WO2009098752A1 - 自動車用エンジンにおける位相可変装置 - Google Patents

自動車用エンジンにおける位相可変装置 Download PDF

Info

Publication number
WO2009098752A1
WO2009098752A1 PCT/JP2008/051763 JP2008051763W WO2009098752A1 WO 2009098752 A1 WO2009098752 A1 WO 2009098752A1 JP 2008051763 W JP2008051763 W JP 2008051763W WO 2009098752 A1 WO2009098752 A1 WO 2009098752A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
cam
rotator
guide plate
eccentric circular
Prior art date
Application number
PCT/JP2008/051763
Other languages
English (en)
French (fr)
Inventor
Michihiro Kameda
Masayasu Nagadoh
Original Assignee
Nittan, Valve, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittan, Valve, Co., Ltd. filed Critical Nittan, Valve, Co., Ltd.
Priority to PCT/JP2008/051763 priority Critical patent/WO2009098752A1/ja
Priority to EP08710742A priority patent/EP2249000B1/en
Priority to KR1020107015562A priority patent/KR101433150B1/ko
Priority to JP2009552341A priority patent/JP5047310B2/ja
Priority to CN2008801262220A priority patent/CN101939512B/zh
Priority to US12/811,634 priority patent/US8286602B2/en
Publication of WO2009098752A1 publication Critical patent/WO2009098752A1/ja
Priority to HK11106858.5A priority patent/HK1152734A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/031Electromagnets

Definitions

  • the present invention relates to a phase variable device in an automobile engine that applies a rotation operation force to a rotating drum by a rotation operation force applying means and changes a rotation phase of a camshaft with respect to a sprocket to change a valve opening / closing timing.
  • Patent Document 1 As this type of conventional technology, there is a valve timing control device shown in Patent Document 1 below.
  • the device of Patent Document 1 below is assembled so as to be rotatable relative to the camshaft 1, and is integrated with the drive plate 3 to which the driving force of the crankshaft of the engine is transmitted and the camshaft 1, and coupled to the outer periphery.
  • the converted conversion guide 11 is rotatably attached to the driven shaft member 9 via the bearing 14 in front of the conversion guide 11 and the driven shaft member 9 facing the front surface of the drive plate 3 while maintaining a gap.
  • the intermediate rotating body 5 is provided.
  • the drive plate 3, the driven shaft member 9, and the intermediate rotator 5 are each provided with a radial guide 10 formed of a groove, a guide hole 12 inclined with respect to the circumferential direction, and a spiral guide 15, and guides (10, 12, 15). And a ball 16 that rolls while engaging.
  • the intermediate rotating body 5 rotates relative to the driven shaft member 9 by using the magnetic force received from the electromagnetic coils 22 a and 22 b by the yoke block 19 that is integrated as a driving source.
  • the camshaft continues to receive the reaction force from the valve spring as an impact.
  • the impact is transmitted to the sphere 16 through the guide hole 12 formed in the conversion guide 11 of the driven shaft member 9, so that the sphere 16 rolls in the guide hole 12 due to the impact.
  • the assembly angle between the drive plate 3 and the camshaft 1 cannot be maintained, and there is a problem that the intake / exhaust timing of the valve may be distorted due to an unintended variation in the assembly angle.
  • the present invention is not intended between the camshaft and the first rotating body (drive plate 3) rotated by the crankshaft even when the reaction force transmitted from the valve spring to the camshaft is received. It is an object of the present invention to provide an engine phase variable device that can maintain a phase angle (assembly angle) without deviation and further reduce an impact generated at the time of maximum displacement of the phase angle.
  • a first rotating body that is rotationally driven by a crankshaft, an intermediate rotating body that is integrated with a camshaft, and a second rotation that is disposed in front of the intermediate rotating body.
  • the bodies are arranged on the same rotation center axis so as to be rotatable relative to each other, and the second rotating body is rotated by the rotating operation force applying means between the first rotating body and the second rotating body.
  • a phase varying device for an engine provided with a phase angle changing mechanism that applies a force and changes the phase angle of both of the rotating bodies by rotating the first rotating body and the intermediate rotating body relative to each other.
  • the intermediate rotating body is formed in a shape having a cylinder
  • the second rotating body is formed in a disk shape substantially the same as the inner diameter of the cylindrical portion of the intermediate rotating body, Substantially inscribed around the circumference, from the second rotating body to the intermediate rotation
  • An eccentric circular cam that protrudes toward the body and whose central axis is separated from the rotational central axis of the second rotary body, and extends in a direction perpendicular to the rotational central axis of the second rotary body, and the eccentric circular cam slides
  • a radial guide formed on the intermediate rotating body that extends in a direction, and an inclination formed on the first rotating body that is inclined with respect to a circumference around the rotation center axis of the
  • the first rotor is relatively displaced in the circumferential direction.
  • the intermediate rotating body cannot be displaced relative to the cam guide plate in the circumferential direction. Accordingly, the intermediate rotating body is integrated with the cam guide plate and is relatively displaced in the circumferential direction with respect to the first rotating body. As a result, the phase angle of the first rotating body driven by the camshaft and the crankshaft integrated with the intermediate rotating body is displaced.
  • the intermediate rotating body receives a rotational torque that causes relative displacement from the camshaft to the first rotating body and the cam guide plate. Since the sliding member of the cam guide plate receives a cam action from the tilt guide by the rotational torque and is given a force to be displaced along the tilt guide and the radial guide, the cam guide plate is orthogonal to the long hole. A force to move in the linear direction is given.
  • the second rotating body passes through the central axis of the eccentric circular hole of the second rotating body and is parallel to the straight line orthogonal to the elongated hole, and the inner peripheral edge of the eccentric circular hole with which the eccentric circular cam engages. At the position, a force that moves in the linear direction applied to the cam guide plate is received.
  • the force applied to the cam guide plate to move in the linear direction is such that the outer peripheral edge of the second rotating body is substantially inscribed to the inner peripheral edge of the cylindrical portion of the intermediate rotating body, so that the eccentric circular hole of the second rotating body is Acts on the intermediate rotator at a position where an axis passing through the central axis and parallel to a straight line orthogonal to the elongated hole intersects the inner periphery of the cylindrical portion of the intermediate rotator approximately inscribed by the second rotator. In such a position, a local frictional force that prevents sliding between the second rotating body and the intermediate rotating body is generated.
  • the second rotating body is locked in a state in which the second rotating body cannot relatively rotate due to the local frictional force generated between the second rotating body and the intermediate rotating body.
  • the circular cam cannot rotate eccentrically, and the slide member of the cam guide plate cannot be displaced along the inclined guide of the first rotating body. Therefore, even if torque is generated in the camshaft due to the reaction force from the valve spring, the intermediate rotating body integrated with the camshaft is maintained in a state in which it cannot rotate relative to the first rotating body to be driven. Therefore, the torque is maintained without causing a change in phase angle.
  • the phase angle between the first rotating body and the intermediate rotating body is such that the cam guide plate moves in the radial direction and the outer periphery of the cam guide plate that is in contact with the inner periphery of the intermediate rotating body is It moves away from the inner periphery and again comes into contact with the inner periphery of the intermediate rotator to stop the movement of the cam guide plate, and the displacement angle becomes the maximum settable phase angle. Further, the speed of the cam guide plate that reciprocates in the direction orthogonal to the long hole changes in the same manner as the moving speed of the eccentric circular cam in the same direction.
  • the operation of the eccentric circular cam is such that when the distance between the rotation center axis of the second rotating body and the center of the eccentric circular cam is ⁇ , A single vibration with an amplitude ⁇ is obtained in the orthogonal direction.
  • the moving speed of the eccentric circular cam with respect to the direction orthogonal to the front slot is the position of the rotational central axis. Increases as it approaches, and decreases as it moves away from the position of the rotation center axis. The speed becomes zero when the distance between the center of the eccentric circular cam and the rotation center axis reaches an amplitude ⁇ (maximum value).
  • the cam guide plate has the amplitude as large as possible between the center of the eccentric circular cam and the rotation center axis of the second rotating body when the outer periphery of the cam guide plate contacts the inner periphery of the intermediate rotating body.
  • the outer periphery of the cam guide plate collides while decelerating with respect to the inner periphery of the intermediate rotating body. Therefore, even if the phase angle displacement between the camshaft (intermediate rotating body) and the first rotating body is maximized, the impact generated when the outer periphery of the cam guide plate and the inner periphery of the intermediate rotating body collide Smaller with decreasing speed.
  • the invention according to claim 2 is the engine phase varying device according to claim 1, wherein the center of the second rotating body is separated from the rotation center axis of the second rotating body.
  • the eccentric circular cam is adjacent to the first eccentric circular cam that slides with the long hole of the cam guide plate and the second eccentric circular cam that engages with the eccentric circular hole.
  • the second eccentric circular cam has a separation distance between the cam central axis and the rotation central axis of the second rotating body, so that the center axis of the first eccentric circular cam and the second rotating body It was formed smaller than the separation distance from the rotation center axis.
  • the torque is generated.
  • the collision speed of the cam guide plate that collides with the inner periphery of the intermediate rotating body can be suppressed as much as possible independently of increase / decrease of the rotational speed of the eccentric circular cam. Even if the phase angle displacement between the camshaft (intermediate rotating body) and the first rotating body is suddenly converted to the maximum amount, the extra impact generated in the engine can be minimized.
  • the relative displacement of the cam guide plate with respect to the intermediate rotating body can be maintained without being reduced, and the relative rotating torque is generated when the relative rotating torque is generated from the camshaft side to the intermediate rotating body.
  • the self-locking effect that prevents the relative rotation of the intermediate rotator and the first rotator can be further increased. Therefore, it is possible to further prevent an unexpected phase angle variation between the intermediate rotating body and the first rotating body, and to maintain the opening / closing timing of the intake / exhaust valve more accurately.
  • FIG. 1 is an exploded perspective view of a phase varying device in an automobile engine representing a first embodiment of the present invention
  • FIG. 2 is a front view of the device
  • FIG. 3 is an axial sectional view of the device.
  • FIG. 4 is a cross-sectional view taken along line AA
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 3 showing a vertical cross section of the second rotating body and the rotating body guide plate (intermediate rotating body)
  • FIG. FIG. 6 is a cross-sectional view taken along the line CC of FIG. 3 showing the cross section of FIG. 3,
  • FIG. 6 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 8 is an explanatory diagram of the operation relationship between the eccentric circular cam and the cam guide plate
  • FIG. 9 is an operation explanatory diagram of the guide pin (slide member) with respect to the first rotating body
  • FIGS. c) is an explanatory diagram of the specification when the eccentric circular cam is swung in different ranges on the rotation plane
  • FIG. 11 is on the rotation plane.
  • 12 is a graph showing the displacement amount of the slide member based on the position of the eccentric circular cam.
  • FIGS. 12A and 12B are explanatory diagrams of a self-locking structure using the second rotating body and the rotating body guide plate
  • FIG. 14 is an exploded perspective view of a phase varying device in an automobile engine representing a second embodiment of the invention
  • FIG. 14 is an axial sectional view of the device of the second embodiment
  • FIG. 15 is a partial sectional view of the device of the second embodiment
  • FIG. 16 is a structural explanatory view of the second rotating body and the third rotating body of the second embodiment
  • FIG. 17 is an explanatory view of the arrangement of the eccentric circular cam and the cam guide plate with respect to the intermediate rotating body. is there.
  • FIG. 18 is an explanatory diagram of a modified example of the cam guide plate.
  • the engine phase varying device shown in the first and second embodiments is used in a form assembled and integrated with the engine, and the crankshaft of the crankshaft is opened and closed in synchronization with the rotation of the crankshaft.
  • This is a device for transmitting the rotation to the camshaft and changing the opening / closing timing of the intake / exhaust valve of the engine according to the operating state such as the engine load and the rotational speed.
  • the apparatus integrally supports and integrally rotates a first rotating body (driving rotating body) 31 that rotates by a driving force of a crankshaft (not shown) of an engine.
  • a center shaft 32 that rotates together with the camshaft 30, and an intermediate rotating body (guide plate of the second rotating body 35) that is fixed to the center shaft 32 and rotates relative to the first rotating body 31 together with the camshaft 30.
  • 33 and a second rotating body (control rotating body) 35 supported on the front end of the center shaft 32 so as to be relatively rotatable and braked by the electromagnetic clutch 34 on the same rotation center axis L1.
  • the device also includes an eccentric circular cam 36 that rotates eccentrically around the central axis L1 when the second rotating body rotates, and a reciprocating swing in the direction perpendicular to the axis L1 with respect to the intermediate rotating body 33 by the eccentric circular cam 36.
  • a cam guide plate 37 that protrudes from the cam guide plate 37, and a slide pin (slide member) 40 that displaces in the radial guide 38 of the intermediate rotating body 33 and the inclined guide 39 of the first rotating body 31.
  • the tip 30a of the camshaft 30 is engaged with the hole 32a of the center shaft 32.
  • a first rotating body 31 and a second sprocket member 42 each having a sprocket 41 formed on the outer periphery thereof are rotatable relative to the center shaft 32 at the front and rear cylindrical portions of the flange 32 b formed on the outer periphery of the center shaft 32. It is supported in a state and is coupled by a plurality of coupling pins (six in this embodiment) 43.
  • the flat engagement surface 32 c of the center shaft 32 is engaged with a square hole 33 b of the intermediate rotator 33, and the intermediate rotator 33 is fixed in a state in which it cannot rotate relative to the center shaft 32.
  • the intermediate rotator 33 is formed in a cylindrical shape, and a square hole 33b, engagement holes 48 to 51 of guide pins 44 to 47, and radial guides 38 (one pair in this embodiment) are formed on the bottom 33a. ing.
  • the radial guide 38 is formed as a long hole groove extending on an axis orthogonal to the rotation center axis L1 at a symmetrical position about the axis L1.
  • the engagement holes 48 and 49 (50, 51) are formed so that the straight line connecting the centers is the same as the extending direction of the radial guide 38.
  • the second rotator 35 includes an eccentric circular hole 52 centered on an axis L2 spaced from the rotation center axis L1 by a distance d1.
  • the eccentric circular cam 36 is integrally formed so that the first eccentric circular cam 53 and the second eccentric circular cam 54 are adjacent to each other in the direction of the rotation center axis L1.
  • the eccentric circular cam 36 is supported in a state of being rotatable relative to the distal end cylindrical portion 32d of the center shaft 32 through a circular hole 55 penetrating in the axial direction about the axis L1.
  • the second rotating body 35 is supported so as to be rotatable relative to the center shaft 32 by engaging the second eccentric circular cam 54 with the eccentric circular hole 52.
  • the second rotator 35 is formed in a disk shape that is substantially the same as the inner diameter of the cylindrical portion 33c in the intermediate rotator, and the outer peripheral surface 35a is substantially inscribed in the inner peripheral surface 33d of the cylindrical portion.
  • the first eccentric circular cam 53 is separated from the rotation center axis L1 by a distance d2, and the separation distance d2 is larger than the separation distance d1 between the center L2 of the second eccentric circular cam 54 and the rotation center axis L1. It is formed to become.
  • the outer shapes of the eccentric circular cams 53 and 54 are not limited to the circular shape as in the present embodiment, but may be a cam shape having a special peripheral edge.
  • the rotating body guide plate 37 includes a pair of engagement holes 37 a and a long hole 56 through which the first eccentric circular cam 53 slides.
  • the pair of engagement holes 37a are formed at positions symmetrical about the axis L1 on an axis perpendicular to the axis L1, and the interval between the engagement holes 37a is the installation interval of the radial guides 38 of the intermediate rotating body 33.
  • the slide pin 40 is engaged so as to protrude in the direction of the intermediate rotating body 33.
  • the long hole 56 is formed to extend in a direction perpendicular to the extending direction of the radial guide 38.
  • the long hole 56 is formed so as to extend in a direction orthogonal to a straight line passing through the axis L1 and connecting the centers of the pair of engagement holes 37a.
  • the height of the long hole 56 is formed substantially the same as the outer diameter of the first eccentric circular cam 53, and the first eccentric circular cam 53 reciprocates in the longitudinal direction while sliding with the inner peripheral edge of the long hole 56. It is inserted freely.
  • a contact surface 37b that contacts the guide pins (44, 45) and a contact surface 37c that contacts the guide pins (46, 47) are formed on both sides of the rotating body guide plate.
  • the slide pin 40 is inserted into the radial guide 38 of the intermediate rotating body 33 and is engaged with an inclined guide 39 formed on the first rotating body 31.
  • the inclination guide 39 is a groove-shaped guide that is inclined with respect to the circumferential direction around the rotation center axis L1 and is inclined with respect to the rotation center axis L1 in proportion to the rotation angle of the first rotating body 31.
  • an electromagnetic clutch 34 that adsorbs the second rotating body 35 by energizing the coil 34a is adjacent to the front of the second rotating body 35 in a state of being fixed to an engine case (not shown).
  • a spring holder 58 having a torsion coil spring 57 disposed on the outer periphery is inserted inside the electromagnetic clutch 34, and its tip engages with the recess 32 e of the center shaft 32.
  • a female screw hole is formed in the camshaft 30. The spring holder 58, the center shaft 32, and the camshaft 30 are fastened together by engaging the bolt 60 with the female screw hole of the camshaft 30, and rotate integrally around the axis L1.
  • the rear surface 58a of the spring holder 58 faces the front surface of the second eccentric circular cam 53 in a non-contact state, and prevents the eccentric circular cam 36 and the cam guide plate 37 from falling forward.
  • the torsion coil spring 59 has one end 59 a fixed to the hole 35 b of the second rotating body 35, the other end 59 b fixed to the hole 58 b of the spring holder 58, and the reverse of the braking torque received by the second rotating body 35 from the electromagnetic clutch 34.
  • the second rotating body 35 is always urged in the direction (the rotating direction of the first rotating body 31).
  • the phase variable operation related to the apparatus of the first embodiment will be described.
  • the phase angle of the intermediate rotator 33 with respect to the first rotator 31 is changed from the initial state where there is no phase angle displacement (the rotational direction of the first rotator 31 shown in FIG. 7.
  • the first eccentric circular cam 53 and the cam guide plate 37 are arranged at the position shown in FIG. 10A with respect to the inner peripheral surface 33d of the intermediate rotating body 33.
  • the cam guide plate 37 has an upper end portion 37d abutting on an upper portion of the inner peripheral surface 33d of the intermediate rotating body 33, and a central axis L3 (eccentric point) of the first eccentric circular cam 53.
  • the electromagnetic clutch 34 is not energized, and the second eccentric circular cam 54 of the second rotating body 35 and the eccentric circular cam 36 receives a clockwise torque by the biasing force of the torsion coil spring 59.
  • the upper end 37 d of the cam guide plate 37 is pressed against the inner peripheral surface 33 d and is fixed to the intermediate rotating body 33.
  • the electromagnetic clutch 34 is energized.
  • the second rotating body 35 is attracted to the electromagnetic clutch 34 to cause a rotation delay, rotates relative to the first rotating body 31 counterclockwise, and the second eccentric circular cam 54 rotates counterclockwise.
  • the first eccentric circular cam 53 integrated with the second eccentric circular cam 54 slides on the inner peripheral edge of the long hole 56 of the cam guide plate 37 in a direction perpendicular to the radial guide 38. A reciprocating force is applied to the cam guide plate 37 in the extending direction of the radial guide 38.
  • the cam guide plate 37 is displaced in the radial direction when the slide member 40 is displaced along the radial guide 38 of the intermediate rotating body and the contact surfaces (37b, 37c) are displaced while sliding on the guide pins 44 to 47.
  • the guide 38 is lowered in the extending direction.
  • the cam guide plate 37 moves downward in the radial direction with respect to the first rotating body 31 and rotates in the clockwise direction in the circumferential direction when the slide pin 40 is displaced along the inclined guide 39 of the first rotating body 31 at the same time.
  • Relative displacement Since the intermediate rotator 33 cannot be rotated relative to the cam guide plate 37 by the guide pins 44 to 47, the intermediate rotator 33 is integrated with the cam guide plate 37 and is relative to the first rotator 31 in the clockwise direction. Rotate.
  • the intermediate rotator 33 is configured such that when the torsion coil spring 59 is twisted, the clockwise torque applied to the second rotator 35 and the counterclockwise torque applied to the second rotator 35 by the electromagnetic clutch 34 are balanced. End relative rotation.
  • the intermediate rotating body 33 is formed when the lower portion 37e of the outer periphery of the cam guide plate 37 contacts the inner peripheral surface 33d of the intermediate rotating body 33 before the torque of the torsion coil spring 59 and the torque of the electromagnetic clutch 34 are balanced. Also ends the relative rotation.
  • the phase angle between the camshaft 30 integrated with the intermediate rotator 33 and the first rotator 31 driven by the crankshaft is such that the lower part 37e of the outer periphery of the cam guide plate 37 is the inner peripheral surface of the intermediate rotator 33.
  • the second rotating body 35 rotates clockwise with respect to the intermediate rotating body 33 by the torque of the spring 59 (see FIG. 7).
  • the intermediate rotating body 33 rotates counterclockwise with respect to the first rotating body 31 as the cam guide plate 37 rises.
  • the intermediate rotating body 33 ends the relative rotation, and when the electromagnetic clutch 34 is de-energized, the cam guide plate 37 The relative rotation is performed until the upper end 37d of the outer periphery of the outer periphery contacts the inner peripheral surface 33d of the intermediate rotator 33, and the initial position before the phase angle change is restored.
  • FIG. 10B and 10C show another specification example of the arrangement of the first eccentric circular cam 53 and the cam guide plate 37 with respect to the inner peripheral surface 33d of the intermediate rotating body 33.
  • FIG. FIG. 5B is a specification example in which the phase angle of the intermediate rotator 33 relative to the first rotator 31 is displaced from the initial position before the phase angle is changed to the retard side.
  • C In the figure, by continuing to brake with the electromagnetic clutch 34, the phase angle of the intermediate rotator 33 with respect to the first rotator 31 is displaced from the initial position to the advance side, and can also be displaced later to the retard side. This is a specification example.
  • FIG. 10B shows an arrangement example in which the cam guide plate 37 is lowered when the phase angle is displaced.
  • the cam guide plate 37 abuts the lower portion 37e on the lower portion of the inner peripheral surface 33d of the intermediate rotating body 33, and the central axis L3 (eccentric point) of the first eccentric circular cam 53 is the radial guide. It is arranged in a state inclined in a counterclockwise direction with respect to the lower side of the axis L4 in the extending direction of 38.
  • the slide pin 40 is arranged at the positions of 39a and 39b of the inclined guide 39 in the initial state (FIG. 9).
  • FIG. 10C shows that in the initial state, the central axis L3 (eccentric point) of the first eccentric circular cam 53 is counterclockwise with respect to the left side of the axis L5 perpendicular to the extending direction of the radial guide 38.
  • the flat surface portion 33e is provided on the upper portion of the inner peripheral surface 33d of the intermediate rotating body 33, and the upper portion 37d of the cam guide plate 37 is brought into contact therewith. Further, the lower portion 37e of the cam guide plate 37 is configured not to contact the inner peripheral surface 33d of the intermediate rotating body 33 when the first eccentric circular cam 53 rotates.
  • the slide pin 40 in the initial state is disposed at positions 39a and 39b of the inclined guide 39 (FIG. 9).
  • the phase angle between the intermediate rotating body 33 and the first rotating body 31 causes the first eccentric circular cam 53 to rotate counterclockwise from the starting position,
  • the cam guide plate 37 is lowered from the initial position, and is relatively displaced in the advance direction until the lower portion 37e contacts the axis L4.
  • the cam guide plate 37 is reversed and raised, and is relatively displaced in the retarding direction until the upper portion 37d contacts the flat surface portion 33e.
  • the central axis L3 (eccentric point) is disposed in an initial state in a state of being inclined counterclockwise with respect to the right side of the axis L5, and the flat portion that contacts the lower portion 37e of the cam guide plate 37 at that time is an intermediate position.
  • the slide pin 40 may be provided at the position of 39c, 39d of the inclined guide 39 (FIG. 9), provided at the lower part of the inner periphery of the rotating body 33. In that case, the displacement of the phase angle between the intermediate rotator 33 and the first rotator 31 is relatively displaced to the retard side and then relatively displaced to the advance side.
  • the vertical axis of the graph represents the distance from the contact point between the upper portion 37d (the lower portion 37e in FIG. 10B) of the cam guide plate 37 and the peripheral surface 37d of the intermediate rotating body in the initial state of FIG.
  • the axis indicates the rotation angle of the first eccentric circular cam 53 (eccentric central axis L3) with respect to the upper side (lower side in FIG. 10B) of the axis L4 in FIG.
  • the upper portion 37d of the cam guide plate 37 and the upper portion of the inner peripheral surface 33d of the intermediate rotating body 33 are brought into contact with each other at the starting point (initial state) shown in FIGS. 10 (a), 10 (b) and FIG.
  • the lower portion 37e comes into contact with the lower portion 33d on the inner periphery of the intermediate rotating body 33 and stops (the start point and the end point are reversed in FIG. 5B).
  • 11 represents the amount of increase in the distance of the slide pin 40.
  • the inclination of the graph becomes gentler as the rotation angle of the eccentric circular cam 53 is closer to the start point and the end point, and the acceleration of the slide pin 40 near the start point and the deceleration near the end point are performed gently. It shows that. That is, the moving speed of the slide pin 40 moved by the eccentric circular cam 53 changes according to the sin curve. Accordingly, the impact speed of the cam guide plate 37 against the inner peripheral surface 33d of the intermediate rotator 33 at the start point and the end point is always slowed by using the eccentric circular cam 53, so that the impact sound caused by the collision is always reduced. .
  • the relative displacement speed of the intermediate rotation body 33 with respect to the first rotation body 31 is A similar change is made according to the change in the moving speed of the cam guide plate 37 during the reciprocation. Accordingly, since the relative displacement speed of the camshaft 30 with respect to the first rotating body 31 becomes gentle at the start point and the end point (at the time of maximum displacement), the shock to the engine due to cam torque fluctuation is reduced.
  • the phase conversion angle of the camshaft 30 is made linear by changing the amount of change in the rotation radius of the inclined guide 39 with respect to the increase in the rotation angle of the first rotating body 31.
  • the conversion speed can be reduced by reducing the amount of change in the rotation radius at the position of the phase conversion angle that is frequently used.
  • FIGS. 12A and 12B when the intermediate rotating body 33 receives torque from the camshaft 30 side, a self-lock that prevents the phase angle between the first rotating body 31 and the intermediate rotating body 33 from shifting.
  • the mechanism will be described.
  • the camshaft 30 receives a reaction force from a valve spring (not shown)
  • the intermediate rotator 33 receives a rotational torque that causes relative displacement from the camshaft 30 to the first rotator 31 and the cam guide plate 37.
  • 12A and 12B show a case where clockwise rotational torque is generated by the camshaft 30.
  • the cam guide plate 37 is given a force acting in the extending direction of the radial guide 38, and the first eccentric circular cam 53 is driven by the slide pin 40 from the guide pins 44 to 47 and the inclined guide 39 by the rotational torque. Under the action, a force acting in the extending direction of the radial guide 38 is received at the sliding contact with the long hole 56.
  • the axis L6 passing through the central axis L2 of the second eccentric circular cam 54 and parallel to the axis L4 intersects with the inner peripheral edge of the eccentric circular hole 52 of the second rotating body 35. At the position P1, a force acting in the extending direction of the radial guide 38 is received from the second eccentric circular cam 54.
  • the force applied to the cam guide plate 37 in the extending direction of the radial guide 38 is such that the outer peripheral edge 35 a of the second rotating body is substantially inscribed to the inner peripheral surface 33 d of the cylindrical portion of the intermediate rotating body 33.
  • the local frictional force is expressed as follows. That is, the force acting in the extending direction of the radial guide 38 is F, and the inclination of the radius R of the second rotating body 35 connecting the intersection P2 and the central axis L1 with respect to the lower side of the axis L4 is ⁇ ( ⁇ is the axis L5
  • the angle of the friction surface at the intersection P2 with respect to the direction (hereinafter referred to as the friction angle) and the friction coefficient of the friction surface are ⁇ .
  • the phase angle shift between the intermediate rotator 33 and the first rotator 31 is caused by relatively rotating the second rotator 35 and the intermediate rotator 33.
  • the force to be generated is F ⁇ sin ⁇
  • the local friction force in the reverse direction that prevents sliding between the second rotating body 35 and the intermediate rotating body 33 is expressed by ⁇ ⁇ F ⁇ cos ⁇ .
  • the second rotating body 35 and the intermediate rotating body 33 cannot rotate relative to each other, and the phase angle does not shift. Accordingly, as shown in FIG. 12B, if the friction angle ⁇ is set so as to satisfy the condition of ⁇ ⁇ tan ⁇ 1 ⁇ by F ⁇ sin ⁇ ⁇ ⁇ F ⁇ cos ⁇ , the first rotating body can be obtained by the self-locking function. Unexpected changes in the phase angle of the camshaft 30 relative to 31 are prevented.
  • the friction angle ⁇ becomes smaller as d3 is shorter when d3 is a linear distance drawn perpendicularly to the axis L4 from the eccentric point L2 (central axis) of the second eccentric circular cam 54.
  • the distance d3 becomes shorter in proportion to the eccentric distance d1 between the rotation center axis L1 and the eccentric point L2. Therefore, the first eccentric circular cam 53 increases the eccentric distance d2 to increase the maximum displacement angle of the phase angle between the first rotating body 31 and the camshaft 30, and the second eccentric circular cam 54 has the eccentric distance d1.
  • the electromagnetic clutch 34 and the torsion coil spring 59 are used as the rotating operation force applying means for the second rotating body 35.
  • the second rotating body 35 is directly controlled by an electric motor or the like. Also good.
  • the cam guide plate 37 is slidably brought into contact with the guide pins 44 to 47, but the slide pins 40 are brought into slidable contact with the radial guides 38 of the intermediate rotator 35 so that the guide pins 44 to 47 are omitted. You may make the structure which was.
  • the second electromagnetic clutch mechanism 61 is provided instead of the torsion coil spring 59 of the first embodiment, so that the first electromagnetic clutch 34 can be displaced in the direction opposite to the phase angle displacement direction.
  • the arrangement of the eccentric circular cam 36 and the cam guide plate 37 with respect to the intermediate rotating body 33 described later is partially different, and the tip shape of the center shaft 32 is different.
  • the first embodiment is the same as the first embodiment except for some differences.
  • the second electromagnetic clutch mechanism 61 includes a roller guide plate 62, a plurality of rollers 63 that roll in the engagement hole 62a with respect to the front of the second rotating body 35, a third rotating body 64, and a thrust bearing. 65, a disc spring 66, a spring holder 67, and a second electromagnetic clutch 68 are arranged.
  • the roller guide plate 62 engages with the flat engagement portion 32f of the center shaft 32 through the square hole 62b, and is fixed to the center shaft 32 so as not to be relatively rotatable.
  • the second rotating body 35, the roller guide plate 62, and the third rotating body 64 are arranged with a gap therebetween in the axial direction, and the roller 63 is disposed on the front surface 35c of the second rotating body and the rear surface 64a of the third rotating body 64.
  • the third rotator 64 is supported on the outer periphery of the front end of the center shaft 32 in a relatively rotatable state by a thrust bearing 65 attached to the recess 64b.
  • a disc spring 66 is attached in front of the thrust bearing 65, a spring holder 67 is attached in front of the thrust bearing 65, and is fastened to the center shaft 32 by a bolt 60.
  • the disc spring 66 presses the third rotating body 64 rearward in the axial direction via the thrust bearing 65 and ensures the rolling of the roller 63 between the third rotating body 64 and the second rotating body 35.
  • the second electromagnetic clutch 68 is adjacent to the third rotating body 64 while being fixed to an engine case (not shown).
  • the first eccentric circular cam 53 and the cam guide plate 37 are arranged at the position shown in FIG. 17 with respect to the inner peripheral surface 33d of the intermediate rotating body 33.
  • the cam guide plate 37 has an upper end portion 37d in contact with an upper portion of the inner peripheral surface 33d of the intermediate rotating body 33, and the center axis L3 (eccentric point) of the first eccentric circular cam 53 is a radial guide. It is arranged in a state inclined in the clockwise direction with respect to the upper side of the axis L4 in the extending direction of 38.
  • the third rotating body 64, the roller 63, and the roller guide plate 62 rotate in the same direction as the second rotating body 35 by the first rotating body 31 that rotates clockwise.
  • the second electromagnetic clutch 68 is energized.
  • the third rotating body 64 rotates relative to the second rotating body 35 counterclockwise, and the roller 63 rolls.
  • the second rotating body 35 and the first eccentric circular cam 53 receive torque by the rolling of the roller 63 and rotate relative to the intermediate rotating body 33 clockwise.
  • the cam guide plate 37 is lowered by the eccentric circular cam 53, and at the same time, the slide pin 40 is displaced along the inclined guide 39.
  • the intermediate rotator 33 is integrated with the cam guide plate 37 and rotates relative to the first rotator clockwise.
  • the relative phase angle between the camshaft 30 and the first rotator 31 is an advance direction (clockwise direction). ).
  • the electromagnetic clutch 34 is energized.
  • the second rotating body 35 and the eccentric circular cam 53 are rotated counterclockwise with respect to the intermediate rotating body 33, and the cam guide plate 37 is raised, whereby the relative displacement angle of the first rotating body 31 of the camshaft 30 is increased. Is returned to the retarded direction.
  • the electromagnetic clutch mechanism 61 instead of the torsion coil spring 59, it is not necessary to consider the urging force of the coil spring 59. Therefore, the electromagnetic clutch 34 can be reduced in size because the required torque is reduced, and after the phase displacement. Since the electromagnetic clutch 34 can be de-energized, power saving can be achieved.
  • one slide pin 69 has an engagement portion 69a that engages with the engagement hole 37a in a rotatable state, and the center axis O2 is separated from the center axis O1 of the engagement hole by a minute distance.
  • a slide portion 69b that rotates eccentrically around the central axis O1 is formed continuously in the axial direction.
  • the slide pin 40 is engaged with the hole 37a so as to be rotatable, or instead of the slide pin 40, a sphere projecting toward the radial guide 38 and the inclined guide 39 is used. If a rolling member is used as the slide member, the slide member rolls on the guides (38, 39), so that the phase angle between the intermediate rotating body 33 and the first rotating body 31 is changed smoothly.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2 showing an axial cross section of the apparatus of the first embodiment.
  • FIG. 5 is a cross-sectional view taken along line BB of FIG. 3 showing a vertical cross section of a second rotating body and a rotating body guide plate (intermediate rotating body).
  • FIG. 4 is a sectional view taken along the line CC of FIG. 3 showing a section of the cam guide plate and the rotating body guide plate.
  • FIG. 4 is a DD sectional view of FIG. 3 showing a vertical section of the first rotating body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 【課題】駆動第一回転体とカムシャフトの位相角が、バルブスプリングによる反力を受けても変位せず、位相角の変位時に発生する衝撃を低減するエンジンの位相可変装置の提供。【解決手段】第一回転体(31)と、カムシャフトと一体の中空回転体(33)と、第二回転体(35)を制御することで、第一回転体(31)と中間回転体(33)の位相角を変更するエンジンの位相可変装置であって、第二回転体(35)は、円筒を有する形状の中間回転体(33)の内側に略内接させ、第二回転体(35)と一体化し第二回転体(35)の回動時に回動軸周りに偏心回動する偏心円カム(36)により、回動軸線に垂直な方向にカムガイドプレート(37)を揺動させ、揺動時に、カムガイドプレート(37)から突出させたスライド部材(40)を第一回転体(31)と中間回転体(33)の一方に形成した径方向ガイド(38)と他方に形成した円周方向に対して傾斜する傾斜ガイド(39)に沿って変位させる。 

Description

自動車用エンジンにおける位相可変装置
 本発明は、回動操作力付与手段により回転ドラムに回動操作力を付与して、スプロケットに対するカムシャフトの回転位相を変化させてバルブの開閉タイミングを変化させる自動車用エンジンにおける位相可変装置に係わる技術である。
 この種の従来技術としては、下記特許文献1に示すバルブタイミング制御装置がある。下記特許文献1の装置は、カムシャフト1に対して相対回動可能に組付けられ、エンジンのクランクシャフトの駆動力が伝達される駆動プレート3と、カムシャフト1に一体化され、外周に結合された変換ガイド11が、駆動プレート3の前面と隙間を保持しつつ対峙する従動軸部材9と、変換ガイド11の更に前方において、軸受14を介して従動軸部材9に回動自在に取り付けられた中間回転体5を有している。
 駆動プレート3と従動軸部材9と中間回転体5は、それぞれ溝からなる径方向ガイド10と周方向に対して傾斜するガイド孔12と渦巻き状ガイド15を備え、ガイド(10,12,15)に係合しつつ転動する球16を備えている。中間回転体5は、一体となったヨークブロック19が、電磁コイル22a,22bから磁力を受けた磁力を駆動源とし、従動軸部材9に対して相対回動する。
 下記特許文献1の装置は、中間回転体5が磁力により従動軸部材9に対して遅れ側に相対回動すると、球16が渦巻き状ガイド15内を転動しつつ径方向ガイド10に沿って内側に変位し、変換ガイド11にカム作用を与えることで、駆動プレート3と、カムシャフト1に一体化された従動軸部材9との組付け角を最進角側に変更する。一方、中間回転体5が磁力により従動軸部材9に対して進み側に相対回動すると、球16がガイド15,10,11内を逆向きに転動し、変換ガイド11に逆向きのカム作用を与えることで、駆動プレート3と従動軸部材9との組付け角を進角側に変更する。
特許3948995号
 エンジン運転中には、カムシャフトがバルブスプリングからの反力を衝撃として受け続けている。特許文献1の装置では、前記衝撃は、従動軸部材9の変換ガイド11に形成されたガイド孔12を介して球16に伝達されるため、球16が衝撃によってガイド孔12内を転動し、駆動プレート3とカムシャフト1の組付け角が維持できず、意図しない組付け角の変動が発生することによりバルブの吸排気タイミングに狂いを発生してしまうという問題が考えられる。
 一方、特許文献1の装置では、駆動プレート3と従動軸部材9(カムシャフト1)との組付け角を最大量変位させる際に、ガイド孔12の一端から転動し始めた球16が、変位の終了時にガイド孔12の他端に衝突して停止する。しかし、衝突速度が大きい場合には、衝突時にエンジンに余分な振動が発生して問題となるため、磁力パターンの強弱調節による球16の転動速度の制御が難しくなる点で問題となる。
 本発明は、上述した問題を考慮し、バルブスプリングからカムシャフトに伝達される反力を受けてもクランクシャフトによって回転する第一回転体(駆動プレート3)とカムシャフトとの間に意図しないの位相角(組付け角)がずれることなく維持でき、更には、位相角の最大変位時に発生する衝撃を低減したエンジンの位相可変装置を提供するものである。
 前記目的を達成するために、請求項1においては、クランクシャフトによって回転駆動する第一回転体と、カムシャフトと一体化された中間回転体と、前記中間回転体の前方に配置した第二回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一回転体と第二回転体との間に、回動操作力付与手段によって前記第二回転体に回動操作力を付与し、前記第一回転体と中間回転体を相対回動させることによって前記両回転体の位相角を変更する位相角変更機構を介装したエンジンの位相可変装置であって、前記位相角変更機構は、前記中間回転体が、円筒を有する形状に形成され、前記第二回転体が、前記中間回転体の円筒部の内径と略同一の円盤形状に形成され、前記円筒部の内周に略内接し、前記第二回転体から前記中間回転体に向けて突出し、中心軸が第二回転体の回動中心軸から離間した偏心円カムと、第二回転体の回動中心軸に直交する方向に伸張し、前記偏心円カムが摺動する長孔と、前記第一回転体と中間回転体に向けて突出したスライド部材を備えたカムガイドプレートと、前記カムガイドプレートの長孔の伸張方向と直交する方向かつ前記中間回転体の径方向に伸張する、前記中間回転体に形成された径方向ガイドと、前記第一回転体の回動中心軸を中心とした円周に対して傾斜する、前記第一回転体に形成された傾斜ガイドとを備え、前記カムガイドプレートのスライド部材が、前記径方向ガイドの方向と前記傾斜ガイドの方向に沿って変位する構成とした。
(作用1)第二回転体は、回動操作力付与手段によって制動されると第一回転体に対して回転遅れを生じる。偏心円カムは、カムガイドプレートの長孔の内周縁と摺動しながら長孔内を往復し、長孔の伸張方向と直行する方向に力を付与する。カムガイドプレートは、スライド部材が中間回転体の径方向ガイドの方向に沿って変位することにより、前記長孔の伸張する方向と直交する方向、即ち前記中間回転体の径方向を往復する。一方、カムガイドプレートは、同時にスライド部材が第一回転体の円周方向に対して傾斜する傾斜ガイドに沿って変位するため、傾斜ガイドからカム作用を受けて第一回転体に対して径方向かつ第一回転体の円周方向に相対変位する。また、中間回転体は、カムガイドプレートに対して円周方向に相対変位が出来ない。従って、中間回転体は、カムガイドプレートと一体となり、第一回転体に対して円周方向に相対変位する。その結果、中間回転体に一体化されたカムシャフトとクランクシャフトで駆動する第一回転体の位相角が変位する。
 一方、カムシャフトがバルブスプリングから反力を受けた場合、中間回転体は、カムシャフトから第一回転体とカムガイドプレートに対して相対変位をする回転トルクを受ける。カムガイドプレートのスライド部材は、前記回転トルクにより傾斜ガイドからカム作用を受けて、傾斜ガイドと径方向ガイドに沿って変位する力を付与されるため、カムガイドプレートは、前記長孔と直交する直線方向に移動する力を付与される。第二回転体は、第二回転体の偏心円孔の中心軸を通り、かつ前記長孔と直交する直線に平行な軸線と、偏心円カムが係合する偏心円孔の内周縁が交差する位置においてカムガイドプレートに付与された前記直線方向に移動する力を受ける。
 更に、カムガイドプレートに付与された前記直線方向に移動する力は、第二回転体の外周縁が中間回転体の円筒部の内周縁に略内接するため、第二回転体の偏心円孔の中心軸を通り、かつ前記長孔と直交する直線に平行な軸線と、第二回転体が略内接する中間回転体の円筒部の内周縁が交差する位置において中間回転体に作用し、前記作用する位置において、第二回転体と中間回転体との摺動を妨げる局所的な摩擦力を発生させる。
 従って、カムシャフトがバルブスプリングから反力を受けた場合、第二回転体は、中間回転体との間に生じる前記局所的な摩擦力により、相対回動不能な状態でロックされるため、偏心円カムは偏心回動出来ず、カムガイドプレートのスライド部材は、第一回転体の傾斜ガイドに沿って変位出来なくなる。従って、バルブスプリングから反力を受けてカムシャフトにトルクが発生しても、カムシャフトに一体化された中間回転体は、駆動する第一回転体に対して相対回動不能な状態で維持されるため、前記トルクによって位相角の変動が発生することなく維持される。
 (作用2)一方、第一回転体と中間回転体との位相角は、カムガイドプレートが径方向に移動し、中間回転体の内周に当接していたカムガイドプレートの外周が、一端前記内周から離れて再び中間回転体の内周に当接してカムガイドプレートの移動が止まるまで変位し、当該変位角が、設定できる最大の位相角となる。また、長孔に直交する方向を往復するカムガイドプレートの速度は、同方向における偏心円カムの移動速度と同様に変化する。
 偏心円カムの動作は、第二回転体の回動中心軸と偏心円カムの中心との距離をδとすると、前記回動中心軸周りを一回転する際に、カムガイドプレートの長孔に直交する方向に対し、振幅δの単振動となる。前前記長孔に直交する方向に対する偏心円カムの移動速度は、前記回動中心軸周りの偏心円カムの回転速度に関わらず、前記偏心円カムの中心の位置が前記回動中心軸の位置に近づくほど増加し、回動中心軸の位置から遠ざかるほど減少し、前記偏心円カムの中心と回動中心軸との距離が振幅δ(最大値)となったときに速度ゼロとなる。
 従って、前記カムガイドプレートは、カムガイドプレートの外周が前記中間回転体の内周に当接する際に、偏心円カムの中心と第二回転体の回動中心軸との距離を出来るだけ前記振幅δに近づくように配置することにより、前記カムガイドプレートの外周は、前記中間回転体の内周に対して減速しながら衝突する。従って、カムシャフト(中間回転体)と第一回転体との位相角変位を最大にしても前記カムガイドプレートの外周と前記中間回転体の内周とが衝突する際に発生する衝撃は、衝突速度の減少により小さくなる。
 また、前記目的を達成するために請求項2の発明は、請求項1に記載のエンジンの位相可変装置において、前記第二回転体は、中心が前記第二回転体の回動中心軸から離間する偏心円孔を有し、前記偏心円カムは、前記カムガイドプレートの長孔と摺動する第一の偏心円カムに、前記偏心円孔と係合する第二の偏心円カムが隣接して形成され、前記第二の偏心円カムは、カム中心軸と前記第二回転体の回動中心軸との離間距離が、前記第一の偏心円カムの中心軸と前記第二回転体の回動中心軸との離間距離よりも小さく形成された。
 (作用)カムシャフト側から中間回転体に回動トルクが発生する際に、前記第二回転体と中間回転体との間に発生する局所的な摩擦力は、第二の偏心円カムと第二回転体の回動中心軸との離間距離(偏心距離)を小さくし、中間回転体への第二回転体の押圧力を強化することで増加する。一方、カムガイドプレートの相対移動距離は、第一の偏心円カムと第二回転体の回動中心軸との離間距離を大きくすることで増加する。即ち、第二回転体と中間回転体との間の前記摩擦力と、カムガイドプレートの相対移動距離は、回動中心軸から第一及び第二の偏心円カムへの偏心距離を変えることによって同時に増加する。
 請求項1の発明によれば、エンジンの回転時に第一回転体に対して位相角のずれを生じさせる相対回動トルクが、カムシャフト側から中間回転体に伝達されても、前記トルクの発生に連動して中間回転体と第二回転体との相対回動を阻止することにより、カムガイドプレートを介して前記中間回転体と第一回転体との相対回動を阻止するセルフロック効果が発生するため、カムシャフトと第一回転体との間で予期せぬ位相角の変動が発生せず、吸排気バルブの開閉タイミングが正確に維持できる。
 また、請求項1の位相可変装置によれば、偏心円カムの回動速度の増減と独立して、中間回転体の内周に衝突するカムガイドプレートの衝突速度を極力抑えることができるため、カムシャフト(中間回転体)と第一回転体との位相角変位を急激に最大量変換させたとしてもエンジンに発生する余分な衝撃を最小限におさえることが出来る。
 一方、請求項2の位相可変装置によれば、中間回転体に対するカムガイドプレートの相対変位量を減少させずに維持出来、カムシャフト側から中間回転体に相対回動トルクが発生した際に前記中間回転体と第一回転体の相対回動を阻止するセルフロック効果も更に増大させることが出来る。従って、前記中間回転体と第一回転体との予期せぬ位相角の変動を更に防止し、吸排気バルブの開閉タイミングをより正確に維持することが出来る。
 次に、本発明の実施の形態を実施例に基づいて説明する。
 図1~図18は、本発明に係る位相可変装置の実施例1と2を示す。図1は、本発明の第一実施例を表す自動車用エンジンにおける位相可変装置の分解斜視図、図2は、同装置の正面図、図3は、同装置の軸方向断面を示す図2のA-A断面図、図4は、第二回転体と回転体ガイドプレート(中間回転体)の垂直断面を示す図3のB-B断面図、図5は、カムガイドプレートと回転体ガイドプレートとの断面を示す図3のC-C断面図、図6は、第一回転体の垂直断面を示す図3のD-D断面図、図7は、第二回転体と偏心円カムの動作関係の説明図、図8は、偏心円カムとカムガイドプレートの動作関係の説明図、図9は、第一回転体に対するガイドピン(スライド部材)の動作説明図、図10(a)~(c)は、偏心円カムを回転平面上の異なる範囲で揺動させる場合の仕様説明図、図11は、回転平面上における偏心円カムの位置に基づくスライド部材の変位量を表すグラフ、図12は(a)(b)は、第二回転体と回転体ガイドプレートによるセルフロック構造の説明図、図13は、本発明の第二実施例を表す自動車用エンジンにおける位相可変装置の分解斜視図、図14は、第二実施例の装置の軸方向断面図、図15は、第二実施例の装置の一部断面とした参考斜視図、図16は、第二実施例の第二回転体と第三回転体との構造説明図、図17は、中間回転体に対する偏心円カムとカムガイドプレートの配置説明図である。図18は、カムガイドプレートの変形例の説明図である。
 これらの図において、実施例1と2に示すエンジンの位相可変装置は、エンジンに組み付け一体化された形態で用いられ、クランクシャフトの回転に同期して吸排気弁が開閉するようにクランクシャフトの回転をカムシャフトに伝達するとともに、エンジンの負荷や回転数などの運転状態によってエンジンの吸排気弁の開閉のタイミングを変化させるための装置である。
 図1~図6に示すとおり、同装置は、エンジンのクランクシャフト(図示しない)の駆動力で回転する第一回転体(駆動回転体)31を相対回動自在に支持し、一体化されたカムシャフト30と共に回転するセンターシャフト32と、センターシャフト32に固定され、カムシャフト30と一体となって第一回転体31に対して相対回動する中間回転体(第二回転体35のガイドプレート)33と、センターシャフト32の前端に相対回動自在に支持され、電磁クラッチ34によって回転が制動される、第二回転体(制御回転体)35を同一の回動中心軸L1上に備えている。
 また同装置は、第二回転体の回転時に中心軸L1の周囲を偏心回動する偏心円カム36と、偏心円カム36により中間回転体33に対して軸L1と直交する方向に往復揺動するカムガイドプレート37と、カムガイドプレート37から突出して形成され、中間回転体33の径方向ガイド38と第一回転体31の傾斜ガイド39内を変位するスライドピン(スライド部材)40を備えている。
 同装置の構成は、まずカムシャフト30の先端30aが、センターシャフト32の孔32aに係合する。センターシャフト32の外周に形成されたフランジ32bの前後の円筒部には、外周にスプロケット41を形成した第一回転体31と第二スプロケット部材42が、センターシャフト32に対して相対回動可能な状態で支持され、複数の結合ピン(本実施例では6本)43によって結合されている。
 センターシャフト32の平坦係合面32cには、中間回転体33の角穴33bが係合し、中間回転体33がセンターシャフト32対して相対回動不能な状態で固定されている。中間回転体33は、円筒形状に形成され、その底部33aには
、角穴33b、ガイドピン44~47の係合孔48~51及び径方向ガイド38(本実施例では1対)が形成されている。径方向ガイド38は、回動中心軸L1と直交する軸線上に伸張する長孔溝として、軸L1を中心として対称となる位置に形成されている。係合孔48と49(50,51)は、中心を結ぶ直線が径方向ガイド38の伸張方向と同一となるよう形成されている。
 中間回転体33の円筒部33cの内側には、第二回転体35、偏心円カム36、カムガイドプレート37及びこれに係合する複数(本実施例では2本)のスライドピン40が配置されている。第二回転体35は、回動中心軸L1から距離d1で離間した軸L2を中心とした偏心円孔52を備える。
 偏心円カム36は、第一の偏心円カム53と、第二の偏心円カム54が回動中心軸L1の方向に隣接するように一体形成されている。また、偏心円カム36は、軸L1を中心として軸方向に貫通する円孔55を介し、センターシャフト32の先端円筒部32dに対して相対回動可能な状態で支持される。第二回転体35は、第二の偏心円カム54が偏心円孔52に係合することにより、センターシャフト32に対して相対回動自在に支持されている。また第二回転体35は、中間回転体における円筒部33cの内側の内径と略同一の円盤形状に形成され、外周面35aが前記円筒部の内周面33dに略内接する。第一の偏心円カム53は、回動中心軸L1から距離d2で離間し、離間距離d2は、第二の偏心円カム54の中心L2と回動中心軸L1との離間距離d1よりも大きくなるように形成されている。尚、偏心円カム53と54の外形は、本実施例のような円形状に限らず、特殊な周縁を持つカム形状にしてもよい。
 回転体ガイドプレート37は、一対の係合孔37aと、第一の偏心円カム53を摺動させる長孔56を備えている。一対の係合孔37aは、軸L1と直行する軸線上において、軸L1を中心として対称となる位置に形成され、係合孔37aの間隔は、中間回転体33の径方向ガイド38の設置間隔と一致するように形成され、スライドピン40が中間回転体33の方向に突出するように係合されている。長孔56は、径方向ガイド38の伸張方向と直行する方向に伸張するよう形成されている。即ち、長孔56は、軸L1を通り、一対の係合孔37aの中心を結ぶ直線と直交する方向に伸張するよう形成されている。また、長孔56の高さは、第一の偏心円カム53の外径と略同一に形成され、第一の偏心円カム53が長孔56の内周縁と摺動しつつ長手方向を往復自在な状態で挿入されている。また、回転体ガイドプレートの両側には、ガイドピン(44,45)に当接する当接面37bとガイドピン(46,47)に当接する当接面37cが形成されている。
 スライドピン40は、中間回転体33の径方向ガイド38に挿入され、第一回転体31に形成された傾斜ガイド39に係合している。傾斜ガイド39は、回動中心軸L1を中心とした円周方向に対して傾斜する溝状のガイドであって、第一回転体31の回転角に比例して、回動中心軸L1と傾斜ガイド39の溝中心を結ぶ回転半径が一定量ずつ増加または減少する一対の溝状のガイドであり、本実施例では中心軸L1を通る軸線を挟んで対称に一対形成されている。
 また、第二回転体35の前方には、コイル34aに通電することで第二回転体35を吸着する電磁クラッチ34が図示しないエンジンケースに固定された状態で隣接している。電磁クラッチ34の内側には、外周にねじりコイルバネ57を配置したバネホルダー58が挿入され、その先端がセンターシャフト32の凹部32eに係合している。カムシャフト30には、雌ねじ孔が形成されている。バネホルダー58とセンターシャフト32とカムシャフト30は、ボルト60を前記カムシャフト30の雌ねじ孔に係合することにより一体に共締めされ、軸L1を中心として一体になって回転する。バネホルダー58の後面58aは、第二の偏心円カム53の前面と非接触の状態で対向し、偏心円カム36とカムガイドプレート37が前方へ抜け落ちることを防止している。ねじりコイルバネ59は、一端59aが第二回転体35の孔35bに固定され、他端59bがバネホルダー58の孔58bに固定され、第二回転体35が電磁クラッチ34から受ける制動トルクと逆の方向(第一回転体31の回転方向)に第二回転体35を常時付勢している。
 図7から図10(a)により、実施例1の装置に関する位相可変の動作を説明する。実施例1では、第一回転体31に対する中間回転体33の位相角を位相角変位の無い初期状態から進角側(図7に示す第一回転体31の回転方向。装置の正面から見て時計回りの方向)に変位させるため、中間回転体33の内周面33dに対して第一の偏心円カム53とカムガイドプレート37を図10(a)に示す位置に配置している。各図に示すとおり前記初期状態において、カムガイドプレート37は、上端部37dが中間回転体33の内周面33dの上部に当接し、第一の偏心円カム53の中心軸L3(偏心点)は、径方向ガイド38の伸張方向の軸線L4の上方に対して反時計回りの方向に傾いた状態に配置されている。初期状態においては、電磁クラッチ34に通電せず、第二回転体35と偏心円カム36の第二の偏心円カム54は、ねじりコイルバネ59の付勢力により時計回り方向のトルクを受けている。その際、カムガイドプレート37は、上端部37dが内周面33dに押し付けられて、中間回転体33に固定される
 前記初期状態において、中間回転体33と第二回転体35は、カムガイドプレート37が中間回転体33に固定されることに伴い、第一回転体31がクランクシャフトによって時計回りに回転すると、第一回転体31と一体になって時計回りに回転する。
 一方、第一回転体31とカムシャフト30の位相角を変更する際には、電磁クラッチ34に通電する。その際第二回転体35は、電磁クラッチ34に吸着されて回転遅れを生じ、第一回転体31に対して反時計回りに相対回動し、第二の偏心円カム54が反時計回りに回動する。第二の偏心円カム54と一体化された第一の偏心円カム53は、カムガイドプレート37の長孔56の内周縁と摺動しながら長孔内を径方向ガイド38と直交する方向に往復し、カムガイドプレート37に対し、径方向ガイド38の伸張する方向に力を付与する。カムガイドプレート37は、スライド部材40が中間回転体の径方向ガイド38に沿って変位し、当接面(37b、37c)が、ガイドピン44~47に摺接しながら変位することにより、径方向ガイド38の伸張する方向に下降する。
 一方、カムガイドプレート37は、同時にスライドピン40が第一回転体31の傾斜ガイド39に沿って変位することにより、第一回転体31に対して径方向に下降しかつ円周方向時計回りに相対変位する。中間回転体33は、ガイドピン44~47によってカムガイドプレート37と相対回動出来ないため、中間回転体33は、カムガイドプレート37と一体となり、第一回転体31に対して時計回りに相対回動する。中間回転体33は、ねじりコイルバネ59がねじられることによって第二回転体35に与えられる時計回りのトルクと、電磁クラッチ34が第二回転体35に与える反時計回りのトルクが釣り合った時点で前記相対回動を終了する。また中間回転体33は、前記ねじりコイルバネ59のトルクと、前記電磁クラッチ34のトルクが釣り合う前にカムガイドプレート37の外周の下部37eが中間回転体33の内周面33dに当接した場合にも前記相対回動を終了する。その結果、中間回転体33に一体化されたカムシャフト30とクランクシャフトで駆動する第一回転体31との位相角は、カムガイドプレート37の外周の下部37eが中間回転体33の内周面33dの下部に当接して前記相対回動を終了した場合を最大変位量として進角方向に変位する。
 一方、電磁クラッチ34の電流値を下げて第二回転体35の制動力を弱くした場合、第二回転体35は、バネ59のトルクにより中間回転体33に対して時計回り(図7参照)に相対回動し、中間回転体33は、カムガイドプレート37の上昇により第一回転体31に対して反時計回りに回動する。中間回転体33は、前記ねじりコイルバネ59のトルクと、前記電磁クラッチ34のトルクが再び釣り合った時点で前記相対回動を終了し、電磁クラッチ34の通電が無くなった場合には、カムガイドプレート37の外周の上端37dが中間回転体33の内周面33dに当接するまで前記相対回動をし、位相角変更前の初期位置に戻る。
 図10(b)(c)は、中間回転体33の内周面33dに対する第一の偏心円カム53とカムガイドプレート37の配置の別仕様例である。(b)図は、第一回転体31に対する中間回転体33の位相角を位相角変更前の初期位置から遅角側に変位させる仕様例である。(c)図は、電磁クラッチ34で制動し続けることにより、第一回転体31に対する中間回転体33の位相角を前記初期位置から進角側に変位させ、後に遅角側にも変位可能にする仕様例である。
 図10(b)は、位相角を変位する際にカムガイドプレート37を下降させる(a)図の場合とは反対にカムガイドプレート37を上昇させる配置例である。前記初期状態において、カムガイドプレート37は、下部37eを中間回転体33の内周面33dの下部に当接させ、第一の偏心円カム53の中心軸L3(偏心点)は、径方向ガイド38の伸張方向の軸線L4の下方に対して半時計回りの方向に傾いた状態に配置している。また(a)図では、前記初期状態においてスライドピン40を傾斜ガイド39の39a、39bの位置に配置している(図9)が、(b)図では、初期状態においてスライドピン40を39c、39dの位置に配置する。この配置により、クランクシャフトの回転時において電磁クラッチ34に通電すると、カムガイドプレートは、初期位置から上昇し、中間回転体33と第一回転体31との位相角は、カムガイドプレート37の外周の上部37dが中間回転体33の内周面33dの上部に当接して前記相対回動を終了した場合を最大変位量として遅角方向に変位する。
 図10(c)は、前記初期状態において、第一の偏心円カム53の中心軸L3(偏心点)を径方向ガイド38の伸張方向に直交する軸線L5の左方に対して反時計回りの方向に傾いた状態に配置し、中間回転体33の内周面33dの上部には、平面部33eを設け、カムガイドプレート37の上部37dを当接させている。また、カムガイドプレート37の下部37eは、第一の偏心円カム53が回動する際に中間回転体33の内周面33dと接触しないよう構成している。初期状態のスライドピン40は、傾斜ガイド39の39a、39bの位置(図9)に配置している。この配置によってクランクシャフトの回転時に電磁クラッチ34に通電すると、中間回転体33と第一回転体31との位相角は、第一の偏心円カム53が始点位置から反時計回りに回動し、カムガイドプレート37が初期位置から下降し、下部37eが軸線L4に接するまで進角方向に相対変位する。一方、下部37eが軸線L4を通過すると、カムガイドプレート37が反転して上昇し、上部37dが平面部33eに接するまで遅角方向に相対変位する。尚、中心軸L3(偏心点)は、初期状態において軸線L5の右方に対して反時計回りに傾いた状態で配置し、その際のカムガイドプレート37の下部37eに当接する平面部を中間回転体33の内周下部に設け、スライドピン40を傾斜ガイド39の39c、39dの位置(図9)に配置しても良い。その場合、中間回転体33と第一回転体31との位相角の変位は、一端遅角側へ相対変位し、その後進角側に相対変位する。
 また、図10(a)(b)と図11により、中間回転体33の内部を径方向ガイド38に沿って変位する際のカムガイドプレート37の移動速度の変化を説明する。グラフの縦軸は、図10(a)の初期状態におけるカムガイドプレート37の上部37d((b)図では下部37e)と中間回転体内周面37dとの接点からスライドピン40までの距離、横軸は、図10(a)の軸線L4の上方((b)図では下方)に対する第一の偏心円カム53(偏心する中心軸L3)の回転角を示している。実施例1では、図10(a)(b)と図11に記載された、始点(初期状態)において、カムガイドプレート37の上部37dと中間回転体33の内周面33dの上部に接触し、終点(最大変位時)において、下部37eが中間回転体33の内周の下部33dに接触して止まる(図(b)では始点と終点が逆になる)
 図11のグラフの傾きは、スライドピン40の距離の増加量を示す。グラフの傾きは、図11に示すとおり、偏心円カム53の回転角が始点と終点に近いほど緩やかになっており、始点近傍におけるスライドピン40の加速と、終点近傍における減速がゆるやかに行われることを示す。即ち、偏心円カム53によって移動するスライドピン40の移動速度は、sinカーブに従って変化する。従って、始点と終点において中間回転体33の内周面33dに対するカムガイドプレート37の衝突速度は、偏心円カム53を利用することで常に遅くなるため、前記衝突時による衝撃音が常に低減される。
 一方、傾斜ガイド39は、第一回転体31の回転角の増加に対する、傾斜ガイド39の回転半径の変化量が一定であるため、第一回転体31に対する中間回転体33の相対変位速度は、カムガイドプレート37の前記往復時における移動速度の変化に従って同様の変化をする。従って、第一回転体31に対するカムシャフト30の相対変位速度は、始点と終点(最大変位時)において緩やかになるため、カムトルク変動によるエンジンへのショックが低減される。尚、本実施例では、第一回転体31の回転角の増加に対する、傾斜ガイド39の回転半径の変化量を変更して形成することにより、カムシャフト30の位相変換角に直線性を持たせたり、使用頻度の高い位相変換角の位置において、前記回転半径の変化量を減少させることにより変換速度を遅くすることも出来る。
 次に、図12(a)(b)により、中間回転体33がカムシャフト30側からトルクを受けた際に第一回転体31と中間回転体33との位相角のずれを防止するセルフロック機構を説明する。カムシャフト30が図示しないバルブスプリングから反力を受けた場合、中間回転体33は、カムシャフト30から第一回転体31とカムガイドプレート37に対して相対変位をする回転トルクを受ける。図12(a)(b)は、カムシャフト30によって時計回りの回転トルクが発生した場合を示している。カムガイドプレート37は、径方向ガイド38の伸張方向に作用する力を付与され、第一の偏心円カム53は、スライドピン40が、前記回転トルクによりガイドピン44~47と傾斜ガイド39からカム作用を受けて、長孔56との摺接点において前記径方向ガイド38の伸張方向に作用する力を受ける。一方、第二回転体35は、第二の偏心円カム54の中心軸L2を通り、かつ軸線L4に平行な軸線L6と、第二回転体35の偏心円孔52の内周縁とが交差する位置P1において、第二の偏心円カム54から前記径方向ガイド38の伸張方向に作用する力を受ける。
 更に、カムガイドプレート37に付与された前記径方向ガイド38の伸張方向に作用する力は、第二回転体の外周縁35aが中間回転体33の円筒部の内周面33dに略内接するため、前記軸線L6と第二回転体35が略内接する中間回転体33の内周面33dとの交差する点P2において中間回転体33に作用し、点P2において、第二回転体35と中間回転体33との摺動を妨げる局所的な摩擦力を発生させる。
 また、前記局所的な摩擦力は、以下のように表される。即ち、前記径方向ガイド38の伸張方向に作用する力をF、軸線L4の下方に対する交差点P2と中心軸L1とを結ぶ第二回転体35の半径Rとの傾きをθ(θは、軸線L5方向に対する交差点P2の摩擦面の角度(以降は摩擦角と言う)とする)、摩擦面の摩擦係数をμとする。ここで、図12(b)図に示すとおり、第二回転体35と中間回転体33を相対回動させることにより、中間回転体33と第一回転体31との間に位相角のずれを起こさせる力は、F・sinθとなり、第二回転体35と中間回転体33との摺動を妨げる逆方向の局所的な摩擦力は、μ・F・cosθで表されるため、前記摩擦力が位相ズレを起こさせる力より大きければ、第二回転体35と中間回転体33が相対回動できず位相角のずれが発生しない。従って、図12(b)に示すようにF・sinθ<μ・F・cosθによりθ<tan-1μの条件を満たすように摩擦角θを設定すれば、セルフロック機能により、第一回転体31に対するカムシャフト30の位相角の予期せぬ変更が防止される。
 尚、摩擦角θは、第二の偏心円カム54の偏心点L2(中心軸)から軸線L4に対して垂直に引いた直線距離をd3とした場合、d3が短いほど小さくなるが、前記直線距離d3は、回動中心軸L1と偏心点L2との偏心距離d1に比例して短くなる。従って、第一の偏心円カム53は、偏心距離d2を大きく取って第一回転体31とカムシャフト30の位相角の最大変位角を大きくし、第二の偏心円カム54は、偏心距離d1を出来るだけ小さくすることで、セルフロック機能の局所的な摩擦力を強化することが出来る。
 本実施例1では、第二回転体35の回動操作力付与手段として、電磁クラッチ34とねじりコイルバネ59を用いた構成にしたが、電動モータ等によって、第二回転体35を直接制御してもよい。また、カムガイドプレート37をガイドピン44~47に摺接させて回動運動させているが、中間回転体35の径方向ガイド38にスライドピン40を摺接させてガイドピン44~47を省いた構造にしてもよい。
 次に図13から図17により本発明の第二実施例の自動車用エンジンにおける位相可変装置を説明する。実施例2は、実施例1のねじりコイルバネ59に代えて第二の電磁クラッチ機構61を備えることにより、第一の電磁クラッチ34による位相角の変位方向と逆向きの変位を可能にしている。まず、図13における第二回転体35からボルト43に至る構成は、後述する中間回転体33に対する偏心円カム36とカムガイドプレート37の配置が一部異なることと、センターシャフト32の先端形状が一部異なること以外第一実施例と同一である。
 実施例2において第二の電磁クラッチ機構61は、第二回転体35の前方に対してローラガイドプレート62、係合孔62a内を転動する複数のローラー63、第三回転体64、スラストベアリング65、皿バネ66、バネホルダー67、第二電磁クラッチ68が配置されて構成される。まず、ローラガイドプレート62は、角穴62bを介してセンターシャフト32の平坦係合部32fに係合し、センターシャフト32に対して相対回動不能に固定される。第二回転体35、ローラガイドプレート62、第三回転体64は、互いに軸方向に隙間を持って配置され、ローラー63は、第二回転体の前面35cと第三回転体64の後面64aに挟持されることにより第二または第三回転体のいずれかに相対回動トルクが発生すると孔62a内を転動する。第三回転体64は、凹部64bに取り付けられたスラストベアリング65により、センターシャフト32の先端外周に相対回動可能な状態で支持されている。スラストベアリング65の前方には、皿バネ66が取り付けられ、その前方にバネホルダー67が取り付けられ、ボルト60によってセンターシャフト32に共締めされている。皿バネ66は、スラストベアリング65を介して第三回転体64を軸方向後方に押圧し、第三回転体64と第二回転体35との間におけるローラー63の転動を確実にする。第二電磁クラッチ68は、図示しないエンジンケースに固定された状態で第三回転体64に隣接している。
 また、実施例2においては、中間回転体33の内周面33dに対して第一の偏心円カム53とカムガイドプレート37を図17に示す位置に配置している。前記初期状態において、カムガイドプレート37は、上端部37dが中間回転体33の内周面33dの上部に当接し、第一の偏心円カム53の中心軸L3(偏心点)は、径方向ガイド38の伸張方向の軸線L4の上方に対して時計回りの方向に傾いた状態に配置されている。
 位相変更の無い初期状態において、第三回転体64、ローラー63、ローラガイドプレート62は、時計回りに回転する第一回転体31により、第二回転体35と一体となって同方向に回転する。カムシャフト30と第一回転体31との位相角を変更する際には、第二電磁クラッチ68に通電する。すると、第三回転体64が第二回転体35に対して反時計回りに相対回動し、ローラー63が転動する。第二回転体35と第一の偏心円カム53は、ローラー63の転動によりトルクを受け中間回転体33に対して時計周りに相対回動する。カムガイドプレート37は、偏心円カム53によって下降し、同時にスライドピン40が傾斜ガイド39に沿って変位する。中間回転体33は、カムガイドプレート37と一体となり、第一回転体に対して時計回りに相対回動し、カムシャフト30と第一回転体31の相対位相角が進角方向(時計回り方向)に変位する。
 また、カムシャフト30と第一回転体31の位相角を遅角方向(反時計回り方向)に戻す場合には、電磁クラッチ34に通電する。第二回転体35と偏心円カム53は、中間回転体33に対して反時計回りに回動し、カムガイドプレート37が上昇することにより、カムシャフト30の第一回転体31の相対変位角が遅角方向に戻される。ねじりコイルバネ59の代わりに電磁クラッチ機構61を採用することにより、コイルバネ59の付勢力を考慮する必要が無くなるため、電磁クラッチ34は、必要トルクは小さくなるため小型化が可能になり、位相変位後に電磁クラッチ34の通電を切ることが可能になるため、省電力化が図れる。
 ここで、図18により、各実施例に使用するカムガイドプレート37の変形例を説明する。この変形例においては、一方のスライドピン69は、係合孔37aに回動可能な状態で係合する係合部69aと、中心軸O2が係合孔の中心軸O1から微小距離離間することによって中心軸O1周りを偏心回動するスライド部69bが軸方向に連続して形成されている。スライド部69bを偏心回動させた場合には、一対の傾斜ガイド39の離間距離に応じ、係合するスライドピン40とスライド部69bとの離間距離を調節することが出来る。その結果、スライドピン(40,69)と一対の傾斜ガイド39に関する前記離間距離の製造公差を大きくすることが出来るため、生産性が向上する。
 尚、各実施例において、スライドピン40を孔37aに対して回動可能な状態で係合させ、または、スライドピン40の代わりに径方向ガイド38と傾斜ガイド39に向けて突出する球体のような転動部材をスライド部材として採用すれば、前記スライド部材がガイド(38、39)を転動するため、中間回転体33と第一回転体31との位相角の変更がなめらかに行われる。
本発明の第一実施例を表す自動車用エンジンにおける位相可変装置の分解斜視図である。 第一実施例の装置の正面図である。 第一実施例の装置の軸方向断面を示す図2のA-A断面図である。 第二回転体と回転体ガイドプレート(中間回転体)の垂直断面を示す図3のB-B断面図である。 カムガイドプレートと回転体ガイドプレートとの断面を示す図3のC-C断面図である。 第一回転体の垂直断面を示す図3のD-D断面図である。 第二回転体と偏心円カムの動作関係を表す説明図である。 偏心円カムとカムガイドプレートの動作関係を表す説明図である。 第一回転体に対するスライド部材の動作説明図である。 偏心円カムを回転平面上の異なる範囲で揺動させる場合の仕様説明図である。(a)は、進角仕様の説明図である(b)は、遅角仕様の説明図である。(c)は、進角・遅角仕様の説明図である。 回転平面上における偏心円カムの位置に基づくスライド部材の変位量を表すグラフである。 第二回転体と回転体ガイドプレートによるセルフロック構造の説明図である。(a)は、カムガイドプレートから第二回転体に伝達される力の作用点を表す図である。(b)は、第二回転体と回転体ガイドプレートとの接触点に発生する力の説明図である。 本発明の第二実施例を表す自動車用エンジンにおける位相可変装置の分解斜視図である。 第二実施例の装置の軸方向断面図である。 第二実施例の装置の一部を断面とした参考斜視図である 第二実施例の第二回転体と第三回転体との構造説明図である。 中間回転体に対する偏心円カムとカムガイドプレートの配置説明図である。 カムガイドプレートの変形例の説明図である。(a)図は斜視図、(b)図は正面図。(c)図は(b)図のE-E断面図、(d)図は、偏心スライドピンの拡大図である。
符号の説明
  30    カムシャフト
  31    第一回転体(スプロケット)
  33    中間回転体(回転体ガイドプレート)
  34    電磁クラッチ
  35    第二回転体
  36    偏心円カム
  37    カムガイドプレート
  38    中間回転体の径方向ガイド
  39    第一回転体の傾斜ガイド
  51    第二回転体の偏心円孔
  53    第一の偏心円カム
  54    第二の偏心円カム
  59    ねじりコイルバネ
  61    第二の電磁クラッチ機構
  L1    回動中心軸
  L2    第二の偏心円カムのカム中心軸
  L3    第一の偏心円カムのカム中心軸
  d1    L1とL2の離間距離(第二の偏心円カムの偏心距離)
  d2    L1とL3の離間距離(第一の偏心円カムの偏心距離)

Claims (2)

  1.  クランクシャフトによって回転駆動する第一回転体と、カムシャフトと一体化された中間回転体と、前記中間回転体の前方に配置した第二回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一回転体と第二回転体との間に、回動操作力付与手段によって前記第二回転体に回動操作力を付与し、前記第一回転体と中間回転体を相対回動させることによって前記両回転体の位相角を変更する位相角変更機構を介装したエンジンの位相可変装置であって、
     前記位相角変更機構は、
     前記中間回転体が、円筒を有する形状に形成され、
     前記第二回転体が、前記中間回転体の円筒部の内径と略同一の円盤形状に形成され、前記円筒部の内周に略内接し、
     前記第二回転体から前記中間回転体に向けて突出し、中心軸が第二回転体の回動中心軸から離間した偏心円カムと
     第二回転体の回動中心軸に直交する方向に伸張し、前記偏心円カムが摺動する長孔と、前記第一回転体と中間回転体に向けて突出したスライド部材を備えたカムガイドプレートと、
     前記カムガイドプレートの長孔の伸張方向と直交する方向かつ前記中間回転体の径方向に伸張する、前記中間回転体に形成された径方向ガイドと、
     前記第一回転体の回動中心軸を中心とした円周に対して傾斜する、前記第一回転体に形成された傾斜ガイドとを備え、
     前記カムガイドプレートのスライド部材が、前記径方向ガイドの方向と前記傾斜ガイドの方向に沿って変位することを特徴とするエンジンの位相可変装置。
  2.  前記第二回転体は、中心が前記第二回転体の回動中心軸から離間する偏心円孔を有し、
     前記偏心円カムは、前記カムガイドプレートの長孔と摺動する第一の偏心円カムに、前記偏心円孔と係合する第二の偏心円カムが隣接して形成され、
     前記第二の偏心円カムは、カム中心軸と前記第二回転体の回動中心軸との離間距離が、前記第一の偏心円カムの中心軸と前記第二回転体の回動中心軸との離間距離よりも小さいことを特徴とする、請求項1記載のエンジンの位相可変装置。
PCT/JP2008/051763 2008-02-04 2008-02-04 自動車用エンジンにおける位相可変装置 WO2009098752A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2008/051763 WO2009098752A1 (ja) 2008-02-04 2008-02-04 自動車用エンジンにおける位相可変装置
EP08710742A EP2249000B1 (en) 2008-02-04 2008-02-04 Phase variable device in car engine
KR1020107015562A KR101433150B1 (ko) 2008-02-04 2008-02-04 자동차용 엔진에 있어서의 위상 가변 장치
JP2009552341A JP5047310B2 (ja) 2008-02-04 2008-02-04 自動車用エンジンにおける位相可変装置
CN2008801262220A CN101939512B (zh) 2008-02-04 2008-02-04 机动车用发动机中的相位可变装置
US12/811,634 US8286602B2 (en) 2008-02-04 2008-02-04 Phase variable device in car engine
HK11106858.5A HK1152734A1 (en) 2008-02-04 2011-07-05 Phase variable device in car engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051763 WO2009098752A1 (ja) 2008-02-04 2008-02-04 自動車用エンジンにおける位相可変装置

Publications (1)

Publication Number Publication Date
WO2009098752A1 true WO2009098752A1 (ja) 2009-08-13

Family

ID=40951840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051763 WO2009098752A1 (ja) 2008-02-04 2008-02-04 自動車用エンジンにおける位相可変装置

Country Status (7)

Country Link
US (1) US8286602B2 (ja)
EP (1) EP2249000B1 (ja)
JP (1) JP5047310B2 (ja)
KR (1) KR101433150B1 (ja)
CN (1) CN101939512B (ja)
HK (1) HK1152734A1 (ja)
WO (1) WO2009098752A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322319B2 (en) 2008-10-22 2012-12-04 Nittan Vavle Co., Ltd. Cam shaft phase variable device in engine for automobile
CN102859126A (zh) * 2010-05-18 2013-01-02 日锻汽门株式会社 发动机的相位可变装置
EP2628910A1 (en) * 2010-10-12 2013-08-21 Nittan Valve Co., Ltd. Phase variable device of engine
JPWO2013098908A1 (ja) * 2011-12-26 2015-04-30 日鍛バルブ株式会社 自動車用エンジンにおける位相可変装置の電磁ブレーキ冷却構造
JP2016043459A (ja) * 2014-08-25 2016-04-04 株式会社松阪鉄工所 アングルカッター
WO2016113834A1 (ja) * 2015-01-13 2016-07-21 日鍛バルブ株式会社 自動車用エンジンの位相可変装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130770A1 (ja) * 2008-04-23 2009-10-29 日鍛バルブ株式会社 自動車用エンジンにおける位相可変装置
WO2010026645A1 (ja) * 2008-09-05 2010-03-11 日鍛バルブ株式会社 自動車用エンジンにおけるカムシャフト位相可変装置
CN102365429B (zh) * 2009-03-31 2013-07-10 日锻汽门株式会社 发动机的相位可变装置
CN102459827B (zh) * 2009-06-05 2014-01-22 日锻汽门株式会社 发动机的相位可变装置
KR101172332B1 (ko) 2010-12-06 2012-08-07 현대자동차주식회사 가변 밸브 타이밍 장치
EP2743465A4 (en) * 2011-08-12 2015-04-29 Nittan Valva VARIABLE PHASE DEVICE OF AN AUTOMOBILE ENGINE
DE102013219405A1 (de) * 2012-09-28 2014-04-03 Denso Corporation Ventilzeiteinstellungssteuerungsgerät
JPWO2014057530A1 (ja) * 2012-10-09 2016-08-25 日鍛バルブ株式会社 自動車用エンジンの位相可変装置
JP5874615B2 (ja) * 2012-11-30 2016-03-02 株式会社デンソー バルブタイミング調整装置
JP6790640B2 (ja) * 2016-09-15 2020-11-25 アイシン精機株式会社 弁開閉時期制御装置
JP6790639B2 (ja) * 2016-09-15 2020-11-25 アイシン精機株式会社 弁開閉時期制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113755A (ja) * 2003-10-07 2005-04-28 Hitachi Unisia Automotive Ltd 内燃機関の可変動弁装置
JP2007071261A (ja) * 2005-09-06 2007-03-22 Hitachi Ltd 電磁ブレーキ装置
JP2007071241A (ja) * 2005-09-05 2007-03-22 Hitachi Ltd 電磁ブレーキ装置
JP3948995B2 (ja) 2002-04-05 2007-07-25 株式会社日立製作所 内燃機関のバルブタイミング制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134011A (ja) * 1987-11-19 1989-05-26 Honda Motor Co Ltd 内燃機関の動弁装置
CA1327150C (fr) * 1988-12-28 1994-02-22 Christian Fabi Mecanisme a dephasage progressif d'un arbre a cames dans un moteur a combustion interne
JP3857215B2 (ja) * 2002-10-31 2006-12-13 株式会社デンソー バルブタイミング調整装置
JP4295081B2 (ja) * 2003-12-19 2009-07-15 株式会社日立製作所 内燃機関のバルブタイミング制御装置
CN1993538A (zh) * 2004-09-01 2007-07-04 日锻汽门株式会社 发动机的可变相位装置
JP4459826B2 (ja) * 2005-01-26 2010-04-28 株式会社デンソー バルブタイミング調整装置
US7497193B2 (en) * 2006-01-18 2009-03-03 Hydraulik-Ring Gmbh Rotor of a camshaft adjuster
JP2007239665A (ja) * 2006-03-09 2007-09-20 Denso Corp バルブタイミング調整装置
JP4461118B2 (ja) * 2006-05-18 2010-05-12 株式会社デンソー バルブタイミング調整装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948995B2 (ja) 2002-04-05 2007-07-25 株式会社日立製作所 内燃機関のバルブタイミング制御装置
JP2005113755A (ja) * 2003-10-07 2005-04-28 Hitachi Unisia Automotive Ltd 内燃機関の可変動弁装置
JP2007071241A (ja) * 2005-09-05 2007-03-22 Hitachi Ltd 電磁ブレーキ装置
JP2007071261A (ja) * 2005-09-06 2007-03-22 Hitachi Ltd 電磁ブレーキ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322319B2 (en) 2008-10-22 2012-12-04 Nittan Vavle Co., Ltd. Cam shaft phase variable device in engine for automobile
CN102859126A (zh) * 2010-05-18 2013-01-02 日锻汽门株式会社 发动机的相位可变装置
EP2573336A1 (en) * 2010-05-18 2013-03-27 Nittan Valve Co., Ltd. Phase variable device for engine
EP2573336A4 (en) * 2010-05-18 2013-12-18 Nittan Valva PHASE VARYING DEVICE FOR MOTOR
JP5616440B2 (ja) * 2010-05-18 2014-10-29 日鍛バルブ株式会社 エンジンの位相可変装置
EP2628910A1 (en) * 2010-10-12 2013-08-21 Nittan Valve Co., Ltd. Phase variable device of engine
EP2628910A4 (en) * 2010-10-12 2014-11-12 Nittan Valva PHASE REVERSIBLE DEVICE FOR A MOTOR
JPWO2013098908A1 (ja) * 2011-12-26 2015-04-30 日鍛バルブ株式会社 自動車用エンジンにおける位相可変装置の電磁ブレーキ冷却構造
JP2016043459A (ja) * 2014-08-25 2016-04-04 株式会社松阪鉄工所 アングルカッター
WO2016113834A1 (ja) * 2015-01-13 2016-07-21 日鍛バルブ株式会社 自動車用エンジンの位相可変装置

Also Published As

Publication number Publication date
KR20100110825A (ko) 2010-10-13
KR101433150B1 (ko) 2014-08-22
CN101939512A (zh) 2011-01-05
US20100313836A1 (en) 2010-12-16
EP2249000B1 (en) 2012-10-03
JPWO2009098752A1 (ja) 2011-05-26
EP2249000A1 (en) 2010-11-10
EP2249000A4 (en) 2011-10-12
US8286602B2 (en) 2012-10-16
JP5047310B2 (ja) 2012-10-10
CN101939512B (zh) 2012-11-21
HK1152734A1 (en) 2012-03-09

Similar Documents

Publication Publication Date Title
JP5047310B2 (ja) 自動車用エンジンにおける位相可変装置
JP5154657B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
JP3798944B2 (ja) 内燃機関のバルブタイミング制御装置
WO2009130770A1 (ja) 自動車用エンジンにおける位相可変装置
JP5102071B2 (ja) 自動車用エンジンにおける位相可変装置
US20130192552A1 (en) Phase varying apparatus for automobile engine technical
JP2006299867A (ja) 内燃機関のバルブタイミング制御装置
US6510826B2 (en) Valve timing control device of internal combustion engine
JP5255114B2 (ja) エンジンの位相可変装置
JPWO2009107204A1 (ja) エンジンのバルブ制御装置
JP4226591B2 (ja) 内燃機関のバルブタイミング制御装置
JP2003129805A (ja) 内燃機関のバルブタイミング制御装置
JP2007002777A (ja) 内燃機関用弁の位相可変装置
WO2010140250A1 (ja) エンジンの位相可変装置
CN114364863B (zh) 具有凸轮轴气门相位变化设备的内燃发动机
JP4818313B2 (ja) 内燃機関のバルブタイミング制御装置
JP2007071038A (ja) 電磁ブレーキ装置
JP2007071241A (ja) 電磁ブレーキ装置
JP2002227893A (ja) 電磁ブレーキ装置
JPH10306713A (ja) 内燃機関の吸排気弁駆動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126222.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009552341

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107015562

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008710742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12811634

Country of ref document: US