WO2006106834A1 - ロール式管矯正機の自動制御方法 - Google Patents

ロール式管矯正機の自動制御方法 Download PDF

Info

Publication number
WO2006106834A1
WO2006106834A1 PCT/JP2006/306678 JP2006306678W WO2006106834A1 WO 2006106834 A1 WO2006106834 A1 WO 2006106834A1 JP 2006306678 W JP2006306678 W JP 2006306678W WO 2006106834 A1 WO2006106834 A1 WO 2006106834A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
pipe
straightening machine
roll
type pipe
Prior art date
Application number
PCT/JP2006/306678
Other languages
English (en)
French (fr)
Inventor
Masatomo Kishi
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to CN2006800107290A priority Critical patent/CN101151111B/zh
Priority to BRPI0609606-9A priority patent/BRPI0609606B1/pt
Priority to EP06730626.6A priority patent/EP1870174B1/en
Publication of WO2006106834A1 publication Critical patent/WO2006106834A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • B21D3/04Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers arranged on axes skew to the path of the work

Definitions

  • the present invention relates to an automatic control method of a roll type pipe straightening machine for straightening a pipe such as a steel pipe, and more particularly to an automatic control method of a roll type pipe straightening machine capable of obtaining a stable straightening effect. .
  • Pipes manufactured by various pipe making methods are subjected to various treatments and refined to obtain a predetermined quality.
  • the straightening process is one of the refining processes, and it aims to remove the bend of the manufactured pipe and make it straight and to change the outer shape of the pipe from an elliptical shape to a perfect circle.
  • a roll type pipe straightening machine (straightener) including three or more stands provided with a pair of opposed perforated rolling rolls R and R is used.
  • the roll type pipe straightening machine has a predetermined offset amount (# 2 stand for the pair of perforated rolling rolls R, R installed in # 1, 3 stands.
  • the distance between the center of the center of the roll-type rolling roll of R and R and the center of the # 1 and 3 stand-type rolling roll pair of R and R A pair of perforated rolling rolls, R and R, is provided with a predetermined crush amount (# 1-3 aiming at pipe P on the entrance side of the stand, outer diameter D and a pair of opposing perforated rolling rolls R, R Crash and correct at the gap H) to the groove bottom.
  • the perforated rolling roll R provided in the # 4 stand has a function as a guide roll.
  • Patent Document 1 discloses an invention in which a load generated in a perforated rolling roll provided in each stand is measured, and an offset amount and a crash amount are set so that the load becomes an appropriate value determined in advance. Disclosed.
  • Patent Document 2 predicts the wear amount of a perforated rolling roll, and responds to the predicted wear amount.
  • An invention for setting an offset amount, a crash amount, and the like is disclosed.
  • Patent Document 3 discloses an invention in which the offset amount and the crash amount are set based on a theoretical formula of the deformation behavior of the pipe in the correction process.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-179340
  • Patent Document 2 Japanese Patent Laid-Open No. 2-207921
  • Patent Document 3 Japanese Patent Publication No. 4-72619
  • Patent Documents 1 to 3 set the offset amount and the crash amount based on the prediction that a good pipe straightening effect can be obtained. It does not reflect the actual bending amount or elliptical amount of the tube on the exit side. For this reason, even with these inventions, the correction effect is not stable, and the amount of bending and the amount of ellipse are difficult to converge within the target range.
  • the present invention includes three or more stands on which a pair of opposed perforated rolling rolls are provided, and a perforated rolling roll pair provided on at least one stand is a perforated rolling roll pair provided on another stand.
  • This is an automatic control method for a roll type pipe straightening machine that offsets the pipe and crashes the pipe with a pair of perforated rolling rolls provided on each stand.
  • automated control means control automatically performed using a control device.
  • the present invention automatically controls the following first to fourth steps using a control device.
  • the function f in (r) is calculated in advance.
  • the amount of bending of the pipe is measured at least on the outlet side of the roll type pipe straightening machine. That is, the bending amount rl of the pipe P corrected this time is measured.
  • the set value of the offset amount calculated in the first step and the roll type pipe straightening Relation with the amount of bending of the pipe measured at least on the outlet side of the machine: Based on ⁇ ⁇ f (r), it is necessary to bring the bending amount of the pipe on the outlet side of the roll type straightener into the target range.
  • the change amount of the offset amount is calculated. In other words, if r 'is the target value of the bending amount of the pipe (any value within the target range), this target value!
  • a set value of the offset amount for correcting the next pipe P ′ is determined based on the offset amount change ⁇ calculated in the third step.
  • ⁇ ⁇ 2 ⁇ ⁇ + ⁇ ⁇ ⁇ .
  • ⁇ ⁇ ⁇ may be multiplied by a relaxation coefficient of 0 to 1 to prevent divergence.
  • the automatic control method for a roll type pipe straightening machine measures the amount of bending of the pipe on the exit side of the straightening machine, so that the measured value falls within the target range of the bending amount.
  • change the amount of offset when straightening the next tube That is, the offset amount is changed by feeding back the amount of bending of the pipe on the outlet side of the measured straightening machine. For this reason, the bending of the tube can be corrected stably.
  • the “bend amount of the pipe” is defined by the deviation of the pipe cross-sectional center and the length (mmZm) of the measurement target part of the pipe.
  • an outer diameter meter for measuring the outer diameter of the pipe in a plurality of radial directions is arranged on the exit side of the roll type pipe straightening machine, and the outer diameter in each radial direction by this outer diameter meter. Based on the measurement position, It can be measured by calculating and calculating the amount of variation in the longitudinal direction of the tube at the center position.
  • the amount of bending of the tube on the outlet side of the roll type pipe straightening machine varies depending on the amount of bending of the pipe on the inlet side of the roll type pipe straightening machine.
  • the offset amount is larger than the previous one, and conversely, the amount of bending on the inlet side is larger than the previously corrected pipe. If it is smaller, the offset amount is made smaller than the previous time. Therefore, in order to obtain a more stable straightening effect, it is preferable to measure the amount of bending of the pipe on the entry side of the roll type pipe straightening machine and feed forward this amount of bending force to change the offset amount. .
  • the bending amount r ol of the pipe P corrected this time on the outlet side of the roll type pipe straightening machine is measured, and the curve of the pipe P ′ to be next corrected on the inlet side of the roll type pipe straightening machine. Measure the amount of ri2.
  • the amount of bending of the pipe on the exit side of the roll type pipe straightening machine varies depending on the temperature of the pipe on the entrance side of the roll type pipe straightening machine. sand In other words, if the temperature of the pipe on the entrance side of the roll type pipe straightening machine is higher than the temperature of the pipe straightened last time, it becomes easy to deform, so the offset amount is made smaller than the previous time, and conversely on the entrance side. If the tube temperature is lower than the temperature of the previously corrected tube, the offset is set larger than the previous one. Therefore, in order to obtain a more stable straightening effect, it is preferable to measure the temperature of the pipe on the inlet side of the roll type pipe straightening machine and feed forward the measured temperature to change the offset amount.
  • the bending amount r 1 of the pipe P corrected this time on the outlet side of the roll type pipe straightening machine is measured, and the temperature of the pipe P 'to be next corrected on the inlet side of the roll type pipe straightening machine. Measure T2.
  • the roll type pipe straightening measured in the second step is performed.
  • the temperature T2 of the pipe P 'to be corrected next on the inlet side of the machine, the set value of the offset calculated in the first step, and the pipe curvature S measured on the outlet side of the roll type pipe straightener The amount of bending of the pipe on the outlet side of the roll type straightener is within the target range based on the relationship between the amount and the temperature of the pipe measured on the inlet side of the roll type straightener.
  • the present invention includes three or more stands on which a pair of opposed hole-type rolling rolls are provided, and a hole-type rolling roll pair provided on at least one stand is provided on another stand.
  • An automatic control method of a roll type pipe straightening machine that offsets a pair of perforated rolling rolls and that corrects the pipe by crashing with the perforated rolling roll pair provided in each stand. Includes 1st to 4th steps.
  • the elliptical amount of the tube on the exit side of the roll type tube straightening machine is measured.
  • the elliptical amount ⁇ 1 of the pipe P corrected this time is measured.
  • the set value of the crash amount calculated in the first step and the roll type pipe Crash required to keep the elliptical amount of the tube on the exit side of the roll type straightener within the target range based on the relationship with the elliptical amount of the tube measured at least on the exit side of the straightening machine The amount of change of the amount is calculated.
  • a set value of the crash amount for correcting the next pipe P ′ is determined.
  • the set value of the crash amount when correcting the next pipe P ′ is ⁇ c2
  • it is determined as ⁇ c2 dcl + A ⁇ c.
  • ⁇ ⁇ c may be multiplied by a relaxation coefficient of 0 to 1 to prevent divergence.
  • the automatic control method for a roll-type tube straightening machine measures the elliptical amount of the pipe on the exit side of the straightening machine so that the measured value falls within the target range of the elliptical amount. Next, change the amount of crash when straightening the next tube. In other words, since the amount of crushing is changed by feeding back the measured elliptical amount of the tube on the exit side of the straightening machine, the elliptical shape of the tube can be corrected stably.
  • the “elliptical amount of pipe” is a value defined by the maximum diameter-minimum diameter (mm) or (maximum diameter-minimum diameter) Z average diameter X 100 (%) in the pipe cross section.
  • an outer diameter meter is installed to measure the outer diameter of the pipe on the outlet side of the single-tube type pipe straightening machine in a plurality of radial directions, and the outer diameter of each pipe is measured in each radial direction. Based on the measured outer diameter, calculate the maximum diameter and the minimum diameter, and in the case of the ellipse of the latter definition, also calculate the average diameter. be able to.
  • the amount of change in the elliptical amount of the tube on the exit side of the roll-type tube straightening machine, and hence the required amount of crash varies depending on the amount of elliptical tube on the entry side of the roll-type tube straightening machine.
  • the crash amount is made larger than the previous one, and conversely if the elliptical amount on the entry side is smaller than the previous corrected pipe Make the crash amount smaller than the previous time. Therefore, in order to obtain a more stable straightening effect, it is preferable to measure the elliptical amount of the pipe on the entrance side of the roll type pipe straightening machine and feed forward this elliptical amount to change the crash amount. ,.
  • the relationship between the set value of the crash amount and the elliptical amount of the tube measured on the entry side and the exit side of the roll type tube straightening machine is calculated in advance.
  • the ellipse amount ⁇ ol of the pipe P corrected this time on the exit side of the roll type pipe straightening machine is measured, and the ellipse of the pipe P ′ to be next corrected on the entrance side of the roll type pipe straightening machine. Measure the quantity ⁇ i2.
  • the roll type measured in the second step is used.
  • the amount of change in the elliptical amount of the tube on the exit side of the roll type tube straightening machine and the necessary amount of crash varies depending on the temperature of the tube on the entry side of the roll type tube straightening machine.
  • the temperature on the inlet side of the roll type pipe straightening machine is higher than that of the previously corrected pipe, it becomes easier to deform and the crash amount is made smaller than the previous one. If it is lower than the pipe, the amount of crash will be larger than the previous time. Therefore, in order to obtain a more stable straightening effect, it is preferable to measure the temperature of the pipe on the inlet side of the roll type pipe straightening machine and feed forward the measured temperature to change the amount of crash.
  • the set value of the crash amount, the elliptical amount of the tube measured on the exit side of the roll type pipe straightening machine, and the entrance side of the roll type straightening machine The relationship with the measured tube temperature is calculated in advance.
  • the ellipse amount ⁇ of multiple pipes corrected by setting various different crush amounts ⁇ c on the exit side of the roll type pipe straightener is measured, and the temperature ⁇ ⁇ ⁇ ⁇ on the entry side of the roll type straightener is measured.
  • the elliptical amount ⁇ 1 of the pipe P corrected this time on the exit side of the roll type pipe straightening machine is measured, and the temperature of the pipe P ′ to be next corrected on the entrance side of the roll type pipe straightening machine. Measure T2.
  • the roll type pipe measured in the second step is used.
  • FIG. 1 is an explanatory view schematically showing a general configuration of a roll type pipe straightening machine.
  • FIG. 2 is an explanatory view schematically showing a device configuration for applying an automatic control method for a roll type pipe straightener according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view schematically showing a schematic configuration of the outer diameter meter shown in FIG. 2.
  • FIG. 4 is a graph showing the offset amount of the pair of perforated rolling rolls arranged in the # 2 stand and the bending amount on the exit side of the straightening machine, which are calculated and stored by the arithmetic and control unit shown in FIG. It is a graph which shows an example of a relationship.
  • FIG. 5 is a graph showing an example of the effect of the automatic control method regarding the set value of the offset amount according to the embodiment.
  • FIG. 6 shows the relationship between the amount of crushing of the pair of perforated rolling rolls provided in the # 2 stand and the amount of ellipse on the exit side of the straightening machine, calculated and stored by the arithmetic and control unit shown in FIG. It is a graph which shows an example.
  • FIG. 7 is a graph showing an example of the effect of the automatic control method regarding the set value of the crash amount according to the embodiment.
  • FIG. 8 is a graph showing an example of the effect of the automatic control method regarding the set value of the offset amount according to another embodiment.
  • FIG. 9 is a graph showing an example of the effect of the automatic control method regarding the set value of the crash amount according to another embodiment.
  • FIG. 10 is a graph showing an example of the effect of the automatic control method regarding the set value of the offset amount according to still another embodiment of the present invention.
  • FIG. 11 is a graph showing an example of the effect of the automatic control method regarding the set value of the crash amount according to still another embodiment of the present invention. Explanation of symbols
  • FIG. 2 is a diagram schematically showing the configuration of an apparatus for applying the automatic control method for a roll type pipe straightener according to the present invention.
  • the automatic control method of the present embodiment has three or more stands provided with a pair of opposed roll-type rolling tools R, R (in the example shown, # 1 to # 3).
  • a total of 3 stands and at least one stand (# 2 stand in the example) is provided with a pair of perforated rolling rolls R and R on other stands (# 1 to # 3 stand in the example)
  • a roll type pipe straightening machine hereinafter referred to as “corrosive rolling machine”
  • corrosive rolling machine which is offset with respect to the pair of perforated rolls R and R, and crushes and straightens the pipe P with the pair of perforated rolls provided in the stands # 1 to # 3. This is applied to 1.
  • an outside diameter meter 2 is installed for measuring the outside diameter of the straightened pipe P in a plurality of radial directions.
  • FIG. 3 is a schematic diagram showing a schematic configuration of the outer diameter meter 2 according to the present embodiment.
  • the outer diameter meter 2 according to the present embodiment projects light toward the tube P while scanning the laser beam (scanning parallel to the direction of the white arrow shown in the figure).
  • a light projecting unit 21 composed of a laser light source and a scanning optical system, and a condensing optical system and a photoelectric conversion element so as to receive the laser beam disposed opposite to the light projecting unit 21 via the tube P.
  • a light receiving unit 22 The outer diameter of the tube P is calculated by converting the time when the laser beam is shielded by the tube P into a dimension.
  • the outer diameter meter 2 is configured to include a pair of the light projecting unit 21 and the light receiving unit 22.
  • the optical axes of the light projecting unit 21 and the light receiving unit 22 (laser A plurality of pairs of light projecting portions 21 and light receiving portions 22 having different beam projecting and receiving directions) are provided, whereby the outer diameter of the tube P can be measured in a plurality of radial directions.
  • the outer diameter meter 2 is an outer diameter measurement position by a pair of each light projecting part 21 and light receiving part 22 (V in the cross section of the pipe P, corresponding to both ends of the pipe where the outer diameter was measured, Calculate the intermediate positions of the points a1 and a2 shown in Fig. 3), and calculate the position of the cross-sectional center of the pipe P by geometric calculation.
  • the outer diameter of the pipe P before correction is measured in a plurality of radial directions also on the entry side of the straightening machine 1, and further, the center position of the cross section of the pipe P before correction is determined.
  • an outer diameter meter 3 having the same configuration as the outer diameter meter 2 is installed.
  • a radiation thermometer 4 for measuring the temperature of the pipe P is installed on the inlet side of the straightening machine 1.
  • the output signal of the outer diameter meters 2 and 3 (the outer diameter measurement value of the pipe P and the cross-section center position measurement value) and the temperature measurement value of the radiation thermometer 4 are input to the arithmetic control device 5.
  • the arithmetic control device 5 controls the positions of the pair of perforated rolling rolls R and R of the straightening machine 1 so that the calculated offset amount set value and crash amount set value are obtained.
  • the calculation contents in the arithmetic and control unit 5 will be specifically described.
  • the arithmetic and control unit 5 measures the bending amount rl of the pipe P corrected this time on the exit side of the straightening machine 1.
  • the target value of the bending amount of the pipe is r ′ (for example, the bending amount r in the example shown in FIG. 4 is set to 0.6 mmZm as the target value)
  • the target value r is obtained in order to obtain the target value r.
  • FIG. 5 is a graph showing an example of the effect of the automatic control method of the present embodiment.
  • FIG. 5 (a) shows the fluctuation of the bending amount of the pipe on the exit side of the straightening machine 1, and
  • FIG. ) Shows the fluctuation of the set value of the offset amount in # 2 stand.
  • the automatic control method according to the present embodiment is applied to the pipes corrected after the fifth pipe.
  • the target value of the bending amount is 0.5 mmZm, and the above-mentioned relaxation coefficient is set to 0.5.
  • the bending amount of the tube corrected after the fifth tube gradually improved and reached the target value of 0.5mmZm with the tube corrected at the eighth tube.
  • the fixed value is fixed.
  • the elliptical amount ⁇ in this embodiment is based on the outer diameter of the pipe P input from the outer diameter meter 2 in the plurality of radial directions, and is the central portion in the longitudinal direction of the pipe P (50% of the total length). (Maximum diameter ⁇ minimum diameter) Z average diameter X 100 (%) in the pipe cross-section of the part having a mean value calculated in the pipe longitudinal direction.
  • a nonlinear model such as a Ural network If the elliptical amount ⁇ on the exit side of the straightening machine 1 and the various parameters described above are input, the nonlinear model that outputs the corresponding crash amount ⁇ c is identified. To do.
  • the arithmetic and control unit 5 measures the elliptical amount ⁇ 1 of the pipe P that has been corrected this time on the exit side of the straightening machine 1.
  • the measured ellipse amount ⁇ 1 is outside the target range (for example, when the ellipse amount is larger than 0.4% in the example shown in FIG. 6)
  • the amount of change is calculated.
  • the set value of the crash amount of pipe P corrected this time is ⁇ cl
  • the arithmetic and control unit 5 determines the set value of the crash amount when correcting the next pipe P ′ based on the crash amount change amount ⁇ ⁇ c calculated as described above.
  • S c2 S cl + A S c, where ⁇ c2 is the set value of the amount of crash when correcting the next tube.
  • FIG. 7 is a graph showing an example of the effect of the automatic control method of the present embodiment.
  • FIG. 7 (a) shows the fluctuation of the elliptical amount of the pipe on the exit side of the straightening machine 1
  • FIG. b) shows the fluctuation of the set value of the crash amount at # 2 stand.
  • the automatic control method according to this embodiment is applied to the pipes corrected after the fifth pipe.
  • the target value of the ellipse amount is 0 4%
  • the above-mentioned relaxation coefficient is set to 0.5.
  • the elliptical amount of the pipes corrected after the fifth pipe gradually improved and reached the target value of 0.4% with the pipe corrected by the eighth pipe. Is done.
  • the output signal of the outer diameter meter 3 (measurement of the outer diameter of the pipe P on the inlet side of the straightening machine 1) is sent to the arithmetic control device 5. Value and measured value of the cross-sectional center position). Therefore, the calculation control device 5 can calculate the set value of the offset amount and the set value of the crash amount when the next pipe P is corrected using the output signal of the outer diameter meter 3 as well.
  • Fig. 8 is a graph showing an example of the effect of this automatic control method.
  • Fig. 8 (a) shows fluctuations in the amount of bending of the pipe on the exit side of the straightening machine 1
  • Fig. 8 (b) shows # It shows the fluctuation of the set value of offset amount in 2 stands.
  • the target value of the bending amount is 0.5 mmZm
  • the above-mentioned relaxation coefficient is set to 0.5.
  • the bending amount of pipes corrected after the fifth pipe improved rapidly, and the target value of 0.5 mm / m was reached with the pipe corrected through the sixth pipe. Is fixed. That is, the amount of bending can be improved more rapidly than the example shown in FIG.
  • the arithmetic and control unit 5 uses the set value of the crush amount of the perforated rolling rolls R and R provided in the stands # 1 to # 3 and the pipe P measured on the inlet side and the outlet side of the straightening machine 1. The relationship with the amount of ellipse is calculated in advance.
  • the arithmetic and control unit 5 determines the elliptical amount of the pipe P corrected this time on the exit side of the straightening machine 1. Measure ⁇ o 1 and measure the elliptical amount ⁇ i2 of the next pipe P ′ to be corrected on the entrance side of the straightening machine.
  • Fig. 9 is a graph showing an example of the effect of this automatic control method.
  • Fig. 9 (a) shows the fluctuation of the elliptical amount of the tube on the exit side of the straightening machine 1
  • Fig. 9 (b) shows the #
  • the fluctuation of the set value of the crash amount in 2 stands is shown.
  • the preferred automatic control method according to the present embodiment is applied to the pipes corrected after the fifth pipe.
  • the target value of the ellipse amount is 0.4%, and the above-mentioned relaxation coefficient is set to 0.5.
  • Fig. 9 shows the fluctuation of the elliptical amount of the tube on the exit side of the straightening machine 1
  • Fig. 9 (b) shows the #
  • the fluctuation of the set value of the crash amount in 2 stands is shown.
  • the preferred automatic control method according to the present embodiment is applied to the pipes corrected after the fifth pipe.
  • the target value of the ellipse amount is 0.4%
  • the temperature measurement value of the radiation thermometer 4 is input to the arithmetic and control unit 5 as described above. Therefore, the arithmetic and control unit 5 can calculate the set value of the offset amount and the set value of the crash amount when the next pipe P is corrected using the temperature measurement value of the radiation thermometer 4.
  • the calculation content is as follows: instead of In addition, only the temperature T of the pipe P at the entrance side of the straightening machine 1 is used, and the other contents are the same, so the detailed description of the calculation is omitted, and only an example of the effect is described.
  • Fig. 10 is a graph showing an example of the effect of this control method.
  • Fig. 10 (a) shows the fluctuation of the bending amount of the pipe on the outlet side of the straightening machine 1
  • Fig. 10 (b) shows # 2 Indicates the fluctuation of the set value of the offset amount at the stand.
  • the target value of the bending amount is 0.5 mmZm
  • the above-mentioned relaxation coefficient is set to 0.5.
  • the amount of bending of the tube corrected after the 5th tube improved rapidly and reached the target value of 0.5 mmZ with the tube corrected at the 7th tube. The That is, the amount of bending can be improved more rapidly than the example shown in FIG.
  • the calculation content is the elliptical amount ⁇ on the entry side of the straightening machine 1 described above. Instead of i, only the temperature T of the pipe P at the entry side of the straightening machine 1 is used, and the other contents are the same, so a detailed explanation of the calculation contents is omitted and only an example of the effect is given. explain.
  • Fig. 11 is a graph showing an example of the effect of this automatic control method.
  • Fig. 11 (a) shows the fluctuation of the elliptical amount of the pipe on the exit side of the straightening machine 1
  • Fig. 11 (b) shows # It shows the fluctuation of the set value of the crash amount in 2 stands.
  • the preferred automatic control method according to the present embodiment is applied to the pipe corrected after the fifth tube, as in the example shown in FIG.
  • the target value of the ellipse amount is 0.4%, and the above-mentioned relaxation coefficient is set to 0.5.
  • Fig. 11 shows the fluctuation of the elliptical amount of the pipe on the exit side of the straightening machine 1
  • Fig. 11 (b) shows # It shows the fluctuation of the set value of the crash amount in 2 stands.
  • the preferred automatic control method according to the present embodiment is applied to the pipe corrected after the fifth tube, as in the example shown in FIG.
  • the target value of the ellipse amount is 0.4%
  • the elliptical amount of pipes corrected after the fifth pipe improved rapidly, and the target value of 0.4% was reached with the pipe corrected by the seventh pipe.
  • the value is fixed. That is, the amount of ellipse can be improved more rapidly than the example shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Wire Processing (AREA)

Abstract

 安定した矯正効果を得られるロール式管矯正機の自動制御方法を提供する。孔型圧延ロール対を有するスタンドを3つ以上備えるストレートナーを用いて管をクラッシュして矯正する際、第1~4ステップの自動制御する。第1ステップ:オフセット量の設定値と、矯正機の出側で測定した管の曲がり量との関係を予め算出する。第2ステップ:矯正機の出側の管の曲がり量を測定する。第3ステップ:第2ステップで測定した曲がり量が目標範囲外の場合、第1ステップで算出した関係に基づき矯正機の出側の管の曲がり量を目標範囲内とするオフセット量の変更量を算出する。第4ステップ:第3ステップで算出したオフセット量の変更量に基づき、次管を矯正する際のオフセット量の設定値を決定する。

Description

明 細 書
ロール式管矯正機の自動制御方法
技術分野
[0001] 本発明は、鋼管等の管を矯正するためのロール式管矯正機の自動制御方法に関 し、特に安定した矯正効果を得ることができるロール式管矯正機の自動制御方法に 関する。
背景技術
[0002] 各種製管法により製造される管は、所定の品質を得るために各種処理を施されて 精整される。矯正工程は、この精整工程の一つであり、製造された管の曲がりを除去 して真直にするとともに管の外形を楕円形状から真円形状にすることを目的とする。
[0003] 一般的には、図 1に示すように、対向する一対の孔型圧延ロール R, Rが設けられる スタンドを 3つ以上備えるロール式管矯正機 (ストレートナー)が用いられる。ロール式 管矯正機は、 # 2スタンドに設けられる孔型圧延ロール対 R, Rを # 1、 3スタンドに設 けられる孔型圧延ロール対 R, Rに対して所定のオフセット量( # 2スタンドの孔型圧 延ロール対 R, Rの孔型中心と、 # 1、 3スタンドの孔型圧延ロール対 R, Rの孔型中 心との距離)でオフセットさせるとともに、 # 1〜3スタンドに設けられる孔型圧延ロー ル対 R, Rで管 Pを所定のクラッシュ量( # 1〜3スタンド入側での管 Pの狙 、外径 Dと 、対向する一対の孔型圧延ロール R, Rの溝底部との間隔 H)でクラッシュして矯正す る。なお、 # 4スタンドに設けられる孔型圧延ロール Rはガイドロールとしての機能を 有する。
[0004] # 2スタンドの孔型圧延ロールのオフセット量やクラッシュ量は、管 Pの矯正効果を 決定付ける重要な因子である。したがって、これまでにもオフセット量やクラッシュ量 の設定に関して様々な発明が開示される。
[0005] 例えば特許文献 1には、各スタンドに設けられる孔型圧延ロールに生じる荷重を測 定し、この荷重が予め決定した適切な値となるようにオフセット量及びクラッシュ量を 設定する発明が開示される。
[0006] また、特許文献 2には、孔型圧延ロールの摩耗量を予測し、予測した摩耗量に応じ てオフセット量やクラッシュ量等を設定する発明が開示される。
さらに、特許文献 3には、矯正過程における管の変形挙動の理論式に基づいてォ フセット量及びクラッシュ量を設定する発明が開示される。
特許文献 1 :特開 2001— 179340号公報
特許文献 2:特開平 2— 207921号公報
特許文献 3:特公平 4 - 72619号公報
発明の開示
発明が解決しょうとする課題
[0007] しかし、特許文献 1〜3に開示された発明は、あくまでも、良好な管の矯正効果が得 られる予測に基づ 、てオフセット量及びクラッシュ量を設定するものであって、矯正機 の出側における管の実際の曲がり量や楕円量を反映するものではない。このため、こ れらの発明によっても、矯正効果が安定せず、曲がり量や楕円量が目標範囲内に収 束し難い。
[0008] 現状では、特許文献 1〜3に開示された発明に、矯正機の出側における管の曲がり 量や楕円量を反映させるために、管の曲がりや楕円の程度をオペレータが目視で確 認し、オペレータの経験や勘に基づ!/、てオフセット量やクラッシュ量を手動で設定す る。このようなオペレータの経験や勘に基づいてオフセット量やクラッシュ量を手動で 設定するので、依然として矯正効果が安定しない。
課題を解決するための手段
[0009] 本発明は、対向する一対の孔型圧延ロールが設けられるスタンドを 3つ以上備え、 少なくとも 1つのスタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる 孔型圧延ロール対に対してオフセットさせるとともに、各スタンドに設けられる孔型圧 延ロール対で管をクラッシュして矯正するロール式管矯正機の自動制御方法である
。そして、以下に説明する第 1ステップ〜第 4ステップを含む。なお、本明細書におい て「自動制御」とは、制御装置を用いて自動的に行われる制御を意味する。つまり、 本発明は、以下に示す第 1ステップ〜第 4ステップを、制御装置を用いて自動的に制 御するものである。
[0010] 第 1ステップでは、オフセット量の設定値と、ロール式管矯正機の少なくとも出側に おいて測定した管の曲がり量との関係を予め算出する。すなわち、各種の異なるオフ セット量 δ οをそれぞれ設定して矯正した複数の管について、ロール式管矯正機の 出側でそれぞれ曲がり量 rを測定することにより、両者の関係、すなわち δ o =f (r)の 関数 fを予め算出する。
[0011] 第 2ステップでは、ロール式管矯正機の少なくとも出側において管の曲がり量を測 定する。すなわち、今回矯正された管 Pの曲がり量 rlを測定する。
第 3ステップでは、第 2ステップで測定したロール式管矯正機の出側における管の 曲がり量 rlが目標範囲外である場合、第 1ステップで算出したオフセット量の設定値 と、ロール式管矯正機の少なくとも出側において測定した管の曲がり量との関係: δ ο =f (r)に基づき、ロール式管矯正機の出側における管の曲がり量を目標範囲内とす るために必要なオフセット量の変更量を算出する。すなわち、管の曲がり量の目標値 (目標範囲内にある任意の値)を r'とすれば、この目標値!:'を得るために目標とする オフセット量設定値 δ o,は、 δ ο' =f (r,)として求められるので、今回矯正された管 のオフセット量の設定値を δ olとすれば、必要なオフセット量の変更量 Δ δ οは、 Δ δ ο = δ ο δ olとして算出される。
[0012] 第 4ステップでは、第 3ステップで算出したオフセット量の変更量 Δ δ οに基づき、次 の管 P'を矯正する際のオフセット量の設定値を決定する。すなわち、次の管 P'を矯 正する際のオフセット量の設定値を δ ο2とすれば、 δ ο2= δ οΙ + Δ δ οで決定され ることになる。この際、発散を防止するため Δ δ οに 0〜1の緩和係数を乗算してもよ い。
[0013] 以上のように、本発明に係るロール式管矯正機の自動制御方法は、矯正機の出側 における管の曲がり量を測定し、この測定値が曲がり量の目標範囲内となるように、 次の管を矯正する際のオフセット量を変更する。すなわち、測定した矯正機の出側に おける管の曲がり量をフィードバックしてオフセット量を変更する。このため、管の曲が りを安定して矯正できる。なお、「管の曲がり量」は、管断面中心のずれ量 Ζ管の測 定対象部位の長さ(mmZm)により規定される。管の曲がり量は、例えば、ロール式 管矯正機の出側に管の外径を複数の径方向について測定するための外径計を配置 し、この外径計による各径方向への外径測定位置に基づいて管断面中心の位置を 算出し、中心位置の管の長手方向への変動量を算出することにより測定できる。
[0014] ロール式管矯正機の出側における管の曲がり量、ひいては必要なオフセット量の変 更量は、ロール式管矯正機の入側における管の曲がり量に応じて変動する。すなわ ち、ロール式管矯正機の入側における曲がり量が前回矯正した管よりも大きい場合 にはオフセット量を前回よりも大きし、逆に、入側における曲がり量が前回矯正した管 よりも小さい場合にはオフセット量を前回よりも小さくする。したがって、より一層安定 した矯正効果を得るためには、ロール式管矯正機の入側における管の曲がり量を測 定し、この曲力^量をフィードフォワードしてオフセット量を変更することが好ましい。
[0015] したがって、本発明の好ましい態様では、第 1ステップにおいて、オフセット量の設 定値と、ロール式管矯正機の入側及び出側において測定した管の曲がり量との関係 を予め算出する。すなわち、各種の異なるオフセット量 δ οをそれぞれ設定して矯正 した複数の管について、ロール式管矯正機の入側及び出側においてそれぞれ曲が り量 ri及び roを測定することにより、 6 o=f (ri, ro)の関数 fを予め算出する。
[0016] 第 2ステップでは、ロール式管矯正機の出側における今回矯正した管 Pの曲がり量 r olを測定するとともに、ロール式管矯正機の入側における次に矯正する管 P'の曲が り量 ri2を測定する。
[0017] 第 3ステップでは、第 2ステップで測定したロール式管矯正機の出側における今回 矯正した管 Pの曲がり量 rolが目標範囲外である場合、第 2ステップで測定したロー ル式管矯正機の入側における次に矯正する管の曲がり量 ri2と、第 1ステップで算出 したオフセット量の設定値とロール式管矯正機の入側及び出側において測定した管 の曲がり量との関係 δ o=f (ri, ro)とに基づき、ロール式管矯正機の出側における 管の曲がり量を目標範囲内とするために必要なオフセット量の変更量を算出する。す なわち、ロール式管矯正機の出側における管の曲がり量の目標値 ro'を得るために 目標とするオフセット量の設定値 δ ο'は、 S o' =f (ri2, ro' )として求められるため、 今回矯正された管のオフセット量の設定値を δ olとすれば、必要なオフセット量の変 更量 Δ δ οは、 Δ δ ο= δ ο' - δ olとして算出される。
[0018] また、ロール式管矯正機の出側における管の曲がり量、ひいては必要なオフセット 量の変更量は、ロール式管矯正機の入側における管の温度に応じて変動する。すな わち、ロール式管矯正機の入側における管の温度が前回矯正した管の温度よりも高 い場合には変形し易くなるためオフセット量を前回よりも小さくし、逆に、入側におけ る管の温度が前回矯正した管の温度よりも低い場合には前回よりもオフセット量を大 きくする。したがって、より一層安定した矯正効果を得るためには、ロール式管矯正機 の入側における管の温度を測定し、測定した温度をフィードフォワードしてオフセット 量を変更することが好まし 、。
[0019] したがって、本発明の好ましい態様では、第 1ステップにおいて、オフセット量の設 定値と、ロール式管矯正機の出側において測定した管の曲がり量及びロール式管矯 正機の入側で測定した管の温度との関係を予め算出する。すなわち、各種の異なる オフセット量 δ οをそれぞれ設定して矯正した複数の管について、ロール式管矯正機 の出側における曲がり量 rを測定し、ロール式管矯正機の入側における温度 Tを測定 することにより、これらの関係 δ o=f (r, T)の関数 fを予め算出する。
[0020] 第 2ステップでは、ロール式管矯正機の出側における今回矯正した管 Pの曲がり量 r 1を測定するとともに、ロール式管矯正機の入側における次に矯正する管 P'の温度 T2を測定する。
[0021] 第 3ステップでは、第 2ステップで測定したロール式管矯正機の出側における今回 矯正した管 Pの曲がり量 rlが目標範囲外である場合、第 2ステップで測定したロール 式管矯正機の入側における次に矯正する管 P'の管の温度 T2と、第 1ステップで算 出したオフセット量の設定値と、ロール式管矯正機の出側において測定した管の曲 力 Sり量及びロール式管矯正機の入側において測定した管の温度との関係 δ o =f (r, T)とに基づき、ロール式管矯正機の出側における管の曲がり量を目標範囲内とする ために必要なオフセット量の変更量を算出する。すなわち、ロール式管矯正機の出 側における管の曲がり量の目標値 r,を得るために目標とするオフセット量の設定値 δ ο 'は、 δ o ' =f (r' , T2)で求められるため、今回矯正された管のオフセット量の設 定値を δ olとすれば、必要なオフセット量の変更量 Δ δ οは、 Δ δ ο = δ ο,一 δ ol で算出される。
[0022] さらに、本発明は、対向する一対の孔型圧延ロールが設けられるスタンドを 3っ以 上備え、少なくとも 1つのスタンドに設けられる孔型圧延ロール対を他のスタンドに設 けられる孔型圧延ロール対に対してオフセットさせるとともに、各スタンドに設けられる 孔型圧延ロール対で管をクラッシュして矯正するロール式管矯正機の自動制御方法 であって、以下に説明する第 1ステップ〜第 4ステップを含む。
[0023] 第 1ステップでは、クラッシュ量の設定値と、ロール式管矯正機の少なくとも出側に おいて測定した管の楕円量との関係を予め算出する。すなわち、各種の異なるクラッ シュ量 δ cをそれぞれ設定して矯正した複数の管について、ロール式管矯正機の出 側にお 、てそれぞれ楕円量 φを測定することにより、両者の関係 δ c = g ( φ )の関数 gを予め算出する。
[0024] 第 2ステップでは、ロール式管矯正機の出側における管の楕円量を測定する。すな わち、今回矯正された管 Pの楕円量 φ 1を測定する。
第 3ステップでは、第 2ステップで測定したロール式管矯正機の出側における管の 楕円量 Φ 1が目標範囲外である場合、第 1ステップで算出したクラッシュ量の設定値 と、ロール式管矯正機の少なくとも出側において測定した管の楕円量との関係 δ c = g )とに基づき、ロール式管矯正機の出側における管の楕円量を目標範囲内とす るために必要なクラッシュ量の変更量を算出する。すなわち、管の楕円量の目標値( 目標範囲内にある任意の値)を φ 'とすれば、この目標値 φ 'を得るために目標とする クラッシュ量の設定値 δ c 'は、 δ c, =g ( φ ' )として求められるため、今回矯正された 管の楕円量の設定値を δ clとすれば、必要なクラッシュ量の変更量 Δ δ cは、 Δ δ c = δ c '— δ clとして算出される。
[0025] 第 4ステップでは、第 3ステップで算出したクラッシュ量の変更量 Δ δ cに基づき、次 の管 P'を矯正する際のクラッシュ量の設定値を決定する。すなわち、次の管 P'を矯 正する際のクラッシュ量の設定値を δ c2とすれば、 δ c2= d cl + A δ cとして決定さ れる。この際、発散を防止するため Δ δ cに 0〜1の緩和係数を乗算してもよい。
[0026] 以上のように、本発明に係るロール式管矯正機の自動制御方法は、矯正機の出側 における管の楕円量を測定し、この測定値が楕円量の目標範囲内となるように、次の 管を矯正する際のクラッシュ量を変更する。すなわち、実測した矯正機の出側におけ る管の楕円量をフィードバックしてクラッシュ量を変更するため、このため、管の楕円 を安定して矯正できる。 なお、「管の楕円量」とは、管断面における最大径―最小径 (mm)、または (最大径 ー最小径) Z平均径 X 100 (%)で定義される値である。管の楕円量は、例えば、口 一ル式管矯正機の出側における管の外径を複数の径方向について測定するための 外径計を設置し、この外径計による各径方向にっ 、ての外径測定値に基づ 、て最 大径及び最小径を算出すること、さらには、後者の定義の楕円量の場合には平均径 も算出すること〖こよって、柳』定することができる。
[0027] ロール式管矯正機の出側における管の楕円量、ひいては必要なクラッシュ量の変 更量は、ロール式管矯正機の入側における管の楕円量に応じて変動する。すなわち 、ロール式管矯正機の入側における楕円量が前回矯正した管よりも大きい場合には クラッシュ量を前回よりも大きくし、逆に、入側における楕円量が前回矯正した管よりも 小さければクラッシュ量を前回よりも小さくする。したがって、より一層安定した矯正効 果を得るためには、ロール式管矯正機の入側における管の楕円量を測定し、この楕 円量をフィードフォワードしてクラッシュ量を変更することが好まし 、。
[0028] したがって、本発明の好ましい態様では、第 1ステップにおいて、クラッシュ量の設 定値と、ロール式管矯正機の入側及び出側において測定した管の楕円量との関係 を予め算出する。すなわち、ロール式管矯正機の入側及び出側における各種の異な るクラッシュ量 δ cをそれぞれ設定して矯正した複数の管について、ロール式管矯正 機の入側及び出側における楕円量 φ i及び φ oをそれぞれ測定することにより、これ らの関係 S c =g ( (i) i, φ ο)の関数 gを予め算出する。
[0029] 第 2ステップでは、ロール式管矯正機の出側における今回矯正した管 Pの楕円量 φ olを測定するとともに、ロール式管矯正機の入側における次に矯正する管 P'の楕円 量 φ i2を測定する。
[0030] 第 3ステップでは、第 2ステップで測定したロール式管矯正機の出側における今回 矯正した管 Pの楕円量 φ olが目標範囲外である場合、第 2ステップで測定したロー ル式管矯正機の入側における次に矯正する管の楕円量 φ i2と、第 1ステップで算出 したクラッシュ量の設定値とロール式管矯正機の入側及び出側において測定した管 の楕円量との関係 δ c=g ( φ i, φ ο)とに基づき、ロール式管矯正機の出側における 管の楕円量を目標範囲内とするために必要なクラッシュ量の変更量を算出する。す なわち、ロール式管矯正機の出側における管の楕円量の目標値 φ ο 'を得るために 目標とするクラッシュ量の設定値 δ c'は δ c, =g ( (Η2, φ ο ' )として求められるため 、今回矯正された管のクラッシュ量の設定値を δ clとすれば、必要なクラッシュ量の 変更量 Δ δ cは、 Δ δ c= δ c '— δ clとして算出される。
[0031] また、ロール式管矯正機の出側における管の楕円量、ひいては必要なクラッシュ量 の変更量は、ロール式管矯正機の入側における管の温度に応じて変動する。すなわ ち、ロール式管矯正機の入側における温度が前回矯正した管よりも高い場合には変 形し易くなるためクラッシュ量を前回よりも小さくし、逆に、入側における温度が前回 矯正した管よりも低ければ前回よりもクラッシュ量を大きくする。したがって、より一層 安定した矯正効果を得るためには、ロール式管矯正機の入側における管の温度を測 定し、測定した温度をフィードフォワードしてクラッシュ量を変更することが好まし 、。
[0032] したがって、本発明の好ましい態様では、第 1ステップにおいて、クラッシュ量の設 定値と、ロール式管矯正機の出側において測定した管の楕円量及びロール式管矯 正機の入側において測定した管の温度との関係を予め算出する。すなわち、ロール 式管矯正機の出側における、各種の異なるクラッシュ量 δ cをそれぞれ設定して矯正 した複数の管の楕円量 φを測定し、ロール式管矯正機の入側における温度 Τを測定 することにより、これらの関係 δ c=g ( φ , T)の関数 gを予め算出する。
[0033] 第 2ステップでは、ロール式管矯正機の出側における今回矯正した管 Pの楕円量 φ 1を測定するとともに、ロール式管矯正機の入側における次に矯正する管 P'の温度 T2を測定する。
[0034] 第 3ステップでは、第 2ステップで測定したロール式管矯正機の出側における今回 矯正した管 Pの楕円量 φ 1が目標範囲外である場合、第 2ステップで測定したロール 式管矯正機の入側における次に矯正する管 P'の温度 T2と、第 1ステップで算出した クラッシュ量の設定値とロール式管矯正機の出側において測定した管の楕円量及び ロール式管矯正機の入側において測定した管の温度との関係 δ c=g ( φ , T)とに基 づき、ロール式管矯正機の出側における管の楕円量を目標範囲内とするために必要 なクラッシュ量の変更量を算出する。すなわち、ロール式管矯正機の出側における管 の楕円量の目標値 φ,を得るために目標とするクラッシュ量の設定値 δ c'は δ c' =g ( ' , T2)で求められるため、今回矯正された管のクラッシュ量の設定値を δ clとす れば、必要なクラッシュ量の変更量 Δ δ cは、 Δ δ c= δ c '— δ clで算出される。 発明の効果
[0035] 本発明によれば、安定した矯正効果を得られるロール式管矯正機の自動制御方法 を提供することができる。
図面の簡単な説明
[0036] [図 1]図 1は、ロール式管矯正機の一般的な構成を概略的に示す説明図である。
[図 2]図 2は、本発明の一実施形態に係るロール式管矯正機の自動制御方法を適用 するための装置構成を概略的に示す説明図である。
[図 3]図 3は、図 2に示す外径計の概略構成を模式的に示す説明図である。
[図 4]図 4は、図 2に示す演算制御装置によって算出され記憶される、 # 2スタンドに 配設された孔型圧延ロール対のオフセット量と、矯正機の出側における曲がり量との 関係の一例を示すグラフである。
[図 5]図 5は、実施の形態に係るオフセット量の設定値に関する自動制御方法の効果 の一例を示すグラフである。
[図 6]図 6は、図 2に示す演算制御装置によって算出され記憶される、 # 2スタンドに 設けられる孔型圧延ロール対のクラッシュ量と、矯正機の出側における楕円量との関 係の一例を示すグラフである。
[図 7]図 7は、実施の形態に係るクラッシュ量の設定値に関する自動制御方法の効果 の一例を示すグラフである。
[図 8]図 8は、他の実施の形態に係るオフセット量の設定値に関する自動制御方法の 効果の一例を示すグラフである。
[図 9]図 9は、他の実施の形態に係るクラッシュ量の設定値に関する自動制御方法の 効果の一例を示すグラフである。
[図 10]図 10は、本発明のさらに他の実施の形態に係るオフセット量の設定値に関す る自動制御方法の効果の一例を示すグラフである。
[図 11]図 11は、本発明のさらに他の実施形態に係るクラッシュ量の設定値に関する 自動制御方法の効果の一例を示すグラフである。 符号の説明
[0037] 1 ロール式管矯正機
2, 3 外径計
4 放射温度計
5 演算制御装置
P 管
R 孔型圧延ロール
発明を実施するための最良の形態
[0038] 以下、本発明を実施するための最良の形態を、添付図面を参照しながら詳細に説 明する。
図 2は、本発明のロール式管矯正機の自動制御方法を適用するための装置の構 成を概略的に示す図である。
[0039] 図 2に示すように、本実施の形態の自動制御方法は、対向する一対の孔型圧延口 ール R, Rが設けられるスタンドを 3つ以上(図示例では # 1〜 # 3スタンドの計 3スタ ンド)備え、少なくとも 1つのスタンド(図示例では # 2スタンド)に設けられる孔型圧延 ロール対 R, Rを他のスタンド(図示例では # 1〜 # 3スタンド)に設けられる孔型圧延 ロール対 R, Rに対してオフセットさせるとともに、各スタンド # 1〜# 3に設けられる孔 型圧延ロール対で管 Pをクラッシュして矯正するロール式管矯正機(以下、適宜「矯 正機」と略称する) 1に適用される。
[0040] 矯正機 1の出側には、矯正後の管 Pの外径を複数の径方向について測定するため の外径計 2が設置される。
図 3は、本実施の形態に係る外径計 2の概略構成を示す模式図である。図 3に示す ように、本実施の形態に係る外径計 2は、レーザビームを走査(図に示す白抜き矢符 の方向に平行に走査)しながら管 Pに向けて投光するように、レーザ光源や走査光学 系から構成された投光部 21と、管 Pを介して投光部 21に対向配置され前記レーザビ 一ムを受光するように集光光学系や光電変換素子から構成された受光部 22とを備え る。レーザビームが管 Pによって遮蔽された時間を寸法に換算することによって管 Pの 外径を算出する。 [0041] なお、図 3では、便宜上、外径計 2は一対の投光部 21及び受光部 22を備えるよう に構成される力 実際には投光部 21及び受光部 22の光軸(レーザビームを投受光 する方向)がそれぞれ異なる複数の投光部 21及び受光部 22の対を備え、これにより 、管 Pの外径を複数の径方向につ!、て測定することができる。
[0042] 外径計 2は、各投光部 21及び受光部 22の対による外径測定位置 (管 Pの断面にお V、て外径を測定した管両端部に相当する位置であり、図 3に示す点 a 1及び点 a2の 位置)の中間位置をそれぞれ算出し、幾何学計算によって管 Pの断面中心の位置を 算出する。
[0043] 本実施の形態では、好ましい態様として、矯正機 1の入側にも矯正前の管 Pの外径 を複数の径方向について測定し、さらには矯正前の管 Pの断面中心位置を算出する ため、外径計 2と同様の構成を有する外径計 3が設置される。また、好ましい態様とし て、矯正機 1の入側に管 Pの温度を測定するための放射温度計 4が設置される。
[0044] 演算制御装置 5には、外径計 2及び 3の出力信号 (管 Pの外径測定値及び断面中 心位置測定値)と、放射温度計 4の測温値とが入力され、次の管 Pを矯正する際のォ フセット量の設定値及びクラッシュ量の設定値を演算する。そして、演算制御装置 5 は、演算したオフセット量の設定値及びクラッシュ量の設定値が得られるように、矯正 機 1の孔型圧延ロール対 R, Rの位置を制御する。以下、演算制御装置 5における演 算内容について具体的に説明する。
[0045] まず、次の管 Pを矯正する際のオフセット量の設定値の演算内容を説明する。演算 制御装置 5は、 # 2スタンドに設けられる孔型圧延ロール R, R対のオフセット量の設 定値と、矯正機 1の出側において測定した管 Pの曲がり量との関係を予め算出する。 すなわち、 # 2スタンドに対して各種の異なるオフセット量 δ οをそれぞれ設定して矯 正した複数の管 Ρについて、矯正機 1の出側における曲がり量 rをそれぞれ測定する ことにより、両者の関係 δ o=f (r)の関数 fを予め算出し記憶する。なお、曲がり量 rは 、外径計 2から入力された管 Pの断面中心の位置の管 Pの長手方向への変動量を算 出することによって測定される。
[0046] すなわち、オフセット量 δ οと矯正機 1の出側における曲がり量 rとの関係は、実際に は # 2スタンドに設けられる孔型圧延ロール対 R, Rの傾斜角、矯正した管 Pの本数さ らには管 Pの外径や肉厚等によっても変動する。このため、これら各種パラメータの値 に応じた複数の関数 Π · · ·ίηが算出され記憶される。例えば、矯正機 1の出側にお ける曲がり量 r及び上記の各種パラメータを入力データとし、オフセット量 δ οを出力 データとする多数の組合せの入出力データを用いて-ユーラルネットワーク等の非線 形モデルを学習させることにより、矯正機 1の出側における曲がり量 r及び上記の各 種パラメータを入力すれば、これに対応するオフセット量 δ οが出力される非線形モ デルを同定する。
[0047] 図 4は、演算制御装置 5によって算出され記憶される、 # 2スタンドに設けられる孔 型圧延ロール対 R, Rのオフセット量 δ o (mm)と、矯正機 1の出側における曲力^量 r (mm)との関係の一例を示すグラフである。図 4に示す例では、 r=a X 6 o2+b X δ o + cとして規定される。なお、 a、 b、 cは、 f列えば最 /J、二乗法により、 a = 0. 0813、 b =— 1. 009、 c = 3. 6924として求められる。
[0048] 図 4に示すように、オフセット量 δ οが適正なオフセット量(図 4に示す例では 6mm 近辺)よりも小さ過ぎると曲がりの矯正量が不足する。一方、適正なオフセット量よりも 大き過ぎると、座屈現象が生じ、曲がりを矯正できない。
[0049] 次に、演算制御装置 5は、矯正機 1の出側における今回矯正された管 Pの曲がり量 rlを測定する。そして、測定した曲がり量 rlが目標範囲外である場合 (例えば、図 4 に示す例において曲がり量が 0. 6mmZmより大きい場合)、上述したように、予め算 出したオフセット量の設定値と矯正機 1の出側において測定した管の曲がり量との関 係 δ o =f (r)に基づき、矯正機 1の出側における管の曲がり量を目標範囲内とするた めに必要なオフセット量の変更量を算出する。すなわち、管の曲がり量の目標値を r' (例えば、図 4に示す例において曲がり量 r, =0. 6mmZmを目標値とする)とすれ ば、この目標値 r,を得るために目標とするオフセット量の設定値 δ o,は δ o' =f (r,) として求められるため、今回矯正された管 Pのオフセット量の設定値を δ olとすれば 、必要なオフセット量の変更量 Δ δ οは、 δ ο= δ ο ,— δ olとして算出される。
[0050] 最後に、演算制御装置 5は、上記のようにして算出したオフセット量の変更量 Δ δ ο に基づき、次の管 P'を矯正する際のオフセット量の設定値を決定する。すなわち、次 の管 Ρ,を矯正する際のオフセット量の設定値を δ ο2とすれば、 δ ο2= δ οΙ + Δ δ oとして決定される。なお、発散を防止するため Δ δ οに 0〜1の緩和係数を乗算して ちょい。
[0051] 図 5は、本実施の形態の自動制御方法の効果の一例を示すグラフであり、図 5 (a) は矯正機 1の出側における管の曲がり量の変動を、図 5 (b)は # 2スタンドにおけるォ フセット量の設定値の変動を示す。図 5に示す例では、 5本目以降に矯正した管につ いて、本実施形態に係る自動制御方法を適用する。なお、曲がり量の目標値は 0. 5 mmZmとし、前述した緩和係数は 0. 5に設定する。
[0052] 図 5に示すように、 5本目以降に矯正した管の曲がり量は徐々に改善され、 8本目に 矯正した管で目標値である 0. 5mmZmに到達したため、その後のオフセット量の設 定値は固定される。
[0053] 次に、次の管 Pを矯正する際のクラッシュ量の設定値の演算内容を説明する。演算 制御装置 5は、各スタンド # 1〜 # 3に設けられる孔型圧延ロール対のクラッシュ量の 設定値と、矯正機 1の出側において測定した管 Pの楕円量との関係を予め算出する 。すなわち、各スタンド # 1〜 # 3に対して各種の異なるクラッシュ量 δ cをそれぞれ設 定して矯正した複数の管 Ρの、矯正機 1の出側における楕円量 φをそれぞれ測定す ることにより、両者の関係 S c=g ( <i) )の関数 gを予め算出し記憶する。なお、本実施 の形態における楕円量 Φは、外径計 2から入力された管 Pの複数の径方向について の外径に基づき、管 Pの長手方向の中央部 (全長の 50%の長さを有する部位)の管 断面における (最大径ー最小径) Z平均径 X 100 (%)を管長手方向に平均化して 算出した値である。
[0054] クラッシュ量 δ cと矯正機 1の出側における楕円量 φとの関係は、実際には各スタン ドに設けられる孔型圧延ロール対 R, Rの傾斜角、矯正した管 Ρの本数、さら〖こは管 Ρ の外径や肉厚等によっても変動する。このため、これら各種パラメータの値に応じた 複数の関数 gl ' · 'gnが算出され記憶される。例えば、矯正機 1の出側における楕円 量 φ及び上記の各種パラメータを入力データとし、クラッシュ量 δ cを出力データとす る多数の組合せの入出力データを用いて-ユーラルネットワーク等の非線形モデル を学習させることにより、矯正機 1の出側における楕円量 φ及び上記の各種パラメ一 タを入力すれば、これに対応するクラッシュ量 δ cが出力される非線形モデルを同定 する。
[0055] 図 6は、演算制御装置 5によって算出され記憶される、 # 2スタンドに設けられる孔 型圧延ロール対 R, Rのクラッシュ量 δ c (mm)と、矯正機 1の出側における楕円量 φ (%)との関係の一例を示すグラフである。図 6に示す例では、 φ =a X 6 c2+b X S c + cとして規定される。なお、 a、 b、 cは、例えば最小二乗法により、 a = 0. 0348、 b = -0. 4909、 c = 2. 1251として求められる。
[0056] 図 6に示すように、クラッシュ量 δ cが適正なクラッシュ量(図 6に示す例では 7mm近 辺)よりも小さ過ぎる場合には楕円の矯正不足となる一方、適正なクラッシュ量より大 き過ぎる場合には、外面角張り現象が生じ、楕円を矯正できない。
[0057] 次に、演算制御装置 5は、矯正機 1の出側における今回矯正された管 Pの楕円量 φ 1を測定する。そして、測定した楕円量 φ 1が目標範囲外である場合 (例えば、図 6 に示す例において楕円量が 0. 4%より大きい場合)、上述したように、予め算出した クラッシュ量の設定値と矯正機 1の出側において測定した管の楕円量との関係 δ c = g ( φ )に基づき、矯正機 1の出側における管の楕円量を目標範囲内とするために必 要なクラッシュ量の変更量を算出する。すなわち、管の楕円量の目標値を φ ' (例え ば、図 6に示す例において楕円量 =0. 4%を目標値とする)とすれば、この目標値 φ ,を得るために目標とするクラッシュ量の設定値 S c'は S c' =g ( (i) ' )として求められ るため、今回矯正された管 Pのクラッシュ量の設定値を δ clとすれば、必要なクラッシ ュ量の変更量 Δ δ cは、 Δ δ c= δ c'— δ clとして算出される。
[0058] 最後に、演算制御装置 5は、上記のようにして算出したクラッシュ量の変更量 Δ δ c に基づき、次の管 P'を矯正する際のクラッシュ量の設定値を決定する。すなわち、次 の管 Ρ,を矯正する際のクラッシュ量の設定値を δ c2とすれば、 S c2= S cl + A S c として決定される。この際、発散を防止するため Δ δ cに 0〜1の緩和係数を乗算して ちょい。
[0059] 図 7は、本実施の形態の自動制御方法の効果の一例を示すグラフであり、図 7 (a) は矯正機 1の出側における管の楕円量の変動を示し、図 7 (b)は # 2スタンドにおけ るクラッシュ量の設定値の変動を示す。図 7に示す例では、 5本目以降に矯正した管 について、本実施形態に係る自動制御方法を適用する。なお、楕円量の目標値は 0 . 4%とし、前述した緩和係数は 0. 5に設定する。図 7に示すように、 5本目以降に矯 正した管については楕円量が徐々に改善され、 8本目に矯正した管で目標値である 0. 4%に到達したため、その後のクラッシュ量は固定される。
[0060] なお、本実施形態にぉ 、ては、好ま 、態様として、上述したように演算制御装置 5 に外径計 3の出力信号 (矯正機 1の入側における管 Pの外径の測定値及び断面中心 位置の測定値)が入力される。したがって、演算制御装置 5は、この外径計 3の出力 信号をも用いて次の管 Pを矯正する際のオフセット量の設定値及びクラッシュ量の設 定値を演算することが可能である。
[0061] まず、外径計 3の出力信号をも用いて次の管 Pを矯正する際のオフセット量の設定 値を演算する場合の演算内容を説明する。この場合、演算制御装置 5は、 # 2スタン ドに設けられる孔型圧延ロール R, R対のオフセット量の設定値と、矯正機 1の入側及 び出側において測定した管 Pの曲がり量との関係を予め算出する。すなわち、 # 2ス タンドに対して各種の異なるオフセット量 δ οをそれぞれ設定して矯正した複数の管 Ρ につ 、て、矯正機 1の入側及び出側にぉ 、て曲がり量 ri及び roをそれぞれ測定する ことにより、これらの関係 δ o=f (ri, ro)の関数 fを予め算出し記憶する。
[0062] オフセット量 δ οと矯正機 1出側での曲がり量 roとの関係は、実際には # 2スタンド に設けられる孔型圧延ロール対 R, Rの傾斜角、矯正した管 Pの本数、管 Pの外径や 肉厚等によっても変動するため、これら各種パラメータの値に応じた複数の関数 Π · · •fnが算出され記憶される点は、上述したのと同様である。
[0063] 次に、演算制御装置 5は、矯正機 1の出側における今回矯正された管 Pの曲がり量 ro 1を測定するとともに、矯正機の入側における次に矯正する管 P 'の曲がり量 ri2を 測定する。そして、測定した曲がり量 rolが目標範囲外である場合、上述したように、 予め算出したオフセット量の設定値と、矯正機 1の入側及び出側において測定した 管の曲がり量との関係 δ o=f (ri, ro)に基づき、矯正機 1の出側における管の曲がり 量を目標範囲内とするために必要なオフセット量の変更量を算出する。すなわち、管 の曲がり量の目標値を ro'とすれば、この目標値 ro,を得るために目標とするオフセッ ト量の設定値 δ o'は δ o' =f (ri2, ro' )として求められるため、今回矯正された管 P のオフセット量の設定値を δ olとすれば、必要なオフセット量の変更量 Δ δ οは、 Δ δ ο = δ ο ' - δ olとして算出される。
[0064] 最後に、演算制御装置 5は、上述したようにして算出したオフセット量の変更量 Δ δ οに基づき、次の管 P'を矯正する際のオフセット量の設定値を決定する。すなわち、 次の管 Ρ,を矯正する際のオフセット量の設定値を δ ο2とすれば、 δ ο2= δ οΙ + Δ δ οとして決定される。この際、発散を防止するため Δ δ οに 0〜1の緩和係数を乗算 してちよい。
[0065] 図 8は、この自動制御方法の効果の一例を示すグラフであり、図 8 (a)は矯正機 1の 出側における管の曲がり量の変動を示し、図 8 (b)は # 2スタンドにおけるオフセット 量の設定値の変動を示す。図 8に示す例でも、図 5に示す例と同様に、 5本目以降に 矯正した管について、本実施形態に係る好ましい制御方法を適用する。なお、曲がり 量の目標値は 0. 5mmZmとし、前述した緩和係数は 0. 5に設定する。図 8に示すよ うに、 5本目以降に矯正した管では曲がり量が急速に改善され、 6本目に矯正した管 で目標値である 0. 5mm/mに到達したため、その後のオフセット量の設定値は固 定される。すなわち、図 5に示す例よりも急速に曲がり量を改善することが可能である
[0066] 次に、外径計 3の出力信号をも用いて次の管 Pを矯正する際のクラッシュ量の設定 値を演算する場合の演算内容を説明する。この場合、演算制御装置 5は、各スタンド # 1〜 # 3に設けられる孔型圧延ロール R, R対のクラッシュ量の設定値と、矯正機 1 の入側及び出側において測定した管 Pの楕円量との関係を予め算出する。すなわち 、各スタンド # 1〜 # 3に対して各種の異なるクラッシュ量 δ cをそれぞれ設定して矯 正した複数の管 Ρについて、矯正機 1の入側及び出側において楕円量 φ i及び φ oを それぞれ測定することにより、これらの関係 δ c = g ( φ i, φ o)の関数 gを予め算出し 、,じ' I息 る。
[0067] クラッシュ量 δ οと矯正機 1の出側における楕円量 φ οとの関係は、実際には各スタ ンド # 1〜# 3に設けられる孔型圧延ロール対 R, Rの傾斜角、矯正した管 Ρの本数、 管 Ρの外径や肉厚等によっても変動するため、これら各種パラメータの値に応じた複 数の関数 gl ' · 'gnが算出され記憶される点は、前述したのと同様である。
[0068] 次に、演算制御装置 5は、矯正機 1の出側における今回矯正された管 Pの楕円量 φ o 1を測定するとともに、矯正機の入側における次に矯正する管 P 'の楕円量 φ i2を 測定する。そして、測定した楕円量 φ οΐが目標範囲外である場合、上述したように、 予め算出したクラッシュ量の設定値と矯正機 1の入側及び出側において測定した管 の楕円量との関係 δ c=g ( φ i, φ ο)に基づき、矯正機 1の出側における管の楕円量 を目標範囲内とするために必要なクラッシュ量の変更量を算出する。すなわち、管の 楕円量の目標値を φ ο,とすれば、この目標値 φ ο,を得るために目標とするクラッシュ 量の設定値 S c'は、 S c,=g ( (i) i2, φ ο' )として求められるため、今回矯正された管 Ρのクラッシュ量の設定値を δ clとすれば、必要なクラッシュ量の変更量 Δ δ cは Δ δ c = δ c — δ clとして算出される。
[0069] 最後に、演算制御装置 5は、上記のようにして算出したクラッシュ量の変更量 Δ δ c に基づき、次の管 P'を矯正する際のクラッシュ量の設定値を決定する。すなわち、次 の管 Ρ,を矯正する際のクラッシュ量の設定値を δ c2とすれば、 S c2= S cl + A S o として決定される。この際、発散を防止するため Δ δ οに 0〜1の緩和係数を乗算して ちょい。
[0070] 図 9は、この自動制御方法の効果の一例を示すグラフであり、図 9 (a)は矯正機 1の 出側における管の楕円量の変動を示し、図 9 (b)は # 2スタンドにおけるクラッシュ量 の設定値の変動を示す。図 9に示す例でも、図 7に示す例と同様に、 5本目以降に矯 正した管について、本実施の形態に係る好ましい自動制御方法を適用する。なお、 楕円量の目標値は 0. 4%とし、前述した緩和係数は 0. 5に設定する。図 9に示すよう に、 5本目以降に矯正した管の楕円量が急速に改善され、 6本目に矯正した管で目 標値である 0. 4%に到達したため、その後のクラッシュ量の設定値は固定される。す なわち、図 7に示す例よりも急速に楕円量を改善することが可能である。
[0071] なお、本実施形態においては、好ましい態様として、前述のように演算制御装置 5 に放射温度計 4の測温値が入力される。したがって、演算制御装置 5は、この放射温 度計 4の測温値をも用いて次の管 Pを矯正する際のオフセット量の設定値及びクラッ シュ量の設定値を演算することができる。
[0072] 放射温度計 4の測温値をも用いて次の管 Pを矯正する際のオフセット量の設定値を 演算する場合の演算内容は、上述した矯正機 1の入側における曲がり量 riの代わり に、矯正機 1の入側における管 Pの温度 Tを用いるだけであり、その他は同様の内容 であるため具体的な演算内容の説明は省略し、効果の一例のみを説明する。
[0073] 図 10は、この制御方法の効果の一例を示すグラフであり、図 10 (a)は矯正機 1の出 側における管の曲がり量の変動を示し、図 10 (b)は # 2スタンドにおけるオフセット量 の設定値の変動を示す。図 10に示す例でも、図 5に示す例と同様に、 5本目以降に 矯正した管について、本実施形態に係る好ましい自動制御方法を適用する。なお、 曲がり量の目標値は 0. 5mmZmとし、前述した緩和係数は 0. 5に設定する。図 10 に示すように、 5本目以降に矯正した管の曲がり量が急速に改善され、 7本目に矯正 した管で目標値である 0. 5mmZmに到達したため、その後のオフセット量設定値は 固定される。すなわち、図 5に示す例よりも急速に曲がり量を改善することが可能であ る。
[0074] 放射温度計 4の測温値をも用いて次の管 Pを矯正する際のクラッシュ量設定値を演 算する場合の演算内容は、前述した矯正機 1の入側における楕円量 φ iの代わりに、 矯正機 1の入側における管 Pの温度 Tを用 、るだけであり、その他は同様の内容であ るため具体的な演算内容の説明は省略し、効果の一例のみを説明する。
[0075] 図 11は、この自動制御方法の効果の一例を示すグラフであり、図 11 (a)は矯正機 1の出側における管の楕円量の変動を示し、図 11 (b)は # 2スタンドにおけるクラッシ ュ量の設定値の変動を示す。図 11に示す例でも、図 7に示す例と同様に、 5本目以 降に矯正した管について、本実施形態に係る好ましい自動制御方法を適用する。な お、楕円量の目標値は 0. 4%とし、前述した緩和係数は 0. 5に設定する。図 11に示 すように、 5本目以降に矯正した管については楕円量が急速に改善され、 7本目に矯 正した管で目標値である 0. 4%に到達したため、その後のクラッシュ量設定値は固 定される。すなわち、図 7に示す例よりも急速に楕円量を改善することが可能である。

Claims

請求の範囲
[1] 対向する孔型圧延ロール対を設けられるスタンドを 3つ以上備え、少なくとも 1つの スタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる孔型圧延ロール 対に対して所定のオフセット量ずらして配置し、各スタンドに設けられる孔型圧延ロー ル対で管をクラッシュして矯正するロール式管矯正機の自動制御方法であって、 前記オフセット量の設定値と、該ロール式管矯正機の少なくとも出側において測定 した管の曲がり量との関係を予め算出する第 1ステップと、
前記ロール式管矯正機の少なくとも出側における管の曲がり量を測定する第 2ステ ップと、
該第 2ステップにより測定した前記管の曲がり量が目標範囲外である場合、前記第 1ステップで算出した前記関係に基づき、前記ロール式管矯正機の出側における管 の曲がり量を目標範囲内とするために必要なオフセット量の変更量を算出する第 3ス テツプと、
該第 3ステップにより算出したオフセット量の変更量に基づき、次の管を矯正する際 のオフセット量の設定値を決定する第 4ステップと
を含むことを特徴とするロール式管矯正機の自動制御方法。
[2] 対向する孔型圧延ロール対を設けられるスタンドを 3つ以上備え、少なくとも 1つの スタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる孔型圧延ロール 対に対して所定のオフセット量ずらして配置し、各スタンドに設けられる孔型圧延ロー ル対で管をクラッシュして矯正するロール式管矯正機の自動制御方法であって、 前記オフセット量の設定値と、該ロール式管矯正機の入側及び出側にぉ 、て測定 した管の曲がり量との関係を予め算出する第 1ステップと、
前記ロール式管矯正機の出側における今回矯正した管の曲がり量を測定するとと もに、前記ロール式管矯正機の入側における次に矯正する管の曲がり量を測定する 第 2ステップと、
前記第 2ステップにより測定した今回矯正した管のロール式管矯正機の出側におけ る曲がり量が目標範囲外である場合、前記第 2ステップで測定した次に矯正する管の 曲がり量と、前記第 1ステップで算出した前記関係とに基づき、前記ロール式管矯正 機の出側における管の曲がり量を目標範囲内とするために必要なオフセット量の変 更量を算出する第 3ステップと、
該第 3ステップにより算出したオフセット量の変更量に基づき、次の管を矯正する際 のオフセット量の設定値を決定する第 4ステップと
を含むことを特徴とするロール式管矯正機の自動制御方法。
[3] 対向する孔型圧延ロール対を設けられるスタンドを 3つ以上備え、少なくとも 1つの スタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる孔型圧延ロール 対に対して所定のオフセット量ずらして配置し、各スタンドに設けられる孔型圧延ロー ル対で管をクラッシュして矯正するロール式管矯正機の自動制御方法であって、 前記オフセット量の設定値と、該ロール式管矯正機の出側において測定した管の 曲がり量及び該ロール式管矯正機の入側において測定した管の温度との関係を予 め算出する第 1ステップと、
前記ロール式管矯正機の出側における今回矯正した管の曲がり量を測定するとと もに、前記ロール式管矯正機の入側における次に矯正する管の温度を測定する第 2 ステップと、
該第 2ステップで測定した前記ロール式管矯正機の出側における今回矯正した管 の曲がり量が目標範囲外である場合、前記第 2ステップで測定した前記ロール式管 矯正機の入側における次に矯正する管の温度と、前記第 1ステップで算出したオフ セット量の設定値と、前記ロール式管矯正機の出側における測定した管の曲がり量 及び前記ロール式管矯正機の入り側における測定した管の温度との関係に基づき、 前記ロール式管矯正機の出側における管の曲がり量を目標範囲内とするために必 要なオフセット量の変更量を算出する第 3ステップと、
該第 3ステップにより算出したオフセット量の変更量に基づき、次の管を矯正する際 のオフセット量の設定値を決定する第 4ステップと
を含むことを特徴とするロール式管矯正機の自動制御方法。
[4] 対向する孔型圧延ロール対を設けられるスタンドを 3つ以上備え、少なくとも 1つの スタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる孔型圧延ロール 対に対して所定のオフセット量ずらして配置し、各スタンドに設けられる孔型圧延ロー ル対で管をクラッシュして矯正するロール式管矯正機の自動制御方法であって、 クラッシュ量の設定値と、前記ロール式管矯正機の少なくとも出側にお 、て測定し た管の楕円量との関係を予め算出する第 1ステップと、
前記ロール式管矯正機の少なくとも出側における管の楕円量を測定する第 2ステツ プと、
前記第 2ステップで測定した前記管の楕円量が目標範囲外である場合、前記第 1ス テツプで算出した前記クラッシュ量の設定値と、前記ロール式管矯正機の少なくとも 出側において測定した管の楕円量との関係とに基づき、前記ロール式管矯正機の出 側における管の楕円量を目標範囲内とするために必要なクラッシュ量の変更量を算 出する第 3ステップと、
前記第 3ステップで算出したクラッシュ量の変更量に基づき、次の管を矯正する際 のクラッシュ量の設定値を決定する第 4ステップと
を含むことを特徴とするロール式管矯正機の自動制御方法。
[5] 対向する孔型圧延ロール対を設けられるスタンドを 3つ以上備え、少なくとも 1つの スタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる孔型圧延ロール 対に対して所定のオフセット量ずらして配置し、各スタンドに設けられる孔型圧延ロー ル対で管をクラッシュして矯正するロール式管矯正機の自動制御方法であって、 クラッシュ量の設定値と、前記ロール式管矯正機の入側及び出側にぉ 、て測定し た管の楕円量との関係を予め算出する第 1ステップと、
前記ロール式管矯正機の出側における今回矯正した管の楕円量を測定するととも に、前記ロール式管矯正機の入側における次に矯正する管の楕円量を測定する第 2 ステップと、
前記第 2ステップで測定した前記ロール式管矯正機の出側における今回矯正した 管の楕円量が目標範囲外である場合、前記第 2ステップで測定した前記ロール式管 矯正機の入側における次に矯正する管の楕円量と、前記第 1ステップで算出したクラ ッシュ量の設定値と、前記ロール式管矯正機の入側及び出側における測定した管の 楕円量との関係とに基づき、前記ロール式管矯正機の出側における管の楕円量を目 標範囲内とするために必要なクラッシュ量の変更量を算出する第 3ステップと、 前記第 3ステップで算出したクラッシュ量の変更量に基づき、次の管を矯正する際 のクラッシュ量の設定値を決定する第 4ステップと
を含むことを特徴とするロール式管矯正機の自動制御方法。
[6] 対向する孔型圧延ロール対を設けられるスタンドを 3つ以上備え、少なくとも 1つの スタンドに設けられる孔型圧延ロール対を他のスタンドに設けられる孔型圧延ロール 対に対して所定のオフセット量ずらして配置し、各スタンドに設けられる孔型圧延ロー ル対で管をクラッシュして矯正するロール式管矯正機の自動制御方法であって、 クラッシュ量の設定値と、前記ロール式管矯正機の出側において測定した管の楕 円量及び該ロール式管矯正機の入側において測定した管の温度との関係を予め算 出する第 1ステップと、
前記ロール式管矯正機の出側における今回矯正した管の楕円量を測定するととも に、前記ロール式管矯正機の入側における次に矯正する管の温度を測定する第 2ス テツプと、
前記第 2ステップで測定した前記ロール式管矯正機の出側における今回矯正した 管の楕円量が目標範囲外である場合、前記第 2ステップで測定した前記ロール式管 矯正機の入側における次に矯正する管の温度と、前記第 1ステップで算出したクラッ シュ量の設定値と、前記ロール式管矯正機の出側において測定した管の楕円量及 び前記ロール式管矯正機の入側において測定した管の温度との関係とに基づき、前 記ロール式管矯正機の出側における管の楕円量を目標範囲内とするために必要な クラッシュ量の変更量を算出する第 3ステップと、
前記第 3ステップで算出したクラッシュ量の変更量に基づき、次の管を矯正する際 のクラッシュ量の設定値を決定する第 4ステップと
を含むことを特徴とするロール式管矯正機の自動制御方法。
PCT/JP2006/306678 2005-03-31 2006-03-30 ロール式管矯正機の自動制御方法 WO2006106834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800107290A CN101151111B (zh) 2005-03-31 2006-03-30 辊式管矫正机的自动控制方法
BRPI0609606-9A BRPI0609606B1 (pt) 2005-03-31 2006-03-30 Método de controle automático para uma desempenadeira de tubo do tipo rolo
EP06730626.6A EP1870174B1 (en) 2005-03-31 2006-03-30 Automatic control method of roll type pipe correction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005101518A JP2006281228A (ja) 2005-03-31 2005-03-31 ロール式管矯正機の制御方法
JP2005-101518 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106834A1 true WO2006106834A1 (ja) 2006-10-12

Family

ID=37073390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306678 WO2006106834A1 (ja) 2005-03-31 2006-03-30 ロール式管矯正機の自動制御方法

Country Status (5)

Country Link
EP (1) EP1870174B1 (ja)
JP (1) JP2006281228A (ja)
CN (1) CN101151111B (ja)
BR (1) BRPI0609606B1 (ja)
WO (1) WO2006106834A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298646B2 (ja) * 2008-05-30 2013-09-25 Jfeスチール株式会社 耐座屈性能に優れる電縫管ラインパイプの製造方法
JP5298645B2 (ja) * 2008-05-30 2013-09-25 Jfeスチール株式会社 耐座屈性能に優れる電縫管ラインパイプの製造方法
CN101927278B (zh) * 2010-06-03 2012-11-07 天津商业大学 采用六辊矫直机实现薄壁无缝钢管精密矫直的方法
JP2013104719A (ja) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal 鋼管の外面曲がり測定方法
CN106216441B (zh) * 2016-08-29 2019-06-04 内蒙古包钢钢联股份有限公司 多斜辊矫直机防刮伤矫直操作方法
CN112543683A (zh) * 2018-08-09 2021-03-23 日本制铁株式会社 弯曲矫正方法
DE102020201477A1 (de) * 2020-02-06 2021-08-12 Sms Group Gmbh Vorrichtung und Verfahren zum An- bzw. Einstellen eines Walzspaltes einer Zweiwalzen-Richtmaschine für Stäbe und/oder Profile
CN111468565B (zh) * 2020-04-14 2021-08-10 太原科技大学 一种超大口径无缝钢管矫直辊压扁量的设定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207921A (ja) 1989-02-07 1990-08-17 Sumitomo Metal Ind Ltd ロータリー式ストレートナによる管矯正方法
JPH0472619B2 (ja) 1984-02-29 1992-11-18 Sumitomo Metal Ind
JPH06114442A (ja) * 1992-10-05 1994-04-26 Jgc Corp 超長尺管用矯直機施工管理システム
JP2001179340A (ja) 1999-12-24 2001-07-03 Sumitomo Metal Ind Ltd ロール式管矯正機による管矯正方法
JP6088084B2 (ja) * 2016-03-18 2017-03-01 三ツ星ベルト株式会社 ワイパーの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162518A (ja) * 1987-12-18 1989-06-27 Sumitomo Metal Ind Ltd 熱間ストレートナ制御量設定方法
JP3153914B2 (ja) * 1991-07-09 2001-04-09 株式会社大同機械製作所 矯正ローラの位置決め方法および装置
CN1286589C (zh) * 2004-03-04 2006-11-29 张先荣 弯管机工件截面形状的矫正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472619B2 (ja) 1984-02-29 1992-11-18 Sumitomo Metal Ind
JPH02207921A (ja) 1989-02-07 1990-08-17 Sumitomo Metal Ind Ltd ロータリー式ストレートナによる管矯正方法
JPH06114442A (ja) * 1992-10-05 1994-04-26 Jgc Corp 超長尺管用矯直機施工管理システム
JP2001179340A (ja) 1999-12-24 2001-07-03 Sumitomo Metal Ind Ltd ロール式管矯正機による管矯正方法
JP6088084B2 (ja) * 2016-03-18 2017-03-01 三ツ星ベルト株式会社 ワイパーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1870174A4 *

Also Published As

Publication number Publication date
CN101151111A (zh) 2008-03-26
JP2006281228A (ja) 2006-10-19
EP1870174B1 (en) 2014-09-17
EP1870174A1 (en) 2007-12-26
BRPI0609606A2 (pt) 2010-04-20
CN101151111B (zh) 2010-12-01
EP1870174A4 (en) 2013-08-21
BRPI0609606B1 (pt) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2006106834A1 (ja) ロール式管矯正機の自動制御方法
US7461529B2 (en) Methods and apparatus for monitoring and conditioning strip material
US7333925B2 (en) Manufacturing method and manufacturing apparatus of pipe, thickness deviation information derivation apparatus, and computer program
CN112949108B (zh) 热轧高强钢板形缺陷全流程预测方法及图形用户界面装置
EP1733817B1 (en) Method and device for controlling fixed diameter rolling of tube
JP4523010B2 (ja) 鋼板の製造方法
JP6172401B2 (ja) 金属板の圧延制御方法、圧延制御装置及び圧延金属板の製造方法
WO2004085086A1 (ja) 継目無管の製造方法
EP2133159B1 (en) Method of manufacturing a seamless pipe or tube
JP4866302B2 (ja) 鍛伸加工の工程設計システムと鍛伸加工方法
JP2009034705A (ja) 熱間ローラ矯正における被矯正材の降伏応力および弾性係数の推定方法ならびにローラレベラの操業方法
JP6206422B2 (ja) 鋼板の形状矯正装置および形状矯正方法
JP5915402B2 (ja) ロール形状決定装置及びロール形状決定方法
JP5557576B2 (ja) 鋼材の熱間矯正方法
JPS60184425A (ja) ロ−ル式管矯正機における管の形状検出方法及びロ−ル位置設定方法
JP2018001271A (ja) 蛇行予測システム、蛇行予測方法及び圧延機のオペレータ支援方法
JP2867885B2 (ja) 圧延機におけるロール間隙設定方法
JPH0698366B2 (ja) 板材の形状制御方法
KR20170075081A (ko) 판재 교정 장치 및 레벨러 교정조건 연산 방법
JP2001179340A (ja) ロール式管矯正機による管矯正方法
KR20240012525A (ko) 강관의 진원도 예측 방법, 강관의 진원도 제어 방법, 강관의 제조 방법, 강관의 진원도 예측 모델의 생성 방법, 및 강관의 진원도 예측 장치
KR20240021918A (ko) 강관의 진원도 예측 모델의 생성 방법, 강관의 진원도 예측 방법, 강관의 진원도 제어 방법, 강관의 제조 방법, 및 강관의 진원도 예측 장치
JPH1094829A (ja) ローラレベラにおけるレベリング状態の計算方法およびロール設定方法
JPH1034221A (ja) タンデム圧延機における伸ばし長さ制御方法
JP2018051628A (ja) 圧延制御方法、鋼板の製造方法、圧延制御装置および鋼板の製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010729.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0609606

Country of ref document: BR

Kind code of ref document: A2