WO2009122836A1 - 薄膜積層体の製造装置および方法 - Google Patents

薄膜積層体の製造装置および方法 Download PDF

Info

Publication number
WO2009122836A1
WO2009122836A1 PCT/JP2009/053876 JP2009053876W WO2009122836A1 WO 2009122836 A1 WO2009122836 A1 WO 2009122836A1 JP 2009053876 W JP2009053876 W JP 2009053876W WO 2009122836 A1 WO2009122836 A1 WO 2009122836A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
grip
sandwiching
height
force
Prior art date
Application number
PCT/JP2009/053876
Other languages
English (en)
French (fr)
Inventor
横山 勝治
Original Assignee
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機システムズ株式会社 filed Critical 富士電機システムズ株式会社
Priority to CN2009801003023A priority Critical patent/CN101796216B/zh
Priority to JP2010505483A priority patent/JP4840712B2/ja
Priority to US12/676,103 priority patent/US8431439B2/en
Priority to EP09726802.3A priority patent/EP2261394A4/en
Publication of WO2009122836A1 publication Critical patent/WO2009122836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/0324Controlling transverse register of web by acting on lateral regions of the web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/32Orientation of handled material
    • B65H2301/323Hanging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an apparatus and method for manufacturing a thin film laminate such as a thin film photoelectric conversion element by forming a plurality of thin films on a strip-like flexible substrate.
  • a high-rigidity substrate is usually used as a substrate for a thin film laminate such as a semiconductor thin film.
  • a flexible substrate such as a resin is also used for a substrate of a photoelectric conversion element used for, for example, a solar cell for convenience such as light weight and easy handling and cost reduction due to mass production. .
  • a strip-shaped flexible substrate is passed through a plurality of continuously arranged film forming chambers and stopped in each film forming chamber.
  • a film forming apparatus has been developed in which a film is formed on the surface of the substrate, and then the operation of transporting the substrate to the position of the next film forming chamber is repeated to stack a plurality of thin films having different properties on the substrate.
  • Japanese Patent Laid-Open No. 2005-72408 Japanese Patent Laid-Open No. 2005-72408
  • the width direction of the strip-shaped flexible substrate is held in the horizontal direction, the substrate is transported in the horizontal direction, and the film is formed in the horizontal direction, and the width direction of the strip-shaped flexible substrate is set in the vertical direction.
  • the substrate is transported in the horizontal direction to form a film.
  • the latter type has advantages such as less contamination of the substrate surface compared to the former type, but when the number of film forming chambers increases, wrinkles occur on the surface of the substrate due to gravity and substrate elongation, There is a problem that the substrate meanders in the width direction or hangs downward.
  • an intermediate chamber is disposed between two film forming chambers located at the center of a plurality of film forming chambers, and the substrate surface is spread over the entire surface in the width direction of the substrate.
  • EPC side edge position control
  • the EPC roller in the intermediate chamber is eliminated and the end portion of the substrate is held by the grip roller and conveyed.
  • the substrate since the substrate is not restrained by the EPC roller in the intermediate chamber, it becomes more susceptible to variations in the initial properties of the substrate itself. This problem becomes apparent when the number of film forming chambers in the line is increased and the line length is increased in order to increase the production efficiency of the line, and the amount of meandering in the substrate height direction during transportation increases, and the film formation of the substrate increases. The position variation becomes large.
  • the substrate portion located from the first film formation chamber to the last film formation chamber cannot form a predetermined thin film in all layers. Therefore, until the substrate portion formed in the first film formation chamber reaches the take-up core (that is, for all the film passes), the substrate has a property different from the substrate on which all the predetermined thin films are formed. change. Therefore, the substrate having a length from the unwinding position to the winding position at the initial stage of film formation rises or falls in the width direction from a predetermined target height. It is also necessary to transport the substrate for a longer time until the substrate converges to a predetermined height.
  • the present invention increases the process length in order to increase the production efficiency when the substrate is transported over a long distance in the horizontal direction while the width direction of the belt-like flexible substrate is directed in the vertical direction.
  • Manufacture of a thin film stack that can prevent the substrate from meandering in the width direction and hanging down even if the substrate that has not been formed is transported for a long time even if it is long.
  • an apparatus for manufacturing a thin film laminate by laminating a plurality of thin films on the surface of a strip-like flexible substrate wherein the width direction of the substrate is A substrate transport means for transporting the substrate in a horizontal direction so as to be in a vertical direction, and a plurality of film forming chambers that are continuously arranged along the transport direction of the substrate and perform film formation on the surface of the substrate; And at least one pair of grip rollers disposed between at least one of the plurality of film forming chambers and sandwiching an upper end portion in the vertical direction of the substrate, and the rotation direction of the grip rollers is the transport direction of the substrate.
  • a grip roller installed obliquely upward with respect to a direction; and a control unit that controls a height of the substrate by changing a force of sandwiching the substrate between the at least one pair of grip rollers.
  • the present invention provides an apparatus for manufacturing a thin film laminate by laminating a plurality of thin films on the surface of a strip-shaped flexible substrate, the width direction of the substrate being a vertical direction.
  • a substrate transfer means for transferring the substrate in the horizontal direction, a plurality of film forming chambers that are continuously arranged along the transfer direction of the substrate, and for forming a film on the surface of the substrate, and the plurality of film forming chambers Between the plurality of pairs of grip rollers sandwiching the upper end in the vertical direction of the substrate and at least one of the plurality of film forming chambers.
  • An apparatus for manufacturing a thin film laminate according to the present invention includes an actuator that changes a force sandwiching a substrate of the grip roller, a power unit for inputting energy to the actuator, and a load cell that detects energy input to the actuator.
  • the control device calculates a target value of energy input to the actuator in order to set a force sandwiching the substrate of the grip roller to a target value, and uses the target value of the input energy as the power.
  • the detected value of the input energy detected by the load cell is compared with the target value of the input energy, and the target value of the energy input to the actuator is changed.
  • the apparatus for manufacturing a thin film laminate according to the present invention further includes a sensor for detecting the height of the substrate, and the control device is configured so that the height of the substrate is not within a predetermined range by the sensor.
  • the determination it is preferable to change the target value of the force sandwiching the grip roller substrate.
  • Another aspect of the present invention is a method of manufacturing a thin film laminate by laminating a plurality of thin films on the surface of a strip-like flexible substrate, the width direction of the substrate being a vertical direction, A step of transporting the substrate in a horizontal direction, a step of performing film deposition on the surface of the substrate by a plurality of film deposition chambers arranged continuously along the transport direction of the substrate, and the plurality of film deposition chambers And at least one pair of grip rollers disposed between at least one of the gaps and sandwiching the upper end in the vertical direction of the substrate, the rotation direction of the grip rollers being obliquely upward with respect to the transport direction of the substrate And a step of controlling the height of the substrate by changing a force sandwiching the substrate with respect to the installed grip roller.
  • the present invention is a method for producing a thin film laminate by laminating a plurality of thin films on the surface of a strip-like flexible substrate, the width direction of the substrate being a vertical direction, A step of transporting the substrate in a horizontal direction, a step of performing film deposition on the surface of the substrate by a plurality of film deposition chambers arranged continuously along the transport direction of the substrate, and the plurality of film deposition chambers At least one pair of grip rollers disposed between at least one of the upper and lower ends of the substrate, wherein the rotation direction of the upper pair of grip rollers is the substrate.
  • the grip rollers in which the rotation direction of the pair of lower grip rollers is installed obliquely downward with respect to the transport direction of the substrate are arranged above and below the grip rollers.
  • by changing the force sandwiching the substrate of at least one of the gripping rollers characterized in that it comprises a step of controlling the height of the substrate.
  • the step of controlling the height of the substrate is a step of calculating a target value of energy input to the actuator that changes the force of sandwiching the substrate of the grip roller in order to set the force of sandwiching the substrate of the grip roller to a target value.
  • a step of changing a target value of energy input to the actuator is a step of calculating a target value of energy input to the actuator that changes the force of sandwiching the substrate of the grip roller in order to set the force of sandwiching the substrate of the grip roller to a target value.
  • the step of controlling the height of the substrate includes a step of detecting the height of the substrate by a sensor and determining whether or not the height of the substrate is within a predetermined range; It is preferable that the method further includes a step of changing a target value of a force for sandwiching the substrate of the grip roller when it is determined that it is not within the predetermined range.
  • the grip roller disposed between the film forming chambers and sandwiching the vertical end of the substrate is installed so that the rotation direction is oblique with respect to the substrate transport direction, and the substrate is sandwiched. Since the height of the substrate can be controlled by changing the force, even if the belt-like flexible substrate is transported over a long distance between a plurality of film forming chambers, the substrate can meander in the width direction, It is possible to prevent the sagging downward.
  • FIG. 6 is a plan view schematically showing an experimental apparatus used in a test of Example 2.
  • FIG. It is a graph which shows the test result of the experimental apparatus of FIG.
  • a thin film laminate manufacturing apparatus according to the present invention will be described with reference to the accompanying drawings.
  • this invention is applied to manufacture of thin film laminated bodies, such as a semiconductor thin film, such as a photoelectric conversion element for solar cells, and organic EL, for example. be able to.
  • FIG. 1 is a plan view schematically showing one embodiment of a thin film laminate manufacturing apparatus according to the present invention. The drawings are deformed and are not drawn to scale.
  • the thin film laminate manufacturing apparatus includes an unwinding unit 10 that feeds the strip-shaped flexible substrate 1 and an unwinding unit that transports the strip-shaped flexible substrate 1 from the unwinding unit to the film forming unit.
  • Side driving unit 20 film forming unit 30 for laminating a plurality of thin films on strip-shaped flexible substrate 1, and winding-side driving unit 60 for transporting strip-shaped flexible substrate 1 from the film forming unit to the winding unit
  • a winding portion 70 for winding the belt-like flexible substrate 1 on which the thin film laminate is formed.
  • substrate 1 is conveyed to a horizontal direction, while the width direction faces a perpendicular direction.
  • the unwinding unit 10 includes an unwinding core 11 that feeds the band-shaped flexible substrate 1 from an original fabric on which the band-shaped flexible substrate is wound in a roll shape, and a band-shaped flexible substrate that is fed from the unwinding core 11.
  • a tension detection roller 13 for detecting the tension of 1 and a free roller 12 positioned between them are provided.
  • the unwinding core 11, the free roller 12, and the tension detection roller 13 are installed such that the axial direction is the vertical direction.
  • Each roller described below is also installed so that the axial direction is the vertical direction unless otherwise specified.
  • the unwinding side driving unit 20 includes an unwinding side film driving roller 21 that is rotationally driven to convey the band-shaped flexible substrate 1 from the unwinding unit 10 to the film forming unit 40, and the band-shaped flexibility at the time of driving.
  • a tension detection roller 22 for detecting the tension of the conductive substrate 1
  • a free roller 23 for changing the advancing direction of the belt-like flexible substrate 1 by 90 degrees and sending it to the film forming unit 40.
  • the film forming unit 30 is provided with a preheating chamber 38 and a plurality of film forming chambers 40a to 40p for sequentially laminating thin films on the surface of the strip-shaped flexible substrate 1.
  • the film formation chamber 40 is provided with a film formation apparatus such as CVD or sputtering according to the type of thin film to be formed.
  • a CVD film forming apparatus is provided in the first 14 film forming chambers 40a to 40n arranged in a straight line, and the film forming chambers 40o and 40p in the last two chambers are sputtered.
  • a device is provided. Between the CVD film forming chamber and the sputter film forming chamber, two free rollers 31 and 32 that change the traveling direction by 90 degrees are arranged.
  • Each film forming chamber 40 is provided with a movable wall (not shown) for making the film forming chamber airtight.
  • Each film forming chamber 40 is provided with a pair of grip rollers 44 and 52 sandwiching the strip-shaped flexible substrate 1 on the substrate entrance side of the film forming chamber.
  • the grip rollers include a fixed grip roller 44 having a constant force for pressing the substrate 1 and a variable grip roller 52 capable of controlling the force for pressing the substrate 1.
  • the variable grip roller 52 is installed in the fourth, sixth, eighth, tenth, and sixteenth film forming chambers 40d, 40f, 40h, 40j, and 40p, and the fixed grip roller 44 is installed in the remaining film forming chambers. Yes.
  • Each film forming chamber in which the variable grip roller 52 is installed is provided with an end surface sensor 42 for detecting the upper end surface of the strip-shaped flexible substrate 1 as will be described in detail later.
  • the take-up drive unit 60 includes a take-up film drive roller 62 that rotates to convey the belt-like flexible substrate 1 from the film forming unit 40 to the take-up unit 70, and a free roller positioned before and after this 61 and 63 are provided.
  • the winding unit 70 has a belt-like belt formed with a tension detection roller 72 for controlling the tension of the belt-like flexible substrate 1 at the time of winding, free rollers 71 and 73 positioned before and after this, and a thin film laminate.
  • a winding core 75 for winding the flexible substrate 1 in a roll shape and a free roller 74 positioned in front of the winding core 75 are provided.
  • FIG. 2 is an enlarged front view showing the belt-like flexible substrate 1 and the fixed grip roller 44 in the manufacturing apparatus of FIG.
  • FIG. 3 is an enlarged front view showing the belt-like flexible substrate 1 and the variable grip roller 52 in the manufacturing apparatus of FIG.
  • both grip rollers 44 and 52 are arranged at both the upper end and the lower end of the belt-like flexible substrate 1 in the vertical direction.
  • each grip roller is installed obliquely at an angle ⁇ with respect to the horizontal that is the transport direction.
  • the upper fixed grip roller 44 ⁇ / b> U is installed such that the rotation direction of the roller is inclined upward with respect to the transport direction (that is, the horizontal direction) of the belt-like flexible substrate 1.
  • the angle ⁇ U between the rotation direction of the upper fixed grip roller 44U and the transport direction of the strip-shaped flexible substrate 1
  • the strip-shaped flexible substrate 1 is transported in the horizontal direction.
  • a force F U that raises the substrate 1 upward is generated.
  • certain types grip roller 44L of the lower likewise at an angle theta U, is installed to be inclined downward, the force F D pulling the substrate 1 downward is generated.
  • the vertical angles ⁇ U and ⁇ L are preferably equal, and preferably 0.1 to 6 °.
  • the upper variable grip roller 52U is similarly installed at an angle ⁇ U and inclined upward, and the lower variable grip roller 52L is similarly positioned at an angle ⁇ L below. It is installed at an angle.
  • the difference obtained by subtracting the force F D that pulls the substrate 1 downward from the force F U that pulls the substrate 1 upward is the force F X that actually increases the height of the substrate 1. is there.
  • the force F U raising the substrate 1, when the angle theta U grip rollers is constant, as the pressure F P sandwiching the substrate 1 of the grip roller increases, increases.
  • the angles ⁇ U and ⁇ L of the grip roller are larger, the forces F U and F D for pulling the substrate 1 are larger, but the angles ⁇ U and ⁇ L exceed 6 ° or the static frictional force of the roller itself is increased. If exceeded, the forces F U and F D for pulling the substrate 1 hardly improve. Therefore, the angles ⁇ U and ⁇ L are preferably 0.1 to 6 °. It is preferable to make the vertical angles ⁇ U and ⁇ L equal.
  • the variable grip roller 52 has been described as being installed on the upper side and the lower side, but of course, by installing only the upper variable gripping rollers 52U, by changing the pressurizing force F P, likewise the substrate 1 The height can be controlled.
  • FIG. 4 is a cutaway side view schematically showing an example of the upper variable grip roller 52 and its attached device.
  • the pair of grip rollers 52 are rotatably mounted in roller housings 91 and 92 opened on the substrate 1 side.
  • One roller housing 91 is fixed to one end of an arm 98 having an L-shaped cross section, and this arm 98 is fixed to the lower surface of the wall surface 110 of the film forming chamber via a suspension member 103.
  • the other roller housing 92 is fixed to one end of a plate-like pressure lever 90, and this pressure lever 90 is rotatably attached to the other end of the arm 98 via a hinge 96 at the center portion thereof. It has been.
  • the arm 98 and the pressure lever 90 are connected by a pressure spring 93, and the pair of grip rollers 52 sandwich the substrate 1 in the horizontal direction with the initial tension F 0 of the pressure spring 93. ing.
  • an adjustment lever 95 having an L-shaped cross section is in contact with the other end of the pressure lever 90.
  • the adjustment lever 95 is rotatably attached to a fixing member (not shown) via a hinge 97 at the corner portion.
  • One end of an adjustment spring 94 is connected to the other end of the adjustment lever 95.
  • the adjustment spring 94 the other end of the adjusting lever 95, when pulled vertically with a force F.alpha X, the hinge 97 as a fulcrum adjusting lever 95 is rotated, one end of the adjusting lever 95 is at the other end of the pressing lever 90 and it is configured to push the horizontal direction with a force F.alpha L.
  • the other end of the adjustment spring 94 is connected to the tip of the movable rod 105.
  • the opposite end of the movable rod 105 is connected to the linear drive motor 100, and the movable rod 105 moves forward and backward in the vertical direction L X by the rotation of the linear drive motor 100.
  • the linear drive motor 100 is provided with a brake 104 that locks the linear drive motor 100 at a desired position.
  • the linear drive motor 100 is provided with a motor position sensor 101 that detects the position M S of the current rotational speed of the linear drive motor 100. As the motor position sensor 101, an absolute encoder is preferable.
  • the movable rod 105 is provided with a load cell 99 for measuring a force F ⁇ X at which the adjustment spring 94 pulls the adjustment lever 95.
  • the linear drive motor 100, the motor brake 104, the motor position sensor 101, and the load cell 99 are fixed on the wall surface 110 of the film forming chamber by a flange 102.
  • the movable rod 105 is configured to pass through the inside of the flange 102 and the wall surface 110 of the film forming chamber.
  • the wall surface 110 of the film formation chamber and the flange 102 are fixed via an O-ring seal or magnetic seal 106, and the flange 102 and the movable rod 105 are in contact via an O-ring seal or magnetic seal 107. As a result, the film formation chamber is kept airtight.
  • the contact surface with the substrate is preferably made of heat-resistant rubber such as silicon rubber or fluorine rubber, or synthetic resin such as PTFE or polyimide. Moreover, even if it is the raw material which gave chromium plating to stainless steel or iron, a predetermined performance is obtained.
  • FIG. 5 is a block diagram showing a grip roller attachment device and its control means.
  • the controller 120 includes a digital signal input interface 122, an analog signal output interface 123, an analog signal input interface 124, and a computer calculation unit 125 that can transmit and receive these interfaces.
  • the controller 120 includes a display operation unit 126 for operating the control.
  • the digital signal input interface 122 is connected to the motor position sensor 101 so as to be receivable.
  • the analog signal output interface 123 is connected to the motor brake 104 and the AC 100V brake drive power supply 128 via the relay 127 so as to be able to transmit.
  • the analog signal output interface 123 is connected to the linear drive motor 100 via a motor amplifier 129 so as to be able to transmit.
  • the analog signal input interface 124 is connected to the load cell 99 via the load cell amplifier 130 so as to be receivable.
  • two end surface sensors 42 for detecting the end surface of the substrate 1 are arranged vertically in the vertical direction.
  • the upper end surface sensor 42a is attached at a position where the substrate end surface is detected when the substrate 1 rises beyond a predetermined range, and the lower end surface sensor 42b descends beyond the predetermined range. In this case, it is attached at a position where the end face of the substrate is not detected.
  • the end face detection range of the end face sensor 42 can be set to ⁇ 5 mm, for example.
  • a digital signal input interface 122 is connected to the upper and lower end surface sensors 42a and 42b through the sensor amplifiers 131a and 131b so as to be receivable.
  • FIG. 5 shows only the attachment device for one upper variable grip roller, but each of the attachment devices for all the upper and lower variable grip rollers 52a to 52f is connected to this one controller. 120.
  • two end surface sensors 42 are arranged on the upper and lower sides.
  • the present invention is not limited to this, and three or more end surface sensors can be arranged.
  • the strip-shaped flexible substrate 1 passing through the plurality of film forming chambers 40 a to 40 p is wound from the unwinding core 11 by the unwinding side and winding side drive units 20 and 60. It is conveyed horizontally in the direction toward the core 75.
  • the rotation of the driving rollers 21 and 62 is stopped so that the belt-like flexible substrate 1 is stopped, and the walls (not shown) of the film formation chambers 40a to 40p are moved until they are in close contact with the substrate 1.
  • the film formation chamber is made airtight.
  • a thin film is formed on the surface of the strip-shaped flexible substrate 1 in each film forming chamber.
  • a thin film laminated body can be manufactured on the surface of the strip
  • the belt-like flexible substrate 1 moves a long distance from the first film formation chamber 40a to the fourteenth film formation chamber 40n, but the belt-like flexible substrate 1 is free rollers 23 and 31 located at both ends of this section. If it can only be supported, there is a problem that it hangs down due to gravity or elongation of the substrate, or meanders in the width direction of the substrate. Therefore, in this embodiment, as described above, by changing the pressurizing force F P sandwiching the substrate 1 of the variable grip roller 52, controls the force F to increase the height of the substrate 1, thereby, The height of the substrate 1 can be maintained within a predetermined range.
  • the target value F PX of the pressing force of the variable grip roller 52 can be obtained by the following formula 1.
  • F PX F 0 -R 0 ⁇ R 1 ⁇ F ⁇ X (Formula 1)
  • F 0 Initial tension of the pressure spring.
  • F ⁇ X Force that the adjustment spring pulls the adjustment lever.
  • R 0 Lever ratio of the pressure lever.
  • R 1 Lever ratio of the adjustment lever.
  • the target value F PX of the pressure applied to the variable grip roller can be controlled by changing only the tension F ⁇ X of the adjustment spring 94.
  • the target position L X of the movable rod 105 for achieving the target tension F ⁇ X of the adjustment spring 94 can be obtained by the following equation 2.
  • the target position L X of the movable rod 105 is the rotational speed M of the linear drive motor 100.
  • the screw lead G 0 is a rod feed amount per rotation of the motor by a ball screw.
  • the position M S of the current rotational speed of the linear drive motor 100 can be detected by the motor position sensor 101. Therefore, when rotating the linear drive motor 100 to the position M X of the rotational speed of the target, only a difference obtained by subtracting the current rotational speed M S, may be rotationally drives the linear motor 100.
  • a block diagram of an algorithm for controlling the linear drive motor 100 is shown in FIG.
  • the tension F ⁇ X of the adjustment spring 94 can be controlled more accurately.
  • the target value F ⁇ X of the tension of the adjustment spring 94 is obtained from the target value F PX of the applied pressure of the variable grip roller 52 by Formula 1, and then the target position of the movable rod 105 is calculated by Formula 2.
  • L X is obtained, and the linear drive motor 100 is rotationally driven to the target rotational position M X.
  • the load cell 99 measures the current value F ⁇ S of the tension of the adjustment spring 94.
  • the moving distance ⁇ L X of the movable rod 105 for achieving the target tension F ⁇ X of the adjustment spring 94 can be obtained by the following equation 3.
  • the height of the substrate 1 can be more accurately maintained within a predetermined range.
  • the upper end surface sensor 42 a does not detect the end surface of the substrate 1 (OFF)
  • the lower end surface sensor 42 b is the end surface of the substrate 1. Is detected (ON).
  • both the upper and lower end surface sensors 42a, 120b detect the end surface of the substrate 1 (ON, ON).
  • the upper and lower end surface sensors 42a and 120b do not detect the end surface of the substrate 1 (OFF, OFF).
  • the ON / OFF signals transmitted from the end face sensors 42 are amplified by the amplifier 131 and then received by the digital signal input interface 122 of the controller 120. Then, the computer calculation unit 125 determines whether the height of the substrate 1 is within a predetermined range, above it, or below it.
  • the algorithm shown in FIG. 6 is controlled.
  • the control for setting the re-target value F ⁇ XR is repeated until the height of the substrate 1 falls within a predetermined range and the upper end face sensor 42a is turned off.
  • an operation signal is sent from the analog signal output interface 123 of the controller 120 to the relay 127 to operate the motor brake 104, and the tension F ⁇ X of the adjustment spring 94 varies.
  • the linear drive motor 100 is fixed so that it does not occur.
  • the pressure F PX of the upper variable grip roller 52U is increased.
  • the re-target value F PXR is set by adding a predetermined change amount ⁇ F PX from the current target value F PX of the pressing force of the upper variable grip roller 52U.
  • a re-target value F ⁇ XR of the tension of the adjustment spring 94 is calculated.
  • F PXR F PX + ⁇ F P (Formula 6)
  • F PXR F 0 -R 0 ⁇ R 1 ⁇ F ⁇ XR (Expression 7)
  • the algorithm shown in FIG. 6 is controlled.
  • the control for setting the re-target value F ⁇ XR is repeated until the height of the substrate 1 rises within a predetermined range and the lower end face sensor 42b is turned on. Then, when the lower end face sensor 42b is turned ON, an operation signal is sent from the analog signal output interface 123 to the relay 127, the motor brake 104 is operated, and the linear drive motor 100 is fixed.
  • the target value F PX of the pressing force for sandwiching the substrate 1 of the variable grip roller 52 varies depending on the properties of the substrate, the transport distance, and the interval between the film forming chambers. A range is preferred.
  • the height of the substrate is converged within a predetermined range by changing only the pressing force of the upper variable grip roller, but if the substrate rises beyond the predetermined range, It is possible to lower the substrate within a predetermined range by increasing the pressing force of the variable gripping roller on the side, and when the substrate is lowered beyond the predetermined range, the pressing force of the lower variable gripping roller
  • the substrate can be raised within a predetermined range by lowering.
  • the height of the substrate can be converged within a predetermined range by changing both the applied pressures of the upper and lower variable grip rollers to increase or decrease the difference.
  • the pressing force sandwiching the substrate 1 of the fixed-type grip roller 44 varies depending on the properties of the substrate, the transport distance, and the distance between the film forming chambers, but is preferably in the range of 2 to 40 N, for example, 4 to 17 N. A range is preferred.
  • the pressure applied by the upper and lower constant-type grip rollers 44 is preferably the same in order to prevent wrinkles from occurring on the surface of the substrate 1.
  • the present invention transports the substrate in a horizontal direction over a long distance while directing the width direction of the strip-shaped flexible substrate in the vertical direction. If it is an apparatus which does, it can apply not only to a stepping roll system but widely.
  • Example 1 The change of the force which supports the film produced when a film was pinched
  • the result is shown in FIG.
  • the vertical axis in FIG. 7 is the difference obtained by subtracting the force F UX for supporting the film being transported from the force F U0 for supporting the substrate before the film is transported, and the film lifting force F U (N).
  • Example 2 Using the experimental apparatus shown in FIG. 8, a test for quantitatively measuring the variation in the height of the film was performed.
  • the experimental apparatus shown in FIG. 8 has basically the same configuration as the apparatus shown in FIG. 1 except that there is no film forming chamber.
  • 10 sets of fixed-type grip rollers are installed up and down, and 5 sets of variable-type grip rollers are installed only on the upper side.
  • variable grip rollers were arranged at the fifth, seventh, ninth, eleventh and thirteenth positions.
  • three sets of fixed-type grip rollers were installed up and down.
  • the length of each section of the experimental equipment is as shown in the figure.
  • the total transport distance of the film was about 40 m.
  • a roller made of silicon rubber was used for each grip roller.
  • the set angle ⁇ of the grip roller was all fixed at 1 °.
  • a Kapton film was used as the film.
  • the vertical axis of the graph in FIG. 9 indicates the amount of displacement (mm), which is the difference in height that has relatively changed from the initial height of the film.
  • the horizontal axis represents the film transport distance (m).
  • the thick line in the graph indicates the control target of the film displacement amount.
  • the film was transported for about 16 m, stopped, the grip roller pressure was changed manually, and then the film was transported again.
  • One film transport operation is defined as one step, and in FIG. 9, the displacement amount of the film measured at the positions of the sixth to thirteenth grip rollers is plotted for each step.
  • the film was transported for 12 steps, and the film was transported by about 200 m. During that time, the amount of film displacement changed almost in the same way as the thick line as the control target, according to the change in the pressure applied to the grip roller. Therefore, it was confirmed that the amount of film displacement can be controlled as desired by changing the pressing force of the grip roller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Registering Or Overturning Sheets (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 帯状可撓性基板の幅方向を鉛直方向に向けながら、基板を水平方向に長い距離にわたり搬送しても、基板の鉛直方向における位置を精度高く維持する。帯状可撓性基板1の表面に複数の薄膜を積層して薄膜積層体を製造する際に、複数の成膜室の間のうち少なくとも1つの間に配置され、基板の鉛直方向上側の端部を挟む少なくとも一対のグリップローラ52Uを、このグリップローラの回転方向が基板1の搬送方向に対して角度θUをつけて上方斜めになるように設置し、このグリップローラ52Uの基板1を挟む力を変化させることで、基板1に上昇する力FXが発生し、基板1の高さを制御することができる。

Description

薄膜積層体の製造装置および方法
 本発明は、帯状可撓性基板上に複数の薄膜を形成して、薄膜光電変換素子などの薄膜積層体を製造する装置および方法に関する。
 半導体薄膜などの薄膜積層体の基板には、通常、高剛性の基板が用いられている。しかしながら、例えば太陽電池等に使用される光電変換素子の基板には、軽量で取り扱いが容易であるといった利便性や、大量生産によるコスト低減のため、樹脂などの可撓性基板も用いられている。
 このような可撓性基板を用いて薄膜積層体を製造する装置として、連続して配列された複数の成膜室に、帯状の可撓性基板を通し、各成膜室で停止した状態の前記基板の表面上に成膜し、次いでこの基板を次の成膜室の位置まで搬送する操作を繰り返し、前記基板の上に複数の異なる性質の薄膜を積層するという成膜装置が開発されている(例えば、特許文献1を参照)。
特開2005-72408号公報
 このような成膜装置では、帯状可撓性基板の幅方向を水平方向に保持して、基板を水平方向に搬送して成膜を行うタイプと、帯状可撓性基板の幅方向を鉛直方向に保持して、基板を水平方向に搬送して成膜を行うタイプなどがある。後者のタイプは、前者のタイプに比べ、基板表面が汚染されにくい等の利点があるが、成膜室の数が多くなると、重力や基板の伸びにより、基板の表面に皺が発生したり、基板が幅方向に蛇行したり、下方へ垂れ下がったりするという問題がある。
 このような問題を解消するため、多数配列された成膜室のうちの中央に位置する2室の成膜室の間に中間室を配置し、ここで基板の幅方向の全面にわたって基板表面と接触する側端位置制御(EPC)ローラを設けることが提案されている。しかしながら、通常、成膜は比較的に高い温度で行われることから、このようなステンレス製のEPCローラを成膜室の間に配置すると、基板が急冷され、折れ皺が発生するなどの問題がある。
 また、中間室のEPCローラによる基板の折れ皺を防ぐために、中間室のEPCローラをなくし、基板の端部をグリップローラで把持して搬送することが提案されている。しかしながら、中間室のEPCローラによる基板の拘束がなくなる分、基板自身の初期性状のばらつきの影響を受けやすくなる。この問題は、ラインの生産効率を上げるために、ラインの成膜室数を増やし、ライン長をより長くすると、顕在化し、搬送時の基板高さ方向の蛇行量が増大し、基板の成膜位置のばらつきが大きくなる。
 また、成膜初期において、最初の成膜室から最後の成膜室までに位置する基板部分は、所定の薄膜を全層成膜できない。よって、最初の成膜室で成膜された基板部分が、巻取コアまで到達するまでの間(すなわち、全フィルムパス分)は、所定の薄膜が全層成膜された基板とは性状が変わる。そのため、この成膜初期の巻き出し位置から巻き取り位置までの長さの基板は、所定の目標高さよりも幅方向に上昇したり、下降したりする。また、基板が所定高さに収束するまで、さらに基板を長い間にわたり搬送する必要もある。
 そこで本発明は、上記の問題点に鑑み、帯状可撓性基板の幅方向を鉛直方向に向けながら、基板を水平方向に長い距離にわたり搬送する際に、生産効率を上げるためにプロセス長をより長くしても、成膜初期に成膜が行われていない基板を長く搬送しても、基板が幅方向に蛇行したり、下方へ垂れ下がったりするのを防止することができる薄膜積層体の製造装置および方法を提供することを目的とする。
 上記の目的を達成するために、本発明は、その一態様として、帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する装置であって、前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送する基板搬送手段と、前記基板の搬送方向に沿って連続して配列され、前記基板の表面に成膜を行う複数の成膜室と、前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側の端部を挟む少なくとも一対のグリップローラであって、このグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されているグリップローラと、前記少なくとも一対のグリップローラの前記基板を挟む力を変化させることで、前記基板の高さを制御する制御手段とを備えたことを特徴とする。
 また、本発明は、別の態様として、帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する装置であって、前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送する基板搬送手段と、前記基板の搬送方向に沿って連続して配列され、前記基板の表面に成膜を行う複数の成膜室と、前記複数の成膜室のそれぞれの間に配置され、前記基板の鉛直方向上側の端部を挟む複数対のグリップローラと、前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側および下側の各端部を挟む少なくとも二対のグリップローラであって、前記上側の一対のグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されており、前記下側の一対のグリップローラの回転方向が前記基板の搬送方向に対して下方斜めに設置されているグリップローラと、前記上側および下側の二対のグリップローラのうち、少なくとも一方のグリップローラの前記基板を挟む力を変化させることで、前記基板の高さを制御する制御手段とを備えたことを特徴とする。
 本発明に係る薄膜積層体の製造装置は、前記グリップローラの基板を挟む力を変化させるアクチュエータと、前記アクチュエータにエネルギーを入力するための動力手段と、前記アクチュエータに入力したエネルギーを検出するロードセルとを更に備えることが好ましく、前記制御装置は、前記グリップローラの基板を挟む力を目標値にするために、前記アクチュエータに入力するエネルギーの目標値を算出し、この入力エネルギーの目標値を前記動力手段で前記アクチュエータに入力した後、前記ロードセルで検出した入力エネルギーの検出値を、前記入力エネルギーの目標値と比較して、前記アクチュエータに入力するエネルギーの目標値を変更することが好ましい。
 さらに、本発明に係る薄膜積層体の製造装置は、前記基板の高さを検出するセンサを更に備えることが好ましく、前記制御装置は、前記センサにより前記基板の高さが所定の範囲内でないと判定された場合に、前記グリップローラの基板を挟む力の目標値を変更することが好ましい。
 本発明は、また別の態様として、帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する方法であって、前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送するステップと、前記基板の搬送方向に沿って連続して配列された複数の成膜室により、前記基板の表面に成膜を行うステップと、前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側の端部を挟む少なくとも一対のグリップローラであって、このグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されているグリップローラについて、その前記基板を挟む力を変化させることで、前記基板の高さを制御するステップとを含むことを特徴とする。
 本発明は、さらに別の態様として、帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する方法であって、前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送するステップと、前記基板の搬送方向に沿って連続して配列された複数の成膜室により、前記基板の表面に成膜を行うステップと、前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側および下側の各端部を挟む少なくとも二対のグリップローラであって、前記上側の一対のグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されており、前記下側の一対のグリップローラの回転方向が前記基板の搬送方向に対して下方斜めに設置されているグリップローラについて、これら上側および下側の二対のグリップローラのうち、少なくとも一方のグリップローラの前記基板を挟む力を変化させることで、前記基板の高さを制御するステップとを含むことを特徴とする。
 前記基板の高さを制御するステップは、前記グリップローラの基板を挟む力を目標値にするために、前記グリップローラの基板を挟む力を変化させるアクチュエータに入力するエネルギーの目標値を算出するステップと、このエネルギーの目標値を、動力手段により前記アクチュエータに入力するステップと、前記アクチュエータに入力したエネルギーをロードセルで検出し、この入力エネルギーの検出値を、前記入力エネルギーの目標値と比較して、前記アクチュエータに入力するエネルギーの目標値を変更するステップとを更に含むことが好ましい。
 また、前記基板の高さを制御するステップは、センサにより前記基板の高さを検出し、前記基板の高さが所定の範囲内であるかどうかを判定するステップと、前記基板の高さが所定の範囲内でないと判定された場合に、前記グリップローラの基板を挟む力の目標値を変更するステップとを更に含むことが好ましい。   
 このように、成膜室の間に配置され、基板の鉛直方向の端部を挟むグリップローラを、その回転方向が基板の搬送方向に対して斜めになるように設置するとともに、その基板を挟む力を変化させることで、基板の高さを制御することができるので、帯状可撓性基板が複数の成膜室の間を長い距離にわたって搬送されても、基板が幅方向に蛇行したり、下方へ垂れ下がったりするのを防止することができる。
本発明に係る薄膜積層体の製造装置の一実施の形態を模式的に示す平面図である。 図1の製造装置における帯状可撓性基板と一定型グリップローラを拡大して示す正面図である。 図1の製造装置における帯状可撓性基板と可変型グリップローラを拡大して示す正面図である。 グリップローラとその付属装置の一例を模式的に示す切欠側面図である。 グリップローラの付属装置とその制御手段を示すブロック図である。 リニヤ駆動モータの制御のアルゴリズムを示すブロック図である。 グリップローラの加圧力と設定角度と基板の引き上げ力との関係を示すグラフである。 実施例2の試験に用いた実験装置を模式的に示す平面図である。 図8の実験装置の試験結果を示すグラフである。
 以下、添付図面を参照して、本発明に係る薄膜積層体の製造装置の一実施の形態について説明する。なお、ここでは、薄膜積層体の具体的な構成について特に言及しないが、本発明は、例えば、太陽電池用の光電変換素子や、有機EL等の半導体薄膜などの薄膜積層体の製造に適用することができる。
 図1は、本発明に係る薄膜積層体の製造装置の一実施の形態を模式的に示す平面図である。なお、図面はデフォルメされており、実物を縮尺通りに描いたものではない。
 図1に示すように、この薄膜積層体の製造装置は、帯状可撓性基板1を送り出す巻出部10と、帯状可撓性基板1を巻出部から成膜部へと搬送する巻出側駆動部20と、帯状可撓性基板1上に複数の薄膜を積層する成膜部30と、帯状可撓性基板1を成膜部から巻取部へと搬送する巻取側駆動部60と、薄膜積層体が形成された帯状可撓性基板1を巻き取る巻取部70とから主に構成されている。なお、帯状可撓性基板1は、その幅方向が鉛直方向を向きながら、水平方向へと搬送される。
 巻出部10には、帯状可撓性基板がロール状に巻かれた原反から、帯状可撓性基板1を送り出す巻出コア11と、巻出コア11から送り出された帯状可撓性基板1の張力を検出する張力検出ローラ13と、これらの間に位置するフリーローラ12が設けられている。これら巻出コア11、フリーローラ12及び張力検出ローラ13は、軸方向が鉛直方向になるようにそれぞれ設置されている。なお、以下に説明する各ローラも、特に言及しない限り、軸方向が鉛直方向になるように設置されている。
 巻出側駆動部20には、帯状可撓性基板1を巻出部10から成膜部40へと搬送するために回転駆動する巻出側フィルム駆動ローラ21と、この駆動時の帯状可撓性基板1の張力を検出する張力検出ローラ22と、帯状可撓性基板1の進行方向を90度変えて成膜部40へと送るフリーローラ23が設けられている。
 成膜部30には、予熱室38と、帯状可撓性基板1の表面上に順次、薄膜を積層するための複数の成膜室40a~40pが設けられている。成膜室40には、形成する薄膜の種類に応じて、CVDやスパッタ等の成膜装置が設けられている。本実施の形態では、直線状に配列された最初の14室の成膜室40a~40nにCVD成膜装置が設けられており、最後の2室の成膜室40o、40pに、スパッタ成膜装置が設けられている。CVD成膜室とスパッタ成膜室の間には、進行方向を90度変えるフリーローラ31、32が2つ配置されている。また、各成膜室40には、成膜室内を気密状態にするための可動式の壁(図示省略)が設けられている。
 各成膜室40には、成膜室の基板入口側に、帯状可撓性基板1を挟む一対のグリップローラ44、52が設けられている。詳細は後述するが、グリップローラには、基板1を加圧する力が一定の一定型グリップローラ44と、基板1を加圧する力を制御できる可変型グリップローラ52がある。可変型グリップローラ52が、第4、6、8、10、16成膜室40d、40f、40h、40j、40pに設置され、残りの成膜室には、一定型グリップローラ44が設置されている。また、可変型グリップローラ52を設置した各成膜室には、詳細は後述するが、帯状可撓性基板1の上側の端面を検出する端面センサ42が設けられている。
 巻取側駆動部60には、帯状可撓性基板1を成膜部40から巻取部70へと搬送するために回転駆動する巻取側フィルム駆動ローラ62と、この前後に位置するフリーローラ61、63が設けられている。巻取部70には、巻き取り時の帯状可撓性基板1の張力を制御するための張力検出ローラ72と、この前後に位置するフリーローラ71、73と、薄膜積層体が形成された帯状可撓性基板1をロール状に巻き取る巻取コア75と、この前に位置するフリーローラ74が設けられている。
 次に、グリップローラについて詳細に説明する。図2は、図1の製造装置における帯状可撓性基板1と一定型グリップローラ44を拡大して示す正面図である。また、図3は、図1の製造装置における帯状可撓性基板1と可変型グリップローラ52を拡大して示す正面図である。いずれのグリップローラ44、52も、図2及び図3に示すように、帯状可撓性基板1の鉛直方向上側の端部と、下側の端部の両方に配置されている。また、いずれのグリップローラも、図2及び図3に示すように、搬送方向である水平に対して、角度θをつけて、斜めに設置されている。
 図2に示すように、上側の一定型グリップローラ44Uは、ローラの回転方向を、帯状可撓性基板1の搬送方向(すなわち水平方向)に対して上方に傾けて設置されている。このように、上側の一定型グリップローラ44Uの回転方向と、帯状可撓性基板1の搬送方向との間に角度θUをつけることで、帯状可撓性基板1が水平方向に搬送される際に、基板1を上方に引き上げる力FUが発生する。また、下側の一定型グリップローラ44Lは、同様に角度θUで、下方に傾けて設置されており、基板1を下方に引き下げる力FDが発生する。この2つの力FU、FDが等しく発生することで、基板1の表面に皺が発生するのを防ぐことができる。上下の角度θU、θLは、等しくすることが好ましく、0.1~6°が好ましい。
 図3に示すように、上側の可変型グリップローラ52Uも、同様に角度θUで、上方に傾けて設置されており、下側の可変型グリップローラ52Lも、同様に角度θLで、下方に傾けて設置されている。可変型グリップローラ52の場合、発生する基板1を上方に引き上げる力FUから、基板1を下方に引き下げる力FDを減算した差分が、実際に基板1の高さを上昇させる力FXである。ここで、基板1を引き上げる力FUは、グリップローラの角度θUが一定の場合、グリップローラの基板1を挟む加圧力FPが高くなる程、大きくなる。また、基板1を引き下げる力FDも、グリップローラの角度θLが一定の場合、グリップローラの基板1を挟む加圧力FPが高くなる程、大きくなる。よって、グリップローラの加圧力FPを変化させることで、基板1の高さを上昇させる力FX(=FU-FD)を変化させることができ、すなわち、基板1の高さを制御することができる。
 なお、グリップローラの角度θU、θLが大きい程、基板1を引く力FU、FDは大きくなるが、角度θU、θLが6°を超えるか又はローラ自身の静止摩擦力を超えると、基板1を引く力FU、FDはほとんど向上しなくなる。よって、角度θU、θLは0.1~6°が好ましい。上下の角度θU、θLは、等しくすることが好ましい。可変型グリップローラ52を上側と下側に設置した場合について説明したが、もちろん、上側の可変型グリップローラ52Uのみを設置して、この加圧力FPを変化させることで、同様に基板1の高さを制御することができる。
 次に、グリップローラの付属装置の構成について説明する。図4は、上側の可変型グリップローラ52とその付属装置の一例を模式的に示す切欠側面図である。図4に示すように、一対のグリップローラ52は、基板1側が開口したローラハウジング91、92内にそれぞれ回転可能に取り付けられている。一方のローラハウジング91は、断面L字形のアーム98の一端に固定されており、このアーム98は、懸垂部材103を介して、成膜室の壁面110の下面に固定されている。他方のローラハウジング92は、板状の加圧レバー90の一端に固定されており、この加圧レバー90は、その中央部分において、ヒンジ96を介して、アーム98の他端に回転可能に取り付けられている。そして、アーム98と加圧レバー90は、加圧バネ93で結ばれており、この加圧バネ93の初期張力F0で、一対のグリップローラ52が水平方向に基板1を挟むように構成されている。
 加圧レバー90の他端には、断面L字形の調整レバー95の一端が接触している。この調整レバー95は、その角部分において、ヒンジ97を介して、固定部材(図示省略)に回転可能に取り付けられている。調整レバー95の他端には、調整バネ94の一端が結ばれている。調整バネ94が調整レバー95の他端を、力FαXで鉛直方向に引っ張ると、ヒンジ97を支点にして調整レバー95が回転し、調整レバー95の一端が、加圧レバー90の他端を水平方向に力FαLで押すように構成されている。
 調整バネ94の他端は、可動ロッド105の先端が結ばれている。可動ロッド105の反対端は、リニヤ駆動モータ100に連結されており、リニヤ駆動モータ100の回転によって、可動ロッド105が鉛直方向LXに進退するように構成されている。リニヤ駆動モータ100には、所望の位置でリニヤ駆動モータ100をロックするブレーキ104が設けられている。また、リニヤ駆動モータ100には、リニヤ駆動モータ100の現在の回転数の位置MSを検出するモータ位置センサ101が設けられている。モータ位置センサ101としては、アブソリュートエンコーダが好ましい。可動ロッド105には、調整バネ94が調整レバー95を引っ張る力FαXを測定するためのロードセル99が設置されている。
 リニヤ駆動モータ100、モータブレーキ104、モータ位置センサ101、ロードセル99は、フランジ102により、成膜室の壁面110上に固定されている。また、可動ロッド105は、フランジ102内部および成膜室の壁面110を通過するように構成されている。成膜室の壁面110とフランジ102とは、オーリングシールまたは磁気シール106を介して固定されており、また、フランジ102と可動ロッド105とは、オーリングシールまたは磁気シール107を介して接触しており、これにより成膜室の気密状態が保たれている。
 上側の可変型グリップローラ52Uとその付属装置の構成について説明してきたが、下側の可変型グリップローラ52Lとその付属装置も、上下が逆になるが、同様の構成にすることができる。一定型および可変型のグリップローラは、基板との接触面がシリコンゴムやフッ素ゴム等の耐熱性ゴム、PTFEやポリイミド等の合成樹脂で作られていることが好ましい。また、ステンレスや鉄にクロムめっきを施した素材であっても所定の性能が得られる。
 次に、基板1の高さを制御するための構成について説明する。図5は、グリップローラの付属装置とその制御手段を示すブロック図である。図5に示すように、コントローラ120は、デジタル信号入力インターフェース122と、アナログ信号出力インターフェース123と、アナログ信号入力インターフェース124と、これらインターフェースと送受信可能なコンピュータ演算部125とをその内部に備えている。また、コントローラ120は、制御を操作するための表示操作部126を備えている。
 デジタル信号入力インターフェース122は、モータ位置センサ101に対して受信可能に接続されている。アナログ信号出力インターフェース123は、リレー127を介してモータブレーキ104およびAC100Vのブレーキ駆動電源128と、送信可能に接続されている。また、アナログ信号出力インターフェース123は、モータ用アンプ129を介してリニヤ駆動モータ100と送信可能に接続されている。アナログ信号入力インターフェース124は、ロードセル用アンプ130を介してロードセル99と受信可能に接続されている。
 図5に示すように、基板1の端面を検出する端面センサ42が、鉛直方向に上下に2つ配置されている。上側の端面センサ42aは、基板1が所定の範囲を超えて上昇した場合に、基板端面を検出する位置に取り付けられ、下側の端面センサ42bは、基板1が所定の範囲を超えて下降した場合に、基板端面を検出しなくなる位置に取り付けられている。端面センサ42の端面検出範囲は、例えば、±5mmとすることができる。上側および下側の各端面センサ42a、42bには、デジタル信号入力インターフェース122がセンサ用アンプ131a、131bを介して受信可能に接続されている。
 なお、図5には、1台の上側の可変型グリップローラの付属装置しか示していないが、上側および下側の全ての可変型グリップローラ52a~52fの各付属装置が、この1台のコントローラ120に接続されている。また、図5では、端面センサ42を上下に2つ配置したが、もちろんこれに限定されず、3つ以上の複数の端面センサを配置することができる。
 以上の構成によれば、先ず、巻出側および巻取側の駆動部20、60によって、複数の成膜室40a~40p内を通る帯状可撓性基板1を、巻出コア11から巻取コア75への方向に水平に搬送する。成膜を行う際は、駆動ローラ21、62の回転を止めて帯状可撓性基板1を停止した状態にし、各成膜室40a~40pの壁(図示省略)を基板1と密着するまで移動させて、成膜室内を気密状態にする。そして、各成膜室内で帯状可撓性基板1の表面に薄膜を形成する。
 成膜後、成膜室の壁を元の位置に戻し、気密状態を解除する。再び、駆動ローラ21、62を回転させて、帯状可撓性基板1を隣の成膜室の位置まで搬送する。そして、停止した状態の帯状可撓性基板1に対し、再び各成膜室内を気密状態にして、成膜を行う。このように帯状可撓性基板1の搬送と成膜を繰り返し行うことで、帯状可撓性基板1の表面に薄膜積層体を製造することができる。
 帯状可撓性基板1は、第1成膜室40aから第14成膜室40nまでの長い距離を移動するが、帯状可撓性基板1を、この区間の両端に位置するフリーローラ23、31でしか支えない場合は、重力や基板の伸びにより下方に垂れ下がったり、基板の幅方向に蛇行したりするという問題がある。そこで、本実施の形態では、上述したように、可変型グリップローラ52の基板1を挟む加圧力FPを変化させることで、基板1の高さを上昇させる力Fを制御し、これにより、基板1の高さを所定の範囲内に維持することができる。可変型グリップローラ52の加圧力の目標値FPXは、次の式1により求めることができる。
 FPX=F0-R0・R1・FαX   ・・・(式1)
 F0:加圧バネの初期張力。
 FαX:調整バネが調整レバーを引っ張る力。
 R0:加圧レバーのレバー比。
 R1:調整レバーのレバー比。
 F0、R0、R1はいずれも固定値であるから、可変型グリップローラの加圧力の目標値FPXは、調整バネ94の張力FαXのみを変化させることで、制御することができる。目標とする調整バネ94の張力FαXを達成するための可動ロッド105の目標位置LXは、次の式2により求めることができる。
 LX=(FαX-Fα0)/K   ・・・(式2)
 Fα0:調整バネの初期張力。
 K:調整バネのバネ定数。
 可動ロッド105の位置Lは、リニヤ駆動モータ100の回転数Mに固定値であるネジリードG0を乗じた関係であるから、可動ロッド105の目標位置LXは、リニヤ駆動モータ100の回転数MXで制御することができる。なお、ネジリードG0とは、ボールネジによるモータ1回転当たりのロッドの送り量である。リニヤ駆動モータ100の現在の回転数の位置MSは、モータ位置センサ101で検出できる。よって、リニヤ駆動モータ100を目標の回転数の位置MXまで回転駆動する際は、現在の回転数MSを減算した差分のみ、リニヤ駆動モータ100を回転駆動すれば良い。このリニヤ駆動モータ100の制御のアルゴリズムのブロック図を図6に示す。
 また、ロードセル99を用いることで、調整バネ94の張力FαXをより正確に制御することができる。先ず、上述したように、式1により、可変型グリップローラ52の加圧力の目標値FPXから調整バネ94の張力の目標値FαXを求めた後、式2により、可動ロッド105の目標位置LXを求め、リニヤ駆動モータ100を目標の回転数の位置MXまで回転駆動する。次に、ロードセル99で、調整バネ94の張力の現状値FαSを測定する。目標とする調整バネ94の張力FαXを達成するための可動ロッド105の移動距離ΔLXは、次の式3により求めることができる。
 ΔLX=(FαX-FαS)/K   ・・・(式3)
 FαX:調整バネの張力の目標値。
 FαS:調整バネの張力の実測値。
 K:調整バネのバネ定数。
 可動ロッド105の移動距離ΔLXをネジリードG0で除することで、リニヤ駆動モータ100の回転数ΔMXを求めることができる。また、リニヤ駆動モータ100をこのΔMXの数だけ回転駆動した後、再び、ロードセル99で調整バネ94の張力の現状値FαSを測定する。そして、式3によりΔLXを求めて、再度、リニヤ駆動モータ100を回転駆動する。これを繰り返し行うことで、実際の調整バネ94の張力を、目標値FαXにより正確に近づけることができる。このロードセル99を用いた制御のアルゴリズムのブロック図を図6に示す。
 さらに、端面センサ42を用いることで、基板1の高さを所定の範囲内により正確に維持することができる。図5に示すように、基板1の高さが所定の範囲内であれば、上側の端面センサ42aは基板1の端面を検出せず(OFF)、下側の端面センサ42bは基板1の端面を検出する(ON)。基板1の高さが所定の範囲を超えて上昇してしまった場合は、上側と下側の両方の端面センサ42a、120bが基板1の端面を検出する(ON、ON)。また、基板1の高さが所定の範囲を超えて下降してしまった場合は、上側と下側の両方の端面センサ42a、120bは基板1の端面を検出しない(OFF、OFF)。
 これら各端面センサ42から送信されたON、OFF信号は、アンプ131で増幅された後、コントローラ120のデジタル信号入力インターフェース122が受信する。そして、コンピュータ演算部125で、基板1の高さが所定の範囲内であるか、その上であるか、又はその下であるかを判定する。
 基板1の高さが所定の範囲より上と判定した場合、上側の可変型グリップローラ52Uの加圧力の目標値FPXを下げる。具体的には、式4に示すように、上側の可変型グリップローラ52Uの加圧力の現在の目標値FPXから所定の変化量ΔFPXを減算して、再目標値FPXRを設定する。そして、式5に示すように、調整バネ94の張力の再目標値FαXRを算出する。
 FPXR=FPX-ΔFPX   ・・・(式4)
 FPXR=F0-R0・R1・FαXR   ・・・(式5)
 この再目標値FαXRに基づいて、上述した図6に示すアルゴリズムの制御を行う。また、この再目標値FαXRを設定する制御は、基板1の高さが所定の範囲内に下降して、上側の端面センサ42aがOFFになるまで、繰り返し行う。そして、上側の端面センサ42aがOFFになった時点で、コントローラ120のアナログ信号出力インターフェース123から、リレー127に作動信号を送り、モータブレーキ104を作動させて、調整バネ94の張力FαXが変動しないように、リニヤ駆動モータ100を固定する。
 一方、基板1の高さが所定の範囲より下と判定した場合、上側の可変型グリップローラ52Uの加圧力FPXを上げる。具体的には、式6に示すように、上側の可変型グリップローラ52Uの加圧力の現在の目標値FPXから所定の変化量ΔFPXを加算して、再目標値FPXRを設定する。そして、式7に示すように、調整バネ94の張力の再目標値FαXRを算出する。
 FPXR=FPX+ΔFP   ・・・(式6)
 FPXR=F0-R0・R1・FαXR   ・・・(式7)
 この再目標値FαXRに基づいて、上述した図6に示すアルゴリズムの制御を行う。また、この再目標値FαXRを設定する制御は、基板1の高さが所定の範囲内に上昇して、下側の端面センサ42bがONになるまで、繰り返し行う。そして、下側の端面センサ42bがONになった時点で、アナログ信号出力インターフェース123から、リレー127に作動信号を送り、モータブレーキ104を作動させて、リニヤ駆動モータ100を固定する。
 可変型グリップローラ52の基板1を挟む加圧力の目標値FPXは、基板の性質や、搬送距離、成膜室の間隔によって異なるが、例えば、2~40Nの範囲が好ましく、4~17Nの範囲が好ましい。なお、上記の説明では、上側の可変型グリップローラの加圧力のみを変化させて、基板の高さを所定の範囲内に収束させたが、基板が所定の範囲を超えて上昇した場合、下側の可変型グリップローラの加圧力を上げることでも、基板を所定の範囲内に下降させることができるし、基板が所定の範囲を超えて下降した場合、下側の可変型グリップローラの加圧力を下げることでも、基板を所定の範囲内に上昇させることができる。もちろん、上側と下側の可変型グリップローラの加圧力を両方とも変化させて、その差分を上げたり、下げたりすることでも、基板の高さを所定の範囲内に収束させることができる。
 また、一定型グリップローラ44の基板1を挟む加圧力も、同様に、基板の性質や、搬送距離、成膜室の間隔によって異なるが、例えば、2~40Nの範囲が好ましく、4~17Nの範囲が好ましい。上側と下側の一定型グリップローラ44の加圧力は、基板1の表面に皺が発生するのを防止するため、同じにすることが好ましい。
 なお、基板の搬送と停止を繰り返すステッピングロール方式の成膜装置について説明してきたが、本発明は、帯状可撓性基板の幅方向を鉛直方向に向けながら、基板を水平方向に長距離にわたって搬送する装置であれば、ステッピングロール方式に限らず、広く適用することができる。
(実施例1)
 上側の一対の可変型グリップローラにフィルムを挟み、フィルムを搬送させた際に生じたフィルムを支持する力の変化を測定した。グリップローラの設定角度θUを0°から7°まで1°ずつ変化させたとともに、各設定角度θUにおいて、グリップローラのフィルムを挟む加圧力を、4.4N、8.9N、16.3Nと増加させた。その結果を図7に示す。なお、図7の縦軸は、フィルムを搬送する前の基板を支持する力FU0から、搬送中のフィルムを支持する力FUXを減算した差分で、フィルムの引き上げ力FU(N)を表す。
 図7に示すように、グリップローラの設定角度θUが0°の場合を除き、設定角度θUが同じであれば、グリップローラがフィルムを挟む加圧力FPを大きくする程、フィルムの引き上げ力FUは大きくなった。一方、グリップローラの設定角度θUが0°の場合、加圧力FPを大きくしても、フィルムの引き上げ力FUはほとんど変化しなかった。また、グリップローラの設定角度θUが1~6°の間では、同じ加圧力FPにおいて、設定角度θUが大きい程、フィルムの引き上げ力FUが大きくなったが、設定角度θUが7℃の場合は、設定角度θUが6°の場合とほぼ同じであった。
(実施例2)
 図8に示す実験装置を用いて、フィルムの高さの変動を定量的に測定する試験を行った。図8に示す実験装置は、成膜室がない点を除いて、図1に示す装置と基本的に同じ構成である。図8に示す実験装置には、CVD成膜室を設ける区間において、一定型のグリップローラを上下にそれぞれ10セット設置するとともに、可変型のグリップローラを上のみに5セット設置した。なお、合計15セットのグリップローラのうち、可変型のグリップローラを第5、7、9、11、13番目に配置した。また、スパッタ成膜室を設ける区間には、一定型のグリップローラを上下にそれぞれ3セット設置した。
 実験装置の各区間の長さは、図中に示す通りである。フィルムの総搬送距離は約40mであった。各グリップローラのローラにはシリコンゴム製のものを用いた。また、グリップローラの設定角度θは全て1°に固定した。フィルムにはカプトンフィルムを用いた。
 本試験では、第5、7、9、11、13番目の可変型グリップローラの加圧力は、フィルムを約32m搬送する間に、フィルムが、当初の高さから10mm上昇し、次の約32mの搬送の間に、当初の高さまで下降し、今度は約32mの搬送の間に10mm下降し、そして約32mの搬送の間に再び10mm上昇して当初の高さに戻ることを目標として、手動で変化させた。この試験結果を、図9に示す。
 図9のグラフの縦軸は、フィルムの当初高さから相対的に変化した高さの差である変位量(mm)を示す。横軸は、フィルムの搬送距離(m)を示す。グラフ中の太線は、フィルム変位量の制御目標を示している。試験は、フィルムを約16m搬送して停止させ、グリップローラの加圧力を手動で変化させた後、再びフィルムを搬送するという作業を繰り返し行った。1回のフィルムの搬送作業を1ステップとし、図9には、1ステップ毎に、第6番目から第13番目までの各グリップローラの位置において測定したフィルムの変位量をプロットした。
 図9に示すとおり、フィルムの搬送を12ステップ行って、フィルムを約200m搬送した。その間、グリップローラの加圧力の変化に従って、フィルム変位量は、制御目標である太線とほぼ同様に変化した。よって、グリップローラの加圧力を変化させることで、フィルム変位量を目標通りに制御できることが確認できた。

Claims (8)

  1.  帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する装置であって、
     前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送する基板搬送手段と、
     前記基板の搬送方向に沿って連続して配列され、前記基板の表面に成膜を行う複数の成膜室と、
     前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側の端部を挟む少なくとも一対のグリップローラであって、このグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されているグリップローラと、
     前記少なくとも一対のグリップローラの前記基板を挟む力を変化させることで、前記基板の高さを制御する制御手段と
     を備えた薄膜積層体の製造装置。
  2.  帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する装置であって、
     前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送する基板搬送手段と、
     前記基板の搬送方向に沿って連続して配列され、前記基板の表面に成膜を行う複数の成膜室と、
     前記複数の成膜室のそれぞれの間に配置され、前記基板の鉛直方向上側の端部を挟む複数対のグリップローラと、
     前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側および下側の各端部を挟む少なくとも二対のグリップローラであって、前記上側の一対のグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されており、前記下側の一対のグリップローラの回転方向が前記基板の搬送方向に対して下方斜めに設置されているグリップローラと、
     前記上側および下側の二対のグリップローラのうち、少なくとも一方のグリップローラの前記基板を挟む力を変化させることで、前記基板の高さを制御する制御手段と
     を備えた薄膜積層体の製造装置。
  3.  前記グリップローラの基板を挟む力を変化させるアクチュエータと、
     前記アクチュエータにエネルギーを入力するための動力手段と、
     前記アクチュエータに入力したエネルギーを検出するロードセルと
     を更に備え、前記制御装置が、前記グリップローラの基板を挟む力を目標値にするために、前記アクチュエータに入力するエネルギーの目標値を算出し、この入力エネルギーの目標値を前記動力手段で前記アクチュエータに入力した後、前記ロードセルで検出した入力エネルギーの検出値を、前記入力エネルギーの目標値と比較して、前記アクチュエータに入力するエネルギーの目標値を変更する請求項1又は2に記載の薄膜積層体の製造装置。
  4.  前記基板の高さを検出するセンサを更に備え、前記制御装置が、前記センサにより前記基板の高さが所定の範囲内でないと判定された場合に、前記グリップローラの基板を挟む力の目標値を変更する請求項3に記載の薄膜積層体の製造装置。
  5.  帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する方法であって、
     前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送するステップと、
     前記基板の搬送方向に沿って連続して配列された複数の成膜室により、前記基板の表面に成膜を行うステップと、
     前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側の端部を挟む少なくとも一対のグリップローラであって、このグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されているグリップローラについて、その前記基板を挟む力を変化させることで、前記基板の高さを制御するステップと
     を含む薄膜積層体の製造方法。
  6.  帯状可撓性基板の表面に複数の薄膜を積層して薄膜積層体を製造する方法であって、
     前記基板の幅方向が鉛直方向になるようにして、前記基板を水平方向に搬送するステップと、
     前記基板の搬送方向に沿って連続して配列された複数の成膜室により、前記基板の表面に成膜を行うステップと、
     前記複数の成膜室の間のうち少なくとも1つの間に配置され、前記基板の鉛直方向上側および下側の各端部を挟む少なくとも二対のグリップローラであって、前記上側の一対のグリップローラの回転方向が前記基板の搬送方向に対して上方斜めに設置されており、前記下側の一対のグリップローラの回転方向が前記基板の搬送方向に対して下方斜めに設置されているグリップローラについて、これら上側および下側の二対のグリップローラのうち、少なくとも一方のグリップローラの前記基板を挟む力を変化させることで、前記基板の高さを制御するステップと
     を含む薄膜積層体の製造方法。
  7.  前記基板の高さを制御するステップが、
     前記グリップローラの基板を挟む力を目標値にするために、前記グリップローラの基板を挟む力を変化させるアクチュエータに入力するエネルギーの目標値を算出するステップと、
     このエネルギーの目標値を、動力手段により前記アクチュエータに入力するステップと、
     前記アクチュエータに入力したエネルギーをロードセルで検出し、この入力エネルギーの検出値を、前記入力エネルギーの目標値と比較して、前記アクチュエータに入力するエネルギーの目標値を変更するステップと
     を更に含む請求項5又は6に記載の薄膜積層体の製造方法。
  8.  前記基板の高さを制御するステップが、
     センサにより前記基板の高さを検出し、前記基板の高さが所定の範囲内であるかどうかを判定するステップと、
     前記基板の高さが所定の範囲内でないと判定された場合に、前記グリップローラの基板を挟む力の目標値を変更するステップと
     を更に含む請求項7に記載の薄膜積層体の製造方法。
PCT/JP2009/053876 2008-03-31 2009-03-02 薄膜積層体の製造装置および方法 WO2009122836A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801003023A CN101796216B (zh) 2008-03-31 2009-03-02 薄膜叠层体的制造装置和方法
JP2010505483A JP4840712B2 (ja) 2008-03-31 2009-03-02 薄膜積層体の製造装置および方法
US12/676,103 US8431439B2 (en) 2008-03-31 2009-03-02 Thin film laminated body manufacturing apparatus and method
EP09726802.3A EP2261394A4 (en) 2008-03-31 2009-03-02 EQUIPMENT AND METHOD FOR PRODUCING THIN FILM LAMINATES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008091032 2008-03-31
JP2008-091032 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122836A1 true WO2009122836A1 (ja) 2009-10-08

Family

ID=41135231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053876 WO2009122836A1 (ja) 2008-03-31 2009-03-02 薄膜積層体の製造装置および方法

Country Status (5)

Country Link
US (1) US8431439B2 (ja)
EP (1) EP2261394A4 (ja)
JP (1) JP4840712B2 (ja)
CN (1) CN101796216B (ja)
WO (1) WO2009122836A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073955A1 (ja) * 2008-12-24 2010-07-01 富士電機ホールディングス株式会社 可撓性基板の処理装置
WO2011070960A1 (ja) * 2009-12-11 2011-06-16 富士電機ホールディングス株式会社 可撓性基板の搬送装置
WO2011074438A1 (ja) * 2009-12-16 2011-06-23 富士電機ホールディングス株式会社 可撓性基板の位置制御装置
WO2011126132A1 (ja) * 2010-04-09 2011-10-13 株式会社ニコン 基板処理装置
JP2012001768A (ja) * 2010-06-17 2012-01-05 Fuji Electric Co Ltd 薄膜積層体製造装置の基板位置制御装置
JP2012026031A (ja) * 2010-06-24 2012-02-09 Fuji Electric Co Ltd 薄膜積層体製造装置およびその運転方法
US20120031565A1 (en) * 2009-01-28 2012-02-09 Fuji Electric Co., Ltd. Flexible substrate position control device
CN102575342A (zh) * 2010-02-09 2012-07-11 富士电机株式会社 用于柔性基板的位置控制器
EP2514852A1 (en) * 2009-12-14 2012-10-24 Fuji Electric Co., Ltd. Conveyance device for film substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0702163L (sv) * 2007-09-25 2008-12-23 Abb Research Ltd En anordning och ett förfarande för stabilisering och visuell övervakning av ett långsträckt metalliskt band
KR101241718B1 (ko) * 2011-10-13 2013-03-11 엘지이노텍 주식회사 태양전지 모듈 및 이의 제조방법
JP6066153B2 (ja) * 2012-11-30 2017-01-25 エルジー・ケム・リミテッド ロール
CN105506553B (zh) * 2014-09-26 2019-03-12 蒯一希 真空镀膜装置、真空双面镀膜装置及带材的位置调整方法
CN109920880B (zh) * 2019-03-19 2020-08-21 杭州耀晗光伏技术有限公司 一种柔性光伏电池板自动化打孔切割设备
CN111705302B (zh) * 2020-08-18 2020-11-10 上海陛通半导体能源科技股份有限公司 可实现晶圆平稳升降的气相沉积设备
CN114318286A (zh) * 2022-01-27 2022-04-12 北京青禾晶元半导体科技有限责任公司 一种复合基板的制备装置及复合基板的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587502Y2 (ja) * 1979-04-05 1983-02-09 株式会社 ユタカ カ−ドの安定走行装置
JPH08246150A (ja) * 1995-03-10 1996-09-24 Fuji Electric Co Ltd 薄膜製造装置
JP2001223375A (ja) * 2000-02-10 2001-08-17 Semiconductor Energy Lab Co Ltd 可撓性基板の搬送装置及び成膜装置
JP2005072408A (ja) 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 薄膜製造装置および薄膜製造方法
JP2009038276A (ja) * 2007-08-03 2009-02-19 Fuji Electric Systems Co Ltd 薄膜積層体の製造装置
JP2009057632A (ja) * 2007-08-03 2009-03-19 Fuji Electric Holdings Co Ltd 薄膜積層体の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944155B1 (ja) * 1967-07-26 1974-11-26
JPS587502A (ja) * 1981-07-07 1983-01-17 Kokusai Electric Co Ltd 移動体の位置検出装置
US5114770A (en) * 1989-06-28 1992-05-19 Canon Kabushiki Kaisha Method for continuously forming functional deposited films with a large area by a microwave plasma cvd method
JP2902944B2 (ja) 1994-06-02 1999-06-07 株式会社富士電機総合研究所 薄膜光電変換素子の製造装置
JP3208639B2 (ja) 1995-03-10 2001-09-17 ヒラノ光音株式会社 連続シート状材料の表面処理方法及び表面処理装置
US6235634B1 (en) * 1997-10-08 2001-05-22 Applied Komatsu Technology, Inc. Modular substrate processing system
JP2009038277A (ja) * 2007-08-03 2009-02-19 Fuji Electric Systems Co Ltd 薄膜積層体の製造装置
EP2020392B1 (en) * 2007-08-03 2013-10-23 Fuji Electric Co., Ltd. Apparatus for manufacturing thin-film laminated member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587502Y2 (ja) * 1979-04-05 1983-02-09 株式会社 ユタカ カ−ドの安定走行装置
JPH08246150A (ja) * 1995-03-10 1996-09-24 Fuji Electric Co Ltd 薄膜製造装置
JP2001223375A (ja) * 2000-02-10 2001-08-17 Semiconductor Energy Lab Co Ltd 可撓性基板の搬送装置及び成膜装置
JP2005072408A (ja) 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 薄膜製造装置および薄膜製造方法
JP2009038276A (ja) * 2007-08-03 2009-02-19 Fuji Electric Systems Co Ltd 薄膜積層体の製造装置
JP2009057632A (ja) * 2007-08-03 2009-03-19 Fuji Electric Holdings Co Ltd 薄膜積層体の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2261394A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2368824A1 (en) * 2008-12-24 2011-09-28 Fuji Electric Co., Ltd. Flexible substrate processing device
WO2010073955A1 (ja) * 2008-12-24 2010-07-01 富士電機ホールディングス株式会社 可撓性基板の処理装置
JP5201490B2 (ja) * 2008-12-24 2013-06-05 富士電機株式会社 可撓性基板の処理装置および薄膜積層体の製造装置
EP2368824A4 (en) * 2008-12-24 2012-09-05 Fuji Electric Co Ltd DEVICE FOR PROCESSING FLEXIBLE SUBSTRATES
US20120031565A1 (en) * 2009-01-28 2012-02-09 Fuji Electric Co., Ltd. Flexible substrate position control device
WO2011070960A1 (ja) * 2009-12-11 2011-06-16 富士電機ホールディングス株式会社 可撓性基板の搬送装置
JP5423808B2 (ja) * 2009-12-11 2014-02-19 富士電機株式会社 可撓性基板の搬送装置
CN102762473A (zh) * 2009-12-11 2012-10-31 富士电机株式会社 挠性基板的传送装置
EP2514852A4 (en) * 2009-12-14 2013-10-09 Fuji Electric Co Ltd CONVEYOR DEVICE FOR FILM SUBSTRATE
EP2514852A1 (en) * 2009-12-14 2012-10-24 Fuji Electric Co., Ltd. Conveyance device for film substrate
WO2011074438A1 (ja) * 2009-12-16 2011-06-23 富士電機ホールディングス株式会社 可撓性基板の位置制御装置
EP2407403A1 (en) * 2009-12-16 2012-01-18 Fuji Electric Co., Ltd. Apparatus for controlling position of flexible substrate
EP2407403A4 (en) * 2009-12-16 2013-01-09 Fuji Electric Co Ltd DEVICE FOR CONTROLLING THE POSITION OF A FLEXIBLE SUBSTRATE
JP5196283B2 (ja) * 2009-12-16 2013-05-15 富士電機株式会社 可撓性基板の位置制御装置
CN102575342A (zh) * 2010-02-09 2012-07-11 富士电机株式会社 用于柔性基板的位置控制器
US20120291958A1 (en) * 2010-02-09 2012-11-22 Fuji Electric Co., Ltd Position controller for flexible substrate
US8746309B2 (en) * 2010-02-09 2014-06-10 Fuji Electric Co., Ltd. Position controller for flexible substrate
JP5708642B2 (ja) * 2010-04-09 2015-04-30 株式会社ニコン 基板処理装置
WO2011126132A1 (ja) * 2010-04-09 2011-10-13 株式会社ニコン 基板処理装置
CN102835189A (zh) * 2010-04-09 2012-12-19 株式会社尼康 基板处理装置
CN105632978A (zh) * 2010-04-09 2016-06-01 株式会社尼康 基板处理装置及基板处理方法
TWI557834B (zh) * 2010-04-09 2016-11-11 尼康股份有限公司 Substrate processing device
TWI587433B (zh) * 2010-04-09 2017-06-11 尼康股份有限公司 A substrate processing apparatus and a substrate processing method
KR101756496B1 (ko) 2010-04-09 2017-07-10 가부시키가이샤 니콘 기판 처리 장치
TWI611500B (zh) * 2010-04-09 2018-01-11 Nikon Corp 基板處理裝置
JP2012001768A (ja) * 2010-06-17 2012-01-05 Fuji Electric Co Ltd 薄膜積層体製造装置の基板位置制御装置
JP2012026031A (ja) * 2010-06-24 2012-02-09 Fuji Electric Co Ltd 薄膜積層体製造装置およびその運転方法

Also Published As

Publication number Publication date
JP4840712B2 (ja) 2011-12-21
US20110086457A1 (en) 2011-04-14
EP2261394A4 (en) 2013-05-01
CN101796216B (zh) 2012-01-25
CN101796216A (zh) 2010-08-04
EP2261394A1 (en) 2010-12-15
US8431439B2 (en) 2013-04-30
JPWO2009122836A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
JP4840712B2 (ja) 薄膜積層体の製造装置および方法
EP2020392B1 (en) Apparatus for manufacturing thin-film laminated member
JP5201490B2 (ja) 可撓性基板の処理装置および薄膜積層体の製造装置
JP2009038276A (ja) 薄膜積層体の製造装置
TWI379016B (en) Web guide control, web processing apparatus and method for operating the same
US20120031565A1 (en) Flexible substrate position control device
JP5423808B2 (ja) 可撓性基板の搬送装置
JP2009057632A (ja) 薄膜積層体の製造装置
JP2009038277A (ja) 薄膜積層体の製造装置
WO2022216669A1 (en) Systems and methods for measuring tension distribution in webs of roll-to-roll processes
JPWO2011016471A1 (ja) 薄膜積層体の製造装置
EP2762431B1 (en) Web guide control unit, web processing apparatus and method for operating the same
US20140116851A1 (en) Conveyor apparatus
KR101628864B1 (ko) 기판 이송 장치
WO2010032530A1 (ja) 薄膜構造体及びその製造方法
JP4780474B2 (ja) 薄膜積層体の製造方法および製造装置
JP2010177343A (ja) 薄膜積層体の製造装置
JP7249503B2 (ja) ガラスロールの製造方法及び製造装置
JP4958010B2 (ja) 薄膜積層体の製造装置
JP2010215371A (ja) 帯状可撓性基板搬送システムおよびそれに用いる搬送位置制御装置
TW202320194A (zh) 跨卷材張力測量及控制
JP2011146437A (ja) 可撓性基板の位置制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100302.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009726802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010505483

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12676103

Country of ref document: US