスライドピン64は、軸方向に対して傾くことなく姿勢が保持されるため、各ガイド溝に沿って変位中に転倒することがなく、係合する各ガイド溝(61~63)との偏摩耗とフリクションの発生が防止される。
 第二制御回転体57前面の段差円孔57aには、皿バネ58を配置し、その前方の段差円筒部42iにバネホルダー59を配置し、バネホルダー59から駆動プレート41bに至る構成部品の中央の孔にボルト65を挿通してカムシャフト40のねじ穴40bに固定する。第二制御回転体57から駆動プレート41bに至る各構成部品は、バネホルダー59が段差円筒部42iに固定されることで前方へ抜けることなく配置される。第二電磁クラッチ60は、図示しないエンジンケースに固定した状態で第二制御回転体57の前面に対向するよう配置され、コイル60aに通電し、第二制御回転体57の吸着面57bを吸着して摩擦材66と摺動させることにより、第二制御回転体57の回動を制動する。
 尚、第二制御回転体57は、後述する実施例2のように吸着面57bを第一制御回転体45の吸着面45dより前方に突出させても制動される。しかし、吸着面57bは、実施例1(図6を参照)に示すように吸着面45dと面一に配置することが望ましい。第二制御回転体57は、コイル44aの内側に配置された場合、第一電磁クラッチ44の磁界の影響を受けて磁化することが有り、第一電磁クラッチ44の作動時に動作が不安定になることがある。従って、第二制御回転体57は、吸着面(45d,57b)を面一にすることにより、第一電磁クラッチ44の発する磁界から遠ざけることが出来、前記磁化現象を防止することが出来る。
 また、可動子であるスライドピン64は、例えばベアリングを有する形態とし、ガイド溝(61~63)を変位する際に溝の内部を転動するようにしてもよいし、スライドピン64は、ボールに置き換える事も可能である。その場合、スライドピンは、変位時の摩擦抵抗が低下して変位が容易になり、各電磁クラッチの消費電力が低減される。一方、スライドピン64をボールに置き換えた場合、第一及び第二ガイド溝(61、62)の軸方向断面形状は、V型又はR形状とすることが望ましい。ボールの変位時には、回動軸L1方向にスラスト力が発生するが、該スラスト力は、皿ばね58によって打ち消す事が出来る。また、ボールは、スラストピンよりも製造コストを低く抑える事ができる。
 また、第二中間回転体56は、非磁性体で形成することが望ましい。第二中間回転体56を被磁性体で形成した場合には、制御回転体(45,57)の一方を吸着して制動する際に発生させる磁力が、第二中間回転体56を介して他方の制御回転体に伝達され、一緒に吸引されてしまう不具合を解消できる。
 次にカムシャフト40と駆動回転体41との位相角を変更する際の動作を図5及び図7~10に基づいて説明する。位相角変更のない初期状態において、駆動回転体41がクランクシャフト(図示せず)によって装置正面から見て時計回りD1方向に回転すると、第一中間回転体43、第一制御回転体45、第二中間回転体56及び第二制御回転体57は、駆動回転体41と一体になって時計回りD1方向に回動する。
 駆動回転体41に対するカムシャフト40の位相角を進角方向(装置正面から見て時計回りD1方向。以下同じ)に変更する場合には、第二制御回転体57を制動する。第二制御回転体57は、第二電磁クラッチ60によって制動された場合、第二中間回転体56と第一制御回転体45に対して回転遅れを生じ、遅角方向(装置正面から見て反時計回りD2方向、以下同じ)に相対回動する。その際、図10各図に示す第二ガイド溝62は、第二中間回転体56と第一制御回転体45に対して遅角方向(D2方向)に相対回動する。その際、スライドピン64は、第一制御回転体45の第一ガイド溝61と第二中間回転体56の径方向ガイド溝63に沿って変位することによって前記回転体の半径方向内側(図10のD3方向)に移動する。第一制御回転体45は、第一ガイド溝61が半径方向に内側に移動するスライドピン64から力を受けることにより、第二中間回転体56と第二制御回転体57に対して進角方向(D1方向)に相対回動する。
 同時に図5に示す第一制御回転体45は、第一中間回転体43と、駆動回転体41に対して進角方向D1方向に相対回動し、前側偏心円カム52は、中心軸L1を中心として時計回りD1方向に偏心回動する。その際、後側偏心円カム53は、長孔54の内周面と摺動しながら長孔54の長手方向に向けて往復揺動することにより、カムガイドプレート47に対し、径方向ガイド49の伸張する方向に力を付与する。カムガイドプレート47は、平坦面(47b、47c)が、ガイドピン(43c~43f)と摺接し、スライド部材50が中間回転体43の径方向溝49に沿って下降する。
 カムガイドプレート47と第一中間回転体43は、ガイドピン(43c~43f)によって相対回動が出来ない。従って、第一中間回転体43は、スライドピン50が下降し、かつ第一ガイド溝51に沿ってD1方向に変位することにより、D1方向に縮径する第一ガイド51から力を受けたカムガイドプレート47が、駆動回転体41に対してD1方向に相対回動した場合、カムガイドプレート47と一体になってD1方向に相対変位する。その結果、第一中間回転体43に一体化されたカムシャフト40とクランクシャフトで駆動する駆動回転体41との位相角は、進角方向(D1方向)に変更される。
 一方、駆動回転体41に対するカムシャフト40の位相角を進角方向から遅角方向(D2方向)に戻す場合には、第一電磁クラッチ44によって第一制御回転体45を制動する。制動された第一制御回転体45と後側偏心円カム53は、駆動回転体41と第一中間回転体43に対して反時計回りD2方向に相対回動する。その際、カムガイドプレート47は、長孔54内を往復揺動する後側偏心円カム53から第二電磁クラッチ60の作動時と逆方向の力を受けることにより、径方向ガイド49に沿って上昇する。
 第一中間回転体43は、スライドピン50が上昇し、かつ第一ガイド溝51に沿ってD2方向に変位することにより、第一ガイド51から力を受けたカムガイドプレート47と一体になってD2方向に相対変位する。その結果、カムシャフト40とクランクシャフトで駆動する駆動回転体41との位相角は、遅角方向(D2方向)に戻される。
 尚、スライドピン64は、第一制御回転体45が、第二中間回転体56と第二制御回転体57に対して反時計回りD2方向に相対回動した場合、第一ガイド溝61と径方向ガイド溝63に沿って半径方向外側に移動する。その際、第二制御回転体57は、第二ガイド溝62が、スライドピン64から力を受けることにより、第二中間回転体56と第二制御回転体57に対して時計回りD1方向に戻される(相対回動する)。遅角方向(D2方向)に戻されたカムシャフト40と駆動回転体41との位相角は、D1方向に戻された第二制御回転体57を電磁クラッチ60で再び制動することにより、進角方向(時計回りD1方向)に変更させることができる。
 次に実施例2の装置について図11~19によって説明すると、実施例2の装置(説明の便宜上、後述する第二電磁クラッチ84の方向を前側としている。)は、エンジンのクランクシャフト(図示しない)から駆動力を受けて回転する駆動回転体71が、カムシャフト40に固定されて共に回転するセンターシャフト73に対して相対回動自在に支持され、駆動回転体71の前方でセンターシャフト73に対して相対回動不能に固定された第一中間回転体74と、センターシャフト73の前端において相対回動自在に支持され、電磁クラッチ44によって回転が制動される第一制御回転体75を同一の回動中心軸L1上に備えている。
 カムシャフト40は、先端40aがセンターシャフト73の円孔73aに固定される。駆動回転体71を構成するスプロケット71aと駆動プレート71bは、中心の円孔(71c,71d)を介し、センターシャフト73の外周に設けたフランジ部73bの前後の円筒部(73c、73d)に対して相対回動可能に支持され、複数の結合ピン48によって一体化される。
 駆動プレート71bには、反時計回りD2方向に縮径する略円周方向溝である一対の第一ガイド溝71eが形成されている。円盤状の第一中間回転体74には、軸方向に貫通する角穴74aと半径方向に対して装置正面の右上から左下に向けて傾斜する一対の傾斜ガイド溝74b、傾斜ガイド溝に平行な逃げ溝74cがそれぞれ形成されている。傾斜ガイド溝74bは、回動中心軸L1を通る垂直軸L7に対して進角方向(時計回りD1方向)に角度δ傾斜して形成されている。第一中間回転体74は、センターシャフト73の平坦係合面73eに角穴74aが係合することにより、センターシャフト73に対して相対回動不能な状態で固定されている。
 第一制御回転体75には、貫通する円孔75aが形成され、時計回りD1方向に縮径する略円周方向溝である一対の第二ガイド溝75bが形成されている。第一制御回転体75は、円孔75aを介してセンターシャフト73の円筒部73fに対して相対回動自在に支持されている。
 また、第一制御回転体75の前方には、コイル44aに通電することで第一制御回転体75の吸着面75gを吸着して摩擦材55と摺動させ、第一制御回転体75を制動する電磁クラッチ44が図示しないエンジンケースに固定される。また、第一ガイド溝71e、傾斜ガイド溝74b及び第二ガイド溝75bには、図15に示す位相変換部材76が係合する。位相変換部材部材76は、ブロック部77と第一スライド部材78と第二スライド部材79によって構成される。ブロック部77は、第二ガイド溝75bの曲線に沿って長手状に形成し、凸面77aを第二ガイド溝75bの外側内周面75cの曲率と一致させ、凹面77bを内側内周面75dの曲率と一致させることにより、第二ガイド溝75bの曲線に沿って変位自在に形成する。
 第一スライド部材78は、円孔77cを介してブロック部77に支持される結合軸78aと、傾斜ガイド溝74bに係合し、該溝74bに沿って変位するスライド軸78bによって構成される。第二スライド部材79は、円孔77dを介してブロック部77に支持される結合軸79aと、第二ガイド溝71eに係合し、該溝71eに沿って変位するスライド軸79bによって構成される。結合軸79aは、外径が逃げ溝74cの溝幅より小さく、逃げ溝74cに非接触で挿通される。
 スライド軸(78b、79b)は、結合軸(78a,79a)と共に円孔(77c、77d)に固定し、変位時にガイド溝(74b、71e)と摺動させても差し支えはないが、スライド軸(78b、79b)は、結合軸(78a,79a)を円孔(77c、77d)に対して回動可能に係合するか、スライド軸(78b、79b)を、結合軸(78a,79a)に対して回動可能に形成することにより、変位時にガイド溝(74b,71e)の内側を転動させることがより望ましい。その場合、スライド軸(78b、79b)がガイド溝(74b,71e)を変位する際の摩耗が低減され、変位がスムーズに行われる。
 また、第一制御回転体75の前方には、順番にカムガイドプレート80、第二制御回転体81、皿バネ82、バネホルダー83、第二電磁クラッチ84がそれぞれ配置されている。
 第一制御回転体75は、中心に形成した貫通円孔75aと円筒部73fを介してセンターシャフト73に回動可能に支持される。また、第一制御回転体75は、前面に形成した段差円孔75eの底部75fから中心軸L1に沿って前方に突出し、回動中心軸L1から距離がS1離間した中心軸L4を有する第一偏心円カム85を円孔75aの周囲に有する。また、第二制御回転体81は、中心に形成した貫通円孔81aと円筒部73hを介してセンターシャフト73に回動可能に支持される。また、第二制御回転体81は、中心軸L1に沿って後方に突出し、回動中心軸L1から距離が略S1離間した中心軸L5を有する第二偏心円カム86を円孔81aの周囲に有する。
 一方、カムガイドプレート80は、第一及び第二偏心円カム(85、86)がそれぞれ内接する段差長円孔(80a、80b)を後面と前面に備え、前記段差長円孔(80a、80b)の長手方向と略直交する方向に伸張し、軸方向に貫通する直方形状の長角孔80cを中央に備えている。
 カムガイドプレート80は、長角穴80cが第二平坦係合面73gと係合することにより、センターシャフト73に対して相対回動不能な状態で固定され、第二平坦係合面の水平面73g1に沿って長方形状の角穴80cの長手方向に変位可能に取り付けられている。また、第二制御回転体81の前方の段差円孔81bには、皿バネ82を配置し、その前方の段差円筒部73iには、バネホルダー83を配置し、バネホルダー83から駆動プレート71bに至る構成部品の中央の孔にボルト65を挿通してカムシャフト40のねじ穴40bに固定することにより、第二制御回転体81から駆動プレート71bに至る各構成部品が前方へ抜けることなく配置される。第二電磁クラッチ84は、図示しないエンジンケースに固定された状態で第二制御回転体81の前面に対向するよう配置し、吸着した第二制御回転体81の吸着面81cを摩擦材84aと摺接させることで第二制御回転体81を制動する。
 尚、位相変更の無い初期状態において、カムガイドプレート80は、段差円孔75eの内周面の右端に配置され、第一偏心円カム85は、図17に示すとおり、中心軸L4と回動中心軸L1を結ぶ直線L8が水平軸L6の右方から反時計回りD2方向に角度略θ傾いた状態で配置され、第二偏心円カム86は、図19に示すとおり、中心軸L5と回動中心軸L1を結ぶ直線L9が水平軸L6の右方から時計回りD1方向に角度略θ傾いた状態で配置されている。
 第一及び第二偏心円カム(85、86)は、それぞれ段差長円孔(80a,80b)に係合し、第一及び第二制御回転体(75,81)がカムガイドプレート80に対して相対回動した場合、前記段差長円孔(80a,80b)と摺接しつつその長手方向に揺動する。
 尚、実施例2においては、吸着面81cを第一制御回転体75の吸着面75gより前方に突出して配置している。このように配置した場合でも第二制御回転体81の制動は得られるが、吸着面81cは、吸着面75gと面一に配置し、第二制御回転体81が電磁クラッチ44によって磁化しないようにすることがより望ましい。
 また、カムガイドプレート80は、非磁性体で形成することが望ましい。カムガイドプレート80を被磁性体で形成した場合には、制御回転体(75,81)の一方を吸着して制動する際に発生させる磁力が、カムガイドプレート80を介して他方の制御回転体に伝達され、一緒に吸引されてしまう不具合を解消できる。
 次に実施例2の装置に関する位相可変の動作を説明する。実施例2では、クランクシャフトによって時計回りD1方向に回転する駆動回転体71に対し、カムシャフト40に一体化された第一中間回転体74の位相角を位相角変位の無い初期状態から遅角側(回転遅れとなる反時計回りD2方向)に変位させる(遅角仕様)。
 初期状態において第一制御回転体75は、駆動回転体41と共にD1方向に回転するが、電磁クラッチ44によって制動された場合、駆動回転体71と第一中間回転体74に対して反時計回りD2方向に相対回動する。その際、ブロック部77は、中心軸L1を中心とした略円周方向溝であって、時計回りD1方向に縮径する第二ガイド溝75bに沿って時計回りD1方向に変位し、位相変換部材76全体がブロック部77を介して半径方向内側D3方向に移動する(図16を参照)。
 その際、第一スライド軸78bは、傾斜ガイド溝74bと係合しつつ、溝74b内を略半径方向内側D4方向(溝の傾斜方向)に変位し、第二スライド軸79bは、係合する第一ガイド溝71eに沿って反時計回りD2方向に変位する。その際、第一中間回転体74は、傾斜ガイド溝74bが第一スライド軸78bから力を受けることにより、時計回りD1方向に回転する駆動回転体71に対し、第一ガイド溝71e内における第二スライド軸79bの変位量に応じた回転遅れを生じ、遅角方向(D2方向)に相対回動する。従って、第一中間回転体74に一体化されたカムシャフト40と、クランクシャフトによって回転する駆動回転体71との位相角は、遅角方向(D2方向)に変更される。
 一方、カムガイドプレート80と第二制御回転体81は、位相変更の無い初期状態において、第一制御回転体75と共に時計回りD1方向に回転する。第一電磁クラッチ44が作動すると、第一偏心円カム85は、図17の状態から回動中心軸L1を中心として反時計回りD2方向に回動し、カムの中心軸L4が、水平軸L6の右方から反時計回りD2方向に略180°-θの角度傾いた位置を最大として回動を終了する。その際、第一偏心円カム85は、摺接する段差長円孔80aの内部を往復揺動し、カムガイドプレート80に対して長円孔(80a、80b)の伸張方向と直交する方向に力を付与する。その際、カムガイドプレート80は、長角穴80cと平坦係合部73g1との係合により、段差円孔75eの内部を左端(D8方向)に向かって移動する(図18参照)。第二偏心円カム86は、移動するカムガイドプレート80の長円孔80bから力を受けて、第一偏心円カム85と逆向きとなる時計回りD1方向に回動する(図19参照)。従って、第二偏心円カム86に一体化された第二制御回転体81は、図19の状態から第一制御回転体75に対して時計回りD1方向に相対回動し、カムの中心軸L5が水平軸L6の右方から時計回りD1方向に略180°-θの角度傾いた位置を最大として回動を終了する。
 一方、カムシャフト40と、駆動回転体71との位相角を遅角側(反時計周りD2方向)から進角側(時計回りD1方向)に戻す場合には、第二電磁クラッチ84に通電して第二制御回転体81を制動する。その際、第二偏心円カム86は、第一制御回転体75に対して反時計回りD2方向に相対回動し、長円孔80bの内周面と摺接しながら上下に揺動することにより、カムガイドプレート80が、段差円孔75eの右端に向かって移動する(D8と逆方向)。
 第一制御回転体75は、第一偏心円カム85が摺接する長円孔80aを介してカムガイドプレート80から力を受けて、第二偏心円カム86と逆向きとなる時計回りD1方向に回動することにより、第二制御回転体81に対して時計回りD1方向に相対回動する。同時に制御回転体75は、駆動回転体71に対しても時計回りD1方向に相対回動するため、第一電磁クラッチ44の作動時と反対に位相変更部材76が半径方向外側に移動する。
 その際、第一スライド軸78bは、溝74b内を略半径方向外側(D4と逆方向)に変位し、第二スライド軸79bは、第一ガイド溝71eに沿って時計回りD1方向に変位する。第一中間回転体74は、傾斜ガイド溝74bが第一スライド軸78bから力を受けることにより、駆動回転体71に対して進角方向(D1方向)に相対回動する。その結果、駆動回転体71に対する第一中間回転体74に一体化されたカムシャフト40の位相角は、進角方向(時計回りD1方向)に戻される。
 尚、実施例1、2では、第一制御回転体(45、75)と第二制御回転体(57,81)を電磁クラッチ(44,60、84)によって制動しているが、前記電磁クラッチの代わりに油圧クラッチ等を用いて前記各制御回転体に回動操作力(制動力)を付与することもできる。
本発明の第1実施例である自動車用エンジンにおける位相可変装置を前方から見た分解斜視図である。 同装置を後方から見た分解斜視図である。 同装置の正面図である。 同装置の軸方向断面を示す図3のA-A断面図である。 位相可変装置の半径方向断面図であり、(a)は、第一制御回転体後面側の垂直断面を示す図4のB-B断面図、(b)は、中間回転体とカムガイドプレートの垂直断面を示す図4のC-C断面図、(c)は、駆動回転体の垂直断面を示す図4のD-D断面図である。 同装置の軸方向断面を示す図3のE-E断面図である。 第二制御回転体の垂直断面である図6のF-F断面図である。 第二中間回転体の断面である図6のG-G断面図である。 第一制御回転体の前面側の垂直断面である図6のH-H断面図である。 第1実施例の装置の動作説明図であり、(a)は、位相変位前の初期状態を表す図である。(b)は、位相変位中の状態を表す図である。(c)は、位相を最大変位した状態の図である。 本発明の第2実施例である自動車用エンジンにおける位相可変装置を前方から見た分解斜視図である。 同装置を後方から見た分解斜視図である。 同装置の正面図である。 同装置の軸方向断面を示す図13のH-H断面図である。 位相変換部材の説明図であり、(a)は、位相変換部材の斜視図、(b)は、位相変換部材の分解斜視図である。 位相可変装置の半径方向断面図であり、(a)は、第一制御回転体後面側の垂直断面を示す図14のI-I断面図、(b)は、中間回転体の垂直断面を示す図14のJ-J断面図、(c)は、駆動回転体の垂直断面を示す図14のK-K断面図である。 第一偏心円カムの垂直断面である図14のL-L断面図である。 カムガイドプレートの垂直断面である図14のM-M断面図である。 第二偏心円カムの垂直断面である図14のN-N断面図である。
符号の説明
  40    カムシャフト
  41、71 駆動回転体
  43,74   第一中間回転体
  44    第一電磁クラッチ(第一の制動手段)
  45,75 第一制御回転体
  56,   第二中間回転体
  57,81 第二制御回転体
  60,84 第二電磁クラッチ(第二の制動手段)
  61    第一ガイド溝
  62    第二ガイド溝
  63    径方向ガイド溝
  64    スライドピン(可動子)
  80    カムガイドプレート
  80a,80b カムガイドプレートの段差状の長円孔
  85    第一偏心円カム
  86    第二偏心円カム
  L1    回動中心軸
  L4    第一偏心円カムのカム中心
  L5    第二偏心円カムのカム中心
  L8    L1とL4を結ぶ直線
  L9    L1とL5を結ぶ直線
  D1    進角方向(駆動回転体の回動方向)
  D2    遅角方向(駆動回転体の回動方向と逆方向)
 

Claims (2)

  1.  クランクシャフトによって回転駆動する駆動回転体と、カムシャフトに一体化
    された第一中間回転体と、第一制御回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一制御回転体を前記駆動回転体と第一中間回転体に対して相対回動させる回動操作力付与手段を備え、前記第一制御回転体の相対回動方向に応じて前記第一中間回転体と第一制御回転体を相対回動させ、前記カムシャフトと駆動回転体との位相角を変更するエンジンの位相可変装置において、
     前記回動操作力付与手段は、
     前記第一制御回転体に形成された略円周方向溝であって、前記第一制御回転体の回動方向のいずれか一方向に沿って縮径する第一ガイド溝と、
     前記中間回転体と駆動回転体に対して前記第一制御回転体を相対回動させる第一の制動手段と、
     前記カムシャフトに一体化され、軸方向に貫通する略径方向ガイド溝を有し、前記第一制御回転体と同軸かつ相対回動可能に配置された第二中間回転体と、
     前記第一ガイド溝と逆方向に縮径する略円周方向溝である第二ガイド溝が形成され、該第二中間回転体と同軸かつ相対回動可能に配置された第二制御回転体と、
    前記第二制御回転体を前記第二中間回転体と第一制御回転体に対して相対回動させる第二の制動手段と、
     前記第一ガイド溝、径方向ガイド溝及び第二ガイド溝に係合し、前記第一制御回転体と、前記第二制御回転体との相対回動に基づき前記各ガイド溝に沿って変位する可動子と、を備えたことを特徴とするエンジンの位相可変装置。
  2.  クランクシャフトによって回転駆動する駆動回転体と、カムシャフトに一体化された第一中間回転体と、第一制御回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一制御回転体を前記駆動回転体と第一中間回転体に対して相対回動させる回動操作力付与手段を備え、前記第一制御回転体の相対回動方向に応じて前記第一中間回転体と第一制御回転体を相対回動させ、前記カムシャフトと駆動回転体との位相角を変更するエンジンの位相可変装置において、
     前記回動操作力付与手段は、
     前記第一中間回転体と駆動回転体に対して前記第一制御回転体を相対回動させる第一の制動手段と、
     前記第一制御回転体から前記回動中心軸方向に沿って突出し、中心軸が前記回動中心軸から偏心した第一偏心円カムと、
     前記回動中心軸方向に沿って突出し、中心軸が前記回動中心軸から偏心した第二偏心円カムを備え、前記第一制御回転体と回動中心軸が同軸かつ相対回動可能に配置された第二制御回転体と、
     長手方向が前記カムシャフト軸方向に略直交し、前記第一偏心円カムと第二偏心円カムが前記長手方向に対して変位自在に係合する一対の長円孔を有し、前記カムシャフトに対して前記長手方向とカムシャフト軸方向にそれぞれ略直交する方向に揺動自在に支持され、かつ相対回動不能に支持されたカムガイドプレートと、
     前記カムガイドプレートと第一制御回転体に対して前記第二制御回転体を相対回動させる第二の制動手段と、を備え、
     前記第一偏心円カムと第二偏心円カムは、カム中心と回動中心とを結ぶ直線が前記カムガイドプレートの前記揺動方向から傾きを持つように配置され、かつ前記揺動方向を中心として略対称に配置されたことを特徴とするエンジンの位相可変装置。
PCT/JP2008/057857 2008-04-23 2008-04-23 自動車用エンジンにおける位相可変装置 WO2009130770A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010508999A JP5047356B2 (ja) 2008-04-23 2008-04-23 自動車用エンジンにおける位相可変装置
US12/988,585 US8418665B2 (en) 2008-04-23 2008-04-23 Variable phase controller for automotive engine
CN200880128779.8A CN102016242B (zh) 2008-04-23 2008-04-23 机动车用发动机中的相位可变装置
PCT/JP2008/057857 WO2009130770A1 (ja) 2008-04-23 2008-04-23 自動車用エンジンにおける位相可変装置
KR1020107023531A KR101433153B1 (ko) 2008-04-23 2008-04-23 자동차용 엔진에 있어서의 위상 가변 장치
EP08740796A EP2282019B1 (en) 2008-04-23 2008-04-23 Variable phase controller for automotive engine
HK11110161.9A HK1155789A1 (en) 2008-04-23 2011-09-27 Variable phase controller for automotive engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057857 WO2009130770A1 (ja) 2008-04-23 2008-04-23 自動車用エンジンにおける位相可変装置

Publications (1)

Publication Number Publication Date
WO2009130770A1 true WO2009130770A1 (ja) 2009-10-29

Family

ID=41216519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057857 WO2009130770A1 (ja) 2008-04-23 2008-04-23 自動車用エンジンにおける位相可変装置

Country Status (7)

Country Link
US (1) US8418665B2 (ja)
EP (1) EP2282019B1 (ja)
JP (1) JP5047356B2 (ja)
KR (1) KR101433153B1 (ja)
CN (1) CN102016242B (ja)
HK (1) HK1155789A1 (ja)
WO (1) WO2009130770A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192365A1 (en) * 2008-09-05 2011-08-11 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
CN102191962A (zh) * 2010-03-10 2011-09-21 通用汽车环球科技运作有限责任公司 具有用于同轴凸轮轴的双凸轮相位器的发动机
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341222A4 (en) * 2008-10-22 2012-08-15 Nittan Valva DEVICE FOR VARIABLE PHASE OF CAMSHAFT IN MOTOR FOR AUTOMOBILE
WO2010113279A1 (ja) * 2009-03-31 2010-10-07 日鍛バルブ株式会社 エンジンの位相可変装置
CN102459827B (zh) * 2009-06-05 2014-01-22 日锻汽门株式会社 发动机的相位可变装置
JP5208154B2 (ja) * 2010-04-20 2013-06-12 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
KR101209725B1 (ko) * 2010-06-16 2012-12-07 현대자동차주식회사 연속 가변 밸브 타이밍 장치
US9062572B2 (en) * 2010-07-02 2015-06-23 Nittan Valve Co., Ltd. Variable cam phaser for automobile engine and controller therefor
DE102010033897B4 (de) * 2010-08-10 2017-03-16 Magna powertrain gmbh & co kg Nockenwellen-Verstellvorrichtung
KR20150063378A (ko) * 2012-10-09 2015-06-09 니탄 밸브 가부시키가이샤 자동차용 엔진의 위상 가변 장치
JP6576760B2 (ja) * 2015-09-24 2019-09-18 Ntn株式会社 オイルポンプ駆動装置
US11619182B2 (en) * 2020-10-12 2023-04-04 Schaeffler Technologies AG & Co. KG Actuation assembly for phaser system
US11519342B2 (en) * 2021-02-11 2022-12-06 Schaeffler Technologies AG & Co. KG Cranktrain phase adjuster for variable compression ratio
US11970987B2 (en) 2022-03-17 2024-04-30 Husco Automotive Holdings Llc Systems and methods for variable compression ratio phaser having a dual torsion spring arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003419A (ja) 2002-04-19 2004-01-08 Denso Corp バルブタイミング調整装置
JP2006077779A (ja) 2005-12-07 2006-03-23 Hitachi Ltd 内燃機関のバルブタイミング制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2330144A1 (en) * 1998-05-12 1999-11-18 Trochocentric International Ag Device for adjusting the phase position of a shaft
JP3961237B2 (ja) * 2001-05-23 2007-08-22 株式会社日立製作所 可変バルブタイミング装置の制御装置
US6732688B2 (en) * 2001-08-10 2004-05-11 Unisia Jecs Corporation Valve timing control system for internal combustion engine
JP3959713B2 (ja) * 2002-03-22 2007-08-15 株式会社デンソー バルブタイミング調整装置
AU2003246707A1 (en) * 2002-07-24 2004-02-23 Ina-Schaeffler Kg Device for modifying the control times of an internal combustion engine
DE102004007052A1 (de) * 2004-02-13 2005-09-08 Daimlerchrysler Ag Verstelleinrichtung für eine Welle
JP2008002324A (ja) * 2006-06-21 2008-01-10 Hitachi Ltd 位相角検出装置及び該位相角検出装置を用いた内燃機関のバルブタイミング制御装置
JP4238903B2 (ja) * 2006-09-13 2009-03-18 株式会社日立製作所 内燃機関用カム軸位相可変装置および位相可変装置
WO2009098752A1 (ja) * 2008-02-04 2009-08-13 Nittan, Valve, Co., Ltd. 自動車用エンジンにおける位相可変装置
EP2341222A4 (en) * 2008-10-22 2012-08-15 Nittan Valva DEVICE FOR VARIABLE PHASE OF CAMSHAFT IN MOTOR FOR AUTOMOBILE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003419A (ja) 2002-04-19 2004-01-08 Denso Corp バルブタイミング調整装置
JP2006077779A (ja) 2005-12-07 2006-03-23 Hitachi Ltd 内燃機関のバルブタイミング制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2282019A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192365A1 (en) * 2008-09-05 2011-08-11 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
US8613266B2 (en) * 2008-09-05 2013-12-24 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
CN102191962A (zh) * 2010-03-10 2011-09-21 通用汽车环球科技运作有限责任公司 具有用于同轴凸轮轴的双凸轮相位器的发动机
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置
CN103140653A (zh) * 2010-10-12 2013-06-05 日锻汽门株式会社 发动机的相位可变装置
US8726867B2 (en) 2010-10-12 2014-05-20 Nittan Valve Co., Ltd. Phase varying apparatus for automobile engine technical
JP5600748B2 (ja) * 2010-10-12 2014-10-01 日鍛バルブ株式会社 エンジンの位相可変装置

Also Published As

Publication number Publication date
JPWO2009130770A1 (ja) 2011-08-11
CN102016242A (zh) 2011-04-13
KR101433153B1 (ko) 2014-08-22
EP2282019A4 (en) 2012-03-07
EP2282019B1 (en) 2013-03-27
CN102016242B (zh) 2013-01-23
US8418665B2 (en) 2013-04-16
JP5047356B2 (ja) 2012-10-10
US20110036319A1 (en) 2011-02-17
HK1155789A1 (en) 2012-05-25
KR20110009660A (ko) 2011-01-28
EP2282019A1 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5047356B2 (ja) 自動車用エンジンにおける位相可変装置
JP5307145B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
JP5154657B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
JP5047310B2 (ja) 自動車用エンジンにおける位相可変装置
JP5102071B2 (ja) 自動車用エンジンにおける位相可変装置
US6510826B2 (en) Valve timing control device of internal combustion engine
JP5255114B2 (ja) エンジンの位相可変装置
JPWO2009107204A1 (ja) エンジンのバルブ制御装置
JP2015068189A (ja) 内燃機関の可変動弁装置
JP5260741B2 (ja) エンジンの位相可変装置
KR101566945B1 (ko) 엔진의 위상 가변 장치에 있어서의 전자 클러치의 회전 방지 구조
JP2015102065A (ja) 弁開閉時期制御装置
JP5802273B2 (ja) 自動車用エンジンの位相可変装置
JP3964158B2 (ja) 内燃機関のバルブタイミング制御装置
JP2003120234A (ja) 内燃機関のバルブタイミング制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128779.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508999

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12988585

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107023531

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008740796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE