WO2010073955A1 - 可撓性基板の処理装置 - Google Patents

可撓性基板の処理装置 Download PDF

Info

Publication number
WO2010073955A1
WO2010073955A1 PCT/JP2009/071018 JP2009071018W WO2010073955A1 WO 2010073955 A1 WO2010073955 A1 WO 2010073955A1 JP 2009071018 W JP2009071018 W JP 2009071018W WO 2010073955 A1 WO2010073955 A1 WO 2010073955A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
pair
rollers
roller
sandwiching
Prior art date
Application number
PCT/JP2009/071018
Other languages
English (en)
French (fr)
Inventor
隆典 山田
勝治 横山
秀和 布野
祐二 塚原
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Priority to EP09834758A priority Critical patent/EP2368824A4/en
Priority to US12/737,950 priority patent/US20110240225A1/en
Priority to JP2010544023A priority patent/JP5201490B2/ja
Priority to CN200980135959.3A priority patent/CN102149621A/zh
Publication of WO2010073955A1 publication Critical patent/WO2010073955A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/0322Controlling transverse register of web by acting on edge regions of the web
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/31Features of transport path
    • B65H2301/311Features of transport path for transport path in plane of handled material, e.g. geometry
    • B65H2301/3113Features of transport path for transport path in plane of handled material, e.g. geometry vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/32Orientation of handled material
    • B65H2301/323Hanging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/50Auxiliary process performed during handling process
    • B65H2301/51Modifying a characteristic of handled material
    • B65H2301/511Processing surface of handled material upon transport or guiding thereof, e.g. cleaning
    • B65H2301/5114Processing surface of handled material upon transport or guiding thereof, e.g. cleaning coating
    • B65H2301/51145Processing surface of handled material upon transport or guiding thereof, e.g. cleaning coating by vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/15Roller assembly, particular roller arrangement
    • B65H2404/152Arrangement of roller on a movable frame
    • B65H2404/1521Arrangement of roller on a movable frame rotating, pivoting or oscillating around an axis, e.g. parallel to the roller axis
    • B65H2404/15212Arrangement of roller on a movable frame rotating, pivoting or oscillating around an axis, e.g. parallel to the roller axis rotating, pivoting or oscillating around an axis perpendicular to the roller axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2601/00Problem to be solved or advantage achieved
    • B65H2601/20Avoiding or preventing undesirable effects
    • B65H2601/25Damages to handled material
    • B65H2601/253Damages to handled material to particular parts of material
    • B65H2601/2532Surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/175Plastic
    • B65H2701/1752Polymer film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a processing apparatus that performs processing such as film formation while transporting a belt-like flexible substrate, and more particularly to an apparatus that controls the position in the width direction of the flexible substrate.
  • Patent Document 1 discloses that a plurality of strip-like flexible substrates (polyimide films) supplied from an unwinding roll are arranged in the transport direction of the flexible substrates while intermittently transporting them at a predetermined pitch.
  • a manufacturing apparatus of a thin film laminate in which a plurality of thin films having different properties are laminatedly formed on the flexible substrate in a film forming unit and wound up as a product roll.
  • a horizontal posture that is, a type in which film formation is carried while the width direction of the belt-like flexible substrate is horizontal
  • a vertical posture that is, the width direction of the belt-like flexible substrate
  • film formation is performed while being transported vertically.
  • the latter has advantages such as a smaller installation area and less contamination of the substrate surface than the former, but when the transport span becomes long, it becomes difficult to maintain the transport height constant against gravity. The tendency of the surface of the flexible substrate to be wrinkled or the flexible substrate hanging down becomes remarkable.
  • the present invention has been made in view of the problems as described above, and an object thereof is to generate a drop or crease of the flexible substrate while transporting the belt-like flexible substrate over a long distance in the vertical posture.
  • An object of the present invention is to provide a flexible substrate processing apparatus capable of performing high-quality processing by maintaining the widthwise position of the flexible substrate constant.
  • a transport means (12, 14, 32, 34) for transporting a belt-like flexible substrate in a vertical orientation and in a lateral direction;
  • the position control device is a pair of upper sandwiching rollers sandwiching the upper edge of the flexible substrate, wherein the rotating direction in the sandwiching portion is the conveying direction of the flexible substrate
  • a pair of upper sandwiching rollers (24, 25) whose respective rotation axes are inclined so as to have a minute declination directed obliquely upward with respect to the above, and the pair of upper sandwiching rollers rotatably and mutually rotatably supported
  • Upper support mechanism 26, including movable and fixed support members 7
  • a biasing member 51, 51 '
  • the belt-like flexible substrate is vertically transported by transport means such as feed rollers disposed on the upstream side and downstream side of the processing section, and the processing section performs processing such as film formation. .
  • the edge positioned on the upper side of the flexible substrate is pinched by the pinch roller pair constituting the position control device, and the rotation direction in the pinch portion of the pinch roller pair is in the transport direction of the flexible substrate.
  • the lifting force depends on the clamping force of the pinching roller pair, that is, the biasing force of the biasing member. Therefore, by displacing the biasing member by the driving means and adjusting the biasing force, the vertical width direction of the belt-like flexible substrate The position can be controlled and can be maintained within a constant or predetermined tolerance.
  • the vertical width direction position of the flexible substrate is maintained constant, and the sag is suppressed, whereby the flexible substrate in the transport span is The tension of the substrate is equalized, and the occurrence of wrinkles and distortion is prevented, thereby enabling high-quality processing of the flexible substrate.
  • the pinching roller pair since the pinching roller pair only pinches the edge positioned on the upper side of the belt-like flexible substrate, it does not affect the product portion.
  • small diameter narrow rollers can be used, they can be installed in a small space between the processing units, and the spacing between the processing units and the margin on the flexible substrate can be made as small as possible, and the productivity can be increased. It is advantageous to improve the equipment space and save the space.
  • a conveying means (12, 14, 32, 34) for conveying the belt-like flexible substrate in the vertical posture in the horizontal direction;
  • a pair of upper sandwiching rollers (24, 25) whose rotational axes are inclined so as to have a small declination angle obliquely upward with respect to the transport direction of the sheet, and the pair of upper sandwiching rollers rotatably and mutually contact each other
  • Upper support mechanism including movable and fixed support members to support 8, 29
  • a biasing member (81, 81 ') for biasing the one upper gripping roller
  • the position control device is configured to directly displace the biasing member by the drive means to adjust the clamping pressure, whereas in the second basic aspect, the position control device is movable.
  • a second biasing member for applying an adjusting force in the opposite direction to the biasing member (the first biasing member) to the support member is provided, and the second biasing member is displaced by the driving means to generate the biasing force (the adjusting force)
  • the biasing force of the first biasing member is offset by the amount of the adjusted force that has been adjusted and changed, and the pinching force of the pinch roller pair is adjusted.
  • the urging force of the first urging member always acts on the pinch roller pair via the movable support member, and the pinching force of the pinch roller pair is small, ie, As the displacement of the position in the vertical width direction is smaller and the position control converges, the biasing force of the first biasing member and the biasing force (adjustment force) of the second biasing member become larger, and the control accuracy and stability are improved. It is advantageous to improve.
  • the other effects and advantages are the same as in the first basic aspect.
  • the manufacturing apparatus including the film forming unit are disposed in a common vacuum chamber.
  • driving means including an actuator such as a motor and a fluid pressure cylinder in a vacuum chamber which is depressurized to a vacuum and maintained at a relatively high temperature. Therefore, when the present invention has a configuration in which the clamping pressure of the pinching roller pair is remotely operated by an actuator installed outside the vacuum chamber, the secondary aspect as described below due to the arrangement of the biasing members.
  • the processing unit includes at least one film forming unit (41) disposed in a vacuum chamber, and the pair of The upper gripping roller (24, 25), the upper support mechanism (26, 27), and the biasing member (51) are disposed in the vacuum chamber, and the drive means is outside the vacuum chamber.
  • the processing unit includes at least one film forming unit (41) disposed in a vacuum chamber, and the pair of An upper pinching roller (24, 25) and the upper support mechanism (26, 27) are disposed in the vacuum chamber, and the biasing member (51 ') is disposed outside the vacuum chamber,
  • Driving means including an actuator (56) disposed outside the vacuum chamber, for transmitting the biasing force of the biasing member to the movable support member in the vacuum chamber via a sealing means (57) It further comprises a force transmission mechanism (55 ', 54', 53 ') (FIG. 9).
  • the processing unit includes at least one film forming unit (41) disposed in a vacuum chamber, and the pair of The upper clamping roller (24, 25), the upper support mechanism (28, 29), and the biasing member (81) are disposed in the vacuum chamber, and the second biasing member (82) is the vacuum.
  • the driving means includes an actuator (86) disposed outside the vacuum chamber, and the adjusting force of the second biasing member is provided via the sealing means (57).
  • An adjustment force transmission mechanism (85, 84, 83) for transmitting to the movable support member in the vacuum chamber is further provided (FIG. 7).
  • the processing unit includes at least one film forming unit (41) disposed in a vacuum chamber, and the pair of An upper clamping roller (24, 25), the upper support mechanism (28, 29), the biasing member (81), and the second biasing member (82 ') are disposed in the vacuum chamber, An actuator (86) disposed outside the vacuum chamber, and a drive transmission for transmitting a drive of the actuator to the second biasing member in the vacuum chamber via a seal (57).
  • the driving means includes an actuator (86) disposed outside the vacuum chamber, and the biasing force of the biasing member is controlled by the sealing means (57).
  • the apparatus further comprises an urging force transmission mechanism (85 ′ ′, 84 ′ ′, 83 ′ ′) for transmitting the movable support member in the vacuum chamber (FIG. 11).
  • the seal means (57) is a seal bearing, and the drive transmission mechanism, the biasing force transmission mechanism, or the adjustment force transmission mechanism is airtight and round by the seal bearing. It comprises a movably supported shaft (54, 54 ', 84, 84', 84 ") and is configured to transmit a rotational force from the outside to the inside of the vacuum chamber via the shaft It is suitable.
  • the pinching pressure of the pinching roller pair is remotely controlled from the outside of the vacuum chamber, it is transmitted as a rotational force via a shaft that is airtightly and rotatably supported by a seal bearing provided on a partition of the vacuum chamber.
  • the load on the seal structure is small, and the driving force, the biasing force, or the adjusting force can be efficiently transmitted to the vacuum chamber, which is advantageous in securing the accuracy of the substrate position control.
  • the position control device is a pair of lower sandwiching rollers sandwiching the lower edge of the flexible substrate, and the rotation direction in the sandwiching portion is in the conveyance direction of the flexible substrate.
  • a pair of lower nipping rollers (23) whose respective rotational axes are inclined so as to have a slight declination directed obliquely downward, and the pair of lower nipping rollers can be rotated and mutually approached and separated.
  • a lower support mechanism including a movable and fixed support member for supporting the lower support roller, and a lower support mechanism for urging the one lower holding roller against the other lower holding roller via the movable support member. It is preferable to further comprise a biasing member.
  • the strip-like flexible substrate is stretched in the vertical direction, that is, in the width direction, by the controllable lifting force by the upper pinch roller pair and the pull-down force by the lower pinch roller pair.
  • position control can be performed with higher accuracy.
  • a lower drive means for displacing the lower biasing member to adjust the clamping pressure of the pair of lower gripping rollers is further provided, or the lower side is attached to the movable support member.
  • a lower second biasing member for applying an adjustment force in a direction opposite to the biasing member; and a lower driving means for displacing the lower second biasing member to adjust the clamping pressure of the pair of lower gripping rollers It is preferable to further comprise.
  • a conveying means (12, 14, 32, 34) for conveying the belt-like flexible substrate in the vertical posture in the horizontal direction;
  • the position control device is a pair of upper sandwiching rollers sandwiching the upper edge of the flexible substrate, wherein the rotational direction in the sandwiching portion is in the conveying direction of the flexible substrate.
  • the elastic displacement of the spring is achieved by adopting a configuration in which the support point of the spring is angularly displaced around the connection point with the transmission mechanism. Even in the state of maintaining constant, the angular component of the biasing force contributing to the clamping force of the holding roller pair, that is, the component orthogonal to the rotational radius direction of the spring connection point is gradually increased or decreased according to the angular displacement of the spring support point. be able to.
  • This configuration is advantageous in that the driving force required for control can be small, the mechanism can be simplified, and the control can be performed with high accuracy, as compared with the configuration in which the spring support point is moved forward and backward in the acting direction of the biasing force.
  • the biasing force of the spring always acts on the transmission mechanism over the entire range of angular displacement including the region where the clamping pressure of the clamping roller pair is small, and the angular component of the biasing force contributing to the clamping pressure of the clamping roller pair Becomes smaller, the rotational radial direction component of the spring connection point becomes larger, and this radial direction component contributes to the stabilization of the angular position of the transmission mechanism and the clamping pressure of the corresponding clamping roller pair. Therefore, it is advantageous in improving the control accuracy and stability in the area where the clamping pressure of the clamping roller pair is small, that is, the positional deviation of the flexible substrate in the vertical width direction is small and the position control converges. .
  • the elasticity of the spring is such that the drive means passes through the connection point with the transmission mechanism and the axis parallel to the rotation axis of the transmission mechanism. It is preferred to include a drive member (161) for angular displacement while maintaining the displacement constant.
  • the release position of the pinching roller using the toggle mechanism as described below is set by the drive means.
  • the transmission mechanism is configured such that an angular displacement of the support point by the drive means is at a toggle angle position and the biasing force of the spring supported at the toggle angle position is
  • the toggle angle position (161 ') is such that it can be held at two positions: a position where the one nipping roller is in pressure contact with the other nipping roller, and a position where the one nipping roller is separated from the other nipping roller.
  • the position control device is a pair of lower sandwiching rollers sandwiching the lower edge of the flexible substrate, wherein the rotational direction in the sandwiching portion is the flexible
  • a pair of lower nipping rollers (123) whose respective rotation axes are inclined so as to have a small declination angle obliquely downward with respect to the transport direction of the substrate, and the pair of lower nipping rollers are rotatable and in contact with each other.
  • a lower support mechanism including a movable and fixed support member supported to be separated, and an urging force pressing the one lower holding roller against the other lower holding roller via the movable support member And a lower spring to generate.
  • the upper plate is provided with a pair of lower sandwiching rollers sandwiching the lower edge of the flexible substrate,
  • the pinching roller pair has a small deflection angle directed obliquely upward
  • the lower pinching roller pair has a minute deflection angle directed obliquely downward
  • the lift force controllable by the upper pinching roller pair, the lower pinching roller pair The belt-like flexible substrate is stretched in the vertical direction, that is, the width direction between the film forming units by the pull-down force by the above, and the position control in the vertical direction is performed in the stretched state, whereby position control can be performed with higher accuracy.
  • the apparatus further comprises detection means (49) for detecting the position of the flexible substrate in the vertical width direction, and the position control device controls the drive means based on the detection value of the detection means. It is preferred to further comprise a part (50, 150). With this configuration, by performing calibration of the clamping pressure and the control amount (angular displacement) in advance, automatic control by feedback control or the like becomes possible.
  • the adjustment can be performed so that the substrate position can be corrected by the transfer force of the transfer means during the next transfer period, and furthermore, the monitoring of the vertical width position and the correction of the clamping pressure can be performed during the transfer period. it can.
  • the clamping pressure is corrected as needed while constantly monitoring the position in the vertical width direction.
  • the first basic aspect described above includes a transport unit for a belt-like flexible substrate, a processing unit for the flexible substrate installed in the transport route for the flexible substrate, and the processing unit A position control device for controlling the position in the width direction of the flexible substrate, wherein the position control device is a pair of holding rollers for holding the side edges of the flexible substrate, A pair of nipping rollers in which each rotation axis is inclined such that the rotation direction in the nipping portion has a small declination toward the end in the width direction with respect to the transport direction of the flexible substrate; A supporting mechanism on each side including movable and fixed supporting members rotatably supporting the holding rollers in each pair and capable of supporting each other in a mutually contactable manner, and the one holding roller via the other movable support members via the respective movable support members.
  • a flexible substrate comprising: biasing members on each side to be biased; and drive means for displacing at least one of the biasing members to adjust a pinching force of at least one of the pair of pinching rollers.
  • the second basic aspect of the present invention is a belt-like flexible substrate carrying means, a processing unit for the flexible substrate installed in the flexible substrate carrying path, and the processing unit A position control device for controlling the position in the width direction of the flexible substrate, wherein the position control device is a pair of holding rollers for holding the side edges of the flexible substrate, A pair of nipping rollers in which each rotation axis is inclined such that the rotation direction in the nipping portion has a small declination toward the end in the width direction with respect to the transport direction of the flexible substrate; A support mechanism on each side including movable and fixed support members rotatably supporting the pinch rollers in each pair so as to be able to contact and release mutually, and each one pinch roller via each movable support member One that makes pressure contact with the other pinching roller Of the pair of pinching rollers, and a second biasing member of each side which applies an adjusting force in the direction opposite to the biasing member to the movable support members. And a drive means for displacing at least one
  • the third basic aspect of the present invention is a belt-like flexible substrate carrying means, a processing unit for the flexible substrate installed in the flexible substrate carrying path, and the processing unit A position control device for controlling the position in the width direction of the flexible substrate, wherein the position control device is a pair of holding rollers for holding the side edges of the flexible substrate, A pair of nipping rollers in which each rotation axis is inclined such that the rotation direction in the nipping portion has a small declination toward the end in the width direction with respect to the transport direction of the flexible substrate; A support mechanism on each side including movable and fixed support members rotatably supporting the pinch rollers in each pair so as to be able to contact and release mutually, and each one pinch roller via each movable support member Attached to the other pinching roller The pinching force of at least one of the pair of pinching rollers is adjusted, the spring on each side that generates a force, the transmission mechanism on each side that transmits the biasing force of each spring as a torque to the movable support
  • the apparatus for processing a flexible substrate according to the present invention is effective in generating a drop or crease of the flexible substrate when carrying out processing such as film formation while transporting a belt-like flexible substrate. This makes it possible to maintain high-quality processing by maintaining the widthwise position constant.
  • high precision control can be performed with a small driving force, and a release mechanism of a pinch roller pair that can easily introduce the flexible substrate can be implemented at low cost. is there.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. It is a principal part expanded sectional view of FIG. 3 which shows the upper side pinching roller pair which concerns on this invention 1st Embodiment, and its control mechanism.
  • FIG. 6 is an enlarged sectional view of an essential part of the upper pinching roller pair according to the first embodiment of the present invention and its control mechanism as viewed from the upstream side in the transport direction. It is a principal part expanded sectional view corresponding to FIG.
  • FIG. 4 which shows the upper side pinching roller pair which concerns on this invention 2nd Embodiment, and its control mechanism. It is an important section expanded sectional view which looked at the upper pinching roller pair concerning the present invention second embodiment, and its control mechanism from the conveyance direction upper stream side.
  • FIG. 8 is a cross-sectional view taken along the line BB in FIG. 7; It is the schematic which shows the modification concerning this invention 1st Embodiment. It is the schematic which shows the modification concerning this invention 2nd Embodiment. It is the schematic which shows another modification concerning this invention 2nd Embodiment.
  • FIG. 7 is a schematic cross-sectional view taken along the line AA of FIG. 2 showing another modified example according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along line AA of FIG. 2 showing one film forming unit of the manufacturing apparatus according to the third embodiment of the present invention. It is a principal part expanded sectional view of FIG. 3 which shows the upper side pinching roller pair which concerns on this invention 3rd Embodiment, and its control mechanism. It is an important section expanded sectional view which looked at the upper pinching roller pair concerning the present invention 3rd embodiment, and its control mechanism from the conveyance direction upper stream side. It is an important section enlarged plan sectional view showing the upper pinching roller pair concerning the present invention third embodiment, and its control mechanism.
  • FIG. 16 is a schematic view of the upper pinching roller pair according to the fourth embodiment of the present invention and its control mechanism as viewed from the upstream side in the transport direction.
  • the manufacturing apparatus 100 includes an unwinding unit 10 and a winding unit 30 that constitute a conveyance system of a belt-like flexible substrate 1 (flexible film), and the width direction of the flexible substrate 1 in the vertical direction In the film forming unit 20 disposed along the conveyance path between them while intermittently conveying at a predetermined pitch from the unwinding unit 10 to the winding unit 30.
  • a plurality of thin films are sequentially formed in layers.
  • the chamber structures covering the unwinding unit 10, the film forming unit 20, and the winding unit 30 are airtightly connected to each other, and the entire apparatus is accommodated in a common vacuum chamber maintained at a predetermined degree of vacuum. .
  • the manufacturing lines of the two thin film laminates are laid out in parallel, and the unwinding unit 10 and the winding unit 30 are respectively disposed in each system, but the film forming unit 20 is accommodated in a common room structure (40, 407) For two systems.
  • the unwinding unit 10 unwinds and supplies the flexible substrate 1 from the unwinding roll 11 and supplies the unwound flexible substrate 1 to the film forming unit 20.
  • the winding unit 30 disposed on the downstream side of the film forming unit 20 has a guide roller 34 for guiding the flexible substrate 1 on the downstream side of the film forming unit 20 and the upper and lower sides of the flexible substrate 1 in the guide roller 34.
  • the tension detection roller 33b mainly has a function of positively controlling the film tension, which is mainly constituted by a winding device (31) which winds the flexible substrate 1 as a winding roll 31 around the core.
  • the respective rollers constituting the unwinding unit 10 and the winding unit 30 are axially oriented in the vertical direction in order to convey the flexible substrate 1 with the width direction thereof aligned in the vertical direction.
  • the side end position control roller 35 is configured such that its axial direction can be tilted relative to the vertical direction, and the rotation axis is based on the detection value of the vertical width direction position of the flexible substrate 1 in the guide roller 34. Is tilted to finely adjust the delivery direction of the flexible substrate 1 upward or downward, thereby correcting the position of the flexible substrate 1 in the vertical width direction of the guide roller 34 and maintaining the position constant.
  • the film forming unit 20 is composed of a plurality of film forming units 41 arranged at a predetermined pitch along the linear conveyance path of the flexible substrate 1 between the unwinding unit 10 and the winding unit 30. There is.
  • the chamber structure of the film forming unit 20 is composed of a plurality of chamber structure units 40 divided into each film forming unit 41.
  • the chamber structure units 40 are airtightly connected to each other, and constitute a part of the common vacuum chamber described above. doing.
  • Each film forming unit 41 is constituted by a vacuum evaporation unit for performing chemical vapor deposition (CVD) such as plasma CVD or physical vapor deposition (PVD) such as sputtering.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a plurality of film forming units 41 (a, b,. ..), A plurality of film forming units 41 (i, j) are formed by laminating electrode layers on the surface of the photoelectric conversion layer and the back surface of the flexible substrate 1 by sputtering.
  • FIG. 2 schematically shows one film forming unit 41 for plasma CVD.
  • the film forming unit 41 is provided with a fixed chamber 42 with mutually facing surfaces open, and a movable chamber 43 provided so as to be able to contact and separate from the fixed chamber 42 by forward and backward drive means such as a fluid pressure cylinder not shown
  • a ground electrode 44 incorporating a heater 44a is disposed in the fixed chamber 42.
  • a high frequency electrode 45 having a large number of gas injection holes is disposed on the surface, and the high frequency electrode 45 is connected to a high frequency power supply (not shown) outside the vacuum chamber.
  • the film forming unit 41 presses the movable chamber 43 against the fixed chamber 42 during the stop period of the intermittent transfer cycle of the flexible substrate 1 so that the film forming chamber (42 , 43) and introduce the source gas containing the thin film component into the film forming chamber (42, 43) through the gas introduction pipe 45a while further reducing the pressure in the film forming chamber (42, 43) through the exhaust pipe 45b.
  • a high frequency high voltage is applied to the high frequency electrode 45 to generate plasma, and a thin film can be formed on the surface of the heated flexible substrate 1 by a chemical reaction of the source gas.
  • the manufacturing apparatus 100 is provided with a substrate position control device for keeping the vertical width direction position (conveyance height) of the flexible substrate 1 in the film forming unit 20 constant.
  • the substrate position control device holds the upper holding roller for holding the upper edge of the flexible substrate 1 between the film forming units 41 in the film forming unit 20. .., Pair of lower pinching rollers 23, 23... Pinching the lower side edge of the flexible substrate 1, and at least one upper pinching roller pair 21 can control pinching pressure
  • the actuator 56 further includes an actuator 56.
  • the film forming unit 20 is composed of a plurality of chamber structure units 40 divided into each film forming unit 41, and each chamber structure unit 40 is a main structural member 46 disposed in the periphery,
  • the main structural member 46 is configured of a side wall 47 provided so as to be able to open and close, a ceiling panel 48 fixed to the upper portion of the main structural member 46, and the like.
  • a movable chamber 43 including a high frequency electrode 45 and its not-shown advancing / retracting driving means are attached to each side wall 47.
  • Openings 460 for allowing the flexible substrate 1 to pass through are provided through the respective main structural members 46 at junctions of the respective chamber structural units 40. On the upper and lower sides of the openings 460, the respective upper sides are provided.
  • the holding roller pairs 21, 22 ... and the lower holding roller pairs 23, 23 ... have the following small deflection angles ⁇ , ⁇ respectively via the angle adjustment means 7 described later, and the main structure It is attached to the material 46.
  • each upper pinching roller pair 21, 22... Is attached so that the rotational direction in the pinching portion has a small declination angle ⁇ directed obliquely upward with respect to the transport direction of the flexible substrate 1,
  • the side pinching roller pairs 23, 23... Are mounted so that the rotational direction in the pinching portion has a small declination angle ⁇ directed obliquely downward with respect to the transport direction of the flexible substrate 1.
  • the flexible substrate 1 has the small deflection angles ⁇ and ⁇ that allow the upper gripping roller pairs 21 and 22 and the lower gripping roller pairs 23 to mutually expand in the transport direction.
  • a lifting force is generated at the upper edge of the flexible substrate 1 during the process of being transported along each film forming unit 41, and a pulling-down force is generated at the lower edge. Will occur.
  • the flexible substrate 1 is expanded in the width direction, and the lifting force of the upper gripping roller pair 21 and 22 is a force obtained by adding the pulling force of the lower gripping roller pair 23 to the weight of the flexible substrate 1.
  • the vertical width direction position of the flexible substrate 1 becomes constant, and the pass line becomes horizontal.
  • the film forming process is sequentially performed on the flexible substrate 1 in each film forming unit 41, and physical properties such as surface density and elastic coefficient of the flexible substrate 1 may not be uniform in the transport direction. It can not simply be obtained.
  • the lifting force of the upper pinching roller pair 21 and 22 and the pulling-down force of the lower pinching roller pair 23 depend on the small deflection angles ⁇ and ⁇ and the contact pressure of each pinching roller pair.
  • the micro deflection angles ⁇ and ⁇ can be set in the range of 0.1 ° to 6 °, and although depending on the surface properties and the contact pressure of the flexible substrate 1 and the holding roller pair, the micro deflection angles ⁇ and ⁇ are When it exceeds approximately 6 °, dynamic friction becomes dominant, and the lifting force and the lowering force can not be improved.
  • the minute deflection angles ⁇ and ⁇ are preferably 0.5 ° to 2 °.
  • the lifting force and the lowering force of each roller pair are determined by the contact pressure. However, it is not realistic to control the contact pressure of all the upper pinch roller pairs 21 and 22 and the lower pinch roller pair 23 disposed between the film forming units 41 along the transport direction.
  • the contact pressure of a part of the upper pinching roller pair 21 among the upper pinching roller pairs 21, 22 ... is actively controlled, while the other upper pinching roller pair 22 and the lower pinching roller pair 23 are It is advantageous to perform the substrate position control with high efficiency more simply by setting the contact pressure as a preset fixed value and making the lifting force and the pulling down force act in a negative manner.
  • one upper sandwiching roller pair 21 on the upstream side in the transport direction of the film forming unit 41 (f) located approximately at the center of the transport span actively engages the flexible substrate 1 in the vertical width direction.
  • the contact pressure is configured to be controllable in order to control the same.
  • controllable upper gripping roller pair 21 is constructed by adding a control mechanism (contact pressure adjusting unit) to an assembly common to the other upper gripping roller pair 22 and the lower gripping roller pair 23 Be done.
  • the angle adjusting means 7 is common to each of the pinching roller pairs 21, 22, 23.
  • the control mechanism of the upper gripping roller pair 21 has three basic embodiments of a direct method (5), a balance method (8) and a toggle spring method (105) according to a method of applying a contact pressure to the roller pair.
  • FIGS. 4 and 5 show the upper pinching roller pair 21 and its control mechanism 5 according to the first embodiment of the present invention, and this control mechanism 5 directly controls the biasing force of the biasing member (51). It is a direct method.
  • a first embodiment of the present invention will be described with reference to the drawings.
  • the upper pinch roller pair 21 includes a pair of pinch rollers 24 and 25.
  • the fixed roller 24 is rotatably supported via a bearing by a support shaft 26a provided at the tip (lower end) of the fixed support member 26 and includes a metal roller body 24a and its circumferential surface And a heat-resistant rubber coating 24b applied to the
  • the movable roller 25 is also rotatably supported at the tip (lower end) of the movable support member 27 in the same manner as above, and is similarly made of a metal roller body 25a and a heat resistant rubber coating 25b attached to the circumferential surface thereof. It is configured.
  • the fixed support member 26 is fixed at its base end (upper end) portion to a bracket 71 constituting the angle adjustment means 7.
  • the bracket 71 has a support portion 71a perpendicular to the axial direction of the fixed roller 24, and a base portion 71b extending vertically upward from one side of the support portion 71a with respect to the support portion 71a.
  • the base end of the fixed support member 26 is fixed to 71 a.
  • the shim 73 is interposed between the base 71 b of the bracket 71 and the fixing plate 70, and the base 71 b is fixed to the vertical surface of the main structural member 46 by the bolt 72.
  • the mounting angle of the bracket 71 that is, the mounting angle of the fixed roller 24 supported by the fixed support member 26 can be changed according to the number of sheets.
  • the movable support member 27 is swingably supported at its intermediate portion by a tip end of the bracket 26b fixed to the fixed support member 26 via a shaft 27a.
  • the movable roller 25 can contact and separate from the fixed roller 24 by swinging of the movable support member 27 centering on 27 a.
  • the movable support member 27 has an arm portion 27b which is bent in a crank shape from the intermediate portion (27a) and extends upward.
  • the retainer bar 51a is fixed by a nut 51b.
  • the retainer bar 51a extends from the arm 27b toward the proximal end of the fixed support member 26 in a direction intersecting the axial direction of the fixed roller 24 and is interposed between the retainer bar 51a and the distal end (53a) of the operation arm 53 described later. 51 is inserted into the engagement hole 53a of the operation arm 53, and the distal end of the retainer bar 51a is inserted into an elongated hole 26c provided at the proximal end of the fixed support member 26.
  • the spring 51 is a compression spring, and the arm portion 27a of the movable support member 27 is biased in a direction away from the operation arm 53 by the spring 51, and the movable portion is positioned opposite to the arm portion 27a with respect to the shaft 27a.
  • the side roller 25 is in pressure contact with the stationary side roller 24. Therefore, by displacing the operation arm 53 along the retainer bar 51a and displacing the support point of the spring 51, the biasing force of the spring 51 can be controlled, and the contact pressure of the holding rollers 24, 25 can be adjusted. is there.
  • the operation arm 53 is fixed to the lower end of the pivot shaft 54 at its base end.
  • the pivot shaft 54 is rotatably supported by a bearing 54 a fixed to the main structural member 46 via a bracket 54 b, and the upper end of the pivot shaft 54 is a ceiling portion (48) of the chamber structural unit 40 via a seal bearing 57. It penetrates and is connected with the output shaft 56a of the actuator 56 (linear actuator) via the lever 55 outside the vacuum chamber (40).
  • the upper and lower pinch roller pairs 21, 22, 23 are attached to the main structural member 46 located between the film forming units 41 via the angle adjusting means 7, but the attachment positions are as follows: As shown in FIG. 3 or FIG. 4, since it is a joint of the adjacent chamber structural units 40, the pivot shaft 54 and the seal bearing 57 are disposed above the film forming unit 41 avoiding the main structural material 46. It is done. Therefore, the operation arm 53 is bent in a crank shape above the film forming unit 41 and extends below the main structural member 46 and is engaged with one end of the spring 51.
  • the seal bearing 57 is airtightly attached to the opening 480 of the ceiling panel 48 via the base plate 58, the O-ring, etc., and is provided with a bearing and a magnetic seal inside its housing, and the difference between inside and outside of the vacuum chamber
  • the rotary shaft 54 can be rotatably supported while maintaining the pressure, and the drive of the actuator 56 can be transmitted to the inside of the vacuum chamber (40) via the rotary shaft 54.
  • transparent members, such as heat-resistant glass, are mounted
  • the actuator 56 is disposed outside the chamber structure unit 40 (vacuum chamber), so any type of actuator can be used.
  • a linear actuator that converts the rotation of the servomotor into linear reciprocating motion with a screw feed mechanism or the like is used, but it is configured to rotate the drive shaft 54 directly or indirectly using a rotary actuator. You can also.
  • the actuator 56 is advanced or retracted or rotationally driven by a control signal output from the control unit 50 based on the detection value of the sensor 49.
  • the senor 49 is film-formed on the downstream side (or upstream side) in the transport direction by one unit between the film-forming units 41 in which the controllable upper gripping roller pair 21 is installed. It is attached to the main structural member 46 adjacent to the contact-pressure-fixed upper pinch roller pair 22 between the units 41.
  • a known position sensor such as a reflective or transmissive optical sensor that detects the upper end position (vertical width direction position) of the flexible substrate 1 without contact can be used.
  • the contact pressure fixed upper holding roller pair 22 and the lower holding roller pairs 22 are provided between the fixing support member 26 of the upper holding roller pair 21 and the spring 51 by a retainer bar 51a instead of the operation arm 53. It can be configured only by inserting the fitting spacer. Further, the change of the attachment angle of each pinch roller pair 21, 22, 23 by the angle adjusting means 7 can be absorbed between the engagement hole 53a of the operation arm 53 and the retainer bar 51a.
  • the flexible substrate 1 is intermittently transported from the unwinding unit 10 through the film forming unit 20 to the winding unit 30 in a predetermined cycle time. That is, in the conveyance period of the intermittent conveyance cycle of the flexible substrate 1, the movable chamber 43 of each film forming unit 41 in the film forming unit 20 is separated from the fixed chamber 42, and the unwinding side feed roller 12 and the winding The take-up feed roller 32 is driven in synchronization, and the flexible substrate 1 is transported between the movable chamber 43 and the fixed chamber 42 of each film forming unit 41 by one unit, and accordingly, the flexible substrate 1 is flexible. The flexible substrate 1 is unwound from the unwinding roll 11 and wound around the winding roll 31.
  • the film tension of the flexible substrate 1 between the upstream and downstream guide rollers 14 and 34 of the film forming unit 20 is maintained constant by the tension detection rollers 13 b and 33 b, and the downstream guide roller 34
  • the position in the vertical width direction of the flexible substrate 1 at this time is controlled to be constant by the side end position control roller 35, and further, each sandwiching of the substrate position control device between the film forming units 41 of the film forming unit 20.
  • the drooping of the flexible substrate 1 due to its own weight is suppressed by the upper edge and the lower edge of the flexible substrate 1 being pinched by the rollers 21, 22, 23... By being expanded, the occurrence of wrinkles is suppressed.
  • the transport span between the guide rollers 14 and 34 is a long distance, and the physical properties of the flexible substrate 1 are not uniform in the transport direction. The position may shift up and down.
  • the transfer of one unit of the flexible substrate 1 is completed, the film forming chamber (43, 42) of each film forming unit 41 is closed, and the film forming process is performed during the stop period of the transfer cycle.
  • the sensor 49 provided on the downstream side of the substantially central film forming unit 41 (f) detects the upper end position (vertical width direction position) of the flexible substrate 1.
  • the control unit 50 acquires a detection value corresponding to the direction of deviation or the amount of deviation, and the control unit 50 determines the deviation based on the detection value.
  • the actuator 56 is driven to move back and forth to adjust the contact pressure (nipping pressure) of the upper holding roller 21.
  • the output shaft 56 a of the actuator 56 is displaced in FIGS. 4 and 5. Move forward accordingly. Then, the lever 55 is rotated according to the forward movement of the output shaft 56a, and the rotation of the lever 55 is transmitted to the operation arm 53 via the rotation shaft 54, and the rotation of the operation arm 53 causes the support point (53a) of the spring 51. As a result, the biasing force of the spring 51, that is, the contact pressure (nipping pressure) of the upper pinch roller 21 increases.
  • the contact pressure (fixed pressure) of the upper holding roller 21 is increased with respect to the lower holding roller 23 with respect to the fixed contact pressure. Since the upper and lower edge portions of the substrate 1 are nipped and conveyed, the lifting force by the upper nipping roller 21 becomes superior to the pulling-down force by the nipping of the lower nipping roller 23, and the flexible substrate 1 Moving upward, the downward deflection of the flexible substrate 1 is corrected.
  • the film forming chambers (43, 42) of the film forming units 41 are closed again, and the next film forming process is performed.
  • the upper end position of the flexible substrate 1 is detected by the sensor 49, and the contact pressure of the upper sandwiching roller 21 is further adjusted.
  • the sensor 49 detects an upward displacement of the upper end of the flexible substrate 1
  • the contact pressure of the upper pinching roller 21 is reduced by the reverse operation to that described above. As 1 moves downward, the upward displacement of the flexible substrate 1 is corrected.
  • the present invention is limited to this. It is also possible to carry out film formation while continuously conveying the flexible substrate in the common vacuum chamber, and in that case, while constantly monitoring the position of the flexible substrate in the vertical width direction with the sensor By performing control of the clamping pressure, the vertical width direction position of the flexible substrate 1 can be maintained within a predetermined or predetermined tolerance.
  • FIG. 6 to FIG. 8 show the upper pinching roller pair 21 and its control mechanism 8 according to the second embodiment of the present invention, and this control mechanism 8 has an attachment of the first biasing member (81).
  • This is a balance method in which the contact pressure is controlled by balancing the force and the biasing force (adjustment force) of the second biasing member (82).
  • the same reference numerals are given to the same members, and the description thereof is omitted. Embodiments will be described with reference to the drawings.
  • the upper support roller pair 21 is composed of a pair of support rollers 24 and 25, and a fixed support member 28 rotatably supporting the fixed roller 24 is fixed to a bracket 71 constituting the angle adjustment means 7, and
  • the movable support member 29 rotatably supporting the movable side roller 25 is pivotally supported at its intermediate portion via the shaft 29a at the tip end of the bracket 28b fixed to the fixed support member 28.
  • the upper end portion of the movable support member 29 is urged in a direction away from the base of the fixed support member 28 by the spring 81 interposed between 28c and 28c, and the movable roller 25 is It is pressed against the Jogawa roller 24.
  • the support point of the spring 81 is fixed and not displaced.
  • the extension arm 29c extends in a transverse direction crossing the upper end of the movable support member 29, and is bolted to the upper end 29b at the intersection, and long holes 29d and 29d are formed on both sides of the fixed part. It is set up.
  • retainer bars 81a and 81a for supporting the springs 81 and 81 are provided by nuts 81b and 81b, respectively, on the extended piece portions 28c and 28c extended to both sides of the fixed support member 28. It is fixed.
  • the springs 81, 81 are compression springs, and the tip end portions of the retainer bars 81a, 81a supporting the springs 81, 81 are respectively inserted into the long holes 29d, 29d of the extension arm 29c via washers. A biasing force is applied to each side of the extension arm 29c.
  • one arm of the extension arm 29 c is extended to the film forming unit 41 side, further bent so as to bypass the main structural member 46 and extended upward, and further bent upward of the flexible substrate 1
  • a pin 29e engageable with the tip of the operation arm 83 is provided upright.
  • the operation arm 83 is fixed to the lower end of the pivot shaft 84 at its base end.
  • the rotation shaft 84 is rotatably supported by a bearing 84a fixed to the main structural member 46 via a bracket 84b, and the ceiling portion of the chamber structure unit 40 via a seal bearing 57 as in the first embodiment.
  • a lever 85 is attached to the upper end of the pivot shaft 84 which passes through (48) and is located outside the vacuum chamber (40).
  • An engagement hole 85 a (long hole) is bored at the tip of the lever 85.
  • the tip of the retainer bar 82a supporting the spring 82 is inserted into the engagement hole 85a, and the biasing force (adjustment force) of the spring 82 acts on the tip of the lever 85.
  • the retainer bar 82a is connected to the output shaft 86a of the actuator 86 (linear actuator), and can be advanced and retracted together with the output shaft 86a.
  • the control mechanism 8 of the upper pinching roller pair 21 configured as described above advances and retracts the actuator 86 according to the control signal output from the control unit 50 based on the detection value of the sensor 49 as in the first embodiment described above. It is driven and the biasing force of the spring 82 according to the amount of movement is loaded on the tip of the lever 85. The biasing force is converted into torque by the lever 85 and is further transmitted to the operating lever 83 through the pivot shaft 84, and the extension arm 29c is resisted by the biasing force of the springs 81, 81 through the pin 29e. Adjustment force. The biasing force of the springs 81 81 is offset by the amount of this adjustment force, and the contact pressure (nipping pressure) of the upper holding roller pair 21 is adjusted.
  • the biasing force of the spring 81 always acts on the upper sandwiching roller pair 21 via the extension arm 29 c and the movable support member 29, and in particular, the upper sandwiching roller pair 21.
  • the biasing force of the spring 81 and the biasing force of the spring 82 decrease as the area where the contact pressure (nipping pressure) is small, ie, the area where the positional deviation in the vertical width direction Larger, better control accuracy and stability.
  • the upper pinching roller pair 21 of the second embodiment as it constitutes a pinching roller assembly in which the support point of the spring 81 is independent of the control mechanism 8, either directly or one arm including the pin 29e of the extension arm 29c. It can be cut out and used as another contact pressure fixed pinch roller pair 22, 23.
  • the change of the attachment angle of each pinch roller pair 21, 22, 23 by the angle adjusting means 7 can be absorbed between the pin 29e and the operation arm 83.
  • Fig. 9 is a schematic view showing a modification according to the first embodiment, in which a control mechanism 5 "of a direct system is attached to the upper pinching rollers 24, 25.
  • a spring 51 ' is a vacuum.
  • the supporting point of the spring 51 ' is directly displaced by the forward / backward driving of the actuator 56, which is disposed outside the chamber, and the controlled biasing force of the spring 51' constitutes the biasing force transmission mechanism, the lever 55 '
  • the pressure is transmitted to the movable support member 27 in the vacuum chamber via the moving shaft 54 'and the operation arm 53', and the contact pressure (nipping pressure) of the upper sandwiching rollers 24 and 25 is adjusted.
  • FIG. 10 is a schematic view showing a modification according to the second embodiment, and a control system 8 'of a balance system is attached to the upper holding rollers 24, 25.
  • both the spring 81 and the spring 82 ' are disposed in the vacuum chamber.
  • the spring 81 biases the movable support member 27 against the fixed point (28) as described above to apply a contact pressure to the movable roller 25.
  • the spring 82 ' biases the movable support member 27 against the operating arm 83' from the direction opposite to the spring 81.
  • the forward and backward drive of the actuator 86 is transmitted to the support point of the spring 82 'in the vacuum chamber via the lever 85' constituting the drive transmission mechanism, the pivot shaft 84 'and the operating arm 83', and the spring according to its displacement.
  • the biasing force (adjustment force) of the 82 ' is controlled, and the biasing force of the spring 81 is offset by that amount, whereby the contact pressure (clamping force) of the upper gripping rollers 24, 25 is adjusted.
  • FIG. 11 is a schematic view showing another modification according to the second embodiment, in which the control mechanism 8 ′ ′ of the balance system is attached to the upper pinching roller pair 24 and 25.
  • the spring 81 is provided.
  • 'And a spring 82 are both disposed outside the vacuum chamber.
  • the spring 81' biases the lever 85 '' against a fixed point and the spring 82 '' against the output shaft of the actuator 86.
  • 85 ′ ′ is biased from the opposite direction to the spring 81 ′.
  • the biasing force (adjustment force) of the spring 82 ' is controlled according to the forward / backward driving of the actuator 86, and the biasing force of the spring 81' is offset by that amount, and the controlled biasing force constitutes a biasing force transmission mechanism.
  • the contact pressure (nipping pressure) of the upper sandwiching rollers 24 and 25 is adjusted by being transmitted to the movable support member 27 in the vacuum chamber via the 85 ′ ′, the pivot shaft 84 ′ ′ and the operation arm 83 ′ ′.
  • the contact pressure of the upper pinch roller pair 21 can be positively controlled, while the contact pressure of the corresponding lower pinch roller pair 23 is set to a preset fixed value. As shown in 12, it is also possible to positively control the contact pressures of the holding roller pairs 21 and 23 'on the upper and lower sides at the same position in the conveyance direction.
  • a control mechanism 5 ′ contact pressure
  • An adjustment unit is added upside down, and a sensor 49 'for detecting the position of the lower edge of the flexible substrate 1 is added.
  • the detection values of the sensors 49 and 49 'on the upper and lower sides are sent to the common control unit 50, and the control unit 50 drives the actuators 56 and 56' on the upper and lower sides based on those detection values to The contact pressure of the side pinch roller pair 21, 23 'is controlled.
  • control unit 50 can obtain the degree of expansion of the flexible substrate 1 as well as the position in the vertical width direction of the flexible substrate 1 based on the detection values of the sensors 49 and 49 'on the upper and lower sides. Based on them, by controlling the contact pressure of the holding roller pair 21 and 23 'on the upper and lower sides, the position in the vertical width direction is constant or maintained while maintaining the expansion degree of the flexible substrate 1 within a predetermined range. It can be maintained within predetermined tolerances.
  • the contact pressure of the lower pinch roller pair 23 is set to a fixed value in advance, the contact pressure of the upper pinch roller pair 21 is controlled in a range larger than the contact pressure of the lower pinch roller pair 23
  • the contact pressure of the upper and lower pinch roller pairs 21 and 23 ′ can be reduced.
  • the said structure is applicable also to the lower side pinching roller pair which concerns on 2nd Embodiment.
  • FIGS. 14 to 16 show an upper pinching roller pair 121 and its control mechanism 105 (contact pressure adjustment unit) according to the third embodiment of the present invention, and the upper pinching roller pair 121 is a pair of pinching rollers 124. , 125.
  • the stationary roller 124 is, as shown in FIG.
  • the movable side roller 125 is also composed of a metallic roller main body 125a rotatably supported at the end (lower end) of the movable support member 127 in the same manner as described above, and a heat resistant rubber coating 125b attached to the circumferential surface thereof. ing.
  • the fixed support member 126 is fixed at its proximal end (upper end) to the bracket 71 that constitutes the angle adjustment means 7.
  • the bracket 71 has a support portion 71a perpendicular to the axial direction of the fixed roller 124, and a base portion 71b extending vertically upward from the one side of the support portion 71a with respect to the support portion 71a.
  • the base end of the fixed support member 126 is fixed to 71 a.
  • the shim 73 is interposed between the base 71 b of the bracket 71 and the fixing plate 70, and the base 71 b is fixed to the vertical surface of the main structural member 46 by the bolt 72.
  • the attachment angle of the bracket 71 that is, the attachment angle of the fixed roller 124 and the movable roller 125 that make up the pinch roller pair 121 can be changed according to the number of sheets.
  • the movable support member 127 is, as shown in FIG. 14, an extension arm 128 rotatably supported via a bearing by a pair of support portions 129a, 129a of the bracket 129 fixed to the support portion 71a of the bracket 71. As shown in FIG. 15, the shaft portion 128a is penetrated into the lateral hole 127a of the base end portion (upper end portion) in the middle of the support portions 129a and 129a, and the crossing portions thereof are fixed by setscrews.
  • the movable side roller 125 is supported so as to be capable of coming into and coming out of contact with the stationary side roller 124.
  • the extension arm 128 extends upward while bending around the main structural member 46 from one end of the shaft portion 128a, and a second support shaft is provided on the upper end portion of the shaft so as to project in parallel with the shaft portion 128a.
  • a roller 128 b engaged with the tip end (151 a) of the arm 151 is rotatably supported.
  • an operation plate 128 c which is an operation lever for a release operation described later is fixed to an intermediate portion of the extension arm 128.
  • the second arm 151 constitutes a transmission mechanism together with a pivot shaft 154 and a first arm 153 described later, and is fixed to the lower end of the pivot shaft 154 at its proximal end. As shown in FIG. 15, two engagement portions 151a and 151b engageable with the roller 128b of the extension arm 128 from both directions of the swing direction are provided at the tip end of the second arm 151.
  • the first engagement portion 151a is a pressing engagement portion for pressing the movable roller 125 against the fixed roller 124.
  • the second arm 151 and a first arm 153 described later are flexible.
  • the movable roller 125, the movable support member 127, and the extension arm 128 are vertically oriented in a state in which the movable substrate 125, the movable support member 127, and the extension arm 128 are oriented in the vertical direction.
  • the roller 125 is configured to abut on the fixed roller 124.
  • the second engagement portion 151 b is a release engagement portion for moving the movable roller 125 away from the fixed roller 124.
  • the second engaging portion 151b absorbs the difference between the swinging tracks of the second arm 151 and the extension arm 128 which are swingably supported around axes (154, 128a) substantially orthogonal to each other.
  • the first engaging portion 151a is disposed opposite to the first engaging portion 151a at a distance slightly larger than the diameter of the roller 128b.
  • the pivot shaft 154 is airtightly and rotatably supported by a seal bearing 157, extends upward through the ceiling panel 48 of the chamber structural unit 40 via the seal bearing 157, and is outside the vacuum chamber (40).
  • the first arm 153 is fixed to the upper end portion of the rotating shaft 154 positioned.
  • the seal bearing 157 is airtightly attached to the opening 480 of the ceiling panel 48 via the base plate 158, the O-ring, etc., and is provided with a bearing and a magnetic seal inside its housing to maintain the differential pressure inside and outside the vacuum chamber.
  • the rotating shaft 154 can be rotatably supported in the state of FIG.
  • the seal bearing 157 and the other opening 480 where the pivot shaft 154 is not installed are provided with a transparent member such as heat resistant glass, and serve as an observation window for observing the inside of the vacuum chamber.
  • the upper and lower sandwiching roller pairs 121, 122, 123 are attached to the main structural member 46 located between the film forming units 41 via the angle adjustment means 7, but the attachment positions are as follows: Since it is a joint with the adjacent chamber structural unit 40, as shown in FIG. 13 or 14, the pivot shaft 154 and the seal bearing 157 are disposed above the film forming unit 41 avoiding the main structural member 46. It is set up. For this reason, the second arm 151 is bent in a crank shape from the lower end portion of the rotation shaft 154 and extends to the vicinity of the main structural member 46, and engages with the roller 128b of the extension arm 128 at the engaging portions 151a and 151b. ing.
  • connection pin 153 a is provided to project upward at the tip of the first arm 153.
  • the connecting pin 153a is supported rotatably around an axis parallel to the rotating shaft 154 via a bearing in a support hole vertically passing through the tip of the first arm 153.
  • One end of a spring 160 is connected to the connection pin 153a.
  • the spring 160 is a tension spring, and the other end is connected to the support pin 161 a of the drive arm 161 via an adjustment screw 160 a.
  • the spring 160 is stretched between the connection pin 153 a of the first arm 153 and the support pin 161 a of the drive arm 161 in a stretched state in advance, and the degree of extension is adjusted by the adjustment screw 160 a.
  • the tension F of the spring 160 can be adjusted. In accordance with the tension F, as described later, the maximum value of the biasing force for applying the contact pressure to the holding roller 121 is determined.
  • the drive arm 161 is fixed at its proximal end to the drive shaft of the actuator 156.
  • a support pin 161a protruding downward from the tip end of the drive arm 161 is an axis parallel to the drive shaft via a bearing in a support hole vertically penetrating the tip end of the drive arm 161, similarly to the connection pin 153a. It is rotatably supported around.
  • a sector plate 161 d is coaxially attached to the proximal end of the drive arm 161, and an over travel sensor 162 is installed in the vicinity of the outer periphery of the sector plate 161 d.
  • the actuator 156 is a rotary actuator such as a servomotor incorporating an encoder, and the drive shaft of the actuator 156 is fixed to the upper plate 156b fixed via a support frame (not shown) above the base plate 158 (strictly speaking, movable
  • the connecting pin 153a of the first arm 153 located on the rotation origin of the first arm 153 corresponding to the case where the side roller 125 abuts against the fixed side roller 124 with zero contact pressure is mounted facing the axial center ing.
  • the actuator 156 is driven by a control signal output from the control unit 150 based on the detection value of the sensor 49 shown in FIG. 13 and drives the drive arm 161 with the minimum pressure position 161x (rotational origin) shown in FIG.
  • the first arm 153 is pivotally displaced to a predetermined angular position between the maximum pressure position 161 y and the first arm 153 according to the angular displacement of the drive arm 161 as described below.
  • the drive arm 161 is oriented in the transport direction of the flexible substrate 1, aligned with the first arm 153 at the pressure position, and at the minimum pressure position 161x with zero angular displacement.
  • the biasing force that rotates counterclockwise in the figure around the center does not act.
  • the biasing force Fy is transmitted to the second arm 151 via the pivot shaft 154, and the roller 128b is biased upward in the figure via the first engagement portion 151a, and the extension arm 128 and the movable support member 127.
  • the movable roller 125 is brought into pressure contact with the fixed roller 124 by a pressing force obtained by multiplying the biasing force Fy by the lever ratio by being biased in the counterclockwise direction in FIG. 15 around the shaft portion 128a.
  • FIG. 17 shows the relationship between the angular displacement ⁇ of the drive arm 161, the tension F of the spring 160, the biasing direction component Fy, and the component Fx orthogonal to the biasing direction.
  • the tension F of the spring 160 is constant, and the driving force is a spring, in the rotation range of the drive arm 161 from the minimum pressure position 161x (rotation origin) to the maximum pressure position 161y.
  • the control 160 does not require a large driving force because it is not consumed to elastically deform 160 itself. In addition, since it is not affected by the friction caused by the elastic deformation of the spring 160, highly accurate control is possible.
  • the actuator 156 is disposed outside the chamber structure unit 40 (vacuum chamber), any type of actuator can be used.
  • the drive arm 161 is a swing arm having the same layout, and a linear actuator is connected to the swing arm directly or via a link so that the swing arm (161) is angularly displaced by the reciprocation of the linear actuator. It can also be configured.
  • the sensor 49 is, as shown in FIG. 13, between the film forming units 41 shifted by one unit to the upstream side in the transport direction with respect to the film forming units 41 in which the controllable upper gripping roller pair 121 is installed, It is attached to the main structural member 46 adjacent to the contact-pressure-fixed upper pinch roller pair 122.
  • a known position sensor such as a reflective or transmissive optical sensor that detects the upper end position (vertical width direction position) of the flexible substrate 1 without contact can be used.
  • the contact pressure fixed upper pinching roller pair 122 is movable to the tip of the arm portion 228 rotatably supported by the bracket 229 of the fixed support member 226 via the shaft 228a.
  • the support member 227 is fixed, and a spring 260 is interposed between the support pin 261 provided on the arm portion 228 and the support pin 262 provided on the bracket 229 in a state of being stretched in advance.
  • the movable roller 125 is configured to be in pressure contact with the fixed roller 124 with a predetermined pressure by urging.
  • one of the support pins 261 and 262 is connected to the end of the spring 260 through the same tension adjustment means as the adjustment screw 160a described above.
  • the contact pressure fixed lower pinch roller pair 123 uses a unit common to the upper pinch roller pair 122 upside down.
  • the upper pinching roller pair 122 (and the lower pinching roller pair 123) of the illustrated example has support pins on both sides of the spring 260 in a state where the movable side roller 124 is in pressure contact with the fixed side roller 124 with the flexible substrate 1 interposed therebetween.
  • 261, 262 and the axis 228a of the arm 228 are positioned on substantially the same straight line, and in this state, the distance between the support pins 261, 262, that is, the length of the spring 260 is set to be the shortest.
  • the tensile force of the spring 260 is maintained substantially constant in the region where the flexible substrate 1 is sandwiched between the movable roller 125 and the fixed roller 124, and the clamping pressure on the flexible substrate 1 is stabilized.
  • a stable lifting force and a lowering force can be applied to the upper edge and the lower edge of the flexible substrate 1 in accordance with the small deflection angles ⁇ and ⁇ of the holding roller pairs 122 and 123.
  • the flexible substrate 1 is intermittently transported from the unwinding unit 10 through the film forming unit 20 to the winding unit 30 in a predetermined cycle time. That is, in the conveyance period of the intermittent conveyance cycle of the flexible substrate 1, the movable chamber 43 of each film forming unit 41 in the film forming unit 20 is separated from the fixed chamber 42, and the unwinding side feed roller 12 and the winding The take-up feed roller 32 is driven in synchronization, and the flexible substrate 1 is transported between the movable chamber 43 and the fixed chamber 42 of each film forming unit 41 by one unit, and accordingly, the flexible substrate 1 is flexible. The flexible substrate 1 is unwound from the unwinding roll 11 and wound around the winding roll 31.
  • the film tension of the flexible substrate 1 between the upstream and downstream guide rollers 14 and 34 of the film forming unit 20 is maintained constant by the tension detection rollers 13 b and 33 b, and the downstream guide roller 34
  • the position in the vertical width direction of the flexible substrate 1 at this time is controlled to be constant by the side end position control roller 35, and further, each sandwiching of the substrate position control device between the film forming units 41 of the film forming unit 20.
  • the drooping of the flexible substrate 1 due to its own weight is suppressed by the upper edge and the lower edge of the flexible substrate 1 being pinched by the rollers 121, 122, 123,... By being expanded, the occurrence of wrinkles is suppressed.
  • the transport span between the guide rollers 14 and 34 is a long distance, and the physical properties of the flexible substrate 1 are not uniform in the transport direction. The position may shift up and down.
  • the transfer of one unit of the flexible substrate 1 is completed, the film forming chamber (43, 42) of each film forming unit 41 is closed, and the film forming process is performed during the stop period of the transfer cycle.
  • the sensor 49 provided on the downstream side of the substantially central film forming unit 41 (f) detects the upper end position (vertical width direction position) of the flexible substrate 1.
  • the control unit 150 acquires a detection value corresponding to the direction of deviation or the amount of deviation, and the control unit 150 determines the deviation based on the detection value.
  • the actuator 156 is driven to control the angular displacement of the drive arm 161, and the contact pressure (nipping pressure) of the upper holding roller 121 is adjusted.
  • the sensor 49 is flexible
  • the drive arm 161 of the actuator 156 is angularly displaced to the side of the maximum pressure position 161y according to the displacement amount.
  • the biasing direction component Fy of the tension F of the spring 160 is increased, and this biasing force Fy is transmitted via the first arm 153, the pivot shaft 154, the second arm 151, and the extension arm 128 to the movable support member 127.
  • the contact pressure (nipping pressure) of the upper gripping roller 121 is increased.
  • the contact pressure (fixed pressure) of the upper holding roller 121 with respect to the contact pressure fixed lower holding roller 123 is increased in flexibility. Since the upper and lower edge portions of the substrate 1 are nipped and conveyed, the lifting force by the upper nipping roller 121 becomes superior to the pulling-down force by the nipping of the lower nipping roller 123, and the flexible substrate 1 Moving upward, the downward deflection of the flexible substrate 1 is corrected.
  • the film forming chambers (43, 42) of the film forming units 41 are closed again, and the next film forming process is performed.
  • the upper end position of the flexible substrate 1 is detected by the sensor 49, and the contact pressure of the upper holding roller 121 is further adjusted.
  • the sensor 49 detects the upward displacement of the upper end of the flexible substrate 1
  • the contact pressure of the upper pinch roller 121 is reduced by the reverse operation to that described above, and the next conveyance step is performed.
  • the flexible substrate 1 is moved downward at a position where the upward displacement of the flexible substrate 1 is corrected.
  • the present invention is limited to this. It is possible to carry out film formation while continuously conveying the flexible substrate in the common vacuum chamber, in which case the sensor constantly monitors the position of the flexible substrate in the vertical width direction By executing control of the clamping pressure, it is possible to maintain the position in the vertical width direction of the flexible substrate 1 within a predetermined or predetermined tolerance.
  • the release switch or the like (not shown) is operated.
  • a release signal is output from the control unit 150 to the actuator 156, and the drive arm 161 is angularly displaced to the toggle position 161 'beyond the maximum pressure position 161y, as shown by a two-dot chain line in FIG.
  • the support point (161a) of the spring 160 is on the pressure side with respect to the connection point (153a) of the first arm 153, and by the biasing direction component Fy of the spring tension F 121 is held in a pressure contact state, leaving a standby angle of about 15 ° with respect to a consideration point of the toggle mechanism which is on a straight line connecting the support point (161a) and the pivot shaft 154.
  • the unrolled unwinding roll 11 is mounted on the unwinding device, and the flexible substrate 1 pulled out from the unwinding roll 11 has tension detection rollers 13a and 13b, an unwinding side feed roller 12, After being wound around the guide roller 14, the film is introduced into each film forming unit 41 of the film forming unit 20.
  • the side wall 47 of each chamber structure unit 40 shown in FIGS. 2 and 13 is opened at the time of introducing the flexible substrate 1 into the film forming unit 20, the high frequency voltage 45 and the movable chamber 43 attached to the side wall 47.
  • the first engaging portion 151a of the second arm 151 is pressed through the roller 128b by the rotation of the extension arm 128 ', and the first arm integrally coupled by the second arm 151 and the pivot shaft 154.
  • the first arm 153 is pivoted clockwise in FIG. 16 as indicated by 151 'and 153', and the connecting pin 153a of the first arm 153 is moved to 153 'beyond the point of thought.
  • the biasing direction of the spring 160 'with respect to 153' is reversed.
  • the first arm 153 ' is held in the reverse position by the biasing force of the reversed spring 160', and as shown in FIG. 14, the second arm 151 'connected to the first arm 153' by the pivot shaft 154.
  • the extension arm 128 'and the movable support member 127' are restrained at the swing position by the engaging portion 151b 'via the roller 128b, and the movable roller 125' is held in the separated state.
  • the member 127 is returned to the original position, the first arm 151 engaged with the extension arm 128 via the roller 128b and the engaging portion 151b, and the first arm 153 integrally connected thereto by the pivot shaft 154
  • the biasing direction of the spring 160 is reversed to the pressing side, and the biasing force of the spring 160 causes the movable roller 125 to be immediately pressed against the stationary roller 124, and the introduced flexible substrate 1 Is pinched.
  • the movable roller 125 can be separated relatively easily manually. Although a work of introducing the flexible substrate 1 can be performed, a toggle mechanism in which the movable side roller 125 is held at the separated position like the upper pinching roller pair 121 is utilized using a spring (260) for pressurization. Can also be configured.
  • the contact pressure of the upper pinch roller pair 121 can be positively controlled, while the contact pressure of the corresponding lower pinch roller pair 123 is set to a fixed value set in advance. As shown in the drawing, the contact pressures of the holding roller pairs 121 and 123 'on the upper and lower sides at the same position in the conveyance direction can be positively controlled.
  • a control mechanism 105 '(contact pressure adjustment unit) similar to the upper gripping roller pair 121 is reverse to the lower gripping roller pair 123' at the same position as the upper gripping roller pair 121 in the transport direction.
  • a sensor 49 'for detecting the position of the lower edge of the flexible substrate 1 is added.
  • the detection values of the sensors 49 and 49 'on the upper and lower sides are sent to the common control unit 150, and the control unit 150 drives the actuators 156 and 156' on the upper and lower sides based on the detected values to The contact pressure of the pinch roller pair 121, 123 'on the side is controlled.
  • control unit 150 can obtain the degree of expansion of the flexible substrate 1 along with the position in the vertical width direction of the flexible substrate 1 based on the detection values of the sensors 49 and 49 'on the upper and lower sides. Based on them, by controlling the contact pressure of the holding roller pair 121 and 123 'on the upper and lower sides, the position in the vertical width direction is constant or maintained while maintaining the expansion degree of the flexible substrate 1 within a predetermined range. It can be maintained within predetermined tolerances.
  • the contact pressure of the lower holding roller pair 123 is set to a fixed value in advance, the contact pressure of the upper holding roller pair 121 is controlled in a range larger than the contact pressure of the lower holding roller pair 123
  • the contact pressure of the upper and lower pinch roller pairs 121 and 123 ′ can be reduced.
  • a stable pressure state can be obtained in the region where the contact pressure is small. This is advantageous for a configuration in which the contact pressure of 123 'is actively controlled.
  • the embodiment as the manufacturing apparatus 100 of the thin film laminate in which the flexible flexible substrate is conveyed in the horizontal posture in the vertical posture and the film formation is described, but the position control according to the present invention
  • the apparatus can also be applied to a manufacturing apparatus 300 of a thin film laminate in which a flexible flexible substrate is horizontally transported in a horizontal posture to form a film as in the fourth embodiment shown in FIG.
  • the manufacturing apparatus 300 is disposed in the chamber structure unit 340 (vacuum chamber) maintained at a predetermined degree of vacuum so as to face the flexible substrate 1 in the upper and lower direction.
  • a film forming unit 341 including the electrode 345 (target) and the ground electrode 344 is disposed.
  • a guide roll (idle roll), a feed roll, a tension roll, etc. constituting the conveying means are disposed upstream and downstream of the film forming unit 341 in the conveying direction, and further upstream and downstream in the conveying direction.
  • the unwinding roll and the winding roll of the flexible substrate 1 are the same as those of the above-described embodiments, but naturally, the rotational axes of the rolls are all horizontally oriented. .
  • the manufacturing apparatus 300 is provided with a pair of pinching rollers 321 and 321 and control mechanisms 305 and 305 (contact pressure adjustment) for pinching the side edges of the flexible substrate 1 in the width direction on both sides in the width direction of the transport path of the flexible substrate 1. Unit).
  • Each of the pinching roller pairs 321 and 321 has its rotational axis inclined such that the rotational direction in the pinching portion has a small declination ( ⁇ , ⁇ ) directed outward in the width direction with respect to the transport direction of the flexible substrate 1 It comprises a pair of pinching rollers 324, 325.
  • the fixed roller 324 is rotatably supported at the tip of the fixed support member 326, and the movable roller 325 is rotatably supported at the tip of the movable support member 327.
  • Each pinching roller except that each fixed side roller 324 (fixed support member 326) is disposed sideways so that it bottoms, and each movable support member 327 is bent in the vicinity of the swing axis
  • the pair 321 and their control mechanism 305 basically have the same configuration as the direct type control mechanism 5 ′ ′ according to the modification (FIG. 9) of the first embodiment.
  • the springs 351 and 351 for applying contact pressure to the respective holding roller pairs 321 and 321 are all disposed outside the vacuum chamber (340), and the supporting points of the respective springs 351 and 351 are obtained by advancing and retracting the actuators 356 and 356. Directly displaced, each controlled biasing force is transmitted to the movable support members 327 and 327 in the vacuum chamber via the lever 355, the pivot shaft 354, and the operation arm 353 which constitute the biasing force transmission mechanism, The contact pressure (nipping pressure) of each pinching roller pair 321 and 321 is individually adjusted.
  • Each side edge portion of the flexible substrate 1 is held by being conveyed in a state in which each side edge portion in the width direction of the flexible substrate 1 is held by the holding roller pair 321 and 321 as described above.
  • a spreading tension directed outward in the width direction is applied according to the contact pressure (nipping pressure) of the roller pair 321 and 321, and the flexible substrate 1 is stretched in the width direction.
  • Sensors 349 and 349 for detecting the positions of the side edges of the flexible substrate 1 are disposed on both sides in the width direction of the transport path of the flexible substrate 1, and based on the detection of the sensors 349 and 349.
  • the actuators 356, 356 are individually advanced and retracted by the control unit 350, whereby the contact pressure (nipping pressure) of each nipping roller pair 321, 321 is controlled, and accordingly the width direction position of the flexible substrate 1 Is controlled.
  • the ground electrode 344 is disposed on the lower surface side of the flexible substrate 1, and the influence of the weight of the flexible substrate 1 is small, and acts similarly on the pinch roller pairs 321 and 321 on each side. Do. Therefore, the initial displacements of the springs 351, 351 on each side and the control amounts of the respective actuators 356, 356 are basically set equal.
  • the control of the contact pressure (nipping pressure) by each of the actuators 356 and 356 is to expand the flexible substrate 1 in the width direction and correct each displacement and meandering of the flexible substrate 1 in the width direction. Based on the detection of 349, the control unit 350 carries out individually and in cooperation.
  • the pinching roller pairs 321 and their control mechanisms 305 are similar to the direct type control mechanism 5 ′ ′ (FIG. 9) according to the modification of the first embodiment, so It is also possible to apply the toggle spring type control mechanism 105 (FIGS. 13 to 16) according to the third embodiment, which is an advanced form, as in the first to third embodiments described above. It is possible to cope with both of the film forming methods.
  • the present invention is not limited to the above-mentioned embodiment, and various modification and change are possible besides the above based on the technical idea of the present invention It is.
  • a coil spring is used for a biasing member (spring 51, 51 ', 81, 81', 81 '', 82, 82 ', 82' ', 160, 260) was shown in said each embodiment, a spiral is shown.
  • Other spring types can be used, such as springs or torsion bars.
  • a compression spring was used for an urging member was shown in said 1st and 2nd embodiment, an apparatus can also be comprised as a tension spring.
  • the pinching roller pair can be installed every one or two units, and the number of the film forming units 41 is small (for example, 2) C)
  • the substrate position is controlled by the controllable upper pinch roller pair 21 (121) and the contact pressure fixed lower pinch roller pair 23 (123) disposed therebelow
  • the substrate position control device can also be configured with only the upper gripping roller pair 21 (121) that configures the device or can be controlled. In the latter case, by balancing the gravity acting on the flexible substrate 1 and the lifting force of the upper holding roller pair 21, control is performed to maintain the position of the flexible substrate in the vertical width direction constant.
  • the processing apparatus of the flexible substrate concerning this invention manufactures semiconductor thin films, such as organic EL.
  • the apparatus is, of course, applicable to various processing apparatuses such as coating, cleaning, drying, heat treatment, surface processing, etc. where position control and expansion of a flexible substrate are required besides film formation.
  • the flexible substrate is conveyed in the horizontal direction (including the oblique direction) in the vertical posture (or in the inclined posture)
  • the flexible substrate is conveyed in the horizontal direction, in the vertical direction or in the vertical direction in the horizontal posture. Is also feasible.

Abstract

 可撓性基板1の幅方向位置を制御する位置制御装置(21,5)は、前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角(α)を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラ21(24,25)と、前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材26,27を含む上側支持機構と、前記可動支持部材を介して、前記一方の上側挟持ローラ25を前記他方の上側挟持ローラ24に圧接させる方向に付勢するスプリング51と、前記一対の上側挟持ローラの挟圧力を調整すべく前記付勢部材を変位させる駆動手段(56)と、を備えている。帯状の可撓性基板を長距離に亘り搬送しつつも可撓性基板の下垂や皺の発生を抑制でき、可撓性基板の幅方向位置を一定に維持することで、高品質の処理を行える。

Description

可撓性基板の処理装置
 本発明は、帯状の可撓性基板を搬送しながら成膜などの処理を行なう処理装置に関し、さらに詳しくは、前記可撓性基板の幅方向位置を制御する装置に関するものである。
 半導体薄膜などの薄膜積層体の基板には、通常、剛性基板が用いられるが、軽量でロールを介した取り扱いの利便性による生産性向上やコスト低減を目的として、プラスチックフィルムなどの可撓性基板が用いられる場合がある。例えば、特許文献1には、巻出しロールから供給される帯状可撓性基板(ポリイミドフィルム)を所定のピッチで間欠的に搬送しながら、前記可撓性基板の搬送方向に配列された複数の成膜ユニットで、前記可撓性基板上に性質の異なる複数の薄膜を積層形成し、製品ロールとして巻取る薄膜積層体(薄膜光電変換素子)の製造装置が開示されている。
特開2005-72408号公報
 このような薄膜積層体の製造装置には、横姿勢すなわち帯状可撓性基板の幅方向を水平方向にして搬送しつつ成膜を行なうタイプと、縦姿勢すなわち帯状可撓性基板の幅方向を上下方向にして搬送しつつ成膜を行なうタイプがある。後者は、前者に比べて設置面積が小さく、基板表面が汚染されにくい等の利点があるが、搬送スパンが長くなると、重力に抗して搬送高さを一定に維持するのが困難になり、可撓性基板の表面に皺が発生したり、可撓性基板が垂れ下がったりする傾向が顕著になる。
 そこで、多数の成膜ユニット(例えば、化学蒸着、物理蒸着などの真空蒸着ユニット)が並設された製造装置において、搬送スパンの中央に位置した成膜ユニット間に、可撓性基板の全幅に亘って接触する側端位置制御(EPC)ローラを設けることが提案されている。しかし、比較的高い温度に維持されている成膜ユニット間に、平滑度を確保すべくステンレス等で形成されたEPCローラを介在させると、ローラとの接触によって可撓性基板が急冷され、かえって皺の発生原因となる虞がある。
 さらに、生産性向上および設備スペース節減のためには、各成膜ユニットの間隔を可及的に小さくして可撓性基板上のマージンを少なくすることが有利であるが、たとえ1箇所でも成膜ユニット間にEPCローラを設置すれば、等ピッチで配設されている全ての成膜ユニットの間隔をEPCローラに合わせて同様に確保するか、1ユニット分のEPCローラ用スペースを設ける必要が生じ、生産性向上および設備スペース節減に不利になる。
 本発明は、上記のような問題点に鑑みてなされたものであり、その目的は、帯状可撓性基板を縦姿勢で長距離に亘り搬送しつつも可撓性基板の下垂や皺の発生を抑制でき、可撓性基板の幅方向位置を一定に維持することで、高品質の処理を行える可撓性基板の処理装置を提供することにある。
 (1)上記目的を達成するために、本発明の第1の基本的態様は、帯状の可撓性基板を縦姿勢で横方向に搬送する搬送手段(12,14,32,34)と、前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部(20)と、前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置(21,5,5′)と、を備え、前記位置制御装置が、前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラ(24,25)と、前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材を含む上側支持機構(26,27)と、前記可動支持部材を介して、前記一方の上側挟持ローラを前記他方の上側挟持ローラに圧接させる方向に付勢する付勢部材(51,51′)と、前記一対の上側挟持ローラの挟圧力を調整すべく前記付勢部材を変位させる駆動手段(56)と、を備えている、可撓性基板の処理装置にある。
 上記処理装置では、帯状可撓性基板は、処理部の上流側および下流側それぞれに配置されたフィードローラ等の搬送手段により縦姿勢で搬送され、処理部にて成膜等の処理が行なわれる。その際、位置制御装置を構成する挟持ローラ対で可撓性基板の上側に位置した縁部が挟持され、かつ、前記挟持ローラ対の挟持部における回転方向が、可撓性基板の搬送方向に対して斜上方に向かう微小偏角(slight bias angle)を有することにより、自重による垂れ下がりに抗して可撓性基板を上方に持ち上げる力を発生可能である。この持ち上げ力は、挟持ローラ対の挟圧力すなわち付勢部材の付勢力に依存するので、駆動手段により付勢部材を変位させその付勢力を調整することで、帯状可撓性基板の上下幅方向位置を制御でき、一定または所定公差内に維持することが可能である。
 このように帯状可撓性基板を縦姿勢で長距離に亘り搬送しつつも可撓性基板の上下幅方向位置が一定に維持され、垂れ下がりが抑制されることにより、搬送スパンにおける可撓性基板の張力が均一化され、皺や歪みの発生が防止されるので、可撓性基板に対する高品質の処理が可能となる。しかも、上記挟持ローラ対は、帯状可撓性基板の上側に位置した縁部を挟持するのみであるので、製品部分に影響を与えることがない。また、小径細幅のローラを使用可能であるため、処理ユニット間の僅かなスペースに設置可能であり、処理ユニットの間隔および可撓性基板上のマージンを可及的に小さくし、生産性を向上するとともに設備スペースを節減する上で有利である。
 (2)上記目的を達成するために、本発明の第2の基本的態様は、帯状の可撓性基板を縦姿勢で横方向に搬送する搬送手段(12,14,32,34)と、前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部(20)と、前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置(21,8,8′,8″)と、を備え、前記位置制御装置が、前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラ(24,25)と、前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材を含む上側支持機構(28,29)と、前記可動支持部材を介して、前記一方の上側挟持ローラを前記他方の上側挟持ローラに圧接させる方向に付勢する付勢部材(81,81′)と、前記可動支持部材に前記付勢部材と反対方向の調整力を付加する第2付勢部材(82,82′)と、前記一対の上側挟持ローラの挟圧力を調整すべく前記第2付勢部材を変位させる駆動手段(86)と、を備えている、可撓性基板の処理装置にある。
 先述した第1の基本的態様では、位置制御装置が、駆動手段により付勢部材を直接的に変位させて挟圧力を調整する構成であったのに対し、第2の基本的態様では、可動支持部材に付勢部材(第1付勢部材)と反対方向の調整力を付加する第2付勢部材を備え、駆動手段により第2付勢部材を変位させてその付勢力(調整力)を調整し、変化した調整力の分だけ、第1付勢部材の付勢力が相殺され、挟持ローラ対の挟圧力が調整される構成となっている。
 したがって、第2の基本的態様では、挟持ローラ対には、可動支持部材を介して常に第1付勢部材の付勢力が作用しており、しかも、挟持ローラ対の挟圧力が小さい領域、すなわち、上下幅方向位置のずれが小さく、位置制御が収束する領域ほど、第1付勢部材の付勢力および第2付勢部材の付勢力(調整力)が大きくなり、制御の精度および安定性を向上するうえで有利である。他の作用効果については、第1の基本的態様と同様である。
 本発明に係る可撓性基板の処理装置が主に対象とする薄膜積層体の製造装置では、成膜ユニットを含む製造装置の主要部分が共通の真空室内に配設されているが、所定の真空度まで減圧され、かつ、比較的高い温度に維持されている真空室内に、モータや流体圧シリンダなどのアクチュエータを含む駆動手段を設置することは種々の困難を伴う。そこで、本発明は、真空室の外部に設置したアクチュエータにより挟持ローラ対の挟圧力を遠隔的に操作する構成を備えるに際し、前記各付勢部材の配置により、以下に述べるような副次的態様が存在する。
 (1.1)上記第1の基本的態様に基づく第1の副次的態様は、前記処理部が、真空室内に配設された少なくとも1つの成膜ユニット(41)を含み、前記一対の上側挟持ローラ(24,25)、前記上側支持機構(26,27)、および前記付勢部材(51)が、前記真空室内に配設されており、前記駆動手段が、前記真空室の外部に配設されたアクチュエータ(56)と、前記アクチュエータの駆動を、シール手段(57)を介して前記真空室内の前記付勢部材(51)に伝達する駆動伝達機構(55,54,53)と、を含む(図5)。
 (1.2)上記第1の基本的態様に基づく第2の副次的態様は、前記処理部が、真空室内に配設された少なくとも1つの成膜ユニット(41)を含み、前記一対の上側挟持ローラ(24,25)および前記上側支持機構(26,27)が前記真空室内に配設され、前記付勢部材(51′)が、前記真空室の外部に配設されており、前記駆動手段が、前記真空室の外部に配設されたアクチュエータ(56)を含み、前記付勢部材の付勢力を、シール手段(57)を介して前記真空室内の前記可動支持部材に伝達する付勢力伝達機構(55′,54′,53′)をさらに備える(図9)。
 (2.1)上記第2の基本的態様に基づく第1の副次的態様は、前記処理部が、真空室内に配設された少なくとも1つの成膜ユニット(41)を含み、前記一対の上側挟持ローラ(24,25)、前記上側支持機構(28,29)、および前記付勢部材(81)が、前記真空室内に配設され、前記第2付勢部材(82)が、前記真空室の外部に配設されており、前記駆動手段が、前記真空室の外部に配設されたアクチュエータ(86)を含み、前記第2付勢部材の調整力を、シール手段(57)を介して前記真空室内の前記可動支持部材に伝達する調整力伝達機構(85,84,83)をさらに備える(図7)。
 (2.2)上記第2の基本的態様に基づく第2の副次的態様は、前記処理部が、真空室内に配設された少なくとも1つの成膜ユニット(41)を含み、前記一対の上側挟持ローラ(24,25)、前記上側支持機構(28,29)、前記付勢部材(81)、および前記第2付勢部材(82′)が、前記真空室内に配設されており、前記駆動手段が、前記真空室の外部に配設されたアクチュエータ(86)と、前記アクチュエータの駆動を、シール手段(57)を介して前記真空室内の前記第2付勢部材に伝達する駆動伝達機構(85′,84′,83′)と、を含む(図10)。
 (2.3)上記第2の基本的態様に基づく第3の副次的態様は、前記処理部が、真空室内に配設された少なくとも1つの成膜ユニット(41)を含み、前記一対の上側挟持ローラ(24,25)および前記上側支持機構(28,29)が、前記真空室内に配設され、前記付勢部材(81′)および前記第2付勢部材(82)が、前記真空室の外部に配設されており、前記駆動手段が、前記真空室の外部に配設されたアクチュエータ(86)を含み、前記付勢部材の付勢力を、シール手段(57)を介して前記真空室内の前記可動支持部材に伝達する付勢力伝達機構(85″,84″,83″)をさらに備える(図11)。
 上記本発明の各副次的態様において、前記シール手段(57)がシール軸受であり、前記駆動伝達機構、前記付勢力伝達機構、または、前記調整力伝達機構が、前記シール軸受で気密かつ回動可能に支持された軸(54,54′,84,84′,84″)を含み、前記軸を介して前記真空室の外部から内部に回転力を伝達するように構成されていることが好適である。
 真空室の外部から挟持ローラ対の挟圧力を遠隔的に操作する構成において、真空室の隔壁に設けたシール軸受で気密かつ回動可能に支持された軸を介して回転力として伝達することにより、シール構造への負担が少なく、駆動力、付勢力、または調整力を真空室内に効率良く伝達可能であり、基板位置制御の精度を確保するうえで有利である。
 本発明において、前記位置制御装置が、前記可撓性基板の下側縁部を挟持する一対の下側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜下方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の下側挟持ローラ(23)と、前記一対の下側挟持ローラを回転可能かつ相互に接離可能となるように支持する可動および固定支持部材を含む下側支持機構と、前記可動支持部材を介して、前記一方の下側挟持ローラを前記他方の下側挟持ローラに圧接させる方向に付勢する下側付勢部材と、をさらに備えることが好適である。
 この構成により、上側挟持ローラ対による制御可能な持ち上げ力と、下側挟持ローラ対による引き下げ力とによって、帯状可撓性基板が上下方向すなわち幅方向に展張され、展張状態で上下幅方向位置の制御がなされることにより、位置制御をより高精度に行える。
 なお、上記構成においても、前記一対の下側挟持ローラの挟圧力を調整すべく前記下側付勢部材を変位させる下側駆動手段をさらに備えるか、または、前記可動支持部材に前記下側付勢部材と反対方向の調整力を付加する下側第2付勢部材と、前記一対の下側挟持ローラの挟圧力を調整すべく前記下側第2付勢部材を変位させる下側駆動手段と、をさらに備えてことが好適である。
 (3)上記目的を達成するために、本発明の第3の基本的態様は、帯状の可撓性基板を縦姿勢で横方向に搬送する搬送手段(12,14,32,34)と、前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部(20)と、前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置(121,105)と、を備え、前記位置制御装置が、前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラ(124,125)と、前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材を含む支持機構(128,129)と、前記可動支持部材を介して、前記一方の上側挟持ローラを前記他方の上側挟持ローラに圧接させる付勢力を発生させるスプリング(160)と、前記スプリングの付勢力を前記可動支持部材にトルクとして伝達する伝達機構(151,153,154)と、前記一対の上側挟持ローラの挟圧力を調整すべく、前記スプリングの支持点を前記伝達機構との連結点の周りで角変位させる駆動手段(156)と、を備えている、可撓性基板の処理装置にある。
 上記第3の基本的態様では、挟持ローラ対の挟圧力を調整するために、スプリングの支持点を伝達機構との連結点の周りで角変位させる構成を採用したことにより、スプリングの弾性変位を一定に維持した状態でも、挟持ローラ対の挟圧力に寄与する付勢力の角度成分、すなわち、スプリング連結点の回動半径方向と直交する成分を、スプリング支持点の角変位に応じて漸次増減させることができる。この構成は、スプリング支持点を付勢力の作用方向に進退変位させる構成と比較して、制御に要する駆動力が小さくて済み、機構が簡素化され、高精度の制御が行える利点がある。
 特に、挟持ローラ対の挟圧力が小さい領域を含む角変位の全領域で、常にスプリングの付勢力が伝達機構に作用しており、しかも、挟持ローラ対の挟圧力に寄与する付勢力の角度成分が小さくなるほど、スプリング連結点の回動半径方向成分が大きくなり、この半径方向成分は、伝達機構の角位置とそれに対応した挟持ローラ対の挟圧力を安定化させるのに寄与する。したがって、挟持ローラ対の挟圧力が小さい領域、すなわち、可撓性基板の上下幅方向位置のずれが小さく、位置制御が収束する領域での制御の精度および安定性を向上するうえで有利である。
 上記第3の基本的態様において、前記駆動手段が、前記スプリングの支持点を、前記伝達機構との連結点を通りかつ前記伝達機構の回動軸と平行な軸を中心として、前記スプリングの弾性変位を一定に維持しつつ角変位させる駆動部材(161)を含むことが好適である。この態様では、スプリングの弾性変形に伴う摩擦の影響を排除して高精度の制御が行えることに加えて、以下に述べるような、トグル機構を利用した挟持ローラの解除位置を、駆動手段により設定可能なシステムを容易に構築できる利点がある。
 すなわち、本発明のさらに好適な態様は、前記駆動手段による前記支持点の角変位が、トグル角位置であって、該トグル角位置に支持された前記スプリングの付勢力によって、前記伝達機構が、前記一方の挟持ローラを前記他方の挟持ローラに圧接させる位置と、前記一方の挟持ローラを前記他方の挟持ローラから離反させる位置との2位置に保持され得るようなトグル角位置(161′)を含む。
 この構成により、駆動手段によって、スプリング支持点をトグル角位置に変位させるだけで、可動支持部材、伝達機構、スプリング、駆動手段の接続関係を維持したまま、一方の挟持ローラを他方の挟持ローラから離反させることが可能な待機状態とすることができ、さらに、手操作などで一方の挟持ローラを他方の挟持ローラから離反させると、離反した挟持ローラがスプリングの付勢力で離反状態に保持され、可撓性基板を製造装置に容易に導入可能となる。また、可撓性基板を成膜ユニットに通過させた後、離反した挟持ローラを元位置に戻せば、該挟持ローラが、スプリングの付勢力によって直ちに他方の挟持ローラに圧接され、可撓性基板が挟持される。このように、可撓性基板の導入作業を容易に行なうことが可能となる。
 本発明のさらに好適な態様では、前記位置制御装置が、前記可撓性基板の下側縁部を挟持する一対の下側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜下方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の下側挟持ローラ(123)と、前記一対の下側挟持ローラを回転可能かつ相互に接離可能となるように支持する可動および固定支持部材を含む下側支持機構と、前記可動支持部材を介して、前記一方の下側挟持ローラを前記他方の下側挟持ローラに圧接させる付勢力を発生させる下側スプリングと、をさらに備えている。
 先述した、帯状可撓性基板の上側の縁部を挟持する一対の上側挟持ローラ対に加えて、前記可撓性基板の下側の縁部を挟持する一対の下側挟持ローラを備え、上側挟持ローラ対が斜上方に向かう微小偏角を有し、下側挟持ローラ対が斜下方に向かう微小偏角を有する構成により、上側挟持ローラ対による制御可能な持ち上げ力と、下側挟持ローラ対による引き下げ力とによって、成膜ユニット間で帯状可撓性基板が上下方向すなわち幅方向に展張され、展張状態で上下幅方向位置の制御がなされることにより、位置制御をより高精度に行える。
 本発明において、前記可撓性基板の上下幅方向位置を検知する検知手段(49)をさらに備え、前記位置制御装置が、前記検知手段の検出値に基づいて前記駆動手段を制御するための制御部(50,150)をさらに備えることが好適である。この構成により、予め挟圧力と制御量(角変位)のキャリブレーションを実施することで、フィードバック制御等による自動制御が可能となる。
 例えば、帯状可撓性基板を所定のピッチで間欠的に搬送しつつ成膜を行なう場合には、休止期間に成膜工程と並行して上下幅方向位置の検知および必要に応じて挟圧力の調整を実行し、次の搬送期間中に搬送手段の搬送力によって基板位置の補正が実行されるようにでき、さらに、搬送期間中に上下幅方向位置の監視および挟圧力の修正を行うこともできる。また、帯状可撓性基板を連続的に搬送しながら成膜を行なう場合には、上下幅方向位置を常時監視しながら必要に応じて挟圧力の修正が行なわれることになる。
 (4)本発明に係る上記第1~第3の基本的態様は、一対の挟持ローラが可撓性基板の各側縁部にそれぞれ配設される場合、縦姿勢のみならず、横姿勢の場合を含む下記の態様をとりうる。
 (4.1)上記第1の基本的態様は、帯状の可撓性基板の搬送手段と、前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、前記位置制御装置が、前記可撓性基板の各側縁部を挟持する各一対の挟持ローラであって、それぞれの挟持部における回転方向が前記可撓性基板の搬送方向に対して幅方向縁端側に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した各一対の挟持ローラと、前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する可動および固定支持部材を含む各側の支持機構と、前記各可動支持部材を介して、前記一方の挟持ローラを前記他方の挟持ローラにそれぞれ圧接させる方向に付勢する各側の付勢部材と、前記各一対の挟持ローラの少なくとも一方の挟圧力を調整すべく前記各付勢部材の少なくとも一方を変位させる駆動手段と、を備えている、可撓性基板の処理装置の態様をとりうる。
 (4.2)上記第2の基本的態様は、帯状の可撓性基板の搬送手段と、前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、前記位置制御装置が、前記可撓性基板の各側縁部を挟持する各一対の挟持ローラであって、それぞれの挟持部における回転方向が前記可撓性基板の搬送方向に対して幅方向縁端側に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した各一対の挟持ローラと、前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する可動および固定支持部材を含む各側の支持機構と、前記各可動支持部材を介して、前記各一方の挟持ローラを前記各他方の挟持ローラにそれぞれ圧接させる方向に付勢する各側の付勢部材と、前記各可動支持部材に前記各付勢部材と反対方向の調整力をそれぞれ付加する各側の第2付勢部材と、前記各一対の挟持ローラの少なくとも一方の挟圧力を調整すべく前記各第2付勢部材の少なくとも一方を変位させる駆動手段と、を備えている、可撓性基板の処理装置の態様をとりうる。
 (4.3)上記第3の基本的態様は、帯状の可撓性基板の搬送手段と、前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、前記位置制御装置が、前記可撓性基板の各側縁部を挟持する各一対の挟持ローラであって、それぞれの挟持部における回転方向が前記可撓性基板の搬送方向に対して幅方向縁端側に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した各一対の挟持ローラと、前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する可動および固定支持部材を含む各側の支持機構と、前記各可動支持部材を介して、前記各一方の挟持ローラを前記各他方の挟持ローラにそれぞれ圧接させる付勢力を発生させる各側のスプリングと、前記各スプリングの付勢力を前記各可動支持部材にそれぞれトルクとして伝達する各側の伝達機構と、前記各一対の挟持ローラの少なくとも一方の挟圧力を調整すべく、前記各スプリングの少なくとも一方の支持点を前記伝達機構との連結点の周りで角変位させる駆動手段と、を備えている、可撓性基板の処理装置の態様をとりうる。
 本発明に係る可撓性基板の処理装置は、上述したように、帯状の可撓性基板を搬送しながら成膜等の処理を行なうに際して、可撓性基板の下垂や皺の発生を効果的に抑制でき、幅方向位置を一定に維持して高品質の処理が可能となる。加えて、上記第3の基本的態様では、小さな駆動力で高精度の制御が可能となり、また、可撓性基板の導入作業を容易ならしめる挟持ローラ対の解除機構を低コストで実装可能である。
本発明実施形態に係る製造装置の全体構成を示す概略平面図である。 本発明実施形態に係る製造装置の1つの成膜ユニットを示す概略平面図である。 図2のA-A断面図である。 本発明第1実施形態に係る上側挟持ローラ対とその制御機構を示す図3の要部拡大断面図である。 本発明第1実施形態に係る上側挟持ローラ対とその制御機構を搬送方向上流側から見た要部拡大断面図である。 本発明第2実施形態に係る上側挟持ローラ対とその制御機構を示す図4に対応する要部拡大断面図である。 本発明第2実施形態に係る上側挟持ローラ対とその制御機構を搬送方向上流側から見た要部拡大断面図である。 図7のB-B断面図である。 本発明第1実施形態に係る変形例を示す概略図である。 本発明第2実施形態に係る変形例を示す概略図である。 本発明第2実施形態に係る別の変形例を示す概略図である。 本発明第1実施形態に係る別の変形例を示す図2のA-A断面図概略図である。 本発明第3実施形態に係る製造装置の1つの成膜ユニットを示す図2のA-A断面図である。 本発明第3実施形態に係る上側挟持ローラ対とその制御機構を示す図3の要部拡大断面図である。 本発明第3実施形態に係る上側挟持ローラ対とその制御機構を搬送方向上流側から見た要部拡大断面図である。 本発明第3実施形態に係る上側挟持ローラ対とその制御機構を示す要部拡大平断面図である。 駆動アームの回転角度とスプリングの張力Fおよび付勢方向成分Fy、付勢方向と直交する成分Fxの関係を示すグラフである。 接圧固定型上側挟持ローラ対を搬送方向上流側から見た要部拡大断面図である。 本発明第3実施形態に係る変形例を示す図2のA-A断面図概略図である。 本発明第4実施形態に係る上側挟持ローラ対とその制御機構を搬送方向上流側から見た断面図概略図である。
 以下、本発明の実施形態について、本発明を太陽電池用の薄膜光電変換素子を構成する薄膜積層体の製造装置100に実施する場合を例にとり、図面を参照しながら詳細に説明する。なお、以下において、各実施形態に共通または対応する構成には、共通または対応する符号を付すことで説明を省略する場合がある。
 図1において、製造装置100は、帯状の可撓性基板1(フレキシブルフィルム)の搬送系を構成する巻出し部10および巻取り部30を備え、可撓性基板1をその幅方向を鉛直方向に一致させて巻出し部10から巻取り部30へと所定ピッチで間欠的に搬送しつつ、それらの間の搬送経路に沿って配設された成膜部20で、可撓性基板1に複数の薄膜を順次積層形成するように構成されている。
 上記巻出し部10、成膜部20、巻取り部30を覆う各室構造は、相互に気密に連結され、装置全体が、所定の真空度に維持された共通の真空室内に収容されている。図示例の製造装置100は、2系統の薄膜積層体の製造ラインが平行にレイアウトされており、巻出し部10および巻取り部30は、各系統にそれぞれ配設されているが、成膜部20は、2系統に共通の室構造(40,40・・・)内に収容されている。
 巻出し部10は、巻出しロール11から可撓性基板1を巻出して供給する巻出し装置(11)、巻出された可撓性基板1を成膜部20に送給する巻出し側フィードローラ12、巻出し側のフィルム張力を検出する張力検出ローラ13aおよび13b、成膜部20の上流側で可撓性基板1を成膜部20に案内するガイドローラ14から主に構成されている。
 成膜部20の下流側に配設された巻取り部30は、成膜部20の下流側で可撓性基板1を案内するガイドローラ34、該ガイドローラ34における可撓性基板1の上下幅方向位置(搬送高さ)を制御する側端位置制御(EPC)ローラ35、アイドルローラ36、巻取り側のフィルム張力を検出する張力検出ローラ33aおよび33b、巻取り側フィードローラ32、および可撓性基板1をコアの周囲に巻取りロール31として巻取る巻取り装置(31)から主に構成され、張力検出ローラ33bは、フィルム張力を積極的に制御する機能も有している。
 上記巻出し部10および巻取り部30を構成する各ローラは、可撓性基板1をその幅方向を鉛直方向に一致させて搬送するために、何れも軸方向が鉛直方向に配向されている。但し、側端位置制御ローラ35は、その軸方向を鉛直方向に対して傾動可能に構成されており、前記ガイドローラ34における可撓性基板1の上下幅方向位置の検出値に基づいて回転軸を傾動させ、可撓性基板1の送出方向を上方または下方に微調整することにより、ガイドローラ34における可撓性基板1の上下幅方向位置を補正し、一定に維持可能としている。
 成膜部20は、巻出し部10と巻取り部30との間における可撓性基板1の直線的な搬送経路に沿って所定のピッチで配列された複数の成膜ユニット41で構成されている。成膜部20の室構造は、成膜ユニット41毎に区分された複数の室構造ユニット40からなり、各室構造ユニット40は相互に気密に連結され、先述した共通真空室の一部を構成している。各成膜ユニット41は、プラズマCVDなどの化学蒸着(CVD)や、スパッタなどの物理蒸着(PVD)を行なうための真空蒸着ユニットで構成される。
 例えば、可撓性基板1に光電変換素子を積層形成する薄膜太陽電池の製造装置(100)では、pin構造の光電変換層をプラズマCVDにより積層形成する複数の成膜ユニット41(a,b・・・)、前記光電変換層の表面および可撓性基板1の裏面にそれぞれ電極層をスパッタリングにより積層形成する複数の成膜ユニット41(i,j)を備えている。
 図2は、プラズマCVD用の1つの成膜ユニット41を概略的に示している。図において、成膜ユニット41は、相互に対向する面が開口された固定チャンバー42と、図示しない流体圧シリンダ等の進退駆動手段により前記固定チャンバー42に対して接離可能に設けた可動チャンバー43とを備え、固定チャンバー42内にはヒータ44aを内蔵した接地電極44が配設されている。また、可動チャンバー43内には、表面に多数のガス噴出孔を有する高周波電極45が配設され、この高周波電極45は、真空室外部の図示しない高周波電源に接続されている。
 この成膜ユニット41は、可撓性基板1の間欠的な搬送サイクルの停止期間中に、可動チャンバー43を固定チャンバー42に圧接し、可撓性基板1を挟んだ状態で成膜チャンバー(42,43)を閉鎖した後、排気管45bを通じて成膜チャンバー(42,43)内をさらに減圧しながら、ガス導入管45aを通じて薄膜成分を含む原料ガスを成膜チャンバー(42,43)内に導入し、高周波電極45に高周波高電圧を印加してプラズマを発生させ、加熱された可撓性基板1の表面に原料ガスの化学反応により薄膜を形成可能である。
 薄膜太陽電池の発電効率を向上すべく光電変換層を複数設ける場合には、成膜ユニット41の総数は10以上になり、幅が1m以上の大型の可撓性基板1では、巻出し側ガイドローラ14から巻取り側ガイドローラ34に至る搬送スパンは10m以上にもなる。そこで、製造装置100は、成膜部20における可撓性基板1の上下幅方向位置(搬送高さ)を一定に維持するための基板位置制御装置が設けられている。
 基板位置制御装置は、図2および図3に示すように、成膜部20における各成膜ユニット41,41・・・の間で、可撓性基板1の上側縁部を挟持する上側挟持ローラ対21,22・・・、可撓性基板1の下側縁部を挟持する下側挟持ローラ対23,23・・・、を備え、少なくとも1つの上側挟持ローラ対21は挟圧力を制御可能に構成され、可撓性基板1の上下幅方向位置を検知するセンサ49、該センサ49の検出値に基づいて前記少なくとも1つの上側挟持ローラ対21の挟圧力を制御する制御部50および駆動手段としてのアクチュエータ56をさらに備えてなる。
 先述したように、成膜部20は、成膜ユニット41毎に区分された複数の室構造ユニット40からなり、各室構造ユニット40は、その周辺部に配設される主構造材46、該主構造材46に対して開閉可能に設けられている側壁47、主構造材46の上部に固定された天井パネル48などで構成されている。高周波電極45を含む可動チャンバー43およびその図示しない進退駆動手段は、各側壁47に取付けられている。各室構造ユニット40の接合部には、可撓性基板1を通過させるための開口460が各主構造材46を貫通して設けられており、この開口460の上側および下側において、各上側挟持ローラ対21,22・・・および各下側挟持ローラ対23,23・・・は、それぞれ後述する角度調整手段7を介して以下のような微小偏角α,βを有して主構造材46に取付けられている。
 すなわち、各上側挟持ローラ対21,22・・・は、挟持部における回転方向が、可撓性基板1の搬送方向に対して斜上方に向かう微小偏角αを有するように取付けられ、各下側挟持ローラ対23,23・・・は、挟持部における回転方向が、可撓性基板1の搬送方向に対して斜下方に向かう微小偏角βを有するように取付けられている。
 このように各上側挟持ローラ対21,22および各下側挟持ローラ対23が、搬送方向に対して相互に拡開するような微小偏角α,βを有することで、可撓性基板1が搬送スパンの間で支持されるのみならず、各成膜ユニット41に沿って搬送される過程で、可撓性基板1の上側縁部には持ち上げ力が生じ、下側縁部には引き下げ力が生じることになる。これにより、可撓性基板1が幅方向に展張されるとともに、上側挟持ローラ対21,22の持ち上げ力が、可撓性基板1の自重に下側挟持ローラ対23の引き下げ力を加えた力と平衡することで、可撓性基板1の上下幅方向位置が一定になり、パスラインが水平になる。しかし、各成膜ユニット41で可撓性基板1に順次成膜工程がなされ、可撓性基板1の面密度や弾性係数などの物性が搬送方向に一様でないこともあり、上記平衡状態を単純に得ることはできない。
 上側挟持ローラ対21,22の持ち上げ力、下側挟持ローラ対23の引き下げ力は、微小偏角α,βと各挟持ローラ対の接圧に依存している。微小偏角α,βは、0.1°~6°の範囲で設定可能であり、可撓性基板1および挟持ローラ対の表面性状や接圧にも依るが、微小偏角α,βが概ね6°を超えると動摩擦が主体的になり、持ち上げ力や引き下げ力は向上しなくなる。基板位置制御を有効に機能させるためには、微小偏角α,βは0.5°~2°が好適である。上下の微小偏角α,βが一定であれば各ローラ対の持ち上げ力および引き下げ力は接圧によって決定される。しかし、搬送方向に沿って各成膜ユニット41間に配設された全ての上側挟持ローラ対21,22および下側挟持ローラ対23の接圧を制御することは現実的でない。
 そこで、各上側挟持ローラ対21,22・・・のうち、一部の上側挟持ローラ対21の接圧を積極的に制御する一方、他の上側挟持ローラ対22および下側挟持ローラ対23の接圧を予め設定した固定値として、持ち上げ力および引き下げ力が消極的に作用するような構成として、より簡潔に実効性の高い基板位置制御を行なうことが有利である。図示例の製造装置100では、搬送スパンのほぼ中央に位置した成膜ユニット41(f)の搬送方向上流側の1つの上側挟持ローラ対21が、可撓性基板1の上下幅方向位置を積極的に制御すべく接圧を制御可能に構成されている。
 好ましい実施形態においては、制御可能な上側挟持ローラ対21が、他の上側挟持ローラ対22および下側挟持ローラ対23と共通のアセンブリに、制御機構(接圧調整ユニット)を追加することにより構成される。角度調整手段7は各挟持ローラ対21,22,23に共通である。上側挟持ローラ対21の制御機構は、ローラ対に接圧を付与する方式によりダイレクト方式(5)、バランス方式(8)、トグルバネ方式(105)の3つの基本的な実施形態が存在する。
 (第1実施形態)
 図4および図5は、本発明の第1実施形態に係る上側挟持ローラ対21およびその制御機構5を示しており、この制御機構5は、付勢部材(51)の付勢力を直接制御するダイレクト方式である。以下、本発明の第1実施形態について図面と共に説明する。
 各図において、上側挟持ローラ対21は、一対の挟持ローラ24,25からなる。固定側ローラ24は、図5に示すように、固定支持部材26の先端(下端)に設けた支軸26aにベアリングを介して回転自在に支持され、金属製のローラ本体24aと、その周面に被着された耐熱性のゴム被覆24bで構成されている。可動側ローラ25も、可動支持部材27の先端(下端)に前記同様に回転自在に支持され、同様に金属製のローラ本体25aと、その周面に被着された耐熱性のゴム被覆25bで構成されている。
 固定支持部材26は、図4に示すように、その基端(上端)部において、角度調整手段7を構成するブラケット71に固定されている。ブラケット71は、固定側ローラ24の軸方向に対して垂直な支持部71aと、該支持部71aの一側から該支持部71aに対して垂直かつ上方に延びる基部71bとを有し、支持部71aに固定支持部材26の基端部が固定されている。そして、ブラケット71の基部71bと、固定板70との間にシム73を介在させ、ボルト72で、基部71bを主構造材46の垂直面に固定することにより、シム73の厚さおよび/または枚数に応じてブラケット71の取付け角度、すなわち、固定支持部材26に支持された固定側ローラ24の取付け角度を変更可能である。
 一方、図5に示すように、可動支持部材27は、その中間部において、前記固定支持部材26に固着されたブラケット26bの先端部に軸27aを介して揺動可能に支持されており、軸27aを中心とした可動支持部材27の揺動により、可動側ローラ25が固定側ローラ24に接離可能となっている。
 さらに、可動支持部材27は、前記中間部(27a)からクランク状に屈曲して上方に延出した腕部27bを有しており、この腕部27bの先端には、スプリング51を支承するためのリテーナバー51aが、ナット51bで固定されている。リテーナバー51aは、腕部27bから、固定支持部材26の基端部に向けて固定側ローラ24の軸方向と交差する方向に延び、後述する操作アーム53の先端部(53a)との間にスプリング51を介装した状態で該操作アーム53の係合孔53aに挿通され、さらに、リテーナバー51aの先端部は、固定支持部材26の基端部に設けた長孔26cに挿通されている。
 スプリング51は圧縮バネであり、該スプリング51により、可動支持部材27の腕部27aが、操作アーム53から離反する方向に付勢され、軸27aを中心に腕部27aと反対側に位置した可動側ローラ25が固定側ローラ24に圧接される。したがって、操作アーム53をリテーナバー51aに沿って変位させて、スプリング51の支持点を変位させることにより、スプリング51の付勢力を制御可能であるとともに、挟持ローラ24,25の接圧を調整可能である。
 操作アーム53は、その基端部において、回動軸54の下端に固定されている。回動軸54は、主構造材46にブラケット54bを介して固定された軸受54aで回動自在に支持され、その上端は、シール軸受57を介して室構造ユニット40の天井部(48)を貫通し、真空室(40)の外部で、レバー55を介してアクチュエータ56(リニアアクチュエータ)の出力軸56aに連結されている。
 先述したように、上側および下側の各挟持ローラ対21,22,23は、成膜ユニット41間に位置した主構造材46に角度調整手段7を介して取付けられるが、その取付け位置は、図3あるいは図4に示されるように、隣接する室構造ユニット40の接合部であるため、回動軸54およびシール軸受57は、主構造材46を避けて成膜ユニット41の上方に配設されている。このため、操作アーム53は、成膜ユニット41の上方でクランク状に屈曲して主構造材46の下方に延び、スプリング51の一端に係合している。
 シール軸受57は、天井パネル48の開口部480に、ベースプレート58やOリングなどを介して気密に取付けられており、そのハウジングの内部に、ベアリングおよび磁気シールを備えてなり、真空室内外の差圧を維持した状態で回動軸54を回動自在に支持可能であり、回動軸54を介してアクチュエータ56の駆動を真空室(40)の内部に伝達可能である。なお、シール軸受57および回動軸54が設置されない開口部480は、耐熱ガラスなどの透明部材が装着され、真空室内部を観察するための観察窓となっている。
 アクチュエータ56は、室構造ユニット40(真空室)の外部に配設されているので、任意の形式のアクチュエータを使用可能である。図示例では、サーボモータの回転をネジ送り機構などで直線往復動に変換するリニアアクチュエータを用いているが、ロータリーアクチュエータを用いて駆動軸54を直接または間接的に回動するように構成することもできる。アクチュエータ56は、センサ49の検出値に基づいて制御部50から出力される制御信号によって進退または回転駆動される。
 センサ49は、図3に示すように、制御可能な上側挟持ローラ対21が設置された成膜ユニット41間に対して、1ユニット分だけ搬送方向下流側(または上流側)にずれた成膜ユニット41間に、接圧固定形の上側挟持ローラ対22に隣接して主構造材46に取付けられている。センサ49は、例えば、可撓性基板1の上端位置(上下幅方向位置)を非接触で検出する反射型または透過型の光学センサなど周知の位置センサを利用可能である。
 なお、接圧固定型の上側挟持ローラ対22および各下側挟持ローラ対22は、上記上側挟持ローラ対21の固定支持部材26とスプリング51との間に、操作アーム53の代わりにリテーナバー51aに嵌合するスペーサを挿入するのみで構成可能である。また、角度調整手段7による各挟持ローラ対21,22,23の取付け角度の変更は、操作アーム53の係合孔53aとリテーナバー51aとの間で吸収できる。
 次に、上記第1実施形態に基づく可撓性基板1の幅方向位置制御について説明する。
 図1において、可撓性基板1は、巻出し部10から成膜部20を経て巻取り部30へと所定のサイクルタイムで間欠的に搬送される。すなわち、可撓性基板1の間欠的な搬送サイクルの搬送期間では、成膜部20における各成膜ユニット41の可動チャンバー43は固定チャンバー42から離反しており、巻出し側フィードローラ12と巻取り側フィードローラ32とが同期して駆動され、可撓性基板1が、各成膜ユニット41の可動チャンバー43と固定チャンバー42との間を1ユニット分だけ搬送され、それに応じて、可撓性基板1が巻出しロール11から巻出され、かつ巻取りロール31に巻取られる。
 その際、成膜部20の上流側および下流側ガイドローラ14,34間での可撓性基板1のフィルム張力は、張力検出ローラ13bおよび33bによって一定に維持され、かつ、下流側ガイドローラ34における可撓性基板1の上下幅方向位置は側端位置制御ローラ35によって一定に制御されており、さらに、成膜部20の各成膜ユニット41間において、基板位置制御装置を構成する各挟持ローラ21,22,23・・・で、可撓性基板1の上側縁部および下側縁部が挟持されることにより、可撓性基板1の自重による垂下が抑制されるとともに、幅方向に展張されることで皺の発生が抑制される。しかし、先述したように、ガイドローラ14,34間の搬送スパンが長距離であり、かつ、可撓性基板1の物性が搬送方向に一様でないことにより、可撓性基板1の上下幅方向位置が上下に偏位する場合がある。
 そこで、可撓性基板1の1ユニット分の搬送が終了し、各成膜ユニット41の成膜チャンバー(43,42)が閉鎖され、搬送サイクルの停止期間中に成膜工程が実施されるのと並行して、略中央の成膜ユニット41(f)の下流側に設けたセンサ49が、可撓性基板1の上端位置(上下幅方向位置)を検知する。基準ラインから上方または下方に有意な偏位を生じている場合には、偏位方向や偏位量に応じた検出値が制御部50に取得され、制御部50は、この検出値に基づいて、アクチュエータ56を進退駆動し、上側挟持ローラ21の接圧(挟圧力)を調整する。
 例えば、センサ49によって、可撓性基板1の上端が下方に有意な偏位を生じていることが検知された場合には、図4および図5において、アクチュエータ56の出力軸56aを偏位量に応じ前進させる。すると、出力軸56aの前進に応じてレバー55が回転し、レバー55の回転が回動軸54を介して操作アーム53に伝達され、操作アーム53の回転により、スプリング51の支持点(53a)が、可動支持部材27の腕部27b側に変位し、スプリング51による付勢力すなわち上側挟持ローラ21の接圧(挟圧力)が増加する。
 次いで、各成膜ユニット41の成膜工程が終了し、各成膜チャンバー(43,42)が開放された後、再び、巻出し側フィードローラ12と巻取り側フィードローラ32とが同期して回転され、可撓性基板1が、各成膜ユニット41の可動チャンバー43と固定チャンバー42との間を1ユニット分だけ搬送される。
 すると、略中央の成膜ユニット41(f)の上流側において、接圧固定の下側挟持ローラ23に対して、上側挟持ローラ21の接圧(挟圧力)が増加した状態で、可撓性基板1の上下縁部が挟持されつつ搬送されることで、下側挟持ローラ23の挟持による引き下げ力よりも、上側挟持ローラ21による持ち上げ力が優勢になり、その分、可撓性基板1が上方に移動し、可撓性基板1の下方への偏位が補正される。
 可撓性基板1の1ユニット分の搬送が終了すると、再度、各成膜ユニット41の成膜チャンバー(43,42)が閉鎖され、次の成膜工程が実施され、これと並行して、前記同様にセンサ49により、可撓性基板1の上端位置が検知され、上側挟持ローラ21の接圧がさらに調整される。センサ49によって、可撓性基板1の上端の上方への偏位が検知された場合には、上述したのと逆の操作で上側挟持ローラ21の接圧を減少させれば、可撓性基板1が下方に移動し、可撓性基板1の上方への偏位が補正される。
 このように、搬送サイクルの停止期間における成膜工程と並行した上下幅方向位置の検知および挟圧力の調整と、搬送期間における搬送力を利用した幅方向位置の補正とが、交互に実行されることによって、可撓性基板1の上下幅方向位置が一定または所定の公差内に維持される。また、搬送期間中に上下幅方向位置の監視および挟圧力の修正を実行することもできる。
 上記実施形態では、可撓性基板1を間欠的にステップ搬送しながら、その停止期間中に各成膜ユニット41で成膜工程を実施する場合を示したが、本発明はこれに限定されるものではなく、共通真空室内で可撓性基板を連続的に搬送しながら成膜を行なう場合にも実施可能であり、その場合、センサで可撓性基板の上下幅方向位置を常時監視しながら挟圧力の制御を実行することで、可撓性基板1の上下幅方向位置を一定または所定の公差内に維持可能である。
 (第2実施形態)
 次に、図6~図8は、本発明の第2実施形態に係る上側挟持ローラ対21およびその制御機構8を示しており、この制御機構8は、第1付勢部材(81)の付勢力と第2付勢部材(82)の付勢力(調整力)を平衡させて接圧を制御するバランス方式である。なお、上側挟持ローラ対21の基本構造は、上述した第1実施形態と同様であるので、同様の部材には同様の符号を付しその説明を省略し、以下、変更点を中心に第2実施形態について図面と共に説明する。
 上側挟持ローラ対21が、一対の挟持ローラ24,25からなり、固定側ローラ24を回転自在に支持する固定支持部材28が、角度調整手段7を構成するブラケット71に固定されている点、および、可動側ローラ25を回転自在に支持する可動支持部材29が、その中間部において、固定支持部材28に固着されたブラケット28bの先端部に軸29aを介して揺動可能に支持されている点は、第1実施形態と同様であるが、第2実施形態では、可動支持部材29の上端部29bに固定された延長アーム29cと、固定支持部材28に固着された前記ブラケット28bの拡張片部28cとの間に介在するスプリング81により、可動支持部材29の上端部が、固定支持部材28の基部から離反する方向に付勢され、可動側ローラ25が固定側ローラ24に圧接されている。スプリング81の支持点は固定され、変位しない。
 延長アーム29cは、可動支持部材29の上端部と交差して横方向に延在し、交差部分で上端部29bにボルトで固定されており、該固定部の両側に長孔29d,29dが穿設されている。一方、図8に示すように、固定支持部材28の両側に張出した各拡張片部28c,28cには、それぞれ、スプリング81,81を支承するためのリテーナバー81a,81aが、ナット81b,81bで固定されている。スプリング81,81は圧縮バネであり、スプリング81,81を支承したリテーナバー81a,81aの各先端部は、それぞれワッシャを介して延長アーム29cの長孔29d,29dに挿通され、スプリング81,81の付勢力が、延長アーム29cの各側に負荷されるようにしてある。
 さらに、延長アーム29cの一方の腕部は、成膜ユニット41側に延長され、さらに主構造材46を迂回するように屈曲して上方に延び、可撓性基板1の上方へとさらに屈曲した上端部には、操作アーム83の先端に係合可能なピン29eが立設されている。
 操作アーム83は、その基端部において、回動軸84の下端に固定されている。回動軸84は、主構造材46にブラケット84bを介して固定された軸受84aで回動自在に支持され、第1実施形態と同様に、シール軸受57を介して室構造ユニット40の天井部(48)を貫通しており、真空室(40)の外部に位置した回動軸84の上端には、レバー85が取付けられている。
 レバー85の先端部には係合孔85a(長孔)が穿設されている。この係合孔85aには、スプリング82を支持したリテーナバー82aの先端部が挿通され、スプリング82の付勢力(調整力)がレバー85の先端部に作用するようにしてある。リテーナバー82aは、アクチュエータ86(リニアアクチュエータ)の出力軸86aに連結され、出力軸86aと共に進退可能である。
 以上のように構成された上側挟持ローラ対21の制御機構8は、先述した第1実施形態と同様に、センサ49の検出値に基づいて制御部50から出力される制御信号によってアクチュエータ86が進退駆動され、その移動量に応じたスプリング82の付勢力がレバー85の先端部に負荷される。この付勢力は、レバー85でトルクに変換され、さらに、回動軸84を介して操作レバー83に伝達され、ピン29eを介して、延長アーム29cを、スプリング81,81の付勢力に抗して加圧する調整力となる。この調整力の分だけ、スプリング81,81の付勢力が相殺され、上側挟持ローラ対21の接圧(挟圧力)が調整されることになる。
 したがって、第2実施形態の制御機構8では、上側挟持ローラ対21に、延長アーム29cおよび可動支持部材29を介して、スプリング81の付勢力が常に作用しており、特に、上側挟持ローラ対21の接圧(挟圧力)が小さい領域、すなわち、上下幅方向位置のずれが小さく、幅方向位置の制御が収束する領域ほど、スプリング81の付勢力とスプリング82の付勢力(調整力)とが大きくなり、制御の精度および安定性に優れている。
 また、第2実施形態の上側挟持ローラ対21は、スプリング81の支持点が制御機構8と独立した挟持ローラアセンブリを構成するため、そのまま、あるいは延長アーム29cのピン29eを含む一方の腕部を切除して、他の接圧固定の挟持ローラ対22,23として利用可能である。なお、角度調整手段7による各挟持ローラ対21,22,23の取付け角度の変更は、ピン29eと操作アーム83との間で吸収できる。
 (第1、第2実施形態の変形例)
 以上、本発明の2つの基本的実施形態について述べたが、スプリング51,81,82の配置により、さらにいくつかの変形例が存在する。以下、各変形例について、上述した各実施形態と同様の部材には同様の符号を付し、概略的に説明する。
 図9は、第1実施形態に係る変形例を示す概略図であり、上側挟持ローラ24,25にはダイレクト方式の制御機構5″が付設されている。この形態では、スプリング51′が、真空室の外部に配設され、アクチュエータ56の進退駆動によりスプリング51′の支持点が直接的に変位し、スプリング51′の制御された付勢力が、付勢力伝達機構を構成するレバー55′、回動軸54′、操作アーム53′を介して、真空室内の可動支持部材27に伝達され、上側挟持ローラ24,25の接圧(挟圧力)が調整される。
 図10は、第2実施形態に係る変形例を示す概略図であり、上側挟持ローラ24,25には、バランス方式の制御機構8′が付設されている。この形態では、スプリング81およびスプリング82′が、いずれも真空室内に配設されている。スプリング81は前記同様に可動支持部材27を固定点(28)に対して付勢し、可動側ローラ25に接圧を付与する。一方、スプリング82′は、可動支持部材27を操作アーム83′に対して、前記スプリング81と反対方向から付勢する。アクチュエータ86の進退駆動が、駆動伝達機構を構成するレバー85′、回動軸84′、操作アーム83′を介して、真空室内のスプリング82′の支持点に伝達され、その変位に応じてスプリング82′の付勢力(調整力)が制御され、その分だけスプリング81の付勢力が相殺されることで、上側挟持ローラ24,25の接圧(挟圧力)が調整される。
 図11は、第2実施形態に係る別の変形例を示す概略図であり、上側挟持ローラ対24,25には、バランス方式の制御機構8″が付設されている。この形態では、スプリング81′およびスプリング82が、いずれも真空室の外部に配設されている。スプリング81′は固定点に対してレバー85″を付勢し、スプリング82″は、アクチュエータ86の出力軸に対してレバー85″を、前記スプリング81′と反対方向から付勢する。アクチュエータ86の進退駆動に応じてスプリング82′の付勢力(調整力)が制御され、その分だけスプリング81′の付勢力が相殺され、制御された付勢力が、付勢力伝達機構を構成するレバー85″、回動軸84″、操作アーム83″を介して、真空室内の可動支持部材27に伝達されることで、上側挟持ローラ24,25の接圧(挟圧力)が調整される。
 上記各実施形態では、上側挟持ローラ対21の接圧を積極的に制御可能とする一方、対応する下側挟持ローラ対23の接圧を予め設定した固定値とする場合を示したが、図12に示すように、搬送方向に対して同位置における上下各側の挟持ローラ対21,23′の接圧をそれぞれ積極的に制御可能に構成することもできる。
 図12の例では、第1実施形態に係る上側挟持ローラ対21と搬送方向に対して同位置における下側挟持ローラ対23′に、上側挟持ローラ対21と同様の制御機構5′(接圧調整ユニット)が上下逆にして追加されるとともに、可撓性基板1の下側縁部の位置を検知するセンサ49′が追加されている。上下各側のセンサ49,49′の検出値は、共通の制御部50に送られ、制御部50は、それらの検出値に基づいて、上下各側のアクチュエータ56、56′を駆動し上下各側の挟持ローラ対21,23′の接圧を制御する。
 すなわち、制御部50は、上下各側のセンサ49,49′の検出値に基づいて、可撓性基板1の上下幅方向の位置とともに、可撓性基板1の展張度を取得可能であり、それらに基づいて、上下各側の挟持ローラ対21,23′の接圧を制御することで、可撓性基板1の展張度を所定範囲内に維持しながら、上下幅方向の位置を一定または所定の公差内に維持可能である。
 また、下側挟持ローラ対23の接圧が予め固定値に設定されている場合は、上側挟持ローラ対21の接圧は、下側挟持ローラ対23の接圧よりも大きい範囲で制御されることになるが、上記のように、上下各側の挟持ローラ対21,23′の接圧を積極的に制御可能とすることで、上下各側の挟持ローラ対21,23′の接圧を、接圧が小さい領域でゼロを含む広範囲で制御可能となる。なお、上記構成は、第2実施形態に係る下側挟持ローラ対に対しても適用できる。
 (第3実施形態)
 次に、図14~16は、本発明第3実施形態に係る上側挟持ローラ対121およびその制御機構105(接圧調整ユニット)を示しており、上側挟持ローラ対121は、一対の挟持ローラ124,125からなる。固定側ローラ124は、図15に示すように、固定支持部材126の先端(下端)に設けた支軸126aにベアリングを介して回転自在に支持された金属製のローラ本体124aと、その周面に被着された耐熱性のゴム被覆124bで構成されている。可動側ローラ125も、可動支持部材127の先端(下端)に前記同様に回転自在に支持された金属製のローラ本体125aと、その周面に被着された耐熱性のゴム被覆125bで構成されている。
 固定支持部材126は、図14に示すように、その基端部(上端部)において、角度調整手段7を構成するブラケット71に固定されている。ブラケット71は、固定側ローラ124の軸方向に対して垂直な支持部71aと、該支持部71aの一側から該支持部71aに対して垂直かつ上方に延びる基部71bとを有し、支持部71aに固定支持部材126の基端部が固定されている。そして、ブラケット71の基部71bと、固定板70との間にシム73を介在させ、ボルト72で、基部71bを主構造材46の垂直面に固定することにより、シム73の厚さおよび/または枚数に応じてブラケット71の取付け角度、すなわち、挟持ローラ対121を構成する固定側ローラ124および可動側ローラ125の取付け角度を変更可能である。
 可動支持部材127は、図14に示すように、ブラケット71の支持部71aに固着されたブラケット129の一対の支持部129a,129aにベアリングを介して回動自在に支持されている延長アーム128の軸部128aを、前記各支持部129a,129aの中間で、基端部(上端部)の横孔127aに貫通させ、それらの交差部分を止めネジで固定することにより、図15に示すように、軸部128aを中心として、延長アーム128と一体的に揺動可能に支持され、可動側ローラ125が固定側ローラ124に接離可能となっている。
 延長アーム128は、軸部128aの一端部から、主構造材46を迂回するように屈曲しつつ上方に延び、その上端部に前記軸部128aと平行に突設された支軸に、第2アーム151の先端部(151a)に係合するローラ128bが回転自在に支持されている。また、延長アーム128の中間部には、後述する解除操作のための操作レバーとなる操作板128cが固着されている。
 第2アーム151は、後述する回動軸154および第1アーム153と共に伝達機構を構成しており、その基端部において回動軸154の下端に固定されている。第2アーム151の先端部には、図15に示すように、延長アーム128のローラ128bと揺動方向の両方向から係合可能な2つの係合部151a,151bが設けられている。
 第1の係合部151aは、可動側ローラ125を固定側ローラ124に圧接させるための加圧用係合部であり、図示例では、第2アーム151と後述する第1アーム153とが可撓性基板1の搬送方向に配向され、かつ、係合部151aがローラ128bと当接した状態で、可動側ローラ125と可動支持部材127と延長アーム128とが鉛直方向に配向され、可動側ローラ125が固定側ローラ124に当接するように構成されている。
 第2の係合部151bは、可動側ローラ125を固定側ローラ124から離反させるための解除用係合部である。この第2係合部151bは、互いにほぼ直交する軸(154,128a)周りに揺動可能に支持されている第2アーム151と延長アーム128との揺動軌道の差を吸収しつつ、ローラ128bと相互に角変位を伝達可能とするために、第1係合部151aに対して、ローラ128bの直径よりもやや広い間隔を有して対向配置されている。
 回動軸154は、シール軸受157で気密かつ回動自在に支持され、該シール軸受157を介して室構造ユニット40の天井パネル48を貫通して上方に延び、真空室(40)の外部に位置した回動軸154の上端部には、第1アーム153が固定されている。シール軸受157は、天井パネル48の開口部480に、ベースプレート158やOリングなどを介して気密に取付けられており、そのハウジングの内部にベアリングおよび磁気シールを備え、真空室内外の差圧を維持した状態で回動軸154を回動自在に支持可能である。なお、シール軸受157および回動軸154が設置されない他の開口部480は、耐熱ガラスなどの透明部材が装着され、真空室内部を観察するための観察窓となっている。
 先述したように、上側および下側の各挟持ローラ対121,122,123は、成膜ユニット41間に位置した主構造材46に角度調整手段7を介して取付けられるが、その取付け位置は、隣接する室構造ユニット40との接合部であるため、図13あるいは図14に示されるように、回動軸154およびシール軸受157は、主構造材46を避けて成膜ユニット41の上方に配設されている。このため、第2アーム151は、回動軸154の下端部からクランク状に屈曲して主構造材46の近くまで延び、係合部151a,151bにおいて、延長アーム128のローラ128bと係合している。
 第1アーム153の先端部には、連結ピン153aが上向きに突設されている。連結ピン153aは、図示を省略するが、第1アーム153の先端部を上下に貫通する支持孔にベアリングを介して回動軸154と平行な軸周りに回動可能に支持されており、該連結ピン153aにスプリング160の一端が連結されている。スプリング160は、引張バネであり、その他端は、調整ネジ160aを介して、駆動アーム161の支持ピン161aに連結されている。
 スプリング160は、第1アーム153の連結ピン153aと、駆動アーム161の支持ピン161aとの間で、予め伸長された状態で張架されており、調整ネジ160aで伸長度を調整することにより、スプリング160の張力Fを調整可能である。この張力Fに応じて、後述するように、挟持ローラ121に接圧を付与する付勢力の最大値が決定される。
 駆動アーム161は、その基端部において、アクチュエータ156の駆動軸に固定されている。駆動アーム161の先端部に下向きに突設されている支持ピン161aは、連結ピン153aと同様に、駆動アーム161の先端部を上下に貫通する支持孔にベアリングを介して駆動軸と平行な軸周りに回動可能に支持されている。駆動アーム161の基端部には、セクタープレート161dが同軸に取付けられており、該セクタープレート161dの外周部に近接して、オーバートラベルセンサ162が設置されている。
 アクチュエータ156は、エンコーダを内蔵したサーボモータなどのロータリーアクチュエータであり、ベースプレート158の上方に図示しない支持フレームを介して固定されたアッパープレート156bに、その駆動軸を、加圧位置(厳密には可動側ローラ125が固定側ローラ124に接圧ゼロで当接する場合に相当する第1アーム153の回動原点)にある第1アーム153の連結ピン153aに対向させかつ軸心を一致させて取付けられている。
 このアクチュエータ156は、図13に示すセンサ49の検出値に基づいて制御部150から出力される制御信号によって駆動され、駆動アーム161を、図16に示す最小加圧位置161x(回動原点)と最大加圧位置161yとの間で所定の角位置に回動変位させ、以下に述べるように、駆動アーム161の角変位に応じた付勢力が、第1アーム153に負荷されるようにする。
 すなわち、図16において、駆動アーム161が、可撓性基板1の搬送方向に配向され、加圧位置にある第1アーム153と一直線に整列され、角変位がゼロの最小加圧位置161xにある時、スプリング160の張力Fは、第1アーム153をその位置から図中反時計方向に回動させる直交成分(Fy=F・sinθ)はゼロであり、第1アーム153を、回動軸154を中心として図中反時計方向に回動させる付勢力は作用しない。この最小加圧位置161xでは、スプリング160の張力Fは、専ら、第1アーム153を加圧位置(回動原点)に保持する成分(Fx=F・cosθ)として作用している。
 この状態から、駆動アーム161が、図中実線で示される角変位θに回動されると、スプリング160の張力Fの角変位θに応じた直交成分(Fy=F・sinθ)が、第1アーム153を図中反時計方向に回動させる付勢力として作用する。この付勢力Fyは、回動軸154を介して第2アーム151に伝達され、その第1係合部151aを介してローラ128bが図中上方に付勢され、延長アーム128および可動支持部材127が、軸部128aを中心に図15中反時計方向に付勢されることにより、可動側ローラ125が前記付勢力Fyにレバー比を乗じた加圧力で固定側ローラ124に圧接される。
 そして、駆動アーム161が、加圧位置にある第1アーム153と直交する最大加圧位置161y(角変位θ=90°)に回動されると、スプリング160の張力Fは、全てが、第1アーム153を、回動軸154を中心として図中反時計方向に回動させる付勢力として作用し、可動側ローラ125がスプリング160の張力Fにレバー比を乗じた加圧力で固定側ローラ124に圧接されることになる。
 図17は、駆動アーム161の角変位θと、スプリング160の張力F、付勢方向成分Fy、付勢方向と直交する成分Fxの関係を示している。図17に示されるように、駆動アーム161の、最小加圧位置161x(回動原点)から最大加圧位置161yまでの回動範囲において、スプリング160の張力Fは一定であり、駆動力がスプリング160自体を弾性変形させるのに消費されないので、制御に大駆動力を必要としない。しかも、スプリング160の弾性変形に伴う摩擦の影響を受けないので、高精度の制御が可能となる。さらに、駆動アーム161の角変位θが小さく、挟持ローラ対124,125の接圧が小さくなる領域でも、スプリング張力Fの付勢方向と直交する成分Fxによって、第1アーム153の位置が安定し、挟持ローラ対124,125の安定的な加圧状態が得られる利点がある。
 なお、上記アクチュエータ156は、室構造ユニット40(真空室)の外部に配設されているので、任意の形式のアクチュエータを使用可能である。例えば、駆動アーム161を、同じレイアウトの揺動アームとし、該揺動アームに直接またはリンクを介してリニアアクチュエータを連結して、リニアアクチュエータの往復動作で揺動アーム(161)を角変位させるように構成することもできる。
 センサ49は、図13に示すように、制御可能な上側挟持ローラ対121が設置された成膜ユニット41間に対して、1ユニット分だけ搬送方向上流側にずれた成膜ユニット41間に、接圧固定形の上側挟持ローラ対122に隣接して主構造材46に取付けられている。センサ49は、例えば、可撓性基板1の上端位置(上下幅方向位置)を非接触で検出する反射型または透過型の光学センサなど周知の位置センサを利用可能である。
 また、接圧固定型の上側挟持ローラ対122は、図18に示すように、固定支持部材226のブラケット229に、軸228aを介して回動自在に支持された腕部228の先端部に可動支持部材227が固着され、腕部228に設けた支持ピン261と、ブラケット229に設けた支持ピン262との間に、スプリング260が予め伸長された状態で介装されており、該スプリング260の付勢により、可動側ローラ125が固定側ローラ124に対して所定の接圧で圧接されるように構成されている。図では省略されているが、支持ピン261,262のうち一方は、先述した調整ネジ160aと同様の張力調整手段を介してスプリング260の端部に連結されている。接圧固定型の下側挟持ローラ対123は、上側挟持ローラ対122と共通のユニットを上下逆にして用いる。
 図示例の上側挟持ローラ対122(および下側挟持ローラ対123)は、可動側ローラ124が可撓性基板1を挟んで固定側ローラ124に圧接された状態において、スプリング260の両側の支持ピン261,262と、腕部228の軸228aとが略同一直線上に位置し、その状態で、支持ピン261,262間の距離すなわちスプリング260の長さが最短になるように設定されている。この構成により、可撓性基板1が可動側ローラ125と固定側ローラ124で挟持される領域でスプリング260の引張力がほぼ一定に維持され、可撓性基板1に対する挟圧力が安定するので、可撓性基板1の上側縁部および下側縁部に対し、各挟持ローラ対122,123の微小偏角α,βに応じた安定的な持ち上げ力および引き下げ力を作用させることができる。
 次に、上記第3実施形態に基づく可撓性基板1の幅方向位置制御について説明する。
 図1において、可撓性基板1は、巻出し部10から成膜部20を経て巻取り部30へと所定のサイクルタイムで間欠的に搬送される。すなわち、可撓性基板1の間欠的な搬送サイクルの搬送期間では、成膜部20における各成膜ユニット41の可動チャンバー43は固定チャンバー42から離反しており、巻出し側フィードローラ12と巻取り側フィードローラ32とが同期して駆動され、可撓性基板1が、各成膜ユニット41の可動チャンバー43と固定チャンバー42との間を1ユニット分だけ搬送され、それに応じて、可撓性基板1が巻出しロール11から巻出され、かつ巻取りロール31に巻取られる。
 その際、成膜部20の上流側および下流側ガイドローラ14,34間での可撓性基板1のフィルム張力は、張力検出ローラ13bおよび33bによって一定に維持され、かつ、下流側ガイドローラ34における可撓性基板1の上下幅方向位置は側端位置制御ローラ35によって一定に制御されており、さらに、成膜部20の各成膜ユニット41間において、基板位置制御装置を構成する各挟持ローラ121,122,123・・・で、可撓性基板1の上側縁部および下側縁部が挟持されることにより、可撓性基板1の自重による垂下が抑制されるとともに、幅方向に展張されることで皺の発生が抑制される。しかし、先述したように、ガイドローラ14,34間の搬送スパンが長距離であり、かつ、可撓性基板1の物性が搬送方向に一様でないことにより、可撓性基板1の上下幅方向位置が上下に偏位する場合がある。
 そこで、可撓性基板1の1ユニット分の搬送が終了し、各成膜ユニット41の成膜チャンバー(43,42)が閉鎖され、搬送サイクルの停止期間中に成膜工程が実施されるのと並行して、略中央の成膜ユニット41(f)の下流側に設けたセンサ49が、可撓性基板1の上端位置(上下幅方向位置)を検知する。基準ラインから上方または下方に有意な偏位を生じている場合には、偏位方向や偏位量に応じた検出値が制御部150に取得され、制御部150は、この検出値に基づいて、アクチュエータ156を駆動し、駆動アーム161の角変位を制御し、上側挟持ローラ121の接圧(挟圧力)を調整する。
 例えば、アクチュエータ156の駆動アーム161が図16中実線で示される中間的な角変位θにあり、それに応じた接圧が上側挟持ローラ121に付与されている状態において、センサ49によって、可撓性基板1の上端が下方に有意な偏位を生じていることが検知された場合には、図16において、アクチュエータ156の駆動アーム161を偏位量に応じて最大加圧位置161y側に角変位させる。すると、スプリング160の張力Fの付勢方向成分Fyが増加し、この付勢力Fyが、第1アーム153、回動軸154、第2アーム151、および、延長アーム128を介して可動支持部材127に伝達され、上側挟持ローラ121の接圧(挟圧力)が増加する。
 次いで、各成膜ユニット41の成膜工程が終了し、各成膜チャンバー(43,42)が開放された後、再び、巻出し側フィードローラ12と巻取り側フィードローラ32とが同期して回転され、可撓性基板1が、各成膜ユニット41の可動チャンバー43と固定チャンバー42との間を1ユニット分だけ搬送される。
 すると、略中央の成膜ユニット41(f)の上流側において、接圧固定の下側挟持ローラ123に対して、上側挟持ローラ121の接圧(挟圧力)が増加した状態で、可撓性基板1の上下縁部が挟持されつつ搬送されることで、下側挟持ローラ123の挟持による引き下げ力よりも、上側挟持ローラ121による持ち上げ力が優勢になり、その分、可撓性基板1が上方に移動し、可撓性基板1の下方への偏位が補正される。
 可撓性基板1の1ユニット分の搬送が終了すると、再度、各成膜ユニット41の成膜チャンバー(43,42)が閉鎖され、次の成膜工程が実施され、これと並行して、前記同様にセンサ49により、可撓性基板1の上端位置が検知され、上側挟持ローラ121の接圧がさらに調整される。センサ49によって、可撓性基板1の上端の上方への偏位が検知された場合には、上述したのと逆の操作で上側挟持ローラ121の接圧を減少させれば、次の搬送ステップにおいて可撓性基板1が下方に移動し、可撓性基板1の上方への偏位が補正される。
 このように、搬送サイクルの停止期間における成膜工程と並行した上下幅方向位置の検知および挟圧力の調整と、搬送期間における搬送力を利用した幅方向位置の補正とが、交互に実行されることによって、可撓性基板1の上下幅方向位置が一定または所定の公差内に維持される。また、搬送期間中に上下幅方向位置の監視および挟圧力の修正を実行することもできる。
 上記第3実施形態では、可撓性基板1を間欠的にステップ搬送しながら、その停止期間中に各成膜ユニット41で成膜工程を実施する場合を示したが、本発明はこれに限定されるものではなく、共通真空室内で可撓性基板を連続的に搬送しながら成膜を行なう場合にも実施可能であり、その場合、センサで可撓性基板の上下幅方向位置を常時監視しながら挟圧力の制御を実行することで、可撓性基板1の上下幅方向位置を一定または所定の公差内に維持可能である。
 (第3実施形態における可撓性基板導入時の操作)
 次に、上記第3実施形態に基づき、製造装置100に可撓性基板1を導入する際の操作について図面を参照しながら説明する。
 満巻となった巻取りロール31がアンロードされた後、可撓性基板1の導入に先立ち、挟持ローラ対124,125の圧接状態を解除する場合には、図示しない解除スイッチ等の操作により、制御部150からアクチュエータ156に解除信号が出力され、図16に2点鎖線で示されるように、駆動アーム161が、最大加圧位置161yを越えてトグル位置161′に角変位される。
 このトグル位置161′では、スプリング160の支持点(161a)は、第1アーム153の連結点(153a)に対して加圧側にあり、スプリング張力Fの付勢方向成分Fyによって、上側挟持ローラ対121は圧接状態に保持され、支持点(161a)と回動軸154を結ぶ直線上にあるトグル機構の思案点に対して、約15°の待機角度を残している。
 一方、図1において、未処理の巻出しロール11が巻出し装置に装着され、巻出しロール11から引出された可撓性基板1は、張力検出ローラ13a,13b、巻出し側フィードローラ12、およびガイドローラ14に巻掛けられた後に、成膜部20の各成膜ユニット41に導入される。成膜部20への可撓性基板1の導入時に、図2および図13に示す各室構造ユニット40の側壁47が開放されると、側壁47に取付けられている高周波電圧45および可動チャンバー43は、室構造ユニット40の外部に移動され、開口部470の内側には、接地電極44を収容した固定チャンバー42が露見し、各室構造ユニット40の接合部における開口460の上下に取付けられた上側挟持ローラ対121,122・・・および各下側挟持ローラ対123,123・・・にアクセス可能となる。
 この状態で、作業者が、スプリング160の付勢力(Fy)に抗して、上側挟持ローラ対121の操作板128c(図14)を手前(開口部470側)に引き、操作板128cと一体の延長アーム128を、図15中2点鎖線で示される128′まで回転させると、可動支持部材127′が延長アーム128′と一体的に揺動し、可動側ローラ125が、図中125′で示されるように固定側ローラ124から離反される。
 同時に、上記延長アーム128′の回転により、ローラ128bを介して、第2アーム151の第1係合部151aが押圧され、第2アーム151および回動軸154で一体に連結された第1アーム153が、151′、153′で示されるように、図16中時計方向に回動され、第1アーム153の連結ピン153aが、思案点を越えて153′に移動することにより、第1アーム153′に対するスプリング160′の付勢方向が反転する。すると、反転したスプリング160′の付勢力によって第1アーム153′が反転位置に保持され、図14に示すように、第1アーム153′と回動軸154で連結された第2アーム151′の係合部151b′により、ローラ128bを介して、延長アーム128′および可動支持部材127′が揺動位置に拘束され、可動側ローラ125′が離反状態に保持される。
 そして、上記離反状態に保持された可動側ローラ125′と固定側ローラ124との間に可撓性基板1を導入した後、作業者が、操作板128cを押圧して延長アーム128および可動支持部材127を元位置に戻せば、延長アーム128とローラ128bおよび係合部151bを介して係合している第1アーム151、およびそれと回動軸154で一体に連結された第1アーム153が元位置に回動することによってスプリング160の付勢方向が加圧側に反転し、該スプリング160の付勢力によって、可動側ローラ125が固定側ローラ124に直ちに圧接され、導入した可撓性基板1が挟持される。
 なお、他の上側挟持ローラ対122や、各下側挟持ローラ対123は、接圧を制御するための機構が介在しないので、比較的容易に手動で可動側ローラ125を離反させることができ、可撓性基板1の導入作業を実施可能であるが、上側挟持ローラ対121と同様に可動側ローラ125が離反位置で保持されるようなトグル機構を、加圧用のスプリング(260)を利用して構成することもできる。
 上記実施形態では、上側挟持ローラ対121の接圧を積極的に制御可能とする一方、対応する下側挟持ローラ対123の接圧を予め設定した固定値とする場合を示したが、図19に示すように、搬送方向に対して同位置における上下各側の挟持ローラ対121,123′の接圧をそれぞれ積極的に制御可能に構成することもできる。
 図19の例では、上側挟持ローラ対121と搬送方向に対して同位置における下側挟持ローラ対123′に、上側挟持ローラ対121と同様の制御機構105′(接圧調整ユニット)が上下逆にして追加されるとともに、可撓性基板1の下側縁部の位置を検知するセンサ49′が追加されている。上下各側のセンサ49,49′の検出値は、共通の制御部150に送られ、制御部150は、それらの検出値に基づいて、上下各側のアクチュエータ156、156′を駆動し上下各側の挟持ローラ対121,123′の接圧を制御する。
 すなわち、制御部150は、上下各側のセンサ49,49′の検出値に基づいて、可撓性基板1の上下幅方向の位置とともに、可撓性基板1の展張度を取得可能であり、それらに基づいて、上下各側の挟持ローラ対121,123′の接圧を制御することで、可撓性基板1の展張度を所定範囲内に維持しながら、上下幅方向の位置を一定または所定の公差内に維持可能である。
 また、下側挟持ローラ対123の接圧が予め固定値に設定されている場合は、上側挟持ローラ対121の接圧は、下側挟持ローラ対123の接圧よりも大きい範囲で制御されることになるが、上記のように、上下各側の挟持ローラ対121,123′の接圧を積極的に制御可能とすることで、上下各側の挟持ローラ対121,123′の接圧を、接圧が小さい領域でゼロを含めて広範囲に制御可能となる。既に述べたように、第3実施形態に係る挟持ローラ対121,123′は、接圧が小さい領域で安定的な加圧状態が得られるので、このような上下各側の挟持ローラ対121,123′の接圧が積極的に制御される構成に好都合である。
 (第4実施形態)
 上記第1~第3実施形態では、帯状可撓性基板を縦姿勢で横方向に搬送し成膜を行なう薄膜積層体の製造装置100としての実施形態について述べたが、本発明に係る位置制御装置は、図20に示す第4実施形態のように、帯状可撓性基板を横姿勢で水平方向に搬送し成膜を行なう薄膜積層体の製造装置300にも実施可能である。
 図20において、本発明第4実施形態の製造装置300は、所定の真空度に維持された室構造ユニット340(真空室)の内部に、可撓性基板1を挟んでその上下に対向配置された電極345(ターゲット)と、接地電極344とからなる成膜ユニット341が配設されている。成膜ユニット341の搬送方向上流側および下流側には、搬送手段を構成するガイドロール(アイドルロール)やフィードロール、テンションロールなどが配設され、さらにそれらの搬送方向上流側および下流側に、可撓性基板1の巻出しロールおよび巻取りロールが配設されている点は、前記各実施形態と同様であるが、当然ながら、各ロールの回転軸は何れも水平方向に配向されている。
 製造装置300は、可撓性基板1の搬送経路の幅方向両側において、可撓性基板1の幅方向各側縁部を挟持する挟持ローラ対321,321および制御機構305,305(接圧調整ユニット)を備えている。各挟持ローラ対321,321は、挟持部における回転方向が可撓性基板1の搬送方向に対して幅方向外方に向かう微小偏角(α,β)を有するようにそれぞれの回転軸が傾斜した一対の挟持ローラ324,325からなる。
 固定側ローラ324は、固定支持部材326の先端に回転自在に支持され、可動側ローラ325は、可動支持部材327の先端に回転自在に支持されている。各固定側ローラ324(固定支持部材326)が下になるように横向きに配置されている点、および、各可動支持部材327が揺動軸付近で屈曲している点を除けば、各挟持ローラ対321およびそれらの制御機構305は、基本的に第1実施形態の変形例(図9)に係るダイレクト方式の制御機構5″と同様の構成である。
 各挟持ローラ対321,321に接圧を付与するスプリング351,351は、何れも真空室(340)の外部に配設され、アクチュエータ356,356の進退駆動により各スプリング351,351の支持点が直接的に変位し、それぞれの制御された付勢力が、付勢力伝達機構を構成するレバー355、回動軸354、操作アーム353を介して、真空室内の可動支持部材327,327に伝達され、各挟持ローラ対321,321の接圧(挟圧力)が個別に調整される。
 このような挟持ローラ対321,321により、可撓性基板1の幅方向各側縁部が挟持された状態で搬送されることで、可撓性基板1の各側縁部には、各挟持ローラ対321,321の接圧(挟圧力)に応じて幅方向外方に向かう展張力が付与され、可撓性基板1が幅方向に展張される。可撓性基板1の搬送経路の幅方向両側には、可撓性基板1の各側縁部の位置を検知するセンサ349,349が配設されており、各センサ349,349の検知に基づいて、制御部350によりアクチュエータ356,356が個別に進退駆動されることで、各挟持ローラ対321,321の接圧(挟圧力)が制御され、それに応じて可撓性基板1の幅方向位置が制御される。
 この製造装置300では、可撓性基板1の下面側に接地電極344が配設され、可撓性基板1の自重による影響は小さく、かつ、各側の挟持ローラ対321,321に同様に作用する。したがって、各側のスプリング351,351の初期変位および各アクチュエータ356,356の制御量は、基本的に同等に設定される。各アクチュエータ356,356による接圧(挟圧力)の制御は、可撓性基板1を幅方向に展張しつつ、可撓性基板1の幅方向の変位や蛇行を補正するために、各側センサ349の検知に基づいて制御部350により個別にかつ連携して実施される。
 図20からも明らかなように、上記各挟持ローラ対321およびそれらの制御機構305は、第1実施形態の変形例に係るダイレクト方式の制御機構5″(図9)と同様であるので、その発展形である第3実施形態に係るトグルバネ方式の制御機構105(図13~16)を適用することもできる。また、上述した第1~第3実施形態と同様に、ステップ成膜方式、連続成膜方式の両方に対応可能である。
 以上、本発明のいくつかの実施形態について述べたが、本発明は上記実施形態に限定されるものではなく、上記以外にも本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。
 例えば、上記各実施形態では、付勢部材(スプリング51,51′,81,81′,81″,82,82′,82″,160,260)にコイルスプリングを用いる場合を示したが、スパイラルスプリングやトーションバー等、他のスプリング形式を利用できる。また、上記第1および第2実施形態では、付勢部材に圧縮バネを用いる場合を示したが、引張バネとして装置を構成することもできる。
 上記各実施形態では、可撓性基板1の搬送経路に沿って多数並設された成膜ユニット41の各隣接ユニット間に、それぞれ、上側挟持ローラ対21,22・・・(121,122・・・)および下側挟持ローラ対23・・・(123・・・)が設置され、略中央の1つの上側挟持ローラ対21(121)の接圧が制御可能である場合を示したが、複数の上側挟持ローラ対21(121)の接圧を制御可能とすることもできる。また、成膜ユニット41の搬送方向の長さが比較的小さい場合等には、1ないし2ユニット置きに挟持ローラ対を設置することもでき、さらに、成膜ユニット41の数が少なく(例えば2つ)搬送スパンが比較的短距離の場合には、制御可能な上側挟持ローラ対21(121)とその下方に配置される接圧固定の下側挟持ローラ対23(123)とで基板位置制御装置を構成するか、または、制御可能な上側挟持ローラ対21(121)のみで基板位置制御装置を構成することもできる。後者の場合、可撓性基板1に作用する重力と、上側挟持ローラ対21の持ち上げ力を平衡させることによって、可撓性基板の上下幅方向位置を一定に維持する制御がなされる。
 また、上記各実施形態では、本発明を太陽電池用薄膜積層体の製造装置として実施する場合について述べたが、本発明に係る可撓性基板の処理装置は、有機EL等の半導体薄膜の製造装置は勿論、塗装、洗浄、乾燥、熱処理、表面加工など、成膜以外にも、可撓性基板の位置制御や展張が求められる各種処理装置に適用できる。また、可撓性基板を縦姿勢(または傾斜姿勢)で横方向(斜方向を含む)に搬送する場合、可撓性基板を横姿勢で水平方向、上下方向、あるいは斜方向に搬送する各場合にも実施可能である。
 1 可撓性基板
 5,5′,8,8′,8″ 制御機構(接圧調整ユニット)
 7 角度調整手段
 10 巻出し部
 11 巻出しロール
 12 巻出し側フィードローラ
 13a,13b 張力検出ローラ
 14 ガイドローラ
 20 成膜部
 21,22 上側挟持ローラ対
 23,23′ 下側挟持ローラ対
 24 固定側ローラ
 25 可動側ローラ
 26,28 固定支持部材
 27,29 可動支持部材
 128 延長アーム
 129 ブラケット
 30 巻取り部
 31 巻取りロール
 32 巻取り側フィードローラ
 33a,33b 張力検出ローラ
 34 ガイドローラ
 35 側端位置制御ローラ
 40 室構造ユニット(真空室)
 41 成膜ユニット
 42 固定チャンバー
 43 可動チャンバー
 46 主構造材
 48 天井パネル
 49,49′ センサ
 50 制御部
 51,51′ スプリング(付勢部材)
 53,53′ 操作アーム
 54,54′ 回動軸
 55、55′ レバー
 56,56′ アクチュエータ
 57,57′ シール軸受
 81,81′,81″ スプリング(第1付勢部材)
 82,82′82″ スプリング(第2付勢部材)
 83,83′,83″ 操作アーム
 84,84′、84″ 回動軸
 85,85′,85″ レバー
 86 アクチュエータ
 100 製造装置
 105,105′ 制御機構(接圧調整ユニット)
 121,122 上側挟持ローラ対
 123,123′ 下側挟持ローラ対
 124 固定側ローラ
 125 可動側ローラ
 126 固定支持部材
 127 可動支持部材
 150 制御部
 151 第2アーム
 154 回動軸
 153 第1アーム
 153a 連結ピン(連結点)
 156,156′ アクチュエータ(駆動手段)
 157 シール軸受
 160 スプリング
 160a 調整ネジ
 161 駆動アーム
 161a 支持ピン(支持点)
 300 製造装置
 305 制御機構(接圧調整ユニット)
 307 角度調整手段
 321 挟持ローラ対
 324 固定側ローラ
 325 可動側ローラ
 326 固定支持部材
 327 可動支持部材
 340 室構造ユニット(真空室)
 341 成膜ユニット
 342 固定チャンバー
 343 可動チャンバー
 346 主構造材
 348 天井パネル
 349 センサ
 350 制御部
 351 スプリング(付勢部材)
 354 回動軸
 356 アクチュエータ
 357 シール軸受
 α,β 微小偏角
 

Claims (14)

  1.  帯状の可撓性基板を縦姿勢で横方向に搬送する搬送手段と、
     前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、
     前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、
     前記位置制御装置が、
     前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラと、
     前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材を含む上側支持機構と、
     前記可動支持部材を介して、前記一方の上側挟持ローラを前記他方の上側挟持ローラに圧接させる方向に付勢する付勢部材と、
     前記一対の上側挟持ローラの挟圧力を調整すべく前記付勢部材を変位させる駆動手段と、
    を備えている、可撓性基板の処理装置。
  2.  帯状の可撓性基板を縦姿勢で横方向に搬送する搬送手段と、
     前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、
     前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、
     前記位置制御装置が、
     前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラと、
     前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材を含む上側支持機構と、
     前記可動支持部材を介して、前記一方の上側挟持ローラを前記他方の上側挟持ローラに圧接させる方向に付勢する付勢部材と、
     前記可動支持部材に前記付勢部材と反対方向の調整力を付加する第2付勢部材と、
     前記一対の上側挟持ローラの挟圧力を調整すべく前記第2付勢部材を変位させる駆動手段と、
    を備えている、可撓性基板の処理装置。
  3.  前記処理部が、真空室内に配設された少なくとも1つの成膜ユニットを含み、
     前記一対の上側挟持ローラ、前記上側支持機構、および前記付勢部材が、前記真空室内に配設されており、
     前記駆動手段が、前記真空室の外部に配設されたアクチュエータと、前記アクチュエータの駆動を、シール手段を介して前記真空室内の前記付勢部材に伝達する駆動伝達機構と、を含む、請求項1に記載の可撓性基板の処理装置。
  4.  前記処理部が、真空室内に配設された少なくとも1つの成膜ユニットを含み、
     前記一対の上側挟持ローラおよび前記上側支持機構が前記真空室内に配設され、前記付勢部材が、前記真空室の外部に配設されており、
     前記駆動手段が、前記真空室の外部に配設されたアクチュエータを含み、前記付勢部材の付勢力を、シール手段を介して前記真空室内の前記可動支持部材に伝達する付勢力伝達機構をさらに備えた、請求項1に記載の可撓性基板の処理装置。
  5.  前記処理部が、真空室内に配設された少なくとも1つの成膜ユニットを含み、
     前記一対の上側挟持ローラ、前記上側支持機構、および前記付勢部材が、前記真空室内に配設され、前記第2付勢部材が、前記真空室の外部に配設されており、
     前記駆動手段が、前記真空室の外部に配設されたアクチュエータを含み、前記第2付勢部材の調整力を、シール手段を介して前記真空室内の前記可動支持部材に伝達する調整力伝達機構をさらに備えた、請求項2に記載の可撓性基板の処理装置。
  6.  前記位置制御装置が、
     前記可撓性基板の下側縁部を挟持する一対の下側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜下方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の下側挟持ローラと、
     前記一対の下側挟持ローラを回転可能かつ相互に接離可能となるように支持する可動および固定支持部材を含む下側支持機構と、
     前記可動支持部材を介して、前記一方の下側挟持ローラを前記他方の下側挟持ローラに圧接させる方向に付勢する下側付勢部材と、
    をさらに備えている、請求項1または2に記載の可撓性基板の処理装置。
  7.  帯状の可撓性基板を縦姿勢で横方向に搬送する搬送手段と、
     前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、
     前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、
     前記位置制御装置が、
     前記可撓性基板の上側縁部を挟持する一対の上側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜上方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の上側挟持ローラと、
     前記一対の上側挟持ローラを回転可能かつ相互に接離可能に支持する可動および固定支持部材を含む支持機構と、
     前記可動支持部材を介して、前記一方の上側挟持ローラを前記他方の上側挟持ローラに圧接させる付勢力を発生させるスプリングと、
     前記スプリングの付勢力を前記可動支持部材にトルクとして伝達する伝達機構と、
     前記一対の上側挟持ローラの挟圧力を調整すべく、前記スプリングの支持点を前記伝達機構との連結点の周りで角変位させる駆動手段と、
    を備えている、可撓性基板の処理装置。
  8.  前記駆動手段が、前記スプリングの支持点を、前記伝達機構との連結点を通りかつ前記伝達機構の回動軸と平行な軸を中心として、前記スプリングの弾性変位を一定に維持しつつ角変位させる駆動部材を含む、請求項7に記載の可撓性基板の処理装置。
  9.  前記駆動手段による前記支持点の角変位が、トグル角位置であって、該トグル角位置に支持された前記スプリングの付勢力によって、前記伝達機構が、前記一方の挟持ローラを前記他方の挟持ローラに圧接させる位置と、前記一方の挟持ローラを前記他方の挟持ローラから離反させる位置との2位置に保持され得るようなトグル角位置を含む、請求項7または8に記載の可撓性基板の処理装置。
  10.  前記位置制御装置が、
     前記可撓性基板の下側縁部を挟持する一対の下側挟持ローラであって、それらの挟持部における回転方向が前記可撓性基板の搬送方向に対して斜下方に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した一対の下側挟持ローラと、
     前記一対の下側挟持ローラを回転可能かつ相互に接離可能となるように支持する可動および固定支持部材を含む下側支持機構と、
     前記可動支持部材を介して、前記一方の下側挟持ローラを前記他方の下側挟持ローラに圧接させる付勢力を発生させる下側スプリングと、
    をさらに備えている、請求項7に記載の可撓性基板の処理装置。
  11.  前記可撓性基板の上下幅方向位置を検知する検知手段をさらに備え、前記位置制御装置が、前記検知手段の検出値に基づいて前記駆動手段を制御するための制御部をさらに備えている、請求項1,2,または7に記載の可撓性基板の処理装置。
  12.  帯状の可撓性基板の搬送手段と、
     前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、
     前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、
     前記位置制御装置が、
     前記可撓性基板の各側縁部を挟持する各一対の挟持ローラであって、それぞれの挟持部における回転方向が前記可撓性基板の搬送方向に対して幅方向縁端側に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した各一対の挟持ローラと、
     前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する可動および固定支持部材を含む各側の支持機構と、
     前記各可動支持部材を介して、前記一方の挟持ローラを前記他方の挟持ローラにそれぞれ圧接させる方向に付勢する各側の付勢部材と、
     前記各一対の挟持ローラの少なくとも一方の挟圧力を調整すべく前記各付勢部材の少なくとも一方を変位させる駆動手段と、
    を備えている、可撓性基板の処理装置。
  13.  帯状の可撓性基板の搬送手段と、
     前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、
     前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、
     前記位置制御装置が、
     前記可撓性基板の各側縁部を挟持する各一対の挟持ローラであって、それぞれの挟持部における回転方向が前記可撓性基板の搬送方向に対して幅方向縁端側に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した各一対の挟持ローラと、
     前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する可動および固定支持部材を含む各側の支持機構と、
     前記各可動支持部材を介して、前記各一方の挟持ローラを前記各他方の挟持ローラにそれぞれ圧接させる方向に付勢する各側の付勢部材と、
     前記各可動支持部材に前記各付勢部材と反対方向の調整力をそれぞれ付加する各側の第2付勢部材と、
     前記各一対の挟持ローラの少なくとも一方の挟圧力を調整すべく前記各第2付勢部材の少なくとも一方を変位させる駆動手段と、
    を備えている、可撓性基板の処理装置。
  14.  帯状の可撓性基板の搬送手段と、
     前記可撓性基板の搬送経路に設置された前記可撓性基板の処理部と、
     前記処理部における前記可撓性基板の幅方向位置を制御する位置制御装置と、を備え、
     前記位置制御装置が、
     前記可撓性基板の各側縁部を挟持する各一対の挟持ローラであって、それぞれの挟持部における回転方向が前記可撓性基板の搬送方向に対して幅方向縁端側に向かう微小偏角を有するようにそれぞれの回転軸が傾斜した各一対の挟持ローラと、
     前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する可動および固定支持部材を含む各側の支持機構と、
     前記各可動支持部材を介して、前記各一方の挟持ローラを前記各他方の挟持ローラにそれぞれ圧接させる付勢力を発生させる各側のスプリングと、
     前記各スプリングの付勢力を前記各可動支持部材にそれぞれトルクとして伝達する各側の伝達機構と、
     前記各一対の挟持ローラの少なくとも一方の挟圧力を調整すべく、前記各スプリングの少なくとも一方の支持点を前記伝達機構との連結点の周りで角変位させる駆動手段と、
    を備えている、可撓性基板の処理装置。
     
PCT/JP2009/071018 2008-12-24 2009-12-17 可撓性基板の処理装置 WO2010073955A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09834758A EP2368824A4 (en) 2008-12-24 2009-12-17 DEVICE FOR PROCESSING FLEXIBLE SUBSTRATES
US12/737,950 US20110240225A1 (en) 2008-12-24 2009-12-17 Treatment apparatus for flexible substrate
JP2010544023A JP5201490B2 (ja) 2008-12-24 2009-12-17 可撓性基板の処理装置および薄膜積層体の製造装置
CN200980135959.3A CN102149621A (zh) 2008-12-24 2009-12-17 柔性基质处理设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-327299 2008-12-24
JP2008327299 2008-12-24
JP2009004583 2009-01-13
JP2009-004583 2009-01-13

Publications (1)

Publication Number Publication Date
WO2010073955A1 true WO2010073955A1 (ja) 2010-07-01

Family

ID=42287570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071018 WO2010073955A1 (ja) 2008-12-24 2009-12-17 可撓性基板の処理装置

Country Status (5)

Country Link
US (1) US20110240225A1 (ja)
EP (1) EP2368824A4 (ja)
JP (1) JP5201490B2 (ja)
CN (1) CN102149621A (ja)
WO (1) WO2010073955A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104544840A (zh) * 2014-12-12 2015-04-29 姚新连 一种带有左、右限位传感器且高度可调的钱包加工设备
JP2017056420A (ja) * 2015-09-18 2017-03-23 株式会社Screenホールディングス 塗工装置
CN109003924A (zh) * 2018-08-07 2018-12-14 南方电网科学研究院有限责任公司 一种芯片出厂检验装置
CN109637953A (zh) * 2015-03-16 2019-04-16 Tes股份有限公司 基板处理装置的水平调节装置
CN110885966A (zh) * 2019-11-22 2020-03-17 维达力实业(深圳)有限公司 滚筒式磁控溅射镀膜机

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20105903A0 (fi) * 2010-08-30 2010-08-30 Beneq Oy Laite
US10022745B2 (en) * 2013-08-01 2018-07-17 Veeco Precision Surface Processing Llc Apparatus for dual speed spin chuck
CN103456689B (zh) * 2013-08-13 2015-02-25 京东方科技集团股份有限公司 用于将柔性基板与玻璃基板分离的装置及生产设备
JP6208588B2 (ja) * 2014-01-28 2017-10-04 東京エレクトロン株式会社 支持機構及び基板処理装置
CN205980793U (zh) * 2016-08-12 2017-02-22 深圳市捷佳伟创新能源装备股份有限公司 一种低压扩散炉炉门密封装置
DE102018215100A1 (de) * 2018-05-28 2019-11-28 Sms Group Gmbh Vakuumbeschichtungsanlage, und Verfahren zum Beschichten eines bandförmigen Materials
KR102634033B1 (ko) * 2019-04-05 2024-02-08 주식회사 디엠에스 기판처리유닛의 간격조절장치 및 이를 이용한 기판처리장치
CN111003545B (zh) * 2019-12-27 2023-01-17 上海骄成超声波技术股份有限公司 一种铝箔膜定位送料装置
JPWO2022118637A1 (ja) * 2020-12-03 2022-06-09
CN112722922A (zh) * 2020-12-24 2021-04-30 重庆瑞霆塑胶有限公司 一种用于吹膜薄膜的自动收卷装置
TWI800240B (zh) * 2022-01-27 2023-04-21 久元電子股份有限公司 可撓性材料偏移校正設備
CN115287609A (zh) * 2022-08-30 2022-11-04 新倍司特系统科技(苏州)有限公司 一种均匀涂覆大面积厚涂层的设备及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227069A (ja) * 1993-02-05 1994-08-16 Canon Inc 記録装置
JP2005072408A (ja) 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 薄膜製造装置および薄膜製造方法
JP2008031505A (ja) * 2006-07-27 2008-02-14 Fuji Electric Systems Co Ltd 成膜装置および成膜方法
WO2009122836A1 (ja) * 2008-03-31 2009-10-08 富士電機システムズ株式会社 薄膜積層体の製造装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710334A (ja) * 1993-06-21 1995-01-13 Bridgestone Corp 蛇行修正装置
DE10297102B4 (de) * 2001-08-09 2011-05-05 Sharp K.K. Vorrichtung und Verfahren zum Herstellen einer dünnen Platte
CN101031670A (zh) * 2005-07-14 2007-09-05 东京毅力科创株式会社 基板载置机构和基板处理装置
JP2007261773A (ja) * 2006-03-29 2007-10-11 Toray Ind Inc フィルムの加工装置および加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227069A (ja) * 1993-02-05 1994-08-16 Canon Inc 記録装置
JP2005072408A (ja) 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 薄膜製造装置および薄膜製造方法
JP2008031505A (ja) * 2006-07-27 2008-02-14 Fuji Electric Systems Co Ltd 成膜装置および成膜方法
WO2009122836A1 (ja) * 2008-03-31 2009-10-08 富士電機システムズ株式会社 薄膜積層体の製造装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2368824A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104544840A (zh) * 2014-12-12 2015-04-29 姚新连 一种带有左、右限位传感器且高度可调的钱包加工设备
CN109637953A (zh) * 2015-03-16 2019-04-16 Tes股份有限公司 基板处理装置的水平调节装置
CN109637953B (zh) * 2015-03-16 2023-03-14 Tes股份有限公司 基板处理装置的水平调节装置
JP2017056420A (ja) * 2015-09-18 2017-03-23 株式会社Screenホールディングス 塗工装置
CN109003924A (zh) * 2018-08-07 2018-12-14 南方电网科学研究院有限责任公司 一种芯片出厂检验装置
CN109003924B (zh) * 2018-08-07 2023-08-15 南方电网科学研究院有限责任公司 一种芯片出厂检验装置
CN110885966A (zh) * 2019-11-22 2020-03-17 维达力实业(深圳)有限公司 滚筒式磁控溅射镀膜机

Also Published As

Publication number Publication date
CN102149621A (zh) 2011-08-10
JP5201490B2 (ja) 2013-06-05
JPWO2010073955A1 (ja) 2012-06-14
EP2368824A1 (en) 2011-09-28
EP2368824A4 (en) 2012-09-05
US20110240225A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
WO2010073955A1 (ja) 可撓性基板の処理装置
WO2010087218A1 (ja) 可撓性基板の位置制御装置
EP2020392B1 (en) Apparatus for manufacturing thin-film laminated member
JP5423808B2 (ja) 可撓性基板の搬送装置
JP4840712B2 (ja) 薄膜積層体の製造装置および方法
JP5652700B2 (ja) 可撓性基板の位置制御装置
JP2009038276A (ja) 薄膜積層体の製造装置
JP2009057632A (ja) 薄膜積層体の製造装置
JP2009038277A (ja) 薄膜積層体の製造装置
US20120160165A1 (en) Apparatus for manufacturing a thin film laminate
JP5018523B2 (ja) 薄膜積層体の製造装置
JP2010177343A (ja) 薄膜積層体の製造装置
JP5787216B2 (ja) 薄膜積層体製造装置およびその運転方法
JP2011146437A (ja) 可撓性基板の位置制御装置
JP5126088B2 (ja) 薄膜積層体の製造装置
WO2010032530A1 (ja) 薄膜構造体及びその製造方法
JP2011032555A (ja) 薄膜積層体製造装置の基板位置制御装置
JP2011032554A (ja) 薄膜積層体製造装置
JP5196283B2 (ja) 可撓性基板の位置制御装置
JP5488997B2 (ja) 薄膜積層体製造装置の基板位置制御装置
JP2001339082A (ja) 真空成膜装置
JP2010177344A (ja) 薄膜積層体の製造装置
JP2012001743A (ja) 薄膜形成装置
JP2009191326A (ja) 薄膜積層体の製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135959.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010544023

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009834758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12737950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE