WO2010087218A1 - 可撓性基板の位置制御装置 - Google Patents

可撓性基板の位置制御装置 Download PDF

Info

Publication number
WO2010087218A1
WO2010087218A1 PCT/JP2010/050140 JP2010050140W WO2010087218A1 WO 2010087218 A1 WO2010087218 A1 WO 2010087218A1 JP 2010050140 W JP2010050140 W JP 2010050140W WO 2010087218 A1 WO2010087218 A1 WO 2010087218A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pair
flexible substrate
rollers
sandwiching
Prior art date
Application number
PCT/JP2010/050140
Other languages
English (en)
French (fr)
Inventor
横山 勝治
隆典 山田
剛典 和田
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Priority to US13/146,908 priority Critical patent/US20120031565A1/en
Priority to CN2010800063034A priority patent/CN102300796A/zh
Priority to EP10735688A priority patent/EP2392528A1/en
Priority to JP2010548452A priority patent/JPWO2010087218A1/ja
Publication of WO2010087218A1 publication Critical patent/WO2010087218A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/02Advancing webs by friction roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/32Orientation of handled material
    • B65H2301/321Standing on edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/32Orientation of handled material
    • B65H2301/323Hanging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/32Orientation of handled material
    • B65H2301/325Orientation of handled material of roll of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/90Machine drive
    • B65H2403/94Other features of machine drive
    • B65H2403/942Bidirectional powered handling device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/144Roller pairs with relative movement of the rollers to / from each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/145Roller pairs other
    • B65H2404/1451Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means

Definitions

  • the present invention relates to a position control device for a flexible substrate, and more specifically, in a processing device that performs a process such as film formation while transporting a belt-like flexible substrate, the position in the width direction of the flexible substrate is controlled. It is related with the control apparatus which performs.
  • Patent Document 1 discloses a plurality of strips arranged in the transport direction of the flexible substrate while intermittently transporting a strip-shaped flexible substrate (polyimide film) supplied from an unwinding roll at a predetermined pitch.
  • An apparatus for manufacturing a thin film stack (thin film photoelectric conversion element) in which a plurality of thin films having different properties are stacked on the flexible substrate and wound as a product roll in the film forming unit is disclosed.
  • Such a thin film laminate manufacturing apparatus includes a type in which a film is formed while being transported in a horizontal position, that is, a width direction of the strip-shaped flexible substrate, and a vertical position, that is, a width direction of the strip-shaped flexible substrate.
  • a type in which film formation is performed while transporting in the vertical direction has the advantage that the installation area is smaller than the former and the substrate surface is less likely to be contaminated, etc., but if the conveyance span becomes long, it becomes difficult to keep the conveyance height constant against gravity, The tendency that wrinkles occur on the surface of the flexible substrate or the flexible substrate hangs down becomes significant.
  • Patent Document 1 discloses a device that grips the upper and lower side edges of a flexible substrate with a gripping member (pad) and pulls it in the width direction during a stop period in step conveyance of the flexible substrate. .
  • this apparatus since this apparatus repeatedly grips, pulls, and releases the flexible substrate, it is difficult to keep the conveyance height of the flexible substrate constant. It cannot be implemented in a continuous film forming apparatus that forms a film while being conveyed.
  • FIGS. 1 (a) to 1 (c) the upper and lower side edges of the flexible substrate 1 are sandwiched between the film forming units 20 and 20 constituting the thin film laminate manufacturing apparatus.
  • An apparatus that adjusts the conveyance height of the flexible substrate 1 by applying upward and downward lifting forces to the upper and lower side edges of the flexible substrate 1 so as to have ⁇ , and adjusting the conveyance height of the flexible substrate 1. Developed by the people.
  • This apparatus is advantageous in expanding the flexible substrate and adjusting the conveyance height of the flexible substrate, but is not applicable to a reciprocal film forming process including conveyance in the reverse direction of the flexible substrate. .
  • the lifting force and the pulling-down force due to the declination act in the reverse direction, causing a problem that the flexible substrate is detached from each pair of clamping rollers 30 and 30 '.
  • the present invention has been made in view of the above problems, and its purpose is to suppress the occurrence of drooping or wrinkles on the flexible substrate while transporting the belt-like flexible substrate in a vertical position.
  • An object of the present invention is to provide a position control device for a flexible substrate that enables high-quality processing and also supports conveyance of the flexible substrate in the reverse direction.
  • the substrate is transported in the processing section installed in the transport path of the substrate while transporting the strip-shaped flexible substrate in the horizontal direction in a vertical posture.
  • a position control device for a flexible substrate in a processing apparatus that performs processing on the substrate, and supports a pair of sandwiching rollers that sandwich the upper edge of the substrate and the pair of sandwiching rollers so that the pair of sandwiching rollers are rotatable and can be connected to and separated from each other.
  • the supporting mechanism is supported by the support mechanism so that the pressing direction with respect to the clamping surface of the substrate has an inclination toward the edge in the width direction of the substrate and the rotation direction of the clamping surface is the same as the transport direction of the substrate.
  • the position of the flexible substrate It is in the control device.
  • the second aspect of the present invention is a processing unit installed in a transport path of the substrate while transporting the belt-shaped flexible substrate in the vertical direction in the horizontal direction.
  • a position control device for a flexible substrate in a processing apparatus that performs processing on the substrate, the support mechanism supporting the pair of sandwiching rollers so that the pair of sandwiching rollers can rotate and contact each other, and the pair of the support rollers via the support mechanism.
  • Biasing means for applying a pressing force to the sandwiching rollers, and a means for adjusting the pressing force by the biasing means, and the pair of sandwiching rollers have their axial directions with respect to the sandwiching surface of the substrate.
  • the position of the flexible substrate that is supported by the support mechanism so as to have an inclination that moves away toward the edge in the width direction of the substrate and so that the rotation direction of the clamping surface is the same as the transport direction of the substrate In the control unit.
  • the flexible substrate is moved in the vertical direction, that is, in the horizontal direction with the width direction set up and down by the conveying means such as feed rolls arranged on the upstream side and the downstream side of the processing unit (film forming unit). Processes such as film formation are performed in a processing unit that is transported and installed in the transport path.
  • the upper edge part of a flexible substrate is clamped with the pair of clamping rollers which comprise a position control apparatus.
  • the clamping roller pair has an inclination in which the pressing direction with respect to the clamping surface of the substrate is directed toward the edge side of the substrate width direction, so that the pressing force by the urging means is applied to the clamping surface of the substrate.
  • the position in the vertical width direction of the flexible substrate is adjusted by adjusting the pressure applied by the urging means and adjusting the stretch component (component force) toward the substrate edge along with the pressurizing component. It is possible to keep the thickness constant.
  • the pair of sandwiching rollers has an inclination in which the respective axial directions are separated from the sandwiching surface of the substrate toward the edge in the width direction of the substrate.
  • a developing tension is generated toward the edge of the substrate with respect to the holding surface of the substrate. Therefore, by adjusting the pressure applied by the urging means and adjusting the tension, the position of the flexible substrate in the vertical width direction is adjusted, and the conveyance height can be kept constant.
  • the upper edge of the flexible substrate is stretched toward the edge, and drooping or wrinkles due to its own weight is suppressed at the intermediate portion of the conveyance span.
  • the above control does not depend on the rotation direction on the clamping surface of each clamping roller, and since the rotation direction on the clamping surface is the same as the substrate conveyance direction, the same position control is performed in the reverse conveyance. It is possible to cope with various reciprocating processes such as a reciprocating film forming process including conveyance of the flexible substrate in the opposite direction at a low cost.
  • the peripheral surfaces of the rollers constituting the pair of sandwiching rollers have a circular arc cross section, and are supported by the support mechanism so as to be offset in the axial direction and to be separated from each other.
  • the inclination in the pressing direction is given by the cross-sectional shape of each sandwiching roller, there is no need to incline the axial direction of each sandwiching roller.
  • the axial direction of each sandwiching roller in the sandwiching state is the transport surface. It can be set in the parallel vertical direction, which is advantageous for simplifying the support mechanism.
  • the inclination angle in the pressing direction can be easily set according to the offset amount, and the expansion toward the substrate edge side can be performed simply by changing the applied pressure.
  • the components can be varied over a wide range.
  • one or both of the rollers constituting the pair of sandwiching rollers is a conical roller having a peripheral surface inclined with respect to the axial direction. Also in these embodiments, since the inclination in the pressing direction is given by the cross-sectional shape of each sandwiching roller, it is advantageous for simplifying the support mechanism, and only by changing the applied pressure, the substrate edge side The extending component toward the can be changed over a wide range.
  • each of the pair of sandwiching rollers is supported by the support mechanism such that the sandwiching surface is inclined with respect to the substrate width direction.
  • the edge of the flexible substrate is clamped in a bent state with respect to the central portion of the substrate including the film formation region, a large clamping force can be obtained as compared with the contact pressure of the clamping roller. Can do.
  • the support mechanism includes a first link that allows one or both of the pair of sandwiching rollers to be moved in a direction that makes contact with and away from each other, and the sandwiching roller is movable in the substrate width direction.
  • the biasing means includes a first biasing member that biases the first link in the pressure contact direction of the clamping roller, and the second link toward the edge in the substrate width direction.
  • a second urging member that urges in the direction of travel, and the means for adjusting the pressing force includes an urging force adjusting means for the second urging member.
  • the pressing direction (contacting / separating direction) of the clamping roller due to the biasing of the biasing means has an inclination with respect to the clamping surface, so that the pressure component and the stretching component (minute) 2) corresponding to the biasing in two directions, that is, a contact / separation direction substantially perpendicular to the sandwiching surface and a direction substantially parallel to the sandwiching surface.
  • the second link or the second urging member in a state where the urging force by the first link and the first urging member is maintained substantially constant by the configuration in which the urging force and the developing tension are individually generated by the two links and the urging member. It is possible to adjust the position of the flexible substrate in the vertical width direction by keeping the conveying height constant by changing the tensile force according to the displacement of the substrate and raising or lowering the edge of the flexible substrate. It becomes.
  • the support mechanism further includes a third link that enables the support point of the first link to move in the substrate width direction.
  • the flexible substrate can be stretched with substantial movement on the clamping surface of the clamping roller, and the substrate is transported. The height and spread can be adjusted over a wider range.
  • the operation of releasing the nipping can be performed by moving the third link in the opposite direction to that during pressurization to separate the nipping roller.
  • the support mechanism includes a first link that allows one or both of the pair of sandwiching rollers to move in a direction to contact or separate from each other, and one or both of the pair of sandwiching rollers to the A second link that is swingably supported in the substrate width direction, and a return spring that urges the one or both clamping rollers in the direction opposite to the edge side in the substrate width direction via the second link,
  • the urging means includes a first urging member that urges the first link in a pressure contact direction of the clamping roller, and the one or both of the clamping rollers have a pressure applied by the first urging member. It is configured so as to be pressed at a swing angle balanced with the restoring force of the return spring.
  • the vertical position of the flexible substrate can be adjusted by adjusting the pressure applied by the first urging member to change the swing angle and displacing the clamping surface in the substrate width direction. . That is, only by adjusting the pressing force by the first urging member, the vertical width direction position can be adjusted while the flexible substrate is stretched with the displacement of the clamping surfaces of the pair of clamping rollers in the substrate width direction. It is possible to adjust the transport height and the degree of spreading of the substrate over a wider range.
  • the support mechanism described above includes a plurality of links and urging members
  • links and urging members corresponding to the respective holding rollers may be set.
  • the present invention is also directed to a mode in which a pair of sandwiching rollers is provided on each of the upper and lower sides of a flexible substrate. That is, in a preferred aspect of the present invention, a pair of lower clamping rollers that clamp the lower edge of the substrate, and the pair of lower clamping rollers configured similarly to the support mechanism and the biasing means. And a support mechanism and biasing means.
  • the flexible substrate is raised or lowered by the difference in the stretch component of the applied pressure acting on the holding surfaces on the upper and lower sides while the flexible substrate is stretched in both the upper and lower directions in the width direction. It can be lowered and the conveyance height can be controlled, thereby effectively suppressing wrinkles of the flexible substrate and further improving the positional accuracy of the flexible substrate.
  • the processing apparatus includes, as the processing unit, a plurality of film forming units arranged in parallel at an equal pitch along the substrate transfer path, and the substrate corresponds to the film forming unit.
  • a thin film laminate manufacturing apparatus that sequentially forms thin films on the surface of the substrate while intermittently transporting at a pitch, wherein the pair of upper sandwiching rollers and the pair of lower sandwiching rollers include the plurality of components. It is arrange
  • the processing apparatus is a thin film laminate manufacturing apparatus in which a thin film is formed on the surface of the substrate by the film forming unit as the processing unit while continuously transporting the substrate.
  • the pair of upper clamping rollers and the pair of lower clamping rollers are provided in a plurality of rows along the transport direction above and below the film forming unit.
  • the thin film forming region of the substrate and the plurality of pairs of upper sandwiching rollers and the plurality of pairs of lower sandwiching rollers are arranged along the transport direction to support the substrates, respectively. It is preferable to further include a plurality of support rollers.
  • the flexible substrate can be reliably supported in the vicinity of the film forming unit by the heat-resistant support roller that does not include the movable unit for adjusting the pressurizing force, and the pair of sandwiching rollers can be formed at a high temperature. It is possible to dispose the film portion away from the film portion, which can reduce the influence of radiant heat on the pinching roller, and is advantageous in improving the degree of freedom in selecting the material of the pinching roller.
  • the present invention relates to the position of a flexible substrate in a processing apparatus that transports a band-shaped flexible substrate in a horizontal direction, a vertical direction, or an oblique direction in a posture other than a vertical posture, such as a flat posture, and performs processing such as film formation. It can also be applied to a control device.
  • the flexibility in the processing apparatus that processes the substrate by the processing unit installed in the transport path of the substrate while transporting the belt-shaped flexible substrate A position control device for a substrate, wherein each pair of sandwiching rollers for sandwiching each side edge portion of the substrate and each pair of sandwiching rollers are supported so as to be rotatable and to be able to contact and separate from each other in each pair.
  • a support mechanism biasing means for applying pressure to the pair of sandwiching rollers via the support mechanisms; and means for adjusting the pressure by the biasing means;
  • Each axis direction has an inclination to be separated toward the edge side of the substrate width direction with respect to the sandwiching surface of the substrate, and the rotation direction of the sandwiching surface is the same direction as the transport direction of the substrate,
  • each said support mechanism Is lifting, it can also be applied as a position controller of the flexible substrate.
  • the driven rotation of each pair of sandwiching rollers that sandwich the respective side edge portions of the flexible substrate causes a developing tension toward the substrate edge end side with respect to the sandwiching surface of each side edge portion.
  • the flexible substrate is stretched in the width direction by the stretching tension.
  • this tension changes according to the pressure applied by each urging means, the position in the width direction of the flexible substrate can be adjusted by adjusting the pressure applied by the urging means on each side.
  • meandering can be suppressed while the flexible substrate is stretched in the width direction.
  • each roller constituting each of the pair of sandwiching rollers is a conical roller having a peripheral surface inclined with respect to the axial direction.
  • the flexible substrate position control device as described above, is effective in generating drooping or wrinkles on the flexible substrate when carrying out processing such as film formation while transporting the belt-shaped flexible substrate.
  • processing such as film formation while transporting the belt-shaped flexible substrate.
  • it is possible to maintain the position in the width direction constant and to perform high-quality processing, and it is possible to cope with a reciprocating process including conveyance of the flexible substrate in the reverse direction at low cost.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 (b) is a schematic side view. It is CC sectional drawing of FIG.6 (b). It is a front view which shows the board
  • FIG. 1 It is sectional drawing seen from the conveyance direction upstream which shows another modification in the case of implementing the substrate position control apparatus which concerns on 2nd Embodiment of this invention in a continuous-type film-forming apparatus. It is a front view which shows the board
  • (A) is a schematic top view which shows a part of step type film-forming apparatus which implemented the substrate position control apparatus based on 9th Embodiment of this invention
  • (b) is a schematic side view
  • (c) is D of (b).
  • FIG. 2 is a front view of the substrate position control apparatus 100 according to the first embodiment of the present invention as viewed from the upstream side in the transport direction.
  • the thin-film laminate manufacturing apparatus places a strip-like flexible substrate 1 (flexible film) in the width direction inside a vacuum chamber 10 maintained at a predetermined degree of vacuum.
  • the surface of the flexible substrate 1 includes a plurality of film forming units 20 (film forming units) arranged in parallel along the transfer path of the flexible substrate 1. A thin film is formed on the substrate.
  • feed rolls, tension rolls and the like constituting the transport means are disposed, and further, the flexible substrate 1 is unwound on the upstream and downstream sides in the transport direction.
  • a roll and a take-up roll are provided. Further, the flexible substrate 1 is guided between the upstream and downstream feed rolls and the film forming unit so as to be folded back on the upstream side and the downstream side of the film forming unit.
  • a guide roll (idle roll) for setting a linear transport path of the substrate 1 is provided. Since these configurations are the same as the conventional one, illustration is omitted.
  • the substrate position control device 100 controls the position in the vertical direction of the flexible substrate 1 that is stretched between the guide rolls and transported through the film forming unit to keep the transport height constant, and is flexible.
  • the pair of sandwiching rollers 130 and 130 that sandwich the upper edge portion of the flexible substrate 1 is disposed above the transport path in the film forming unit.
  • a support mechanism 140 that supports the rollers 131 and 132 that constitute a roller so that the rollers 131 and 132 are rotatable and can be moved toward and away from each other, and a biasing means that applies pressure to the pair of sandwiching rollers 130 (131, 132) via the support mechanism 140 ( 150) and the pressure adjusting means (160).
  • one of the rollers constituting the sandwiching roller pair 130 is a fixed roller 131 and the other is a movable roller 132, and the fixed roller 131 can be rotated by a shaft 131a.
  • the movable roller 132 is supported by a shaft 132a so as to be rotatable.
  • the shaft 131a of the fixed roller 131 is oriented in the vertical direction parallel to the conveyance surface of the flexible substrate 1, and protrudes from the lower end portion of the fixed-side support member 141 in a direction perpendicular to the conveyance direction.
  • the upper and lower end portions are supported by the support portion 141a.
  • the fixed side support member 141 is fixed to the structural element 11 of the vacuum chamber.
  • the shaft 132a of the movable roller 132 is supported at the upper and lower ends by a support portion 142a having the same shape protruding from the tip portion of the movable side support member 142 so as to face the support portion 141a. Is set so as to be parallel to the shaft 131a of the fixed roller 131.
  • the movable side support member 142 extends upward from the tip end portion where the support portion 142a is projected and further bends and extends toward the upper end portion of the fixed side support member 141.
  • the movable-side support member 141 is swingably connected to the upper end portion of the fixed-side support member 141, and the movable roller 132 can come into contact with and separate from the fixed roller 131 by swinging of the movable-side support member 142 about the hinge portion 142 b. It has become.
  • a spring 150 (tensile spring) is interposed between the fixed side support member 141 and the movable side support member 142 as an urging means.
  • One end of the spring 150 is connected to the fixed-side support member 141, and the other end of the spring 150 is connected to the movable-side support member 142 via the pressure adjustment screw 160, and the pressure adjustment screw 160 is rotated.
  • each of the rollers 131 and 132 of the sandwiching roller pair 130 according to the first embodiment of the present invention has circumferential surfaces 131b and 132b sandwiching the flexible substrate 1 having an arcuate cross section. And it is supported by each axis
  • each of the rollers 131 and 132 is made of, for example, metal, ceramic, plastic or the like, or an elastic body such as rubber is attached around the core formed of those materials. It is composed by doing.
  • the rollers 131 and 132 are rotatably supported through bearings so as to be able to receive a thrust load so as to be held at the offset axial positions with respect to the shafts 131a and 132a (support shafts). .
  • the shafts 131a and 132a (rotating shafts) are fixed at the offset axial positions, and the shafts 131a and 132a can receive the thrust load through bearings via the bearings 141a and 142a. It may be supported in a freely rotatable manner.
  • the upper edge portion of the flexible substrate 1 is sandwiched between the fixed roller 131 and the movable roller 132 offset in the axial direction while being bent obliquely with respect to the vertical direction. Is done. For this reason, with respect to the pressure component px input perpendicularly to the clamping surface of the flexible substrate 1 by the pressure Px of the movable roller 132 applied in a substantially horizontal direction so as to intersect the substrate transport surface. A stretch component ⁇ x (shear component) parallel to the sandwiching surface of the flexible substrate 1 is generated, and the stretch component ⁇ x toward the edge of the flexible substrate 1 causes the upper edge of the flexible substrate 1 to move. It is extended upward.
  • the pressing force adjustment screw 160 is rotated to adjust the initial displacement x of the spring 150, thereby expanding the pressing force px together with the pressing component px.
  • the component ⁇ x is adjusted, and the extension tension with respect to the upper edge of the flexible substrate 1 can be adjusted.
  • the extension tension ( ⁇ x) lifts the upper edge of the flexible substrate 1 against its own weight. Since it becomes force, the position of the upper edge of the flexible substrate 1 can be adjusted.
  • the pressure adjusting screw 160 for manual operation is used as the pressure adjusting means, and the pressure is set in advance to an optimum value obtained by a test operation or the like.
  • An actuator for rotating the pressure adjusting screw 160 or displacing the support point of the spring 150 directly or indirectly through a mechanism, a sensor for detecting the position of the upper edge of the flexible substrate 1, and a detection value of the sensor It is also possible to provide a control device for controlling the actuator based on the above, and to be able to control the transport height of the flexible substrate 1 by feedback control.
  • FIG. 4A, 4B, and 5 show an embodiment in which the substrate position control apparatus 100 of the first embodiment is applied to a manufacturing apparatus 110 of the same step film formation method as shown in FIG. ing.
  • a large number of film forming units 20 are arranged inside the common vacuum chamber 10 along the transport direction.
  • Each film forming unit 20 is constituted by a vacuum vapor deposition unit for performing chemical vapor deposition (CVD) such as plasma CVD or physical vapor deposition (PVD) such as sputtering.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Each film forming unit 20 includes an electrode 21 (a high-frequency electrode or a target having a large number of source gas ejection holes on the surface) opposed to both sides of the flexible substrate 1 and a ground electrode 22 with a built-in heater.
  • the electrode 21 and the ground electrode 22 are each housed in a chamber opened toward the transport surface of the flexible substrate 1.
  • the electrode 21 and / or the ground electrode 22 advance and retreat to open and close the chamber.
  • the sandwiching roller pair 130 cannot be installed.
  • the substrate position control apparatus 100 is installed before and after the film formation unit 20, that is, between the film formation units 20.
  • a pair of sandwiching rollers 130 and 130 ' are disposed on each of the upper and lower sides of the transport path.
  • the lower nip roller pair 130 ′ can be used with the same structure as the upper nip roller pair 130 upside down.
  • the lower clamping roller pair 130 ′ with respect to the lower edge of the flexible substrate 1 is lowered.
  • the flexible substrate 1 can be stretched in both the upper and lower directions, and the difference between them is a force that lifts the flexible substrate 1 against its own weight. Therefore, the upper and lower nip roller pairs 130 and 130 ′ have a higher tension than the lower nip roller pair 130 ′ when the influence of their own weight is large, such as when the conveyance span is long. It will be set in the range.
  • FIG. 6 (a), 6 (b), and 7 show an embodiment in which the substrate position control device 100 of the first embodiment is applied to a manufacturing apparatus 112 of a continuous film formation method.
  • an electrode 25 (target) and a ground electrode 26 with a built-in heater are arranged opposite to each other with the flexible substrate 1 interposed therebetween.
  • the electrode 25 and the ground electrode 26 are fixed to the flexible substrate 1 with a predetermined gap, and perform continuous film formation in a non-contact manner. For this reason, the film-forming region on the flexible substrate 1 is not divided in the transport direction, and the rolls 23 and 23 for guiding the flexible substrate 1 can be arranged on the upstream and downstream sides of the film-forming unit 24 in the transport direction. .
  • the emphasis is placed on extending in the width direction so as to suppress wrinkles generated in the flexible substrate 1 due to tension and heat rather than drooping due to its own weight.
  • a plurality of upper and lower clamping roller pairs 130 and 130 ′ are arranged in a straight line along the upper and lower sides of the film forming unit 24.
  • the temperature around the electrode 25 rises to about 300 ° C. due to the radiant heat from the heater.
  • a plurality of support rollers arranged in line in the transport direction between the electrode 25 and the upper and lower sandwiching roller pairs 130 and 130'. 27, and each pair of sandwiching rollers 130 and 130 ′ is disposed outside the electrode 25.
  • the support roller 27 is preferably composed of a metal roller having good heat resistance, and is rotatably supported by a shaft 27a provided at the tip of a bracket 28 protruding from the frame portion of the electrode 25. Further, as shown in FIG. 7, the upper and lower sandwiching roller pairs 130 and 130 ′ are arranged farther from the transport surface than the support roller 27, so that the flexible substrate 1 is stably supported by the support roller 27. I have to.
  • FIG. 8 is a front view of the substrate position control apparatus 200 according to the second embodiment of the present invention as viewed from the upstream side in the transport direction, and FIG.
  • each of the rollers 231 and 232 constituting the sandwiching roller pair 230 of the substrate position control device 200 of the second embodiment is a conical roller having peripheral surfaces 231b and 232b inclined with respect to the axial direction, respectively.
  • the movable roller 232 is set so that the shaft 232a thereof is parallel to the conveying surface while the pair of sandwiching rollers 230 are in pressure contact with each other, whereas the shaft 231a of the fixed roller 231 is configured to be movable roller 232.
  • the peripheral surfaces 231b and 232b inclined with respect to the axial direction are pressed against each other while forming a sandwiching surface inclined with respect to the vertical direction. It is possible to send out while sandwiching the substrate 1.
  • the support portion 242a that supports the shaft 232a of the movable roller 232 is rotatably supported with respect to the movable-side support member 242 via a hinge portion 242e, and both the upper and lower sides are supported on the other end 242d of the support portion 242a.
  • the position of the movable roller 232 relative to the fixed roller 231 can be adjusted by adjusting the adjustment screws 261 and 262 that can be brought into contact with each other.
  • Each of the sandwiching rollers 231 and 232 is supported by the respective shafts 231a and 232a (support shafts) via bearings so as to be capable of receiving a thrust load, or the respective shafts 231a and 232a (rotary shafts).
  • the other configurations including the point that the shafts 231a and 232a are rotatably supported by the respective support portions 241a and 242a through bearings so as to be able to receive the thrust load are This is the same as in the first embodiment.
  • the upper edge portion of the flexible substrate 1 is sandwiched between the fixed roller 231 and the movable roller 232 while being bent obliquely with respect to the vertical direction, and substantially in the horizontal direction.
  • the tension component ⁇ x along the clamping surface of the flexible substrate 1 with respect to the pressure component px input perpendicularly to the clamping surface of the flexible substrate 1 by the pressure Px of the movable roller 232 applied to the flexible substrate 1 (Shear component) occurs, and the upper edge portion of the flexible substrate 1 is stretched upward by the stretch component ⁇ x toward the edge of the flexible substrate 1, and is the same as in the first embodiment described above.
  • the stretch component ⁇ x is adjusted together with the pressure component px, and the position of the upper edge of the flexible substrate 1 can be adjusted.
  • the substrate position control apparatus 200 of the second embodiment can be implemented in a step-deposition-type manufacturing apparatus and a continuous-film-formation-type manufacturing apparatus, and FIGS. The modification in the case of implementing the control apparatus 200 in the manufacturing apparatus of a continuous film-forming system is shown.
  • the radiation heat protection covers 241c and 242c are provided on the fixed side and movable side support members 241 and 242 of the sandwiching rollers 231 and 232 adjacent to the electrode 25 and the ground electrode 26 (heater).
  • the support roller (27) is omitted to simplify the structure.
  • the radiant heat protection covers 241c and 242c are preferably made of heat-resistant and heat-insulating members, and extend upstream and downstream in the conveying direction with respect to the diameter of each sandwiching roller 231 and 232. It is preferable that the radiant heat protection covers 241c and 242c of the sandwiching rollers 231 and 232 are arranged close to each other. This modification can be applied to the other embodiments described later, including the first embodiment described above.
  • the bracket (28) of the support roller 27 is rotatably mounted on the support shaft 27a that protrudes downward from the support portion 241a of the fixed-side support member 241.
  • the structure is simplified by providing the radiation support cover 242c on the movable support member 242. This modification can be applied to each embodiment including the substrate position control device 100 of the first embodiment described above and the fixed roller included in the pair of clamping rollers.
  • FIG. 12 is a front view showing the substrate position control apparatus 300 according to the third embodiment of the present invention as seen from the upstream side in the transport direction
  • FIG. 13 is an enlarged view of a main part thereof.
  • the rollers 331 and 332 constituting the sandwiching roller pair 330 of the substrate position control device 300 of the third embodiment have different shapes.
  • the fixed roller 331 is a cylindrical roller having a circumferential surface 331b parallel to the axial direction, and the shaft 332a is set in the vertical direction.
  • the movable roller 332 is a conical roller having a peripheral surface 332b inclined with respect to the axial direction, and the inclined peripheral surface 332b is pressed along the parallel peripheral surface 331b of the fixed roller 331 in an operating state.
  • the shaft 332a is set to have an inclination corresponding to the peripheral surface 332b.
  • the movable side support member 342 that rotatably supports the movable roller 332 is coupled to be swingable through a hinge portion 342b at an extension portion that extends from the upper end of the fixed side support member 341 toward the movable roller 332 side.
  • the movable roller 332 can be brought into contact with and separated from the fixed roller 331 by the swinging of the movable support member 342 about the hinge portion 342b.
  • a spring 350 is interposed as an urging means, and an end of the spring 350 is connected to the movable side support member 342 via a pressure adjusting screw 360.
  • the point is the same as in the first and second embodiments, but in this embodiment, the spring 350 is stretched obliquely along the swinging direction of the movable support member 342, and the pressure adjusting screw 360 is also tilted. It is screwed.
  • the upper edge portion of the flexible substrate 1 is sandwiched in a flat state by the fixed roller 331 and the movable roller 332, but obliquely upward with the hinge portion 342b offset from the conveyance surface of the flexible substrate 1 as a center. Due to the pressure Px of the movable roller 332 toward the surface, the pressure component px inputted perpendicularly or substantially horizontally to the holding surface of the flexible substrate 1 and the expansion parallel to the holding surface of the flexible substrate 1 A component ⁇ x (shear component) is generated, and the extension component ⁇ x causes the upper edge portion of the flexible substrate 1 to be expanded upward, and the initial displacement x of the spring 350 is adjusted in the same manner as in the above-described embodiments. The stretch component ⁇ x is adjusted together with the pressure component px, and the position of the upper edge portion of the flexible substrate 1 can be adjusted.
  • FIG. 14 is a front view of the substrate position control apparatus 400 according to the fourth embodiment of the present invention as viewed from the upstream side in the transport direction
  • FIG. 15 is an enlarged view of a main part thereof.
  • Each of the rollers 431 and 432 constituting the sandwiching roller pair 430 of the substrate position control device 400 of the fourth embodiment is composed of a conical roller, and both are movable rollers 431 and 432, which are respectively supported on the movable side.
  • the members 441 and 442 are rotatably supported by shafts 431a and 432a provided at the tip portions 441a and 442a.
  • the shafts of the movable rollers 431 and 432 are arranged so that the upper edge portion of the flexible substrate 1 is clamped by a flat clamping surface with respect to the transport surface in an operating state where the movable rollers 431 and 432 are pressed against each other.
  • 431a and 432a are oriented obliquely according to the inclination of the peripheral surfaces 431b and 432b with respect to the sandwiching surface.
  • the movable side support members 441 and 442 are swingably supported by shafts 471 and 472 fixed to the fixed bracket 470 at intermediate portions bent in an L shape, and a spring 450 is interposed as a biasing means. It is disguised.
  • the point that one end of the spring 450 is connected to the movable side support member 442 via the pressure adjusting screw 460 is the same as in each of the above embodiments.
  • the movable side support members 441 and 442 are slidably and pivotably engaged with each other at the intersecting portions of the arm portions 441c and 442c extending from the respective intermediate portions (shafts 471 and 472) above the conveying surface.
  • a pair of pins 447a and a long hole 447b are provided, and the movable rollers 431 and 432 are moved by pressing the operation portion 441d of one movable side support member 441 downward against the urging force of the spring 450.
  • the pair of movable support members 441 and 442 are interlocked with each other by the engagement of the pin 447a and the elongated hole 447b, and the pair of movable support members 441 and 442 are interlocked by the biasing force of the spring 450.
  • the movable rollers 431 and 432 are in pressure contact with each other, and the upper edge portion of the flexible substrate 1 can be sandwiched.
  • the flexible substrate 1 is held in a flat state by the pair of movable rollers 431 and 432, but the flexible substrate 1 is flexible. Pressure applied to the holding surface of the flexible substrate 1 perpendicularly or substantially horizontally by the applied pressures Px and Px that are obliquely upward relative to each other about the shafts 471 and 472 that are offset together from one transport surface.
  • the components px, px and the stretching components ⁇ x, ⁇ x parallel to the holding surface of the flexible substrate 1 are generated, and the upper edge of the flexible substrate 1 is expanded upward by the stretching components ⁇ x, ⁇ x.
  • the stretch components ⁇ x and ⁇ x are adjusted together with the pressure components px and px, and the position of the upper edge of the flexible substrate 1 is adjusted. It can be adjusted.
  • the pressing direction (contact / separation direction) of the pair of clamping rollers by one urging means (spring) is flexible with respect to the clamping surface.
  • the support mechanism is substantially parallel to the clamping surface and the contact / separation direction of the clamping roller pair 530 substantially perpendicular to the clamping surface.
  • FIGS. 16A and 16B are front views of the substrate position control apparatus 500 according to the fifth embodiment of the present invention as viewed from the upstream side in the transport direction, where FIG. 16A is a state in which the pair of nip rollers 530 are released, and FIG. A pressure application state by the pair 530, (c) shows a tension application state.
  • the fixed roller 531 and the movable roller 532 constituting the sandwiching roller pair 530 of the substrate position control apparatus 500 of the fifth embodiment are both illustrated as cylindrical rollers, either or both of them are a circular arc roller or a conical roller. It can also be.
  • the fixed roller 531 is the same as that in the third embodiment.
  • the movable roller 532 is supported on the support portion 542a at the tip of the second link 542 via the shaft 532a so as to be rotatable and not movable in the axial direction.
  • the second link 542 is swingably supported at the distal end of the first link 544 at the hinge portion 542b at the base end thereof, and is interposed between the first link 544 and a second spring 552 (extension spring).
  • the stopper is provided on the first link 544 when the clamping roller pair 530 is released as shown in FIG. 544a abuts.
  • the first link 544 is swingably supported at the distal end of the third link 546 at the hinge portion 544b in the middle in the longitudinal direction, and the distal end side of the hinge portion 544b (the connecting point of the second spring 552 in the illustrated example). ) And the fixed side support member 541 by a first spring 550 (pressurizing spring) interposed via a pressure adjusting screw 560 in a direction approaching the fixed side support member 541.
  • the third link 546 is supported at the base end thereof so as to be swingable by a shaft 571 fixed to the fixing bracket 570, and the operation portion 546a at the other end is operated to be moved up and down by a driving means (not shown).
  • the member 548 is connected.
  • the operation member 548 is lowered and the third link 546 is centered on the shaft 571 in the released state of the clamping roller pair 530 shown in FIG.
  • the operation portion 544c extended to the other end side of the first link 544 is pressed in the left direction in the drawing against the urging force of the first spring 550.
  • the first link 544 rotates counterclockwise in the figure around the hinge portion 544b, and the movable roller 532 is separated from the fixed roller 531, and the flexible substrate 1 can be introduced therebetween. It is.
  • the initial displacement x of the first spring 550 can be adjusted by the pressure adjusting screw 560 to adjust the pressure Px of the pair of sandwiching rollers 530. Since it is added perpendicularly to the clamping surface, it does not have a tilt direction component itself. However, the frictional force on the clamping surface changes due to the adjustment of the pressure Px, and is reflected in the tension ⁇ x.
  • the operation member 548 is in contact with the pin 574 that is the upper limit, but the vertical position of the operation member 548 can be adjusted or controlled within the range of the pin 574, and the tension ⁇ x It is also possible to perform adjustment or control.
  • a tension adjusting screw similar to that of the first spring 550 may be provided at one end of the second spring 552, and the initial displacement x of the second spring 552 may be adjusted so that the tension ⁇ x can be adjusted.
  • FIG. 17 is a front view of the substrate position control apparatus 600 according to the sixth embodiment of the present invention as viewed from the upstream side in the transport direction, where (a) shows the released state of the clamping roller pair 630, and (b) shows The pressure application state by the sandwiching roller pair 630, (c) shows the tension application state.
  • the substrate position control apparatus 600 of the sixth embodiment is the same in basic operation as that of the fifth embodiment, but the rollers 631 and 632 constituting the sandwiching roller pair 630 are all movable rollers, and are mutually connected. It is configured to be able to swing in the contacting / separating direction and the vertical direction related to the spreading action.
  • the movable rollers 631 and 632 are respectively supported by the support portions 641a and 642a of the second links 641 and 642 via the shafts 631a and 632a so as to be rotatable and immovable in the axial direction.
  • the second links 641 and 642 are swingably supported at the distal ends of the first links 643 and 644 in the hinge portions 641b and 642b at the base ends, respectively, and are interposed between the first links 644.
  • the sandwiched roller pair 630 shown in FIG. 17 (a) is urged by the mounted second springs 651 and 652 (extension springs) in the expansion direction, that is, in the width direction edge side of the flexible substrate 1 in the drawing. In the released state, the stoppers 643a and 644a provided on the first links 643 and 644 are in contact with each other.
  • the first links 643 and 644 are swingably supported at the distal ends of the third links 645 and 646 in the longitudinally intermediate hinge portions 643b and 644b, respectively, and on the distal end side of the hinge portions 643b and 644b.
  • the first spring 650 (pressurizing spring) is interposed via the pressure adjusting screw 660 and is urged by the first spring 650 in the direction approaching each other.
  • One first link 644 has an operation portion 644c further extending from the hinge portion 644b.
  • the third links 645 and 646 are supported at the base end portions so as to be swingable by a common shaft 671 fixed to the fixing bracket 670, and the swing ranges of the third links 645 and 646 are restricted by the pins 673 and 674. It is regulated.
  • One third link 645 has an operation portion 645a further extended from the base end portion, and an operation member 648 that is moved up and down by driving means (not shown) is connected to the operation portion 645a.
  • the operation member 648 is raised, and the third links 645 and 646 are both illustrated. It swings in the middle and downward, and the other end side is in a lowered position where it abuts on the pins 673 and 673.
  • the operating portion 644c of the first link 644 is pressed 644d in the left direction in the figure against the urging force of the first spring 650, one movable roller 632 is separated from the other movable roller 631.
  • the flexible substrate 1 can be introduced between them.
  • the first link 644 rotates about the hinge portion 644b in the clockwise direction in the drawing, and the movable roller 632 is moved to the first position as shown in FIG.
  • the movable substrate 631 is pressed against the movable roller 631 with a predetermined pressure by the spring 650, and the flexible substrate 1 is sandwiched between them.
  • the positions of the pair of sandwiching rollers are shifted up and down, but in this sixth embodiment, the links of the support mechanism 640 of the pair of sandwiching rollers 631 and 632 are symmetrical with respect to the conveyance surface. Due to the layout, no deviation occurs, and the sandwiching rollers 631 and 632 are at the same height position (lowering position) and sandwich the flexible substrate 1.
  • the adjustment of the initial displacement x of the first spring 650 by the pressure adjusting screw 660 and the adjustment or control of the vertical position of the operation member 648 are performed as in the fifth embodiment.
  • the extension tension ⁇ x can be adjusted by a pressure adjusting screw attached to the second springs 651 and 652.
  • FIGS. 18A and 18B are front views showing the substrate position control apparatus 700 according to the seventh embodiment of the present invention as viewed from the upstream side in the transport direction, and FIGS. , (C) shows the tension acting state.
  • the sandwiching roller pair 730 of the substrate position control device 700 of the seventh embodiment is composed of a fixed roller 731 and a movable roller 732, and both are cylindrical rollers in the illustrated example, but either or both are conical rollers. You can also.
  • the movable roller 732 is supported on the support portion 742a at the tip of the second link 742 via the shaft 732a so as to be rotatable and not movable in the axial direction.
  • the second link 742 is swingably supported at the tip of the first link 744 at the intermediate hinge portion 742b, and the other end portion 742c beyond the hinge portion 742b, and the extension portion 744c of the first link 744.
  • a return spring 752 that biases the movable roller 732 downward in the figure, which is opposite to the direction in which the flexible substrate 1 is stretched, is interposed.
  • the urging force (restoring force) of the return spring 752 can be adjusted by an adjusting screw 764 that is screwed into the extending portion 744c.
  • the first link 744 has an L shape bent in the middle, is supported at the upper end of the fixed side support member 741 at the upper hinge portion 744b so as to be swingable, and is added between the first link 744 and the fixed side support member 741.
  • the first spring 750 (pressurizing spring) interposed via the pressure adjusting screw 760 is biased in the direction approaching the fixed-side support member 741.
  • the substrate position control device 700 is provided with the return spring 752 as shown in FIG. 18A in the pressing start state from the released state where the clamping roller pair 730 is separated from each other. Due to the force, the second link 742 is angularly displaced so that the corner of the support portion 742a abuts or approaches the inside of the first link 744, and the movable roller 732 is inclined to the peripheral surface 731b of the fixed roller 731. In contact with each other, and the flexible substrate 1 is sandwiched between them.
  • the above-described tension ⁇ x with respect to the upper edge of the flexible substrate 1 is the difference between the pressure Px of the first spring 750 and the restoring force of the return spring 752. Therefore, the initial displacement x of the first spring 750 is adjusted with the pressure adjusting screw 760, the pressure Px of the pair of clamping rollers 730 is adjusted, and / or the restoring force of the return spring 752 is adjusted with the adjusting screw 764. By doing so, the tension ⁇ x can be adjusted.
  • FIG. 19 is a front view of the substrate position control device 800 according to the eighth embodiment of the present invention as seen from the upstream side in the transport direction, where (a) shows the released state of the clamping roller pair 830, and (b) shows The pressure application state by the pair of clamping rollers 830, (c) shows the tension application state.
  • the fixed roller (731) is fixedly supported by the fixed-side support member (741), whereas in the substrate position control device 800 of the eighth embodiment, the fixed roller 831 is fixed.
  • the second support 844 is supported by the side support member 843 via the second link 841 and can swing in a limited direction in the direction in which the flexible substrate 1 is stretched.
  • the second link 841 on the fixed side is the second link on the movable side.
  • a return spring 853 with an adjustment screw 863 is interposed between the other end 841c beyond the hinge 841b and the extending portion 843c of the stationary support member 843.
  • the substrate position control apparatus 800 is configured so that the urging forces of the return springs 853 and 854 are shown in FIG.
  • the second links 841 and 842 are angularly displaced to positions where the corners of the support portions 841a and 842a abut on the inside of the fixed-side support member 843 or the first link 844.
  • the above-described tension ⁇ x with respect to the upper edge of the flexible substrate 1 has an action of moving the clamping surface itself upward.
  • the tension ⁇ x can be adjusted by adjusting the initial displacement x of the first spring 850 using the pressure adjusting screw 860 and / or adjusting the return springs 853 and 854 using the adjusting screws 863 and 864.
  • FIG. 20 is a front view of the substrate position control apparatus 900 according to the ninth embodiment of the present invention viewed from the upstream side in the transport direction.
  • Each of the rollers 931 and 932 constituting the sandwiching roller pair 930 of the substrate position control apparatus 900 of the ninth embodiment is a conical roller having peripheral surfaces 931b and 932b inclined with respect to the axial direction, one of which is a fixed roller.
  • 931 and the other are the movable rollers 932.
  • Each of the sandwiching rollers 931 and 932 is in an operating state so that the inclined surfaces 931b and 932b are pressed against each other via the flexible substrate 1 so that the respective shafts 931a and 932a
  • the fixed side support member 941 and the movable side support member 942 are held at the distal end portions so as to have an inclination corresponding to the peripheral surfaces 931b and 932b with respect to the substrate 1).
  • the rollers 931 and 932 are disposed so that the fixed roller 931 is in contact with the back surface side of the flexible substrate 1 and the movable roller 932 is in contact with the front surface side.
  • Each of the sandwiching rollers 931 and 932 is formed of metal, ceramic, plastic, or the like, or is configured by attaching an elastic body such as rubber around a core formed of these materials.
  • the shafts 931a and 932a (support shafts) are rotatably supported through bearings capable of receiving a thrust load.
  • the shafts 931a and 932a are detachable fastening means such as screws (not shown) in a state where the shafts 931a and 932a are inserted into holding portions 941a and 942a (holding holes or holding grooves or chucks) formed in the support members 941 and 942, respectively. It is preferable that the position in the axial direction is fixed and adjustable.
  • the sandwiching rollers 931 and 932 are fixed to the respective shafts 931a and 932a (rotary shafts), and the shafts 931a and 932a are respectively supported by the respective support portions (941a and 942a) via bearings capable of receiving a thrust load. As described in the other embodiments, it may be rotatably supported by the second embodiment.
  • the fixed side support member 941 is fixed to the structural element 11 of the vacuum chamber via a fixing bracket 970.
  • the movable side support member 942 is swingably supported by an extension part extending from the upper end of the fixed side support member 941 via a hinge part 942b, and the movable side support member centering on the hinge shaft (942).
  • the movable roller 932 can come into contact with and separate from the fixed roller 931 by the swinging of 942.
  • a spring 950 is interposed as an urging means at an intermediate portion between the fixed support member 941 and the movable support member 942.
  • One end of the spring 950 is connected to the movable side support member 942 via a pressure adjusting screw 960, and the initial displacement of the spring 950 is adjusted by rotating the pressure adjusting screw 960, thereby fixing the fixed roller.
  • the pressing force (contact pressure) of the movable roller 932 with respect to 931 can be adjusted.
  • each of the sandwiching rollers 931 and 932 has a contact surface when it is driven to rotate by contact with the flexible substrate 1 moving in the transport direction F (R).
  • vF clockwise rotational force
  • the flexible substrate 1 is linearly conveyed with a predetermined tension applied by a feed roll (not shown), and therefore the rotational force vF.
  • Only the component force ux (extension tension) is transmitted to the contact surface of the flexible substrate 1 in the vertical direction of (vR), and the upper edge of the flexible substrate 1 is expanded upward by the upward extension tension ux. Will be.
  • the expansion tension ux transmitted to the flexible substrate 1 by the respective sandwiching rollers 931 and 932 is proportional to the pressure Px applied by the respective sandwiching rollers 931 and 932. If the pressure Px increases, the tension of the respective sandwiching rollers 931 and 932 is increased. Although the extension tension ux corresponding to the inclination angle ⁇ is transmitted to the flexible substrate 1 according to the shape, when the applied pressure Px is small, the sliding in the contact surface becomes dominant and the transmitted extension tension is transmitted. ux will decrease. Since the pressing force Px by each of the sandwiching rollers 931 and 932 is proportional to the elastic displacement of the spring 950, the initial displacement of the spring 950 is adjusted by turning the pressing force adjusting screw 960 to adjust the upper side of the flexible substrate 1. The extension tension ux with respect to the edge can be adjusted, and this extension tension ux becomes a lifting force that raises the upper edge of the flexible substrate 1 against its own weight. The position of the part can be adjusted.
  • the substrate position control device 900 (930, 930 ′) of the ninth embodiment is applied to a manufacturing apparatus 910 of the step film formation method similar to that shown in FIG. An embodiment is shown.
  • a large number of film forming units 20 are arranged in the common vacuum chamber 10 along the transport direction F (R).
  • the substrate position control device (930, 930 ′) is composed of a pair of sandwiching rollers 930, 930 ′ disposed on the upper and lower sides of the transport path between the film forming units 20, and the pair of lower sandwiching rollers 930 ′. Has the same structure as the upper clamping roller pair 930 and is installed upside down.
  • the stretching action in the vertical width direction on the flexible substrate 1 by the pair of sandwiching rollers 930 and 930 ′ acts in the same manner in any transport direction F and R of the flexible substrate 1, and Since the position control of the flexible substrate 1 in the vertical direction can be performed in the same manner in any of the transport directions F and R of the flexible substrate 1, the flexible substrate 1 can be transported in both forward and reverse directions. There is an advantage that it can immediately cope with a film forming process including
  • the stretching action on the flexible substrate 1 and the position control of the flexible substrate 1 as described above are such that the peripheral surfaces of the respective sandwiching rollers 931 and 932 do not come into contact with either the large diameter side or the small diameter side, As long as the applied pressure includes a component orthogonal to the clamping surface, it does not depend on the pressing direction of the clamping rollers 931 and 932. Therefore, in the substrate position control device 200 (clamping rollers 231 and 232) of the second embodiment and the substrate position control device 400 (clamping rollers 431 and 432) of the fourth embodiment, the same expansion as in the ninth embodiment is performed. The effect is obtained.
  • the case where the initial displacement of the spring 950 is adjusted in advance by the adjusting screw 960 is exemplified.
  • the spring 950 is used by using a driving device (an actuator or its drive transmission mechanism). It is also possible to configure a substrate position control device capable of positively controlling the initial displacement (pressing force). (Application example of the ninth embodiment)
  • FIG. 23 is a cross-sectional view of the substrate position control apparatus 900 according to the ninth embodiment of the present invention described above, as viewed from the upstream side in the transport direction, showing an embodiment in which the substrate deposition control apparatus 900 is applied to a continuous film formation type manufacturing apparatus 912. Similar to the manufacturing apparatus 112 shown in FIGS. 6 and 7, the manufacturing apparatus 912 includes electrodes disposed on both sides of the flexible substrate 1 in a vacuum chamber maintained at a predetermined degree of vacuum. 925 (target) and a ground electrode 926 are provided.
  • the lower substrate position control device 900 ′ is configured as a preset type that pre-adjusts the initial displacement of the spring 950 ′ with an adjustment screw 960 ′, while the upper substrate position control device 900 includes an actuator 966. And a sensor 967 are provided so that the pressure applied by the spring 950 can be positively controlled.
  • one end of the spring 950 of the upper substrate position control device 900 is connected to the movable support member 942 via the pressure adjusting screw 960 as described above, but the other end is Instead of being connected to the fixed-side support member 941, it is connected to a movable shaft 965 supported by the fixed-side support member 941 so as to be capable of moving forward and backward.
  • the movable shaft 965 is supported by the fixed-side support member 941 via a feed screw mechanism, and is configured to be advanced and retracted by an actuator 966 schematically shown.
  • the actuator 966 a known type such as a fluid pressure actuator or an electromagnetic actuator can be used. However, since the vacuum chamber is decompressed and exposed to a high temperature, the actuator 966 is disposed outside the vacuum chamber, and the movable shaft 965 is connected to a drive transmission mechanism such as a push or pull rod, a lever, a link, and a feed screw mechanism. And remotely driven.
  • a drive transmission mechanism such as a push or pull rod, a lever, a link, and a feed screw mechanism. And remotely driven.
  • the substrate position control device 900 includes a sensor 967 that detects the upper end position of the flexible substrate 1 in the vicinity of the sandwiching rollers 931 and 932 or apart from the upstream or downstream side in the transport direction. Are connected to a control device (not shown) of the actuator 966.
  • the type of the sensor 967 is not particularly limited, and various known sensors can be used.
  • the sensor 967 includes two detection units (such as an optical sensor) that are adjacently arranged in the vertical direction corresponding to the upper limit value and the lower limit value of the upper end position of the flexible substrate 1, and (i) detection of both the upper and lower sides.
  • the sensor 967 may include one image sensor, and the upper end position of the flexible substrate 1 may be detected by image processing.
  • the movable shaft 965 is advanced by driving the actuator 966, and the pressing force of the sandwiching rollers 931 and 932 by the spring 950 is increased. If reduced, the upward tension (ux) applied to the upper edge of the flexible substrate 1 via the sandwiching rollers 931 and 932 is reduced, and the sandwiching roller of the lower substrate position control device 900 ′ is reduced. The downward tension ( ⁇ ux) applied to the lower edge of the flexible substrate 1 via 931 and 932 becomes dominant, and the flexible substrate 1 is guided downward.
  • the movable shaft 965 is moved backward by driving the actuator 966 and the holding rollers 931 and 932 by the spring 950 are moved. If the applied pressure is increased, the upward tension (ux) applied to the upper edge of the flexible substrate 1 via the sandwiching rollers 931 and 932 increases, and the lower substrate position control device 900 ′ is increased. The upward tension (ux) becomes superior to the downward tension ( ⁇ ux) by the sandwiching rollers 931 and 932, and the flexible substrate 1 is guided upward.
  • the mechanism for controlling the pressure applied by the spring 950 is not limited to the above, and other mechanisms that can control the initial displacement of the spring 950 can be used.
  • a second spring is provided to urge the movable support member 942 in the same direction (or opposite direction) as the spring 950 (first spring). It is also possible to control the pressure applied to the nipping rollers 931 and 932 by driving the spring forward and backward with an actuator.
  • the actuator 966 is attached only to the upper substrate position control device 900 and the lower substrate position control device 900 ′ is a preset type. However, as shown in FIG.
  • the actuators 966, 966 'and sensors 967, 967' to the substrate position control devices 900, 900 'and controlling them with a common control device, the upper end position and the lower end position of the flexible substrate 1 are positively controlled.
  • the degree of expansion in the width direction can be positively controlled together with the position of the flexible substrate 1 in the vertical width direction (height direction).
  • the initial displacement and control amount of the upper and lower springs in the upper and lower substrate position control devices 900 and 900 ′ are individually determined on the upper and lower sides. Need to be set.
  • the substrate position control device capable of positively controlling the initial displacement (pressing force) of the spring 950 is described in the continuous film formation type manufacturing apparatus 912 is shown in FIG.
  • the substrate position control apparatus can be configured for the manufacturing apparatus 910 of the step film formation method.
  • the manufacturing apparatus 910 of the step film formation method can intermittently execute the position detection and position control of the flexible substrate 1 in synchronization with the step conveyance.
  • the position of the upper end or the upper and lower ends of the flexible substrate 1 is detected by the sensor 967 during the step conveyance stop period in which the one-step conveyance is completed and the one-step film forming process is performed.
  • a control signal based on the detection is output to the actuator 966, and the initial displacement (pressing force) of the spring 950 by the actuator 966 is corrected.
  • the flexible substrate 1 is stopped, only the pressing force of the sandwiching rollers 931 and 932 is changed, and the flexible substrate 1 does not move up and down.
  • the flexible substrate 1 is held by the sandwiching rollers 931 and 932 whose pressure is corrected. Is guided upward or downward, and its vertical position is corrected. Therefore, in such control, position detection and position correction of the flexible substrate 1 are basically performed alternately.
  • the position of the sensor 967 is detected during the conveyance of the flexible substrate 1 in each step, and at the same time, the initial displacement (pressing force) of the spring 950 is corrected by the actuator 966.
  • the position control of the flexible substrate 1 can be performed in real time, and these two controls can be used in combination.
  • the substrate position control device according to the present invention is implemented in the manufacturing apparatus 912 that performs the film forming process while transporting the flexible substrate 1 in the horizontal direction in the vertical posture.
  • the substrate position control apparatus according to the present invention is implemented in various processing apparatuses or manufacturing apparatuses that perform processing such as film formation while transporting the flexible substrate 1 in a horizontal position (flat position) in the horizontal direction, the vertical direction, or the oblique direction. You can also.
  • FIG. 25 is a cross-sectional view seen from the upstream side in the transport direction showing an embodiment in which the same substrate position control apparatus 1000 as in the ninth embodiment of the present invention is applied to a continuous film formation type manufacturing apparatus 1012 that transports in a horizontal posture. is there.
  • the manufacturing apparatus 1012 includes a film forming unit including an electrode 1025 (target) and a ground electrode 1026 that are opposed to each other in the vertical direction with a flexible substrate 1 sandwiched in a vacuum chamber maintained at a predetermined degree of vacuum. Is arranged. Guide rolls (idle rolls), feed rolls, tension rolls, etc. that constitute the transport means are arranged on the upstream and downstream sides in the transport direction of the film forming unit. An unwinding roll and a winding roll for the flexible substrate 1 are disposed. Since these configurations are the same as the conventional one, illustration is omitted.
  • the substrate position control device of the manufacturing apparatus 1012 includes two substrate position control devices 1000 and 1000 arranged on both sides in the width direction of the conveyance path of the flexible substrate 1.
  • the apparatuses 1000 and 1000 are basically the same as the substrate position control apparatus 900 of the ninth embodiment, except that the fixed-side clamping roller 1031 (fixed-side support member 1041) is disposed sideways so as to be down. In both cases, the actuator 1066 and the sensor 1067 are attached, and the pressure applied by the spring 1050 can be positively controlled.
  • the ground electrode 1026 is disposed on the lower surface side of the flexible substrate 1, and the influence of the flexible substrate 1 due to its own weight is small, and is similar to the substrate position control devices 1000 and 1000 on each side. is there. Accordingly, the initial displacements of the springs 1050 and 1050 and the control amounts of the actuators 1066 in the substrate position control apparatuses 1000 and 1000 on the respective sides are basically set to be equal.
  • each side sensor 1067 includes two detection units arranged adjacent to each other in the width direction corresponding to the maximum value and the minimum value of each side edge position of the flexible substrate 1 or alternatively.
  • each side sensor 1067 is preferably composed of one image sensor, and each side edge position of the flexible substrate 1 is preferably detected by image processing.
  • the tension spring is used as the urging means.
  • an arm or the like may be added to each fixed side or movable side support member, or each link or movable shaft as necessary.
  • the coil spring may be changed to various known springs such as a spiral spring, a torsion spring, and a leaf spring.
  • the form in which the fixed side and movable side support members and the links are brought into contact with and separated from each other can be replaced by linear sliding. However, it is preferable to swing (pivotally rotate) efficiently.
  • substrate position control apparatus which concerns on this invention is organic EL etc. It can be applied not only to a semiconductor thin film manufacturing apparatus but also to various processing apparatuses that require position control and stretching of a flexible substrate in addition to film formation such as painting, cleaning, drying, heat treatment, and surface processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Coating Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 帯状の可撓性基板(1)を縦姿勢で横方向に搬送し、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置(100)は、前記基板の上側縁部を挟持する一対の挟持ローラ(131,132)と、前記一対の挟持ローラを回転可能かつ相互に接離可能に支持する支持機構(140)と、前記支持機構を介して前記一対の挟持ローラに加圧力を付与する付勢手段(150)と、前記付勢手段による前記加圧力の調整手段(160)とを備えている。前記一対の挟持ローラは、前記基板の挟持面に対する加圧方向が基板幅方向縁端側に向かう傾斜を有しかつ前記挟持面における回転方向が搬送方向と略同方向になるように支持されている。帯状可撓性基板の下垂や皺の発生を抑制でき、高品質の処理を行えると共に、可撓性基板の逆方向への搬送にも対応可能である。

Description

可撓性基板の位置制御装置
 本発明は、可撓性基板の位置制御装置に関し、さらに詳しくは、帯状の可撓性基板を搬送しながら成膜などの処理を行なう処理装置において、前記可撓性基板の幅方向位置を制御する制御装置に関するものである。
 半導体薄膜などの薄膜積層体の基板には、通常、剛性基板が用いられるが、軽量でロールを介した取り扱いの利便性による生産性向上やコスト低減を目的として、プラスチックフィルムなどの可撓性基板が用いられる場合がある。例えば、特許文献1には、巻出しロールから供給される帯状可撓性基板(ポリイミドフィルム)を所定のピッチで間欠的に搬送しながら、前記可撓性基板の搬送方向に配列された複数の成膜ユニットで、前記可撓性基板上に性質の異なる複数の薄膜を積層形成し、製品ロールとして巻取る薄膜積層体(薄膜光電変換素子)の製造装置が開示されている。
特開2005-72408号公報
 このような薄膜積層体の製造装置には、横姿勢すなわち帯状可撓性基板の幅方向を水平方向にして搬送しつつ成膜を行なうタイプと、縦姿勢すなわち帯状可撓性基板の幅方向を上下方向にして搬送しつつ成膜を行なうタイプがある。後者は、前者に比べて設置面積が小さく、基板表面が汚染されにくい等の利点があるが、搬送スパンが長くなると、重力に抗して搬送高さを一定に維持するのが困難になり、可撓性基板の表面に皺が発生したり、可撓性基板が垂れ下がったりする傾向が顕著になる。
 特許文献1には、可撓性基板のステップ搬送における停止期間中に、可撓性基板の上下の側縁部を把持部材(パッド)で把持して幅方向に引張する装置が開示されている。しかし、この装置は、可撓性基板の把持と引張、解放を反復するため、可撓性基板の搬送高さを一定に維持することは困難であり、また、可撓性基板を連続的に搬送しつつ成膜を行なう連続成膜装置には実施できない。
 そこで、図1(a)~(c)に示すように、薄膜積層体製造装置を構成する各成膜ユニット20,20間に、可撓性基板1の上下の側縁部を挟持する上側および下側挟持ローラ対30,30′を配設し、それぞれの挟持ローラの挟持部における回転方向を、可撓性基板1の搬送方向Fに対して斜上方および斜下方に向かう偏角+θ,-θを有するようにして、可撓性基板1の上下の側縁部に上方および下方に向かう持ち上げ力および引き下げ力を作用させ、可撓性基板1の搬送高さを調整する装置が、本発明者らによって開発されている。
 この装置は、可撓性基板を展張しかつ可撓性基板の搬送高さを調整するうえで有利であるが、可撓性基板の逆方向への搬送を含む往復成膜プロセスには適用できない。可撓性基板を逆方向に搬送すると、上記偏角による持ち上げ力および引き下げ力が逆方向に作用し、各挟持ローラ対30,30′から可撓性基板が離脱する問題を生じる。
 本発明は、上記のような問題点に鑑みてなされたものであり、その目的は、帯状可撓性基板を縦姿勢で搬送しつつも可撓性基板の下垂や皺の発生を抑制でき、高品質の処理を可能にすると共に、可撓性基板の逆方向への搬送にも対応可能な可撓性基板の位置制御装置を提供することにある。
 上記目的を達成するために、本発明の第1の態様は、帯状の可撓性基板を縦姿勢で横方向に搬送しながら、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置であって、前記基板の上側縁部を挟持する一対の挟持ローラと、前記一対の挟持ローラを回転可能かつ相互に接離可能に支持する支持機構と、前記支持機構を介して前記一対の挟持ローラに加圧力を付与する付勢手段と、前記付勢手段による前記加圧力の調整手段と、を備え、前記一対の挟持ローラは、前記基板の挟持面に対する加圧方向が基板幅方向縁端側に向かう傾斜を有しかつ前記挟持面における回転方向が前記基板の搬送方向と同方向になるように、前記支持機構によって支持されている、可撓性基板の位置制御装置にある。
 また、上記目的を達成するために、本発明の第2の態様は、帯状の可撓性基板を縦姿勢で横方向に搬送しながら、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置であって、前記一対の挟持ローラを回転可能かつ相互に接離可能に支持する支持機構と、前記支持機構を介して前記一対の挟持ローラに加圧力を付与する付勢手段と、前記付勢手段による前記加圧力の調整手段と、を備え、前記一対の挟持ローラは、それぞれの軸方向が前記基板の挟持面に対して基板幅方向縁端側に向かって離れる傾斜を有しかつ前記挟持面における回転方向が前記基板の搬送方向と同方向になるように、前記支持機構によって支持されている、可撓性基板の位置制御装置にある。
 上記処理装置において、可撓性基板は、処理部(成膜部)の上流側および下流側それぞれに配置されたフィードロール等の搬送手段により、縦姿勢すなわち幅方向を上下方向にして横方向に搬送され、搬送経路に設置された処理部にて成膜等の処理がなされる。その際、位置制御装置を構成する挟持ローラ対で可撓性基板の上側縁部が挟持される。前記第1の態様では、前記挟持ローラ対は、基板の挟持面に対する加圧方向が基板幅方向縁端側に向かう傾斜を有するので、付勢手段による加圧力は、基板の挟持面に対して垂直な加圧成分と、基板の挟持面に沿って基板縁端側に向かう展張成分を有する。したがって、付勢手段による加圧力を調整し、加圧成分と共に基板縁端側に向かう展張成分(分力)を調整することにより、可撓性基板の上下幅方向の位置が調整され、搬送高さを一定に維持することが可能となる。
 また、前記第2の態様では、前記挟持ローラ対は、それぞれの軸方向が前記基板の挟持面に対して基板幅方向縁端側に向かって離れる傾斜を有するので、挟持ローラの従動回転によって、基板の挟持面に対して基板縁端側に向かう展張力が生じる。したがって、付勢手段による加圧力を調整し、前記展張力を調整することにより、可撓性基板の上下幅方向の位置が調整され、搬送高さを一定に維持することが可能となる。
 このように、いずれの態様においても、可撓性基板の上側縁部が縁端側に向かって展張され、搬送スパンの中間部で自重による垂れ下がりや皺が抑制される。しかも、上記制御は、各挟持ローラの挟持面における回転方向に依存せず、挟持面における回転方向が基板の搬送方向と同方向であるので、逆方向の搬送においても同様の位置制御を行なうことができ、可撓性基板の逆方向への搬送を含む往復成膜プロセスなどの各種往復プロセスに低コストで対応可能である。
 本発明の好適な態様では、前記一対の挟持ローラを構成する各ローラの周面が断面円弧状をなし、かつ、前記支持機構によって、軸方向にオフセットして接離可能に支持されている。この態様では、加圧方向の傾斜が、各挟持ローラの断面形状によって与えられるため、各挟持ローラの軸方向を傾斜させる必要がなく、例えば、挟持状態における各挟持ローラの軸方向を搬送面と平行な鉛直方向に設定でき、支持機構を簡素化するうえで有利である。しかも、各挟持ローラの軸方向を平行に維持した状態で、オフセット量に応じて加圧方向の傾斜角を容易に設定でき、かつ、加圧力を変化させるだけで、基板縁端側に向かう展張成分を広範囲に亘って変化させることができる。
 本発明の好適な態様では、前記一対の挟持ローラを構成する一方または両方のローラが、その軸方向に対して傾斜した周面を有する円錐ローラである。これらの態様においても、加圧方向の傾斜が、各挟持ローラの断面形状によって与えられるため、支持機構を簡素化するうえで有利であり、かつ、加圧力を変化させるだけで、基板縁端側に向かう展張成分を広範囲に亘って変化させることができる。
 上記各態様において、前記各一対の挟持ローラは、前記挟持面が基板幅方向に対して傾斜を有するように、前記支持機構によって支持されることが好適である。この態様では、可撓性基板の縁部が、成膜領域を含む基板中央部に対して撓曲された状態で挟持されるので、挟持ローラの接圧に比較して大きな挟持力を得ることができる。
 本発明の好適な態様では、前記支持機構は、前記一対の挟持ローラの一方または両方を相互に接離する方向に移動可能にする第1リンクと、該挟持ローラを前記基板幅方向に移動可能にする第2リンクとを含み、前記付勢手段は、前記第1リンクを前記挟持ローラの圧接方向に付勢する第1付勢部材と、前記第2リンクを前記基板幅方向縁端側に向かう方向に付勢する第2付勢部材とを含み、前記加圧力の調整手段は、前記第2付勢部材の付勢力調整手段を含む。
 先述した第1の態様では、付勢手段(付勢部材)の付勢による挟持ローラの加圧方向(接離方向)が、挟持面に対する傾斜を有することで、加圧成分と展張成分(分力)を生じさせる構成であったのに対し、この態様では、挟持面に対して略垂直な接離方向と挟持面に対して略平行な方向との2方向への付勢に対応した2つのリンクおよび付勢部材で加圧力および展張力を個別に発生させる構成により、第1リンクと第1付勢部材による加圧力を略一定に保った状態で、第2リンクまたは第2付勢部材の変位に応じて展張力を変化させ、可撓性基板の縁部を上昇または降下させて、可撓性基板の上下幅方向の位置を調整し、搬送高さを一定に維持することが可能となる。
 本発明の好適な態様では、前記支持機構は、前記第1リンクの支持点を、前記基板幅方向に移動可能にする第3リンクをさらに含む。この態様では、第3リンクで第1リンクの支持点を変位させることにより、挟持ローラの挟持面上での実体的な移動を伴って可撓性基板を展張させることが可能となり、基板の搬送高さや展張度を一層広範囲に亘って調整することができる。また、第3リンクを加圧時と反対方向に移動させることで、挟持ローラを離反させ、挟持を解除する操作を行える利点もある。
 本発明の好適な態様では、前記支持機構は、前記一対の挟持ローラの一方または両方を相互に接離する方向に移動可能にする第1リンクと、前記一対の挟持ローラの一方または両方を前記基板幅方向に揺動可能に支持する第2リンクと、前記第2リンクを介して前記一方または両方の挟持ローラを前記基板幅方向縁端側と反対方向に付勢するリターンスプリングとを含み、前記付勢手段は、前記第1リンクを前記挟持ローラの圧接方向に付勢する第1付勢部材を含んでおり、前記一方または両方の挟持ローラは、前記第1付勢部材による加圧力と前記リターンスプリングによる復元力とが平衡した揺動角度で圧接されるように構成されている。
 この態様では、第1付勢部材による加圧力を調整して前記揺動角度を変化させ、挟持面を基板幅方向に変位させることにより、可撓性基板の上下方向の位置を調整可能である。すなわち、第1付勢部材による加圧力の調整のみで、一対の挟持ローラの挟持面の基板幅方向への変位を伴って可撓性基板を展張しつつ上下幅方向位置を調整可能であり、基板の搬送高さや展張度を一層広範囲に亘って調整することができる。
 上述した支持機構が複数のリンクおよび付勢部材を含む態様では、前記各挟持ローラのそれぞれに対応したリンクおよび付勢部材が設定されても良い。
 本発明は、可撓性基板の上下各側に挟持ローラ対が配設される態様をも対象としている。すなわち、本発明の好適な態様では、前記基板の前記下側縁部を挟持する一対の下側挟持ローラと、前記支持機構および前記付勢手段と同様に構成された前記一対の下側挟持ローラのための支持機構および付勢手段と、をさらに備えている。この態様では、前記加圧力の調整により、可撓性基板を幅方向の上下両方向に展張しつつ、上下各側の挟持面に作用する加圧力の展張成分の差によって可撓性基板を上昇または降下させ、搬送高さの制御を行なうことができ、これにより、可撓性基板の皺を効果的に抑制し、可撓性基板の位置精度を一層向上できる。
 本発明の好適な態様では、前記処理装置が、前記処理部として前記基板の搬送経路に沿って等ピッチで並設された複数の成膜部を備え、前記基板を前記成膜部に対応したピッチで間欠的に搬送しながら、前記基板の表面に薄膜を順次積層形成する薄膜積層体製造装置であり、前記一対の上側挟持ローラと、前記一対の下側挟持ローラとが、前記複数の成膜部の間に配設されている。
 本発明の好適な態様では、前記処理装置が、前記基板を連続的に搬送しながら、前記処理部としての成膜部にて、前記基板の表面に薄膜を積層形成する薄膜積層体製造装置であり、前記一対の上側挟持ローラと、前記一対の下側挟持ローラとが、前記成膜部の上下に搬送方向に沿って複数列設されている。
 上記態様において、前記基板の薄膜形成領域と前記複数対の上側挟持ローラとの間および前記複数対の下側挟持ローラとの間でそれぞれ前記基板を支持すべく搬送方向に沿って列設された複数の支持ローラをさらに備えることが好適である。この態様では、加圧力調節のための可動部を含まない耐熱性の支持ローラにより、成膜部の近傍で可撓性基板を確実に支持可能であるとともに、挟持ローラ対群を高温度の成膜部から離隔して配設可能となり、挟持ローラに対する輻射熱の影響を低減でき、挟持ローラの材質選択の自由度を向上するうえで有利である。
 本発明は、帯状の可撓性基板を、平姿勢など、縦姿勢以外の姿勢で横方向や上下方向あるいは斜方向に搬送し、成膜等の処理を行なう処理装置における可撓性基板の位置制御装置にも適用できる。
 例えば、上述した本発明の第2の態様は、帯状の可撓性基板を搬送しながら、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置であって、前記基板の各側縁部をそれぞれ挟持する各一対の挟持ローラと、前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する各支持機構と、前記各支持機構を介して前記各一対の挟持ローラに加圧力を付与する付勢手段と、前記付勢手段による前記加圧力の調整手段と、を備え、前記各一対の挟持ローラは、それぞれの軸方向が前記基板の挟持面に対して基板幅方向縁端側に向かって離れる傾斜を有しかつ前記挟持面における回転方向が前記基板の搬送方向と同方向になるように、前記各支持機構によって支持されている、可撓性基板の位置制御装置としても適用されうる。
 この態様では、可撓性基板の各側縁部をそれぞれ挟持する各一対の挟持ローラの従動回転によって、各側縁部の挟持面に対してそれぞれ基板縁端側に向かう展張力が生じ、この展張力によって可撓性基板が幅方向に展張される。さらに、この展張力は、それぞれの付勢手段による加圧力に応じて変化するので、各側の付勢手段による加圧力をそれぞれ調整することにより、可撓性基板の幅方向の位置を調整可能であり、可撓性基板を幅方向に展張しつつその蛇行を抑制できる。これらの作用は各挟持ローラの回転方向に依存せず、各挟持面における回転方向が基板の搬送方向と同方向であるので、逆方向の搬送においても同様の位置制御を行なうことができる。
 この態様においても、前記各一対の挟持ローラを構成する各ローラが、その軸方向に対して傾斜した周面を有する円錐ローラであることが好適である。
 本発明に係る可撓性基板の位置制御装置は、上述したように、帯状の可撓性基板を搬送しながら成膜等の処理を行なうに際して、可撓性基板の下垂や皺の発生を効果的に抑制でき、幅方向位置を一定に維持して高品質の処理を可能にするとともに、可撓性基板の逆方向への搬送を含む往復プロセスにも低コストで対応可能である。
(a)は薄膜積層体製造装置の一部を示す概略平面図、(b)は概略側面図、(c)は(b)のA-A断面図である。 本発明第1実施形態に係る基板位置制御装置を示す正面図である。 図2の要部拡大図である。 (a)は本発明第1実施形態に係る基板位置制御装置を実施したステップ式成膜装置の1つの成膜部を示す概略平面図、(b)は概略側面図である。 図4(b)のB-B断面図である。 (a)は本発明第1実施形態に係る基板位置制御装置を実施した連続式成膜装置の1つの成膜部を示す概略平面図、(b)は概略側面図である。 図6(b)のC-C断面図である。 本発明第2実施形態に係る基板位置制御装置を示す正面図である。 図8の要部拡大図である。 本発明第2実施形態に係る基板位置制御装置を連続式成膜装置に実施する場合の変形例を示す搬送方向上流側から見た断面図である。 本発明第2実施形態に係る基板位置制御装置を連続式成膜装置に実施する場合の別の変形例を示す搬送方向上流側から見た断面図である。 本発明第3実施形態に係る基板位置制御装置を示す正面図である。 図12の要部拡大図である。 本発明第4実施形態に係る基板位置制御装置を示す正面図である。 図14の要部拡大図である。 本発明第5実施形態に係る基板位置制御装置を示す正面図であり、(a)は解除状態、(b)は加圧力作用状態、(c)は展張力作用状態を示している。 本発明第6実施形態に係る基板位置制御装置を示す正面図であり、(a)は解除状態、(b)は加圧力作用状態、(c)は展張力作用状態を示している。 本発明第7実施形態に係る基板位置制御装置を示す正面図であり、(a)は加圧開始状態、(b)はその要部拡大図、(c)は展張力作用状態を示している。 本発明第8実施形態に係る基板位置制御装置を示す正面図であり、(a)は解除状態、(b)は加圧開始状態の要部拡大図、(c)は展張力作用状態を示している。 本発明第9実施形態に係る基板位置制御装置を示す正面図である。 (a)は軸方向の傾斜角が異なる本発明第9実施形態に係る挟持ローラ対の要部拡大図、(b)はその正逆両方向への展張作用を示す模式的な側面図である。 (a)は本発明第9実施形態に係る基板位置制御装置を実施したステップ式成膜装置の一部を示す概略平面図、(b)は概略側面図、(c)は(b)のD-D断面図である。 本発明第9実施形態に係る基板位置制御装置を実施した連続式成膜装置を示す断面図である。 本発明第9実施形態に係る基板位置制御装置を別の形態で実施した連続式成膜装置を示す断面図である。 本発明第9実施形態に係る基板位置制御装置を実施した他の連続式成膜装置を示す断面図である。
 以下、本発明の実施形態について、本発明を太陽電池用の薄膜光電変換素子を構成する薄膜積層体の製造装置の基板位置制御装置に実施する場合を例にとり、図面を参照しながら詳細に説明する。なお、以下において、各実施形態に共通または対応する構成には、共通または対応する符号を付すことで説明を省略する場合がある。
 (第1実施形態)
 図2は、本発明第1実施形態に係る基板位置制御装置100を示す搬送方向上流側から見た正面図である。薄膜積層体の製造装置は、図1に部分的に示したように、所定の真空度に維持された真空室10の内部に、帯状の可撓性基板1(フレキシブルフィルム)を、その幅方向を鉛直方向にして水平方向に搬送する搬送手段を備え、可撓性基板1の搬送経路に沿って並設された複数の成膜ユニット20(成膜部)で、可撓性基板1の表面に薄膜を積層形成するものである。
 成膜部の搬送方向上流側および下流側には、搬送手段を構成するフィードロールやテンションロールなどが配設され、さらにそれらの搬送方向上流側および下流側に、可撓性基板1の巻出しロールおよび巻取りロールが配設されている。また、上流側および下流側のフィードロールと成膜部との間には、成膜部の上流側および下流側で可撓性基板1を折り返すように案内し、成膜部での可撓性基板1の直線的な搬送経路を設定するガイドロール(アイドルロール)が配設されている。これらの構成は、従来と同様であるため、図示を省略する。
 基板位置制御装置100は、上記ガイドロール間に張架されて成膜部を通って搬送される可撓性基板1の上下方向の位置を制御し搬送高さを一定に維持するとともに、可撓性基板1を幅方向すなわち上下方向に展張するために、成膜部における搬送経路の上部に配置されており、可撓性基板1の上側縁部を挟持する挟持ローラ130対、挟持ローラ130対を構成する各ローラ131,132を回転可能かつ相互に接離可能に支持する支持機構140、該支持機構140を介して挟持ローラ対130(131,132)に加圧力を付与する付勢手段(150)および加圧力調整手段(160)などで構成される。
 本発明第1実施形態に係る基板位置制御装置100は、挟持ローラ対130を構成する各ローラの一方は固定ローラ131、他方が可動ローラ132であり、固定ローラ131は、軸131aで回転可能に支持され、可動ローラ132は、軸132aで回転可能に支持されている。固定ローラ131の軸131aは、可撓性基板1の搬送面に平行な上下方向に配向され、固定側支持部材141の下端部から、搬送方向と直交する方向に突設された略コ字状の支持部141aで上下端部を支持されている。固定側支持部材141は、真空室の構造要素11に固定されている。
 一方、可動ローラ132の軸132aは、可動側支持部材142の先端部から、前記支持部141aに対向して突設された同形状の支持部142aで上下端部を支持され、挟持ローラ対130が圧接される作動状態で、固定ローラ131の軸131aと平行になるよう設定されている。可動側支持部材142は、前記支持部142aを突設した先端部から上方に延びさらに屈曲して前記固定側支持部材141の上端部に向かって延び、搬送面の上方に位置したヒンジ部142bにおいて、固定側支持部材141の上端部に揺動可能に連結されており、ヒンジ部142bを中心とした可動側支持部材142の揺動により、可動ローラ132が固定ローラ131に対して接離可能となっている。
 固定側支持部材141と可動側支持部材142との間には、付勢手段としてスプリング150(引張スプリング)が介装されている。スプリング150の一端部は、固定側支持部材141に連結され、スプリング150の他端部は、加圧力調整ネジ160を介して可動側支持部材142に連結され、この加圧力調整ネジ160を回動させてスプリング150の初期変位を調整することにより、固定ローラ131に対する可動ローラ132の加圧力(接圧)を調整可能である。
 本発明第1実施形態に係る挟持ローラ対130の各ローラ131,132は、図2および図3に示すように、可撓性基板1を挟持する周面131b,132bが断面円弧状をなし、かつ、軸方向に相互にオフセットしてそれぞれの軸131a,132aに支持されている。図示を省略するが、各ローラ131,132は、例えば、金属、セラミック、プラスチックなどで形成されるか、または、それらの材料で形成された芯体の周囲に、ゴムなどの弾性体を被着することにより構成される。
 各ローラ131,132は、それぞれの軸131a,132a(支軸)に対して、前記オフセットした軸方向位置に保持されるように、スラスト荷重を受圧可能にベアリングを介して回転自在に支持される。あるいは、それぞれの軸131a,132a(回転軸)に対して、前記オフセットした軸方向位置に固着され、各軸131a,132aが、スラスト荷重を受圧可能にベアリングを介してそれぞれの支持部141a,142aに回転自在に支持されても良い。
 上記構成により、図3に示されるように、可撓性基板1の上側縁部は、軸方向にオフセットした固定ローラ131と可動ローラ132で、鉛直方向に対して斜めに屈曲された状態で挟持される。このため、基板搬送面と交差するように略水平方向に付与される可動ローラ132の加圧力Pxによって、可撓性基板1の挟持面に対して垂直に入力される加圧成分pxに対して、可撓性基板1の挟持面に対して平行な展張成分τx(剪断成分)が生じ、この可撓性基板1の縁端に向かう展張成分τxによって、可撓性基板1の上側縁部が上方に展張される。
 可動ローラ132による加圧力Pxは、スプリング150の弾性変位(x)に比例するので、加圧力調整ネジ160を回動してスプリング150の初期変位xを調整することにより、加圧成分pxと共に展張成分τxが調整され、可撓性基板1の上側縁部に対する展張力を調整可能であり、この展張力(τx)は、可撓性基板1の上側縁部を自重に抗して上昇させる持ち上げ力となることから、可撓性基板1の上側縁部の位置を調整可能である。
 なお、図示例では、加圧力の調整手段として手動操作用の加圧力調整ネジ160を用い、加圧力を、試験運転などで求めた最適値に予め設定して運転する場合を示したが、加圧力調整ネジ160を回動させるかまたはスプリング150の支持点を直接もしくは機構を介して間接的に変位させるアクチュエータ、可撓性基板1の上側縁部の位置を検出するセンサ、該センサの検出値に基づいて前記アクチュエータを制御する制御装置を併設し、フィードバック制御により、可撓性基板1の搬送高さを制御可能に構成することもできる。
 図4(a)(b)および図5は、上記第1実施形態の基板位置制御装置100を、図1に示したのと同様のステップ成膜方式の製造装置110に適用した実施形態を示している。図4には、1つの成膜ユニット20のみ示されているが、先述したように、共通真空室10の内部に多数の成膜ユニット20が搬送方向に沿って並設されている。各成膜ユニット20は、プラズマCVDなどの化学蒸着(CVD)や、スパッタなどの物理蒸着(PVD)を行なうための真空蒸着ユニットで構成される。
 各成膜ユニット20は、可撓性基板1を挟んでその両側に対向配置された電極21(表面に多数の原料ガス噴出孔を有する高周波電極またはターゲット)と、ヒータを内蔵した接地電極22で構成され、これら電極21および接地電極22は、それぞれが、可撓性基板1の搬送面に向かって開口したチャンバーに収容されている。ステップ成膜プロセスでは、1つの成膜ユニット20に対応したステップ搬送の停止時に、チャンバーを開閉すべく電極21および/または接地電極22が進退するので、電極21と接地電極22との間には挟持ローラ対130を設置できない。
 そこで、ステップ成膜方式の製造装置110では、成膜ユニット20を避けてその前後に、すなわち、各成膜ユニット20の間に、基板位置制御装置100が設置される。図示例では、搬送経路の上下各側に、それぞれ挟持ローラ対130,130′を配置している。下側の挟持ローラ対130′は、上側の挟持ローラ対130と同構造のものを上下反対にして用いることができる。
 この態様では、上側挟持ローラ対130による可撓性基板1の上側縁部に対する上方への展張力τxと同時に、下側挟持ローラ対130′による可撓性基板1の下側縁部に対する下方への展張力-τxを作用させ、可撓性基板1を上下両方に展張可能であるとともに、それらの差が、可撓性基板1を自重に抗して持ち上げる力となる。したがって、上下各側の挟持ローラ対130,130′は、搬送スパンが長い場合など、自重による影響が大きい場合には、上側挟持ローラ対130の展張力が下側挟持ローラ対130′よりも大きくなる範囲で設定されることになる。
 図6(a)(b)および図7は、上記第1実施形態の基板位置制御装置100を、連続成膜方式の製造装置112に適用した実施形態を示している。連続成膜方式の製造装置112の各成膜部24でも、可撓性基板1を挟んでその両側に電極25(ターゲット)と、ヒータを内蔵した接地電極26とが対向配置される。しかし、これら電極25および接地電極26は、可撓性基板1に対して所定のギャップを有して固定されており、非接触で連続成膜を行なう。このため、可撓性基板1上の成膜領域は搬送方向に区分されず、成膜部24の搬送方向上流側および下流側に、可撓性基板1を案内するロール23,23を配置できる。
 したがって、連続成膜方式の製造装置112では、可撓性基板1の自重による垂下よりも、張力および熱により可撓性基板1に生じる皺を抑制すべく幅方向に展張することに重点が置かれ、図示のように、成膜部24の上下両側に沿ってそれぞれ複数の上側および下側挟持ローラ対130、130′が一直線上に列設される。しかし、連続成膜方式の製造装置112では、ヒータからの輻射熱により、電極25周辺が300℃程度まで温度上昇する。そこで、挟持ローラ対130、130′への輻射熱の影響を考慮して、電極25と上下の各挟持ローラ対130、130′との間に、搬送方向に沿って列設された複数の支持ローラ27を配設し、各挟持ローラ対130、130′を電極25の外に配置している。
 支持ローラ27は、好適には耐熱性が良好な金属ローラで構成され、電極25の枠部から突設されたブラケット28の先端に設けた軸27aで回転自在に支持されている。また、図7に示すように、上下の各挟持ローラ対130、130′は、支持ローラ27よりも搬送面から離れて配置され、可撓性基板1が支持ローラ27で安定的に支持されようにしている。
 (第2実施形態)
 次に、図8は、本発明第2実施形態に係る基板位置制御装置200を示す搬送方向上流側から見た正面図、図9はその要部拡大図である。図示のように、第2実施形態の基板位置制御装置200の挟持ローラ対230を構成する各ローラ231,232は、それぞれ軸方向に対して傾斜した周面231b,232bを有する円錐ローラであり、挟持ローラ対230が相互に圧接される作動状態で、可動ローラ232は、その軸232aが、搬送面と平行になるよう設定されているのに対し、固定ローラ231の軸231aは、可動ローラ232の軸232aと直交する方向に設定されることで、軸方向に対して傾斜したそれぞれの周面231b,232bが、鉛直方向に対して傾斜した挟持面をなして相互に圧接され、可撓性基板1を挟持しつつ送出可能となっている。
 また、可動ローラ232の軸232aを支持する支持部242aは、可動側支持部材242に対してヒンジ部242eを介して回動可能に支持され、かつ、支持部242aの他端242dに、上下両側から当接可能に設けた調整ネジ261,262を調整することによって、固定ローラ231に対する可動ローラ232の位置を調節可能としている。
 各挟持ローラ231,232は、それぞれの軸231a,232a(支軸)に、スラスト荷重を受圧可能にベアリングを介して回転自在に支持されるか、もしくは、それぞれの軸231a,232a(回転軸)に対して軸方向に固定され、各軸231a,232aが、スラスト荷重を受圧可能にベアリングを介してそれぞれの支持部241a,242aに回転自在に支持される点を含め、他の構成は、第1実施形態と同様である。
 上記構成により、図9に示されるように、可撓性基板1の上側縁部は、固定ローラ231と可動ローラ232により、鉛直方向に対して斜めに屈曲された状態で挟持され、略水平方向に付与される可動ローラ232の加圧力Pxによって、可撓性基板1の挟持面に対して垂直に入力される加圧成分pxに対し、可撓性基板1の挟持面に沿った展張成分τx(剪断成分)が生じ、この可撓性基板1の縁端に向かう展張成分τxによって、可撓性基板1の上側縁部が上方に展張されることになり、先述した第1実施形態と同様、スプリング250の初期変位xを調整することで、加圧成分pxと共に展張成分τxが調整され、可撓性基板1の上側縁部の位置を調整可能である。
 第2実施形態の基板位置制御装置200も、第1実施形態と同様に、ステップ成膜方式の製造装置および連続成膜方式の製造装置に実施可能であり、図10および図11は、基板位置制御装置200を連続成膜方式の製造装置に実施する場合の変形例を示している。
 図10に示す変形例202では、電極25および接地電極26(ヒータ)に隣接した各挟持ローラ231,232の固定側および可動側支持部材241,242に、輻射熱保護カバー241c,242cを設けることで、支持ローラ(27)を省略し、構造の簡素化を図っている。輻射熱保護カバー241c,242cは、好適には、耐熱性および断熱性を有する部材で構成され、また、各挟持ローラ231,232の直径に対し、搬送方向上流側および下流側に延出され、隣接する挟持ローラ231,232の輻射熱保護カバー241c,242c同士が相互に近接配置されることが好ましい。この変形例は、先述した第1実施形態を始め、後述する他の実施形態にも適用可能である。
 また、図11に示す変形例203では、固定側支持部材241の支持部241aから下方に突設した支軸27aに支持ローラ27を回転自在に取付けることで、支持ローラ27のブラケット(28)を省略する一方、可動側支持部材242に輻射熱保護カバー242cを設けることで、構造の簡素化を図っている。この変形例は、先述した第1実施形態の基板位置制御装置100を始め、挟持ローラ対に固定ローラを含む各実施形態に適用可能である。
 (第3実施形態)
 次に、図12は、本発明第3実施形態に係る基板位置制御装置300を示す搬送方向上流側から見た正面図、図13はその要部拡大図である。第3実施形態の基板位置制御装置300の挟持ローラ対330を構成する各ローラ331,332は、相互に形状が異なっている。固定ローラ331は、軸方向に平行な周面331bを有する円筒ローラであり、軸332aが鉛直方向に設定されている。
 これに対し、可動ローラ332は、軸方向に対して傾斜した周面332bを有する円錐ローラであり、作動状態で、傾斜した周面332bが、固定ローラ331の平行な周面331bに沿って圧接されるように、軸332aが、周面332bに応じた傾斜を有するように設定されている。さらに、可動ローラ332を回転自在に支持する可動側支持部材342は、固定側支持部材341の上端から可動ローラ332側に延出した延出部でヒンジ部342bを介して揺動可能に連結されており、ヒンジ部342bを中心とした可動側支持部材342の揺動により、可動ローラ332が固定ローラ331に対して接離可能となっている。
 固定側支持部材341と可動側支持部材342との間に、付勢手段としてスプリング350が介装され、スプリング350の端部が加圧力調整ネジ360を介して可動側支持部材342に連結される点は、第1および第2実施形態と同様であるが、本実施形態では、可動側支持部材342の揺動方向に沿ってスプリング350が斜めに張架され、加圧力調整ネジ360も斜めに螺合されている。
 上記構成により、可撓性基板1の上側縁部は固定ローラ331と可動ローラ332により平坦な状態で挟持されるものの、可撓性基板1の搬送面からオフセットしたヒンジ部342bを中心として斜上方に向かう可動ローラ332の加圧力Pxによって、可撓性基板1の挟持面に対して垂直すなわち略水平に入力される加圧成分pxと、可撓性基板1の挟持面に対して平行な展張成分τx(剪断成分)が生じ、この展張成分τxによって、可撓性基板1の上側縁部が上方に展張され、先述した各実施形態と同様に、スプリング350の初期変位xを調整することで、加圧成分pxと共に展張成分τxが調整され、可撓性基板1の上側縁部の位置を調整可能である。
 (第4実施形態)
 次に、図14は、本発明第4実施形態に係る基板位置制御装置400を示す搬送方向上流側から見た正面図、図15はその要部拡大図である。第4実施形態の基板位置制御装置400の挟持ローラ対430を構成する各ローラ431,432は、いずれも円錐ローラで構成され、かつ、いずれも可動ローラ431,432であり、それぞれ、可動側支持部材441,442の先端部441a,442aに設けた軸431a,432aで回転自在に支持されている。各可動ローラ431,432が相互に圧接される作動状態で、可撓性基板1の上側縁部が搬送面に対して平坦な挟持面で挟持されるように、各可動ローラ431,432の軸431a,432aは、挟持面に対して周面431b,432bの傾斜に応じて斜めに配向されている。
 可動側支持部材441,442は、L字状に屈曲した中間部において、固定ブラケット470に対して固定された軸471,472により揺動可能に支持され、かつ、付勢手段としてスプリング450が介装されている。スプリング450の一方の端部が加圧力調整ネジ460を介して可動側支持部材442に連結される点は、前記各実施形態と同様である。
 さらに、可動側支持部材441,442は、それぞれの中間部(軸471,472)から搬送面の上方に延出した腕部441c,442cの交差部分に、相互に摺動かつ回動可能に係合するピン447aと長孔447bが設けられており、一方の可動側支持部材441の操作部441dを、スプリング450の付勢力に抗して下方に押圧操作することで、可動ローラ431,432を相互に離反させることができ、押圧操作を解除すれば、ピン447aと長孔447bの上記係合によって、一対の可動側支持部材441,442が相互に連動し、スプリング450の付勢力によって一対の可動ローラ431,432が相互に圧接され、可撓性基板1の上側縁部を挟持可能である。
 上記のように構成された第4実施形態の基板位置制御装置400では、可撓性基板1の上側縁部が一対の可動ローラ431,432により平坦な状態で挟持されるものの、可撓性基板1の搬送面から共にオフセットされた軸471,472を中心として相互に斜上方に向かう加圧力Px,Pxによって、可撓性基板1の挟持面に対して垂直すなわち略水平に入力される加圧成分px,pxと、可撓性基板1の挟持面に対して平行な展張成分τx,τxとが生じ、この展張成分τx,τxによって、可撓性基板1の上側縁部が上方に展張され、先述した各実施形態と同様に、スプリング450の初期変位xを調整することで、加圧成分px,pxと共に展張成分τx,τxが調整され、可撓性基板1の上側縁部の位置を調整可能である。
 上述した第1~第4実施形態の基板位置制御装置では、いずれも1つの付勢手段(スプリング)による挟持ローラ対の加圧方向(接離方向)が、挟持面に対して可撓性基板1の縁端側に向かう傾斜を有することによって、挟持面に垂直な加圧成分pxと、挟持面と平行な展張成分τx、すなわち分力を生じさせる構成であった。これに対し、以下に述べる第5~第8実施形態の基板位置制御装置では、支持機構が、挟持面に対して略垂直な挟持ローラ対530の接離方向と、挟持面に対して略平行な展張方向の2方向への付勢に対応した2つのリンクと2つの付勢部材とを備える構成により、加圧力pxと展張力τxを個別に発生させ、個別に調整できる点に特徴がある。加圧力pxと展張力τxの合力が、挟持面に対して傾斜方向に作用するPxに相当すると見ることもできる。以下、本発明の第5~第8実施形態について図面を参照しながら詳細に説明する。
 (第5実施形態)
 図16は、本発明第5実施形態に係る基板位置制御装置500を示す搬送方向上流側から見た正面図であり、(a)は挟持ローラ対530の解除状態、(b)は該挟持ローラ対530による加圧力作用状態、(c)は展張力作用状態を示している。第5実施形態の基板位置制御装置500の挟持ローラ対530を構成する固定ローラ531,可動ローラ532は、共に円筒ローラとして図示されているが、いずれかまたは両方を、断面円弧状ローラや円錐ローラとすることもできる。固定ローラ531は第3実施形態と同様である。
 可動ローラ532は、第2リンク542先端の支持部542aに、軸532aを介して回転可能かつ軸方向に移動不可能に支持されている。第2リンク542は、その基端のヒンジ部542bにおいて第1リンク544の先端に揺動可能に支持され、かつ、第1リンク544との間に介装された第2スプリング552(展張スプリング)によって、展張方向すなわち可撓性基板1の幅方向縁端側となる図中上方に付勢され、図16(a)に示す挟持ローラ対530の解除状態では、第1リンク544に設けたストッパー544aに当接している。
 第1リンク544は、その長手方向中間のヒンジ部544bにおいて、第3リンク546の先端に揺動可能に支持され、かつ、ヒンジ部544bよりも先端側(図示例では第2スプリング552の連結点)と固定側支持部材541との間に加圧力調整ネジ560を介して介装された第1スプリング550(加圧スプリング)によって、固定側支持部材541に近接する方向に付勢されている。第3リンク546は、その基端部において、固定ブラケット570に対して固定された軸571で揺動可能に支持され、その他端の操作部546aには、図示しない駆動手段により昇降操作される操作部材548が連結されている。
 上記構成により、第5実施形態の基板位置制御装置500は、図16(a)に示す挟持ローラ対530の解除状態では、操作部材548が降下し、第3リンク546は、軸571を中心に図中下方に揺動しており、この状態で、第1リンク544の他端側に延設された操作部544cを、第1スプリング550の付勢力に抗して図中左方向に押圧544dすることにより、第1リンク544がヒンジ部544bを中心に図中反時計方向に回動し、可動ローラ532が固定ローラ531から離反しており、それらの間に可撓性基板1を導入可能である。
 この状態から、先ず、操作部544cの押圧544dを解除すると、第1リンク544がヒンジ部544bを中心に図中時計方向に回動し、図16(b)に示すように、可動ローラ532が第1スプリング550による所定の加圧力で固定ローラ531に圧接され、それらの間に可撓性基板1が挟持される。しかし、第3リンク546が依然として降下位置にあり、ストッパー544aにより第2リンク542の上方への揺動が規制されていることにより、可動ローラ532が固定ローラ531に対して下方に変位して圧接されている。
 次いで、この状態から、図16(c)に示すように、操作部材548により、第3リンク546の操作部546aを上昇させると、第3リンク546の図中上方への回動によって、第1リンク544のヒンジ部544bも上方に移動し、第1リンク544が上方に引き上げられる。それに伴い、第2リンク642がストッパー544aから開放され、第2スプリング552の付勢力(展張力)によって可動ローラ532が図中上方に付勢され、可撓性基板1の挟持面に展張力τxが作用し、該展張力τxによって、可撓性基板1の上側縁部が上方に展張される。
 第5実施形態の基板位置制御装置500では、加圧力調整ネジ560で第1スプリング550の初期変位xを調整し、挟持ローラ対530の加圧力Pxを調整可能であるが、加圧力Pxは、挟持面に垂直に付加されるため、それ自体は傾斜方向成分を有さない。しかし、加圧力Pxの調整により挟持面での摩擦力が変化し、展張力τxに反映される。また、図示例では、操作部材548が上昇限度であるピン574に当接しているが、ピン574の範囲内において、操作部材548の上下方向の位置を調整または制御可能に構成し、展張力τxの調整または制御を行なうこともできる。あるいは、第2スプリング552の一端に、第1スプリング550と同様の加圧力調整ネジを設け、第2スプリング552の初期変位xを調整することで、展張力τxを調整可能としても良い。
 (第6実施形態)
 次に、図17は、本発明第6実施形態に係る基板位置制御装置600を示す搬送方向上流側から見た正面図であり、(a)は挟持ローラ対630の解除状態、(b)は該挟持ローラ対630による加圧力作用状態、(c)は展張力作用状態を示している。第6実施形態の基板位置制御装置600は、基本的な操作は第5実施形態と同様であるが、挟持ローラ対630を構成する各ローラ631,632が、何れも可動ローラであり、相互に接離する方向および展張作用に係る上下方向に揺動可能に構成されている。
 可動ローラ631,632は、それぞれ、第2リンク641,642の各支持部641a,642aに、軸631a,632aを介して回転可能かつ軸方向に移動不可能に支持されている。第2リンク641,642は、それぞれの基端のヒンジ部641b,642bにおいて、第1リンク643,644の先端にそれぞれ揺動可能に支持され、かつ、それぞれの第1リンク644との間に介装された第2スプリング651,652(展張スプリング)によって、展張方向すなわち可撓性基板1の幅方向縁端側となる図中上方に付勢され、図17(a)に示す挟持ローラ対630の解除状態では、それぞれの第1リンク643,644に設けたストッパー643a,644aに当接している。
 第1リンク643,644は、それぞれの長手方向中間のヒンジ部643b,644bにおいて、第3リンク645,646の先端にそれぞれ揺動可能に支持され、かつ、ヒンジ部643b,644bよりも先端側において、加圧力調整ネジ660を介して第1スプリング650(加圧スプリング)が介装され、該第1スプリング650によって、相互に近接する方向に付勢されている。また、一方の第1リンク644は、ヒンジ部644bからさらに延設された操作部644cを有している。
 第3リンク645,646は、それぞれの基端部において、固定ブラケット670に対して固定された共通の軸671で揺動可能に支持され、かつ、ピン673,674によって、それぞれの揺動範囲が規制されている。一方の第3リンク645は、基端部からさらに延設された操作部645aを有し、該操作部645aには、図示しない駆動手段により昇降操作される操作部材648が連結されている。
 上記構成により、第6実施形態の基板位置制御装置600は、図17(a)に示す挟持ローラ対630の解除状態では、操作部材648が上昇し、各第3リンク645、646は、共に図中下方に揺動し、それぞれの他端側がピン673,673に当接する降下位置にある。この状態で、第1リンク644の操作部644cを、第1スプリング650の付勢力に抗して図中左方向に押圧644dすることにより、一方の可動ローラ632が他の可動ローラ631から離反し、それらの間に可撓性基板1を導入可能である。
 この状態から、操作部644cの押圧644dを解除すると、第1リンク644がヒンジ部644bを中心に図中時計方向に回動し、図17(b)に示すように、可動ローラ632が第1スプリング650による所定の加圧力で他の可動ローラ631に圧接され、それらの間に可撓性基板1が挟持される。先述した第5実施形態では、一対の挟持ローラの位置が上下にずれていたが、この第6実施形態では、一対の挟持ローラ631,632の支持機構640の各リンクが、搬送面について対称にレイアウトされているため、ずれは生じず、挟持ローラ631,632は、同じ高さ位置(降下位置)にあって、可撓性基板1を挟持している。
 次いで、操作部材648により、一方の第3リンク645の操作部646aを降下させると、図17(c)に示すように、各第3リンク645,646先端のヒンジ部643b,644bが共に図中上方に揺動し、各第1リンク643,644が上方に引き上げられる。これに伴い、各第2リンク641,642が対応するストッパー643a,644aから開放され、それぞれの第2リンク641,642に、第2スプリング651,652の付勢力が負荷されることにより、各可動ローラ631,632が共に図中上方に付勢され、可撓性基板1の挟持面に作用する展張力τxによって、可撓性基板1の上側縁部が上方に展張される。
 第6実施形態の基板位置制御装置600においても、先述した第5実施形態と同様、加圧力調整ネジ660による第1スプリング650の初期変位xの調整、操作部材648の上下方向位置の調整または制御、第2スプリング651,652に付設される加圧力調整ネジなどにより、展張力τxを調整できる。
 (第7実施形態)
 次に、図18は、本発明第7実施形態に係る基板位置制御装置700を示す搬送方向上流側から見た正面図であり、(a)(b)は挟持ローラ対730による加圧開始状態、(c)は展張力作用状態を示している。第7実施形態の基板位置制御装置700の挟持ローラ対730は、固定ローラ731と可動ローラ732とで構成され、図示例では何れも円筒ローラとしているが、いずれかまたは両方を円錐ローラとすることもできる。
 可動ローラ732は、第2リンク742先端の支持部742aに、軸732aを介して回転可能かつ軸方向に移動不可能に支持されている。第2リンク742は、その中間のヒンジ部742bにおいて第1リンク744の先端に揺動可能に支持され、かつ、ヒンジ部742bを越えた他端部742cと、第1リンク744の延出部744cとの間には、可動ローラ732を、可撓性基板1の展張方向とは反対方向となる図中下方に付勢するリターンスプリング752が介装されている。リターンスプリング752の付勢力(復元力)は、延出部744cに螺合する調整ネジ764で調節可能である。
 第1リンク744は、中間で屈曲したL字状をなし、上端のヒンジ部744bにおいて、固定側支持部材741の上端に揺動可能に支持され、かつ、固定側支持部材741との間に加圧力調整ネジ760を介して介装された第1スプリング750(加圧スプリング)によって、固定側支持部材741に近接する方向に付勢されている。
 上記構成により、第7実施形態の基板位置制御装置700は、挟持ローラ対730が相互に離反した解除状態から加圧開始状態においては、図18(a)に示すように、リターンスプリング752の付勢により、第2リンク742は、支持部742aの角が第1リンク744の内側に当接または近接する位置に角変位しており、可動ローラ732は、固定ローラ731の周面731bに傾斜した状態で当接し、それらの間に可撓性基板1が挟持される。
 この状態で、可動ローラ732が、第1スプリング750による所定の加圧力Pxで固定ローラ731に圧接されると、可動ローラ732には、図18(b)に示すように、リターンスプリング752の付勢力に抗して角変位を解消するような、第2リンク742のヒンジ部742bを中心とする回転力を生じ、この回転力は、可撓性基板1の挟持面に沿って図中上方に向かう展張力τx(剪断力)として作用し、該展張力τxによって、可撓性基板1の上側縁部が上方に展張される。
 したがって、第7実施形態の基板位置制御装置700では、可撓性基板1の上側縁部に対する上記展張力τxは、第1スプリング750の加圧力Pxと、リターンスプリング752の復元力との差に比例するので、加圧力調整ネジ760で第1スプリング750の初期変位xを調整し、挟持ローラ対730の加圧力Pxを調整すること、および/または調整ネジ764でリターンスプリング752の復元力を調整することによって、展張力τxを調整可能である。
 (第8実施形態)
 次に、図19は、本発明第8実施形態に係る基板位置制御装置800を示す搬送方向上流側から見た正面図であり、(a)は挟持ローラ対830の解除状態、(b)は該挟持ローラ対830による加圧力作用状態、(c)は展張力作用状態を示している。上記第7実施形態では、固定ローラ(731)が固定側支持部材(741)に固定的に支持されていたのに対し、第8実施形態の基板位置制御装置800では、固定ローラ831が、固定側支持部材843に第2リンク841を介して支持され、可撓性基板1の展張方向に限定的に揺動可能であるとともに、上記固定側の第2リンク841は、可動側の第2リンク842と同様に、ヒンジ部841bを越えた他端部841cと、固定側支持部材843の延出部843cとの間に、調整ネジ863を伴うリターンスプリング853が介装されている。
 上記構成により、第8実施形態の基板位置制御装置800は、挟持ローラ対830が相互に離反した解除状態では、図19(a)に示すように、リターンスプリング853,854の付勢により、それぞれの第2リンク841,842は、支持部841a,842aの角が固定側支持部材843または第1リンク844の内側に当接する位置に角変位している。
 このような解除状態から、第1スプリング850による所定の加圧力Pxで、可動ローラ832が固定ローラ831に圧接されると、先ず、図19(b)に示すように、固定ローラ831と可動ローラ832とが、共に傾斜した状態で当接し、それぞれの周面831b,832bの上端側で可撓性基板1が挟持され、さらに、固定ローラ831および可動ローラ832には、それぞれ、リターンスプリング853,854の付勢力に抗して角変位を解消するような、第2リンク841,842のヒンジ部841b,842bを中心とする回転力を生じ、この回転力は、可撓性基板1の挟持面に沿って図中上方に向かう展張力τxとして作用し、該展張力τxによって、可撓性基板1の上側縁部が上方に展張される。
 したがって、第8実施形態の基板位置制御装置800では、可撓性基板1の上側縁部に対する上記展張力τxは、挟持面自体を上方に移動させる作用を伴うことになる。展張力τxの調整は、前記同様に、加圧力調整ネジ860による第1スプリング850の初期変位x調整、および/または調整ネジ863,864によるリターンスプリング853,854の調整によって行うことができる。
 (第9実施形態)
 次に、図20は、本発明第9実施形態に係る基板位置制御装置900を示す搬送方向上流側から見た正面図である。第9実施形態の基板位置制御装置900の挟持ローラ対930を構成する各ローラ931,932は、いずれも軸方向に対して傾斜した周面931b,932bを有する円錐ローラであり、一方が固定ローラ931、他方が可動ローラ932である。各挟持ローラ931,932は、作動状態で、傾斜した周面931b,932bが可撓性基板1を介して相互に圧接されるように、それぞれの軸931a,932aが、搬送面(可撓性基板1)に対して周面931b,932bに応じた傾斜を有するように固定側支持部材941、可動側支持部材942の先端部に保持されている。図示例では、可撓性基板1の裏面側に固定ローラ931が接し、表面側に可動ローラ932が接するように、各ローラ931,932が配設されている。
 各挟持ローラ931,932は、金属、セラミック、プラスチックなどで形成されるか、または、それらの材料で形成された芯体の周囲に、ゴムなどの弾性体を被着することにより構成され、それぞれの軸931a,932a(支軸)に、スラスト荷重を受圧可能なベアリングを介して回転自在に支持されている。各軸931a,932aは、それぞれの支持部材941,942に形成された保持部941a,942a(保持孔または保持溝、チャック)に挿通された状態で、図示しないネジ等の着脱可能な締結手段で固定され、それぞれの軸方向の位置を調整可能とすることが好ましい。代替的に、各挟持ローラ931,932がそれぞれの軸931a,932a(回転軸)に固定され、各軸931a,932aが、スラスト荷重を受圧可能なベアリングを介してそれぞれの支持部(941a,942a)に回転自在に支持されても良いことは、他の実施形態で述べた通りである。
 固定側支持部材941は固定ブラケット970を介して真空室の構造要素11に固定されている。可動側支持部材942は、固定側支持部材941の上端から延出した延出部にヒンジ部942bを介して揺動可能に支持されており、ヒンジ軸(942)を中心とした可動側支持部材942の揺動により、可動ローラ932が固定ローラ931に対して接離可能となっている。
 さらに、固定側支持部材941と可動側支持部材942の中間部には付勢手段としてスプリング950が介装されている。スプリング950の一方の端部は、加圧力調整ネジ960を介して可動側支持部材942に連結され、この加圧力調整ネジ960を回動させてスプリング950の初期変位を調整することにより、固定ローラ931に対する可動ローラ932の加圧力(接圧)を調整可能である。
 上記のように構成された基板位置制御装置900では、各挟持ローラ931,932の大径側と小径側で周長差がある。これにより、各挟持ローラ931,932は、図21(b)に示されるように、搬送方向F(R)に移動する可撓性基板1との接触によって従動回転される際には、接触面(挟持面)内で右回りの回転力vF(vR)が生じるが、可撓性基板1は図示しないフィードロールで所定の張力を付与された状態で直線的に搬送されるので、回転力vF(vR)の垂直方向に分力ux(展張力)のみが可撓性基板1の接触面に伝達され、この上方に向かう展張力uxによって、可撓性基板1の上側縁部が上方に展張されることになる。
 上記各挟持ローラ931,932によって可撓性基板1に伝達される展張力uxは、各挟持ローラ931,932による加圧力Pxに比例し、加圧力Pxが大きくなれば各挟持ローラ931,932の形状通りに傾斜角αに応じた展張力uxが可撓性基板1に伝達されるが、加圧力Pxが小さい場合には、接触面内での滑りが主体的になり、伝達される展張力uxが減少することになる。各挟持ローラ931,932による加圧力Pxは、スプリング950の弾性変位に比例するので、加圧力調整ネジ960を回動してスプリング950の初期変位を調整することにより、可撓性基板1の上側縁部に対する展張力uxを調整可能であり、この展張力uxは、可撓性基板1の上側縁部を自重に抗して上昇させる持ち上げ力となることから、可撓性基板1の上側縁部の位置を調整可能である。
 図22(a)~(c)は、上記第9実施形態の基板位置制御装置900(930,930′)を、図1に示したのと同様のステップ成膜方式の製造装置910に適用した実施形態を示している。共通真空室10の内部に多数の成膜ユニット20が搬送方向F(R)に沿って並設されていることは既に述べた通りである。基板位置制御装置(930,930′)は、各成膜ユニット20の間における搬送経路の上下各側に配設された挟持ローラ対930,930′で構成され、下側の挟持ローラ対930′は、上側の挟持ローラ対930と同構造のものを上下反対に設置してなる。
 上記構成により、各成膜ユニット20の間で、搬送方向F(R)に対して同位置で、上側挟持ローラ対930による可撓性基板1の上側縁部に対する上方への展張力uxと同時に、下側挟持ローラ対930′による可撓性基板1の下側縁部に対する下方への展張力-uxを作用させ、可撓性基板1を上下幅方向に展張し、可撓性基板1の加熱皺や搬送張力による張力皺を抑制できる。また、上下各側の挟持ローラ対930,930′の展張力ux,-uxの差が、可撓性基板1を自重に抗して持ち上げる力となるので、可撓性基板1の上下方向位置に応じて上側挟持ローラ対930の加圧力を制御することで、可撓性基板1の搬送高さを一定に維持することができる。
 しかも、上記挟持ローラ対930,930′による可撓性基板1に対する上下幅方向への展張作用は、可撓性基板1のいずれの搬送方向F,Rに対しても同様に作用し、かつ、可撓性基板1の上下方向の位置制御も、可撓性基板1のいずれの搬送方向F,Rに対しても同様に実施可能であるので、可撓性基板1の正逆両方向への搬送を含む成膜プロセスに直ちに対応できる利点がある。
 なお、上記のような可撓性基板1に対する展張作用および可撓性基板1の位置制御は、各挟持ローラ931,932の周面が大径側と小径側の何れかで片当たりせず、加圧力が挟持面に直交する成分を含む限り、各挟持ローラ931,932の加圧方向には依存しない。したがって、先述した第2実施形態の基板位置制御装置200(挟持ローラ231,232)や第4実施形態の基板位置制御装置400(挟持ローラ431,432)においても上記第9実施形態と同様の展張作用が得られる。
 上記実施形態では、スプリング950の初期変位が調整ネジ960で予め調整される場合を例示したが、以下に述べる各実施形態のように、駆動装置(アクチュエータやその駆動伝達機構)を用いてスプリング950の初期変位(加圧力)を積極的に制御可能な基板位置制御装置を構成することもできる。
 (第9実施形態の応用例)
 図23は、上述した本発明第9実施形態に係る基板位置制御装置900を、連続成膜方式の製造装置912に適用した実施形態を示す搬送方向上流側から見た断面図である。製造装置912は、図6や図7に示した製造装置112と同様に、所定の真空度に維持された真空室の内部に、可撓性基板1を挟んでその両側に対向配置された電極925(ターゲット)と、接地電極926とを備えている。この実施形態では、下側の基板位置制御装置900′は、スプリング950′の初期変位を調整ネジ960′で予め調整するプリセットタイプとして構成される一方、上側の基板位置制御装置900にはアクチュエータ966およびセンサ967が付設され、スプリング950による加圧力を積極的に制御可能に構成されている。
 図23において、上側の基板位置制御装置900のスプリング950の一方の端部は、前記同様に加圧力調整ネジ960を介して可動側支持部材942に連結されているが、他方の端部は、固定側支持部材941に連結される代わりに、固定側支持部材941に進退変位可能に支持された可動軸965に連結されている。可動軸965は、送りねじ機構を介して固定側支持部材941に支持され、かつ、概略的に示されたアクチュエータ966によって進退駆動されるように構成されている。
 アクチュエータ966としては、流体圧アクチュエータや電磁アクチュエータなどの既知の形式を使用できる。しかし、真空室内は減圧されかつ高温に曝されるので、アクチュエータ966は真空室の外部に配設され、可動軸965は、プッシュまたはプルロッド、レバーやリンク、送りねじ機構などの駆動伝達機構を介して遠隔的に駆動されることが好ましい。
 さらに、基板位置制御装置900は、挟持ローラ931,932の近傍、または、搬送方向上流側あるいは下流側に離間して、可撓性基板1の上端位置を検出するセンサ967を備え、該センサ967は、アクチュエータ966の制御装置(図示せず)に接続されている。センサ967の形式は特に限定されるものではなく、既知の各種センサを使用できる。
 例えば、センサ967が、可撓性基板1の上端位置の上限値と下限値とに対応して上下に隣接配置された2つの検出部(光学センサなど)を含み、(i)上下両方の検出部に可撓性基板1が検出された場合に、可撓性基板1の上端位置が上限以上であると判断し、(ii)上下両方の検出部に可撓性基板1が検出されなくなった場合に、可撓性基板1の上端位置が下限よりも下であると判断し、(iii)下側の検出部のみに可撓性基板1が検出されている場合に可撓性基板1の上端位置が適正範囲内にあると判断するように構成できる。代替的に、センサ967が1つのイメージセンサを含み、可撓性基板1の上端位置を画像処理によって検知するように構成しても良い。
 そして、可撓性基板1の上端位置が上限以上であると判断された場合(i)には、アクチュエータ966の駆動によって可動軸965を前進させ、スプリング950による挟持ローラ931,932の加圧力を減少させれば、挟持ローラ931,932を介して可撓性基板1の上側縁部に付与される上方への展張力(ux)が減少し、下側の基板位置制御装置900′の挟持ローラ931,932を介して可撓性基板1の下側縁部に付与される下方への展張力(-ux)が優勢になり、可撓性基板1が下方に誘導される。
 反対に、可撓性基板1の上端位置が下限よりも下であると判断された場合(ii)には、アクチュエータ966の駆動によって可動軸965を後退させ、スプリング950による挟持ローラ931,932の加圧力を増加させれば、挟持ローラ931,932を介して可撓性基板1の上側縁部に付与される上方への展張力(ux)が増加し、下側の基板位置制御装置900′の挟持ローラ931,932による下方への展張力(-ux)に対して上方への展張力(ux)が優勢になり、可撓性基板1が上方に誘導される。
 このように、センサ967とアクチュエータ966および制御装置を用いて、上側の基板位置制御装置900のスプリング950による挟持ローラ931,932の加圧力をフィードバック制御することにより、可撓性基板1の上端位置を適正範囲内に維持することができる。なお、スプリング950による加圧力を制御する機構は上記に限定されるものではなく、スプリング950の初期変位を制御しうる他の機構とすることができる。
 また、スプリング950の初期変位を制御する代わりに、可動側支持部材942をスプリング950(第1のスプリング)と同方向(または反対方向)に付勢する第2のスプリングを付設し、この第2のスプリングをアクチュエータで進退駆動することで、挟持ローラ931,932の加圧力を制御するように構成することもできる。
 上記実施形態では、上側の基板位置制御装置900のみにアクチュエータ966が付設され、下側の基板位置制御装置900′がプリセットタイプの場合を示したが、図24に示すように、上下各側の基板位置制御装置900,900′にアクチュエータ966,966′およびセンサ967,967′を付設し、それらを共通の制御装置で制御することにより、可撓性基板1の上端位置と下端位置とを積極的に制御し、可撓性基板1の上下幅方向(高さ方向)の位置と共に、幅方向の展張度を積極的に制御することもできる。但し、可撓性基板1に作用する重力の影響を考慮して、上下各側の基板位置制御装置900,900′における上下各側のスプリングの初期変位および制御量は、上下各側で個別に設定される必要がある。
 また、上記実施形態では、連続成膜方式の製造装置912において、スプリング950の初期変位(加圧力)を積極的に制御可能な基板位置制御装置を構成する場合について述べたが、図22に示したステップ成膜方式の製造装置910に対しても同様に基板位置制御装置を構成できる。但し、ステップ成膜方式の製造装置910では、可撓性基板1の位置検出および位置制御をステップ搬送に同期して間欠的に実行することができる。
 すなわち、1ステップの搬送が終了し、1ステップの成膜プロセスが実施されるステップ搬送の停止期間中に、センサ967による可撓性基板1の上端あるいは上下両端の位置検出が行なわれ、センサ967に可撓性基板1の変位が検出された場合には、その検出に基づいた制御信号がアクチュエータ966に出力され、アクチュエータ966によるスプリング950の初期変位(加圧力)の補正が行なわれる。この時、可撓性基板1は停止しているので、挟持ローラ931,932の加圧力のみが変化し、可撓性基板1が上下に移動することはない。
 次いで、1ステップの成膜プロセスが終了し、可撓性基板1に対して次の1ステップの搬送が実施されると、加圧力が補正された挟持ローラ931,932によって、可撓性基板1が上方向または下方向に誘導され、その上下方向位置が修正される。したがって、このような制御では、基本的に可撓性基板1の位置検出と位置補正が交互に実施される。
 また、ステップ成膜方式の製造装置910においても、各ステップにおける可撓性基板1の搬送中にセンサ967による位置検出を行うと同時に、アクチュエータ966によるスプリング950の初期変位(加圧力)の補正を行い、可撓性基板1の位置制御をリアルタイムで実施することもでき、かつ、これら2つの制御を併用することもできる。
 上記各実施形態では、本発明に係る基板位置制御装置を、可撓性基板1を縦姿勢で横方向に搬送しつつ成膜処理を行なう製造装置912に実施する場合について述べたが、本発明に係る基板位置制御装置は、可撓性基板1を横姿勢(平姿勢)で水平方向や上下方向あるいは斜方向に搬送しつつ成膜等の処理を行なう各種処理装置あるいは製造装置に実施することもできる。
 (第10実施形態)
 図25は、本発明第9実施形態と同様の基板位置制御装置1000を、横姿勢で搬送する連続成膜方式の製造装置1012に適用した実施形態を示す搬送方向上流側から見た断面図である。製造装置1012は、所定の真空度に維持された真空室の内部に、可撓性基板1を挟んでその上下に対向配置された電極1025(ターゲット)と、接地電極1026とからなる成膜部が配設されている。成膜部の搬送方向上流側および下流側には、搬送手段を構成するガイドロール(アイドルロール)やフィードロール、テンションロールなどが配設され、さらにそれらの搬送方向上流側および下流側に、可撓性基板1の巻出しロールおよび巻取りロールが配設されている。これらの構成は、従来と同様であるため、図示を省略する。
 図25において、製造装置1012の基板位置制御装置は、可撓性基板1の搬送経路の幅方向両側に配置された2つの基板位置制御装置1000,1000で構成されており、2つの基板位置制御装置1000,1000は、固定側の挟持ローラ1031(固定側支持部材1041)が下になるように横向きに配置されている点を除けば、基本的に第9実施形態の基板位置制御装置900と同じ構造であり、かつ、何れも、アクチュエータ1066およびセンサ1067が付設され、スプリング1050による加圧力を積極的に制御可能に構成されている。
 この製造装置1012では、可撓性基板1の下面側に接地電極1026が配設され、可撓性基板1の自重による影響は小さく、かつ、各側の基板位置制御装置1000,1000に同様である。したがって、各側の基板位置制御装置1000,1000におけるスプリング1050,1050の初期変位および各アクチュエータ1066の制御量は、基本的に同等に設定される。
 一方、各アクチュエータ1066による加圧力の制御は、可撓性基板1を幅方向に展張しつつ、可撓性基板1の幅方向の変位や蛇行を補正するために、各側センサ1067の検知に基づいて制御装置により個別にかつ連携して実施されることになる。したがって、各側センサ1067は、可撓性基板1の各側縁位置の許容される最大値と最小値とに対応して幅方向に隣接配置された2つの検出部をそれぞれ備えるか、代替的に、各側センサ1067がそれぞれ1つのイメージセンサからなり、可撓性基板1の各側縁位置を画像処理によって検知するように構成されることが好ましい。
 以上、本発明の実施の形態につき述べたが、本発明は上記実施形態に限定されるものではなく、上記以外にも本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。
 例えば、上記各実施形態では、付勢手段として引張スプリングを用いる場合を示したが、各固定側および可動側支持部材や各リンクおよび可動軸に対する連結点を適宜変更することで、圧縮スプリングとして装置を構成することもできる。その場合、各固定側または可動側支持部材、あるいは各リンクや可動軸に必要に応じて腕部等が追加されても良い。また、コイルスプリングは、スパイラルスプリング、トーションスプリング、リーフスプリング等、周知の各種スプリングに変更されても良い。各固定側および可動側支持部材や各リンクが相互に接離する形態を、直線的な摺動で代替することもできるが、効率的には揺動(枢回動)が好ましい。
 また、上記各実施形態では、本発明に係る基板位置制御装置を太陽電池用の薄膜積層体の製造装置に実施する場合について述べたが、本発明に係る基板位置制御装置は、有機EL等の半導体薄膜の製造装置は勿論、塗装、洗浄、乾燥、熱処理、表面加工など、成膜以外にも、可撓性基板の位置制御や展張が求められる各種処理装置に適用できる。
1 可撓性基板
10 真空室
11 構造要素
20 成膜ユニット
21,25,925,1025 電極
22,26,926,1026 接地電極
24 成膜部
27 支持ローラ
100,200,202,203,300,400,500,600,700,800,900,1000 基板位置制御装置
130、230,330,430,530,630,730,830,930 挟持ローラ対
131,231,331,531,731,831,931,1031 固定ローラ
132,232,332,431,432,532,631,632,732,832,932,1032 可動ローラ
140,240,340,540,640,740,840,940,1040 支持機構
141,241,341,541,741,843,943,1041 固定側支持部材
142,242,342,441,442,942,1042 可動側支持部材
150,250,350,450,950,1050 スプリング(付勢手段)
160,260,360,460,560,660,760,860,960 加圧力調整ネジ
542,641,642,742,841,842 第2リンク
544,643,644,744,844 第1リンク
546,645,646 第3リンク
550,650,750,850 第1スプリング(加圧スプリング)
552,651,652 第2スプリング(展張スプリング)
544a,643a,644a ストッパー
754,853,854 リターンスプリング
764,863,864 調整ネジ
965,1065 可動軸
966,1066 アクチュエータ
967,1067 センサ
 

Claims (15)

  1.  帯状の可撓性基板を縦姿勢で横方向に搬送し、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置であって、
     前記基板の上側縁部を挟持する一対の挟持ローラと、
     前記一対の挟持ローラを回転可能かつ相互に接離可能に支持する支持機構と、
     前記支持機構を介して前記一対の挟持ローラに加圧力を付与する付勢手段と、
     前記付勢手段による前記加圧力の調整手段と、を備え、
     前記一対の挟持ローラは、前記基板の挟持面に対する加圧方向が基板幅方向縁端側に向かう傾斜を有しかつ前記挟持面における回転方向が前記基板の搬送方向と同方向になるように、前記支持機構によって支持されている、可撓性基板の位置制御装置。
  2.  帯状の可撓性基板を縦姿勢で横方向に搬送しながら、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置であって、
     前記一対の挟持ローラを回転可能かつ相互に接離可能に支持する支持機構と、
     前記支持機構を介して前記一対の挟持ローラに加圧力を付与する付勢手段と、
     前記付勢手段による前記加圧力の調整手段と、を備え、
     前記一対の挟持ローラは、それぞれの軸方向が前記基板の挟持面に対して基板幅方向縁端側に向かって離れる傾斜を有しかつ前記挟持面における回転方向が前記基板の搬送方向と同方向になるように、前記支持機構によって支持されている、可撓性基板の位置制御装置。
  3.  前記一対の挟持ローラを構成する各ローラの周面が断面円弧状をなし、かつ、前記支持機構によって、軸方向にオフセットして接離可能に支持されている、請求項1に記載の可撓性基板の位置制御装置。
  4.  前記一対の挟持ローラを構成する少なくとも一方のローラが、その軸方向に対して傾斜した周面を有する円錐ローラである、請求項1に記載の可撓性基板の位置制御装置。
  5.  前記一対の挟持ローラを構成する各ローラが、その軸方向に対して傾斜した周面を有する円錐ローラである、請求項2に記載の可撓性基板の位置制御装置。
  6.  前記一対の挟持ローラは、前記挟持面が基板幅方向に対して傾斜を有するように、前記支持機構によって支持されている、請求項5に記載の薄膜積層体製造装置の基板位置制御装置。
  7.  前記支持機構は、前記一対の挟持ローラの一方または両方を相互に接離する方向に移動可能にする第1リンクと、該挟持ローラを前記基板幅方向に移動可能にする第2リンクとを含み、前記付勢手段は、前記第1リンクを前記挟持ローラの圧接方向に付勢する第1付勢部材と、前記第2リンクを前記基板幅方向縁端側に向かう展張方向に付勢する第2付勢部材とを含み、前記加圧力の調整手段は、前記第2付勢部材の付勢力調整手段を含む、請求項1または2に記載の可撓性基板の位置制御装置。
  8.  前記支持機構は、前記第1リンクの支持点を、前記基板幅方向に移動可能にする第3リンクをさらに含む、請求項7に記載の可撓性基板の位置制御装置。
  9.  前記支持機構は、前記一対の挟持ローラの一方または両方を相互に接離する方向に移動可能にする第1リンクと、前記一対の挟持ローラの一方または両方を前記基板幅方向に揺動可能に支持する第2リンクと、前記第2リンクを介して前記一方または両方の挟持ローラを前記基板幅方向縁端側と反対方向に付勢するリターンスプリングとを含み、前記付勢手段は、前記第1リンクを前記挟持ローラの圧接方向に付勢する第1付勢部材を含んでおり、前記一方または両方の挟持ローラは、前記第1付勢部材による加圧力と前記リターンスプリングによる復元力とが平衡した揺動角度で圧接されるように構成されている、請求項1または2に記載の可撓性基板の位置制御装置。
  10.  前記基板の前記下側縁部を挟持する一対の下側挟持ローラと、前記支持機構および前記付勢手段と同様に構成された前記一対の下側挟持ローラのための支持機構および付勢手段と、をさらに備えている、請求項1または2に記載の可撓性基板の位置制御装置。
  11.  前記処理装置が、前記処理部として前記基板の搬送経路に沿って等ピッチで並設された複数の成膜部を備え、前記基板を前記成膜部に対応したピッチで間欠的に搬送しながら、前記基板の表面に薄膜を順次積層形成する薄膜積層体製造装置であり、前記一対の上側挟持ローラと、前記一対の下側挟持ローラとが、前記複数の成膜部の間に配設されている、請求項10に記載の可撓性基板の位置制御装置。
  12.  前記処理装置が、前記基板を連続的に搬送し、前記処理部としての成膜部にて、前記基板の表面に薄膜を積層形成する薄膜積層体製造装置であり、前記一対の上側挟持ローラと、前記一対の下側挟持ローラとが、前記成膜部の上下に搬送方向に沿って複数列設されている、請求項10に記載の可撓性基板の位置制御装置。
  13.  前記基板の薄膜形成領域と前記複数対の上側挟持ローラとの間および前記複数対の下側挟持ローラとの間でそれぞれ前記基板を支持すべく搬送方向に沿って列設された複数の支持ローラをさらに備えている、請求項12に記載の可撓性基板の位置制御装置。
  14.  帯状の可撓性基板を搬送し、前記基板の搬送経路に設置された処理部にて、前記基板に処理を行なう処理装置における可撓性基板の位置制御装置であって、
     前記基板の各側縁部をそれぞれ挟持する各一対の挟持ローラと、
     前記各一対の挟持ローラをそれぞれ回転可能かつ各対において相互に接離可能に支持する各支持機構と、
     前記各支持機構を介して前記各一対の挟持ローラに加圧力を付与する付勢手段と、
     前記付勢手段による前記加圧力の調整手段と、を備え、
     前記各一対の挟持ローラは、それぞれの軸方向が前記基板の挟持面に対して基板幅方向縁端側に向かって離れる傾斜を有しかつ前記挟持面における回転方向が前記基板の搬送方向と同方向になるように、前記各支持機構によって支持されている、可撓性基板の位置制御装置。
  15.  前記各一対の挟持ローラを構成する各ローラが、その軸方向に対して傾斜した周面を有する円錐ローラである、請求項14に記載の可撓性基板の位置制御装置。
     
PCT/JP2010/050140 2009-01-28 2010-01-08 可撓性基板の位置制御装置 WO2010087218A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/146,908 US20120031565A1 (en) 2009-01-28 2010-01-08 Flexible substrate position control device
CN2010800063034A CN102300796A (zh) 2009-01-28 2010-01-08 柔性基板位置控制设备
EP10735688A EP2392528A1 (en) 2009-01-28 2010-01-08 Position controller for flexible substrate
JP2010548452A JPWO2010087218A1 (ja) 2009-01-28 2010-01-08 可撓性基板の位置制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-016440 2009-01-28
JP2009016440 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087218A1 true WO2010087218A1 (ja) 2010-08-05

Family

ID=42395480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050140 WO2010087218A1 (ja) 2009-01-28 2010-01-08 可撓性基板の位置制御装置

Country Status (5)

Country Link
US (1) US20120031565A1 (ja)
EP (1) EP2392528A1 (ja)
JP (1) JPWO2010087218A1 (ja)
CN (1) CN102300796A (ja)
WO (1) WO2010087218A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166639A (ja) * 2012-02-16 2013-08-29 Hirano Tecseed Co Ltd ウエブの支持装置
KR20170003587U (ko) * 2016-04-07 2017-10-17 어플라이드 머티어리얼스, 인코포레이티드 기판을 지지하기 위한 캐리어 및 이를 위한 장치
CN107954239A (zh) * 2017-12-19 2018-04-24 东莞市祐铭自动化科技有限公司 布匹输送纠偏装置
JP2021523979A (ja) * 2018-04-30 2021-09-09 アイクストロン、エスイー 炭素含有コーティングにより基板をコーティングするための装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989311B1 (fr) * 2012-04-17 2021-01-22 Mgi France Dispositif et procede de transport de substrats dans une machine d’impression
CN102910477B (zh) * 2012-11-14 2015-10-21 东莞市雅康精密机械有限公司 料带的展平机构
JP5832457B2 (ja) * 2013-01-28 2015-12-16 株式会社沖データ 媒体搬送装置及び画像形成装置
KR102092925B1 (ko) * 2013-07-03 2020-03-25 삼성디스플레이 주식회사 표시 패널용 지지 장치 및 이를 이용한 표시 장치의 제조 방법
DE102015110087A1 (de) * 2015-06-23 2016-12-29 Aixtron Se Fördereinrichtung für ein Substrat
CN110691746B (zh) * 2017-06-02 2021-06-22 株式会社天田欧立 辊式送料器
CN107215724B (zh) * 2017-06-12 2018-08-10 河北网晟信息科技有限公司 一种信息扫描装置
JP2019044288A (ja) * 2017-08-31 2019-03-22 株式会社プレックス 布類掴みチャックおよび布類ハンドリング装置
CN207793418U (zh) * 2018-01-30 2018-08-31 北京铂阳顶荣光伏科技有限公司 一种镀膜设备
DE102018215100A1 (de) * 2018-05-28 2019-11-28 Sms Group Gmbh Vakuumbeschichtungsanlage, und Verfahren zum Beschichten eines bandförmigen Materials
US11260679B2 (en) * 2018-12-21 2022-03-01 Kateeva, Inc. Gripping for print substrates
CN110327168B (zh) * 2019-05-06 2024-08-16 南京康尼智能技术有限公司 一种用于轮椅的活动桌板机构
CN110329757B (zh) * 2019-08-02 2021-02-23 天津丹阳车圈有限公司 一种直传式车圈下料机构
CN110329721B (zh) * 2019-08-02 2021-02-26 天津丹阳车圈有限公司 一种直传式车圈输送吊挂装置
CN112846604B (zh) * 2019-11-27 2022-06-28 上海微电子装备(集团)股份有限公司 张网装置及张网方法
CN111276435B (zh) * 2020-03-19 2022-04-15 中国科学院苏州生物医学工程技术研究所 宽范围、均匀应变的柔性电子基底近圆式拉伸系统
CN112224531A (zh) * 2020-10-12 2021-01-15 广东三丰诺德环境科技有限公司 一种牵引装置及自动打包装置
EP3989271B1 (en) * 2020-10-20 2024-06-05 Semsysco GmbH Clipping mechanism for fastening a substrate for a surface treatment of the substrate
CN113543626B (zh) * 2021-07-19 2022-11-11 珠海市硅酷科技有限公司 一种半导体芯片加工用贴装设备
CN113899483A (zh) * 2021-09-28 2022-01-07 彩虹显示器件股份有限公司 一种检测基板玻璃制造中辊子夹持力的装置和方法
CN117163726B (zh) * 2023-11-02 2024-01-05 山东源自然家居用品有限公司 一种用于床单生产的卷布装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147898A (en) * 1962-07-10 1964-09-08 William F Huck Transverse web control devices
DE3048322A1 (de) * 1979-12-17 1981-10-22 Berthold & Güttinger AG, 9052 Niederteufen Vorrichtung zum transportieren und fuehren eines bandfoermigen fotografischen aufzeichnungstraegers in einer fotosetzmaschine
JPS6117964Y2 (ja) * 1981-06-05 1986-05-31
JPS62173622A (ja) * 1986-01-28 1987-07-30 Tohoku Metal Ind Ltd 垂直磁気記録媒体の製造方法
JP2005072408A (ja) 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 薄膜製造装置および薄膜製造方法
JP2008031505A (ja) * 2006-07-27 2008-02-14 Fuji Electric Systems Co Ltd 成膜装置および成膜方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726807A (en) * 1986-04-10 1988-02-23 Weyerhaeuser Company Diaper with elastic margins
JP3959638B2 (ja) * 2003-03-14 2007-08-15 ブラザー工業株式会社 画像読取り装置における用紙搬送装置
CN101796216B (zh) * 2008-03-31 2012-01-25 富士电机株式会社 薄膜叠层体的制造装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147898A (en) * 1962-07-10 1964-09-08 William F Huck Transverse web control devices
DE3048322A1 (de) * 1979-12-17 1981-10-22 Berthold & Güttinger AG, 9052 Niederteufen Vorrichtung zum transportieren und fuehren eines bandfoermigen fotografischen aufzeichnungstraegers in einer fotosetzmaschine
JPS6117964Y2 (ja) * 1981-06-05 1986-05-31
JPS62173622A (ja) * 1986-01-28 1987-07-30 Tohoku Metal Ind Ltd 垂直磁気記録媒体の製造方法
JP2005072408A (ja) 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 薄膜製造装置および薄膜製造方法
JP2008031505A (ja) * 2006-07-27 2008-02-14 Fuji Electric Systems Co Ltd 成膜装置および成膜方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166639A (ja) * 2012-02-16 2013-08-29 Hirano Tecseed Co Ltd ウエブの支持装置
KR20170003587U (ko) * 2016-04-07 2017-10-17 어플라이드 머티어리얼스, 인코포레이티드 기판을 지지하기 위한 캐리어 및 이를 위한 장치
KR200493207Y1 (ko) 2016-04-07 2021-02-17 어플라이드 머티어리얼스, 인코포레이티드 기판을 지지하기 위한 캐리어 및 이를 위한 장치
CN107954239A (zh) * 2017-12-19 2018-04-24 东莞市祐铭自动化科技有限公司 布匹输送纠偏装置
JP2021523979A (ja) * 2018-04-30 2021-09-09 アイクストロン、エスイー 炭素含有コーティングにより基板をコーティングするための装置
JP7406503B2 (ja) 2018-04-30 2023-12-27 アイクストロン、エスイー 炭素含有コーティングにより基板をコーティングするための装置

Also Published As

Publication number Publication date
JPWO2010087218A1 (ja) 2012-08-02
CN102300796A (zh) 2011-12-28
EP2392528A1 (en) 2011-12-07
US20120031565A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2010087218A1 (ja) 可撓性基板の位置制御装置
JP5652700B2 (ja) 可撓性基板の位置制御装置
JP5201490B2 (ja) 可撓性基板の処理装置および薄膜積層体の製造装置
KR101747989B1 (ko) 띠 모양의 시트 기판을 위한 반송 장치 및 처리 장치
WO2011070960A1 (ja) 可撓性基板の搬送装置
TWI567019B (zh) 張力調節裝置及使用其之連續卷材處理方法
JP5126088B2 (ja) 薄膜積層体の製造装置
JP2002003035A (ja) ウエブの蛇行制御装置およびこの蛇行制御装置を用いたセラミックグリーンシートの製造装置
US20120160165A1 (en) Apparatus for manufacturing a thin film laminate
JP2010177343A (ja) 薄膜積層体の製造装置
WO2011077901A1 (ja) 薄膜積層体の製造装置
JP2011032555A (ja) 薄膜積層体製造装置の基板位置制御装置
JP5787216B2 (ja) 薄膜積層体製造装置およびその運転方法
JP5488997B2 (ja) 薄膜積層体製造装置の基板位置制御装置
TW201121866A (en) Device for processing a foil substrate
JP2011032554A (ja) 薄膜積層体製造装置
JP5196283B2 (ja) 可撓性基板の位置制御装置
JP2011146437A (ja) 可撓性基板の位置制御装置
JP2013004727A (ja) 帯状可撓性基板の案内装置
JP2024130089A (ja) 基材搬送装置
CN110914179A (zh) 将柔性基片结合到载体上的方法和装置
JP2010177344A (ja) 薄膜積層体の製造装置
JP2010215371A (ja) 帯状可撓性基板搬送システムおよびそれに用いる搬送位置制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006303.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010548452

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010735688

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13146908

Country of ref document: US