WO2009125807A1 - 噴射異常検出方法及びコモンレール式燃料噴射制御装置 - Google Patents

噴射異常検出方法及びコモンレール式燃料噴射制御装置 Download PDF

Info

Publication number
WO2009125807A1
WO2009125807A1 PCT/JP2009/057239 JP2009057239W WO2009125807A1 WO 2009125807 A1 WO2009125807 A1 WO 2009125807A1 JP 2009057239 W JP2009057239 W JP 2009057239W WO 2009125807 A1 WO2009125807 A1 WO 2009125807A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
valve
pressure
fuel injection
Prior art date
Application number
PCT/JP2009/057239
Other languages
English (en)
French (fr)
Inventor
博隆 金子
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to EP09730221.0A priority Critical patent/EP2280161A4/en
Priority to JP2010507266A priority patent/JP5042357B2/ja
Priority to US12/937,097 priority patent/US8539934B2/en
Publication of WO2009125807A1 publication Critical patent/WO2009125807A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail

Definitions

  • the present invention relates to a method for detecting an abnormality in fuel injection and a common rail fuel injection control device, and more particularly to a method for improving the reliability of fuel injection control operation.
  • a common rail type fuel injection control device As a device for controlling fuel supply to an internal combustion engine typified by a diesel engine, a common rail type fuel injection control device has been widely adopted. However, in recent years, a viewpoint of realizing higher pressure, higher accuracy fuel injection control, etc. Therefore, various configurations such as those using a piezo injector using a piezo element as an injection control valve have been proposed (see, for example, Patent Document 1).
  • a return fuel passage for returning surplus fuel from the fuel injection valve to the fuel tank is provided, but in order not to disturb the injection operation of the fuel injection valve, the return fuel passage is provided in the return fuel passage.
  • a pressure holding valve is provided so that the pressure on the return fuel passage side viewed from the fuel injection valve is held at a predetermined pressure or higher (see, for example, Patent Document 2).
  • the provision of the pressure holding valve in the return fuel passage from the fuel injection valve is the same in the apparatus using the piezo injector described above.
  • a piezo injector a configuration in which a hydraulic circuit is used to amplify the stroke of the piezo actuator is generally used, but due to its structure, a slight amount of fuel is discharged from this hydraulic circuit for each injection stroke. Therefore, in order to fill the fuel for the next injection, it is necessary to securely maintain the pressure by the pressure holding valve that connects the piezo injector and the return fuel passage. is there.
  • the above-described pressure holding valve is generally a mechanical type, and since no electrical control is applied from the outside, when a failure occurs and the predetermined pressure cannot be maintained, Although the following abnormal injection may be caused, it cannot be detected. That is, for example, in the case where the rail pressure is relatively low and the pressure holding valve is in a failure state in which the predetermined pressure cannot be maintained, the fuel injection cannot be performed at all but rather than the original injection amount. However, there is a case where fuel injection is performed although the injection amount is low. In this case, even if there is a difference in the injection amount, the fuel injection is being performed, and a failure of the pressure holding valve itself is not detected. The state could not be determined that the injection state is abnormal.
  • the present invention has been made in view of the above circumstances, and includes not only the case where fuel injection is not performed without adding new parts, but also fuel injection in a state where the injection amount is abnormally reduced.
  • the present invention provides an injection abnormality detection method and a common rail fuel injection control device that can reliably detect an abnormality.
  • the fuel in the fuel tank is pressurized and pumped to the common rail by the high pressure pump, and the high pressure fuel can be injected into the internal combustion engine via the fuel injection valve connected to the common rail.
  • a low-pressure control solenoid valve is provided upstream of the high-pressure pump, the rail pressure can be controlled by driving control of the low-pressure control solenoid valve, and a pressure holding valve is provided in the return fuel passage from the fuel injection valve.
  • An injection abnormality detection method in a common rail fuel injection control device comprising: In a state where the low pressure control solenoid valve is controlled in a closed loop, When the difference between the reference fuel passage flow rate in the low pressure control solenoid valve determined according to the operating state of the engine and the fuel passage flow rate in the low pressure control solenoid valve determined in the closed loop control of the low pressure control solenoid valve is greater than a predetermined threshold value There is provided an injection abnormality detection method configured to determine an injection abnormality.
  • the fuel in the fuel tank is pressurized and pumped to the common rail by the high pressure pump, and the high pressure fuel can be injected into the internal combustion engine via the fuel injection valve connected to the common rail.
  • a low pressure control solenoid valve is provided upstream of the high pressure pump, a pressure holding valve is provided in a return fuel passage from the fuel injection valve, and the low pressure control solenoid valve is driven and controlled by an electronic control unit to control the rail pressure.
  • a common rail fuel injection control device that enables control, The electronic control unit is When it is determined whether the fuel injection control is in a predetermined state, and it is determined that the fuel injection control is in a predetermined state, The difference between the reference fuel passage flow rate in the low pressure control solenoid valve determined according to the operating state of the engine and the fuel passage flow rate of the low pressure control solenoid valve determined in the closed loop control of the low pressure control solenoid valve is calculated and calculated.
  • a common rail fuel injection control device is provided that is configured to determine an injection abnormality when the difference is greater than a predetermined threshold.
  • the amount of fuel passing through the low-pressure control solenoid valve is used for detection of injection abnormality, so that not only when fuel injection is not performed without adding new parts, but also the injection amount is It is possible to reliably detect an abnormal injection state that has been abnormally reduced, and to contribute to an improvement in reliability. Also, unlike the conventional case, such an injection abnormality can be alarmed and notified to the driver, and the effect of improving the drivability can be achieved.
  • FIG. 4 is a functional block diagram functionally representing a schematic relationship between a third control mode and an injection abnormality detection process in rail pressure control executed in the common rail fuel injection control device shown in FIG. 1. It is a subroutine flowchart which shows the procedure of the injection abnormality detection process performed by the electronic control unit which comprises the common rail type fuel injection control apparatus shown by FIG.
  • FIGS. 1 to 3 The members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
  • the common rail type fuel injection control device S shown in FIG. 1 performs a fuel tank 1 for storing fuel, a low-pressure feed pump 2 for supplying the fuel in the fuel tank 1 to the high-pressure pump device 50, and pressure-feeding the high-pressure fuel.
  • a high-pressure pump device 50 a common rail 10 that stores high-pressure fuel pumped by the high-pressure pump device 50; and a plurality of fuel injection valves 13 that inject and supply high-pressure fuel supplied from the common rail 10 to a cylinder of a diesel engine (not shown).
  • An electronic control unit 40 (denoted as “ECU” in FIG. 1) 40 in which a fuel injection control process, an injection abnormality detection process to be described later, and the like are executed is configured as a main component.
  • each of the above-described components is connected by a fuel passage except for the electronic control unit 40.
  • the high-pressure fuel passage 37 is indicated by a thick line
  • the low-pressure fuel passages 18a to 18c are indicated by thin lines.
  • the reflux paths 30a to 30c are respectively represented by broken lines.
  • the electrical wiring is represented by a one-dot chain line.
  • the low-pressure feed pump 2 supplies the fuel stored in the fuel tank 1 to the pressurizing chamber 5a of the high-pressure pump 5 through the low-pressure fuel passages 18a to 18c.
  • the low-pressure feed pump 2 according to the embodiment of the present invention uses an electromagnetic low-pressure pump, and is configured to pump low-pressure fuel at a predetermined flow rate by energization control by the electronic control unit 40.
  • the high-pressure pump device 50 is configured with the high-pressure pump 5, the flow rate control valve 8, the pressure adjustment valve 14, and the like as main components.
  • the high-pressure pump 5 is pressurized by the plunger 7 through the fuel discharge valve 9 and the high-pressure fuel passage 37.
  • the low-pressure fuel is pumped by the low-pressure feed pump 2 and introduced into the pressurizing chamber 5 a through the fuel intake valve 6. It is designed to be pumped to the common rail 10.
  • the high-pressure pump 5 in the embodiment of the present invention the low-pressure fuel sent from the fuel tank 1 into the high-pressure pump 5 via the low-pressure fuel passages 18a and 18b is once allowed to flow into the cam chamber 16 and further from there. It is configured to be introduced into the pressurizing chamber 5a through the low-pressure fuel passage 18c.
  • an electromagnetic flow control valve (low pressure control solenoid valve) 8 is provided in the middle of the low pressure fuel passage 18c connecting the cam chamber 16 and the pressurizing chamber 5a, and the required rail pressure and required injection are provided.
  • the flow of the low-pressure fuel is adjusted by receiving the drive control of the electronic control unit 40 according to the amount, and can be sent to the pressurizing chamber 5a.
  • the pressure adjustment valve 14 is branched and connected from the low pressure fuel flow path 18 c, and is arranged in parallel with the flow control valve 8. Further, it is connected to a fuel return path 30 a communicating with the fuel tank 1.
  • the pressure regulating valve 14 is a differential pressure before and after that, that is, the pressure in the low pressure fuel passages 18a to 18c and the cam chamber 16, and the pressure in the fuel return passage 30a on the fuel tank 1 side from the pressure regulating valve 14. When the difference exceeds a predetermined value, an overflow valve that is opened is used.
  • the pressure in the low pressure fuel flow paths 18a to 18c and the cam chamber 16 is a predetermined differential pressure with respect to the pressure in the fuel return path 30a. Will only be kept large.
  • a plurality of fuel injection valves 13 are connected to the common rail 10 via high-pressure fuel passages 39, and the high-pressure fuel pumped and accumulated from the high-pressure pump 5 is supplied to each fuel injection valve 13. ing.
  • a rail pressure sensor 21 and a pressure control valve (high pressure control electromagnetic valve) 12 are attached to the common rail 10.
  • the pressure control valve 12 for example, an electromagnetic proportional control valve is used, and the amount of a part of the high-pressure fuel accumulated in the common rail 10 can be discharged to the fuel return path 30b. The pressure in 10 can be reduced.
  • the signal of the actual rail pressure detected by the rail pressure sensor 21 is input to the electronic control unit 40 and is used for drive control of the flow control valve 8 and the pressure control valve 12 performed so that the actual rail pressure becomes the target rail pressure.
  • the fuel injection valve 13 is of a known electromagnetic control type or piezo type, and its electronic control unit 40 performs drive control to inject high pressure fuel into a cylinder of an internal combustion engine (not shown). It has become so.
  • the return fuel from the fuel injection valve 13 is returned to the fuel tank 1 via the pressure holding valve 15 and the fuel return path 30c (return fuel path).
  • the pressure holding valve 15 is a so-called mechanical type, and is configured to be opened at a predetermined pressure. If this pressure holding valve 15 breaks down, fuel injection may not be performed in the worst case. However, not only when the fuel injection is not possible, but also when the injection amount is lower than the original amount. There is a case where fuel injection is performed. Such an injection abnormality can also occur when the fuel injection valve 13 mechanically fails. In the embodiment of the present invention, an injection abnormality detection process executed in the electronic control unit 40 as will be described later. Therefore, it is possible to detect such an injection abnormality.
  • the electronic control unit 40 includes, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and a fuel injection valve 13.
  • a drive circuit (not shown) for driving and an energization circuit (not shown) for energizing the flow control valve 8 and the pressure control valve 12 are configured as main components.
  • various detection signals such as the engine speed and the accelerator opening degree are used to control engine operation and fuel (not shown). It is input for use in injection control.
  • the rail pressure control performed in the common rail fuel injection control device having such a configuration will be described generally.
  • the rail pressure is controlled by the flow rate control valve 8 and the pressure control valve 12.
  • the rail pressure control by the pressure control valve 12 can adjust the discharge amount of the high-pressure fuel from the common rail 10 and directly control the rail pressure, while the rail pressure control by the flow control valve 8 is the pressurization chamber of the high-pressure pump 5.
  • the supply amount of the low pressure fuel to 5a is adjusted, thereby adjusting the pumping amount of the high pressure fuel to the common rail 10 to control the rail pressure.
  • the electronic control unit 40 makes use of the difference in the rail pressure control between the flow control valve 8 and the pressure control valve 12 as described above, and the first to third as described below.
  • the control mode is appropriately selected according to the operating condition of the engine (not shown), and rail pressure control is performed.
  • the second control mode will be described.
  • the flow control valve 8 is controlled in an open loop, while the pressure control valve 12 is controlled in a closed loop. Since the flow rate of the low-pressure fuel adjusted by the flow control valve 8 and supplied to the pressurizing chamber 5a is regulated according to the number of rotations of the high-pressure pump 5, the high-pressure fuel to be pressurized in the pressurizing chamber 5a is The pressure is quantitatively fed to the common rail 10 according to the number of rotations of the high-pressure pump 5.
  • the amount of low-pressure fuel supplied to the pressurizing chamber 5a of the high-pressure pump 5 is set so that the flow rate of the high-pressure fuel pumped to the common rail 10 is equal to or higher than the flow rate necessary to achieve the target rail pressure.
  • the opening degree of the pressure control valve 12 is feedback-controlled by the electronic control unit 40 based on the actual rail pressure detected by the rail pressure sensor 21, and a predetermined amount of high-pressure fuel is discharged from the common rail 10, thereby The rail pressure is adjusted to the target rail pressure.
  • the rail pressure is directly controlled by the pressure control valve 12, so that the response of the rail pressure control is excellent.
  • the fuel temperature is easily raised.
  • the control is such that a part of the high-pressure fuel is released from the pressure control valve 12 after supplying a large amount of high-pressure fuel to the common rail 10, the fuel efficiency tends to be inefficient. Therefore, the second control mode Is performed when the engine is not shown or when the fuel temperature is low.
  • the third control mode In this control mode, the flow control valve 8 is controlled in a closed loop while the pressure control valve 12 is controlled in an open loop. In the third control mode, the pressure control valve 12 is fully closed, and the high pressure fuel is not discharged from the common rail 10 via the pressure control valve 12, so that the rail pressure control by the pressure control valve 12 is performed. Is practically not done.
  • the flow control valve 8 is feedback-controlled based on the actual rail pressure, and the flow rate of the high-pressure fuel pumped to the common rail 10 is adjusted, so that the actual rail pressure becomes the target rail pressure. It is what is controlled to become.
  • the flow rate of the high-pressure fuel fed to the common rail 10 is adjusted by controlling the flow rate of the low-pressure fuel supplied to the pressurizing chamber 5a. Since high-pressure fuel can be pumped to the common rail 10, fuel efficiency can be improved without increasing the drive torque more than necessary.
  • the third control mode since a time difference occurs between the change of the valve opening degree of the flow control valve 8 and the change of the rail pressure, the responsiveness of the rail pressure control when the rail pressure is rapidly reduced, It is inferior to the previous second control mode.
  • the first control mode is a control mode that makes use of the respective characteristics of the second and third control modes and compensates for the disadvantages of both. That is, in the first control mode, both the flow rate control valve 8 and the pressure control valve 12 are controlled in a closed loop, and the flow rate of the high pressure fuel pumped to the common rail 10 and the discharge amount of the high pressure fuel from the common rail 10 are adjusted in a well-balanced manner. Thus, the burden of rail pressure control can be dispersed.
  • the fuel injection is not performed for some reason, or the fuel injection is performed, but the injection amount is extremely reduced from the original injection amount. This makes it possible to detect an abnormal injection.
  • the injection abnormality detection method according to the embodiment of the present invention is particularly suitable when the rail pressure control is in the third control mode.
  • FIG. 2 shows the third control mode and the present invention. 2 is a functional block diagram functionally showing a schematic relationship with the injection abnormality detection process executed in the embodiment, and the contents thereof will be described below with reference to FIG.
  • the third control mode is a control mode in which the flow control valve 8 is controlled in a closed loop while the pressure control valve 12 is controlled in an open loop.
  • the amount of fuel supplied to the pump 5 by the flow control valve 8 is the control mode.
  • the rail pressure is indirectly controlled by adjusting.
  • the amount of fuel supplied to the pump 5 by the flow rate control valve 8 (hereinafter referred to as “flow rate control valve command flow rate”) is determined by a predetermined map (precontrol MAP) from the engine speed Ne and the commanded injection amount Q. The amount is determined in consideration of variations in the operating characteristics of the apparatus (see FIG. 2).
  • the electronic control unit 40 stores in advance a pre-control MAP that determines a pre-control amount from the engine speed Ne and the command injection amount Q.
  • the pre-control amount is the amount of fuel supplied to the pump 5 by the flow rate control valve 8 determined by the engine speed Ne and the command injection amount Q.
  • the command injection amount Q is the amount of fuel to be injected from the fuel injection valve 13 that is calculated by a predetermined calculation process based on the engine operating state (not shown).
  • the pre-control MAP is determined by simulation based on the engine speed Ne and the commanded injection amount Q in consideration of changes in PI constant and rail pressure in PI control (proportional / integral control) described later.
  • the pre-control amount is set to a slightly smaller value than the required fuel amount obtained by simulation. Thus, the reason why the value is slightly smaller than the required fuel amount obtained by the simulation is that the shortage is compensated by the PI control as described below.
  • the pre-control amount obtained as described above is compensated for the shortage by the PI control. That is, PI control (proportional / integral control) is performed based on the difference between the target rail pressure calculated by a predetermined calculation process based on the engine operating state (not shown) and the actual pressure detected by the rail pressure sensor 21. By adding the control result to the pre-control amount, the flow control valve commanded flow rate ⁇ in which the amount of fuel insufficient by the pre-control amount value alone is compensated can be obtained. ing.
  • the electronic control unit 40 has a correlation (flow rate / current characteristic) between the flow control valve command flow rate ⁇ and the energization current value (energization amount) of the flow control valve 8 (hereinafter referred to as “flow control valve command current”).
  • flow control valve command current Is stored as a map, and the magnitude of the current I to be supplied to the flow rate control valve 8 is determined from the flow rate / current characteristic for the flow rate control valve instruction flow rate ⁇ obtained as described above, The current I is supplied to the flow control valve 8 by an energization drive circuit (not shown).
  • the electronic control unit 40 determines the minimum amount of fuel to be supplied to the high-pressure pump 5 by the flow control valve 8 in each case for various combinations of the engine speed Ne and the command injection amount Q.
  • a predetermined map (hereinafter referred to as “essential supply amount map”) is stored.
  • the minimum amount of fuel ⁇ to be supplied to the high-pressure pump 5 under the engine speed Ne and the commanded injection amount Q according to the required supply map. (Reference fuel passage flow rate) is read out, and based on the difference from the previous flow control valve instruction flow rate ⁇ , an injection abnormality detection process described below is executed to detect an injection abnormality.
  • FIG. 3 shows a subroutine flowchart showing the procedure of the injection abnormality detection process executed in the electronic control unit 40. The contents will be described below with reference to FIG.
  • the predetermined control mode is specifically the third control mode described above.
  • the determination by the flag is suitable for determining whether the rail pressure control is in the third control mode. That is, in the main routine (not shown), the three control modes described above as rail pressure control are selectively executed, but it is usually clarified which control mode is executed. Therefore, since the flag is set according to the control mode, it is preferable to use the flag to determine whether or not the control mode is the third control mode.
  • step S100 If it is determined in step S100 that the control mode is not the third control mode (in the case of NO), it is not suitable for performing the following processing, and thus a series of processing is terminated and the main routine (not shown) is performed. After returning once and performing other processing, the processing shown in FIG. 3 is executed again at a predetermined timing. On the other hand, if it is determined in step S100 that the rail pressure control is in the third control mode (YES), the command injection amount Q is read (see step S102 in FIG. 3).
  • the instructed injection amount Q is the amount of fuel to be injected from the fuel injection valve 13 that is calculated by a predetermined calculation process based on the engine operating state (not shown). It is executed in the routine, and here, the calculation result is read and used. Next, it is determined whether or not the command injection amount Q exceeds zero (see step 104 in FIG. 3). If it is determined that the command injection amount Q does not exceed zero (NO), the following processing is executed. As a result, the series of processes are temporarily terminated.
  • step S104 when it is determined in step S104 that the command injection amount Q is greater than zero (in the case of YES), the engine speed Ne is read (see step S106 in FIG. 3).
  • the engine speed Ne is used in a main routine (not shown) as in the case of the previous command injection amount.
  • step S106 the engine speed Ne is read and used. .
  • the essential supply amount map is the minimum supply to the high pressure pump 5 by the flow control valve 8 in each case for various combinations of the engine speed Ne and the command injection amount Q.
  • the flow control valve instruction flow rate ⁇ is read (see step S110 in FIG. 3). That is, as described above, the flow rate control valve command flow rate ⁇ calculated in the rail pressure control process (not shown) is read. Then, it is determined whether or not the difference between the flow control valve passage flow rate ⁇ and the flow control valve command flow rate ⁇ (flow control valve passage flow rate ⁇ flow control valve command flow rate ⁇ ) exceeds a predetermined threshold K. (See step S112 in FIG. 3).
  • step S112 when it is determined that (flow control valve passage flow rate ⁇ flow control valve command flow rate ⁇ ) exceeds a predetermined threshold K (in the case of YES), an error is determined, that is, an injection abnormality occurs. For example, an alarm is generated or an abnormality is displayed as appropriate, and the series of processes is terminated (see step S114 in FIG. 3).
  • the injection abnormality in the embodiment of the present invention is a concept including both a state in which fuel injection is not performed for some reason or a state in which fuel injection is performed but the injection amount is abnormally reduced. It is.
  • the error is determined because the state in which ⁇ > K is satisfied is the amount of fuel supplied to the high pressure pump 5 by the flow control valve 8, in other words,
  • the PI control described above acts to lower the rail pressure, so that the flow control valve command flow ⁇ is reduced. Therefore, it is possible to determine an injection abnormality by grasping the degree of decrease in the flow control valve instruction flow rate ⁇ , and the injection abnormality detection in the embodiment of the present invention is based on such a viewpoint. .
  • the error determination process (step S114 in FIG. 3) is preferably executed when it is determined in step S112 that ⁇ > K is satisfied and the state continues for a predetermined time. is there.
  • step S112 determines whether or not the flow rate control valve command flow rate ⁇ is normal.
  • various combinations of the engine speed Ne and the commanded injection amount Q are performed in each case.
  • the minimum amount of fuel to be supplied to the high-pressure pump 5 by the flow control valve 8 (flow control valve passage flow rate) ⁇ is used as the reference fuel passage flow rate.
  • the flow rate obtained from the pre-control map may be used. This is because when the injection abnormality occurs, the flow control valve instruction flow rate ⁇ , which is a flow rate obtained by adding the PI control amount of the operation characteristic of the apparatus to the precontrol amount, is smaller than the precontrol amount itself.
  • the third control mode is appropriate as the rail pressure control state suitable for executing the injection abnormality detection process (see step S100 in FIG. 3).
  • the flow control valve 8 may be in a state where the closed loop control is performed. Therefore, specifically, for example, a fuel injection control device that includes the flow control valve 8 and the pressure control valve 12 and is configured to selectively perform the closed loop control of the flow control valve 8 and the closed loop control of the pressure control valve 12.
  • the injection abnormality detection process in the embodiment of the present invention can be applied.
  • the injection abnormality detection process according to the embodiment of the present invention can also be applied to a fuel injection control apparatus that includes only the flow control valve 8 and is configured to perform rail pressure control by its closed loop control.

Abstract

 新たな部品を追加すること無く、燃料噴射が行われない場合のみならず、噴射量が異常に低下した状態での燃料噴射をも含む噴射異常を確実に検出する。  流量制御弁8が閉ループで制御される一方、圧力制御弁12が開ループで制御されて、エンジンの動作状態に基づいて所定の演算処理によって演算算出される燃料噴射弁13から噴射されるべき燃料の量(指示噴射量)Qが零を超える状態において(S100及びS102)、エンジン回転数Neと指示噴射量Qとから所定のマップによって定められる流量制御弁8における最低限の燃料通過流量βと、流量制御弁8の閉ループ制御において定まる燃料の通過流量αとの差が所定閾値Kより大きいと判定された場合(S112)に、噴射異常と判定されるようになっている(S114)。

Description

噴射異常検出方法及びコモンレール式燃料噴射制御装置
 本発明は、燃料噴射の異常を検出する方法及びコモンレール式燃料噴射制御装置に係り、特に、燃料噴射制御動作の信頼性向上等を図ったものに関する。
 ディーセルエンジンに代表される内燃機関への燃料供給を制御する装置としてはコモンレール式燃料噴射制御装置が広く採用されるに至っているが、近年、より高圧、高精度の燃料噴射制御の実現等の観点から、噴射制御弁としてピエゾ素子を用いたピエゾインジェクタを用いたものなど種々の構成のものが提案されている(例えば、特許文献1等参照)。
 ところで、かかる燃料噴射制御装置においては、燃料噴射弁から余剰燃料を燃料タンクへ戻すための戻り燃料通路が設けられるが、燃料噴射弁の噴射動作を阻害しないようにするため、戻り燃料通路には圧力保持弁が設けられて燃料噴射弁から見た戻り燃料通路側の圧力が所定圧以上に保持されるようになっている(例えば、特許文献2等参照)。
 このような燃料噴射弁からの戻り燃料通路に圧力保持弁を設けるのは、先に述べたピエゾインジェクタを用いた装置にあっても同様である。特に、ピエゾインジェクタの場合、ピエゾアクチュエータのストロークを増幅するため油圧回路が用いられた構成を採るものが一般的であるが、その構造上、噴射の1ストローク毎に、この油圧回路から若干の燃料が上述の戻り燃料通路へ漏れるようになっているため、次回の噴射のための燃料の充填のためには、ピエゾインジェクタと戻り燃料通路を接続する圧力保持弁によって確実に圧力を保持する必要がある。
 しかしながら、上述の圧力保持弁は機械式のものが一般的であり、外部から何らの電気的な制御が加えられている訳ではないないため、故障が生じ所定圧を保持できなくなった場合に、次述するような噴射異常を招くことがあるが、その検出をすることができない。すなわち、例えば、レール圧が比較的低圧状態にあって、圧力保持弁が所定圧を保持できない故障状態となった場合にあっては、燃料噴射が全くできなくなるのではなく、本来の噴射量よりも低い噴射量ではあるが燃料噴射が行われる状態となる場合がある。この場合、噴射量の違いはあっても、燃料噴射は行われている状態であり、しかも、圧力保持弁自体の故障が検出される訳ではないので、従来、制御装置においては、このような状態を噴射状態が異常であると判定することができなかった。このように噴射量が本来の量よりも低下した状態で燃料噴射が行われる現象は、燃料噴射弁において機械的な故障が生じた場合にも同様に起こり得ることであり、それを確実に検出する術がないのが現状である。
特表2007-510849号公報 特表2006-523793号公報
 本発明は、上記実状に鑑みてなされたもので、新たな部品を追加すること無く、燃料噴射が行われない場合のみならず、噴射量が異常に低下した状態での燃料噴射をも含む噴射異常を確実に検出することのできる噴射異常検出方法及びコモンレール式燃料噴射制御装置を提供するものである。
 本発明の第1の形態によれば、燃料タンクの燃料が高圧ポンプによりコモンレールへ加圧、圧送され、当該コモンレールに接続された燃料噴射弁を介して内燃機関へ高圧燃料の噴射を可能としてなると共に、前記高圧ポンプの上流側に低圧制御電磁弁が設けられ、当該低圧制御電磁弁の駆動制御によりレール圧制御可能としてなり、前記燃料噴射弁からの戻り燃料通路内に圧力保持弁が設けられてなるコモンレール式燃料噴射制御装置における噴射異常検出方法であって、
 前記低圧制御電磁弁が閉ループで制御される状態において、
 エンジンの動作状態に応じて定められる前記低圧制御電磁弁における基準燃料通過流量と、前記低圧制御電磁弁の閉ループ制御において定まる前記低圧制御電磁弁の燃料通過流量との差が所定閾値より大きい場合に、噴射異常と判定するよう構成されてなる噴射異常検出方法が提供される。
 本発明の第2の形態によれば、燃料タンクの燃料が高圧ポンプによりコモンレールへ加圧、圧送され、当該コモンレールに接続された燃料噴射弁を介して内燃機関へ高圧燃料の噴射を可能としてなり、前記高圧ポンプの上流側に低圧制御電磁弁が設けられ、前記燃料噴射弁からの戻り燃料通路内に圧力保持弁が設けられ、電子制御ユニットにより前記低圧制御電磁弁が駆動制御されてレール圧制御を可能としてなるコモンレール式燃料噴射制御装置であって、
 前記電子制御ユニットは、
 燃料噴射制御が所定の状態にあるか否かを判定し、燃料噴射制御が所定の状態にあると判定された場合に、
 エンジンの動作状態に応じて定められる前記低圧制御電磁弁における基準燃料通過流量と、前記低圧制御電磁弁の閉ループ制御において定まる前記低圧制御電磁弁の燃料通過流量との差を算出し、当該算出された差が所定閾値より大きい場合に、噴射異常と判定するよう構成されてなるコモンレール式燃料噴射制御装置が提供される。
 本発明によれば、低圧制御電磁弁の燃料の通過量を、噴射異常検出に用いるよう構成したので、新たな部品を追加すること無く、燃料噴射が行われない場合のみならず、噴射量が異常に低下した異常な噴射状態をも確実に検出することができ、信頼性の向上に寄与することができるという効果を奏するものである。
 また、従来と異なり、そのような噴射異常をドライバに警報、報知することができ、ドライバビリティの向上に寄与することができるという効果を奏するものである。
本発明の実施の形態における噴射異常検出方法が適用されるコモンレール式燃料噴射制御装置の構成例を示す構成図である。 図1に示されたコモンレール式燃料噴射制御装置において実行されるレール圧制御における第3の制御モードと噴射異常検出処理との概略の関係を機能的に表した機能ブロック図である。 図1に示されたコモンレール式燃料噴射制御装置を構成する電子制御ユニットにより実行される噴射異常検出処理の手順を示すサブルーチンフローチャートである。
5…高圧ポンプ
8…流量制御弁
10…コモンレール
12…圧力制御弁
13…燃料噴射弁
15…圧力保持弁
40…電子制御ユニット
 以下、本発明の実施の形態について、図1乃至図3を参照しつつ説明する。
 なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
 最初に、本発明の実施の形態における噴射異常検出方法が適用されるコモンレール式燃料噴射制御装置の構成例について、図1を参照しつつ説明する。
 この図1に示されたコモンレール式燃料噴射制御装置Sは、燃料を貯蔵する燃料タンク1と、燃料タンク1の燃料を高圧ポンプ装置50へ供給する低圧フィードポンプ2と、高圧燃料の圧送を行う高圧ポンプ装置50と、この高圧ポンプ装置50により圧送された高圧燃料を蓄えるコモンレール10と、このコモンレール10から供給された高圧燃料を図示されないディーゼルエンジンの気筒へ噴射供給する複数の燃料噴射弁13と、燃料噴射制御処理や後述する噴射異常検出処理などが実行される電子制御ユニット(図1においては「ECU」と表記)40を主たる構成要素として構成されたものとなっている。
 なお、上述のそれぞれの構成要素は、電子制御ユニット40を除いて、燃料通路で接続されており、図1においては、高圧燃料通路37を太線で、低圧燃料通路18a~18cを細線で、燃料還流路30a~30cを破線で、それぞれ表している。また、図1において、電気配線を一点鎖線で表している。
 低圧フィードポンプ2は、燃料タンク1に貯蔵された燃料を、低圧燃料通路18a~18cを介して高圧ポンプ5の加圧室5aへ供給するようになっている。本発明の実施の形態における低圧フィードポンプ2は、電磁低圧ポンプが用いられており、電子制御ユニット40による通電制御によって所定の流量の低圧燃料を圧送するよう構成されたものとなっている。
 高圧ポンプ装置50は、高圧ポンプ5と、流量制御弁8と、圧力調整弁14などを主たる構成要素として構成されたものとなっている。
 高圧ポンプ5は、低圧フィードポンプ2によって圧送され、燃料吸入弁6を介して加圧室5aに導入された低圧燃料を、プランジャ7によって加圧し、燃料吐出弁9及び高圧燃料通路37を介してコモンレール10に圧送するようになっているものである。
 本発明の実施の形態における高圧ポンプ5は、燃料タンク1から低圧燃料通路18a、18bを介して高圧ポンプ5内へ送られる低圧燃料が、一旦、カム室16内に流入せしめられ、そこからさらに低圧燃料通路18cを介して加圧室5aへ導入されるよう構成されたものとなっている。
 また、カム室16と加圧室5aとを接続する低圧燃料通路18cの途中には、電磁式の流量制御弁(低圧制御電磁弁)8が設けられており、要求されるレール圧及び要求噴射量に応じて電子制御ユニット40の駆動制御を受けて低圧燃料の流量を調節し、加圧室5aへ送出できるようになっている。
 一方、流量制御弁8の上流側には、圧力調整弁14が低圧燃料流路18cから分岐して接続されて、流量制御弁8と並列的に配設されており、圧力調整弁14は、さらに、燃料タンク1に通じる燃料還流路30aに接続されたものとなっている。
 かかる圧力調整弁14は、その前後の差圧、すなわち、低圧燃料通路18a~18cやカム室16内の圧力と、圧力調整弁14よりも燃料タンク1側の燃料還流路30a内の圧力との差が、所定値を超えた際に開弁状態となるオーバーフローバルブを用いたものとなっている。
 このため、低圧フィードポンプ2によって低圧燃料が圧送されている状態においては、低圧燃料流路18a~18c及びカム室16内の圧力が、燃料還流路30a内の圧力に対して所定の差圧分だけ大きく維持されることとなる。
 一方、コモンレール10には、高圧燃料通路39を介して複数の燃料噴射弁13が接続されており、高圧ポンプ5から圧送され蓄積された高圧燃料が各燃料噴射弁13へ供給されるようになっている。
 このコモンレール10には、レール圧センサ21及び圧力制御弁(高圧制御電磁弁)12が取り付けられている。
 圧力制御弁12は、例えば、電磁式比例制御弁が用いられ、コモンレール10に蓄積された高圧燃料の一部を、燃料還流路30bに放出する量を調節できるようになっており、これによってコモンレール10内の圧力を減圧できるようになっている。
 レール圧センサ21で検出された実レール圧の信号は、電子制御ユニット40へ入力され、実レール圧が目標レール圧となるよう行われる流量制御弁8と圧力制御弁12の駆動制御に供されるものとなっている。
 燃料噴射弁13は、公知の電磁制御式のものやピエゾ式のものが用いられており、電子制御ユニット40によりその駆動制御が行われて、図示されない内燃機関の気筒内へ高圧燃料が噴射されるようになっている。なお、燃料噴射弁13からの戻り燃料は、圧力保持弁15と燃料還流路30c(戻り燃料通路)を介して燃料タンク1へ戻されるようになっている。
 ここで、圧力保持弁15は、いわゆる機械式のものであり、所定圧で開放状態となるように構成されてなるものである。
 この圧力保持弁15が故障した場合、最悪時には、燃料噴射が行われなくなることがあるが、必ずしも燃料噴射が不可能な状態になる場合だけではなく、噴射量が本来の量より低下した状態ではあるが燃料噴射が行われる状態となることもある。このような噴射異常は、燃料噴射弁13が機械的に故障した場合も生じ得るものであり、本発明の実施の形態においては、後述するように電子制御ユニット40において実行される噴射異常検出処理によってかかる噴射異常の検出ができるようになっている。
 電子制御ユニット40は、例えば、公知・周知の構成を有してなるマイクロコンピュータ(図示せず)を中心に、RAMやROM等の記憶素子(図示せず)を有すると共に、燃料噴射弁13を駆動するための駆動回路(図示せず)や、流量制御弁8や圧力制御弁12への通電を行うための通電回路(図示せず)を主たる構成要素として構成されたものとなっている。
 かかる電子制御ユニット40には、先に述べたようにレール圧センサ21の検出信号が入力される他、エンジン回転数やアクセル開度などの各種の検出信号が、図示されないエンジンの動作制御や燃料噴射制御に供するために入力されるようになっている。
 次に、かかる構成のコモンレール式燃料噴射制御装置において行われるレール圧制御について概括的に説明する。
 本発明の実施の形態においては、流量制御弁8と圧力制御弁12とによってレール圧の制御が行われるようになっている。
 圧力制御弁12によるレール圧制御は、コモンレール10からの高圧燃料の放出量を調節し、レール圧を直接的に制御できる一方、流量制御弁8によるレール圧制御は、高圧ポンプ5の加圧室5aへの低圧燃料の供給量を調節し、それによってコモンレール10への高圧燃料の圧送量を調節し、レール圧を制御するものである。
 本発明の実施の形態においては、電子制御ユニット40により、このような流量制御弁8と圧力制御弁12のそれぞれのレール圧制御の違いを生かして、次述するように第1乃至第3の制御モードが図示されないエンジンの運転状況に応じて適宜選択されて、レール圧制御が行われるようになっている。
 最初に、第2の制御モードについて説明すれば、この制御モードにおいては、流量制御弁8が開ループで制御される一方、圧力制御弁12が閉ループで制御されるものとなっている。
 流量制御弁8によって調節され、加圧室5aに供給される低圧燃料の流量は、高圧ポンプ5の回転数に応じて規定されているため、加圧室5a内で高圧化される高圧燃料は、高圧ポンプ5の回転数に応じて定量的にコモンレール10に圧送されるものとなっている。
 また、高圧ポンプ5の加圧室5aへの低圧燃料の供給量は、コモンレール10に圧送される高圧燃料の流量が目標レール圧を達成するために必要な流量以上となるように設定されている。
 そして、圧力制御弁12の開度が、レール圧センサ21によって検出された実レール圧に基づいて電子制御ユニット40によりフィードバック制御され、所定量の高圧燃料がコモンレール10から放出されることによって、実レール圧が目標レール圧に調整されるようになっている。
 この第2の制御モードは、圧力制御弁12によりレール圧が直接的に制御されるため、レール圧制御の応答性に優れている。また、比較的大量の高圧燃料がコモンレールに定量的に圧送されるため燃料温度を上昇させ易いという長所もある。但し、大量の高圧燃料をコモンレール10に供給した上で、圧力制御弁12から高圧燃料の一部を放出する制御であるため、燃費が非効率的になり易く、そのため、この第2の制御モードは、図示されないエンジンの始動時や燃料温度が低下している状態等において行われるようになっている。
 次に、第3の制御モードについて説明すれば、この制御モードは、流量制御弁8が閉ループで制御される一方、圧力制御弁12が開ループで制御されるものとなっている。
 かかる第3の制御モードにおいて、圧力制御弁12は全閉状態とされ、コモンレール10からの圧力制御弁12を介しての高圧燃料の放出は行われないため、この圧力制御弁12によるレール圧制御は実質的に行われない。
 一方、流量制御弁8は、その弁開度が、実レール圧を基にしてフィードバック制御され、コモンレール10へ圧送される高圧燃料の流量が調節されることによって、実レール圧が目標レール圧となるように制御されるものとなっている。
 この第3の制御モードでは、加圧室5aに供給される低圧燃料の流量を制御することにより、コモンレール10に圧送される高圧燃料の流量が調節されるため、必要なときに必要な量の高圧燃料がコモンレール10へ圧送できるので、駆動トルクを必要以上に増大させることなく、燃費の効率化が図られるものとなっている。
 かかる第3の制御モードは、流量制御弁8の弁開度を変えてからレール圧が変動するまでに時間差が生ずるため、レール圧を急速に減圧した場合等におけるレール圧制御の応答性が、先の第2の制御モードに比して劣っている。
 このような第2及び第3の制御モードのそれぞれの特徴を生かし、双方の短所を補う制御モードとして、第1の制御モードがある。
 すなわち、第1の制御モードにおいては、流量制御弁8及び圧力制御弁12が共に閉ループで制御され、コモンレール10に圧送される高圧燃料の流量とコモンレール10からの高圧燃料の放出量がバランスよく調節されて、レール圧制御の負担が分散できるものとなっている。
 本発明の実施の形態における噴射異常検出方法は、何らかの原因により燃料噴射が行われなくなった場合や、燃料噴射は行われるが、その噴射量が本来の噴射量から極端に低下している場合などの噴射異常の検出を可能としたものである。
 本発明の実施の形態における噴射異常検出方法は、特に、レール圧制御が第3の制御モードにある場合に行うに適したものであり、図2には、第3の制御モードと、本発明の実施の形態において実行される噴射異常検出処理との概略の関係を機能的に表した機能ブロック図が示されており、以下、同図を参照しつつ、その内容について説明する。
 まず、第3の制御モードは、流量制御弁8が閉ループで制御される一方、圧力制御弁12が開ループで制御される制御モードであり、流量制御弁8によるポンプ5への燃料の供給量を調整することで、間接的にレール圧の制御を行うものである。
 流量制御弁8によるポンプ5への燃料の供給量(以下「流量制御弁指示流量」と称する)は、エンジン回転数Neと指示噴射量Qとから所定のマップ(プレコントロールMAP)によって定まるプレコントロール量に、装置の動作特性のばらつきを考慮して定まるものとなっている(図2参照)。
 すなわち、まず、電子制御ユニット40には、エンジン回転数Neと指示噴射量Qとからプレコントロール量を定めるプレコントロールMAPが予め記憶されている。ここで、プレコントロール量は、エンジン回転数Neと指示噴射量Qで定められる流量制御弁8によるポンプ5への燃料の供給量である。
 また、指示噴射量Qは、図示されないエンジンの動作状態に基づいて所定の演算処理によって演算算出される燃料噴射弁13から噴射されるべき燃料の量である。
 プレコントロールMAPは、エンジン回転数Neと指示噴射量Qを基に、後述するPI制御(比例・積分制御)におけるPI定数とレール圧の変化を考慮してシミュレーションによって定められるものであるが、個々のプレコントロール量は、シミュレーションにより求められた必要燃料量よりも若干少な目の値に設定されたものとなっている。このように、シミュレーションにより求められた必要燃料量よりも若干少な目の値とするのは、その不足分を次述するようにPI制御により補償されるようにしているためである。
 上述のようにして求められたプレコントロール量は、PI制御により不足分が補償されることとなる。
 すなわち、図示されないエンジンの動作状態に基づいて所定の演算処理によって演算算出される目標レール圧と、レール圧センサ21によって検出された実圧との差に基づいてPI制御(比例・積分制御)が行われるようになっており、その制御結果がプレコントロール量に加算されることで、プレコントロール量の値だけでは不足する燃料の量が補償された流量制御弁指示流量αが得られるようになっている。
 さらに、電子制御ユニット40には、流量制御弁指示流量αと流量制御弁8の通電電流値(通電量)(以下「流量制御弁指示電流」と称する)との相関関係(流量・電流特性)がマップとして記憶されており、上述のようにして求められた流量制御弁指示流量αに対して、その流量・電流特性から流量制御弁8へ通電すべき電流Iの大きさが決定されて、図示されない通電駆動回路によりその電流Iが流量制御弁8に通電されるものとなっている。
 一方、電子制御ユニット40には、エンジン回転数Neと指示噴射量Qとの種々の組み合わせに対して、それぞれの場合において流量制御弁8により高圧ポンプ5へ最低限供給されるべき燃料の量を定めたマップ(以下「必須供給量マップ」と称する)が記憶されている。
 そして、エンジン回転数Neと指示噴射量Qが入力される度に必須供給量マップによって、そのエンジン回転数Neと指示噴射量Qの下で高圧ポンプ5へ最低限供給されるべき燃料の量β(基準燃料通過流量)が読み出され、先の流量制御弁指示流量αとの差を基に、次述する噴射異常検出処理が実行され、噴射異常が検出されるようになっている。
 図3には、電子制御ユニット40において実行される噴射異常検出処理の手順を示すサブルーチンフローチャートが示されており、以下、同図を参照しつつ、その内容について説明する。
 処理が開始されると、最初に、レール圧制御が噴射異常検出を行うに適した所定の制御モードにあるか否かが判定される(図3のステップS100参照)。ここで、所定の制御モードは、具体的には、先に説明した第3の制御モードである。
 レール圧制御が第3の制御モードにあるか否かの判定は、フラグによる判定が好適である。
 すなわち、図示されないメインルーチンにおいては、レール圧制御として先に述べた3つの制御モードが選択的に実行されるようになっているが、通常、いずれの制御モードが実行されているかを明らかにするため制御モードに応じてフラグ設定が行われるので、そのフラグを流用し第3の制御モードであるか否かを判定するようにすると好適である。
  そして、ステップS100において、第3の制御モードではないと判定された場合(NOの場合)には、以下の処理を行うに適していないので、一連の処理が終了されて、図示されないメインルーチンへ一旦戻り、他の処理がなされた後に、所定のタイミングでこの図3に示された処理が再度実行されることとなる。
 一方、ステップS100において、レール圧制御が第3の制御モードにあると判定された場合(YESの場合)には、指示噴射量Qが読み込まれることとなる(図3のステップS102参照)。
 ここで、指示噴射量Qは、図示されないエンジンの動作状態に基づいて所定の演算処理によって演算算出される燃料噴射弁13から噴射されるべき燃料の量であり、この演算処理は、図示されないメインルーチンにおいて実行されるもので、ここでは、その演算結果が読み込まれて流用されるものとなっている。
  次いで、指示噴射量Qが零を上回っているか否かが判定され(図3のステップ104参照)、零を上回っていないと判定された場合(NOの場合)には、以下の処理を実行するに適した状態ではないとして一連の処理が一旦終了されることとなる。
 一方、ステップS104において、指示噴射量Qが零を上回っていると判定された場合(YESの場合)には、エンジン回転数Neが読み込まれることとなる(図3のステップS106参照)。
 ここで、エンジン回転数Neは、先の指示噴射量と同様、図示されないメインルーチンにおいて用いられるようになっているもので、ステップS106においては、それが読み込まれて流用されるものとなっている。
 次いで、上述したようにして得られた指示噴射量Q及びエンジン回転数Neに対して定まる高圧ポンプ5への最低供給量、換言すれば、流量制御弁8の通過流量β(基準燃料通過流量)が、予め定められた必須供給量マップを用いて求められることとなる(図3のステップS108参照)。
 ここで、必須供給量マップは、先に述べたように、エンジン回転数Neと指示噴射量Qとの種々の組み合わせに対して、それぞれの場合において流量制御弁8により高圧ポンプ5へ最低限供給されるべき燃料の量を定めたマップである。
 次いで、流量制御弁指示流量αが読み込まれることとなる(図3のステップS110参照)。すなわち、先に述べたように、図示されないレール圧制御処理において算出される流量制御弁指示流量αが読み込まれることとなる。
 そして、流量制御弁通過流量βと流量制御弁指示流量αの差(流量制御弁通過流量β-流量制御弁指示流量α)が、所定閾値Kを超えているか否かが判定されることとなる(図3のステップS112参照)。
 ステップS112において、(流量制御弁通過流量β-流量制御弁指示流量α)が、所定閾値Kを超えていると判定された場合(YESの場合)は、エラー確定、すなわち、噴射異常が発生している状態であるとされ、例えば、警報の発生や異常表示を適宜行い、一連の処理が終了されることとなる(図3のステップS114参照)。
 ここで、本発明の実施の形態における噴射異常とは、何らかの原因により、燃料噴射が行われない状態、又は、何燃料噴射は行われるが、噴射量が異常に低下する状態の双方を含む概念である。
 このようにβ-α>Kが成立する場合にエラー確定とするのは、β-α>Kの成立状態が、流量制御弁8による高圧ポンプ5へ供給される燃料の量、換言すれば、流量制御弁8の通過流量αが、正常な噴射状態にあって本来あるべき最低限の量β以下の状態であることを意味し、これは、何らかの原因により噴射異常が生じていると考えられるためである。
 すなわち、例えば、圧力保持弁15や燃料噴射弁13に機械的故障が生じ、燃料噴射弁13による燃料噴射がなされない状態、又は、燃料噴射はされるが、その噴射量が極端に低下した状態となると、コモンレール10から出力される燃料の量が低下し、レール圧が上昇する。これに対して先に述べたPI制御(図2参照)がレール圧を下げようと作用するため、流量制御弁指示流量αが小さくなる。したがって、流量制御弁指示流量αの減少の程度を捉えることで、噴射異常と判定することができるものであり、本発明の実施の形態における噴射異常検出は、このような観点に立つものである。
 なお、エラー確定の処理(図3のステップS114)は、ステップS112においてβ-α>Kが成立していると判定され、その状態が所定時間継続された場合に実行するようにしても好適である。
 一方、ステップS112において、β-α>Kではないと判定された場合(NOの場合)には、噴射異常ではないとみなされて、一連の処理が終了されて、図示されないメインルーチンへ一旦戻り、他の処理がなされた後に、所定のタイミングでこの図3に示された処理が再度実行されることとなる。
 なお、上述の構成例においては、流量制御弁指示流量αが正常であるか否かを判定する比較対象として、エンジン回転数Neと指示噴射量Qとの種々の組み合わせに対して、それぞれの場合において流量制御弁8により高圧ポンプ5へ最低限供給されるべき燃料の量(流量制御弁通過流量)βを基準燃料通過流量として用いるようにしたが、これに代えて、例えば、図2で説明したプレコントロールマップで求められる流量を用いるようにしても良い。これは、噴射異常が生じている場合、プレコントロール量に装置の動作特性のPI制御分を加味した流量である流量制御弁指示流量αは、プレコントロール量自体よりも小さくなるためである。
 なお、上述した本発明の実施の形態においては、噴射異常検出処理の実行に適するレール圧制御の状態としては、第3の制御モードが適切であるとして説明した(図3のステップS100参照)が、基本的には流量制御弁8が閉ループ制御されている状態であれば良い。したがって、具体的には、例えば、流量制御弁8と圧力制御弁12を備え、流量制御弁8の閉ループ制御と、圧力制御弁12の閉ループ制御を選択的に行うよう構成された燃料噴射制御装置において流量制御弁8が閉ループ制御されている状態にある場合にも、本発明の実施の形態における噴射異常検出処理を適用することができる。
 また、流量制御弁8のみを有してその閉ループ制御によりレール圧制御を行うよう構成された燃料噴射制御装置においても、本発明の実施の形態における噴射異常検出処理を適用することができる。
 新たな部品を追加することなく、噴射が行われない故障状態のみならず、噴射があっても異常な噴射状態をも検出可能としたので、特に、燃料噴射制御において、簡易な構成で信頼性の高い燃料噴射制御が要請される燃料噴射制御装置に適用できる。

Claims (7)

  1. 燃料タンクの燃料が高圧ポンプによりコモンレールへ加圧、圧送され、当該コモンレールに接続された燃料噴射弁を介して内燃機関へ高圧燃料の噴射を可能としてなると共に、前記高圧ポンプの上流側に低圧制御電磁弁が設けられ、当該低圧制御電磁弁の駆動制御によりレール圧制御可能としてなり、前記燃料噴射弁からの戻り燃料通路内に圧力保持弁が設けられてなるコモンレール式燃料噴射制御装置における噴射異常検出方法であって、
     前記低圧制御電磁弁が閉ループで制御される状態において、
     エンジンの動作状態に応じて定められる前記低圧制御電磁弁における基準燃料通過流量と、前記低圧制御電磁弁の閉ループ制御において定まる前記低圧制御電磁弁の燃料通過流量との差が所定閾値より大きい場合に、噴射異常と判定することを特徴とする噴射異常検出方法。
  2. 基準燃料通過流量は、エンジンの動作状態に応じて定められる低圧制御電磁弁における最低限の燃料通過流量であることを特徴とする請求項1記載の噴射異常検出方法。
  3. 低圧制御電磁弁における最低限の燃料通過流量は、予め定められたマップを用いて決定し、当該マップは、エンジンの動作状態に応じて所定の演算式により演算算出される燃料噴射弁の噴射量と、エンジン回転数との種々の組み合わせに対する前記低圧制御電磁弁における最低限の燃料通過量を規定したものであることを特徴とする請求項2記載の噴射異常検出方法。
  4. 燃料タンクの燃料が高圧ポンプによりコモンレールへ加圧、圧送され、当該コモンレールに接続された燃料噴射弁を介して内燃機関へ高圧燃料の噴射を可能としてなり、前記高圧ポンプの上流側に低圧制御電磁弁が設けられ、前記燃料噴射弁からの戻り燃料通路内に圧力保持弁が設けられ、電子制御ユニットにより前記低圧制御電磁弁が駆動制御されてレール圧制御を可能としてなるコモンレール式燃料噴射制御装置であって、
     前記電子制御ユニットは、
     燃料噴射制御が所定の状態にあるか否かを判定し、燃料噴射制御が所定の状態にあると判定された場合に、
     エンジンの動作状態に応じて定められる前記低圧制御電磁弁における基準燃料通過流量と、前記低圧制御電磁弁の閉ループ制御において定まる前記低圧制御電磁弁の燃料通過流量との差を算出し、当該算出された差が所定閾値より大きい場合に、噴射異常と判定するよう構成されてなることを特徴とするコモンレール式燃料噴射制御装置。
  5. 電子制御ユニットは、
     低圧制御電磁弁が閉ループで制御されている場合に、燃料噴射制御が所定の状態にあると判定するよう構成されてなることをことを特徴とする請求項4記載のコモンレール式燃料噴射制御装置。
  6. 基準燃料通過流量は、エンジンの動作状態に応じて定められる低圧制御電磁弁における最低限の燃料通過流量であることを特徴とする請求項5記載のコモンレール式燃料噴射制御装置。
  7. 低圧制御電磁弁における最低限の燃料通過流量は、予め定められたマップを用いて決定し、当該マップは、エンジンの動作状態に応じて所定の演算式により演算算出される燃料噴射弁の噴射量と、エンジン回転数との種々の組み合わせに対する前記低圧制御電磁弁における最低限の燃料通過量を規定したものであることを特徴とする請求項6記載のコモンレール式燃料噴射制御装置。
PCT/JP2009/057239 2008-04-10 2009-04-09 噴射異常検出方法及びコモンレール式燃料噴射制御装置 WO2009125807A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09730221.0A EP2280161A4 (en) 2008-04-10 2009-04-09 INJECTION ANOMALY DETECTION SYSTEM AND COMMON RAIL FUEL INJECTION CONTROL DEVICE
JP2010507266A JP5042357B2 (ja) 2008-04-10 2009-04-09 噴射異常検出方法及びコモンレール式燃料噴射制御装置
US12/937,097 US8539934B2 (en) 2008-04-10 2009-04-09 Injection abnormality detection method and common rail fuel injection control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008102825 2008-04-10
JP2008-102825 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125807A1 true WO2009125807A1 (ja) 2009-10-15

Family

ID=41161938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057239 WO2009125807A1 (ja) 2008-04-10 2009-04-09 噴射異常検出方法及びコモンレール式燃料噴射制御装置

Country Status (4)

Country Link
US (1) US8539934B2 (ja)
EP (1) EP2280161A4 (ja)
JP (1) JP5042357B2 (ja)
WO (1) WO2009125807A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035889A1 (ja) 2010-09-17 2012-03-22 ボッシュ株式会社 制御部材の制御処理装置、圧力制御処理装置、egr制御処理装置及び過給圧制御処理装置
CN111237072A (zh) * 2020-03-27 2020-06-05 潍柴动力股份有限公司 一种电控柴油机喷嘴故障识别方法、系统及电子控制单元

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909973B2 (ja) * 2008-11-14 2012-04-04 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP2010169068A (ja) * 2009-01-26 2010-08-05 Mitsubishi Heavy Ind Ltd コモンレール上流側圧力変動制御装置
US8857412B2 (en) * 2011-07-06 2014-10-14 General Electric Company Methods and systems for common rail fuel system dynamic health assessment
FR2983530A1 (fr) 2011-12-06 2013-06-07 Renault Sa Methode de diagnostic d'une derive d'au moins un injecteur d'un systeme d'injection de carburant a rampe commune.
JP5704152B2 (ja) * 2012-11-28 2015-04-22 トヨタ自動車株式会社 燃料噴射装置
US9903306B2 (en) 2013-02-08 2018-02-27 Cummins Inc. System and method for acquiring pressure data from a fuel accumulator of an internal combustion engine
US9551631B2 (en) 2013-02-08 2017-01-24 Cummins Inc. System and method for adapting to a variable fuel delivery cutout delay in a fuel system of an internal combustion engine
US9587581B2 (en) * 2013-06-20 2017-03-07 GM Global Technology Operations LLC Wideband diesel fuel rail control using active pressure control valve
US9267460B2 (en) 2013-07-19 2016-02-23 Cummins Inc. System and method for estimating high-pressure fuel leakage in a common rail fuel system
US9506417B2 (en) * 2014-04-17 2016-11-29 Ford Global Technologies, Llc Methods for detecting high pressure pump bore wear
DE102015214817A1 (de) * 2015-08-04 2017-02-09 Robert Bosch Gmbh Verfahren zum Erkennen einer Zustandsänderung eines Kraftstoffinjektors
EP3165750A1 (de) * 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit kraftstoffinjektordiagnose
DE102016207297B3 (de) * 2016-04-28 2017-10-19 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
DE102016208195A1 (de) * 2016-05-12 2017-11-16 Robert Bosch Gmbh Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine
JP2018162761A (ja) * 2017-03-27 2018-10-18 三菱自動車工業株式会社 エンジンの制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229932A (ja) * 1985-02-16 1986-10-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 内燃機関の燃料供給量制御方法および装置
JP2002106400A (ja) * 2000-08-03 2002-04-10 Robert Bosch Gmbh 自動車の内燃機関のための燃料供給システム
JP2003328830A (ja) * 2002-05-10 2003-11-19 Denso Corp 蓄圧式燃料噴射装置
JP2005517120A (ja) * 2002-02-08 2005-06-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のための燃料噴射装置
JP2006523793A (ja) 2003-06-21 2006-10-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング リターンレール内で圧力振動の低減される燃料噴射装置
JP2007510849A (ja) 2003-11-14 2007-04-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の燃焼室内に燃料を噴射するインジェクタ、特にピエゾアクチュエータによって制御されるコモンレール・インジェクタ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548280A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
DE19834120A1 (de) * 1998-07-29 2000-02-03 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine
JP3884577B2 (ja) * 1998-08-31 2007-02-21 株式会社日立製作所 内燃機関の制御装置
DE10141821C1 (de) * 2001-08-27 2003-04-24 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
JP3833540B2 (ja) * 2002-01-09 2006-10-11 三菱電機株式会社 内燃機関の燃料供給装置
DE10259797A1 (de) * 2002-12-19 2004-07-15 Siemens Ag Vorrichtung und Verfahren zum Erkennen von Fehlern in einem Kraftstoffeinspritzsystem
DE102004028515B3 (de) * 2004-06-11 2005-11-24 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
JP2006307800A (ja) * 2005-05-02 2006-11-09 Nissan Motor Co Ltd エンジンの燃料供給装置
JP4453623B2 (ja) * 2005-07-19 2010-04-21 株式会社デンソー 燃料噴射装置および燃料噴射装置の異常検出方法
US7287516B2 (en) * 2005-07-29 2007-10-30 Caterpillar Inc. Pump control system
JP4407611B2 (ja) * 2005-10-06 2010-02-03 株式会社デンソー 燃料噴射制御装置
JP4573218B2 (ja) * 2006-06-09 2010-11-04 株式会社デンソー 燃料噴射装置
DE102007003150B4 (de) * 2007-01-22 2008-12-11 Continental Automotive Gmbh Verfahren zur Ermittlung einer unkontrollierten Drehzahlerhöhung einer Brennkraftmaschine
JP4355346B2 (ja) * 2007-05-21 2009-10-28 三菱電機株式会社 内燃機関の制御装置
ATE468481T1 (de) * 2007-07-05 2010-06-15 Magneti Marelli Powertrain Spa Verfahren zur steuerung eines überdruckventils in einem common-rail-kraftstoffversorgungssystem
JP4609524B2 (ja) * 2008-05-09 2011-01-12 株式会社デンソー 燃圧制御装置、及び燃圧制御システム
JP4909973B2 (ja) * 2008-11-14 2012-04-04 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US8220322B2 (en) * 2009-04-30 2012-07-17 GM Global Technology Operations LLC Fuel pressure sensor performance diagnostic systems and methods based on hydrostatics in a fuel system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229932A (ja) * 1985-02-16 1986-10-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 内燃機関の燃料供給量制御方法および装置
JP2002106400A (ja) * 2000-08-03 2002-04-10 Robert Bosch Gmbh 自動車の内燃機関のための燃料供給システム
JP2005517120A (ja) * 2002-02-08 2005-06-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のための燃料噴射装置
JP2003328830A (ja) * 2002-05-10 2003-11-19 Denso Corp 蓄圧式燃料噴射装置
JP2006523793A (ja) 2003-06-21 2006-10-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング リターンレール内で圧力振動の低減される燃料噴射装置
JP2007510849A (ja) 2003-11-14 2007-04-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の燃焼室内に燃料を噴射するインジェクタ、特にピエゾアクチュエータによって制御されるコモンレール・インジェクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2280161A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035889A1 (ja) 2010-09-17 2012-03-22 ボッシュ株式会社 制御部材の制御処理装置、圧力制御処理装置、egr制御処理装置及び過給圧制御処理装置
CN111237072A (zh) * 2020-03-27 2020-06-05 潍柴动力股份有限公司 一种电控柴油机喷嘴故障识别方法、系统及电子控制单元
CN111237072B (zh) * 2020-03-27 2022-08-05 潍柴动力股份有限公司 一种电控柴油机喷嘴故障识别方法、系统及电子控制单元

Also Published As

Publication number Publication date
EP2280161A4 (en) 2013-07-10
US20110030655A1 (en) 2011-02-10
EP2280161A1 (en) 2011-02-02
US8539934B2 (en) 2013-09-24
JP5042357B2 (ja) 2012-10-03
JPWO2009125807A1 (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5042357B2 (ja) 噴射異常検出方法及びコモンレール式燃料噴射制御装置
JP4424395B2 (ja) 内燃機関の燃料噴射制御装置
JP4453623B2 (ja) 燃料噴射装置および燃料噴射装置の異常検出方法
EP2116710B1 (en) Fuel pressure controller and fuel pressure control system
JP2009085164A (ja) 噴射異常検出装置及び燃料噴射システム
US7814887B2 (en) Method and device for controlling a pump connected to a fuel rail
WO2011078153A1 (ja) 燃料噴射弁の異常判定装置及び燃料噴射弁の異常判定方法
JP2008274842A (ja) 減圧弁制御装置およびそれを用いた燃料噴射システム
JP5975571B2 (ja) 蓄圧式燃料噴射制御装置及び蓄圧式燃料噴射制御装置の制御方法
JP4874816B2 (ja) 内燃機関の燃料供給装置
JP4442441B2 (ja) 内燃機関用燃料噴射装置
JP4955601B2 (ja) コモンレール式燃料噴射制御装置における圧力制御電磁弁の駆動方法及びコモンレール式燃料噴射制御装置
JP5294510B2 (ja) 燃料噴射装置の制御装置及び制御方法
JP5021564B2 (ja) 噴射異常検出方法及びコモンレール式燃料噴射制御装置
US20130024092A1 (en) Device for preventing the engine from stalling in a vehicle equipped with a diesel injection system
US8459231B2 (en) Method for regulating an injection system of an internal combustion engine
JP4062721B2 (ja) 蓄圧式燃料噴射装置
JP2005155421A (ja) 内燃機関の燃料噴射装置
JP6345415B2 (ja) 蓄圧式燃料噴射制御装置及び蓄圧式燃料噴射制御装置の制御方法
JP5284384B2 (ja) 内燃機関の燃料供給装置
JP7232698B2 (ja) 蓄圧式燃料噴射制御装置及び蓄圧式燃料噴射制御装置の制御方法
WO2013153663A1 (ja) 内燃機関の燃料噴射制御システム
JP2010024875A (ja) 噴射異常検出方法及びコモンレール式燃料噴射制御装置
JP2006132481A (ja) 蓄圧式燃料噴射装置
JP2005214060A (ja) 車両用速度制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730221

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009730221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009730221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010507266

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12937097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE