WO2009128503A1 - エレクトレットおよび静電誘導型変換素子 - Google Patents

エレクトレットおよび静電誘導型変換素子 Download PDF

Info

Publication number
WO2009128503A1
WO2009128503A1 PCT/JP2009/057656 JP2009057656W WO2009128503A1 WO 2009128503 A1 WO2009128503 A1 WO 2009128503A1 JP 2009057656 W JP2009057656 W JP 2009057656W WO 2009128503 A1 WO2009128503 A1 WO 2009128503A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
electret
group
fluorine
Prior art date
Application number
PCT/JP2009/057656
Other languages
English (en)
French (fr)
Inventor
柏木 王明
岡野 邦子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN200980113719.3A priority Critical patent/CN102007002B/zh
Priority to EP09732621.9A priority patent/EP2266795B1/en
Priority to JP2010508243A priority patent/JP5381979B2/ja
Publication of WO2009128503A1 publication Critical patent/WO2009128503A1/ja
Priority to US12/904,856 priority patent/US8277927B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/021Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/028Electrets, i.e. having a permanently-polarised dielectric having a heterogeneous dielectric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/3158Halide monomer type [polyvinyl chloride, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/3175Next to addition polymer from unsaturated monomer[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • Y10T428/3192Next to vinyl or vinylidene chloride polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to an electret and an electrostatic induction conversion element including the electret.
  • m is an integer of 0 to 10.
  • the polymer main chain is not an ortho position of the aliphatic hydrocarbon ring structure, but is bonded with one or more methylene chains at intervals.
  • the aliphatic hydrocarbon ring structure is incorporated into the polymer main chain.
  • m is preferably an integer of 1 to 3, and most preferably 1.
  • r and s may each be 0 or 1. In particular, when m is 0, r and s are preferably 0. When m is 1, r and s are preferably 1.
  • examples of the alkyl group and cycloalkyl group for R 1 and R 2 include the same alkyl groups and cycloalkyl groups as those described above as the substituent.
  • R 1 and R 2 may be bonded to each other to form a ring together with the carbon atom to which R 1 and R 2 are bonded.
  • the ring formed is preferably a monocyclic or polycyclic cycloalkane.
  • monocyclic cycloalkanes include cyclopentane and cyclohexane.
  • examples of the polycyclic cycloalkane include norbornane and adamantane. Among these, cyclopentane or norbornane is preferable.
  • the cycloolefin polymer may contain units other than the unit (z1) (hereinafter sometimes referred to as unit (z2)).
  • unit (z2) any unit conventionally used in cycloolefin polymers can be used, and is not particularly limited.
  • the unit (z2) is preferably a unit based on an olefin which may have a substituent. Examples of the unit include the following unit (z2-1).
  • R 5 represents a hydrogen atom or an alkyl group.
  • the cycloolefin polymer (II) may contain one kind or two or more kinds as the unit (z1-21) and the unit (z2), respectively.
  • the cycloolefin polymer (II) may contain units other than the unit (z1-21) and the unit (z2) as long as the effects of the present invention are not impaired.
  • the proportion of the unit (z1-21) in the cycloolefin polymer (II) is preferably 20 to 70 mol%, preferably 30 to 50 mol%, based on the total of all repeating units constituting the cycloolefin polymer (II). More preferred.
  • the proportion of the unit (z2) is preferably 30 to 80 mol%, more preferably 50 to 70 mol%, based on the total of all repeating units constituting the cycloolefin polymer (II).
  • Preferable specific examples of the cycloolefin polymer (II) include copolymers containing respective two types of units represented by the following formulas (II-1) and (II-2).
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, nadic acid, methyl nadic acid and the like.
  • Examples of the unsaturated carboxylic acid derivative include acid halides, amides, imides, acid anhydrides, esters, and the like of the unsaturated carboxylic acid, and specific examples include maleenyl chloride, maleic anhydride, citraconic anhydride, maleic acid. Examples thereof include methyl and dimethyl maleate.
  • the cycloolefin polymer is not particularly limited as long as it satisfies desired characteristics such as relative dielectric constant, and a commercially available one may be used or synthesized.
  • the synthesis method of the cycloolefin polymer the following (1) to (7) are known.
  • the unit of display in the final product of each reaction formula shows the unit contained in the obtained cycloolefin polymer.
  • (1) A method of addition copolymerization of norbornenes and olefin (for example, a method shown in the following reaction formula (1 ′)).
  • a method of hydrogenating a ring-opening metathesis polymer of norbornene for example, a method shown in the following reaction formula (2 ′)).
  • a method of transannular polymerization of alkylidene norbornene for example, a method shown in the following reaction formula (3 ′)).
  • a method of addition polymerization of norbornene for example, a method shown in the following reaction formula (4 ′)).
  • a method of hydrogenating 1,2- and 1,4-addition polymers of cyclopentadiene for example, a method shown in the following reaction formula (5 ′)).
  • a method of hydrogenating 1,2- and 1,4-addition polymers of cyclohexadiene for example, a method shown in the following reaction formula (6 ′)).
  • a method of cyclopolymerizing a conjugated diene for example, a method shown in the following reaction formula (7 ′)).
  • R 1 to R 5 are the same as described above.
  • R 6 to R 7 are each independently an alkyl group, and examples of the alkyl group include the same alkyl groups listed as the substituents that the hydrocarbon group of R may have.
  • cycloolefin polymers obtained by the method (1) (addition copolymers of norbornenes and olefins) and cycloolefin polymers obtained by the method (2) (ring-opening metathesis polymers of norbornenes) Hydrogenated polymer) is preferable from the viewpoint of excellent film forming property and easy synthesis.
  • the norbornene addition copolymer include those sold under the trade names of Apel (registered trademark) (manufactured by Mitsui Chemicals) and TOPAS (registered trademark) (manufactured by Ticona).
  • the weight average molecular weight of the resin (a) is preferably from 3,000 to 1,000,000, more preferably from 10,000 to 300,000.
  • the resin (a) preferably has a glass transition temperature or melting point of 80 ° C. or higher, and more preferably 100 ° C. or higher.
  • the glass transition temperature or melting point is 80 ° C. or higher, particularly 100 ° C. or higher, the electret has excellent heat resistance, retained charge stability, and the like.
  • the glass transition temperature or melting point is preferably 350 ° C. or lower, more preferably 250 ° C. or lower, taking into consideration the film-forming properties when forming the resin (a), the solubility of the resin (a) in a solvent, and the like.
  • 200 degrees C or less is the most preferable.
  • the solvent for the coating composition is not particularly limited as long as it can dissolve the resin (a) and can form a coating film having a desired film thickness and uniformity by a desired coating method.
  • a protic solvent and aprotic solvents include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, tert-butanol, pentanol, hexanol, 1-octanol, 2-octanol, ethylene glycol, ethylene glycol monomethyl ether, Examples include propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol, methyl lactate, and a protic fluorine-containing solvent described later.
  • Ether monoacetate N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), N-methylpyrrolidone, tetrahydrofuran, anisole, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, dichlorobenzene Benzene, toluene, xylene, ethylbenzene, mesitylene, tetralin, methylnaphthalene, aprotic fluorine-containing solvents described later, and the like. . Any one of these solvents may be used alone, or two or more thereof may be mixed and used.
  • the solvent is preferably an aprotic solvent, and more preferably an aprotic fluorine-containing solvent.
  • the solvent is preferably an aprotic solvent, more preferably a hydrocarbon, benzene, toluene, xylene, ethylbenzene, mesitylene, tetralin, Aromatic hydrocarbons such as methylnaphthalene are more preferred, and toluene and xylene are particularly preferred.
  • aprotic fluorine-containing solvent include the following fluorine-containing compounds.
  • Fluorinated aromatic compounds such as hexafluorometaxylene, fluorobenzene, difluorobenzene, perfluorobenzene, pentafluorobenzene, 1,3-bis (trifluoromethyl) benzene, 1,4-bis (trifluoromethyl) benzene;
  • Perfluorotrialkylamine compounds such as perfluorotributylamine and perfluorotripropylamine;
  • perfluorocycloalkane compounds such as perfluorodecalin, perfluorocyclohexane and perfluoro (1,3,5-trimethylcyclohexane);
  • Perfluoro cyclic ether compounds such as 2-butyltetrahydrofuran); low molecular weight perfluoropolyether; perfluorohexane, perfluorooctane, perfluorodecan
  • the polyfluoroalkyl group in R 31 is a group in which two or more of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and a perfluoroalkyl group in which all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and alkyl
  • the group includes a group in which two or more hydrogen atoms in the group are substituted with fluorine atoms, and one or more hydrogen atoms in the alkyl group are substituted with halogen atoms other than fluorine atoms.
  • halogen atoms other than fluorine atoms chlorine atoms are preferred.
  • the polyfluoroalkyl group is preferably a group in which 60% or more of hydrogen atoms in the corresponding alkyl group are substituted with fluorine atoms, and more preferably 80% or more. More preferred polyfluoroalkyl groups are perfluoroalkyl groups.
  • the number of etheric oxygen atoms in R 31 is preferably 1 to 3, preferably 1 to 2 Is more preferable.
  • the number of carbon atoms of R 31 is the good solubility of the is 5 or more fluorine-containing resin (a1), for industrially easily available carbon number of R 31 is at 12 or less, the number of carbon atoms in R 31 Is selected from the range of 5-12.
  • the number of carbon atoms of R 31 is preferably 6 to 10, more preferably 6 to 7 and 9 to 10.
  • the number of carbon atoms in R 32 is 1 to 5, and if the number of carbon atoms is 5 or less, the solubility of the fluororesin (a1) is good.
  • a preferred example of R 32 is a methyl group or an ethyl group.
  • the fluorine content of the fluorine-containing solvent (2) is preferably 60 to 80% by mass because the solubility of the fluorine-containing resin (a1) is excellent. The following can be illustrated as a preferable fluorine-containing solvent (2).
  • (CF 3 ) 2 CFCF (OCH 3 ) CF 2 CF 3 is particularly suitable.
  • the hydrogen atom of the amino group in these compounds may be substituted with an alkyl group or an aryl group.
  • alkyl group or an aryl group examples thereof include N, N-dimethylaminophenyltrialkoxysilane and N, N-dimethylaminophenylmethyldialkoxysilane.
  • an aromatic amine-based silane coupling agent described in US Pat. No. 3,481,815 can be used.
  • alkoxysilanes having an amino group or an epoxy group are particularly effective as the silane coupling agent.
  • the silane coupling agent includes, in particular, alkoxysilanes having an amino group or aminophenyl group. It is valid.
  • a protic fluorine-containing solvent may be added to the coating composition.
  • a protic fluorine-containing solvent is added to the coating composition, the solubility of the silane coupling agent in the coating composition can be increased. Moreover, the raise of the viscosity considered to be by reaction between silane coupling agents and gelatinization can be suppressed. That is, the trialkoxysilanes having an amino group or an epoxy group described above cause an increase in viscosity or gelation with time in aprotic fluorine-containing solvents as compared to dialkoxysilanes having the same group. Cheap.
  • the viscosity increase over time of the coating composition is not as significant as that of trialkoxysilanes, so it is not always necessary to add a protic fluorine-containing solvent such as a fluorine-containing alcohol.
  • the addition is preferable because the increase in viscosity can be reliably suppressed.
  • protic fluorine-containing solvent examples include the following. Trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2- (perfluorobutyl) ethanol, 2- (perfluorohexyl) ethanol, 2- (perfluorooctyl) ethanol, 2- (Perfluorodecyl) ethanol, 2- (perfluoro-3-methylbutyl) ethanol, 2,2,3,3-tetrafluoro-1-propanol, 2,2,3,3,4,4,5,5- Octafluoro-1-pentanol, 2,2,3,3,4,4,5,5,6,6-dodecafluoro-1-heptanol, 2,2,3,3,4,4,5,5 , 6,6,7,7-hexadecafluoro-1-nonanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,4,4-hexafluoro -1-butano Fluorine-containing alcohol
  • the ratio of the protic fluorinated solvent to the total of the aprotic fluorinated solvent and the protic fluorinated solvent is 0.01 to 50% by mass.
  • the content is preferably 0.1 to 30% by mass.
  • a layer (B) is a layer comprised from resin (b) other than resin (a), or an inorganic substance (c), and the material (resin (b) or inorganic substance (c)) which comprises this layer (B) is , Different from the material (resin (a)) constituting the layer (A).
  • the resin (b) is not particularly limited as long as it is other than the resin (a), and may be appropriately selected from conventionally known resins.
  • the resin (b) preferably has a lower charge retention performance when used as an electret than the resin (a).
  • charge holding performance there are two types of “charge holding performance”: a large amount of charge that can be held (charge holding capacity), and how stable the injected charge can be held (charge stability).
  • (B) may be one in which either the charge retention amount or the charge stability is low, but it is preferable that both performances are lower than those of the resin (a).
  • Resin (b) and resin (a) have a charge retention performance in which a single film of resin (b) and a single film of resin (a) are formed on the substrate with the same film thickness.
  • the resin (b) include polyimide, polyparaxylylene resin, polycarbonate, polyarylene, polyarylene ether, polyether, polyether sulfone, polyether ketone, polyether nitrile, polyether imide, polyarylene thioether, At least one selected from the group consisting of polythioether sulfone, polysulfone, nylon, polyester, polystyrene, polyethylene, polypropylene, polyketone, epoxy resin, acrylic resin, polyurethane, and aramid resin is preferable.
  • the resin (b) is at least one selected from the group consisting of polyimide, polyparaxylylene resin, polycarbonate, polyarylene, polyarylene ether, polysulfone, and polyethersulfone from the viewpoint of the ease of the film forming process. Is more preferable.
  • a thermosetting resin and / or an ultraviolet curable resin may be used from the viewpoint of increasing the glass transition temperature or the melting point.
  • the thermosetting resin and the ultraviolet curable resin include polyimide, epoxy resin, acrylic resin and the like in the above examples, and polyimide is preferably used from the viewpoint of ease of film forming process.
  • polyimide precursor having excellent solubility in an organic solvent or the like is coated and heat-treated to convert the polyimide precursor to polyimide and form a layer (B).
  • polyimide precursor polyamic acid and esters thereof can be generally used.
  • a polyimide precursor such as polyamic acid is heated to a high temperature of 200 to 350 ° C., an imide ring-closing reaction occurs and can be converted into a thermally, chemically and electrically stable polyimide.
  • a commercially available polyimide can be used.
  • the polyamic acid obtained by making tetracarboxylic dianhydride and a diamine compound react, or its ester is preferable.
  • the tetracarboxylic dianhydride is not particularly limited, but an aromatic tetracarboxylic dianhydride used in general polyimide synthesis can be used.
  • 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′ , 4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 1,3-bis (2,3-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (2,3-dicarboxy Phenoxy) benzene dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3 Examples include 3′-biphenyltetracarboxylic dianhydride, 2,2 ′, 6,6′-biphenyltetracarboxylic dianhydride, and the like.
  • an aromatic diamine compound is preferable. Although it does not restrict
  • polyparaxylylene resins there are several types of polyparaxylylene resins. Among them, those having a molecular structure with chlorine on the benzene ring (trade name Parylene-C) have a relative dielectric constant of 2.95 at a frequency of 1 MHz. Moreover, it has the characteristics that dielectric breakdown strength and chemical resistance are high, and is suitable as resin (b). Examples of polyparaxylylenes that can be used as the resin (b) including the parylene-C are shown below. The product name is shown below each structural formula.
  • metal oxides include silicon oxide, titanium oxide, zirconium oxide, aluminum oxide, cerium oxide, calcium oxide, magnesium oxide, tin oxide, manganese dioxide, nickel oxide, chromium oxide, cobalt oxide, silver oxide, copper oxide, zinc oxide Iron oxide, molybdenum oxide, barium titanate, strontium titanate, potassium niobate and the like.
  • metal sulfide examples include zinc sulfide, aluminum sulfide, gallium sulfide, silver sulfide, silicon sulfide, tin sulfide, cerium sulfide, magnesium sulfide, copper sulfide, iron sulfide, and molybdenum sulfide.
  • the layer (B) may contain the resin (b) or may contain the inorganic substance (c).
  • the film forming method of the layer (B) is not particularly limited, and a conventionally known film forming method may be used depending on the material to be used.
  • the film may be formed by a wet coating method or may be formed by press molding a film.
  • you may form into a film by dry processes, such as vapor deposition, CVD, and sputtering.
  • the resin (b) is soluble in a solvent, preferably at 25 ° C. at a concentration of 5% by mass or more based on the solvent used. Those having solubility are used. When the solubility is less than 5% by mass, it is difficult to obtain a good coating film.
  • the solubility is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the upper limit of the solubility is preferably 50% by mass and more preferably 30% by mass in consideration of deterioration of filterability and film-forming property due to an increase in solution viscosity.
  • the film formation of the layer (B) by the coating method can be performed by the same method as the method for forming the coating film, which is mentioned as the method for forming the layer (A). That is, it can be carried out by preparing a coating composition by dissolving the resin (b) in a solvent, coating the coating composition on the surface of the substrate or the layer (A), and drying by baking or the like.
  • a silane coupling agent may be blended in the coating composition.
  • the coating film (layer (B)) formed using the said coating composition is excellent in adhesiveness with a board
  • the silane coupling agent the same ones as described above can be used.
  • a coating composition prepared by dissolving the monomer or prepolymer of the resin (b) in a solvent is coated on the surface of the substrate or the layer (A), and then heat, light,
  • the layer (B) may be obtained as a cured film by applying an external energy such as an electron beam and curing.
  • the layer (B) may be formed by a wet method such as a coating method or a sol-gel method.
  • a film may be formed by a process.
  • An example of forming a silicon oxide film by a wet method is given below.
  • hydrolyzable silane compounds such as tetraalkoxysilane and alkyltrialkoxysilane, partially hydrolyzed condensates of hydrolyzable silane compounds, polysilazane and the like dissolved in the protic solvent or aprotic solvent and applied,
  • a method of forming a silicon oxide film by firing in the air is preferably used.
  • a non-aqueous film forming method for example, when a silicon oxide film is formed, a method of forming a silicon oxide film by applying a xylene solution of polysilazane and baking in the air is preferably used.
  • the firing temperature is preferably 150 ° C. to 600 ° C., and more preferably 180 ° C. to 450 ° C. from the viewpoint of preventing cracking due to the difference in coefficient of linear expansion with the layer (A).
  • the polysilazane in the present invention for example, polysilazane and modified polysilazane described in JP-A No. 9-31333 and references cited therein can be used.
  • the laminate in the present invention contains the directly laminated layer (A) and layer (B) as essential structural units.
  • the layer (B) when an electric charge is injected into the laminate to form an electret, the layer (B) is disposed on the outermost surface opposite to the side on which the electric charge is injected.
  • the said laminated body may have a layer (B) arrange
  • This laminated body may be comprised only from the layer (A) and the layer (B), and may contain the other layer.
  • the other layers include a metal layer and an organic monomolecular film layer using the silane coupling agent. These layers can be formed by a conventionally known method.
  • layers (B) and (A) are laminated in this order from the side opposite to the side where charges are injected (hereinafter referred to as layer (B) / layer (A).
  • layer (B) / layer (A) The same applies to other laminates.
  • the laminate is preferably a film having a thickness of 1 to 200 ⁇ m.
  • the thickness of the laminate is preferably 3 to 50 ⁇ m, and particularly preferably 5 to 20 ⁇ m, since it is advantageous in terms of electret characteristics and processing.
  • the thickness of the layer (B) is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and most preferably 2 ⁇ m or more because the above effect is excellent. preferable.
  • the upper limit of the thickness is preferably 20 ⁇ m and more preferably 10 ⁇ m from the viewpoint of improving the surface charge density and the film forming process.
  • the thickness of the layer (A) (thickness per layer) is not particularly limited, and may be set as appropriate in consideration of the thickness of the entire laminate, the number of layers (A), and the like. Considering the charge retention performance, heat resistance, etc. of the electret, it is preferably 3 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the thickness of each layer of the layer (A) and the layer (B) and the thickness of the entire laminate can be measured by an optical interference type film thickness measuring device.
  • the electret of the present invention comprises a step of forming the laminate on the substrate such that the layer (B) is in direct contact with the substrate (laminate formation step), and the laminate is opposite to the substrate side. It can be manufactured by a method having a step of injecting charges from the side to form electrets (charge injection step).
  • the laminate can be formed by sequentially laminating the layer (B) and the layer (A) on the substrate so that the layer (B) is in direct contact with the substrate.
  • a two-layer laminate can be formed by first forming a layer (B) on a substrate and laminating the layer (A) on the layer (B).
  • a predetermined number of laminates are formed by alternately laminating layers (B) and layers (A) sequentially from the substrate side according to the desired number of laminates. it can.
  • other layers may be arbitrarily laminated, but the laminated body includes at least a laminated body in which the layer (A) and the layer (B) are directly laminated.
  • a layer (B) is arrange
  • the substrate any material can be used as long as it can be connected to the ground when injecting charges into the obtained laminate.
  • the resistance value of the substrate material is preferably 0.1 ⁇ cm or less, and more preferably 0.01 ⁇ cm or less, in terms of volume resistivity.
  • the substrate may be a flat plate with a smooth surface, or may have irregularities formed thereon. Moreover, the surface may be patterned into various shapes. In particular, when the above-described insulating substrate is used, the unevenness or pattern may be formed on the insulating substrate itself, or the unevenness or pattern may be formed on the metal film coated on the surface.
  • a conventionally known method can be used and is not particularly limited.
  • As a method for forming the unevenness or pattern either a vacuum process or a wet process may be used.
  • Such methods include a vacuum process, a sputtering method through a mask, a vapor deposition method through a mask, and a wet process such as a roll coater method, a casting method, a dipping method, a spin coating method, a water casting method, a Langmuir Examples include a blow jet method, a die coating method, an ink jet method, and a spray coating method.
  • Printing techniques such as letterpress printing, gravure printing, lithographic printing, screen printing, and flexographic printing can also be used.
  • a nanoimprint method, a photolithography method, or the like can also be used.
  • the film formation by the above-mentioned coating method or the like may be simply repeated. You may give it.
  • a method of coating the above-mentioned silane coupling agent a method of hydrophilizing or roughening the surface by plasma treatment, and the like can be applied.
  • the silane coupling agent is dissolved in the aforementioned protic solvent, aprotic solvent or protic fluorine-containing solvent and applied by the same coating method as described above. Surface treatment can be performed.
  • plasma treatment using a gas such as oxygen, nitrogen, argon, methane, CHF 3 , or CF 4 can be applied.
  • a gas such as oxygen, nitrogen, argon, methane, CHF 3 , or CF 4
  • oxygen, nitrogen, argon, methane gas, or a mixed gas thereof in order to minimize the decrease in the film thickness of the base.
  • the layer (A) or the layer (B) may be disposed on the outermost surface of the laminate on the side where charges are injected. Since the effect of the present invention is excellent, the layer (A) is preferably disposed on the outermost surface of the laminate on the side where charges are injected.
  • any method can be used as long as it is a method for charging an insulator in general.
  • corona discharge method electron beam collision method, ion beam collision method, radiation irradiation method, light irradiation method described in GMSessler, Electrets Third Edition, p20, Chapter 2.2 “Charging and Polarizing Methods” (Laplacian Press, 1998)
  • a contact charging method, a liquid contact charging method, or the like is applicable.
  • the electret of the present invention preferably uses a corona discharge method or an electron beam collision method.
  • the temperature condition for injecting the charge is preferably higher than the glass transition temperature of the resin (a) from the viewpoint of the stability of the charge retained after the injection, and particularly (the glass transition temperature +10) to It is preferable to carry out under a temperature condition of about (the glass transition temperature + 20 ° C.). Furthermore, it is preferable to apply a high voltage as the applied voltage for injecting the charge if it is not higher than the dielectric breakdown voltage of the laminate.
  • the applied voltage of the laminate in the present invention is 6 to 30 kV for positive charges, preferably 8 to 15 kV, and is ⁇ 6 to ⁇ 30 kV for negative charges, preferably ⁇ 8 to ⁇ 15 kV.
  • the electret may be used as it is together with the substrate for the electrostatic induction conversion element, or may be peeled off from the substrate and used for the electrostatic induction conversion element.
  • the electret of the present invention is suitable as an electrostatic induction conversion element that converts electrical energy and kinetic energy.
  • Examples of the electrostatic induction conversion element include a vibration generator, an actuator, and a sensor.
  • the structures of these electrostatic induction conversion elements may be the same as those conventionally known except that the electret of the present invention is used as the electret.
  • the electret of the present invention can increase the surface potential even when the thickness of the portion (the layer (A)) responsible for charge retention as the electret is smaller than that of the conventional electret. Further, since the film thickness of each of the layer (A) and the layer (B) may be thin, film thickness unevenness during film formation by coating or the like can be reduced or eliminated. As a result, unevenness of the surface potential of the electret can be eliminated, and an electret film having a small charge variation and a high surface potential can be obtained. Therefore, the electrostatic induction conversion element using the electret has improved conversion efficiency between electric energy and kinetic energy, and has excellent performance. The reason why such an effect is obtained is not clear, but can be explained as follows.
  • the layer (B) contains a material (resin (b) or inorganic substance (c)) different from the resin (a) having high charge retention as the electret, and has a relatively high charge retention. It is considered low.
  • a layer with low charge retention (the layer (B)) has high charge retention, and has a low resistance value (high conductivity) with the layer responsible for charge retention as the electret (the layer (A)). It is inserted between the substrates.
  • the layer (A) since the layer (A) is not in direct contact with the substrate, it can be presumed that charge attenuation through the substrate can be prevented and sufficient charge can be retained even when the layer (A) is thin. .
  • a substrate for forming the electret a low-resistance silicon substrate (volume specific resistance value of 0.003 to 0.007 ⁇ cm. In the following examples, this substrate is referred to as “silicon substrate”) and a copper substrate. was used.
  • the film thickness of each layer was measured using an optical interference type film thickness measuring device C10178 manufactured by Hamamatsu Photonics.
  • the volume specific resistance value of the polymer A2 was> 10 17 ⁇ cm, the dielectric breakdown voltage was 19 kV / mm, and the relative dielectric constant was 2.1.
  • DSC differential scanning calorimetry
  • Tg glass transition temperature of the polymer A2 was 108 ° C.
  • the polymer A2 was dissolved in perfluorotributylamine at a concentration of 15% by mass to obtain a polymer solution P1.
  • silane coupling agent solution dissolved in 4.7 g of (perfluorohexyl) ethanol was mixed to obtain a uniform polymer composition solution M1.
  • Example 1: Production of electret A A 3cm square, 350 ⁇ m thick silicon substrate is coated with a 12% by mass N-methylpyrrolidone (NMP) solution of polyamic acid (Semicofine SP483 manufactured by Toray Industries, Inc., glass transition temperature of 350 ° C.
  • NMP N-methylpyrrolidone
  • the electret A was obtained by injecting electric charge into the obtained laminated film A by corona discharge.
  • Charge injection was performed according to the following procedure using a corona charging apparatus schematically shown in FIG. 1 at 120 ° C. under the conditions of a charging voltage of ⁇ 8 kV and a charging time of 3 minutes. That is, the substrate (silicon substrate in this embodiment) (10) is used as an electrode, and the DC high-voltage power supply device (12) (HAR-20R5; manufactured by Matsusada Precision) is used between the corona needle (14) and the substrate (10). By applying a high voltage of ⁇ 8 kV to the substrate, charges were injected into the laminated film A (11) formed on the substrate (10).
  • the negative ions discharged from the corona needle (14) are made uniform by the grid (16), and then dropped onto the laminated film A (11) to inject charges.
  • a voltage of ⁇ 600 V was applied to the grid (16) from the grid power supply (18).
  • Example 2 Production of electret B
  • a 5 ⁇ m-thick polyimide film was formed on a 3 cm square copper substrate having a thickness of 350 ⁇ m in the same manner as in Example 1.
  • the surface of the polyimide film is coated with the polymer composition solution M1 at a film thickness of 10 ⁇ m by a spin coating method in the same manner as in Example 1, and the total film thickness of 15 ⁇ m is a smooth laminated film.
  • B [2 layer laminated body laminated
  • Example 3 Production of electret C
  • a polyimide film having a film thickness of 0.3 ⁇ m was formed on a 3 cm square silicon substrate having a thickness of 350 ⁇ m.
  • the surface of the polyimide film was coated with the polymer composition solution M1 by a spin coating method to a film thickness of 14.7 ⁇ m in the same manner as in Example 1, and a laminated film C [15 ⁇ m in total film thickness [ From the substrate side, a two-layer laminate obtained by laminating layers (B): 0.3 ⁇ m / layers (A): 14.7 ⁇ m was obtained.
  • a slightly nonuniform portion was observed in the surface smoothness. Electric charge was injected into the obtained laminated film C by the same procedure as in Example 1 to obtain an electret C.
  • Example 4 Production of electret D
  • a silicon substrate having a size of 3 cm square and a thickness of 350 ⁇ m was coated with a 20 mass% xylene solution of polysilazane (DEN-3, manufactured by Clariant Japan Co., Ltd.) by a spin coating method. Then, it baked at 200 degreeC for 12 hours, and formed the silicon oxide film with the film thickness of 2.2 micrometers on the board
  • DEN-3 polysilazane
  • the polymer composition solution M1 was coated with a film thickness of 12.8 ⁇ m by spin coating, and the surface of the laminated film D having a total film thickness of 15 ⁇ m and a substantially smooth surface [substrate side
  • a two-layer laminate laminated in the order of layer (B): 2.2 ⁇ m / layer (A): 12.8 ⁇ m] was obtained. Electric charges were injected into this laminated film D by the same procedure as in Example 1 to obtain electret D.
  • the polymer composition solution M1 was coated with a film thickness of 5 ⁇ m by the spin coating method, and the surface of the laminated film F having a total surface thickness of 10 ⁇ m was smooth [from the substrate side to the layer (B): 5 ⁇ m / layer (A): a two-layer laminate laminated in the order of 5 ⁇ m] was obtained. Electric charges were injected into this laminated film F by the same procedure as in Example 1 to obtain electret F.
  • the coating film G with a film thickness of 15 ⁇ m was formed by baking at 200 ° C. and drying.
  • the coating film G was a film having many non-uniform portions and low surface smoothness as compared with the laminated films A to E. Electric charges were injected into this coating film G by the same procedure as in Example 1 to obtain electret G.
  • Example 3 Production of electret H
  • the polymer composition solution M1 used in Example 1 was coated on a 3 cm square silicon substrate having a thickness of 350 ⁇ m by spin coating. Then, the coating film H with a film thickness of 10 ⁇ m was formed by baking at 200 ° C. and drying. The surface of the coating film H was almost smooth. Electric charges were injected into this coating film H by the same procedure as in Example 1 to obtain electret H.
  • Example 4 Production of electret I
  • the polymer composition solution M1 used in Example 1 was coated on a 3 cm square silicon substrate having a thickness of 350 ⁇ m by spin coating. Thereafter, the coating film I having a film thickness of 5 ⁇ m was formed by baking at 200 ° C. and drying. The coating film I had a smooth surface. Electric charges were injected into this coating film I by the same procedure as in Example 1 to obtain electret I.
  • Example 5 Production of electret J
  • the polymer composition solution M1 used in Example 1 was coated on a 3 cm square silicon substrate having a thickness of 350 ⁇ m by spin coating. Then, the coating film J with a film thickness of 3 ⁇ m was formed by baking at 200 ° C. and drying. The coating film J had a smooth surface. Electric charges were injected into this coating film J by the same procedure as in Example 1 to obtain electret J.
  • Example 6 Production of electret K
  • a polyimide film (coating film K) having a film thickness of 15 ⁇ m was formed on a 3 cm square silicon substrate having a thickness of 350 ⁇ m in the same manner as in Example 1.
  • the coating film K was a film with many uneven portions and low surface smoothness. Electric charges were injected into this coating film K by the same procedure as in Example 1 to obtain electret K.
  • Example 9 Production of electret N
  • a cycloolefin polymer film (coating film N) having a film thickness of 15 ⁇ m was formed on a 3 cm square silicon substrate having a thickness of 350 ⁇ m in the same manner as in Comparative Example 1.
  • the coating film N was a film with many uneven portions and low surface smoothness. Electric charges were injected into this coating film N by the same procedure as in Example 1 to obtain electret N.

Abstract

 表面電位が高いエレクトレットおよび該エレクトレットを備える静電誘導型変換素子の提供。  樹脂(a)を含む層(A)と、前記樹脂(a)以外の樹脂(b)または無機物(c)を含む層(B)とが直接積層された積層体を有し、前記樹脂(a)が、含フッ素樹脂(a1)、または脂肪族環構造を有し、フッ素原子を含有しない樹脂(a2)であり、前記積層体に電荷を注入してエレクトレットとする際に、電荷が注入される側と反対側の最表面に前記層(B)が配置されることを特徴とするエレクトレット。

Description

エレクトレットおよび静電誘導型変換素子
 本発明は、エレクトレットおよび該エレクトレットを備える静電誘導型変換素子に関する。
 従来より、絶縁材料に電荷を注入したエレクトレット(Electret)を使用した、発電装置、マイクロフォン等の静電誘導型変換素子が提案されている。
 従来、該エレクトレットの材料としては、主に、ポリカーボネート、ポリプロピレン、ポリテトラフルオロエチレン等の鎖状の樹脂が使用されていた。また、最近、該エレクトレットの材料として、主鎖に含フッ素脂肪族環構造を有する重合体(たとえば特許文献1参照)や、シクロオレフィンポリマー(たとえば特許文献2、3参照)を用いることが提案されている。
特開2006-180450号公報 特表2002-505034号公報 特開平8-41260号公報
 エレクトレットについては、当該エレクトレットを使用した静電誘導型変換素子における電気エネルギーと運動エネルギーとの変換効率を向上させる上で、当該エレクトレットの表面電位を高く保つ必要がある。そのためには、当該エレクトレットとして用いる材料をある程度以上の厚膜で製膜しなければならない。しかしながら、厚膜を製膜するためには、例えば湿式プロセスで製膜する場合には溶液濃度を高くする必要があり、膜厚にムラができる原因となっていた。また乾式プロセスで製膜する場合にも、製膜工程を繰返し実施する必要があり工程時間が長くなるという問題があった。
 本発明は、上記のような課題に鑑みてなされたものであり、表面電位が高いエレクトレットおよび該エレクトレットを備える静電誘導型変換素子の提供を目的とする。
 前記の課題を解決する本発明の第一の態様は、樹脂(a)を含む層(A)と、前記樹脂(a)以外の樹脂(b)または無機物(c)を含む層(B)とが直接積層された積層体を有し、
 前記樹脂(a)が、含フッ素樹脂(a1)、または脂肪族環構造を有し、フッ素原子を含有しない樹脂(a2)であり、
 前記積層体に電荷を注入してエレクトレットとする際に、電荷が注入される側と反対側の最表面に前記層(B)が配置されることを特徴とするエレクトレットである。
 本発明の第二の態様は、前記第一の態様のエレクトレットを備える静電誘導型変換素子である。
 本発明によれば、表面電位が高いエレクトレットおよびその製造方法、ならびに該エレクトレットを備え、電気エネルギーと運動エネルギーとの変換効率の向上した静電誘導型変換素子を提供できる。
電荷の注入に用いたコロナ荷電装置の概略構成図である。 表面電位の測定点の設定位置を示す図である。
 以下、本発明を実施するための最良の形態を説明する。
 以下の明細書中においては、重合体を構成する「繰り返し単位」を「単位」と略記することがある。
 また、式(1)で表される単量体を「単量体(1)」とも記す。他の式で表される単位、化合物等についても同様に記し、たとえば式(z1)で表される単位を「単位(z1)」とも記す。
 本発明のエレクトレットは、以下の層(A)および層(B)が直接積層された積層体を含むことを特徴としている。該積層体においては、当該積層体に電荷を注入してエレクトレットとする際に電荷が注入される側と反対側の最表面に層(B)が配置されている。
 層(A):樹脂(a)を含む層。
 層(B):樹脂(a)以外の樹脂(b)または無機物(c)を含む層。
 層(A)は、エレクトレットとしての電荷保持を担う部分であり、層(B)は、層(A)と直接接することで、表面電荷密度の向上に寄与する。
<層(A)>
 層(A)は、含フッ素樹脂(a1)、または脂肪族環構造を有し、フッ素原子を含有しない樹脂(a2)である樹脂(a)から構成される。含フッ素樹脂(a1)、および樹脂(a2)は、いずれも、エレクトレットとしての電荷保持性能に優れている。
 「脂肪族環構造」とは、芳香族性を有さない環構造を示す。脂肪族環構造としては、たとえば、置換基を有していてもよい飽和または不飽和の炭化水素環構造、該炭化水素環構造における炭素原子の一部が酸素原子、窒素原子等のヘテロ原子で置換された複素環構造等が挙げられる。
 層(A)はエレクトレットとしての電荷保持を担う部分であることから、樹脂(a)としては、体積固有抵抗が高く、絶縁破壊電圧が大きいものが好ましく用いられる。
 樹脂(a)の体積固有抵抗は、1010~1020Ωcmが好ましく、1016~1019Ωcmがより好ましい。該体積固有抵抗は、ASTM D257に準拠した方法により測定される。
 また、樹脂(a)の絶縁破壊電圧は、10~25kV/mmが好ましく、15~22kV/mmがより好ましい。該絶縁破壊電圧は、ASTM D149に準拠した方法により測定される。
 含フッ素樹脂(a1)としては、特に限定されず、たとえば従来エレクトレットに用いられている含フッ素樹脂のなかから適宜選択すればよい。該含フッ素樹脂は、電気絶縁特性に優れ、エレクトレットとしての電荷保持性能に優れる。
 含フッ素樹脂(a1)の具体例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、フルオロオレフィン-アルキルビニルエーテル共重合体、ポリフッ化ビニリデン、含フッ素環状重合体等が挙げられる。これらの中でも、電気絶縁特性の観点から、PTFE、FEP、PFAおよび脂肪族環構造を有する含フッ素樹脂からなる群より選ばれる少なくとも1種が好ましい。
 含フッ素樹脂(a1)としては、脂肪族環構造を有する含フッ素樹脂(たとえば後述する含フッ素環状重合体)がより好ましい。ここで、脂肪族環構造を有する含フッ素樹脂とは、上記「脂肪族環構造」のうち炭化水素環構造または複素環構造における水素原子がフッ素原子で置換されたものを有する含フッ素樹脂のことである。
 「含フッ素環状重合体」とは、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体であり、かつ、含フッ素脂肪族環構造を構成する炭素原子のうち少なくとも1つが該含フッ素重合体の主鎖を構成する炭素原子であるものをいう。
 含フッ素脂肪族環構造を構成する炭素原子のうち、主鎖を構成する炭素原子は、該含フッ素重合体を構成する単位が基づいた単量体が有する重合性二重結合に由来する。
 たとえば含フッ素重合体が、後述するような環状単量体を重合させて得た含フッ素重合体の場合は、該二重結合を構成する2個の炭素原子が主鎖を構成する炭素原子となる。
 また、2個の重合性二重結合を有する単量体を環化重合させて得た含フッ素重合体の場合は、2個の重合性二重結合を構成する4個の炭素原子のうちの少なくとも2個が主鎖を構成する炭素原子となる。
 含フッ素脂肪族環構造としては、環骨格が炭素原子のみから構成されるものであってもよく、炭素原子以外に、酸素原子、窒素原子等のヘテロ原子を含む複素環構造であってもよい。含フッ素脂肪族環としては、環骨格に1~2個のエーテル性の酸素原子を有する含フッ素脂肪族環が好ましい。
 含フッ素脂肪族環構造の環骨格を構成する原子の数は、4~7個が好ましく、5~6個がより好ましい。すなわち、含フッ素脂肪族環構造は4~7員環であることが好ましく、5~6員環であることがより好ましい。
 好ましい含フッ素環状重合体としては、下記含フッ素環状重合体(I’)、含フッ素環状重合体(II’)が挙げられる。
 含フッ素環状重合体(I’):環状含フッ素単量体に基づく単位を有する重合体。
 含フッ素環状重合体(II’):ジエン系含フッ素単量体の環化重合により形成される単位を有する重合体。
 「環状含フッ素単量体」とは、含フッ素脂肪族環を構成する炭素原子間に重合性二重結合を有する単量体、または、含フッ素脂肪族環を構成する炭素原子と含フッ素脂肪族環外の炭素原子との間に重合性二重結合を有する単量体である。
 環状含フッ素単量体としては、化合物(1)または化合物(2)が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、X11、X12、X13、X14、Y11およびY12は、それぞれ独立に、フッ素原子、パーフルオロアルキル基またはパーフルオロアルコキシ基である。
 X11、X12、X13、X14、Y11およびY12におけるパーフルオロアルキル基としては、炭素数が1~7であることが好ましく、炭素数1~4であることがより好ましい。該パーフルオロアルキル基は、直鎖状または分岐鎖状が好ましく、直鎖状がより好ましい。具体的には、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等が挙げられ、特にトリフルオロメチル基が好ましい。
 X11、X12、X13、X14、Y11およびY12におけるパーフルオロアルコキシ基としては、前記パーフルオロアルキル基に酸素原子(-O-)が結合したものが挙げられる。
 X11としては、フッ素原子が好ましい。
 X12としては、フッ素原子、トリフルオロメチル基、または炭素数1~4のパーフルオロアルコキシ基が好ましく、フッ素原子またはトリフルオロメトキシ基がより好ましい。
 X13およびX14としては、それぞれ独立に、フッ素原子または炭素数1~4のパーフルオロアルキル基が好ましく、フッ素原子またはトリフルオロメチル基がより好ましい。
 Y11およびY12としては、それぞれ独立に、フッ素原子、炭素数1~4のパーフルオロアルキル基または炭素数1~4のパーフルオロアルコキシ基が好ましく、フッ素原子またはトリフルオロメチル基がより好ましい。
 化合物(1)においては、X13およびX14が相互に結合して、X13およびX14が結合した炭素原子とともに、含フッ素脂肪族環を形成していてもよい。
 該含フッ素脂肪族環としては、4~6員環が好ましい。
 該含フッ素脂肪族環は、飽和脂肪族環であることが好ましい。
 該含フッ素脂肪族環は、その環骨格中に、エーテル性酸素原子(-O-)を有していてもよい。この場合、含フッ素脂肪族環中のエーテル性酸素原子の数は、1または2が好ましい。
 化合物(2)においては、Y11およびY12が相互に結合して、Y11およびY12が結合した炭素原子とともに、含フッ素脂肪族環を形成していてもよい。
 該含フッ素脂肪族環としては、4~6員環が好ましい。
 該含フッ素脂肪族環は、飽和脂肪族環であることが好ましい。
 該含フッ素脂肪族環は、その環骨格中に、エーテル性酸素原子(-O-)を有していてもよい。この場合、含フッ素脂肪族環中のエーテル性酸素原子の数は、1または2が好ましい。
 化合物(1)の好ましい具体例としては、化合物(1-1)~(1-5)が挙げられる。
 化合物(2)の好ましい具体例としては、化合物(2-1)~(2-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 含フッ素環状重合体(I’)は、上記環状含フッ素単量体の単独重合体であってもよく、該環状含フッ素単量体と、それ以外の他の単量体との共重合体であってもよい。
 ただし、該含フッ素環状重合体(I’)中、環状含フッ素単量体に基づく単位の割合は、該含フッ素環状重合体(I’)を構成する全繰り返し単位の合計に対し、20モル%以上が好ましく、40モル%以上がより好ましく、100モル%であってもよい。
 該他の単量体としては、上記環状含フッ素単量体と共重合可能なものであればよく、特に限定されない。具体的には、後述するジエン系含フッ素単量体、テトラフルオロエチレン、クロロトリフルオロエチレン、パーフルオロ(メチルビニルエーテル)等が挙げられる。
 「ジエン系含フッ素単量体」とは、2個の重合性二重結合およびフッ素原子を有する単量体である。該重合性二重結合としては、特に限定されないが、ビニル基、アリル基、アクリロイル基、メタクリロイル基が好ましい。
 ジエン系含フッ素単量体としては、化合物(3)が好ましい。
   CF=CF-Q-CF=CF ・・・(3)。
 式中、Qは、エーテル性酸素原子を有していてもよく、フッ素原子の一部がフッ素原子以外のハロゲン原子で置換されていてもよい炭素数1~3のパーフルオロアルキレン基である。該フッ素以外のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 Qがエーテル性酸素原子を有するパーフルオロアルキレン基である場合、該パーフルオロアルキレン基におけるエーテル性酸素原子は、該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよい。環化重合性の点から、該基の一方の末端に存在していることが好ましい。
 化合物(3)の環化重合により形成される単位としては、下式(3-1)~(3-4)の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 化合物(3)の具体例としては、下記化合物が挙げられる。
 CF=CFOCFCF=CF
 CF=CFOCF(CF)CF=CF
 CF=CFOCFCFCF=CF
 CF=CFOCFCF(CF)CF=CF
 CF=CFOCF(CF)CFCF=CF
 CF=CFOCFClCFCF=CF
 CF=CFOCClCFCF=CF
 CF=CFOCFOCF=CF
 CF=CFOC(CFOCF=CF
 CF=CFOCFCF(OCF)CF=CF
 CF=CFCFCF=CF
 CF=CFCFCFCF=CF
 CF=CFCFOCFCF=CF等。
 含フッ素環状重合体(II’)は、上記ジエン系含フッ素単量体の環化重合により形成される単位のみから構成されてもよく、該単位と、それ以外の他の単位とを有する共重合体であってもよい。
 ただし、該含フッ素環状重合体(II’)中、ジエン系含フッ素単量体の環化重合により形成される単位の割合は、該含フッ素環状重合体(II’)を構成する全繰り返し単位の合計に対し、50モル%以上が好ましく、80モル%以上がより好ましく、100モル%が最も好ましい。
 該他の単量体としては、上記ジエン系含フッ素単量体と共重合可能なものであればよく、特に限定されない。具体的には、上述した化合物(1)、化合物(2)等の環状含フッ素単量体、テトラフルオロエチレン、クロロトリフルオロエチレン、パーフルオロ(メチルビニルエーテル)等が挙げられる。
 含フッ素樹脂(a1)としては、市販のもののなかから適宜選択して用いてもよく、常法により合成してもよい。
 たとえば含フッ素環状重合体は、特開平4-189880号公報等に開示された従来公知の方法を適用して各単位を誘導する単量体の環化重合、単独重合、共重合等を行うことにより製造できる。
 また、含フッ素環状重合体の市販品としては、サイトップ(登録商標)(旭硝子社製)、テフロン(登録商標)AF(デュポン社製)、HYFLON(登録商標)AD(ソルベーソレクシス社製)等が挙げられる。
 本発明において、脂肪族環構造を有し、フッ素原子を含有しない樹脂(a2)としては、たとえば、シクロオレフィンポリマーが挙げられる。
 「シクロオレフィンポリマー」とは、当該ポリマーの主鎖に脂肪族炭化水素環構造を有するポリマーであり、当該脂肪族炭化水素環構造を構成する炭素原子のうち少なくとも2つが当該ポリマーの主鎖に組み込まれているものをいう。
 シクロオレフィンポリマーは、脂肪族炭化水素環構造を有する単位(以下、単位(z1)ということがある。)を有しており、該単位(z1)においては、当該脂肪族炭化水素環構造を構成する炭素原子のうち少なくとも2つが当該ポリマーの主鎖に組み込まれている。
 シクロオレフィンポリマーとして、好ましいものとしては、単位(z1-1)を含むものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
[式中、Rは置換基を有していてもよい2価の炭化水素基であり、mは0~10の整数であり、rは0または1の整数であり、sは0または1の整数である。]
 式(z1-1)中、Rの炭化水素基が「置換基を有していてもよい」とは、該炭化水素基の水素原子の一部または全部が置換基で置換されていてもよいことを意味する。
 該置換基としては、アルキル基、シクロアルキル基、アルコキシ基、フェニル基等のアリール基、アダマンチル基等の多環式の脂肪族炭化水素基などが挙げられる。
 置換基としてのアルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、炭素数が1~10であることが好ましく、1~3であることがより好ましい。該アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が好ましく、メチル基、エチル基が特に好ましい。
 置換基としてのシクロアルキル基は、炭素数が3~10であることが好ましく、5~8であることがより好ましい。該シクロアルキル基としては、シクロペンチル基またはシクロヘキシル基が特に好ましい。
 置換基としてのアルコキシ基は、前記アルキル基に酸素原子(-O-)が結合したものが挙げられる。
 Rの炭化水素基は、鎖状であってもよく、環状であってもよい。また、該炭化水素基は飽和であってもよく、不飽和であってもよく、好ましくは飽和である。
 鎖状の炭化水素基としては、置換基を有していてもよい直鎖状のアルキレン基が好ましく、その炭素数は1~4が好ましく、2~3がより好ましく、2が最も好ましい。具体的には、ジメチレン基が挙げられる。
 環状の炭化水素基としては、置換基を有していてもよい単環式または多環式のシクロアルカンから水素原子を2つ除いた基が好ましい。単環式のシクロアルカンとしては、シクロペンタン、シクロヘキサン等が挙げられる。多環式のシクロアルカンとしては、ノルボルナン、アダマンタン等が挙げられる。これらの中でも、シクロペンタンまたはノルボルナンが好ましい。
 式(z1-1)中、mは0~10の整数である。
 mが1以上の整数の場合、後述する単位(z1-11)のように、ポリマー主鎖が、脂肪族炭化水素環構造のオルト位ではなく、メチレン鎖1つ以上の間隔をあけて結合することにより当該脂肪族炭化水素環構造がポリマー主鎖に組み込まれている。この場合、mとしては、1~3の整数が好ましく、1が最も好ましい。
 mが0の場合、後述する単位(z1-21)のように、ポリマー主鎖が、脂肪族炭化水素環構造のオルト位に結合することにより当該脂肪族炭化水素環構造がポリマー主鎖に組み込まれている。
 rおよびsは、それぞれ、0であってもよく、1であってもよい。
 特に、mが0の場合は、rおよびsが0であることが好ましい。また、mが1の場合は、rおよびsが1であることが好ましい。
 単位(z1-1)として、好ましいものとしては、以下に示す単位(z1-11)、単位(z1-21)などが挙げられる。
Figure JPOXMLDOC01-appb-C000006
[式中、RおよびRはそれぞれ独立に、水素原子、アルキル基またはシクロアルキル基であり、RおよびRが相互に結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000007
[式中、RおよびRはそれぞれ独立に、水素原子、アルキル基またはシクロアルキル基であり、RおよびRが相互に結合して環を形成していてもよい。]
 式(z1-11)中、RおよびRにおけるアルキル基、およびシクロアルキル基としては、それぞれ、前記置換基として挙げたアルキル基、およびシクロアルキル基と同様のものが挙げられる。
 RおよびRは相互に結合して、RおよびRがそれぞれ結合した炭素原子とともに、環を形成していてもよい。この場合に形成される環としては、単環式または多環式のシクロアルカンが好ましい。単環式のシクロアルカンとしては、シクロペンタン、シクロヘキサン等が挙げられる。多環式のシクロアルカンとしては、ノルボルナン、アダマンタン等が挙げられる。これらの中でも、シクロペンタンまたはノルボルナンが好ましい。
 該環は置換基を有していてもよい。該置換基としては、前記Rの炭化水素基が有していてもよい置換基と同様のものが挙げられる。
 RおよびRが環を形成している場合の単位(z1-11)の具体例としては、下記単位(z1-11-1)、単位(z1-12-1)等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
[式中、R11は水素原子またはアルキル基である。]
 R11のアルキル基としては、前記Rの炭化水素基が有していてもよい置換基として挙げたアルキル基と同様のものが挙げられ、特にメチル基が好ましい。
 本発明において、単位(z1-11)としては、RおよびRが環を形成しているもの、またはRおよびRの少なくとも一方がシクロアルキル基であるものが好ましい。
 式(z1-21)中、RおよびRは、それぞれ、前記RおよびRと同様である。
 RおよびRが環を形成している場合の単位(z1-21)の具体例としては、下記単位(z1-21-1)、単位(z1-21-2)等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式中、R13は水素原子またはアルキル基である。]
 R13のアルキル基としては、前記Rの炭化水素基が有していてもよい置換基として挙げたアルキル基と同様のものが挙げられ、特にメチル基が好ましい。
 シクロオレフィンポリマーは、単位(z1)として、上記のような単位のうちのいずれか1種を含有してもよく、2種以上を含有してもよい。
 シクロオレフィンポリマー中、単位(z1)の割合は、当該シクロオレフィンポリマーを構成する全繰り返し単位の合計に対し、30モル%以上が好ましく、40モル%以上がより好ましく、100モル%であってもよい。
 シクロオレフィンポリマーは、単位(z1)以外の他の単位(以下、単位(z2)ということがある。)を含んでいてもよい。
 単位(z2)としては、従来、シクロオレフィンポリマーに用いられている任意の単位が利用でき、特に限定されない。
 該単位(z2)としては、置換基を有していてもよいオレフィンに基づく単位が好ましく、該単位としては、たとえば下記単位(z2-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000010
[式中、Rは水素原子またはアルキル基である。]
 式中、Rのアルキル基としては、前記Rの炭化水素基が有していてもよい置換基として挙げたアルキル基と同様のものが挙げられる。
 本発明に用いられるシクロオレフィンポリマーとしては、特に、下記シクロオレフィンポリマー(I)、シクロオレフィンポリマー(II)が好ましい。
 シクロオレフィンポリマー(I):前記単位(z1-11)を含むシクロオレフィンポリマー。
 シクロオレフィンポリマー(II):前記単位(z1-21)および単位(z2)を含むシクロオレフィンポリマー。
 シクロオレフィンポリマー(I)は、単位(z1-11)として、1種を含有してもよく、2種以上を含有してもよい。
 また、シクロオレフィンポリマー(I)は、本発明の効果を損なわない範囲で、単位(z1-11)以外の単位を含んでいてもよい。
 シクロオレフィンポリマー(I)中、単位(z1-11)の割合は、当該シクロオレフィンポリマー(I)を構成する全繰り返し単位の合計に対し、80モル%以上が好ましく、90モル%以上がより好ましく、100モル%が特に好ましい。すなわち、シクロオレフィンポリマー(I)としては、単位(z1-11)のみから構成される重合体が特に好ましい。
 シクロオレフィンポリマー(II)は、単位(z1-21)、および単位(z2)として、それぞれ、1種を含有してもよく、2種以上を含有してもよい。
 また、シクロオレフィンポリマー(II)は、本発明の効果を損なわない範囲で、単位(z1-21)および単位(z2)以外の単位を含んでいてもよい。
 シクロオレフィンポリマー(II)中、単位(z1-21)の割合は、当該シクロオレフィンポリマー(II)を構成する全繰り返し単位の合計に対し、20~70モル%が好ましく、30~50モル%がより好ましい。また、単位(z2)の割合は、当該シクロオレフィンポリマー(II)を構成する全繰り返し単位の合計に対し、30~80モル%が好ましく、50~70モル%がより好ましい。
 また、シクロオレフィンポリマー(II)中の単位(z1-21)および単位(z2)の含有量の比(モル比)は、単位(z1-21):単位(z2)=20:80~70:30の範囲内が好ましく、30:70~50:50の範囲内がより好ましい。
 シクロオレフィンポリマー(II)の好ましい具体例としては、下記式(II-1)、(II-2)に示す2種のそれぞれの単位を含む共重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000011
[式中、R13、Rはそれぞれ前記と同じである。]
 シクロオレフィンポリマーは、それぞれ、主鎖末端および/または側鎖部分に、末端基として、官能基を有していてもよい。
 官能基としては、アルコキシカルボニル基(エステル基ともいう。)、カルボキシ基、カルボン酸ハライド基、アミド基、水酸基、アミノ基、スルホン酸基、スルホン酸エステル基、スルホンアミド基、チオール基、シアノ基等が挙げられる。これらの中でも、アルコキシカルボニル基、カルボキシ基を有することが好ましい。
 末端基としてカルボキシ基を含む場合、該カルボキシ基にはシラン化合物が結合していてもよい。
 シラン化合物は、たとえば、末端基としてカルボキシ基を有するシクロオレフィンポリマーと、後述するようなシランカップリング剤とを反応させることにより該カルボキシ基に結合させることができる。
 末端基としてアルコキシカルボニル基、あるいはカルボキシ基等の官能基を有するシクロオレフィンポリマーとしては、たとえば、シクロオレフィンポリマーに、不飽和カルボン酸およびその誘導体からなる変性単量体をグラフト共重合させてなる変性樹脂が挙げられる。
 前記不飽和カルボン酸としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ナジック酸、メチルナジック酸等が挙げられる。不飽和カルボン酸の誘導体としては、前記不飽和カルボン酸の酸ハライド、アミド、イミド、酸無水物、エステル等が挙げられ、具体例としては、塩化マレニル、無水マレイン酸、無水シトラコン酸、マレイン酸者メチル、マレイン酸ジメチル等が挙げられる。
 シクロオレフィンポリマーとしては、比誘電率等の所望の特性を満足するものであれば特に限定されず、市販のものを用いてもよく、合成してもよい。
 シクロオレフィンポリマーの合成方法としては、下記(1)~(7)等が知られている。
 なお、各反応式の最終生成物において表示の単位は、得られたシクロオレフィンポリマー中に含有される単位を示す。
 (1)ノルボルネン類とオレフィンとを付加共重合させる方法(たとえば下記反応式(1’)に示す方法)。
 (2)ノルボルネン類の開環メタセシス重合体に対して水素添加する方法(たとえば下記反応式(2’)に示す方法)。
 (3)アルキリデンノルボルネンをトランスアニュラー重合する方法(たとえば下記反応式(3’)に示す方法)。
 (4)ノルボルネン類を付加重合させる方法(たとえば下記反応式(4’)に示す方法)。
 (5)シクロペンタジエンの1,2-および1,4-付加重合体に対して水素添加する方法(たとえば下記反応式(5’)に示す方法)。
 (6)シクロヘキサジエンの1,2-および1,4-付加重合体に対して水素添加する方法(たとえば下記反応式(6’)に示す方法)。
 (7)共役ジエンを環化重合させる方法(たとえば下記反応式(7’)に示す方法)。
Figure JPOXMLDOC01-appb-C000012
 各反応式中、R~Rはそれぞれ前記と同じである。
 R~Rはそれぞれ独立にアルキル基であり、該アルキル基としては、前記Rの炭化水素基が有していてもよい置換基として挙げたアルキル基と同様のものが挙げられる。
 これらの中では、(1)の方法により得られるシクロオレフィンポリマー(ノルボルネン類とオレフィンの付加共重合体)、および(2)の方法により得られるシクロオレフィンポリマー(ノルボルネン類の開環メタセシス重合体の水素添加ポリマー)が、造膜性に優れる点、合成が容易である点から好ましい。
 ノルボルネン類の付加共重合体としては、例えばアペル(登録商標)(三井化学社製)、TOPAS(登録商標)(Ticona社製)の商品名で販売されているものが挙げられる。
 また、ノルボルネン類の開環メタセシス重合体の水素添加ポリマーとしては、種々のものがあるが、透明性、低吸湿性、耐熱性を有することから、ゼオネックス(登録商標)(日本ゼオン社製)、ゼオノア(登録商標)(日本ゼオン社製)、アートン(登録商標)(JSR社製)の商品名で販売されているポリマーが好ましい。
 樹脂(a)の重量平均分子量は、3000~100万が好ましく、1万~30万がより好ましい。
 また、樹脂(a)は、ガラス転移温度または融点が80℃以上であることが好ましく、100℃以上がより好ましい。該ガラス転移温度または融点が80℃以上、特に100℃以上であると、エレクトレットの耐熱性、保持電荷の安定性等に優れる。また、該ガラス転移温度または融点は、樹脂(a)を製膜する際の造膜性、樹脂(a)の溶媒への溶解性等を考慮すると、350℃以下が好ましく、250℃以下がより好ましく、200℃以下が最も好ましい。
 樹脂(a)のガラス転移温度または融点は、当該樹脂(a)を構成する繰り返し単位の種類や割合を調節することにより調節できる。たとえば、前記含フッ素環状重合体やシクロオレフィンポリマーのような非晶質な樹脂の場合、前記化合物(1)または化合物(2)に基づく繰り返し単位は当該重合体のガラス転移温度の向上に寄与しており、これらの単位の割合が多いほど、ガラス転移温度が高くなる。また、樹脂(a)の融点は、前記含フッ素樹脂の中でも結晶性の樹脂、たとえばPTFE、FEP、ETFE、PFAなどの樹脂に於いて存在し、テトラフルオロエチレンやエチレンなどの結晶性の高い単位に、結晶性を乱すような単位(例えば、パーフルオロ(アルキルビニルエーテル)など)を共重合させることにより調節できる。
 層(A)の形成方法としては、特に限定されないが、好ましい形成方法として、樹脂(a)を溶媒に溶解してコーティング用組成物を調製し、これを用いてコーティング膜を製膜する方法が挙げられる。
 コーティング膜の製膜は、例えば、該コーティング用組成物を層(B)の表面にコーティングし、ベーク等により乾燥させることにより実施できる。
 コーティング方法としては、溶液から膜を形成させる従来公知の方法が利用でき、特に限定されない。かかる方法の具体例としては、ロールコーター法、キャスト法、ディッピング法、スピンコート法、水上キャスト法、ラングミュア・ブロジェット法、ダイコート法、インクジェット法、スプレーコート法等が挙げられる。また、凸版印刷法、グラビア印刷法、平板印刷法、スクリーン印刷法、フレキソ印刷法などの印刷技術も用いることができる。
 コーティング用組成物の溶媒としては、樹脂(a)を溶解でき、所望のコーティング方法で所望の膜厚、均一性を有するコーティング膜を形成し得るものであれば特に制限はなく、例えばプロトン性溶媒、非プロトン性溶媒などが挙げられる。
 プロトン性溶媒としては、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタオール、tert-ブタノール、ペンタノール、ヘキサノール、1-オクタノール、2-オクタノール、エチレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール、乳酸メチル、後述するプロトン性含フッ素溶媒等が挙げられる。
 非プロトン性溶媒としては、たとえば、ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン、ドデカン、デカリン、アセトン、シクロヘキサノン、2-ブタノン、ジメトキシエタン、モノメチルエーテル、酢酸エチル、酢酸ブチル、ジグライム、トリグライム、プロピレングリコールモノメチルエーテルモノアセテート(PGMEA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチルピロリドン、テトラヒドロフラン、アニソール、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼン、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン、メチルナフタレン、後述する非プロトン性含フッ素溶媒等が挙げられる。
 これらの溶媒は、いずれか1種を単独で使用してもよく、2種以上を混合して使用してもよい。またこれらの他にも広範な化合物が使用できる。
 これらのうち、樹脂(a)として含フッ素樹脂(a1)を用いる場合、溶媒としては、非プロトン性溶媒が好ましく、非プロトン性含フッ素溶媒がより好ましい。
 また、樹脂(a)としてシクロオレフィンポリマー等の樹脂(a2)を用いる場合、溶媒としては、非プロトン性溶媒が好ましく、炭化水素類がより好ましく、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン、メチルナフタレン等の芳香族炭化水素類がさらに好ましく、トルエン、キシレンが特に好ましい。
 前記非プロトン性含フッ素溶媒として、好ましいものとしては、以下の含フッ素化合物を例示できる。
 ヘキサフルオロメタキシレン、フルオロベンゼン、ジフルオロベンゼン、パーフルオロベンゼン、ペンタフルオロベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(トリフルオロメチル)ベンゼン等の含フッ素芳香族化合物;パーフルオロトリブチルアミン、パーフルオロトリプロピルアミン等のパーフルオロトリアルキルアミン化合物;パーフルオロデカリン、パーフルオロシクロヘキサン、パーフルオロ(1,3,5-トリメチルシクロヘキサン)等のパーフルオロシクロアルカン化合物;パーフルオロ(2-ブチルテトラヒドロフラン)等のパーフルオロ環状エーテル化合物;低分子量パーフルオロポリエーテル;パーフルオロヘキサン、パーフルオロオクタン、パーフルオロデカン、パーフルオロドデカン、パーフルオロ(2,7-ジメチルオクタン)、パーフルオロ(1,2-ジメチルヘキサン)、パーフルオロ(1,3-ジメチルヘキサン)等のパーフルオロアルカン;1,1,2-トリクロロ-1,2,2-トリフルオロエタン、1,1,1-トリクロロ-2,2,2-トリフルオロエタン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1,1,3-テトラクロロ-2,2,3,3-テトラフルオロプロパン、1,1,3,4-テトラクロロ-1,2,2,3,4,4-ヘキサフルオロブタン等のクロロフルオロカーボン;1,1,1,2,2,3,3,5,5,5-デカフルオロペンタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン、1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-ヘプタデカフルオロオクタン、1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-ヘニコサフルオロデカン、1,1,1,2,2,3,3,4,4-ノナフルオロヘキサン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン、1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-ヘプタデカフルオロデカン、1,1,1,2,3,4,5,5,5-ノナフルオロ-4-(トリフルオロメチル)ペンタン、1,1,1,2,2,3,5,5,5-ノナフルオロ-4-(トリフルオロメチル)ペンタン等のヒドロフルオロカーボン;3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等のヒドロクロロフルオロカーボン。
 これらの含フッ素化合物はいずれか1種を単独で使用してもよく、2種以上を併用してもよい。
 また、上記以外にも広範な非プロトン性含フッ素溶媒を使用できる。
 例えば、ハイドロフルオロエーテル(HFE)等の含フッ素溶媒が好適である。このような含フッ素溶媒は、一般式R31-O-R32(R31はエーテル性酸素原子を有してもよい炭素数5~12の直鎖状または分岐状のポリフルオロアルキル基であり、R32は炭素数1~5の直鎖状または分岐状のアルキル基またはポリフルオロアルキル基である。
)で表される含フッ素溶媒(以下、含フッ素溶媒(2)ということがある。)である。
 R31におけるポリフルオロアルキル基とは、アルキル基の水素原子の2個以上がフッ素原子に置換された基であり、アルキル基の水素原子のすべてがフッ素原子置換されたパーフルオロアルキル基、およびアルキル基の水素原子の2個以上がフッ素原子に置換され、かつアルキル基の水素原子の1個以上がフッ素原子以外のハロゲン原子に置換された基を含むものである。フッ素原子以外のハロゲン原子としては塩素原子が好ましい。
 ポリフルオロアルキル基としては、対応するアルキル基の水素原子の数にして60%以上がフッ素原子に置換された基が好ましく、より好ましくは80%以上である。さらに好ましいポリフルオロアルキル基はパーフルオロアルキル基である。
 R31がエーテル性酸素原子を有する場合、エーテル性酸素原子の数が多すぎると溶解性を阻害するため、R31中のエーテル性酸素原子の数は1~3個が好ましく、1~2個がより好ましい。
 R31の炭素原子の数が5以上であると含フッ素樹脂(a1)の溶解性が良好で、R31の炭素数が12以下であると工業的に入手しやすいため、R31の炭素数は5~12の範囲から選定される。R31の炭素原子の数は、6~10が好ましく、6~7および9~10がより好ましい。
 R32の炭素原子の数は1~5であり、炭素原子の数が5以下であると含フッ素樹脂(a1)の溶解性が良好である。R32の好ましい例はメチル基またはエチル基である。
 含フッ素溶媒(2)の分子量は、大きすぎるとコーティング用組成物の粘度を上昇させるだけでなく、含フッ素樹脂(a1)の溶解性も低下するため、1000以下が好ましい。
 また、含フッ素樹脂(a1)の溶解性に優れることから、含フッ素溶媒(2)のフッ素含有量は60~80質量%が好ましい。
 好ましい含フッ素溶媒(2)として、下記のものが例示できる。
 F(CFOCH、CFCHOCFCFH,F(CFOCH、F(CFOCH、F(CFOCH、F(CFOCH、F(CFOCH、F(CF10OCH、H(CFOCH、(CFCFCF(OCH)CFCF、F(CFOCF(CF)CFOCH、F(CFOCF(CF)CFOCF(CF)CFOCH、F(CFOCHCHCH、(CFCFCFCFOCH、F(CFO(CFOCHCH
 これらの含フッ素溶媒では、特に(CFCFCF(OCH)CFCFが好適である。
 上記コーティング用組成物には、シランカップリング剤を配合してもよい。これにより、当該コーティング用組成物を用いて形成されるコーティング膜は、基板との密着性に優れる。
 シランカップリング剤としては、特に限定されず、従来より公知のものを含めて広く利用できる。具体的には、以下のものが例示できる。
 トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルビニルメトキシシラン、ジメチルビニルエトキシシランなどのモノアルコキシシラン類。
 γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジメトキシシラン、γ-グリシジルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルメチルジメトキシシラン、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルメチルジメトキシシランなどのジアルコキシシラン類。
 γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルトリメトキシシラン、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシランなどのトリまたはテトラアルコキシシラン類。
 また、好ましいシランカップリング剤として、芳香族アミン構造を有するシランカップリング剤である芳香族アミン系シランカップリング剤が挙げられる。
 芳香族アミン系シランカップリング剤としては、下式(s1)~(s3)で表される化合物が挙げられる。
  ArSi(OR21)(OR22)(OR23) …(s1)
  ArSiR24(OR21)(OR22) …(s2)
  ArSiR2425(OR21) …(s3)
[式中R21~R25は、それぞれ独立に水素原子、炭素数1~20のアルキル基またはアリール基を表し、Arはp-、m-またはo-アミノフェニル基を表す。]
 式(s1)~(s3)で表される化合物の具体例としては以下のものが挙げられる。
 アミノフェニルトリメトキシシラン、アミノフェニルトリエトキシシラン、アミノフェニルトリプロポキシシラン、アミノフェニルトリイソプロポキシシラン、アミノフェニルメチルジメトキシシラン、アミノフェニルメチルジエトキシシラン、アミノフェニルメチルジプロポキシシラン、アミノフェニルメチルジイソプロポキシシラン、アミノフェニルフェニルジメトキシシラン、アミノフェニルフェニルジエトキシシラン、アミノフェニルフェニルジプロポキシシラン、アミノフェニルフェニルジイソプロポキシシランなど。
 これらの化合物におけるアミノ基の水素原子はアルキル基やアリール基で置換されていてもよい。たとえばN,N-ジメチルアミノフェニルトリアルコキシシランやN,N-ジメチルアミノフェニルメチルジアルコキシシランなどが挙げられる。この他にも、たとえば米国特許第3,481,815号に記載されている芳香族アミン系シランカップリング剤などを使用できる。
 上記シランカップリング剤は、いずれか1種を単独で使用してもよく、2種以上を組合せてもよい。
 また、上記シランカップリング剤の部分加水分解物を使用することも好ましい。
 さらに、上記シランカップリング剤とテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のテトラアルコキシシランとの共部分加水分解物を使用することも好ましい。このうちで、樹脂(a)の電気絶縁性を損なうことなく、樹脂(a)の接着性を向上させるものとして、アミノ基を有するシランカップリング剤(γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェニルトリエトキシシラン、アミノフェニルメチルジメトキシシラン、アミノフェニルメチルジエトキシシランなど)、およびエポキシ基を有するシランカップリング剤(γ-グリシジルオキシプロピルトリメトキシシラン、γ-グリシジルオキシプロピルメチルジメトキシシラン、γ-グリシジルオキシプロピルトリエトキシシラン、γ-グリシジルオキシプロピルメチルジエトキシシランなど)が特に好適なものとして例示される。
 樹脂(a)として、予め主鎖末端または側鎖にカルボキシ基の導入されたものを用いる場合は、シランカップリング剤としては、特にアミノ基またはエポキシ基を有するアルコキシシラン類が有効である。
 樹脂(a)として、予め主鎖末端または側鎖にアルコキシカルボニル基が導入された含フッ素重合体を用いる場合は、シランカップリング剤としては、特にアミノ基またはアミノフェニル基を有するアルコキシシラン類が有効である。
 コーティング用組成物として含フッ素樹脂(a1)の非プロトン性含フッ素溶媒溶液を用いる場合、該コーティング用組成物には、プロトン性含フッ素溶媒を配合してもよい。コーティング用組成物にプロトン性含フッ素溶媒を配合すると、シランカップリング剤のコーティング用組成物への溶解性を増すことができる。また、シランカップリング剤間の反応によると思われる粘度の上昇やゲル化を抑制できる。
 すなわち、上述したアミノ基またはエポキシ基を有するトリアルコキシシラン類は、非プロトン性含フッ素溶媒中においては、同様の基を有するジアルコキシシラン類に比べて、経時的な粘度上昇やゲル化が生じやすい。また、トリアルコキシシラン類は、ジアルコキシシラン類よりも、コーティング用組成物の非プロトン性含フッ素溶媒溶液への溶解性も小さい。したがって、コーティング用組成物として含フッ素樹脂(a1)の非プロトン性含フッ素溶媒溶液を用い、これにトリアルコキシシラン類を配合する場合には、さらに、プロトン性含フッ素溶媒、特には含フッ素アルコールを添加することが好ましい。
 また、ジアルコキシシラン類をシランカップリング剤として配合する場合は、トリアルコキシシラン類ほど溶解性は小さくないが、同様にプロトン性含フッ素溶媒、特には含フッ素アルコールの添加により溶解性を高められる。ジアルコキシシラン類の場合には、コーティング用組成物の経時的な粘度上昇はトリアルコキシシラン類ほど顕著ではないため、含フッ素アルコールなどのプロトン性含フッ素溶媒を必ずしも添加しなくてもよいが、添加したほうが確実に粘度上昇を抑制できるため好ましい。
 該プロトン性含フッ素溶媒としては以下のものが例示される。
 トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2-(パーフルオロブチル)エタノール、2-(パーフルオロヘキシル)エタノール、2-(パーフルオロオクチル)エタノール、2-(パーフルオロデシル)エタノール、2-(パーフルオロ-3-メチルブチル)エタノール、2,2,3,3-テトラフルオロ-1-プロパノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、2,2,3,3,4,4,5,5,6,6-ドデカフルオロ-1-ヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7-ヘキサデカフルオロ-1-ノナノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,4,4-ヘキサフルオロ-1-ブタノール等の含フッ素アルコール。
 トリフルオロ酢酸、パーフルオロプロパン酸、パーフルオロブタン酸、パーフルオロペンタン酸、パーフルオロヘキサン酸、パーフルオロヘプタン酸、パーフルオロオクタン酸、パーフルオロノナン酸、パーフルオロデカン酸、1,1,2,2-テトラフルオロプロパン酸、1,1,2,2,3,3,4,4-オクタフルオロペンタン酸、1,1,2,2,3,3,4,4,5,5-ドデカフルオロヘプタン酸、1,1,2,2,3,3,4,4,5,5,6,6-ヘキサデカフルオロノナン酸などの含フッ素カルボン酸;これら含フッ素カルボン酸のアミド;トリフルオロメタンスルホン酸、ヘプタデカフルオロオクタンスルホン酸などの含フッ素スルホン酸;など。 
 これらのプロトン性含フッ素溶媒はいずれか1種を単独で使用してもよく、2種以上を組合せてもよい。
 非プロトン性含フッ素溶媒とプロトン性含フッ素溶媒とを併用する場合、非プロトン性含フッ素溶媒とプロトン性含フッ素溶媒との合計に対するプロトン性含フッ素溶媒の割合は、0.01~50質量%が好ましく、0.1~30質量%がより好ましい。
 コーティング用組成物中の樹脂(a)の濃度は、形成しようとする層(A)の膜厚に応じて適宜設定すればよい。通常、0.1~30質量%であり、0.5~20質量%が好ましい。
 また、コーティング用組成物にシランカップリング剤を配合する場合、その配合量は、樹脂(a)100質量部当たり、0.01~50質量部が好ましく、0.1~30質量部がより好ましい。
<層(B)>
 層(B)は、樹脂(a)以外の樹脂(b)または無機物(c)から構成される層であり、該層(B)を構成する材料(樹脂(b)または無機物(c))は、層(A)を構成する材料(樹脂(a))とは異なる。
 樹脂(b)としては、前記樹脂(a)以外のものであれば特に限定されず、従来公知の樹脂から適宜選択すればよい。
 樹脂(b)は、前記樹脂(a)に比べて、エレクトレットとした際の電荷保持性能が低いものが好ましい。
 ここで、「電荷保持性能」としては、保持できる電荷量の多さ(電荷保持容量)、および注入された電荷をどれだけ安定に保持できるか(電荷安定性)の2種があるが、樹脂(b)は、電荷保持量、電荷安定性のいずれか一方のみが低いものであってもよいが、両方の性能が、樹脂(a)よりも低いものであることが好ましい。
 樹脂(b)、樹脂(a)それぞれの電荷保持性能は、基板上に、それぞれ同じ膜厚で樹脂(b)の単一膜、樹脂(a)の単一膜を形成し、同じ条件で電荷を注入してエレクトレットとし、この電荷注入直後の表面電位(初期表面電位)、および電荷注入してから同じ条件で一定時間(たとえば200時間)保管した後の表面電位(保管後表面電位)を測定することにより評価できる。つまり、初期表面電位の高さから電荷保持容量を評価でき、初期表面電位と保管後表面電位との差から電荷安定性を評価できる。
 樹脂(b)の具体例としては、ポリイミド、ポリパラキシリレン樹脂、ポリカーボネート、ポリアリーレン、ポリアリーレンエーテル、ポリエーテル、ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルニトリル、ポリエーテルイミド、ポリアリーレンチオエーテル、ポリチオエーテルスルフォン、ポリスルフォン、ナイロン、ポリエステル、ポリスチレン、ポリエチレン、ポリプロピレン、ポリケトン、エポキシ樹脂、アクリル樹脂、ポリウレタン、およびアラミド樹脂からなる群より選ばれる少なくとも1種が好ましい。
 樹脂(b)としては、製膜プロセスの容易さの観点から、ポリイミド、ポリパラキシリレン樹脂、ポリカーボネート、ポリアリーレン、ポリアリーレンエーテル、ポリスルフォン、およびポリエーテルスルフォンからなる群より選ばれる少なくとも1種がより好ましい。
 また、樹脂(b)としては、ガラス転移温度または融点を高める観点から、熱硬化性樹脂および/または紫外線硬化性樹脂を用いても良い。当該熱硬化性樹脂、および当該紫外線硬化性樹脂としては、前記の例の中のポリイミド、エポキシ樹脂、アクリル樹脂等が例示され、製膜プロセスの容易さの観点から、ポリイミドが好ましく用いられる。
 樹脂(b)としてポリイミドを用いる場合、有機溶媒などに対する溶解性が優れているポリイミド前駆体をコーティングし熱処理することにより、ポリイミド前駆体をポリイミドに変換し、層(B)を製膜する。ポリイミド前駆体としては、ポリアミック酸、およびそのエステルを一般的に用いることができる。ポリアミック酸などのポリイミド前駆体を200~350℃の高温にするとイミド閉環反応が起こり、熱的・化学的・電気的に安定なポリイミドに変換することができる。本発明においては一般的に市販されているポリイミドを用いることができる。
 本発明に用いるポリイミド前駆体としては、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得られるポリアミック酸またはそのエステルが好ましい。
 テトラカルボン酸二無水物は、特に制限されないが、一般的なポリイミド合成で用いられている芳香族テトラカルボン酸二無水物が使用できる。具体的には、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2’,6,6’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
 ジアミン化合物としては、芳香族ジアミン化合物が好ましい。芳香族ジアミン化合物としては、特に制限されないが、一般的にポリイミド合成で用いられている芳香族ジアミン化合物が使用できる。具体としては、4,4’-ジアミノジフェニルメタン(DDM)、4,4’-ジアミノジフェニルエーテル(DPE)、4,4’-ビス(4-アミノフェノキシ)ビフェニル(BAPB)、1,4’-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、1,3’-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,4-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、4,4’-メチレン-ビス(2-クロロアニリン)、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,6’-ジアミノトルエン、2,4-ジアミノクロロベンゼン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン等が挙げられる。
 樹脂(b)として使用されるポリパラキシリレン樹脂は、常温の気相中で重合できる特殊なポリマーである。例えば、ポリパラキシリレン樹脂は、以下に示されるダイマーを160℃程度で昇華させた後、690℃で熱分解してモノマーとし、常温の真空容器(4Pa(絶対圧)程度)に導入して固体表面で重合させることにより合成される。
Figure JPOXMLDOC01-appb-C000013
 ポリパラキシリレン樹脂には幾つかの種類があり、なかでもベンゼン環に塩素がついた分子構造を有するもの(商品名 パリレン-C)は、周波数1MHzでの比誘電率が2.95であり、また、絶縁破壊強度及び耐薬品性が高いという特徴を有しており、樹脂(b)として好適である。上記パリレン-Cを含め、樹脂(b)として使用できるポリパラキシリレン類の例を以下に示す。なお、各構造式の下には商品名を示している。
Figure JPOXMLDOC01-appb-C000014
 樹脂(b)は、ガラス転移温度または融点が80℃以上であることが好ましく、110℃以上がより好ましい。該ガラス転移温度または融点が80℃以上であると、エレクトレットの耐熱性、電荷保持安定性に優れる。
 樹脂(b)の重量平均分子量は、3000~1000万が好ましく、1万~100万がより好ましい。
 無機物(c)としては、従来公知の無機物のなかから適宜選択すればよい。
 具体的には、金属酸化物、金属硫化物および金属ハロゲン化物からなる群より選ばれる少なくとも1種が好ましく、特に、比誘電率の観点から、金属酸化物が好適に用いられる。
 金属酸化物としては、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化セリウム、酸化カルシウム、酸化マグネシウム、酸化スズ、二酸化マンガン、酸化ニッケル、酸化クロム、酸化コバルト、酸化銀、酸化銅、酸化亜鉛、酸化鉄、酸化モリブデン、チタン酸バリウム、チタン酸ストロンチウム、ニオブ酸カリウム等が挙げられる。
 金属硫化物としては、硫化亜鉛、硫化アルミニウム、硫化ガリウム、硫化銀、硫化ケイ素、硫化スズ、硫化セリウム、硫化マグネシウム、硫化銅、硫化鉄、硫化モリブデン等が挙げられる。
 金属ハロゲン化物としては、フッ化銀、フッ化カルシウム、フッ化セリウム、フッ化銅、フッ化バリウム、フッ化マグネシウム、フッ化リチウム、塩化銅、塩化銀、塩化カルシウム、塩化ジルコニウム、塩化スズ、塩化セリウム、臭化銀、臭化コバルト、臭化セシウム、臭化銅等が挙げられる。
 これらの中でも、金属酸化物が好ましく、エレクトレット特性の観点から、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化セリウム、酸化スズ、二酸化マンガン、酸化ニッケル、酸化鉄およびチタン酸バリウムからなる群より選ばれる少なくとも1種が好ましく、特に、酸化ケイ素が好ましい。
 層(B)は、樹脂(b)を含むものであってもよく、無機物(c)を含むものであってもよい。
 層(B)の製膜方法は、特に限定されず、使用する材料に応じて従来公知の製膜方法を利用すればよい。
 層(B)として、樹脂(b)を用いる場合、湿式コーティング法により製膜してもよく、フィルムをプレス成形することにより製膜しても良い。また蒸着、CVD、スパッタリング等のドライプロセスにて製膜しても良い。特に、製膜プロセスの観点から湿式コーティング法により製膜することが好ましい。
 層(B)を湿式コーティング法により製膜する場合、樹脂(b)としては、溶媒に可溶なもの、好ましくは、25℃で、使用する溶媒に対して5質量%以上の濃度で溶解する溶解度を有するものが用いられる。該溶解度が5質量%未満であると、良好なコーティング膜を得ることが難しい。該溶解度は、10質量%以上が好ましく、15質量%以上がより好ましい。該溶解度の上限としては、溶液粘度の上昇により濾過性や製膜性が悪化することを考慮すると、50質量%が好ましく、30質量%がより好ましい。
 コーティング法による層(B)の製膜は、層(A)の形成方法として挙げた、コーティング膜を製膜する方法と同様の方法により実施できる。すなわち、樹脂(b)を溶媒に溶解してコーティング用組成物を調製し、該コーティング用組成物を基板または層(A)の表面にコーティングし、ベーク等により乾燥させることにより実施できる。
 該コーティング用組成物には、シランカップリング剤を配合してもよい。これにより、当該コーティング用組成物を用いて形成されるコーティング膜(層(B))は、基板または層(A)との密着性に優れる。該シランカップリング剤としては前述と同様のものを用いることができる。
 また、コーティング用組成物として、樹脂(b)のモノマー又はプレポリマーを溶媒に溶解したものを調製し、該コーティング用組成物を基板または層(A)の表面にコーティングした後、熱、光、電子線等の外部エネルギーを与えて硬化させ、層(B)を硬化膜として得てもよい。
 層(B)として、無機物(c)を用いる場合、層(B)は、塗布法、ゾルゲル法のような湿式法にて製膜してもよく、スパッタリング法、蒸着法、CVD法等のドライプロセスにて製膜してもよい。
 湿式法により酸化ケイ素膜を形成する場合の例を以下に挙げる。例えば、テトラアルコキシシラン、アルキルトリアルコキシシランなどの加水分解性シラン化合物、加水分解性シラン化合物の部分加水分解縮合物、ポリシラザン等を前記プロトン性溶媒、若しくは非プロトン性溶媒に溶解して塗布し、大気中で焼成することで、酸化ケイ素膜を形成する方法が好ましく用いられる。湿式法を用いる場合は、エレクトレット特性の観点から、非水系で行うことが好ましい。非水系での製膜方法としては、酸化ケイ素膜を形成する場合を例に挙げると、ポリシラザンのキシレン溶液を塗布し、大気中で焼成することで、酸化ケイ素膜を形成する方法が好ましく用いられる。この場合の焼成温度は150℃~600℃が好ましく、層(A)との線膨張係数の違いによる割れを防止する観点から180~450℃がより好ましい。
 本発明におけるポリシラザンとしては、例えば特開平9-31333号公報や該公報記載の引用文献に記載のポリシラザン及び変性ポリシラザンが使用できる。
<積層体>
 本発明における積層体は、直接積層された層(A)および層(B)を必須の構成単位として含有する。また、本発明においては、当該積層体に電荷を注入してエレクトレットとする際に、電荷が注入される側と反対側の最表面に層(B)が配置される。また、当該積層体は、層(B)として、該最表面以外の位置に配置された層(B)を有していてもよい。
 該積層体は、層(A)および層(B)のみから構成されてもよく、その他の層を含んでいてもよい。該その他の層としては、金属層、前記シランカップリング剤等による有機単分子膜層等が挙げられる。これらの層は、従来公知の方法により形成できる。
 積層体としては、製膜プロセス上の観点から、n層の層(A)と、n層の層(B)とが交互に積層された(n+n)層の積層体が好ましい。ここで、nは1~5の整数であり、nは1~5の整数であり、n-nの値が-1又は0である。特にnは1または2であることが好ましく、nも1または2であることが好ましく、n-nの値は、0であることが好ましい。
 かかる積層体の好ましい具体例としては、電荷が注入される側と反対側から、層(B)、層(A)の順で積層された(以下、層(B)/層(A)と記し、他の積層体についても同様に記す。)2層積層体;層(B)/層(A)/層(B)の3層積層体;層(B)/層(A)/層(B)/層(A)の4層積層体等が挙げられる。
 積層体の形状、大きさは、所望のエレクトレットの形状、大きさに応じて適宜設定すればよい。エレクトレットは一般的に厚さ1~200μmの膜として用いられることから、当該積層体としては、厚さ1~200μmの膜であることが好ましい。該積層体の厚さは、エレクトレットしての特性、及び加工する上で有利であることから3~50μmが好ましく、5~20μmが特に好ましい。
 また、前記積層体において、層(B)の厚さ(1層あたりの厚さ)は、上記効果に優れることから、0.1μm以上が好ましく、0.3μm以上がより好ましく、2μm以上が最も好ましい。該厚さの上限は、表面電荷密度の向上及び製膜プロセス上の観点から、20μmが好ましく、10μmがより好ましい。
 層(A)の厚さ(1層あたりの厚さ)は、特に限定されず、当該積層体全体の厚さ、層(A)の数等を考慮して適宜設定すればよい。エレクトレットの電荷保持性能、耐熱性等を考慮すると、3~50μmが好ましく、5~20μmがより好ましい。
 層(A)および層(B)の各層の厚さ、ならびに当該積層体全体の厚さは、光干渉式膜厚測定装置により測定できる。
 本発明のエレクトレットは、基板上に、前記積層体を、前記層(B)が該基板と直接接するように形成する工程(積層体形成工程)と、該積層体に、前記基板側とは反対側から電荷を注入してエレクトレットとする工程(電荷注入工程)とを有する方法により製造できる。
 積層体形成工程において、上記積層体は、基板上に、層(B)が当該基板と直接接するように、層(B)および層(A)を順次積層することにより形成できる。たとえば、基板上に、まず層(B)を形成し、該層(B)上に層(A)を積層することにより2層積層体を形成できる。また、3層以上の積層体の場合、基板側から、層(B)および層(A)を順次、所望の積層数に応じて交互に積層することにより、所定の積層数の積層体を形成できる。また、このとき、任意にその他の層を積層してもよいが、積層体は、少なくとも、層(A)と層(B)とが直接積層された積層体を含む。そして、電荷が注入される側と反対側の最表面に層(B)が配置される。
 基板としては、得られた積層体に電荷を注入する際にアースに接続できるような基板であれば、材質を選ばずに用いることができる。好ましい材質としては、例えば、金、白金、銅、アルミニウム、クロム、ニッケル等の導電性の金属が挙げられる。また、材質が導電性の金属以外のもの、たとえばガラス等の無機材料、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、アクリル樹脂等の絶縁性材料であっても、その表面にスパッタリング、蒸着、ウエットコーティング等の方法で金属膜をコーティングしたものであれば基板として用いることができる。またシリコン等の半導体材料も同様の表面処理を行ったものであるか、または半導体材料そのものの抵抗値が低いものであれば基板として用いることができる。基板材料の抵抗値としては体積固有抵抗値で0.1Ωcm以下であることが好ましく、特に0.01Ωcm以下であることがより好ましい。
 当該基板は表面が平滑な平板でもよく、凹凸を形成したものでもよい。また、様々な形状に表面がパターニングされていても良い。特に上記絶縁性基板を用いる場合に、絶縁性基板そのものに凹凸またはパターンを形成しても良いし、表面にコーティングされた金属膜に凹凸又はパターンを形成しても良い。
 当該基板に凹凸またはパターンを形成する方法としては、従来公知の方法が利用でき、特に限定されない。凹凸またはパターンを形成する方法としては、真空プロセス、湿式プロセスのどちらを用いても良い。かかる方法の具体例としては、真空プロセスとして、マスクを介したスパッタリング法、マスクを介した蒸着法、湿式プロセスとして、ロールコーター法、キャスト法、ディッピング法、スピンコート法、水上キャスト法、ラングミュア・ブロジェット法、ダイコート法、インクジェット法、スプレーコート法等が挙げられる。また、凸版印刷法、グラビア印刷法、平板印刷法、スクリーン印刷法、フレキソ印刷法などの印刷技術も用いることができる。さらに、微細な凹凸またはパターンを形成する方法としては、ナノインプリント法、フォトリソグラフィ法なども用いることができる。
 層(A)および層(B)ならびにその他の層を積層する方法としては、前述のコーティング法等による製膜を単純に繰り返してもよく、また、製膜を繰り返す間に、下地に表面処理を施しても良い。
 該表面処理としては、前述のシランカップリング剤をコーティングする方法、プラズマ処理により表面を親水化または粗化する方法などを適用することができる。
 シランカップリング剤をコーティングする場合には、前述のシランカップリング剤を前述のプロトン性溶媒、非プロトン性溶媒またはプロトン性含フッ素溶媒に溶解し、前述と同様のコーティング方法により塗布することにより当該表面処理を行うことができる。
 また、プラズマ処理により表面を親水化または粗化する場合には、酸素、窒素、アルゴン、メタン、CHF、CF等のガスを用いたプラズマ処理が適用可能である。これらのガスはそれぞれ単独で用いてもよく、また、適当に混合して用いても良い。該プラズマ処理においては、下地の膜厚減少を最小にするために、酸素、窒素、アルゴン、メタンガスまたはこれらの混合ガスを用いることがより好適である。
 基板として銅基板、低抵抗値のシリコン基板等の低抵抗値の基板を用いた場合、後述するように、該基板上に形成された積層体を基板から剥離せず、そのまま当該積層体に電荷を注入してエレクトレットとすることができる。
 上述のように、基板上に層(B)および層(A)を順次積層することにより作製される積層体は、層(B)が基板に接している。そのため、上記のように基板上の積層体に対して電荷を注入してエレクトレットとする際には、該積層体の、電荷が注入される側と反対側の最表面に層(B)が配置されることになる。層(B)がかかる配置となっていることにより、本発明の効果が充分に得られる。
 また、当該積層体の、電荷が注入される側の最表面に配置されるのは、層(A)であってもよく、層(B)であってもよい。本発明の効果に優れることから、当該積層体の、電荷が注入される側の最表面には層(A)が配置されることが好ましい。
 電荷注入工程において、積層体へ電荷を注入する方法としては、一般的に絶縁体を帯電させる方法であれば手段を選ばずに用いることができる。例えば、G.M.Sessler,Electrets Third Edition,p20,Chapter2.2“Charging and Polarizing Methods”(Laplacian Press,1998))に記載のコロナ放電法、電子ビーム衝突法、イオンビーム衝突法、放射線照射法、光照射法、接触帯電法、液体接触帯電法などが適用可能である。特に本発明のエレクトレットではコロナ放電法、電子ビーム衝突法を用いることが好ましい。
 また、電荷を注入する際の温度条件としては、樹脂(a)のガラス転移温度以上で行うことが、注入後に保持される電荷の安定性の面から好ましく、特に(該ガラス転移温度+10)~(該ガラス転移温度+20℃)程度の温度条件で行うことが好ましい。さらに、電荷を注入する際の印加電圧としては、積層体の絶縁破壊電圧以下であれば、高圧を印加することが好ましい。本発明における積層体の印加電圧は、正電荷では6~30kV、好ましくは8~15kVであり、負電荷では-6~-30kV、好ましくは-8~-15kVである。樹脂(a)では、正電荷より負電荷をより安定に保持できることから、-8~-15kVの電圧印加をすることがさらに好ましい。
 電荷の注入後、エレクトレットはそのまま基板とともに静電誘導型変換素子に用いてもよく、基板から剥離して静電誘導型変換素子に用いてもよい。
 本発明のエレクトレットは、電気エネルギーと運動エネルギーとを変換する静電誘導型変換素子として好適である。
 静電誘導型変換素子としては、振動型発電機、アクチュエータ、センサー等が挙げられる。これらの静電誘導型変換素子の構造は、エレクトレットとして本発明のエレクトレットが用いられる以外は従来公知のものと同様であってよい。
 本発明のエレクトレットは、従来のエレクトレットに比べて、エレクトレットとしての電荷保持を担う部分(前記層(A))の膜厚が薄くても、表面電位を高くすることができる。また、層(A)および層(B)のそれぞれの膜厚が薄くてもよいため、コーティング等による膜形成時の膜厚ムラを軽減、または無くすことができる。このことにより、当該エレクトレットの表面電位のムラも無くすことができ、電荷ばらつきが少なく、かつ表面電位の高いエレクトレット膜を得ることができる。
 そのため、該エレクトレットを使用した静電誘導型変換素子は、電気エネルギーと運動エネルギーとの変換効率が向上しており、優れた性能を有する。
 かかる効果が得られる理由は明確ではないが、次のように説明することができる。すなわち、本発明のエレクトレットにおいて、層(B)は、エレクトレットとしての電荷保持性が高い樹脂(a)とは異なる材料(樹脂(b)または無機物(c))を含み、電荷保持性が比較的低いと考えられる。このような電荷保持性の低い層(前記層(B))が、電荷保持性が高く、エレクトレットとしての電荷保持を担う層(前記層(A))と抵抗値の低い(導電性の高い)基板との間に挿入される。その結果、前記層(A)が直接基板と接しないため、基板を通じた電荷の減衰を防ぐことができ、層(A)の膜厚が薄くても充分に電荷を保持できるためと推察される。
 以下に、上記実施形態の具体例を実施例として説明する。なお、本発明は、以下の実施例に限定して解釈されるものではない。
 また以下の各例ではエレクトレットを形成する基板としては、低抵抗のシリコン基板(体積固有抵抗値0.003~0.007Ωcm。以下の例では本基板を「シリコン基板」と記す。)及び銅基板を用いた。
 また、以下の各例で、各層の膜厚の測定は、浜松ホトニクス社製の光干渉式膜厚測定装置C10178を用いて行った。
[製造例1:重合体組成物溶液M1の調製]
(1)重合体溶液の調製
 パーフルオロブテニルビニルエーテル(CF=CFOCFCFCF=CF)の45g,イオン交換水の240g,メタノールの16g,及び重合開始剤として、ジイソプロピルパーオキシジカーボネート粉末(((CHCHOCOO))の0.2gを内容積1Lの耐圧ガラス製オートクレーブに入れた。系内を窒素で3回置換した後、40℃で23時間懸濁重合を行った。その結果、重合体A1の40gを得た。この重合体の赤外線吸収スペクトルを測定したところ、モノマーに存在した二重結合に起因する1660cm-1,1840cm-1付近の吸収は確認できなかった。
 重合体A1を空気中で250℃で8時間熱処理後、水中に浸漬して末端基として-COOH基を有する重合体A2を得た。該重合体の圧縮成形フィルムの赤外線吸収スペクトルを測定した結果、-COOH基に由来する1775、1810cm-1の特性吸収が認められた。また、この重合体の固有粘度[η](30℃)は0.24dl/gであった。
 重合体A2の体積固有抵抗値は、>1017Ωcm、絶縁破壊電圧は、19kV/mm、比誘電率は、2.1であった。
 重合体A2について示差走査熱分析(DSC)を行ったところ、重合体A2のガラス転移温度(Tg)は108℃であった。
 パーフルオロトリブチルアミンに、上記重合体A2を15質量%の濃度で溶解させ、重合体溶液P1を得た。
(2)シランカップリング剤の配合
 上記重合体溶液P1の84.6gに、パーフルオロトリブチルアミンの10.6gを加えた溶液と、γ-アミノプロピルメチルジエトキシシランの0.4gを、2-(パーフルオロヘキシル)エタノールの4.7gに溶解したシランカップリング剤溶液とを混合し、均一な重合体組成物溶液M1を得た。
[実施例1:エレクトレットAの製造]
 3cm角、厚さ350μmのシリコン基板に、ポリアミック酸(東レ社製 セミコファインSP483、ポリイミド化後のガラス転移温度350℃以上)の12質量%N-メチルピロリドン(NMP)溶液をスピンコート法によりコーティングした。その後、200℃で5時間熱処理し、ポリイミド化させることにより、膜厚5μmのコーティング膜(以下、ポリイミド膜という。)を形成した。次に、ポリイミド膜上に、重合体組成物溶液M1をスピンコート法によりコーティングした。その後、200℃でベークして乾燥させることにより、総膜厚10μmの表面が平滑な積層膜A[基板側から、層(B):5μm/層(A):5μmの順で積層された2層積層体]を得た。
 得られた積層膜Aに、コロナ放電にて電荷を注入することによりエレクトレットAとした。電荷の注入は、図1に概略構成図を示すコロナ荷電装置を用い、120℃にて、荷電電圧-8kV、荷電時間3分の条件で、以下の手順により行った。すなわち、基板(本実施例ではシリコン基板)(10)を電極として、直流高圧電源装置(12)(HAR-20R5;松定プレシジョン製)により、コロナ針(14)と基板(10)との間に-8kVの高電圧をかけることにより、基板(10)上に形成された積層膜A(11)に電荷を注入した。このコロナ荷電装置においては、コロナ針(14)から放電した負イオンはグリッド(16)で均一化された後、積層膜A(11)上に降り注ぎ、電荷が注入される。なお、グリッド(16)には、グリッド用電源(18)から-600Vの電圧を印加した。
[実施例2:エレクトレットBの製造]
 3cm角、厚さ350μmの銅基板に、実施例1と同様にして、膜厚5μmのポリイミド膜を形成した。次に、該ポリイミド膜の表面に、実施例1と同様の方法にて、重合体組成物溶液M1をスピンコート法により膜厚10μmにてコーティングし、総膜厚15μmの表面が平滑な積層膜B[基板側から、層(B):5μm/層(A):10μmの順で積層された2層積層体]を得た。
 得られた積層膜Bに、実施例1と同じ手順により電荷を注入してエレクトレットBとした。
[実施例3:エレクトレットCの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例1と同様にして、膜厚0.3μmのポリイミド膜を形成した。次に、該ポリイミド膜の表面に、実施例1と同様の方法にて、重合体組成物溶液M1をスピンコート法により膜厚14.7μmにてコーティングし、総膜厚15μmの積層膜C[基板側から、層(B):0.3μm/層(A):14.7μmの順で積層された2層積層体]を得た。積層膜Cは、表面平滑性において、わずかに不均一な部分が見られた。
 得られた積層膜Cに、実施例1と同じ手順により電荷を注入してエレクトレットCとした。
[実施例4:エレクトレットDの製造]
 3cm角、厚さ350μmのシリコン基板に、ポリシラザンの20質量%キシレン溶液(クラリアントジャパン社製 DEN-3)をスピンコート法によりコーティングした。その後、200℃で12時間焼成することにより、基板上に酸化ケイ素膜を膜厚2.2μmにて形成した。続いて、実施例1と同様の方法にて、重合体組成物溶液M1をスピンコート法により膜厚12.8μmにてコーティングし、総膜厚15μmの表面がほぼ平滑な積層膜D[基板側から、層(B):2.2μm/層(A):12.8μmの順で積層された2層積層体]を得た。
 この積層膜Dに、実施例1と同じ手順により電荷を注入してエレクトレットDとした。
[実施例5:エレクトレットEの製造]
 3cm角、厚さ350μmのシリコン基板に、ポリカーボネート(ゼネラルエレクトリック社製 LEXAN、ガラス転移温度146℃)の10質量%m-キシレン溶液をスピンコート法によりコーティングした。その後、160℃で1時間ベークして乾燥させることにより、基板上にポリカーボネート膜を膜厚5μmにて形成した。続いて、実施例1と同様の方法にて、重合体組成物溶液M1をスピンコート法により膜厚10μmにてコーティングし、総膜厚15μmの表面がほぼ平滑な積層膜E[基板側から、層(B):5μm/層(A):10μmの順で積層された2層積層体]を得た。
 この積層膜Eに、実施例1と同じ手順により電荷を注入してエレクトレットEとした。
[比較例1:エレクトレットFの製造]
(層(B)にシクロオレフィンポリマーを用いた場合)
 3cm角、厚さ350μmのシリコン基板に、シクロオレフィンポリマー(日本ゼオン社製 ZEONEX480、比誘電率2.3、ガラス転移温度138℃)の15質量%m-キシレン溶液をスピンコート法によりコーティングした。その後、160℃で1時間ベークして乾燥させることにより、膜厚5μmのコーティング膜を形成した。続いて、実施例1と同様の方法にて、重合体組成物溶液M1をスピンコート法により膜厚5μmにてコーティングし、総膜厚10μmの表面が平滑な積層膜F[基板側から、層(B):5μm/層(A):5μmの順で積層された2層積層体]を得た。
 この積層膜Fに、実施例1と同じ手順により電荷を注入してエレクトレットFとした。
[比較例2:エレクトレットGの製造]
 パーフルオロトリブチルアミンに、製造例1の重合体A2を25質量%の濃度で溶解させ、重合体溶液P2を得た。上記重合体溶液P2の27.6gに、パーフルオロトリブチルアミンの1.1gを加えた溶液と、γ-アミノプロピルメチルジエトキシシランの0.2gを、2-(パーフルオロヘキシル)エタノールの1.2gに溶解したシランカップリング剤溶液とを混合し、均一な重合体組成物溶液M2を得た。
 3cm角、厚さ350μmのシリコン基板に、重合体組成物溶液M2をスピンコート法によりコーティングした。その後、200℃でベークして乾燥させることにより、膜厚15μmのコーティング膜Gを形成した。当該コーティング膜Gは、前記積層膜A~Eと比較して不均一な部分が多く、表面平滑性が低い膜であった。
 このコーティング膜Gに、実施例1と同じ手順により電荷を注入してエレクトレットGとした。
[比較例3:エレクトレットHの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例1で用いた重合体組成物溶液M1をスピンコート法によりコーティングした。その後、200℃でベークして乾燥させることにより、膜厚10μmのコーティング膜Hを形成した。コーティング膜Hは、表面がほぼ平滑であった。
 このコーティング膜Hに、実施例1と同じ手順により電荷を注入してエレクトレットHとした。
[比較例4:エレクトレットIの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例1で用いた重合体組成物溶液M1をスピンコート法によりコーティングした。その後、200℃でベークして乾燥させることにより、膜厚5μmのコーティング膜Iを形成した。コーティング膜Iは、表面が平滑であった。
 このコーティング膜Iに、実施例1と同じ手順により電荷を注入してエレクトレットIとした。
[比較例5:エレクトレットJの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例1で用いた重合体組成物溶液M1をスピンコート法によりコーティングした。その後、200℃でベークして乾燥させることにより、膜厚3μmのコーティング膜Jを形成した。コーティング膜Jは、表面が平滑であった。
 このコーティング膜Jに、実施例1と同じ手順により電荷を注入してエレクトレットJとした。
[比較例6:エレクトレットKの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例1と同様にして、膜厚15μmのポリイミド膜(コーティング膜K)を形成した。当該コーティング膜Kは、不均一な部分が多く、表面平滑性が低い膜であった。
 このコーティング膜Kに、実施例1と同じ手順により電荷を注入してエレクトレットKとした。
[比較例7:エレクトレットLの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例4と同様にして、膜厚3μmの酸化ケイ素膜(コーティング膜L)を形成した。コーティング膜Lは、表面が平滑であった。
 このコーティング膜Lに、実施例1と同じ手順により電荷を注入してエレクトレットLとした。
[比較例8:エレクトレットMの製造]
 3cm角、厚さ350μmのシリコン基板に、実施例5と同様にして、膜厚5μmのポリカーボネート膜(コーティング膜M)を形成した。コーティング膜Mは、表面が平滑であった。
 このコーティング膜Mに、実施例1と同じ手順により電荷を注入してエレクトレットMとした。
[比較例9:エレクトレットNの製造]
 3cm角、厚さ350μmのシリコン基板に、比較例1と同様にして、膜厚15μmのシクロオレフィンポリマー膜(コーティング膜N)を形成した。当該コーティング膜Nは、不均一な部分が多く、表面平滑性が低い膜であった。
 このコーティング膜Nに、実施例1と同じ手順により電荷を注入してエレクトレットNとした。
[試験例1:荷電試験]
 上記で得たエレクトレットA~Nについて、以下の手順により荷電試験を行った。
 荷電電圧-8kV、荷電時間3分の条件でのコロナ荷電により電荷を注入した直後のエレクトレットA~Nについて、それぞれ、常温(25℃)に戻して、その表面電位値(初期表面電位値)を測定した。また、各エレクトレットを、20℃,60%RHで200時間保管した後、常温に戻してその表面電位(200時間後表面電位値)を測定した。その結果を表1に示す。
 表面電位(V)は、表面電位計(model279;モンローエレクトロニクス社製)を用い、各エレクトレットの9点の測定点(膜の中心から3mm毎に格子状に設定。図2参照。)の表面電位を測定し、それらの平均値として求めた。
Figure JPOXMLDOC01-appb-T000015
 表1の結果より、初期及び200時間後の表面電位値から判断して、エレクトレットAは、エレクトレットF、およびHに対して、総膜厚は同じであるが、表面電位値、および表面電荷密度値の向上が認められた。
 また、エレクトレットB~Eは、エレクトレットG、K、およびNに対して、総膜厚は同じであるが、表面電位値の向上が認められた。また、コーティング膜の表面平滑性に関してもエレクトレットB~Eは、エレクトレットG、K、およびNに対して、表面平滑性に優れた膜であった。
 なお、エレクトレットK、L、およびMは、それぞれ、同じ膜厚のエレクトレットG、J、およびIと比較して、電荷保持量、および電荷安定性が共に低いエレクトレットであった。
 また、エレクトレットNは、エレクトレットGと比較して、電荷保持量は低いが、電荷安定性は同等のエレクトレットであった。
 本発明のエレクトレットは、表面電位を高くすることができ、表面電荷密度が高く、該エレクトレットを使用した静電誘導型変換素子は、電気エネルギーと運動エネルギーとの変換効率が向上しており、優れた性能を有する振動型発電機、アクチュエータ、センサーなどとして有用である。

 なお、2008年4月17日に出願された日本特許出願2008-107717号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10…基板、11…コーティング膜、12…直流高圧電源装置、14…コロナ針、16…グリッド、17…電流計、18…グリッド用電源、19…ホットプレート。

Claims (9)

  1.  樹脂(a)を含む層(A)と、前記樹脂(a)以外の樹脂(b)または無機物(c)を含む層(B)とが直接積層された積層体を有し、
     前記樹脂(a)が、含フッ素樹脂(a1)、または脂肪族環構造を有し、フッ素原子を含有しない樹脂(a2)であり、
     前記積層体に電荷を注入してエレクトレットとする際に、電荷が注入される側と反対側の最表面に前記層(B)が配置されることを特徴とするエレクトレット。
  2.  前記樹脂(b)のガラス転移温度または融点が80℃以上である請求項1に記載のエレクトレット。
  3.  前記樹脂(b)が、ポリイミド、ポリパラキシリレン樹脂、ポリカーボネート、ポリアリーレン、ポリアリーレンエーテル、ポリエーテル、ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルニトリル、ポリエーテルイミド、ポリアリーレンチオエーテル、ポリチオエーテルスルフォン、ポリスルフォン、ナイロン、ポリエステル、ポリスチレン、ポリエチレン、ポリプロピレン、ポリケトン、エポキシ樹脂、アクリル樹脂、ポリウレタン、およびアラミド樹脂からなる群より選ばれる少なくとも1種である請求項1または2に記載のエレクトレット。
  4.  前記樹脂(b)がポリイミドである請求項3に記載のエレクトレット。
  5.  前記含フッ素樹脂(a1)が脂肪族環構造を有する請求項1~4のいずれかに記載のエレクトレット。
  6.  前記無機物(c)が、金属酸化物、金属硫化物および金属ハロゲン化物からなる群より選ばれる少なくとも1種である請求項1~5のいずれかに記載のエレクトレット。
  7.  前記金属酸化物が、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化セリウム、酸化スズ、二酸化マンガン、酸化ニッケル、酸化鉄およびチタン酸バリウムからなる群より選ばれる少なくとも1種である請求項6に記載のエレクトレット。
  8.  前記積層体が、n層の層(A)と、n層の層(B)とが交互に積層された(n+n)層積層体であり、nは1~5の整数であり、nは1~5の整数であり、n-nの値が-1又は0である請求項1~7のいずれかに記載のエレクトレット。
  9.  請求項1~8のいずれかに記載のエレクトレットを備えることを特徴とする静電誘導型変換素子。
PCT/JP2009/057656 2008-04-17 2009-04-16 エレクトレットおよび静電誘導型変換素子 WO2009128503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980113719.3A CN102007002B (zh) 2008-04-17 2009-04-16 驻极体及静电感应型转换元件
EP09732621.9A EP2266795B1 (en) 2008-04-17 2009-04-16 Electret and electrostatic induction conversion device
JP2010508243A JP5381979B2 (ja) 2008-04-17 2009-04-16 エレクトレットおよびその製造方法、ならびに静電誘導型変換素子
US12/904,856 US8277927B2 (en) 2008-04-17 2010-10-14 Electret and electrostatic induction conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008107717 2008-04-17
JP2008-107717 2008-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/904,856 Continuation US8277927B2 (en) 2008-04-17 2010-10-14 Electret and electrostatic induction conversion device

Publications (1)

Publication Number Publication Date
WO2009128503A1 true WO2009128503A1 (ja) 2009-10-22

Family

ID=41199190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057656 WO2009128503A1 (ja) 2008-04-17 2009-04-16 エレクトレットおよび静電誘導型変換素子

Country Status (6)

Country Link
US (1) US8277927B2 (ja)
EP (1) EP2266795B1 (ja)
JP (1) JP5381979B2 (ja)
KR (1) KR20110008009A (ja)
CN (1) CN102007002B (ja)
WO (1) WO2009128503A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011949A1 (ja) * 2011-07-15 2013-01-24 三菱樹脂株式会社 耐熱エレクトレット材及びコンデンサー型マイクロホン
JP2015085232A (ja) * 2013-10-29 2015-05-07 東洋紡株式会社 耐油性エレクトレットろ材
JP2022024066A (ja) * 2016-02-04 2022-02-08 積水化学工業株式会社 エレクトレットシート

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104699A1 (ja) * 2008-02-22 2009-08-27 旭硝子株式会社 エレクトレットおよび静電誘導型変換素子
CN101977763A (zh) * 2008-03-27 2011-02-16 旭硝子株式会社 驻极体及静电感应型转换元件
CN101981456B (zh) * 2008-03-31 2013-11-06 旭硝子株式会社 加速度传感器装置及传感器网络系统
JP5705454B2 (ja) * 2009-04-27 2015-04-22 日東電工株式会社 エレクトレット材および静電型音響変換器
JP5152298B2 (ja) * 2010-06-24 2013-02-27 株式会社村田製作所 送電装置、受電装置及びワイヤレス電力伝送システム
KR102015492B1 (ko) 2011-05-12 2019-08-28 사빅 글로벌 테크놀러지스 비.브이. 커패시터용 비정질 폴리카보네이트 필름, 이의 제조 방법, 및 이로부터 제조된 물품
US9659711B2 (en) 2013-05-31 2017-05-23 Sabic Global Technologies B.V. Capacitor films, methods of manufacture, and articles manufactured therefrom
US10077345B2 (en) 2013-05-31 2018-09-18 Sabic Global Technologies B.V. Capacitor films, methods of manufacture, and articles manufactured therefrom
JP2017528144A (ja) * 2014-09-16 2017-09-28 アルトリア クライアント サービシーズ エルエルシー 飲料前駆物質および飲料を製造するための方法
CN105978395B (zh) * 2016-06-07 2018-11-23 清华大学 无基底电极驻极体静电直线发电机和制造该驻极体的方法
CN105932899B (zh) * 2016-06-07 2018-12-11 清华大学 无基底电极驻极体静电发电机和制造该驻极体的方法
CN112714756B (zh) * 2018-09-28 2022-12-27 日本碍子株式会社 传感器元件
CN112194880A (zh) * 2020-09-03 2021-01-08 四川安费尔高分子材料科技有限公司 一种驻极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481815A (en) 1967-06-20 1969-12-02 Dow Corning Silane coupling agents for aryl-containing,thermally stable polymers ii
JPH04189880A (ja) 1990-11-22 1992-07-08 Asahi Glass Co Ltd コーティング用樹脂組成物
JPH0841260A (ja) 1994-05-25 1996-02-13 Mitsui Petrochem Ind Ltd エレクトレット
JPH0931333A (ja) 1995-07-13 1997-02-04 Tonen Corp シリカ質セラミックス形成用組成物、同セラミックスの形成方法及び同セラミックス膜
JP2002505034A (ja) 1997-06-13 2002-02-12 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング エレクトレット
JP2004128361A (ja) * 2002-10-04 2004-04-22 Daikin Ind Ltd 帯電性部材、帯電性部材製造方法及びエレクトレットマイクロホン・アセンブリーの製造方法
JP2006180450A (ja) 2004-11-26 2006-07-06 Univ Of Tokyo 静電誘導型変換素子

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702493A (en) * 1967-05-15 1972-11-14 Thermo Electron Corp Method of making an electret
US3967027A (en) * 1969-12-19 1976-06-29 Kureha Kagaku Kogyo Kabushiki Kaisha Stable electret retaining a high surface potential and method of making the same
JPS4861126A (ja) * 1971-12-02 1973-08-27
FR2397120A1 (fr) * 1977-07-04 1979-02-02 Lewiner Jacques Perfectionnements aux transducteurs electromecaniques
US4291245A (en) * 1979-09-04 1981-09-22 Union Carbide Corporation Electrets
US4441038A (en) * 1980-06-30 1984-04-03 Tokyo Shibaura Denki Kabushiki Kaisha Electret device
GB2079056B (en) 1980-06-30 1985-04-17 Tokyo Shibaura Electric Co Electret device
US4443711A (en) * 1980-06-30 1984-04-17 Tokyo Shibaura Denki Kabushiki Kaisha Electret device
US4442324A (en) * 1982-06-24 1984-04-10 Tibbetts Industries, Inc. Encapsulated backplate for electret transducers
US4513049A (en) * 1983-04-26 1985-04-23 Mitsui Petrochemical Industries, Ltd. Electret article
JPH0820463B2 (ja) 1987-08-08 1996-03-04 富士通株式会社 加速度センサユニット
US5161233A (en) * 1988-05-17 1992-11-03 Dai Nippon Printing Co., Ltd. Method for recording and reproducing information, apparatus therefor and recording medium
US5731116A (en) * 1989-05-17 1998-03-24 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5439768A (en) * 1988-05-17 1995-08-08 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
JPH06104952B2 (ja) 1988-05-24 1994-12-21 東レ株式会社 エレクトレット繊維及びその製造方法
FR2632737B1 (fr) * 1988-06-10 1992-12-24 Thomson Csf Procede d'obtention d'une structure generatrice d'effets electrooptiques non lineaires, structure obtenue et applications
JP2732413B2 (ja) 1989-11-15 1998-03-30 松下電器産業株式会社 加速度センサ
CA2037942A1 (en) * 1990-03-12 1991-09-13 Satoshi Matsuura Process for producing an electret, a film electret, and an electret filter
DE69111699T2 (de) 1990-06-01 1996-04-18 Asahi Glass Co Ltd Fluoropolymer-Überzugszusammensetzung und damit beschichteter Gegenstand.
JP3053657B2 (ja) 1991-02-06 2000-06-19 旭硝子株式会社 パーフルオロ共重合体、その製造法、その組成物およびその膜
US5284692A (en) * 1991-10-24 1994-02-08 Bell Dennis J Electrostatic evacuated insulating sheet
EP0623941B1 (en) * 1993-03-09 1997-08-06 Hoechst Celanese Corporation Polymer electrets with improved charge stability
WO1995019796A1 (en) * 1994-01-21 1995-07-27 Brown University Research Foundation Biocompatible implants
JPH0815302A (ja) 1994-06-27 1996-01-19 Taiyo Yuden Co Ltd 加速度センサー
JPH08155230A (ja) 1994-12-06 1996-06-18 Nitto Denko Corp エレクトレットフィルターおよびその製法
US5610455A (en) * 1995-06-29 1997-03-11 Minnesota Mining And Manufacturing Company Electret containing syndiotactic vinyl aromatic polymer
JPH0971003A (ja) * 1995-06-30 1997-03-18 Minolta Co Ltd 画像形成装置用の帯電装置
WO1997039464A1 (en) * 1996-04-18 1997-10-23 California Institute Of Technology Thin film electret microphone
US6221987B1 (en) 1998-04-17 2001-04-24 Asahi Glass Company Ltd. Method for producing a fluorine-containing polymer
US6559238B1 (en) 1998-06-29 2003-05-06 E. I. Du Pont De Nemours And Company Thermally cross-linked fluoropolymer
US6573205B1 (en) * 1999-01-30 2003-06-03 Kimberly-Clark Worldwide, Inc. Stable electret polymeric articles
US20020080684A1 (en) * 2000-11-16 2002-06-27 Dimitri Donskoy Large aperture vibration and acoustic sensor
EP1256592B1 (en) * 2001-05-07 2007-07-11 Solvay Solexis S.p.A. Amorphous perfluorinated copolymers
JP2003013359A (ja) 2001-06-29 2003-01-15 Toray Ind Inc エレクトレット加工品の製造方法
US6870939B2 (en) * 2001-11-28 2005-03-22 Industrial Technology Research Institute SMT-type structure of the silicon-based electret condenser microphone
JP2004059763A (ja) 2002-07-30 2004-02-26 Asahi Glass Co Ltd 含フッ素重合体の製造方法
US6833687B2 (en) * 2003-04-18 2004-12-21 Agilent Technologies, Inc. Electromechanical power converter
TWI257402B (en) * 2003-11-14 2006-07-01 Ind Tech Res Inst Electret material and composite thereof
US7449811B2 (en) * 2004-11-26 2008-11-11 The University Of Tokyo Electrostatic induction conversion device
JP2006253847A (ja) 2005-03-09 2006-09-21 Fujitsu Ten Ltd 状況記録装置
JP4934801B2 (ja) 2005-05-26 2012-05-23 国立大学法人山口大学 振動発電機による無電源型加速度計測器
CN1900154A (zh) * 2005-07-01 2007-01-24 株式会社西铁城电子 生产耐热带电氟树脂材料的方法和使用该材料生产驻极体电容麦克风的方法
DE112006002648B4 (de) 2005-10-14 2010-11-25 Continental Automotive Systems US, Inc. (n. d. Gesetzen des Staates Delaware), Auburn Hills Mischen von Sensoren zum Erzeugen alternativer Sensorcharakteristiken
JP4669491B2 (ja) 2006-03-28 2011-04-13 日本航空電子工業株式会社 音叉型振動ジャイロ
JP4871642B2 (ja) 2006-05-19 2012-02-08 国立大学法人 東京大学 静電誘導型変換素子
JP2007333618A (ja) 2006-06-16 2007-12-27 Univ Kansai 加速度センサ
JP5086570B2 (ja) 2006-06-27 2012-11-28 株式会社日立製作所 燃料電池発電システムにおける異常診断システムと異常診断方法、燃料電池発電システムとその運転方法
JP2008016919A (ja) 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd 音響感応装置
JP2008028499A (ja) 2006-07-19 2008-02-07 Hitachi Ltd 遠隔監視通信システム
JP2008044332A (ja) * 2006-08-16 2008-02-28 Yasuo Namita シート材料及び該シートを使用した製品
US8164231B2 (en) * 2006-11-10 2012-04-24 Sanyo Electric Co., Ltd. Electret device comprising electret film formed on main surface of substrate and electrostatic operating apparatus
US8212450B2 (en) * 2006-11-28 2012-07-03 Sanyo Electric Co., Ltd. Generator including an electret member
JP2008167231A (ja) 2006-12-28 2008-07-17 Sanyo Electric Co Ltd 静電誘導型発電装置
JP4921325B2 (ja) 2007-03-22 2012-04-25 国立大学法人 東京大学 エレクトレット、これを備える静電誘導型変換素子及びエレクトレットの製造方法
EP2143818A1 (en) 2007-04-20 2010-01-13 Asahi Glass Company, Limited Fluorine-containing polymer thin film and method for producing the same
JP5597822B2 (ja) 2007-07-06 2014-10-01 国立大学法人東北大学 振動発電装置
US7879446B2 (en) * 2007-07-12 2011-02-01 Industrial Technology Research Institute Fluorinated cyclic olefin electret film
US8776367B2 (en) * 2008-03-10 2014-07-15 National Taiwan University Method of manufacturing an electret film
CN101977763A (zh) * 2008-03-27 2011-02-16 旭硝子株式会社 驻极体及静电感应型转换元件
WO2010032759A1 (ja) * 2008-09-19 2010-03-25 旭硝子株式会社 エレクトレット及び静電誘導型変換素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481815A (en) 1967-06-20 1969-12-02 Dow Corning Silane coupling agents for aryl-containing,thermally stable polymers ii
JPH04189880A (ja) 1990-11-22 1992-07-08 Asahi Glass Co Ltd コーティング用樹脂組成物
JPH0841260A (ja) 1994-05-25 1996-02-13 Mitsui Petrochem Ind Ltd エレクトレット
JPH0931333A (ja) 1995-07-13 1997-02-04 Tonen Corp シリカ質セラミックス形成用組成物、同セラミックスの形成方法及び同セラミックス膜
JP2002505034A (ja) 1997-06-13 2002-02-12 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング エレクトレット
JP2004128361A (ja) * 2002-10-04 2004-04-22 Daikin Ind Ltd 帯電性部材、帯電性部材製造方法及びエレクトレットマイクロホン・アセンブリーの製造方法
JP2006180450A (ja) 2004-11-26 2006-07-06 Univ Of Tokyo 静電誘導型変換素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.M. SESSLER: "Electrets Third Edition", 1998, LAPLACIAN PRESS, article "Charging and Polarizing Methods", pages: 20
See also references of EP2266795A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011949A1 (ja) * 2011-07-15 2013-01-24 三菱樹脂株式会社 耐熱エレクトレット材及びコンデンサー型マイクロホン
JP2015085232A (ja) * 2013-10-29 2015-05-07 東洋紡株式会社 耐油性エレクトレットろ材
JP2022024066A (ja) * 2016-02-04 2022-02-08 積水化学工業株式会社 エレクトレットシート
JP7271641B2 (ja) 2016-02-04 2023-05-11 積水化学工業株式会社 エレクトレットシート

Also Published As

Publication number Publication date
CN102007002A (zh) 2011-04-06
KR20110008009A (ko) 2011-01-25
JP5381979B2 (ja) 2014-01-08
EP2266795A4 (en) 2011-08-31
CN102007002B (zh) 2014-03-19
US20110031845A1 (en) 2011-02-10
US8277927B2 (en) 2012-10-02
JPWO2009128503A1 (ja) 2011-08-04
EP2266795B1 (en) 2015-07-01
EP2266795A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP5381979B2 (ja) エレクトレットおよびその製造方法、ならびに静電誘導型変換素子
JP5267555B2 (ja) エレクトレットおよび静電誘導型変換素子
JP5446879B2 (ja) エレクトレットおよび静電誘導型変換素子
EP2128878B1 (en) Electret and electrostatic induction conversion device comprising the same
US8288475B2 (en) Process for producing electret, and electrostatic induction conversion device
TWI495678B (zh) Electromagnetism manufacturing method and electrostatic induction type conversion element (1)
JP2009253050A (ja) エレクトレットおよび静電誘導型変換素子
JP5527211B2 (ja) エレクトレット、静電誘導型変換素子、及びエレクトレットの製造方法
US20140132111A1 (en) Electret and process for its production, and electrostatic induction-type conversion device
JP5347948B2 (ja) 液滴移動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113719.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010508243

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107018512

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009732621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE