WO2009122613A1 - 管の異材判定方法 - Google Patents

管の異材判定方法 Download PDF

Info

Publication number
WO2009122613A1
WO2009122613A1 PCT/JP2008/071366 JP2008071366W WO2009122613A1 WO 2009122613 A1 WO2009122613 A1 WO 2009122613A1 JP 2008071366 W JP2008071366 W JP 2008071366W WO 2009122613 A1 WO2009122613 A1 WO 2009122613A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
length
weight
pipe
measured
Prior art date
Application number
PCT/JP2008/071366
Other languages
English (en)
French (fr)
Inventor
一 大迫
武 前川
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to US12/738,103 priority Critical patent/US8091394B2/en
Priority to JP2008555547A priority patent/JP4284666B1/ja
Publication of WO2009122613A1 publication Critical patent/WO2009122613A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product

Definitions

  • the present invention relates to a method for determining a different material of a pipe, which can accurately determine the presence or absence of a different material of the pipe.
  • the billet of the material is first heated in a rotary hearth-type heating furnace and then sequentially supplied to the rolling line.
  • a hollow shell is manufactured by piercing and rolling a billet with a piercing and rolling mill using a piercer plug and a rolling roll.
  • a mandrel bar is inserted into a skewer shape on the inner surface of the hollow shell, and the outer surface is constrained by a perforated roll in a mandrel mill equipped with a plurality of rolling stands, thereby reducing the thickness to a predetermined thickness.
  • the mandrel bar is pulled out, and the thinned raw pipe is subjected to constant diameter rolling to a predetermined outer diameter with a constant diameter rolling mill equipped with a plurality of rolling stands to obtain a pipe.
  • the pipe rolled in this way is measured for weight and length in the actual penetration / measurement process, and it is determined whether or not it is within a predetermined tolerance.
  • the material of the pipe is determined by component analysis and measurement of physical property values, thereby determining the presence or absence of different materials. That is, the presence / absence of the different material (1) among the different materials (1) to (3) is mainly determined.
  • the present invention has been made in view of such prior art, and can accurately determine different materials (tubes mixed from other production lots or tubes transferred in the same production lot by changing the order). It is an object of the present invention to provide a method for determining a different material of a pipe.
  • the present invention provides different materials in a pipe manufacturing process including a rolling process and an actual through / measuring process for measuring the weight and length of each pipe rolled by the rolling process.
  • a method for determination comprising the following steps (a) to (d).
  • D) Different material determination step The presence or absence of a different material is determined.
  • the foreign material determination step (d) includes the following steps (d1) to (d3).
  • D1 The length of the tube measured in the dimension measuring step and the length of the tube measured in the actual penetration / length measuring step tied to the tube are compared to determine the presence or absence of a different material.
  • D2 The weight of the pipe calculated in the weight calculation step is compared with the weight of the pipe that is linked to the pipe and measured in the actual penetration / measurement step to determine the presence or absence of different materials.
  • D3 The presence / absence of a different material is determined based on the tube material determined in the material determination step.
  • the length of the tube is measured for each tube after the rolling step and before the actual penetration / measurement step (dimension measuring step (a)). Then, the length of the pipe measured in this dimension measurement process is compared with the length of the pipe measured in the actual penetration and length measurement process, which is tied to the pipe, and the presence or absence of a different material is determined ((d1) Step).
  • the length of the tube measured in the dimension measuring step is stored for each tube. Then, the stored length of each pipe is compared with the length measured in the actual penetration / length measurement process of the pipe (recognized as the same pipe) linked to each pipe by tracking or the like.
  • tube is calculated for every pipe
  • the weight of the tube calculated in the weight calculating step based on the outer diameter, thickness and length of the tube measured in the dimension measuring step is stored for each tube. Then, the stored weight of each pipe is compared with the weight measured in the actual penetration / length measurement process of the pipe (recognized as the same pipe) linked to each pipe by tracking or the like. At this time, for example, when the difference between the two is outside the predetermined range, different materials are mixed between the dimension measurement process and the actual penetration / measurement process (that is, the pipes for which the weights are compared are the same). It may be determined that it is not a tube. The pipes for comparing the weights are the same pipes if different materials are not mixed.
  • the “weight of the pipe” in the present invention is used as a concept including the weight of the entire length of the pipe and the weight per unit length of the pipe.
  • the material of the tube is determined for each tube (material determining step (c)). Then, the presence / absence of a different material is determined based on the tube material determined in the material determination step (step (d3)). Therefore, the different material (1) described above can be detected as in the conventional case.
  • the said different material determination process further includes the following steps (d4) and (d5).
  • (D4) The length of the tube measured in the previous dimension measuring step and the length of the tube measured in the subsequent dimension measuring step tied to the tube are compared to determine the presence or absence of a different material.
  • (D5) The weight of the tube calculated in the previous weight calculation step is compared with the weight of the tube linked to the tube and calculated in the subsequent weight calculation step to determine the presence or absence of a different material.
  • the pipe of each measured in a plurality of dimension measurement processes rather than determining the presence or absence of different materials only by comparison with the length and weight of the pipe measured in the actual penetration and length measurement process, the pipe of each measured in a plurality of dimension measurement processes. Since the lengths and the weights of the tubes calculated in the plurality of weight calculation steps are also compared to determine the presence / absence of the different material, it is possible to further increase the accuracy of determining the different material.
  • FIG. 1 is a block diagram for explaining a pipe dissimilar material determination method according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining a pipe dissimilar material determination method according to the second embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a pipe dissimilar material determination method according to the third embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a pipe dissimilar material determination method according to the fourth embodiment of the present invention.
  • FIG. 1 is a block diagram for explaining a pipe dissimilar material determination method according to the first embodiment of the present invention.
  • arrows indicated by solid lines indicate the flow of pipes
  • arrows indicated by wavy lines indicate the flow of information.
  • the outer diameter, the wall thickness, and the length of the pipe are measured for each pipe.
  • the outer diameter, thickness, and length of the pipe are measured by a measuring instrument installed in the pipe conveyance line.
  • the type of measuring instrument is not particularly limited, but the outer diameter of the tube is measured by, for example, an optical outer diameter meter.
  • the thickness of the tube is measured by, for example, an ultrasonic thickness gauge of the tube.
  • the length of the tube is measured by, for example, a laser Doppler type length meter.
  • the measured outer diameter, thickness and length of the pipe are then input and stored in a process computer for controlling the pipe manufacturing process, either automatically or manually by an operator. At this time, the measured outer diameter, thickness, and length of the pipe are stored in association with an identifier assigned to the pipe.
  • the weight of the tube is calculated for each tube based on the outer diameter, thickness and length of the tube measured in the dimension measurement step.
  • This weight calculation step is executed by the process computer. Specifically, the process computer calculates the volume of the pipe from the stored outer diameter, thickness and length of the pipe, and the calculated volume of the pipe input from a higher-level production management system or the like. By multiplying the density, the total weight of the tube is calculated. Alternatively, by calculating the volume per unit length of the pipe from the stored outer diameter and thickness of the pipe, and multiplying the calculated volume by the density of the pipe input from a higher-level production management system or the like Calculate the weight per unit length of the tube.
  • the calculated weight (weight of the total length of the pipe or weight per unit length of the pipe) is stored in the process computer in association with an identifier assigned to the pipe.
  • the material of the pipe whose outer diameter, thickness and length are measured in the dimension measurement process is determined for each pipe in the material determination process.
  • the method for determining the material is not particularly limited.
  • the components contained in the tube are analyzed by an emission spectroscopic analyzer.
  • the analysis result is input and stored in the process computer automatically or manually by an operator. At this time, the analysis result is stored in association with the identifier assigned to the tube.
  • the pipe whose material has been determined in the material determining process is measured for weight and length for each pipe in the actual penetration / length measuring process.
  • the method for measuring the weight and length of the tube is not particularly limited, but the weight of the tube is measured by, for example, a load cell.
  • the length of the tube can be measured by, for example, a laser Doppler type length meter, or can be measured by an operator using a tape measure.
  • the measured tube weight (weight of the total length of the tube or weight per unit length of the tube) and length are input and stored in the process computer automatically or manually by the operator. At this time, the measured weight and length of the tube are stored in association with an identifier assigned to the tube.
  • the process computer includes the length of the pipe measured in the dimension measurement process (hereinafter referred to as length L1) and the length of the pipe measured in the actual penetration / length measurement process linked to the pipe (hereinafter referred to as long). To determine whether or not a different material is present. Specifically, the pipe length L1 and the length L2 stored in association with the same identifier are compared, and the difference between the two is outside the management range input from the upper production management system or the like. Is that different materials were mixed between the dimension measurement process and the actual measurement / length measurement process (that is, the pipes compared in length are assigned the same identifier, but are not the same pipe). judge.
  • the process computer calculates the weight of the tube calculated in the weight calculation step (hereinafter referred to as weight W1) and the weight of the tube linked to the tube and measured in the actual penetration / measurement step (hereinafter referred to as weight W2). And the presence or absence of a different material is determined. Specifically, the weights W1 and W2 of the pipes stored in association with the same identifier are compared, and the difference between the two is outside the management range input from the higher-level production management system or the like. It is determined that a different material is mixed between the dimension measurement process and the actual penetration / measurement process (that is, the pipes compared in weight are assigned the same identifier but are not the same pipe).
  • the process computer determines the presence / absence of a different material based on the material of the pipe determined in the material determination step.
  • the stored tube material for example, components contained in the tube analyzed by emission spectroscopic analysis
  • should be included in the tube material from the higher-level production management system. If the component is out of the management range, it is determined that a different material is mixed.
  • this embodiment demonstrated the aspect which performs a material determination process before an actual penetration / length measurement process, this invention is not restricted to this, A material determination process is performed after an actual penetration / length measurement process. It is also possible to execute.
  • the pipe manufacturing process includes a heat treatment process between the rolling process and the actual penetration / length measurement process, and the dimension is only once after the rolling process and before the heat treatment process. A measurement process is performed.
  • FIG. 2 is a block diagram for explaining a pipe dissimilar material determination method according to the second embodiment of the present invention.
  • arrows indicated by solid lines indicate the flow of tubes
  • arrows indicated by wavy lines indicate the flow of information.
  • the present embodiment is different from the first embodiment in that a heat treatment step is included between the dimension measurement step and the actual penetration / measurement step.
  • scale is generated on the surface of the tube by oxidation, so that the weight of the tube after the heat treatment step is smaller than the weight of the tube before the heat treatment step (scale loss occurs).
  • the weight W1 (the weight of the tube calculated in the weight calculation step) and the weight W2 (the weight of the tube measured in the actual penetration / measurement step) stored in association with the same identifier. Is simply compared, there is a possibility that the difference between the two is out of the management range.
  • the weight W1 and the weight W2 of the pipe are compared in the dissimilar material determination process in consideration of the design value of the scale loss input from the upper production management system or the like. That is, the weight W1 of the pipe is compared with the sum of the weight W2 and the scale loss, and it is determined whether or not the difference between the two is within the management range.
  • tube are compared simply, it can anticipate that the determination precision of a different material increases. Since other points are the same as those in the first embodiment, description thereof is omitted here.
  • the dimension measurement step and the weight calculation step are executed a plurality of times for one pipe.
  • the pipe manufacturing process includes a heat treatment process between the rolling process and the actual and length measurement process, and the dimension measurement process is executed once before and after the heat treatment process, and the weight calculation process is performed accordingly. Is also executed twice.
  • FIG. 3 is a block diagram illustrating a pipe dissimilar material determination method according to the third embodiment of the present invention.
  • arrows indicated by solid lines indicate the flow of tubes
  • arrows indicated by wavy lines indicate the flow of information.
  • the length of the tube measured in the dimension measurement step A2 and the actual string linked to the tube are the same as in the dissimilar material determination step in the first embodiment.
  • the presence or absence of dissimilar materials is determined by comparing the tube length measured in the penetration and length measurement process.
  • the presence or absence of a different material is determined by comparing the weight of the pipe calculated in the weight calculation step B2 with the weight of the pipe linked to the pipe and measured in the actual penetration / length measurement step. Furthermore, the presence / absence of a different material is determined based on the material of the tube determined in the material determination step.
  • the different material determination method for pipes according to the present embodiment is characterized in that not only the above-described different material determination step C2 but also the different material determination step C1 is executed. That is, in the different material determination step C1, the length of the tube measured in the previous dimension measurement step A1 is compared with the length of the tube linked to the tube and measured in the subsequent dimension measurement step A2. Determine presence or absence. Further, the weight of the tube calculated in the previous weight calculation step B1 and the weight of the tube calculated in the subsequent weight calculation step B2 tied to the tube are compared to determine the presence or absence of a different material. In this comparison, as in the second embodiment, the design value of scale loss input from a higher-level production management system or the like is taken into consideration.
  • the presence / absence of dissimilar materials is not determined only by comparison with the length and weight of the pipe measured in the actual penetration / measurement process.
  • the presence or absence of dissimilar materials is determined by comparing the lengths of the tubes measured in the dimension measuring steps A1 and A2 and the weights of the tubes calculated in the multiple weight calculation steps B1 and B2, respectively. It is possible to further increase the determination accuracy. Since other points are the same as those in the first embodiment, description thereof is omitted here.
  • the dimension measurement step and the weight calculation step are executed a plurality of times for one pipe, as in the third embodiment.
  • the pipe manufacturing process includes a heat treatment process and a cutting process between the rolling process and the actual penetration / measurement process, and is performed before the heat treatment process, between the heat treatment process and the cutting process, and after the cutting process.
  • the dimension measuring process is executed once, and the weight calculating process is also executed three times.
  • FIG. 4 is a block diagram illustrating a pipe dissimilar material determination method according to the fourth embodiment of the present invention.
  • arrows indicated by solid lines indicate the flow of tubes
  • arrows indicated by wavy lines indicate the flow of information.
  • the length of the tube measured in the dimension measurement step A3 ′ is tied to the tube, similarly to the different material determination step C2 in the third embodiment.
  • the presence or absence of a different material is determined by comparing the length of the pipe measured in the actual penetration and length measurement process.
  • the presence or absence of a different material is determined by comparing the weight of the tube calculated in the weight calculation step B3 ′ with the weight of the tube linked to the tube and measured in the actual penetration / measurement step. Furthermore, the presence / absence of a different material is determined based on the material of the tube determined in the material determination step.
  • the presence or absence of a different material is determined by comparing the length of the tube measured in the dimension measuring step A2 ′.
  • the weight of the tube calculated in the previous weight calculation step B1 ′ and the weight of the tube calculated in the subsequent weight calculation step B2 ′ associated with the tube are compared to determine the presence or absence of different materials. .
  • the different-material determination method for a pipe is characterized in that not only the above-described different-material determination steps C1 'and C3' but also the different-material determination step C2 'is executed. That is, in the different material determination step C2 ′, the length of the tube measured in the previous dimension measurement step A2 ′ is compared with the length of the tube linked to the tube and measured in the subsequent dimension measurement step A3 ′. The presence / absence of a different material is determined.
  • the length of the tube cut in the cutting step is input to a process computer and stored automatically or manually by an operator. At this time, the cut length of the pipe is stored in association with an identifier assigned to the pipe.
  • the stored cut length of the tube is taken into consideration. That is, the tube length measured in the previous dimension measurement step A2 ′ is compared with the length of the tube measured in the subsequent dimension measurement step A3 ′ and the sum of the cut lengths, and the difference between the two is within the control range. It is determined whether or not. Further, the weight of the tube calculated in the previous weight calculation step B2 ′ is compared with the weight of the tube calculated in the subsequent weight calculation step B3 ′ associated with the tube to determine the presence or absence of a different material. . When the weight to be compared is the weight of the entire length of the pipe, the cut length of the pipe is taken into consideration as in the case of comparing the lengths of the pipes.
  • the presence / absence of dissimilar materials is not determined only by comparison with the length and weight of the pipe measured in the actual penetration / measurement process.
  • the pipe lengths measured in the dimension measurement steps A1 ′ to A3 ′ and the tube weights calculated in the multiple weight calculation steps B1 ′ to B3 ′ are also compared to determine the presence or absence of different materials. For this reason, it is possible to further increase the accuracy of determining different materials. Since other points are the same as those in the first embodiment, description thereof is omitted here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Metal Rolling (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 異材を精度良く判定可能な管の異材判定方法を提供する。  本発明に係る異材判定方法は、寸法測定工程で1本毎に測定した管の長さと、当該管に紐付けられた、実貫・測長工程で測定した管の長さとを比較して、異材の有無を判定するステップと、重量算出工程で1本毎に算出した管の重量と、当該管に紐付けられた、実貫・測長工程で測定した管の重量とを比較して、異材の有無を判定するステップと、材質判定工程で1本毎に判定した管の材質に基づいて、異材の有無を判定するステップとを含む異材判定工程を有することを特徴とする。

Description

管の異材判定方法
 本発明は、管の異材の有無を精度良く判定可能な管の異材判定方法に関する。
 マンネスマン-マンドレルミル方式による継目無管の製造においては、まず素材のビレットを回転炉床式加熱炉で加熱した後、順次圧延ラインに供給する。具体的には、ビレットを穿孔圧延機でピアサプラグと圧延ロールとを用いて穿孔圧延してホローシェルを製造する。次に、前記ホローシェルの内面にマンドレルバーを串状に挿入し、複数の圧延スタンドを備えるマンドレルミルで外面を孔型ロールで拘束して延伸圧延することにより、所定の肉厚まで減肉する。その後、マンドレルバーを抜き取り、前記減肉された素管を、複数の圧延スタンドを備える定径圧延機で所定外径に定径圧延して管を得る。このようにして圧延された管は、実貫・測長工程において、重量や長さが測定され、予め定められた公差内にあるか否かが判定される。
 ところで、圧延された管が実貫・測長工程に搬送される過程(熱処理工程や切断工程も含む)において、(1)重量や長さが同一又は近似するが、他の製造ロットの材質の異なる管が混入する虞がある。また、(2)材質は同じであるが、他の製造ロットの重量や長さの異なる管が混入する虞もある。さらには、(3)同一の製造ロット内の管同士ではあるが、順序が入れ替わって搬送される虞もある。
 客先の要求仕様(材質、長さ、重量)を満足する管を出荷する必要があるのみならず、管1本毎の製造履歴を明確にする要求が増加している昨今の状況に鑑みれば、上記(1)~(3)のような全ての異材(他の製造ロットから混入した管や、同一の製造ロット内で順序が入れ替わって搬送された管)の有無を精度良く判定することが望まれる。
 しかしながら、従来は、主として、日本国特開2001-153843号公報に記載のように、成分分析や物性値の測定によって管の材質を判定し、これにより異材の有無を判定している。すなわち、上記(1)~(3)の異材のうち、主として(1)の異材の有無の判定を行っている。
 前述のように、従来より、実貫・測長工程において測定した管の重量や長さが予め定められた公差内にあるか否かを判定しているため、この公差から外れる異材については、上記(2)や(3)の異材であっても検出できる可能性はある。
 しかしながら、上記の公差は製造バラツキを加味したある程度大きな値に設定せざるを得ないので、正常な管と近似した重量や長さを有する上記(2)や(3)の異材を検出することはできない。
 本発明は、斯かる従来技術に鑑みてなされたものであり、異材(他の製造ロットから混入した管や、同一の製造ロット内で順序が入れ替わって搬送された管)を精度良く判定可能な管の異材判定方法を提供することを課題とする。
 前記課題を解決するため、本発明は、圧延工程と、該圧延工程によって圧延された管1本毎の重量及び長さを測定する実貫・測長工程とを含む管の製造工程において異材を判定する方法であって、以下の(a)~(d)の工程を含むことを特徴とする。
 (a)寸法測定工程:前記圧延工程より後に且つ前記実貫・測長工程より前において、管の外径、肉厚及び長さを管1本毎に測定する。
 (b)重量算出工程:前記寸法測定工程で測定された管の外径、肉厚及び長さに基づき、管の重量を管1本毎に算出する。
 (c)材質判定工程:前記圧延工程より後に、管の材質を管1本毎に判定する。
 (d)異材判定工程:異材の有無を判定する。
 そして、上記(d)の異材判定工程は、以下の(d1)~(d3)のステップを含むことを特徴とする。
 (d1)前記寸法測定工程で測定した管の長さと、当該管に紐付けられた、前記実貫・測長工程で測定した管の長さとを比較して、異材の有無を判定する。
 (d2)前記重量算出工程で算出した管の重量と、当該管に紐付けられた、前記実貫・測長工程で測定した管の重量とを比較して、異材の有無を判定する。
 (d3)前記材質判定工程で判定した管の材質に基づいて、異材の有無を判定する。
 本発明によれば、圧延工程より後に且つ実貫・測長工程より前において、管の長さを管1本毎に測定する((a)の寸法測定工程)。そして、この寸法測定工程で測定した管の長さと、当該管に紐付けられた、実貫・測長工程で測定した管の長さとを比較して、異材の有無を判定する((d1)のステップ)。
 換言すれば、本発明では、寸法測定工程で測定した管の長さを1本毎に記憶しておく。そして、この記憶された各管の長さと、トラッキング等により各管に紐付けられた(同一の管であると認識された)管の実貫・測長工程で測定した長さとを比較する。このとき、例えば、両者の差が予め定めた範囲外である場合には、寸法測定工程と、実貫・測長工程との間において、異材が混入した(つまり、長さを比較した管は同一の管ではない)と判定すればよい。長さを比較する管は、異材が混入していなければ同一の管である。このため、上記の範囲には製造バラツキを考慮する必要がなく、実貫・測長工程において従来より設定されている公差に比べて、上記の範囲を小さな値に設定可能である。従って、比較する管の長さが異なる限り(上記の範囲外である限り)、前述した(2)や(3)の異材をも精度良く検出することが可能である。
 また、本発明によれば、寸法測定工程で測定された管の外径、肉厚及び長さに基づき、管の重量を管1本毎に算出する((b)の重量算出工程)。つまり、測定された管の外径、肉厚及び長さから管の体積が算出できるため、この体積に予め設定した管の密度を乗算することにより、管の重量を算出可能である。そして、この重量算出工程で測定した管の重量と、当該管に紐付けられた、実貫・測長工程で測定した管の重量とを比較して、異材の有無を判定する((d2)のステップ)。
 換言すれば、本発明では、寸法測定工程で測定した管の外径、肉厚及び長さに基づき重量算出工程で算出した管の重量を1本毎に記憶しておく。そして、この記憶された各管の重量と、トラッキング等により各管に紐付けられた(同一の管であると認識された)管の実貫・測長工程で測定した重量とを比較する。このとき、例えば、両者の差が予め定めた範囲外である場合には、寸法測定工程と、実貫・測長工程との間において、異材が混入した(つまり、重量を比較した管は同一の管ではない)と判定すればよい。重量を比較する管は、異材が混入していなければ同一の管である。このため、上記の範囲には製造バラツキを考慮する必要がなく、実貫・測長工程において従来より設定されている公差に比べて、上記の範囲を小さな値に設定可能である。従って、比較する管の重量が異なる限り(上記の範囲外である限り)、前述した(2)や(3)の異材をも精度良く検出することが可能である。
 なお、本発明における「管の重量」とは、管全長の重量の他、管の単位長さ当たりの重量も含まれる概念として使用している。
 さらに、本発明によれば、圧延工程より後に、管の材質を管1本毎に判定する((c)の材質判定工程)。そして、この材質判定工程で判定した管の材質に基づいて、異材の有無を判定する((d3)のステップ)。
 従って、従来と同様に、前述した(1)の異材を検出することが可能である。
 以上のように、本発明によれば、前述した(1)~(3)のような全ての異材(他の製造ロットから混入した管や、同一の製造ロット内で順序が入れ替わって搬送された管)の有無を精度良く判定することが可能である。
 なお、前記寸法測定工程及び前記重量算出工程は、1本の管について複数回実行することが好ましい。そして、前記異材判定工程は、以下の(d4)及び(d5)のステップを更に含むことが好ましい。
 (d4)先の前記寸法測定工程で測定した管の長さと、当該管に紐付けられた、後の前記寸法測定工程で測定した管の長さとを比較して、異材の有無を判定する。
 (d5)先の前記重量算出工程で算出した管の重量と、当該管に紐付けられた、後の前記重量算出工程で算出した管の重量とを比較して、異材の有無を判定する。
 斯かる好ましい態様によれば、実貫・測長工程で測定した管の長さ及び重量との比較のみで異材の有無を判定するのではなく、複数回の寸法測定工程でそれぞれ測定した管の長さ同士や、複数回の重量算出工程でそれぞれ算出した管の重量同士をも比較して、異材の有無を判定するため、異材の判定精度をより一層高めることが可能である。
 本発明に係る管の異材判定方法によれば、材質の異なる異材のみならず、全ての異材の有無を精度良く判定することが可能である。
図1は、本発明の第1実施形態に係る管の異材判定方法を説明するブロック図である。 図2は、本発明の第2実施形態に係る管の異材判定方法を説明するブロック図である。 図3は、本発明の第3実施形態に係る管の異材判定方法を説明するブロック図である。 図4は、本発明の第4実施形態に係る管の異材判定方法を説明するブロック図である。
 以下、添付図面を適宜参照しつつ、本発明に係る管の異材判定方法の実施形態について説明する。
 <第1実施形態>
 第1実施形態に係る管の異材判定方法では、管を圧延する圧延工程と、圧延された管1本毎の重量及び長さを測定する実貫・測長工程との間において、1回のみ寸法測定工程が実行される。
 図1は、本発明の第1実施形態に係る管の異材判定方法を説明するブロック図である。なお、図1において、実線で示す矢符は管の流れを、波線で示す矢符は情報の流れを意味する。
 図1に示すように、本実施形態に係る管の異材判定方法では、まず寸法測定工程において、管の外径、肉厚及び長さが管1本毎に測定される。管の外径、肉厚及び長さは、管の搬送ラインに設置された計測器によって測定される。計測器の種類は、特に限定されるものではないが、管の外径は、例えば光学式の外径計によって測定される。管の肉厚は、例えば管の超音波肉厚計によって測定される。管の長さは、例えばレーザドップラー式の測長計によって測定される。そして、測定された管の外径、肉厚及び長さは、自動的に又はオペレータによる手動で、管の製造工程を制御するためのプロセスコンピュータに入力され、記憶される。この際、測定された管の外径、肉厚及び長さは、当該管に割り当てられた識別子に紐付けて記憶される。
 次に、重量算出工程において、前記寸法測定工程で測定された管の外径、肉厚及び長さに基づき、管の重量が管1本毎に算出される。この重量算出工程は、前記プロセスコンピュータによって実行される。具体的には、前記プロセスコンピュータは、前記記憶された管の外径、肉厚及び長さから当該管の体積を算出し、この算出した体積に上位の生産管理システム等から入力された管の密度を乗算することにより、当該管の全長の重量を算出する。或いは、前記記憶された管の外径及び肉厚から当該管の単位長さ当たりの体積を算出し、この算出した体積に上位の生産管理システム等から入力された管の密度を乗算することにより、当該管の単位長さ当たりの重量を算出する。算出した重量(管全長の重量又は管の単位長さ当たりの重量)は、当該管に割り当てられた識別子に紐付けてプロセスコンピュータに記憶される。
 一方、寸法測定工程において外径、肉厚及び長さが測定された管は、材質判定工程において、管1本毎に材質が判定される。材質判定の方法は、特に限定されるものではないが、例えば、発光分光分析装置によって、管中に含まれる成分が分析される。その分析結果は、自動的に又はオペレータによる手動で、プロセスコンピュータに入力され、記憶される。この際、分析結果は、当該管に割り当てられた識別子に紐付けて記憶される。
 次に、材質判定工程において材質が判定された管は、実貫・測長工程において、管1本毎に重量及び長さが測定される。管の重量及び長さの測定方法は、特に限定されるものではないが、管の重量は、例えばロードセルによって測定される。管の長さは、例えばレーザドップラー式の測長計で測定したり、オペレータが巻き尺を使用して測定することも可能である。そして、測定された管の重量(管全長の重量又は管の単位長さ当たりの重量)及び長さは、自動的に又はオペレータによる手動で、プロセスコンピュータに入力され、記憶される。この際、測定された管の重量及び長さは、当該管に割り当てられた識別子に紐付けて記憶される。
 最後に、異材判定工程において、異材の有無が判定される。この異材判定工程は、前記プロセスコンピュータによって実行される。前記プロセスコンピュータは、寸法測定工程で測定した管の長さ(以下、長さL1という)と、当該管に紐付けられた、実貫・測長工程で測定した管の長さ(以下、長さL2という)とを比較して、異材の有無を判定する。具体的には、同一の識別子に紐付けて記憶された管の長さL1と長さL2とを比較し、両者の差が、上位の生産管理システム等から入力された管理範囲外である場合には、寸法測定工程と、実貫・測長工程との間において、異材が混入した(つまり、長さを比較した管は同一の識別子が割り当てられているものの、同一の管ではない)と判定する。
 また、前記プロセスコンピュータは、重量算出工程で算出した管の重量(以下、重量W1という)と、当該管に紐付けられた、実貫・測長工程で測定した管の重量(以下、重量W2という)とを比較して、異材の有無を判定する。具体的には、同一の識別子に紐付けて記憶された管の重量W1と重量W2とを比較し、両者の差が、上位の生産管理システム等から入力された管理範囲外である場合には、寸法測定工程と、実貫・測長工程との間において、異材が混入した(つまり、重量を比較した管は同一の識別子が割り当てられているものの、同一の管ではない)と判定する。
 さらに、前記プロセスコンピュータは、材質判定工程で判定した管の材質に基づいて、異材の有無を判定する。具体的には、記憶された管の材質(例えば、発光分光分析によって分析された管中に含まれる成分)が、上位の生産管理システム等から入力された管の材質(管中に含まれるべき成分)の管理範囲外である場合には、異材が混入したと判定する。
 以上に説明した本実施形態に係る管の異材判定方法によれば、材質の異なる異材のみならず、全ての異材の有無を精度良く判定することが可能である。
 なお、本実施形態では、実貫・測長工程の前に材質判定工程を実行する態様について説明したが、本発明はこれに限るものではなく、実貫・測長工程の後に材質判定工程を実行することも可能である。
 <第2実施形態>
 第2実施形態に係る管の異材判定方法では、管の製造工程が圧延工程と実貫・測長工程との間に熱処理工程を含み、圧延工程より後に且つ熱処理工程の前に1回のみ寸法測定工程が実行される。
 図2は、本発明の第2実施形態に係る管の異材判定方法を説明するブロック図である。なお、図2において、実線で示す矢符は管の流れを、波線で示す矢符は情報の流れを意味する。
 図2に示すように、本実施形態では、寸法測定工程と実貫・測長工程との間に熱処理工程が含まれる点で、第1実施形態と異なる。熱処理工程においては、酸化によって管の表面にスケールが生成されるため、熱処理工程後の管の重量は、熱処理工程前の管の重量よりも低減する(スケールロスが生じる)。このため、異材判定工程において、同一の識別子に紐付けて記憶された管の重量W1(重量算出工程で算出した管の重量)と重量W2(実貫・測長工程で測定した管の重量)とを単純に比較したのでは、両者の差が管理範囲外となる虞がある。
 従って、本実施形態では、異材判定工程において、上位の生産管理システム等から入力されたスケールロスの設計値を考慮して、管の重量W1と重量W2とを比較している。すなわち、管の重量W1と、重量W2及びスケールロスの和とを比較し、両者の差が管理範囲内であるか否かを判定している。これにより、管の重量W1と重量W2とを単純に比較する場合に比べて、異材の判定精度が高まることを期待できる。その他の点については、第1実施形態と同様であるため、ここでは説明を省略する。
 <第3実施形態>
 第3実施形態に係る管の異材判定方法では、寸法測定工程及び重量算出工程が1本の管について複数回実行される。具体的には、管の製造工程が圧延工程と実貫・測長工程との間に熱処理工程を含み、熱処理工程の前後で1回ずつ寸法測定工程が実行され、これに伴って重量算出工程も2回実行される。
 図3は、本発明の第3実施形態に係る管の異材判定方法を説明するブロック図である。なお、図3において、実線で示す矢符は管の流れを、波線で示す矢符は情報の流れを意味する。
 図3に示すように、本実施形態における異材判定工程C2では、第1実施形態における異材判定工程と同様に、寸法測定工程A2で測定した管の長さと、当該管に紐付けられた、実貫・測長工程で測定した管の長さとを比較して、異材の有無を判定する。また、重量算出工程B2で算出した管の重量と、当該管に紐付けられた、実貫・測長工程で測定した管の重量とを比較して、異材の有無を判定する。さらに、材質判定工程で判定した管の材質に基づいて、異材の有無を判定する。
 本実施形態に係る管の異材判定方法は、上記の異材判定工程C2のみならず、異材判定工程C1を実行する点に特徴を有する。すなわち、異材判定工程C1では、先の寸法測定工程A1で測定した管の長さと、当該管に紐付けられた、後の寸法測定工程A2で測定した管の長さとを比較して、異材の有無を判定する。また、先の重量算出工程B1で算出した管の重量と、当該管に紐付けられた、後の重量算出工程B2で算出した管の重量とを比較して、異材の有無を判定する。この比較の際には、第2実施形態と同様に、上位の生産管理システム等から入力されたスケールロスの設計値を考慮している。
 以上のように、本実施形態に係る管の異材判定方法では、実貫・測長工程で測定した管の長さ及び重量との比較のみで異材の有無を判定するのではなく、複数回の寸法測定工程A1、A2でそれぞれ測定した管の長さ同士や、複数回の重量算出工程B1、B2でそれぞれ算出した管の重量同士をも比較して、異材の有無を判定するため、異材の判定精度をより一層高めることが可能である。その他の点については、第1実施形態と同様であるため、ここでは説明を省略する。
 <第4実施形態>
 第4実施形態に係る管の異材判定方法では、第3実施形態と同様に、寸法測定工程及び重量算出工程が1本の管について複数回実行される。具体的には、管の製造工程が圧延工程と実貫・測長工程との間に熱処理工程及び切断工程を含み、熱処理工程の前、熱処理工程と切断工程との間、切断工程の後に1回ずつ寸法測定工程が実行され、これに伴って重量算出工程も3回実行される。
 図4は、本発明の第4実施形態に係る管の異材判定方法を説明するブロック図である。なお、図4において、実線で示す矢符は管の流れを、波線で示す矢符は情報の流れを意味する。
 図4に示すように、本実施形態における異材判定工程C3’では、第3実施形態における異材判定工程C2と同様に、寸法測定工程A3’で測定した管の長さと、当該管に紐付けられた、実貫・測長工程で測定した管の長さとを比較して、異材の有無を判定する。また、重量算出工程B3’で算出した管の重量と、当該管に紐付けられた、実貫・測長工程で測定した管の重量とを比較して、異材の有無を判定する。さらに、材質判定工程で判定した管の材質に基づいて、異材の有無を判定する。
 また、本実施形態における異材判定工程C1’では、第3実施形態における異材判定工程C1と同様に、先の寸法測定工程A1’で測定した管の長さと、当該管に紐付けられた、後の寸法測定工程A2’で測定した管の長さとを比較して、異材の有無を判定する。また、先の重量算出工程B1’で算出した管の重量と、当該管に紐付けられた、後の重量算出工程B2’で算出した管の重量とを比較して、異材の有無を判定する。
 本実施形態に係る管の異材判定方法は、上記の異材判定工程C1’、C3’のみならず、異材判定工程C2’を実行する点に特徴を有する。すなわち、異材判定工程C2’では、先の寸法測定工程A2’で測定した管の長さと、当該管に紐付けられた、後の寸法測定工程A3’で測定した管の長さとを比較して、異材の有無を判定する。ここで、切断工程で切断された管の長さは、自動的に又はオペレータによる手動で、プロセスコンピュータに入力され、記憶される。この際、管の切断長さは、当該管に割り当てられた識別子に紐付けて記憶される。そして、前記長さの比較の際には、前記記憶された管の切断長さが考慮される。すなわち、先の寸法測定工程A2’で測定した管の長さと、後の寸法測定工程A3’で測定した管の長さ及び前記切断長さの和とを比較し、両者の差が管理範囲内であるか否かを判定している。また、先の重量算出工程B2’で算出した管の重量と、当該管に紐付けられた、後の重量算出工程B3’で算出した管の重量とを比較して、異材の有無を判定する。比較する重量が管全長の重量である場合には、上記の管の長さを比較する際と同様に、管の切断長さが考慮される。
 以上のように、本実施形態に係る管の異材判定方法では、実貫・測長工程で測定した管の長さ及び重量との比較のみで異材の有無を判定するのではなく、複数回の寸法測定工程A1’~A3’でそれぞれ測定した管の長さ同士や、複数回の重量算出工程B1’~B3’でそれぞれ算出した管の重量同士をも比較して、異材の有無を判定するため、異材の判定精度をより一層高めることが可能である。その他の点については、第1実施形態と同様であるため、ここでは説明を省略する。

Claims (2)

  1.  圧延工程と、該圧延工程によって圧延された管1本毎の重量及び長さを測定する実貫・測長工程とを含む管の製造工程において異材を判定する方法であって、
     前記圧延工程より後に且つ前記実貫・測長工程より前において、管の外径、肉厚及び長さを管1本毎に測定する寸法測定工程と、
     前記寸法測定工程で測定された管の外径、肉厚及び長さに基づき、管の重量を管1本毎に算出する重量算出工程と、
     前記圧延工程より後に、管の材質を管1本毎に判定する材質判定工程と、
     異材の有無を判定する異材判定工程とを含み、
     前記異材判定工程は、
     前記寸法測定工程で測定した管の長さと、当該管に紐付けられた、前記実貫・測長工程で測定した管の長さとを比較して、異材の有無を判定するステップと、
     前記重量算出工程で算出した管の重量と、当該管に紐付けられた、前記実貫・測長工程で測定した管の重量とを比較して、異材の有無を判定するステップと、
     前記材質判定工程で判定した管の材質に基づいて、異材の有無を判定するステップとを含むことを特徴とする管の異材判定方法。
  2.  前記寸法測定工程及び前記重量算出工程を1本の管について複数回実行し、
     前記異材判定工程は、
     先の前記寸法測定工程で測定した管の長さと、当該管に紐付けられた、後の前記寸法測定工程で測定した管の長さとを比較して、異材の有無を判定するステップと、
     先の前記重量算出工程で算出した管の重量と、当該管に紐付けられた、後の前記重量算出工程で算出した管の重量とを比較して、異材の有無を判定するステップとを更に含むことを特徴とする請求項1に記載の管の異材判定方法。
PCT/JP2008/071366 2008-03-31 2008-11-26 管の異材判定方法 WO2009122613A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/738,103 US8091394B2 (en) 2008-03-31 2008-11-26 Foreign pipe or tube determining method
JP2008555547A JP4284666B1 (ja) 2008-03-31 2008-11-26 管の異材判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-090819 2008-03-31
JP2008090819 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122613A1 true WO2009122613A1 (ja) 2009-10-08

Family

ID=41135025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071366 WO2009122613A1 (ja) 2008-03-31 2008-11-26 管の異材判定方法

Country Status (2)

Country Link
US (1) US8091394B2 (ja)
WO (1) WO2009122613A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118681A1 (ja) * 2010-03-25 2011-09-29 住友金属工業株式会社 鋼管の製造設備
CN105303031A (zh) * 2015-09-21 2016-02-03 中国科学技术馆 一种内隐记忆测试方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826949B2 (ja) * 2006-09-11 2011-11-30 住友金属工業株式会社 継目無管の製造状況モニタリング装置及び方法並びに継目無管製造設備
CN112577457A (zh) * 2020-11-27 2021-03-30 广东电网有限责任公司广州供电局 电线测量方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246423A (ja) * 1994-03-08 1995-09-26 Nisshin Steel Co Ltd 冷間圧延鋼板コイルの判別方法および装置
JP2001153843A (ja) * 1999-11-26 2001-06-08 Kawasaki Steel Corp 異材判定方法および装置
JP2004034048A (ja) * 2002-06-28 2004-02-05 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法及び製造設備

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496745A (en) * 1967-05-01 1970-02-24 Kocks Gmbh Friedrich Process for stretch-reducing tubes
DE3014359A1 (de) * 1980-04-15 1981-10-22 Kocks Technik GmbH & Co, 4000 Düsseldorf Steckreduzierwalzwerk zum herstellen von im durchmesser und in der wanddicke reduzierten fertigrohren aus mutterrohrstuecken
JPS5717316A (en) * 1980-07-04 1982-01-29 Kawasaki Steel Corp Method for automatic control of screw down of reeler mill
JPS6021114A (ja) * 1983-07-18 1985-02-02 Kawasaki Steel Corp 鋼管絞り圧延機の肉厚制御方法
JPS60137516A (ja) * 1983-12-26 1985-07-22 Kawasaki Steel Corp 穿孔圧延機の素管肉厚制御方法
SU1539004A1 (ru) * 1988-04-18 1990-01-30 Днепропетровский Трубопрокатный Завод Им.В.И.Ленина Установка дл резки длинномерных изделий
JPH03138008A (ja) * 1989-10-25 1991-06-12 Nkk Corp 継目無管の圧延制御装置
US5119109A (en) * 1990-06-18 1992-06-02 Telesis Controls Corporation Method and apparatus for marking the inside surface of pipe
JPH0639412A (ja) * 1992-07-22 1994-02-15 Nkk Corp 鋼管の熱間圧延方法
JPH0810817A (ja) * 1994-06-23 1996-01-16 Sumitomo Metal Ind Ltd タンデム配置されたマンドレルミルと定径圧延機とでの管長さ制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246423A (ja) * 1994-03-08 1995-09-26 Nisshin Steel Co Ltd 冷間圧延鋼板コイルの判別方法および装置
JP2001153843A (ja) * 1999-11-26 2001-06-08 Kawasaki Steel Corp 異材判定方法および装置
JP2004034048A (ja) * 2002-06-28 2004-02-05 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法及び製造設備

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118681A1 (ja) * 2010-03-25 2011-09-29 住友金属工業株式会社 鋼管の製造設備
CN102821882A (zh) * 2010-03-25 2012-12-12 住友金属工业株式会社 钢管的制造设备
JPWO2011118681A1 (ja) * 2010-03-25 2013-07-04 新日鐵住金株式会社 鋼管の製造設備
CN105303031A (zh) * 2015-09-21 2016-02-03 中国科学技术馆 一种内隐记忆测试方法及系统
CN105303031B (zh) * 2015-09-21 2018-02-27 中国科学技术馆 一种内隐记忆测试方法及系统

Also Published As

Publication number Publication date
US20100300167A1 (en) 2010-12-02
US8091394B2 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
EP2080569B1 (en) Device and method for monitoring manufacturing status of seamless pipe and seamless pipe manufacturing facility
WO2009122613A1 (ja) 管の異材判定方法
CN101277772B (zh) 管的缺陷检测装置及方法
WO2006106834A1 (ja) ロール式管矯正機の自動制御方法
WO2016056129A1 (ja) 材料特性値推定方法、材料特性値推定装置、および鋼帯の製造方法
JP4697605B2 (ja) 管の定径圧延制御方法及び定径圧延制御装置
JP4284666B1 (ja) 管の異材判定方法
JP5924362B2 (ja) 材料特性値推定装置、材料特性値推定方法、および鋼帯の製造方法
JP2006224177A (ja) 金属帯の形状予測方法ならびに予測形状に基づく形状判定方法および形状矯正方法
CN102601549B (zh) 焊剂填充率的判定装置、判定方法、判定系统
EP2133159A1 (en) Seamless pipe manufacturing method
JP2006247724A (ja) 管材の曲がり検出方法及び装置
CN112052586A (zh) 一种顶力预测方法及顶力预测装置
KR20190130319A (ko) 롤 피치 계산 장치 및 방법
JP4370572B2 (ja) マンドレルミルの圧延制御方法、圧延制御装置、制御プログラム及び継目無管
JPH07246414A (ja) ストレッチレデューサーの管端部肉厚制御方法
TWI718928B (zh) 鋼帶寬度評估方法與鋼帶寬度評估系統
JP2005193247A (ja) 継目無鋼管の製造方法およびマンドレルミル
JP2006334611A (ja) 電縫鋼管の製造方法
JPH11226623A (ja) 管圧延の制御方法
JPH05169121A (ja) 外径制御方法
JP3553552B2 (ja) 熱間仕上げ圧延機における板幅変形モデルのオンライン同定方法
KR20030052087A (ko) 코일의 두께 및 폭실적 저장장치 및 그 저장정보를 이용한코일 분할방법
JPH11244922A (ja) マンドレルミルの制御方法
JP2727959B2 (ja) 冷間加工用素管の切断方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008555547

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12738103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08873768

Country of ref document: EP

Kind code of ref document: A1