WO2009116637A1 - 被観察物からの光透過機能を有する画像表示装置 - Google Patents

被観察物からの光透過機能を有する画像表示装置 Download PDF

Info

Publication number
WO2009116637A1
WO2009116637A1 PCT/JP2009/055482 JP2009055482W WO2009116637A1 WO 2009116637 A1 WO2009116637 A1 WO 2009116637A1 JP 2009055482 W JP2009055482 W JP 2009055482W WO 2009116637 A1 WO2009116637 A1 WO 2009116637A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
liquid crystal
color
image display
Prior art date
Application number
PCT/JP2009/055482
Other languages
English (en)
French (fr)
Inventor
薫 太田
新山 聡
玲美 川上
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2009801097779A priority Critical patent/CN101978309A/zh
Priority to JP2010503934A priority patent/JPWO2009116637A1/ja
Publication of WO2009116637A1 publication Critical patent/WO2009116637A1/ja
Priority to US12/885,022 priority patent/US20110018909A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134327Segmented, e.g. alpha numeric display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/18Signals indicating condition of a camera member or suitability of light
    • G03B17/20Signals indicating condition of a camera member or suitability of light visible in viewfinder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/086UV absorbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/64Normally black display, i.e. the off state being black
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/66Normally white display, i.e. the off state being white
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/18Signals indicating condition of a camera member or suitability of light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders

Definitions

  • the present invention allows an observer to visually recognize an observation object positioned on the back surface of a display element through the display element, and allows light transmission from the observation object capable of displaying information provided to the observer.
  • the present invention relates to an image display device having a function.
  • FIG. 14 is a cross-sectional view showing a part of a camera including a viewfinder device described in Patent Literatures 1 and 2.
  • a mirror 311 that reflects external light incident through a lens 321 provided inside the lens barrel 320 is provided inside the camera body 300.
  • the optical path of the light reflected by the mirror 311 is changed by the prism 313, passes through the eyepiece lens 314, and reaches the outside of the fluoroscopic window 315.
  • a liquid crystal display panel 312 driven by a drive circuit 316 is provided in the middle of the optical path of the light reflected by the mirror 311.
  • the liquid crystal display panel 312 is configured such that a liquid crystal element is sandwiched between a pair of transparent substrates with electrodes. When a voltage is applied between the substrates, the liquid crystal display panel 312 enters a light transmissive state, and a light scattering state is obtained when no voltage is applied. Present.
  • a CPU (not shown) provided in the camera main body 300 controls the drive circuit 316 so that a voltage is not applied between electrodes in a predetermined display target area of the liquid crystal display panel 312 according to a set mode. Control.
  • a predetermined sign is displayed in the display target area.
  • FIG. 15 shows an example in which a sign 310 indicating a focus area is displayed.
  • the liquid crystal display panel 312 in a region other than the display region of the sign 310, the voltage is continuously applied, and the liquid crystal display panel 312 is in a light transmission state. Therefore, the photographer can view the object to be observed and the sign 310 from the perspective window 315.
  • the finder apparatus using the liquid crystal display panel 312 has the following problems. First, since it is necessary to apply a voltage between the substrates in order to bring the liquid crystal display panel 312 into a light transmission state, the power consumption of the camera increases. In general, since an electric circuit provided in the camera is driven by a battery, the usable period of the battery is shortened. In addition, when displaying the camera provided with the finder device using the liquid crystal display panel 312 so that the user can contact the storefront of the store, the battery is consumed if the power is turned on. Therefore, it will be displayed with the power off. Then, when the user looks into the see-through window 315 of the camera, nothing can be visually recognized, and the user may be distrusted with the quality of the camera.
  • an electrode for displaying a sign (in the example shown in FIG. 15, each side of a substantially rectangular shape indicating a focus area) is provided in a portion where the sign 310 is displayed.
  • a wiring pattern connected to the electrode for displaying the signs is provided. Therefore, when the voltage application to the sign display electrode is stopped and the sign display area is set in the light scattering state, the wiring pattern area is also recognized in the light scattering state. That is, the appearance of the display surface of the image display device is deteriorated.
  • a broken line portion indicates a wiring pattern.
  • an object of the present invention is to provide an image display device having a function of transmitting light from an object to be observed that can reduce power consumption and has a good display surface (hereinafter referred to as a light transmission function). .
  • An image display device having a function of transmitting light from an object to be observed according to the present invention is sandwiched between a pair of transparent substrates with electrodes and the pair of substrates with electrodes, and can take a light transmission state and a light scattering state.
  • a timing at which at least a part of the display surface of the display element is brought into a light scattering state or a light transmission state in conjunction with the light emission state of the light source to the liquid crystal layer Includes control circuitry.
  • the light source may be configured to emit one light source color and have a frame frequency of 15 Hz or more.
  • the specific display portion of the display element is in a light scattering state in conjunction with light emission, and the portion becomes a red display color, thereby improving the visibility of the observer.
  • the light source emits one light source color
  • the frame frequency of the light source color is 15 Hz or more
  • the ratio of the light emission period in one frame is 1/3 or less
  • the period during which a specific part of the display element is in the light scattering state within the light non-emission period By adjusting the, it is possible to display a halftone display from clear black display to light black, improving the visibility of the observer and at the same time providing a more expressive display on the display surface be able to.
  • the light source sequentially develops two or more light source colors, the frame frequency of each light source color is 15 Hz or more, and the timing control circuit interlocks with the light emission state of one or more light source colors, You may be comprised so that the display color according to one or several light source colors may be obtained by making at least one part into a light-scattering state or a light transmissive state.
  • the light source can color, for example, red, blue and green independently.
  • the image display device may include a case where the display color is a single color and a case where the display color is multicolor at different display timings.
  • a light guide unit is provided between the light source and the display element, which spreads the light emitted from the light source from one end of the side portion of the liquid crystal layer to the other end.
  • the frame frequency of the light source color is 30 Hz or more.
  • the image display device having a function of transmitting light from an object to be observed according to the present invention can be applied to, for example, a camera finder device, an optical microscope, and binoculars.
  • an image display device that can reduce power consumption and has a function of transmitting light from an object to be observed having a good display surface appearance.
  • FIG. 1 is a schematic external view showing an image display device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a display element according to the present invention.
  • FIGS. 3A to 3E are explanatory views illustrating curable compounds that can be used for display elements.
  • FIG. 4 is a schematic sectional view showing an application example of the image display device according to the present invention.
  • FIG. 5 is an explanatory diagram illustrating an example of display on the image display device.
  • FIG. 6 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • FIG. 7 is a block diagram illustrating a configuration example of a driving circuit for driving a display element.
  • FIG. 1 is a schematic external view showing an image display device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a display element according to the present invention.
  • FIGS. 3A to 3E are explanatory views illustrating curable compounds that can be
  • FIG. 8 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • FIG. 9 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • FIG. 10 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • FIGS. 11A to 11C are explanatory diagrams for explaining the configuration and operation of an image display apparatus when one light source is used.
  • 12 (A) to 12 (F) are explanatory views for explaining the operation of the light guide section.
  • 13 (A) and 13 (B) are explanatory diagrams showing examples of display of examples and comparative examples, respectively.
  • FIG. 14 is a schematic cross-sectional view showing a part of a camera including a viewfinder device.
  • FIG. 15 is an explanatory diagram illustrating an example of a display of a conventional example.
  • FIG. 16 is a block diagram illustrating another configuration example of a driving circuit for driving a display element.
  • FIG. 17 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • FIG. 18 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • FIG. 19 is a schematic diagram illustrating a relationship between driving of a display element and a light source in the image display apparatus.
  • the image display device uses a field sequential color system that obtains a color display by combining a liquid crystal display panel and a light source whose emission color is switched between red, blue, and green in the presence of external light.
  • a field sequential color system that obtains a color display by combining a liquid crystal display panel and a light source whose emission color is switched between red, blue, and green in the presence of external light.
  • an image corresponding to each emission color is sequentially displayed on a liquid crystal panel and driven. Therefore, the response of the liquid crystal panel needs to be sufficiently fast.
  • the liquid crystal In the field sequential color method, for example, it is necessary to display one color in 1/3 time of one field. Therefore, for example, when displaying 60 fields / second, the time available for display is about 5 ms (milliseconds). ) Therefore, the liquid crystal itself is required to have a response time shorter than 5 ms.
  • a liquid crystal capable of realizing a high-speed response a ferroelectric liquid crystal, an antiferroelectric liquid crystal, a narrow gap nematic liquid crystal, an OCB mode liquid crystal, and the like are known.
  • the image display device is a liquid crystal display element that can take a light transmission state and a light scattering state as described below, and is light from a light transmission state at room temperature (for example, 25 ° C.).
  • a liquid crystal display element that can make the response time required for switching to the scattering state and switching from the light scattering state to the light transmission state shorter than 5 ms is used.
  • the response speed of the liquid crystal generally decreases at a low temperature, it is possible to cope with a temperature range suitable for the application by performing temperature compensation.
  • FIG. 1 is a schematic external view showing an example of an image display device according to the present invention.
  • the image display device 10 includes a light source 2 that can be controlled in a time-sharing manner, such as an LED, and a driving voltage of the display element (electro-optical element) 1 and a light source 2 are controlled by a battery (battery) (not shown).
  • a lighting voltage is supplied.
  • the display element 1 can switch the liquid crystal layer between a transparent state and a light scattering state depending on whether or not a voltage is applied to the transparent electrode based on an external signal or the like. And a figure can be displayed.
  • the scattering portion of the liquid crystal layer scatters the light and is recognized brightly by the observer 3.
  • the light source 2 is provided at the edge portion of the display element 1 and makes light incident on the liquid crystal layer.
  • the light guide part which diffuses light between the light source 2 and the display element 1 is provided.
  • transparent means a state where the light transmittance is 50% or more, preferably 80% or more. In the case of transparency, the observer 3 can visually recognize the object to be observed through the display element 1. That is, the image display apparatus 10 has a function of transmitting light from the object to be observed (light transmission function).
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the display element 1 in the image display device 10.
  • transparent electrodes 102 and 107 are provided on opposing surfaces of the pair of substrates 101 and 108.
  • alignment films 103 and 106 are provided on the inner side.
  • a liquid crystal layer 104 containing liquid crystal and having a thickness controlled by a spacer (not shown) is sandwiched between the alignment films 103 and 106. Then, the liquid crystal layer 104 is sealed by the seal layer 105.
  • the material of the substrates 101 and 108 is not particularly limited as long as transparency can be secured.
  • As the substrates 101 and 108 glass substrates or plastic substrates can be used.
  • the shape of the display element 1 does not need to be planar, and may be curved.
  • a transparent electrode material such as a metal oxide such as ITO (indium oxide-tin oxide) can be used.
  • the substrates 101 and 108 provided with the transparent electrodes 102 and 107 are referred to as substrates with electrodes.
  • the liquid crystal layer 104 capable of taking a light transmission state and a light scattering state is a composition containing a liquid crystal and a curable compound soluble in the liquid crystal (hereinafter, an uncured composition) between a pair of transparent substrates with electrodes.
  • a liquid crystal layer formed as a liquid crystal / polymer composite by curing a curable compound using means such as heat, ultraviolet rays, or an electron beam is preferable.
  • a liquid crystal composed of a composite of such a liquid crystal and a polymer is also referred to as a liquid crystal / polymer composite.
  • the liquid crystal used in the liquid crystal / polymer composite may have either positive or negative dielectric anisotropy, but in order to shorten the response time required for switching between the light transmission state and the light scattering state, the viscosity of the liquid crystal is low, Furthermore, it is preferable to use a liquid crystal having negative dielectric anisotropy.
  • a non-curable compound is used as the liquid crystal.
  • the curable compound may have liquid crystallinity.
  • the substrate with electrodes in the substrate with electrodes, a treatment is performed so that the pretilt angle of liquid crystal molecules is 60 degrees or more with respect to the substrate surface on the side in contact with the liquid crystal layer 104.
  • orientation defects can be reduced and transparency is improved, which is preferable.
  • the rubbing process may not be performed.
  • the pretilt angle is more preferably 70 degrees or more.
  • the pretilt angle is defined as 90 degrees in the direction perpendicular to the substrate surface.
  • the liquid crystal constituting the liquid crystal / polymer composite forming the liquid crystal layer 104 can be appropriately selected from known liquid crystals.
  • a liquid crystal having a positive dielectric anisotropy and a liquid crystal having a negative dielectric anisotropy can be used.
  • a liquid crystal having negative dielectric anisotropy is preferable in terms of higher transparency and response speed.
  • the alignment film can also be rubbed. In order to reduce the driving voltage, it is preferable that the absolute value of dielectric anisotropy is large.
  • the curable compound constituting the liquid crystal / polymer composite also has transparency. Furthermore, it is preferable that the liquid crystal and the curable compound are separated so that only the liquid crystal responds when a voltage is applied after curing, because the driving voltage can be lowered.
  • the alignment state of the mixture of the liquid crystal and the curable compound when uncured can be controlled, and high transparency can be maintained when cured.
  • a curable compound is used.
  • curable compound examples include a compound of formula (1) and a compound of formula (2).
  • each of A 1 , A 2 , A 3 , and A 4 is independently an acryloyl group, methacryloyl group, glycidyl group, or allyl group that becomes a curing site, and R 1 , R 2 , R 3 , R
  • Each of 4 is independently an alkylene group having 2 to 6 carbon atoms
  • each of Z and Z ′ is independently a divalent mesogen structure
  • each of m, n, o, and p Is independently an integer from 1 to 10.
  • “independently” means that the combination is arbitrary and any combination is possible.
  • the curing sites A 1 , A 2 , A 3 , and A 4 in the formulas (1) and (2) may be any functional group as long as they can be photocured or thermally cured. It is preferable that it is an acryloyl group and a methacryloyl group suitable for photocuring.
  • the carbon number of R 1 , R 2 , R 3 and R 4 in the formulas (1) and (2) is preferably 1 to 6 from the viewpoint of molecular mobility, and an ethylene group having 2 carbon atoms and 3 carbon atoms.
  • the propylene group is more preferable.
  • Examples of the mesogen structure parts Z and Z ′ in the formulas (1) and (2) include polyphenylene groups in which 1,4-phenylene groups are linked. A part or all of the 1,4-phenylene group may be substituted with a 1,4-cyclohexylene group. In addition, some or all of the hydrogen atoms of the 1,4-phenylene group or substituted 1,4-cyclohexylene group may be substituted with alkyl groups having 1 to 2 carbon atoms, halogen atoms, carboxyl groups, alkoxycarbonyl groups, or the like. It may be substituted with a group.
  • a biphenylene group in which two 1,4-phenylene groups are linked is also referred to as a 4,4-biphenylene group.
  • Examples thereof include three linked terphenylene groups and those in which 1 to 4 of these hydrogen atoms are substituted with an alkyl group having 1 to 2 carbon atoms, a fluorine atom, a chlorine atom or a carboxyl group. Most preferred is a 4,4-biphenylene group having no substituent. All the bonds between the 1,4-phenylene group or 1,4-cyclohexylene group constituting the mesogen structure may be a single bond or any of the following bonds.
  • M, n, o, and p in Formula (1) and Formula (2) are each independently preferably from 1 to 10, and more preferably from 1 to 4. This is because if it is too large, the compatibility with the liquid crystal is lowered and the transparency of the electro-optical element after curing is lowered.
  • FIG. 3 shows examples of curable compounds that can be used in the present invention.
  • the composition containing a liquid crystal and a curable compound may contain a plurality of curable compounds including the curable compounds represented by the formulas (1) and (2).
  • the compatibility with the liquid crystal may be improved.
  • the composition containing the liquid crystal and the curable compound may contain a curing catalyst.
  • a photopolymerization initiator generally used for photocurable resins such as benzoin ether, acetophenone, and phosphine oxide can be used.
  • a curing catalyst such as peroxide, thiol, amine, or acid anhydride can be used depending on the type of curing site, and if necessary, a curing aid such as amines can be added. It can also be used.
  • the content of the curing catalyst is preferably 20% by mass or less of the curable compound to be contained, and more preferably 0.1 to 5% by mass when a high molecular weight or high specific resistance of the cured resin is required after curing. .
  • the total amount of the curable compound is preferably 0.1 to 20% by mass with respect to the liquid crystal composition. If it is less than 0.1% by mass, the liquid crystal phase cannot be divided into domain structures having an effective shape by the cured product, and desired transmission-scattering characteristics cannot be obtained. On the other hand, when it exceeds 20% by mass, the haze value in the transmissive state tends to increase as in the case of the conventional liquid crystal / cured material composite element. More preferably, the content of the cured product in the liquid crystal composition is 0.5 to 15% by mass, the scattering intensity in the light scattering state is high, and the voltage value at which transmission-scattering is switched can be reduced. .
  • a processing method for aligning liquid crystal molecules so that the pretilt angle is 60 degrees or more with respect to the substrate surface there is a method using a vertical alignment agent.
  • a method using a vertical alignment agent for example, a method using a surfactant, a method of treating a substrate interface with a silane coupling agent containing an alkyl group or a fluoroalkyl group, or SE1211 or JSR manufactured by Nissan Chemical Industries, Ltd.
  • a commercially available vertical alignment agent such as JALS-682-R3 manufactured by the company.
  • any known method may be adopted.
  • the vertical alignment agent may be rubbed.
  • a method may be employed in which a slit is provided in the transparent electrodes 101 and 107 or a triangular prism is disposed on the electrodes 101 and 107 so that the voltage is applied obliquely to the substrates 101 and 108. Further, it is not necessary to use means for tilting the liquid crystal molecules in a specific direction.
  • the thickness of the liquid crystal layer 104 between the two substrates 101 and 108 can be defined by a spacer or the like.
  • the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m. If the thickness of the liquid crystal layer 104 is too thin, the contrast is lowered, and if it is too thick, the driving voltage tends to increase, which is not preferable in many cases.
  • any known material can be used as long as it is a highly transparent resin. If a highly transparent resin is used, the display element becomes transparent over the entire surface, and the state that characters and figures appear to float in the air is emphasized. For example, when a glass substrate is used as the substrates 101 and 108, a transparent glass floats in the air if an epoxy resin or an acrylic resin having a refractive index close to that of the glass is used. realizable. Moreover, in the case of a usage method in which the seal portion is usually not visually recognized by an observer, the seal layer does not need to be transparent.
  • the image display device 10 manufactured as described above can realize a very high response speed with a response time between the light transmission state and the light scattering state of the display pixel being shorter than 5 ms at least near room temperature.
  • the viewing angle dependency is better than that of the conventional scattering transmission mode by the dispersion type liquid crystal element, and a very good light transmission state can be obtained even when viewed obliquely.
  • a composite containing a curable compound having the above composition and a liquid crystal there is almost no haze even when viewed at an angle of 40 degrees from the vertical.
  • any size can be used, including one with a diagonal length of about 1 cm to about 3 m.
  • a plurality of display elements 1 may be used. Further, the upper and lower substrates 101 and 108 may be fixed in order to increase the impact resistance against the display element 1.
  • an antireflection film or an ultraviolet blocking film on the front and back surfaces of the display element 1.
  • AR coating low reflection coating
  • a dielectric multilayer film such as SiO 2 or TiO 2
  • a light source capable of time-sharing control such as an LED is used.
  • a field sequential color method for example, a method of sequentially lighting red, green, and blue light sources may be used.
  • a method of sequentially changing the color of the color by combining a color filter with respect to light may be used.
  • FIG. 4 is an explanatory diagram showing an application example of the image display device 10 according to the present invention.
  • an image display device 10 (in FIG. 4, only the display element 1 in the image display device 10 is shown) is applied to a finder device of a camera.
  • the display element 1 is driven by the drive circuit 20, but the other components are the same as those shown in FIG.
  • the liquid crystal layer enters a light scattering state, and exhibits a light transmission state when no voltage is applied. Therefore, the user of the camera can visually recognize the object to be observed through the see-through window 315 even when no voltage is applied.
  • light guide portions (light guide plates) 4 having substantially the same thickness as the display elements 1 are formed on the left and right edges (edge portions) of the display element 1.
  • the light from the light source 2 is incident on the liquid crystal layer of the display element 1 through the light guide 4.
  • the light guide 4 is formed of an acrylic plate as an example.
  • the light incident on the liquid crystal layer is light substantially parallel to the surface of the liquid crystal layer (surface parallel to the substrate surface), and the incident light leaks from the display surface of the display element 1 when the liquid crystal layer is in a light transmission state. Reduce the number of exits. If the incident light is more completely parallel to the surface of the liquid crystal layer, this light leakage will be less.
  • an LED light source that emits red (R), green (G), and blue (B) light is used as the light source 2.
  • the light source 2 causes a light source color to be incident on the liquid crystal layer from the side of the display element 1 via the light guide 4 so as to be substantially parallel to the surface of the liquid crystal layer.
  • the light emission of the LED has a straight traveling property, when the light guide unit 4 is provided, when the light enters the light guide unit 4, the surface reflection is repeated in the light guide unit 4 and spreads over a wide range. Incident to the layer.
  • FIG. 5 is an explanatory diagram showing a display example of the display element 1.
  • the display element 1 displays a sign 7 indicating the remaining battery level, a sign 8 indicating the shootable range, and a sign 9 indicating the shutter speed.
  • the shutter speed indicates 1/1000 second.
  • An area other than the area where the signs 7, 8, and 9 are displayed, in particular, an area surrounded by the sign 8 indicating the imageable range is a transparent area.
  • white color is developed in the area of the label 8
  • red color is developed in the area of the label 7 so that it is visually recognized as black in the observation through the eyepiece 314 when the light source is not lit.
  • the light source 2 light sources of three colors of red, green, and blue are used. As shown in FIG. 6, the three colors are sequentially lit, and the cycle in which all of RGB is lit once is defined as one frame. If the area of the marker 8 is in the light scattering state for all of the R lighting time, the G lighting time, and the B lighting time, the area of the marker 8 becomes white and the light source 2 is not turned on.
  • marker 8 is a light-scattering state
  • marker 8 will be visually recognized substantially black by the outside light being scattered by observation through the eyepiece 314.
  • the area of the marker 7 is colored red.
  • each portion to be displayed is in a light scattering state in conjunction with the lighting state of the light source in the presence of external light.
  • the light transmission state may be controlled.
  • the period of one frame corresponding to the lighting period of the three color light sources is preferably (1/15) seconds or less. That is, it is preferable that the frame frequency corresponding to the lighting frequency of the three color light sources is 15 Hz or more. This is because if it is less than 15 Hz, flicker may be visually recognized. More preferably, the frame frequency is 30 Hz or more, and more preferably 60 Hz or more.
  • the display element 1 manufactured as described above is in a light scattering state when a predetermined voltage (for example, 60 V) is applied to the liquid crystal layer 104 as a liquid crystal layer capable of taking a light transmission state and a light scattering state.
  • a predetermined voltage for example, 60 V
  • the light transmission state is obtained.
  • the scattered signal ON corresponds to a predetermined voltage being applied between the transparent electrodes 102 and 107
  • the transparent signal ON is that the potential difference between the transparent electrodes 102 and 107 is 0V. Corresponds to the state.
  • a signal for generating the light source ON and light source OFF timing shown in FIG. 6, that is, a signal for instructing each light source to rise and fall of the light source ON and the light source OFF is referred to as a switching signal.
  • FIG. 7 is a block diagram illustrating a configuration example of a drive circuit that drives the display element 1.
  • the drive circuit shown in FIG. 7 corresponds to the drive circuit 20 shown in FIG.
  • one transparent electrode 1021 for driving the area of the sign 8 (hereinafter also referred to as the display section 8) and the area of the sign 7 (hereinafter also referred to as the display section 7) are driven.
  • Electrode for applying a driving voltage in response to an instruction from the timing control circuit 201 to one transparent electrode 1022 and one transparent electrode 1023 for driving the region of the sign 9 (hereinafter also referred to as the display unit 9).
  • An electrode driving circuit 204 that applies a driving voltage to the electrode 1073 according to an instruction from the timing control circuit 201 is provided.
  • a drive voltage is supplied from the voltage generation circuit 202 to the electrode drive circuit 203 and the electrode drive circuit 204.
  • the voltage generation circuit 202 receives power supply from, for example, a battery attached to the camera.
  • the transparent electrodes 1021, 1022, and 1023 correspond to the transparent electrode 102 shown in FIG. 2, and the transparent electrodes 1071, 1072, and 1073 correspond to the transparent electrode 107 shown in FIG. In FIG. 7, only the lead-out portions of the transparent electrodes 1021, 1022, 1023, 1071, 1072, and 1073 are shown.
  • FIG. 7 the areas of the display units 7, 8, and 9 are shown as areas surrounded by broken lines, but actually, as illustrated in FIG. 5 among the areas surrounded by broken lines.
  • a transparent electrode made of ITO or the like is provided at a portion where display is performed, and extends from the transparent electrodes 1021, 1022, 1023 and 1071, 1072, 1073 shown in FIG. That is, the wiring pattern from the transparent electrodes 1021, 1022, and 1023 and the transparent electrodes 1071, 1072, and 1073 shown in FIG. 7 to the electrode portions provided in the portion shown in FIG. Are formed on the front and back surfaces of the display element 1.
  • the timing control circuit 201 turns on the red light source (red LED) 31, the green light source (green LED) 32, and the blue light source (blue LED) 33 in the light source 2, for example, at the timing illustrated in FIG. That is, a switching signal is given to the red light source 31, the green light source 32, and the blue light source 33.
  • the display unit 8 is formed of a plurality of segments, and gives an instruction to the electrode drive circuit 203 so that a drive voltage (for example, ⁇ 30 V) is applied to the transparent electrode 1021 corresponding to the common electrode when the scattered signal is ON.
  • An instruction is given to the electrode drive circuit 204 so that a drive voltage (for example, +30 V) is applied to the transparent electrode 1071 connected to the segment to be formed according to display data.
  • FIG. 16 is a block diagram showing another configuration example of the drive circuit that drives the display element 1.
  • temperature compensation is performed by the temperature sensor 205 associated with the timing control circuit, particularly at low temperatures.
  • light source ON / OFF timing modulation is performed according to a parameter for each temperature.
  • the drive voltage applied to the transparent electrode 1021 and the transparent electrode 1071 is, for example, ⁇ 30 V.
  • the drive voltage of the transparent electrode 1021 and the drive voltage of the transparent electrode 1071 may be changed between positive and negative at a predetermined timing. preferable.
  • high frequency can be one of the factors that increase power consumption, it is preferable to set the balance appropriately.
  • the display units 7 and 9 are formed of a plurality of segments, and the timing control circuit 201 drives the transparent electrodes 1022 and 1023 corresponding to the common electrodes in the state of the scattered signal ON illustrated in FIG. 6 (for example, ⁇ 30 V). Is applied to the electrode drive circuit 203 so that the drive voltage (for example, +30 V) is applied to the transparent electrodes 1072 and 1073 connected to the segment to be displayed. .
  • the display element 1 when a TFT element is used as a drive element, the viewer can visually recognize the TFT element when the scattering signal is OFF and the display element 1 is in a transparent state. There is sex. However, in the present embodiment, the display element 1 does not include an active element such as a TFT element, and is statically driven. Therefore, in the transparent state, an element that should not be visually recognized is not visually recognized.
  • the display units 7, 8, and 9 can input the scattered signal and the transparent signal (specifically, the transparent electrodes 1021, 1022, 1023, 1071, 1072). , 1073 cannot be changed immediately. This is because there is a delay in the response of the display element. If the light scattering state is maintained other than the desired light source color, color mixture occurs and causes color deterioration. Therefore, it is necessary to avoid the situation where the light scattering state is maintained other than the desired light source color. is there. Therefore, it is preferable to shift the timing of the switching signal input to the light source and the timing of the signal input (drive voltage application start or drive voltage erasure) to the display units 7, 8 and 9.
  • the timing control circuit 201 does not advance the start time of the transparent signal ON for the display unit 7 relative to the switching signal, or does not turn the scattering signal ON for the display unit 8 immediately before the switching signal. By controlling the timing so as to provide an OFF period, color deterioration can be reduced.
  • FIG. 8 also shows an example in which the display unit 8 is colored white and the display unit 7 is colored red.
  • the scattered signal ON period is shortened and the illuminated display portion becomes dark.
  • the OFF period is preferably about 2 ms so as to make the period of the scattering signal ON as long as possible while preventing color mixing caused by maintaining the light scattering state other than the desired light source color.
  • the timing control circuit 201 controls the timing so that an OFF time is provided between the ON time of each light source 31, 32, 33 and the next ON time, thereby reducing the color deterioration. Can be made.
  • the scattered signal ON period is not shortened.
  • the display unit 8 is visually recognized so as to generate RB color mixture
  • the display unit 7 is visually recognized so as to generate GB color mixture.
  • the timing control circuit 201 performs timing control so as to provide an OFF time between the ON time of each light source 31, 32, 33 and the next ON time, and each light source 31, 32. , 33 can be also controlled by timing control so that the scattering signal ON and the transparent signal ON are started before turning OFF.
  • the display unit 8 is visually recognized so as to generate RB mixed color
  • the display unit 7 is visually recognized so as to generate GB mixed color.
  • the field sequential color system By using the field sequential color system, it is possible to simultaneously obtain a desired color in each area of the display element 1.
  • the sign 8 (see FIG. 5) can be displayed in green
  • the sign 7 (see FIG. 5) can be displayed in red
  • the sign 9 (see FIG. 5) can be displayed in blue. It is also possible to change the color according to the display content, and it is easy to grasp the user's information by changing the color. In addition, from the transparent portion, the observed indication in the background can be seen without any problem.
  • red, RG mixed color, RB mixed color, RGB mixed color (white), green It is possible to develop a color mixture of GB and seven colors of blue.
  • eight colors can be developed.
  • black is included due to external light when the light source is not turned on and the display portion is in a light scattering state, nine colors can be developed.
  • the mixed color is referred to as multi-color, it is possible to simultaneously perform monochromatic display and multi-color display on different display portions in one display element 1.
  • the display color may be a single color and the display color may be a multicolor at different timings.
  • the display unit 7 emits red light in a certain period and RB mixed color is developed in another period.
  • the indicator 7 indicating the remaining battery level may be displayed in a different color depending on the remaining battery level.
  • the sign indicating the focus area can be displayed in green, and when the focus is not in focus, it can be displayed in red.
  • the timing control circuit 201 basically has one type of the length of the scattered signal ON period, but the length of the period of the scattered signal ON. By variably controlling, more types of color development can be achieved.
  • the case where the three light sources 31, 32, and 33 are provided as the light source 2 is exemplified.
  • two light sources that emit different light source colors may be used. Even when two light sources are used, a multi-color display color corresponding to the light source color can be obtained in the display element 1 by the field sequential color method.
  • three light sources 31, 32, and 33 are provided as the light source 2.
  • One light source 22 that emits light in the example shown in FIG. 11A, one on the left and one on the right) may be provided.
  • the electrode connected to the marker 7 is driven to change the state of the region of the marker 7 to the light scattering state, and the marker 7 is colored with the light source color. Further, as shown in FIG. 11C, the electrode connected to the marker 8 is driven to change the state of the region of the marker 8 to a light scattering state.
  • the light source 22 is not controlled to be in a lighting state, but the light transmittance is reduced by the portion corresponding to the sign 8 being in a light scattering state, and the area of the sign 8 is transparent to the viewer.
  • the region (region other than the region of the sign 8) is visually recognized as a dark portion, that is, substantially black when viewed through the eyepiece 314.
  • the frame frequency of the light source 22 is preferably 15 Hz or more, and more preferably 30 Hz or more, in order to prevent flicker from being visually recognized. More preferably, it is 60 Hz or more.
  • the ratio of the light emission period in one frame is preferably 1/3 or less.
  • the ratio of the light emission period is 1/6 or less. If it is longer than 1/6, there is almost no problem with black display, but depending on the irradiation intensity of the light source, there is a possibility that the red display becomes light and it is difficult to visually recognize red due to insufficient irradiation time.
  • a light source 22 that emits red color is used, and the scattered signal is periodically turned on. It is also possible to use such as turning on in synchronization with the scattered signal when the subject is in focus without turning on. In that case, when it is out of focus, it is visually recognized as a dark part like the area of the sign 8, and when it is in focus, it is visually recognized as red. That is, the visibility as to whether or not the focus is achieved is further improved.
  • the image display device 10 is not limited to a camera finder device, but is used for an observer to observe an object to be observed through a transparent window, such as an optical microscope and binoculars.
  • the present invention can be widely applied to a purpose of superimposing information display through a fluoroscopic window or the like.
  • FIG. 12 is an explanatory diagram for explaining the operation of the light guide unit 4.
  • the light emitted from the light source 2 is repeatedly reflected on the surface within the light guide 4 and spreads over a wide range (after spreading from one end of the side of the display element 1 to the other end).
  • Is incident on the liquid crystal layer of the display element 1 but all of the R light sources 31a and 31b, the G light sources 32a and 32b, and the B light sources 33a and 33b in the light source 2 are as shown in FIG.
  • the light sources 2 are provided on both sides of the display element 1, but the light sources 2 may be provided only on one side.
  • FIG. 12B a lens 11 is provided between the light source 2 and the light guide unit 4 to widen the irradiation range of light from the R light source 31a, the G light source 32a, and the B light source 33a. May be installed.
  • FIG. 12B shows only the left light sources 31a, 32a, and 33a in FIG. 12A, but the same applies to the right light sources 31b, 32b, and 33b.
  • 12B shows an example in which one lens is provided, but the lens may be provided corresponding to each of the light sources 31a, 32a, and 33a.
  • FIGS. 12C and 12D the light emitted from the light source 2 exits outside the light guide 4 (upper and lower in FIGS. 12C and 12D). However, it is preferably incident on the liquid crystal layer of the display element 1.
  • FIG. 12D is a view when the light guide 4 is viewed from the display element 1, and the solid circle in FIG. 12D indicates the traveling direction of light from the light sources 31a, 32a, and 33a. Is shown. 12C and 12D show only the left light source 2 (light sources 31a, 32a, and 33a) in FIG. 12A, but the right light sources 31b, 32b, and 33b are also shown. It is the same.
  • an optical fiber 41 may be used as the light guide unit 4. That is, if glass or synthetic resin is used for the core (core) and the clad (outer peripheral part) and the refractive index of the core is made higher than the refractive index of the clad, the light incident from the light source 2 is caused by total reflection or refraction.
  • FIG. 12F is a view when the light guide 4 is viewed from the display element 1 side.
  • FIGS. 12E and 12F show only the left light source 2 (light sources 31a, 32a, and 33a) in FIG. 12A, but the right light sources 31b, 32b, and 33b are also shown. It is the same.
  • the thickness of the optical fiber 41 is as thin as approximately the same thickness as the liquid crystal layer of the display element 1, the light emitted from the optical fiber 41 is displayed substantially parallel to the surface of the display element 1. It can be said that the light enters the element 1.
  • benzoin isopropyl ether it mixed so that it might become 1 part when the sum total of a sclerosing
  • a liquid crystal cell was produced as follows. A small amount of resin beads (diameter: 6 ⁇ m) dispersed on a pair of substrates 101, 108 on which vertical alignment polyimide thin films 103, 106 are formed on transparent electrodes 102, 107 so that the vertical alignment polyimide thin films 103, 106 face each other. Then, they were bonded together with an epoxy resin (peripheral seal) printed on the four sides with a width of about 1 mm to form a liquid crystal cell. Next, the above mixed solution was poured into the liquid crystal cell.
  • the liquid crystal cell 33 While holding the liquid crystal cell 33 ° C., the dominant wavelength of about 365nm of HgXe lamp, 3 mW / cm 2 from the upper side, the UV about 3 mW / cm 2 from the lower side was irradiated for 10 minutes, the liquid crystal / polymer composite A display element in which a liquid crystal layer composed of the above was formed between the substrates was obtained.
  • the display element thus obtained exhibited a uniform transparent state when no voltage was applied.
  • a voltage of a rectangular wave of 200 Hz and 60 V was applied to the display element, the display element changed to cloudiness.
  • the transmittance was measured with a schlieren optical system (F-number of the optical system: 11.5, condensing angle: 5 °) using a measurement light source having a half-width of about 20 nm with a center wavelength of 530 nm, the transmittance was 80 with no voltage applied.
  • the contrast value obtained by dividing this value by the transmittance when 60 Vrms was applied was 16.
  • the light source 2 three types of LED light sources of red (R), green (G), and blue (B) were used.
  • the relationship shown in FIG. 8 was used as the relationship between the light source and the drive signal of the display element.
  • the frame frequency was 60 Hz and the OFF period was 2 msec.
  • the display element 1 is arranged as a display element of the image display device 10 installed inside the camera finder apparatus as shown in FIG. 4, and a marker 8 indicating the shootable range as shown in FIG. 13 is displayed on the display element. 1 is displayed.
  • the image display device 10 was visually recognized, the wiring pattern was not visually recognized in a region other than the display portion.
  • FIG. 13 a comparative example in which the sign 8 indicating the shootable range is displayed by the technique described in the background art is shown, and a wiring pattern as shown by a broken line is visually recognized.
  • benzoin isopropyl ether it mixed so that it might become 1 part when the sum total of a sclerosing
  • a liquid crystal cell was produced as follows. A small amount of resin beads (diameter: 6 ⁇ m) dispersed on a pair of substrates 101, 108 on which vertical alignment polyimide thin films 103, 106 are formed on transparent electrodes 102, 107 so that the vertical alignment polyimide thin films 103, 106 face each other. Then, they were bonded together with an epoxy resin (peripheral seal) printed on the four sides with a width of about 1 mm to form a liquid crystal cell. Next, the above mixed solution was poured into the liquid crystal cell.
  • UV light of 10 mW / cm 2 from the upper side and about 10 mW / cm 2 from the lower side is irradiated for 10 minutes with an HgXe lamp having a dominant wavelength of about 365 nm to obtain a liquid crystal / polymer composite
  • HgXe lamp having a dominant wavelength of about 365 nm to obtain a liquid crystal / polymer composite
  • a display element in which a liquid crystal layer composed of the above was formed between the substrates was obtained.
  • the display element thus obtained exhibited a uniform transparent state when no voltage was applied.
  • a voltage of a rectangular wave of 200 Hz and 60 V was applied to the display element, the display element changed to cloudiness.
  • the transmittance was measured with a schlieren optical system (F-number of the optical system: 11.5, condensing angle: 5 °) using a measurement light source having a half-width of about 20 nm with a center wavelength of 530 nm, the transmittance was 80 with no voltage applied.
  • the contrast value obtained by dividing this value by the transmittance when 60 Vrms was applied was 18.
  • the light source 2 three types of LED light sources of red (R), green (G), and blue (B) were used.
  • the relationship shown in FIG. 8 was used as the relationship between the light source and the drive signal of the display element.
  • the frame frequency was 60 Hz and the OFF period was 2 msec.
  • the display element 1 is arranged as a display element of the image display device 10 installed inside the camera finder apparatus as shown in FIG. 4, and a marker 8 indicating the shootable range as shown in FIG. 13 is displayed on the display element. 1 is displayed.
  • the image display device 10 was visually recognized, the wiring pattern was not visually recognized in a region other than the display portion.
  • FIG. 13 a comparative example in which the sign 8 indicating the shootable range is displayed by the technique described in the background art is shown, and a wiring pattern as shown by a broken line is visually recognized.
  • Example 3 In the same manner as in Example 2, a display element in which a liquid crystal layer composed of a liquid crystal / polymer composite was formed between substrates was produced.
  • the light source 2 only one type of LED light source of red (R) was used.
  • the relationship shown in FIG. 17 was used as the relationship between the light source and the drive signal of the display element.
  • the display units 7, 8, and 9 correspond to the indicator 7 indicating the remaining battery level, the indicator 8 indicating the shootable range, and the indicator 9 indicating the shutter speed in FIG.
  • the present embodiment is characterized in that the light source ON is delayed from the time when the scattered signal is turned on in the portion where red display is desired, that is, the display unit 7 here, that is, the OFF time is provided before the light source lighting period.
  • the frame frequency was 60 Hz and the OFF period was 1 ms.
  • the display element 1 is arranged as a display element of the image display apparatus 10 installed in the camera finder apparatus as shown in FIG. 4, and the indicator 7 indicating the remaining battery level, the shootable range as shown in FIG.
  • the indicator 8 indicating the shutter speed and the label 9 indicating the shutter speed are respectively displayed on the display element 1.
  • the sign 7 was red
  • the sign 8 was black
  • the sign 9 was lighter than the sign 7, that is, the display was switched from gray to transparent.
  • the wiring pattern was not visually recognized in the area other than the display section.
  • Example 4 In the same manner as in Example 2, a display element in which a liquid crystal layer composed of a liquid crystal / polymer composite was formed between substrates was produced.
  • the light source 2 only one type of LED light source of red (R) was used.
  • the relationship shown in FIG. 18 was used as the relationship between the light source and the drive signal of the display element.
  • the display units 7, 8, and 9 have the same meaning as in the third embodiment.
  • the light source ON is delayed from the time for turning on the scattered signal and the light source OFF is advanced from the time for turning off the scattered signal, that is, the light source lighting period. It is a feature that an OFF time is provided in both the front stage and the rear stage.
  • the OFF period 1 is 3 ms
  • the OFF period 2 is 1 ms and 1/6 is the OFF period.
  • 1 is 1 ms and OFF period 2 is 0.5 ms.
  • the OFF periods 1 and 2 can be appropriately adjusted according to the balance between the setting of the LED lighting period in one frame, the response time of the liquid crystal optical element, and the required appearance.
  • the control circuit a configuration capable of temperature control as shown in FIG. 16 was used.
  • the display element 1 is arranged as a display element of the image display apparatus 10 installed inside the camera finder apparatus as shown in FIG. 4, and the indicator 7 showing the remaining battery level in an environment of 5 ° C. is shown in FIG. A sign 8 indicating the possible photographing range and a sign 9 indicating the shutter speed are respectively displayed on the display element 1.
  • the sign 7 was displayed in red
  • the sign 8 was black
  • the sign 9 was switched from gray to transparent.
  • the wiring pattern was not visually recognized in the area other than the display section.
  • Example 5 In the same manner as in Example 2, a display element in which a liquid crystal layer composed of a liquid crystal / polymer composite was formed between substrates was produced.
  • the light source 2 only one type of LED light source of red (R) was used.
  • the relationship shown in FIG. 19 was used as the relationship between the light source and the drive signal of the display element.
  • the display units 7, 8, and 9 have the same meaning as in the third embodiment.
  • the light source ON is delayed from the time when the scattering signal is turned on, and when the light source is turned off, the scattered signal of the display portion 7 desired to be displayed in red is converted into a transparent signal.
  • the switching timing is slightly delayed from the light source OFF timing. By doing so, it is possible to visually recognize red as a deeper and clearer red by mixing black.
  • the display part 8 which wants to display black it is good also as a scattering signal ON simultaneously with light source OFF.
  • the light source lighting period is ensured in the same manner as in FIG. 17, and it is characterized in that it is combined with the scattering signal control that uses a mixed color to improve the appearance of red.
  • the frame frequency is 60 Hz and the LED lighting period is 1/6 of one frame
  • the OFF period is 1 ms and the red exaggeration period is about 2.8 m.
  • the OFF period and the red exaggeration period can be appropriately adjusted according to the balance between the setting of the lighting period of the LED in one frame, the response time of the liquid crystal optical element, and the required appearance in the same way as in the fourth embodiment.
  • the red exaggeration period is 2/6 of the longest frame under a frame frequency of 60 Hz. 7 and 16 can be used as the control circuit.
  • the display element 1 is arranged as a display element of the image display apparatus 10 installed inside the camera finder apparatus as shown in FIG. 4, and the indicator 7 showing the remaining battery level in an environment of 5 ° C. is shown in FIG. A sign 8 indicating a photographable range and a sign 9 indicating a shutter speed are respectively displayed on the display element 1.
  • the sign 7 is red
  • the sign 8 is black
  • the sign 9 is switched from gray to transparent than the sign 7.
  • the wiring pattern was not visually recognized in the area other than the display section.
  • the image display device of the present invention it is possible to simultaneously develop two or more colors including black visible through an eyepiece in any part of the display element, and the non-display part is transparent and the background can be seen. Possible display can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 本発明は、透明な一対の電極付き基板、および前記一対の電極付き基板間に挟持され、光透過状態と光散乱状態をとることができる液晶層を含み、電圧無印加時に光透過状態になり電圧印加時に光散乱状態になる表示素子、前記液晶層の面に略平行な光を前記液晶層に入射させる光源、および外光存在下において、前記光源における前記液晶層への光出射の状態に連動して、前記表示素子の表示面の少なくとも一部を光散乱状態または光透過状態にさせるタイミング制御回路を含む被観察物からの光透過機能を有する画像表示装置に関する。

Description

被観察物からの光透過機能を有する画像表示装置
  本発明は、観察者が表示素子の背面に位置する被観察物を表示素子を介して視認可能であり、かつ、観察者に提供される情報を表示することができる被観察物からの光透過機能を有する画像表示装置に関する。
 カメラのファインダ装置として、分散型(拡散型)液晶表示パネルを備えたものがある(例えば、特許文献1,2参照)。図14は、特許文献1,2に記載されたファインダ装置を含むカメラの一部を示す断面図である。図14に示すように、カメラ本体300の内部には、レンズ筒体320の内部に設けられているレンズ321を介して入射した外光を反射するミラー311が設けられている。ミラー311で反射された光の光路はプリズム313で変更され、接眼レンズ314を通って透視窓315の外部に至る。
 カメラ本体300の内部において、ミラー311で反射された光の光路の途中に、駆動回路316で駆動される液晶表示パネル312が設けられている。液晶表示パネル312は、透明な一対の電極付き基板間に液晶素子が挟持されて構成されているが、基板間に電圧が印加されると光透過状態になり、電圧無印加で光散乱状態を呈する。
 カメラを用いて被観察物を撮影する撮影者は、透視窓315を覗きながら撮影を行うのであるが、撮影者がカメラ本体300に設けられているスイッチ(図示せず)を操作することによってモード設定を行うことができる。カメラ本体300に設けられているCPU(図示せず)は、設定されたモードに応じて、液晶表示パネル312の所定の表示対象領域における電極間に電圧が印加されなくするように駆動回路316を制御する。その結果、図15の説明図に例示するように、表示対象領域において所定の標識の表示がなされる。図15には、フォーカスエリアを示す標識310が表示された例が示されている。液晶表示パネル312において、標識310の表示領域以外の領域では、電圧が印加されている状態が継続し、液晶表示パネル312は光透過状態である。従って、撮影者は、透視窓315から、被観察物と標識310とを視認することができる。
特開2004-212792号公報 特開2000-75393号公報
 しかし、上記の液晶表示パネル312を用いたファインダ装置には、以下のような課題がある。まず、液晶表示パネル312を光透過状態にするために基板間に電圧を印加する必要があるので、カメラの消費電力が大きくなる。一般に、カメラの内部に設けられた電気回路は電池で駆動されるので、電池の使用可能期間が短くなる。また、上記の液晶表示パネル312を用いたファインダ装置が設けられたカメラを販売店の店頭にユーザが接触できるように陳列する場合には、電源をオン状態にしておくと電池が消耗してしまうので電源オフの状態で陳列することになる。すると、ユーザがカメラの透視窓315を覗いたときには何も視認できず、ユーザがカメラの品質に対して不信感を抱くおそれもある。
 また、液晶表示パネル312において、標識310を表示する部分には標識表示用の電極(図15に示す例では、フォーカスエリアを示す略矩形の各辺)が設けられ、液晶表示パネル312の縁部から標識表示用の電極に接続される配線パターンが設けられている。従って、標識表示用の電極に対する電圧印加を停止して標識表示用の領域を光散乱状態にするときに、配線パターンの領域も光散乱状態になって視認されてしまう。すなわち、画像表示装置の表示面の見栄えが悪くなってしまう。なお、図15において、破線の部分は、配線パターンを示す。
 そこで、本発明は、消費電力を低減できるとともに、表示面の見栄えがよい被観察物からの光を透過させる機能(以下、光透過機能という)を有する画像表示装置を提供することを目的とする。
 本発明による被観察物からの光透過機能を有する画像表示装置は、透明な一対の電極付き基板、および前記一対の電極付き基板間に挟持され、光透過状態と光散乱状態をとることができる液晶層を含み、電圧無印加時に光透過状態になり電圧印加時に光散乱状態になる表示素子、前記液晶層の面に略平行(完全に平行である場合も含む。)な光を前記液晶層に入射させる光源、および外光存在下において、前記光源における前記液晶層への光出射の状態に連動して、前記表示素子の表示面の少なくとも一部を光散乱状態または光透過状態にさせるタイミング制御回路を含む。
 光源は1つの光源色を発色し、フレーム周波数が15Hz以上であるように構成されていてもよい。
 光源色が赤色であると、光出射に連動して表示素子の特定表示部分が光散乱状態になり、その部分が赤色の表示色になり観察者の視認性を向上させることができる。
 光源は1つの光源色を発色し、光源色のフレーム周波数が15Hz以上であり、1フレーム中における光出射期間の割合が1/3以下であり、タイミング制御回路により光非出射期間内に連動して表示素子の表示面の少なくとも一部を光散乱状態とすると、光非出射期間を十分確保できるため、外光に応じた良好な表示色を得ることができる。一眼レフカメラのファインダなど、光散乱状態の部分によって外光の少なくとも一部が遮断される光学系をもつ用途においては、光非出射期間内において、表示素子の特定部分を光散乱状態とする期間を調整することによって、はっきりとした黒表示から薄い黒までの中間調表示を表示することが可能であって、観察者の視認性を向上させると同時に、表示面により表現力豊かな表示を行うことができる。
 光源は2以上の光源色を順次発色し、各光源色のフレーム周波数が15Hz以上であり、タイミング制御回路が一または複数の光源色の光出射の状態に連動して、表示素子の表示面の少なくとも一部を光散乱状態または光透過状態にさせることにより、一または複数の光源色に応じた表示色を得るように構成されていてもよい。
 光源は、例えば、赤色、青色、緑色を単独に発色可能である。画像表示装置は、異なる表示タイミングにおいて、表示色が単色である場合と、表示色がマルチカラーである場合とを含んでいてもよい。
 光源と表示素子との間に、光源から出射された光を、液晶層の側部における一方の端部から他方の端部に亘って広げる導光部が設けられていることが好ましい。
 光源色のフレーム周波数が30Hz以上であることが好ましい。
 本発明による被観察物からの光透過機能を有する画像表示装置は、例えば、カメラのファインダ装置、光学顕微鏡および双眼鏡に適用できる。
 本発明によれば、消費電力を低減できるとともに、表示面の見栄えがよい被観察物からの光透過機能を有する画像表示装置を提供することができる。
図1は、本発明による画像表示装置を示す模式的外観図。 図2は、本発明による表示素子を示す模式的断面図。 図3(a)~3(e)は、表示素子に用いることのできる硬化性化合物を例示する説明図。 図4は、本発明による画像表示装置の適用例を示す模式的断面図。 図5は、画像表示装置における表示の一例を示す説明図。 図6は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。 図7は、表示素子を駆動する駆動回路の一構成例を示すブロック図。 図8は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。 図9は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。 図10は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。 図11(A)~11(C)は、1つの光源を用いる場合の画像表示装置の構成および動作を説明するための説明図。 図12(A)~12(F)は、導光部の作用を説明するための説明図。 図13(A)および13(B)は、それぞれ実施例および比較例の表示の一例を示す説明図。 図14は、ファインダ装置を含むカメラの一部を示す模式的断面図。 図15は、従来例の表示の一例を示す説明図。 図16は、表示素子を駆動する駆動回路の別の構成例を示すブロック図。 図17は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。 図18は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。 図19は、画像表示装置における表示素子の駆動と光源との関係を示す模式図。
符号の説明
 1 表示素子
 2 光源
 3 観察者
 4 導光部
 7,8,9 標識(表示部)
 10 画像表示装置
 20 駆動回路
 22 光源
 41 光ファイバ
 101,108 ガラス基板
 102,107 透明電極
 103,106 配向膜
 104  液晶層
 105  シール層
 201  タイミング制御回路
 202  電圧生成回路
 203  電極駆動回路
 204  電極駆動回路
 205  温度センサー
 300  カメラ本体
 311  ミラー
 312  液晶表示パネル
 313  プリズム
 314  接眼レンズ
 315  透視窓
 316  駆動回路
 320  レンズ筒体
 321  レンズ
 以下、本発明の実施の形態を図面を参照して説明する。まず、本発明による画像表示装置において用いられる表示方式を説明する。本発明による画像表示装置では、外光存在下において、液晶表示パネルと、発光色が赤、青、緑と切り換わる光源とを組み合わせてカラー表示を得るフィールドシーケンシャルカラー方式を用いる。フィールドシーケンシャルカラー方式では、各々の発光色に応じた映像を液晶パネルに順次表示させて駆動する。従って、液晶パネルの応答が充分高速である必要がある。
 フィールドシーケンシャルカラー方式では、例えば1フィールドの1/3の時間で1色を表示する必要があるので、例えば60フィールド/秒の表示を行う場合には、表示に使用できる時間は約5ms(ミリ秒)程度になる。従って、液晶自身には5msよりも短い応答時間が求められる。高速応答を実現できる液晶として、強誘電性液晶、反強誘電性液晶、狭ギャップ化されたネマチック液晶、OCBモードの液晶などが知られている。
 しかし、それらの液晶を使用した表示素子では偏光板が用いられているので、透過率が低いという欠点があり、視認者が表示素子を通して背後を見る場合に視認性が低下する問題点があった。そこで、本発明による画像表示装置では、以下に説明するような、光透過状態と光散乱状態をとることができる液晶表示素子であって常温(例えば、25℃)での、光透過状態から光散乱状態への切り替え、および光散乱状態から光透過状態への切り替えに要する応答時間をそれぞれ5msよりも短くすることができる液晶表示素子を用いる。低温においては一般に液晶の応答速度が低下するが、温度補償を行うことによって用途に見合う温度範囲に対応することが可能である。
 図1は、本発明による画像表示装置の一例を示す模式的外観図である。図1に示すように、画像表示装置10にはLEDなどの時分割制御が可能な光源2が備えられ、図示しないバッテリ(電池)によって表示素子(電気光学素子)1の駆動電圧および光源2の点灯電圧が供給される。表示素子1は、外部からの信号等に基づく透明電極への電圧印加の有無によって、液晶層を透明の状態と光散乱の状態とに切り替えることが可能であり、透明電極の形状等により、文字や図形を表示することができるものである。
 また、光源2から表示素子1の液晶層に光が供給されることによって、液晶層の散乱部は光を散乱し観察者3に明るく認識される。光源2の光の色を任意の色に変えることにより、文字や図形に任意の発色をさせることが可能である。光源2は、表示素子1のエッジ部に設けられ、光を液晶層に入射させる。なお、光源2と表示素子1との間に光を拡散する導光部が設けられていることが好ましい。また、本発明において、透明とは、光の透過率が50%以上、好ましくは80%以上である状態を意味する。また、透明の場合には、観察者3は、表示素子1を介して被観察物を視認できる。すなわち、画像表示装置10は、被観察物からの光を透過させる機能(光透過機能)を備えている。
 図2は、画像表示装置10における表示素子1の一構成例を示す模式的断面図である。図2において、一対の基板101,108の相対する面には、透明電極102,107が設けられる。さらに内側には配向膜103,106が設けられる。そして、配向膜103,106の間に、液晶を含み、スペーサ(図示せず)によって厚みが制御された液晶層104が挟持される。そして、シール層105によって液晶層104が封止される。
 基板101,108の材質は、透明性が確保できれば特に限定されない。基板101,108として、ガラス基板やプラスチック基板を使用することができる。また、表示素子1の形状は、平面状である必要はなく湾曲していてもよい。
 また、基板101,108上に設けられる透明電極102,107として、ITO(酸化インジウム-酸化錫)のような金属酸化物などの透明な電極材料を使用することができる。以下、透明電極102,107が設けられた基板101,108を電極付き基板という。
 光透過状態と光散乱状態をとることができる液晶層104は、透明な一対の電極付き基板間に、液晶とその液晶に溶解可能な硬化性化合物とを含有する組成物(以下、未硬化組成物ともいう)を挟持させ、熱や紫外線、電子線などの手段を用いて硬化性化合物を硬化させて液晶/高分子複合体として形成される液晶層が好ましい。このような液晶と高分子の複合体からなる液晶を、以下、液晶/高分子複合体ともいう。
 液晶/高分子複合体に用いる液晶としては、誘電異方性が正でも負でもよいが、光透過状態と光散乱状態の切り替えに要する応答時間を短くするためには、液晶の粘度が低く、さらに誘電異方性が負の液晶を用いることが好ましい。なお、液晶としては硬化性ではない化合物が使用される。また、硬化性化合物は液晶性を有していてもよい。
 誘電率異方性が負の液晶を使用する場合には、電極付き基板において、液晶層104と接触する側に液晶分子のプレチルト角が基板表面に対して60度以上であるようにする処理が施されていると、配向欠陥を少なくすることができ、透明性が向上するため好ましい。この場合、ラビング処理を施さなくてもよい。プレチルト角は70度以上であることがより好ましい。なお、プレチルト角を、基板表面に垂直の方向を90度として規定する。
 液晶層104を形成する液晶/高分子複合体を構成する液晶として、公知の液晶から適宜選択できる。配向膜103,106により未硬化組成物のプレチルト角を制御することができる電極付き基板を用いることによって、誘電率異方性が正の液晶も誘電率異方性が負の液晶も使用可能であるが、より高い透明性や応答速度の面では誘電率異方性が負の液晶が好ましい。配向膜にラビング処理を施すこともできる。また、駆動電圧を低下させるためには誘電率異方性の絶対値が大きい方が好ましい。
 また、液晶/高分子複合体を構成する硬化性化合物も透明性を有することが好ましい。さらに、硬化後に、電圧を印加したときに液晶のみが応答するように液晶と硬化性化合物とが分離していると、駆動電圧を下げることができるので好ましい。
 本発明では、液晶に溶解可能な硬化性化合物のうち、未硬化時の液晶と硬化性化合物との混合物の配向状態を制御可能であって、硬化する際に高い透明性を保持することができる硬化性化合物が使用される。
 硬化性化合物として、式(1)の化合物や式(2)の化合物を例示できる。
 A-O-(R―O―Z―O―(RO―A  (1)
 A-(OR―O―Z’―O―(RO)―A  (2)
 ここで、A,A,A,Aのそれぞれは、独立的に、硬化部位となるアクリロイル基、メタクリロイル基、グリシジル基またはアリル基であり、R,R,R,Rのそれぞれは、独立的に、炭素数2~6のアルキレン基であり、Z,Z’のそれぞれは、独立的に、2価のメソゲン構造部であり、m,n,o,pのそれぞれは、独立的に、1~10の整数である。ここで、「独立的に」とは、組み合わせが任意であって、どのような組み合わせも可能であることを意味する。
 式(1)および式(2)におけるメソゲン構造Z,Z’と硬化部位A,A,A,Aとの間に、R,R,R,Rを含む分子運動性の高いオキシアルキレン構造を導入することによって、硬化時に、硬化過程において硬化部位の分子運動性を向上でき、短時間で十分に硬化させることが可能になる。
 式(1)および式(2)における硬化部位A,A,A,Aは、光硬化や熱硬化が可能な上記の官能基であればいずれでもよいが、なかでも、硬化時の温度を制御できることから光硬化に適するアクリロイル基、メタクリロイル基であることが好ましい。
 式(1)および式(2)におけるR,R,RおよびRの炭素数については、その分子運動性の観点から1~6が好ましく、炭素数2のエチレン基および炭素数3のプロピレン基がさらに好ましい。
 式(1)および式(2)におけるメソゲン構造部Z,Z’として、1,4-フェニレン基の連結したポリフェニレン基を例示できる。1,4-フェニレン基の一部または全部を1,4-シクロへキシレン基で置換したものであってもよい。また、1,4-フェニレン基や置換した1,4-シクロへキシレン基の水素原子の一部または全部が、炭素数1~2のアルキル基、ハロゲン原子、カルボキシル基、アルコキシカルボニル基などの置換基で置換されていてもよい。
 好ましいメソゲン構造部Z,Z’として、1,4-フェニレン基が2個連結したビフェニレン基(以下、1,4-フェニレン基が2個連結したビフェニレン基を4,4-ビフェニレン基ともいう。)、3個連結したターフェニレン基、およびこれらの水素原子の1~4個が、炭素数1~2のアルキル基、フッ素原子、塩素原子またはカルボキシル基に置換されたものを挙げることができる。最も好ましいものは、置換基を有しない4,4-ビフェニレン基である。メソゲン構造部を構成する1,4-フェニレン基または1,4-シクロへキシレン基同士の結合は全て単結合でもよいし、以下に示すいずれかの結合でもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)および式(2)におけるm,n,o,pは、それぞれ独立的に、1~10であることが好ましく、1~4がさらに好ましい。あまり大きいと液晶との相溶性が低下し、硬化後の電気光学素子の透明性を低下させるからである。
 図3に、本発明において使用できる硬化性化合物の例を示す。液晶と硬化性化合物とを含有する組成物は、式(1),(2)で表される硬化性化合物を含め、複数の硬化性化合物を含有していてもよい。例えば、組成物に、式(1)および式(2)においてm,n,o,pの異なる複数の硬化性化合物を含有させると、液晶との相溶性を向上させることができる場合がある。
 液晶と硬化性化合物とを含有する組成物は硬化触媒を含有していてもよい。光硬化の場合、ベンゾインエーテル系、アセトフェノン系、フォスフィンオキサイド系などの一般に光硬化性樹脂に用いられる光重合開始剤を使用できる。熱硬化の場合は、硬化部位の種類に応じて、パーオキサイド系、チオール系、アミン系、酸無水物系などの硬化触媒を使用でき、また、必要に応じてアミン類などの硬化助剤を使用することもできる。
 硬化触媒の含有量は、含有する硬化性化合物の20質量%以下が好ましく、硬化後に硬化樹脂の高い分子量や高い比抵抗が要求される場合は0.1~5質量%とすることがさらに好ましい。
 未硬化組成物において、硬化性化合物の総量は、液晶組成物に対して0.1~20質量%であることが好ましい。0.1質量%未満では、液晶相を硬化物により効果的な形状のドメイン構造に分割することができず、所望の透過-散乱特性を得ることができない。一方、20質量%を越えると、従来の液晶/硬化物複合体素子と同様に透過状態でのヘイズ値が増大しやすくなる。また、さらに好ましくは、液晶組成物中の硬化物の含有率が0.5~15質量%であり、光散乱状態での散乱強度を高く、透過-散乱が切り替わる電圧値を低くすることができる。
 液晶分子を、基板表面に対してプレチルト角が60度以上になるように配向させる処理方法として、垂直配向剤を使用する方法がある。垂直配向剤を使用する方法として、例えば、界面活性剤を用いる方法や、アルキル基やフルオロアルキル基を含むシランカップリング剤などで基板界面を処理する方法、または日産化学工業社製のSE1211やJSR社製のJALS-682-R3等の市販の垂直配向剤を用いる方法がある。垂直配向状態から任意の方向に液晶分子が倒れた状態を作るためには、公知のどのような方法を採用してもよい。垂直配向剤をラビングしてもよい。また、電圧が基板101,108に対して斜めに印加されるように、透明電極101,107にスリットを設けたり、電極101,107上に三角柱を配置する方法を採用してもよい。また、特定方向に液晶分子を倒すような手段を用いなくてもよい。
 二つの基板101,108間にある液晶層104の厚さを、スペーサ等で規定することができる。その厚さは1~50μmが好ましく、3~30μmがさらに好ましい。液晶層104の厚さが薄すぎるとコントラストが低下し、厚すぎると駆動電圧が上昇する傾向が増大するため好ましくない場合が多い。
 シール層105として、透明性の高い樹脂であれば公知のどのようなものを使用することも可能である。透明性の高い樹脂を使用すれば、表示素子は全面に亘って透明感が高まり、文字や図形が空中に浮かんだように見える状態が強調される。例えば、基板101,108としてガラス基板を使用した場合には、ガラスの屈折率に近似した屈折率を有するエポキシ樹脂やアクリル樹脂を使用すれば、空中に透明なガラスが浮いているような状態を実現できる。また、シール部が通常、観察者に視認されない使用方法の場合は、特にシール層が透明である必要はない。
 以上のように作製された画像表示装置10は、少なくとも常温付近において表示画素の光透過状態と光散乱状態との間の応答時間が5msよりも短く非常に速い応答速度を実現することができる。また、従来の分散型液晶素子による散乱透過モードと比べると視野角依存性が良好であり、斜めから見たときにも非常に良好な光透過状態を得ることができるようにすることができる。例えば、上記の組成の硬化性化合物と液晶とを含有する複合体を使用した場合、垂直から40度傾けて見た場合もほとんどヘイズがないようにすることができる。
 表示素子1のサイズとして、対角線の長さが1cm程度のものから3m程度の大きいものを含め、どのようなサイズのものも使用することができる。
 画像表示装置10において、表示素子1を複数枚用いてもよい。また、表示素子1に対する耐衝撃性を増すために、上下の基板101,108を固定させてもよい。
 表示素子1の表裏の表面には、反射防止膜または紫外線遮断膜を設けることが好ましい。例えば、表示素子1の表裏に、SiOやTiOなどの誘電体多層膜よりなるARコート(低反射コート)処理を施すことにより、基板表面での外光の反射を減らすことができ、コントラストをより向上させることができる。
 光源2として、LEDなどの時分割制御が可能な光源を使用するが、フィールドシーケンシャルカラー方式を実現する場合、例えば、赤、緑、青の光源を順次点灯する方法を用いてもよいし、白色光に対してカラーフイルターを組み合わせて順次発色の色を変える方法を用いてもよい。
 図4は、本発明による画像表示装置10の適用例を示す説明図である。図4に示す例では、画像表示装置10(図4では、画像表示装置10における表示素子1のみが示されている。)がカメラのファインダ装置に適用されている。図4に示すように、表示素子1は、駆動回路20によって駆動されるが、その他の構成要素は、図14に示された構成要素と同じである。ただし、図14に示された例とは異なり、画像表示装置10における基板間に電圧が印加されると液晶層は光散乱状態になり、電圧無印加で光透過状態を呈する。従って、電圧無印加状態でも、カメラの使用者は、透視窓315を介して被観察物を視認することができる。液晶層の一部を光散乱状態とした場合、レンズ321よりその光散乱状態の表示部位に入射した外光は、光路が変化してプリズム313で反射後に、その光散乱状態の表示部位を通過した光の一部または全部が接眼レンズ314に入射しなくなるため、光散乱状態の表示部位は観察者には暗く、すなわち概ね黒に視認される。
 また、図4における画像表示装置10の拡大図に示すように、表示素子1の左右の縁部(エッジ部)には、表示素子1の厚さとほぼ同厚の導光部(導光板)4が設けられ、光源2からの光は、導光部4を介して表示素子1の液晶層に入射される。導光部4は、一例としてアクリル板で形成される。液晶層に入射される光は液晶層の面(基板面に平行な面)に略平行な光とし、液晶層が光透過状態にあるときに入射された光が表示素子1の表示面から漏れ出ることを少なくする。入射される光が液晶層の面により完全に平行であると、この光の漏れ出しはより少なくなる。
 図4に示す例では、光源2として、赤(R)、緑(G)、青(B)のそれぞれの光を発光するLED光源が用いられている。光源2は、導光部4を介して表示素子1の側部から、液晶層の面に略平行に光源色を液晶層に入射させる。LEDの発光は直進性を有するが、導光部4が設けられている場合には、導光部4に入射すると、導光部4内で表面反射が繰り返されて広い範囲に広がった後に液晶層に入射する。
 図5は、表示素子1の表示例を示す説明図である。図5に示す例では、表示素子1において、バッテリ残量を示す標識7、撮影可能範囲を示す標識8、およびシャッター速度を示す標識9が表示されている。なお、図5に示す例では、シャッター速度は、1/1000秒を示している。標識7,8,9が表示される領域以外の領域、特に、撮影可能範囲を示す標識8で囲まれる領域は透明領域である。
 次に、本発明の画像表示装置10において用いられるフィールドシーケンシャルカラー方式における光源2と表示素子1の駆動との関係を、図6のタイミング図を用いて説明する。
 図5に示す表示素子1における標識8の領域に白の発色、または、光源非点灯の状態での接眼レンズ314越しの観察では黒に視認されるようにして、標識7の領域に赤の発色をさせる場合を想定する。光源2として、赤、緑、青の3色の光源を用いる。図6に示すように、3色を順次点灯し、RGBの全てが1回点灯する周期を1フレームとする。Rの点灯時間、Gの点灯時間、Bの点灯時間全てに対して標識8の領域が光散乱状態であれば、標識8の領域は白の発色となり、また光源2を非点灯とする期間に対して標識8の領域が光散乱状態であれば、標識8の領域は、接眼レンズ314越しの観察では、外光が散乱されることによって概ね黒に視認される。標識7の領域はRの点灯時間のみ光散乱状態でありGおよびBの点灯時間では光透過状態であれば、標識7の領域は赤発色をする。このように、表示素子1の少なくとも一部に光源色または黒での表示を行う際には、外光存在下において、光源の点灯状態に連動して、表示を行いたい部分をそれぞれ光散乱状態または光透過状態に制御すればよい。
 3色の光源の点灯周期に相当する1フレームの周期は(1/15)秒以下であることが好ましい。すなわち、3色の光源の点灯の周波数に相当するフレーム周波数が15Hz以上であることが好ましい。15Hz未満であると、ちらつきが視認される可能性があるからである。より好ましくは、フレーム周波数を30Hz以上、さらに好ましくは60Hz以上とする。
 上記のように作製された表示素子1は、光透過状態と光散乱状態をとることができる液晶層としての液晶層104に所定の電圧(例えば60V)が印加されているときに光散乱状態となり、液晶層104に対して電圧無印加のときに光透過状態となる。従って、図6において、散乱信号ONとは、透明電極102,107間に所定の電圧が印加されていることに相当し、透明信号ONとは、透明電極102,107間の電位差が0Vである状態に相当する。
 以下、図6に示す光源ONおよび光源OFFのタイミングを生成するための信号、すなわち光源ONおよび光源OFFの立ち上がりおよび立ち下がりを各光源に指示するための信号を切替信号という。
 図7は、表示素子1を駆動する駆動回路の一構成例を示すブロック図である。なお、図7に示す駆動回路は、図4に示す駆動回路20に相当する。図7に示す例では、標識8(以下、表示部8ともいう。)の領域を駆動するための一方の透明電極1021、標識7(以下、表示部7ともいう。)の領域を駆動するための一方の透明電極1022および標識9(以下、表示部9ともいう。)の領域を駆動するための一方の透明電極1023に対して、タイミング制御回路201の指示に応じて駆動電圧を印加する電極駆動回路203と、表示部8の領域を駆動するための他方の透明電極1071、表示部7の領域を駆動するための他方の透明電極1072および表示部9の領域を駆動するための他方の透明電極1073に対して、タイミング制御回路201の指示に応じて駆動電圧を印加する電極駆動回路204とが設けられている。電極駆動回路203と電極駆動回路204とには、電圧生成回路202から駆動電圧が供給される。電圧生成回路202は、例えばカメラに装着されたバッテリから電力供給を受ける。
 なお、透明電極1021,1022,1023は図2に示す透明電極102に相当し、透明電極1071,1072,1073は図2に示す透明電極107に相当する。また、図7では、透明電極1021,1022,1023,1071,1072,1073の引き出し部分のみが示されている。
 また、図7では、表示部7,8,9の領域が破線で囲まれた領域として示されているが、実際には、破線で囲まれた領域のうち、図5に例示されたような表示がなされる部分に、ITO等による透明電極が設けられ、図7に示す透明電極1021,1022,1023および透明電極1071,1072,1073から延伸している。すなわち、図7に示す透明電極1021,1022,1023の部分および透明電極1071,1072,1073の部分から図5に例示されたような表示がなされる部分に設けられている電極部分への配線パターンに相当するものが表示素子1の表面および裏面に形成されている。
 タイミング制御回路201は、例えば図6に例示されたタイミングで、光源2における赤色光源(赤色LED)31、緑色光源(緑色LED)32および青色光源(青色LED)33を点灯させる。すなわち、赤色光源31、緑色光源32および青色光源33に切替信号を与える。表示部8は、複数のセグメントで形成され、散乱信号ONの状態ではコモン電極に相当する透明電極1021に駆動電圧(例えば-30V)が印加されるように電極駆動回路203に指示を与え、表示されるべきセグメントに接続される透明電極1071に表示データに応じて駆動電圧(例えば+30V)が印加されるように電極駆動回路204に指示を与える。
 また図16は、表示素子1を駆動する駆動回路の別の構成例を示すブロック図である。この例では、特に低温において、タイミング制御回路に付随する温度センサー205によって温度補償が行われる。たとえば、温度毎のパラメータによって、光源ON,OFFのタイミング変調が行われる。
 透明電極1021および透明電極1071に印加される駆動電圧は、例えば±30Vであるが、所定のタイミングで透明電極1021の駆動電圧と透明電極1071の駆動電圧との正負を代えて交流駆動することが好ましい。ただし、高周波化は消費電力を上げる要因のひとつとなりえるため、適宜バランスを考えて設定するのが好ましい。
 表示部7,9は、複数のセグメントで形成され、タイミング制御回路201は、図6に例示された散乱信号ONの状態ではコモン電極に相当する透明電極1022,1023に駆動電圧(例えば-30V)が印加されるように電極駆動回路203に指示を与え、表示されるべきセグメントに接続される透明電極1072,1073に駆動電圧(例えば+30V)が印加されるように電極駆動回路204に指示を与える。
 なお、表示素子1において、TFT素子を駆動素子として用いる場合には、散乱信号がOFFの状態であって表示素子1が透明状態であるときに、視認者に、TFT素子が視認されてしまう可能性がある。しかし、本実施の形態では、表示素子1は、TFT素子等の能動素子を含まず、スタティック駆動されるので、透明状態において、本来視認されるべきでないものが視認されてしまうことはない。
 切替信号の入力とほぼ同時に光源のRGBの発色を切り替えることができるが、表示部7,8,9は散乱信号や透明信号の入力(具体的には透明電極1021,1022,1023,1071,1072,1073への駆動電圧印加開始または駆動電圧消去)に対してすぐに変化させることができない。表示素子の応答性に遅れがあるためである。光散乱状態が所望の光源色以外でも維持されていると色の混色が起こり色劣化の原因となるので、光散乱状態が所望の光源色以外でも維持されている状況の発生を回避する必要がある。そこで、光源に対する切替信号入力のタイミングと表示部7,8,9に対する信号入力(駆動電圧印加開始または駆動電圧消去)のタイミングとをずらすことが好ましい。
 例えば、タイミング制御回路201が、図8に示すように、表示部7に対する透明信号ONの開始時間を切替信号に対して早めたり、切替信号の直前に表示部8に対して散乱信号ONとしないOFF期間を設けるようにタイミング制御することによって色劣化を低下させることができる。なお、図8でも、表示部8を白発色させ、表示部7を赤発色させる例が示されている。
 図8に示すOFF期間を長くすると、散乱信号ONの期間が短くなって照明される表示部が暗くなってしまう。OFF期間は、光散乱状態が所望の光源色以外でも維持されていることに起因して発生する混色を防止しつつ、散乱信号ONの期間をできるだけ長くするように、2ms程度が好ましい。
 また、タイミング制御回路201が、図9に示すように、各光源31,32,33のON時間と次のON時間との間にOFF時間を設けるようにタイミング制御することによっても色劣化を低下させることができる。なお、図9に示す例では、図8に示す例とは異なり、散乱信号ONの期間は短縮されていない。また、図9に示す例では、表示部8はRB混色発色するように視認され、表示部7はGB混色発色するように視認される。
 さらに、タイミング制御回路201が、図10に示すように、各光源31,32,33のON時間と次のON時間との間にOFF時間を設けるようにタイミング制御するとともに、各光源31,32,33がOFFになる前に散乱信号ONおよび透明信号ONが開始されるようにタイミング制御することによっても色劣化を低下させることができる。なお、図10に示す例では、表示部8はRB混色発色するように視認され、表示部7はGB混色発色するように視認される。
 フィールドシーケンシャルカラー方式を用いることにより、表示素子1における各領域で所望の発色を同時に得ることが可能である。例えば、標識8(図5参照)を緑表示、標識7(図5参照)を赤表示、標識9(図5参照)を青表示させるようにすることができる。表示内容によって色を変えることも可能であり、色を変えることによって使用者の情報把握が容易である。さらに、透明部分から、背景にある被観察示を問題なく見ることができる。
 また、3つの光源31,32,33を設けて、表示部を光散乱状態とする場合には、表示素子1の表示部に、赤色、RG混色、RB混色、RGB混色(白色)、緑色、GB混色および青色の7色の発色をさせることができる。すなわち、光源を非点灯として表示部を光透過状態とするときの透明を含めると、8色の発色をさせることができる。さらに、光源を非点灯として表示部を光散乱状態とするときの外光による黒を含めると、9色の発色をさせることができる。混色をマルチカラーと呼ぶことにすると、1つの表示素子1における異なる表示部において、単色表示とマルチカラー表示とを同時に行わせることができる。
 また、1つの表示部において、異なるタイミングで、表示色が単色である場合と表示色がマルチカラーである場合とがあるようにすることもできる。例えば、表示部7において、ある期間において赤色発光させ、他の期間においてRB混色発色させるような場合である。異なるタイミングで、表示色が単色である場合と表示色がマルチカラーである場合とがあるようにすると、例えば、バッテリ残量を示す標識7に、残量に応じて異なる発色で表示を行ったり、フォーカスエリアを示す標識に、カメラのピントが合っている場合にはその旨を緑表示し、ピントが合っていない場合には赤表示したりすることができる。
 また、図6,図8~図10に示す各例のそれぞれにおいて、タイミング制御回路201が、散乱信号ONの期間の長さは基本的に1種類であるが、散乱信号ONの期間の長さを可変に制御することによって、より多くの種類の発色をさせることができる。
 なお、本実施の形態では、光源2として3つの光源31,32,33を設けた場合を例示したが、異なる光源色を発する2つの光源を用いてもよい。2つの光源を用いた場合にも、フィールドシーケンシャルカラー方式によって表示素子1において光源色に応じた多色の表示色を得ることができる。
 また、図4,図6,図8~図10に示す例では、光源2として3つの光源31,32,33が設けられたが、図11(A)に示すように、光源2として、単色光を出射する1つの光源22(図11(A)に示す例では、左右1つずつ)が設けられていてもよい。
 図11(A)に示すように1つの光源22が設けられている構成において、図11(B)に示すように標識7,8を視認可能に表示させる場合に、例えば、光源22からの光の出射に同期して、標識7に接続される電極を駆動することによって標識7の領域の状態を光散乱状態にし、光源色で標識7を発色させる。また、図11(C)に示すように、標識8に接続される電極を駆動することによって標識8の領域の状態を光散乱状態にする。このとき、光源22は点灯状態に制御されないが、標識8に相当する部分が光散乱状態になることによって光の透過率が低下し、標識8の領域は、視認者には、透明状態にある領域(標識8の領域以外の領域)に対して、接眼レンズ314越しの観察では暗い部分として、すなわち実質的に概ね黒に視認される。なお、1つの光源22を用いる場合にも、ちらつきが視認されることを防止するために、光源22のフレーム周波数は15Hz以上であることが好ましく、30Hz以上であることがより好ましい。さらに好ましくは60Hz以上であるとよい。
 1フレーム中における光出射期間の割合は1/3以下が好ましい。光出射期間が1/3を超えると、赤表示には問題ないが、黒が薄くなって黒とは視認しにくくなる。さらに光出射期間の割合が1/6以下であればより好ましい。1/6より長いと、黒表示にはほぼ問題ないが、光源の照射強度によっては、照射時間不足により、赤表示が薄くなって赤とは視認しにくくなる可能性がある。
 また、図15に示すようなフォーカスエリアを示す標識を表示する場合に、光源22として赤色を発色するものを用い、散乱信号を周期的にON状態にするが、フォーカスが合っていないときには光源22を点灯させず、フォーカスが合った場合に散乱信号に同期して点灯させるといった使い方もできる。その場合には、フォーカスが合っていないときには、上記の標識8の領域と同様に暗い部分として視認され、フォーカスが合ったときには赤く視認される。すなわち、フォーカスが合っているか否かについての視認性がより向上する。
 また、本発明に係る画像表示装置10は、カメラのファインダ装置の他、光学顕微鏡や双眼鏡など、観察者3が、透視窓等を介して被観察物を観察する用途において、観察者に対して透視窓等を介して情報をスーパーインポーズ表示する用途に広く適用することができる。
 図12は、導光部4の作用を説明するための説明図である。光源2から出射された光は、導光部4内で表面反射が繰り返されて広い範囲に広がった後(表示素子1の側部における一方の端部から他方の端部に亘って広がった後)に表示素子1の液晶層に入射するが、光源2におけるRの光源31a,31b、Gの光源32a,32bおよびBの光源33a,33bの全てについて、図12(A)に示すように、導光部4から表示素子1の液晶層の側面に入射する際に、液晶層側面の一方の端から他方の端(図12(A)では、上端から下端まで)までの全てに亘って入射することが好ましい。なお、本実施の形態では、表示素子1の両側面側に、それぞれ光源2が設けられているが、一方にのみ光源2を設けてもよい。
 そこで、図12(B)に示すように、光源2と導光部4との間に、Rの光源31a、Gの光源32aおよびBの光源33aからの光の照射範囲を広げるためのレンズ11を設置してもよい。なお、図12(B)には、図12(A)における左側の光源31a,32a,33aのみが示されているが、右側の光源31b,32b,33bについても同様である。また、図12(B)には1つのレンズが設けられた場合の例が示されているが、レンズは、光源31a,32a,33aのそれぞれに対応して設けられていてもよい。
 また、図12(C),(D)に示すように、光源2から出射された光は、導光部4の外部(図12(C),(D)では、上部および下部)に出ることなく、表示素子1の液晶層に入射することが好ましい。なお、図12(D)は、表示素子1の側から導光部4を眺めた場合の図であり、図12(D)における実線の円形は、光源31a,32a,33aの光の進行方向を示している。また、図12(C),(D)には、図12(A)における左側の光源2(光源31a,32a,33a)のみが示されているが、右側の光源31b,32b,33bについても同様である。
 導光部4内では表面反射が繰り返されるが、導光部4の表面や裏面に反射素子が付着したりしているような場合には、散乱が生じて、光が表示素子1に到達する前に導光部4の外部に光が漏れることが考えられる。そこで、図12(E),(F)に示すように、導光部4として、光ファイバ41を用いてもよい。すなわち、コア(芯)およびクラッド(外周部)にガラスまたは合成樹脂を用い、クラッドの屈折率よりもコアの屈折率を高くしておけば、光源2から入射した光は、全反射や屈折によって光ファイバ41のコアのみを伝搬し、外部に光が漏れることなく、表示素子1の液晶層の側面に入射する。図12(F)は、表示素子1の側から導光部4を眺めた場合の図である。なお、図12(E),(F)には、図12(A)における左側の光源2(光源31a,32a,33a)のみが示されているが、右側の光源31b,32b,33bについても同様である。また、光ファイバ41の厚さは、表示素子1の液晶層の厚さとほぼ同厚の程度に薄いので、光ファイバ41から出射された光は、ほぼ、表示素子1の表面に略平行に表示素子1に入射されるといえる。
 以下に本発明の実施例を示す。実施例中、「部」は質量部を意味する。
(実施例1)
 誘電率異方性が負であるネマチック液晶(Tc=98℃、Δε=-5.6、Δn=0.220)85部と、図3(a)に示す二官能の硬化性化合物12.5部と、図3(e)に示す二官能の硬化性化合物2.5部と、光重合開始剤としてのベンゾインイソプロピルエーテルとを混合した。ベンゾインイソプロピルエーテルについては、硬化性化合物(図3(a)に示す化合物および図3(e)に示す化合物)の合計を100部とした場合、1部になるように混合した。そして、混合液を液晶相にするために、攪拌しながら90℃に加温し、等方相にして混合液を均一にした後、温度を60℃に下げた。その後、混合層が液晶相になったことを確認した。
 液晶セルを以下のように作製した。透明電極102,107上に垂直配向用ポリイミド薄膜103,106を形成した一対の基板101,108を、垂直配向用ポリイミド薄膜103,106が対向するように、散布した微量の樹脂ビーズ(直径6μm)を介して、四辺に幅約1mmで印刷したエポキシ樹脂(周辺シール)で張り合わせ、液晶セルを形成した。次いで、上記の混合液を液晶セルの中に注入した。
 液晶セルを33℃に保持した状態で、主波長が約365nmのHgXeランプにより、上側より3mW/cm、下側より約3mW/cmの紫外線を10分間照射し、液晶/高分子複合体からなる液晶層が基板間に形成された表示素子を得た。
 このようにして得られた表示素子は、電圧非印加状態において均一な透明状態を呈していた。表示素子に矩形波200Hz、60Vの電圧を印加したところ、表示素子は白濁様に変化した。530nmを中心波長とした半値幅約20nmの測定光源を用いたシュリーレン光学系(光学系のF値11.5、集光角5°)で透過率を測定したところ、電圧を印加しない状態で80%であり、この値を60Vrms印加した時の透過率で割ったコントラストの値は16であった。
 光源2として、赤(R)、緑(G)、青(B)の3種のLED光源を用いた。光源と表示素子の駆動信号の関係として図8に示す関係を用いた。フレーム周波数を60Hz、OFF期間を2msecとした。
 そして、表示素子1を、図4に示すようなカメラのファインダー装置の内部に設置される画像表示装置10の表示素子として配置し、図13に示すような撮影可能範囲を示す標識8を表示素子1に表示させた。画像表示装置10を視認したところ、表示部以外の領域において配線パターンを視認することはなかった。
 なお、図13の下段には、背景技術において説明した技術によって撮影可能範囲を示す標識8を表示させた比較例を示し、破線で示すような配線パターンが視認された。
(実施例2)
 誘電率異方性が負であるネマチック液晶(Tc=98℃、Δε=-5.6、Δn=0.220)85部と、図3(a)に示す二官能の硬化性化合物12.5部と、図3(e)に示す二官能の硬化性化合物2.5部と、光重合開始剤としてのベンゾインイソプロピルエーテルとを混合した。ベンゾインイソプロピルエーテルについては、硬化性化合物(図3(a)に示す化合物および図3(e)に示す化合物)の合計を100部とした場合、1部になるように混合した。そして、混合液を液晶相にするために、攪拌しながら90℃に加温し、等方相にして混合液を均一にした後、温度を60℃に下げた。その後、混合層が液晶相になったことを確認した。
 液晶セルを以下のように作製した。透明電極102,107上に垂直配向用ポリイミド薄膜103,106を形成した一対の基板101,108を、垂直配向用ポリイミド薄膜103,106が対向するように、散布した微量の樹脂ビーズ(直径6μm)を介して、四辺に幅約1mmで印刷したエポキシ樹脂(周辺シール)で張り合わせ、液晶セルを形成した。次いで、上記の混合液を液晶セルの中に注入した。
 液晶セルを33℃に保持した状態で、主波長が約365nmのHgXeランプにより、上側より10mW/cm、下側より約10mW/cmの紫外線を10分間照射し、液晶/高分子複合体からなる液晶層が基板間に形成された表示素子を得た。
 このようにして得られた表示素子は、電圧非印加状態において均一な透明状態を呈していた。表示素子に矩形波200Hz、60Vの電圧を印加したところ、表示素子は白濁様に変化した。530nmを中心波長とした半値幅約20nmの測定光源を用いたシュリーレン光学系(光学系のF値11.5、集光角5°)で透過率を測定したところ、電圧を印加しない状態で80%であり、この値を60Vrms印加した時の透過率で割ったコントラストの値は18であった。
 光源2として、赤(R)、緑(G)、青(B)の3種のLED光源を用いた。光源と表示素子の駆動信号の関係として図8に示す関係を用いた。フレーム周波数を60Hz、OFF期間を2msecとした。
 そして、表示素子1を、図4に示すようなカメラのファインダー装置の内部に設置される画像表示装置10の表示素子として配置し、図13に示すような撮影可能範囲を示す標識8を表示素子1に表示させた。画像表示装置10を視認したところ、表示部以外の領域において配線パターンを視認することはなかった。
 なお、図13の下段には、背景技術において説明した技術によって撮影可能範囲を示す標識8を表示させた比較例を示し、破線で示すような配線パターンが視認された。
(実施例3)
 実施例2と同様にして、液晶/高分子複合体からなる液晶層が基板間に形成された表示素子を作成した。光源2として、赤(R)のみの1種のLED光源を用いた。光源と表示素子の駆動信号の関係として、図17に示す関係を用いた。表示部7,8,9はそれぞれ、図5においてバッテリ残量を示す標識7、撮影可能範囲を示す標識8、シャッター速度を示す標識9に相当する。本実施例においては、赤表示をしたい部分、すなわちここでは表示部7において、散乱信号をONさせる時間より光源ONを遅らせる、すなわち光源点灯期間の前段にOFF時間を設けるのが特徴である。フレーム周波数を60Hz、OFF期間を1msとした。
 そして、表示素子1を図4に示すようなカメラのファインダー装置の内部に設置される画像表示装置10の表示素子として配置し、バッテリ残量を示す標識7、図5に示すような撮影可能範囲を示す標識8、シャッター速度を示す標識9をそれぞれ表示素子1に表示させた。画像表示装置10を視認したところ、標識7は赤、標識8は黒、標識9は標識7より薄い黒、すなわちグレーから透明に切り替わる表示がされていた。もちろん、表示部以外の領域において配線パターンを視認することはなかった。
(実施例4)
 実施例2と同様にして、液晶/高分子複合体からなる液晶層が基板間に形成された表示素子を作成した。光源2として、赤(R)のみの1種のLED光源を用いた。光源と表示素子の駆動信号の関係として、図18に示す関係を用いた。表示部7,8,9は実施例3と同様の意味である。本実施例においては、赤表示をしたい部分、すなわちここでは表示部7において、散乱信号をONさせる時間より光源ONを遅らせ、かつ散乱信号をOFFさせる時間より光源OFFを早める、すなわち光源点灯期間の前段および後段双方にOFF時間を設けるのが特徴である。フレーム周波数を60Hzとして、LED点灯期間(光源ONの期間)を1フレーム中の1/3とする場合にはOFF期間1を3ms、OFF期間2を1ms、1/6とする場合にはOFF期間1を1ms、OFF期間2を0.5msとした。このように、1フレーム中におけるLEDの点灯期間の設定と液晶光学素子の応答時間、および要求される見栄えとのバランスによって、OFF期間1、2は適宜調整可能である。制御回路として、図16に示されるような温度制御が可能な構成を利用した。
 そして、表示素子1を図4に示すようなカメラのファインダー装置の内部に設置される画像表示装置10の表示素子として配置し、5℃の環境下においてバッテリ残量を示す標識7、図5に示すような撮影可能範囲を示す標識8、シャッター速度を示す標識9をそれぞれ表示素子1に表示させた。画像表示装置10を視認したところ、標識7は赤、標識8は黒、標識9はグレーから透明に切り替わる表示がされていた。もちろん、表示部以外の領域において配線パターンを視認することはなかった。
(実施例5)
 実施例2と同様にして、液晶/高分子複合体からなる液晶層が基板間に形成された表示素子を作成した。光源2として、赤(R)のみの1種のLED光源を用いた。光源と表示素子の駆動信号の関係として、図19に示す関係を用いた。表示部7,8,9は実施例3と同様の意味である。本実施例においては、赤表示をしたい部分、すなわちここでは表示部7において、散乱信号をONさせる時間より光源ONを遅らせ、かつ光源OFF時、赤く表示したい表示部7の散乱信号を透明信号に切り替えるタイミングを光源OFFのタイミングより若干遅らせる。このようにすることによって、赤を黒を混色させてより濃くはっきりした赤として視認することができる。なお、黒く表示したい表示部8については、光源OFFと同時に散乱信号ONとしてよい。すなわち、光源点灯期間を図17と同様に確保しつつ、あえて混色を利用して赤の見栄えをよくする散乱信号制御と組み合わせる点が特徴である。ここではフレーム周波数を60Hz、LED点灯期間を1フレーム中の1/6とする場合にはOFF期間を1ms、赤誇張期間を2.8m程度とした。実施例4と同様の考え方で、1フレーム中におけるLEDの点灯期間の設定と液晶光学素子の応答時間、および要求される見栄えとのバランスによって、OFF期間、赤誇張期間は適宜調整可能である。赤誇張期間はフレーム周波数60Hzの下では最長1フレームの2/6である。制御回路として、図7、16のいずれも利用可能である。
 そして、表示素子1を図4に示すようなカメラのファインダー装置の内部に設置される画像表示装置10の表示素子として配置し、5℃の環境下においてバッテリ残量を示す標識7、図5に示すような撮影可能範囲を示す標識8、シャッター速度を示す標識9をそれぞれ表示素子1に表示させる。画像表示装置10を視認すると、標識7は赤、標識8は黒、標識9は標識7よりグレーから透明に切り替わる様子が観察される。もちろん、表示部以外の領域において配線パターンを視認することはなかった。
  本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2008年3月19日出願の日本特許出願2008-071614に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の画像表示装置では、表示素子の任意の部分に、接眼レンズ越しに視認される黒色を含む2色以上の発色を同時にさせることができて、非表示部は透明で背景を見ることが可能な表示を実現することができる。

Claims (12)

  1.  透明な一対の電極付き基板、および前記一対の電極付き基板間に挟持され、光透過状態と光散乱状態をとることができる液晶層を含み、電圧無印加時に光透過状態になり電圧印加時に光散乱状態になる表示素子、
     前記液晶層の面に略平行な光を前記液晶層に入射させる光源、および
     外光存在下において、前記光源における前記液晶層への光出射の状態に連動して、前記表示素子の表示面の少なくとも一部を光散乱状態または光透過状態にさせるタイミング制御回路
     を含む被観察物からの光透過機能を有する画像表示装置。
  2.  光源は1つの光源色を発色し、フレーム周波数が15Hz以上である、請求項1に記載の画像表示装置。
  3.  光源色は赤色である請求項2に記載の画像表示装置。
  4.  光源は1つの光源色を発色し、光源色のフレーム周波数が15Hz以上であり、1フレーム中における光出射期間の割合が1/3以下であり、タイミング制御回路が、光非出射期間内の少なくとも一部の期間に連動して、表示素子の表示面の少なくとも一部を光散乱状態にさせることにより、外光に応じた表示色を得る、請求項2または3に記載の画像表示装置。
  5.  光源は2以上の光源色を順次発色し、各光源色のフレーム周波数が15Hz以上であり、タイミング制御回路が、一または複数の光源色の光出射の状態に連動して、表示素子の表示面の少なくとも一部を光散乱状態または光透過状態にさせることにより、前記一または複数の光源色に応じた表示色を得る、請求項1に記載の画像表示装置。
  6.  光源が、赤色、青色、緑色を単独に発色可能である請求項5に記載の画像表示装置。
  7.  異なる表示タイミングにおいて、表示色が単色である場合と、表示色がマルチカラーである場合とを含む請求項5または6に記載の画像表示装置。
  8.  光源と表示素子との間に、光源から出射された光を、液晶層の側部における一方の端部から他方の端部に亘って広げる導光部が設けられた請求項1~7のいずれか1項に記載の画像表示装置。
  9.  光源色のフレーム周波数が30Hz以上である請求項1~8のいずれか1項に記載の画像表示装置。
  10.  請求項1~9のいずれか1項に記載の画像表示装置を含む、カメラのファインダ装置。
  11.  請求項1~9のいずれか1項に記載の画像表示装置を含む、光学顕微鏡。
  12.  請求項1~9のいずれか1項に記載の画像表示装置を含む、双眼鏡。
PCT/JP2009/055482 2008-03-19 2009-03-19 被観察物からの光透過機能を有する画像表示装置 WO2009116637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801097779A CN101978309A (zh) 2008-03-19 2009-03-19 具有使来自被观察物的光透射的功能的图像显示装置
JP2010503934A JPWO2009116637A1 (ja) 2008-03-19 2009-03-19 被観察物からの光透過機能を有する画像表示装置
US12/885,022 US20110018909A1 (en) 2008-03-19 2010-09-17 Image display with function for transmitting light from subject to be observed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008071614 2008-03-19
JP2008-071614 2008-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/885,022 Continuation US20110018909A1 (en) 2008-03-19 2010-09-17 Image display with function for transmitting light from subject to be observed

Publications (1)

Publication Number Publication Date
WO2009116637A1 true WO2009116637A1 (ja) 2009-09-24

Family

ID=41091035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055482 WO2009116637A1 (ja) 2008-03-19 2009-03-19 被観察物からの光透過機能を有する画像表示装置

Country Status (5)

Country Link
US (1) US20110018909A1 (ja)
JP (1) JPWO2009116637A1 (ja)
CN (1) CN101978309A (ja)
TW (1) TW200944918A (ja)
WO (1) WO2009116637A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257571A (ja) * 2010-06-09 2011-12-22 Asahi Glass Co Ltd 被観察物からの光透過機能を有する画像表示装置
WO2015190461A1 (ja) * 2014-06-13 2015-12-17 シャープ株式会社 表示装置
WO2017033997A1 (ja) * 2015-08-25 2017-03-02 旭硝子株式会社 構造体、透明ディスプレイ、照明装置、液晶表示装置および情報表示装置
JP2018120021A (ja) * 2017-01-23 2018-08-02 株式会社ジャパンディスプレイ 表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532075B2 (ja) 2012-04-18 2014-06-25 凸版印刷株式会社 液晶表示装置
CN105227883A (zh) * 2015-11-03 2016-01-06 固安翌光科技有限公司 一种透明显示系统
CN108614375A (zh) * 2016-12-13 2018-10-02 宏碁股份有限公司 显示面板
JP7027238B2 (ja) * 2018-04-20 2022-03-01 株式会社ジャパンディスプレイ 表示装置
CN110471174A (zh) * 2019-08-30 2019-11-19 陈国平 适合于瞄准镜内使用的高透过率的电子分划板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165017A (ja) * 1991-12-17 1993-06-29 Seiko Epson Corp 表示素子、構成体、及びその製造方法
JPH09244010A (ja) * 1996-03-12 1997-09-19 Olympus Optical Co Ltd 液晶表示装置及び頭部搭載型映像表示装置
JP2000119656A (ja) * 1998-10-20 2000-04-25 Asahi Glass Co Ltd 液晶光学素子およびその製造方法
JP2007316484A (ja) * 2006-05-29 2007-12-06 Pentax Corp 透過型表示装置、及びカメラ
JP2008003217A (ja) * 2006-06-21 2008-01-10 Asahi Glass Co Ltd 表示パネル
JP2008015125A (ja) * 2006-07-05 2008-01-24 Nikon Corp 表示素子、表示装置およびカメラ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048601A (ja) * 1996-08-06 1998-02-20 Seiko Epson Corp 液晶素子および製造方法
US6723393B1 (en) * 1998-10-20 2004-04-20 Asahi Glass Company, Limited Liquid crystal optical element and method for preparing the same
US6468676B1 (en) * 1999-01-02 2002-10-22 Minolta Co., Ltd. Organic electroluminescent display element, finder screen display device, finder and optical device
US7088334B2 (en) * 2001-06-28 2006-08-08 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device and manufacturing method thereof, and drive control method of lighting unit
JP4214786B2 (ja) * 2002-09-11 2009-01-28 旭硝子株式会社 画像表示装置
JP4169589B2 (ja) * 2002-12-13 2008-10-22 富士通株式会社 表示装置及び表示方法
JP2004309509A (ja) * 2003-04-01 2004-11-04 Hunet Inc 表示装置の調整方法
KR20040087464A (ko) * 2003-04-08 2004-10-14 삼성전자주식회사 액정표시장치
KR100599770B1 (ko) * 2004-05-25 2006-07-13 삼성에스디아이 주식회사 액정 표시 장치 및 이의 구동방법.
KR101171183B1 (ko) * 2005-09-29 2012-08-06 삼성전자주식회사 액정 표시 장치 및 그 구동 방법
WO2007097055A1 (ja) * 2006-02-27 2007-08-30 Sharp Kabushiki Kaisha 表示装置
JP5124130B2 (ja) * 2006-06-23 2013-01-23 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置のバックライトを駆動する装置及び方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165017A (ja) * 1991-12-17 1993-06-29 Seiko Epson Corp 表示素子、構成体、及びその製造方法
JPH09244010A (ja) * 1996-03-12 1997-09-19 Olympus Optical Co Ltd 液晶表示装置及び頭部搭載型映像表示装置
JP2000119656A (ja) * 1998-10-20 2000-04-25 Asahi Glass Co Ltd 液晶光学素子およびその製造方法
JP2007316484A (ja) * 2006-05-29 2007-12-06 Pentax Corp 透過型表示装置、及びカメラ
JP2008003217A (ja) * 2006-06-21 2008-01-10 Asahi Glass Co Ltd 表示パネル
JP2008015125A (ja) * 2006-07-05 2008-01-24 Nikon Corp 表示素子、表示装置およびカメラ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257571A (ja) * 2010-06-09 2011-12-22 Asahi Glass Co Ltd 被観察物からの光透過機能を有する画像表示装置
WO2015190461A1 (ja) * 2014-06-13 2015-12-17 シャープ株式会社 表示装置
WO2017033997A1 (ja) * 2015-08-25 2017-03-02 旭硝子株式会社 構造体、透明ディスプレイ、照明装置、液晶表示装置および情報表示装置
JPWO2017033997A1 (ja) * 2015-08-25 2018-07-26 旭硝子株式会社 構造体、透明ディスプレイ、照明装置、液晶表示装置および情報表示装置
JP2018120021A (ja) * 2017-01-23 2018-08-02 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
US20110018909A1 (en) 2011-01-27
TW200944918A (en) 2009-11-01
JPWO2009116637A1 (ja) 2011-07-21
CN101978309A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2009116637A1 (ja) 被観察物からの光透過機能を有する画像表示装置
JP5093710B2 (ja) 表示装置、端末装置、光源装置及び光学部材
JP4476505B2 (ja) 液晶表示装置
JP4442492B2 (ja) 面状光源装置、表示装置、端末装置及び面状光源装置の駆動方法
JP2001174801A (ja) 反射型および透過型液晶表示装置
JP2007065695A (ja) デュアルフロントライトユニットを利用したデュアル液晶表示装置
JP6658758B2 (ja) 構造体、透明ディスプレイ、照明装置、液晶表示装置および情報表示装置
JP2012220540A (ja) 透過型スクリーンおよび映像表示装置
JP4586332B2 (ja) 表示装置
EP2620811A1 (en) Smectic liquid crystal color display
Tokita et al. P‐108: FLC Resolution‐Enhancing Device for Projection Displays
Lin et al. IPS-LCD using a glass substrate and an anisotropic polymer film
JP4214786B2 (ja) 画像表示装置
JP5527320B2 (ja) 被観察物からの光透過機能を有する画像表示装置
JP4367027B2 (ja) 画像表示装置
JP2005114869A (ja) 表示装置
JP2007240903A (ja) 光制御素子および表示装置
JP4031702B2 (ja) 光路偏向素子
JP2010256500A (ja) 液晶シャッタ眼鏡および立体映像表示システム
JP2000171783A (ja) 液晶表示装置
JP2004184980A (ja) 複合表示装置
JPH1048592A (ja) ファインダー表示装置および駆動方法
JP2010014789A (ja) ストロボ発光ユニット
JP6265599B2 (ja) 高分子液晶表示素子
JP2011257571A (ja) 被観察物からの光透過機能を有する画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109777.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723394

Country of ref document: EP

Kind code of ref document: A1