WO2015190461A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2015190461A1
WO2015190461A1 PCT/JP2015/066565 JP2015066565W WO2015190461A1 WO 2015190461 A1 WO2015190461 A1 WO 2015190461A1 JP 2015066565 W JP2015066565 W JP 2015066565W WO 2015190461 A1 WO2015190461 A1 WO 2015190461A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
display
light
light source
liquid crystal
Prior art date
Application number
PCT/JP2015/066565
Other languages
English (en)
French (fr)
Inventor
裕一 喜夛
中谷 喜紀
伊織 青山
佐々木 貴啓
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/316,861 priority Critical patent/US10192493B2/en
Publication of WO2015190461A1 publication Critical patent/WO2015190461A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/001Devices for lighting, humidifying, heating, ventilation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/64Normally black display, i.e. the off state being black
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/66Normally white display, i.e. the off state being white
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0456Pixel structures with a reflective area and a transmissive area combined in one pixel, such as in transflectance pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications

Definitions

  • the present invention relates to a display device, and more particularly to a display device including a display panel capable of see-through display.
  • see-through displays have attracted attention as display devices for information displays and digital signage.
  • the background the back side of the display panel
  • the see-through display is excellent in appealing effect and eye catching effect. It has also been proposed to use a see-through display for a showcase or a show window.
  • a liquid crystal display device When a liquid crystal display device is used as a see-through display, its light utilization efficiency is low. The reason why the light use efficiency of the liquid crystal display device is low is due to a color filter and a polarizing plate provided in a general liquid crystal display device.
  • the color filter and the polarizing plate absorb light in a specific wavelength range and light in a specific polarization direction.
  • a field sequential type liquid crystal display device In the field sequential method, color display is performed by switching the color of light emitted from the illumination element to the liquid crystal display panel in a time-sharing manner. This eliminates the need for a color filter and improves the light utilization efficiency. However, in the field sequential method, high-speed response is required for the liquid crystal display device.
  • Patent Documents 1 and 2 disclose a liquid crystal display device having improved response characteristics by providing an electrode structure that can be generated by switching a vertical electric field and a horizontal electric field in a liquid crystal layer.
  • a vertical electric field is generated in the liquid crystal layer, while a horizontal electric field (fringe field) is generated in the liquid crystal layer. Therefore, since the torque due to voltage application acts on the liquid crystal molecules both at the rising edge and the falling edge, excellent response characteristics can be obtained.
  • Patent Document 3 proposes a liquid crystal display device that realizes high-speed response by applying an alignment regulating force due to an electric field to liquid crystal molecules at both rising and falling.
  • Patent Document 4 discloses a see-through display configured using a scattering type liquid crystal such as PDLC (polymer dispersed liquid crystal) or PNLC (polymer network liquid crystal). .
  • PDLC polymer dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • Patent Document 4 also describes a configuration in which a plurality of PDLC panels are arranged at intervals so that the panel display surfaces are overlapped when viewed from the observer side. In this configuration, by displaying an appropriate image on each PDLC panel, it is possible to perform a stereoscopic display or the like.
  • a see-through panel used as a see-through display (hereinafter sometimes referred to as a see-through panel)
  • light emission from other display devices illumination devices, various light emitting devices, etc.
  • a light source hereinafter sometimes referred to as a rear light source
  • the present invention has been made in view of the above problems, and an object thereof is to perform appropriate display in a display device including a display panel used as a see-through panel.
  • a liquid crystal display device includes a display panel configured to be able to have a transparent display state showing through the background, and a panel light source that irradiates the display panel with color lights of a plurality of colors in a time-sharing manner.
  • a rear light source disposed on the back side of the display panel, which emits a plurality of colors of color light in a time-sharing manner, and controls emission timing of the color light emitted from the panel light source and the rear light source
  • the panel light source and the rear light source are synchronized by the control circuit so that different color lights are not emitted at the same timing.
  • the display panel does not have a color filter and is field-sequentially driven by the panel light source.
  • the panel light source and the rear light source emit the same color light at the same timing.
  • the rear light source includes a lighting device.
  • the rear light source includes a rear display panel.
  • the display panel further includes a case attached to one side surface, the panel light source is provided on an inner wall on a side surface different from the one side surface of the case, and the rear light source is the case It is arranged inside.
  • the reflectance of the inner wall of the case is greater than 18%, which is a standard reflectance.
  • the amount of color light emitted from the rear light source and directed to the display panel is less than the amount of color light emitted from the panel light source and directed to the display panel.
  • a first area where the display panel and the rear light source overlap when viewed from the normal direction of the panel surface of the display panel, and a second area where the display panel and the rear light source do not overlap Is defined in the display panel, and when the same image is displayed in the first area and the second area, the display panel performs display with different light transmittances.
  • the color light emitted from the panel light source to the display panel and the color light emitted from the rear light source include red light, green light, and blue light.
  • the color light emitted from the panel light source to the display panel and the color light emitted from the rear light source further include white light.
  • the image display area of the display panel is in a state of not transmitting light, and the transparent display area of the display panel is in a state of transmitting light.
  • the display device includes a further display panel configured to take a transparent display state showing through the background, and when viewed from the normal direction of the panel surface of the display panel, The display panel, the rear light source, and the further display panel are arranged to at least partially overlap.
  • the display panel includes a first substrate, a second substrate, and a liquid crystal layer held between the first substrate and the second substrate.
  • An electrode and a second electrode that generates a lateral electric field in the first liquid crystal layer together with the first electrode, and the second substrate is provided to face the first electrode and the second electrode.
  • a third electrode that generates a vertical electric field in the liquid crystal layer together with the first electrode and the second electrode, and the display panel displays black in a state where the vertical electric field is generated in the liquid crystal layer for each pixel.
  • a transparent display state can be switched and presented.
  • the liquid crystal layer is a TN liquid crystal layer.
  • the see-through panel can be displayed appropriately.
  • FIGS. 2A and 2C are diagrams corresponding to FIGS. 2A to 2C in a display device of a comparative form, in which FIG. 2A is a state of a rear light source, FIG. 2B is a state of a see-through panel, and FIG.
  • FIG. 1 It is a figure which shows the state of the see-through panel which considered the influence.
  • A is a figure which shows a display image when the illuminating device installed behind the see-through panel is driven by a method other than the field sequential method
  • (b) is a device which drives the illuminating device in synchronization with the field sequential method.
  • (A) And (b) is sectional drawing and a top view which show the orientation state of the liquid crystal molecule in the black display state of a liquid crystal display panel.
  • (A) And (b) is sectional drawing and a top view which show the orientation state of the liquid crystal molecule in the white display state of a liquid crystal display panel.
  • (A) And (b) is sectional drawing and a top view which show the orientation state of the liquid crystal molecule in the transparent display state of a liquid crystal display panel. It is sectional drawing which shows typically the display apparatus by Embodiment 2 of this invention.
  • FIGS. 12A and 12C are diagrams corresponding to FIGS. 12A to 12C in a comparative display device, in which FIG. 12A is a state of a rear light source, FIG. 12B is a state of a see-through panel, and FIG. It is a figure which shows the state of the see-through panel which considered the influence.
  • FIG. 1 is a perspective view which shows the display apparatus of the reference example of Embodiment 2
  • (b) is a perspective view which shows the display apparatus of Embodiment 2.
  • FIG. It is sectional drawing which shows typically the display apparatus by Embodiment 3 of this invention.
  • (A) is a top view which shows the image displayed on the see-through panel in the display apparatus of Embodiment 3
  • (b) is a figure which shows the irradiation light in the area
  • (C) is a figure which shows the irradiation state in the area
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of the display device 100 according to the first embodiment.
  • the display device 100 includes a box-shaped case 8, a see-through panel 1 installed on one side of the box-shaped case 8, and a light source 3 for the see-through panel 1 installed on the ceiling inside the case 8 (hereinafter referred to as a panel). May be referred to as a light source 3).
  • the see-through panel 1 is configured to display an image on the panel surface in the image display state and to transmit the background in the transparent display state.
  • an observer can visually recognize the background (in this case, the inside of the case 8) through the see-through panel 1.
  • the see-through panel 1 can switch between an image display state and a transparent display state in units of pixels. For this reason, it is also possible to operate so as to transmit the background only in a partial region within the panel surface. A detailed configuration example of the see-through panel 1 will be described later.
  • the see-through panel 1 in this embodiment is driven by a field sequential method using a panel light source 3.
  • the see-through panel 1 includes, for example, a red light display period (hereinafter sometimes referred to as an R display period), a green light display period (hereinafter sometimes referred to as a G display period), and a blue light display period (hereinafter referred to as an R display period).
  • R display period a red light display period
  • G display period green light display period
  • B display period blue light display period
  • the R display period, the G display period, and the B display period are set so as not to overlap in time. Further, at least three display periods including one R display period, one G display period, and one B display period are within a period for displaying one full-color image (one frame period: for example, 16.7 ms). Is set.
  • the red component image, the green component image, and the blue component image constituting the full color image are continuously displayed in a time division manner within one frame period.
  • the panel light source 3 irradiates the see-through panel 1 with red light R, green light G, and blue light B in a time-sharing manner.
  • the light source 3 emits only red light R in the R display period of the see-through panel 1, emits only green light G in the G display period, and emits only blue light B in the B display period.
  • the pixel driving timing in the see-through panel 1 and the emission timing of each color light in the light source 3 need to be synchronized.
  • the display device 100 includes a control circuit that synchronizes the R display period, the G display period, and the B display period of the see-through panel 1 with the irradiation timing of the red light R, the green light G, and the blue light B from the light source 3. You may have.
  • the control circuit is configured to control the emission timing of each color light R, G, B in the light source 3 based on a vertical synchronization signal or a horizontal synchronization signal input to the see-through panel 1, for example, for a known sequential drive It may be a control circuit.
  • the panel light source 3 for example, a lighting device having a light source unit and a light guide plate can be used.
  • the light source unit can emit a plurality of color lights including red light R, green light G, and blue light B.
  • the light source unit includes, for example, a red LED, a green LED, and a blue LED.
  • the light guide plate can guide the color light emitted from the light source unit to the see-through panel 1.
  • various known illumination elements that have been used in conventional field sequential display devices can be used.
  • the light source 3 irradiates the see-through panel 1 with red light R, green light G, and blue light B in a time-sharing manner.
  • the inner surface of the case 8 may have light diffusion characteristics. Further, if the inner surface of the case 8 is white, all the color lights can be efficiently reflected. Therefore, any of the red light R, the green light G, and the blue light B is directed toward the see-through panel 1. Can do a lot.
  • the see-through panel 1 does not have a color filter because it performs color display in the field sequential manner as described above. That is, the see-through panel 1 has an R sub-pixel for displaying a red component, a G sub-pixel for displaying a green component, a B sub-pixel for displaying a blue component, and the like, like a color filter type display panel. Does not have color pixels. Each pixel of the see-through panel 1 functions as a pixel that performs full color display independently.
  • the R display period, the G display period, and the B display period are set so as not to overlap in time as described above. Therefore, a general color filter type display having an R sub-pixel, a G sub-pixel, and a B sub-pixel, in which the R display period, the G display period, and the B display period overlap (that is, displays three colors simultaneously).
  • the pixel drive frequency must be tripled, for example.
  • the lighting device 2 is provided in the case 8.
  • the illuminating device 2 can be regarded as a light source (a light source capable of emitting light reaching the see-through panel 1) disposed behind the see-through panel 1, this may be referred to as a rear light source.
  • the lighting device 2 may be a light for illuminating a product placed in the case 8, for example. Or the illuminating device 2 itself may be a product. However, it is not restricted to these, The illuminating device 2 may have a various form.
  • the illuminating device (rear light source) 2 may be a display device as described later (for example, a liquid crystal display device including a backlight and a liquid crystal panel), a color LED panel, and various other light emitting devices.
  • the illumination device 2 is configured to emit red light R, green light G, and blue light B in a time-sharing manner.
  • the illuminating device 2 may be, for example, an illuminating device that includes a red LED, a blue LED, and a green LED, and controls the color of emitted light by a control circuit that controls the light emission timing of each LED.
  • the emission timing of each color light in the illumination device 2 and the emission timing of each color light in the panel light source 3 are synchronized.
  • “synchronized”, “synchronized”, and the like typically mean that the same color light is emitted in the same period.
  • the period and the period in which each color light is emitted are not necessarily the same.
  • the illumination device 2 and the panel light source 3 are controlled so that different color lights are not emitted at the same time.
  • FIG. 19A to 19D show the display period of each color light in the see-through panel 1 (or the emission period of each color light in the panel light source 3) and the emission period of each color light in the illumination device (rear light source) 2.
  • FIG. 19A shows the display timing of each color light (here, red light R, green light G, and blue light B) in the see-through panel 1, and FIGS. It is a figure which shows the aspect of the emission timing of each color light.
  • each color light of the illumination device 2 may not be the same as those of the panel light source 3 shown in FIG.
  • the red light is emitted. It is only necessary that the emission timings of the light R and the green light G are aligned in the illumination device 2 and the panel light source 3.
  • the lighting device 2 emits the red light R, the green light G, and the blue light B only during a predetermined period T2 shorter than the predetermined period T1. You may go.
  • the illuminating device 2 and the panel light source 3 have the same color light emission timing, and different colors are not emitted from each other at an arbitrary time.
  • the illuminating device 2 may radiate
  • the lighting device 2 emits the red light R, the green light G, and the blue light B during a predetermined period T3 longer than the predetermined period T1 in the see-through panel 1. May be emitted.
  • the illumination device 2 is limited so as not to emit different color light during the display period of each color light on the see-through panel 1.
  • the display device 100 has the display timing of each color light of the see-through panel 1, the emission timing of each color light of the panel light source 3, and the emission timing of each color light of the illumination device (rear light source) 2.
  • the control circuit which controls to synchronize is provided.
  • this control circuit various known control circuits for sequentially driving the display panel can be used.
  • the control circuit generates a timing signal for causing the panel light source 3 to emit each color light in synchronization with the display of the see-through panel 1, and the generated timing signal is applied not only to the panel light source 3 but also to the lighting device 2. It may be configured to input.
  • FIG. 2A shows the emission timing of the red light R, the green light G, and the blue light B in the illumination device (rear light source) 2.
  • FIG. 2B shows the emission timing (R display period, G display period, B display period) of red light R, green light G, and blue light B in the see-through panel 1 and the response state of the see-through panel 1.
  • D1 transmittance
  • the horizontal axis of the graph represents time t.
  • the illumination device 2 of the present example emits all of the red light R, the green light G, and the blue light B to emit pseudo white light.
  • red display is performed by selectively transmitting the red light R.
  • the R display period, the G display period, and the B display period of the see-through panel 1 The lighting device 2 emits red light R, green light G, and blue light B in synchronization with these periods.
  • the emission timings of the respective colors are synchronized, display with high color purity can be performed.
  • the red display of the see-through panel 1 actually observed (combination of the display of the see-through panel 1 and the emitted light from the illumination device 2 in the R display period) Is executed in a state where color light components other than red light are not mixed.
  • the illumination device 2 also emits only red light during the R display period of the see-through panel 1. Since the see-through panel 1 does not transmit light during the G display period and the B display period, as shown as the response state D1, the green light G and the blue light B emitted from the illumination device 2 are displayed on the see-through panel 1. Will not be affected. Therefore, a suitable display can be performed on the see-through panel 1 without reducing the color purity.
  • FIG. 3 (a) to FIG. 3 (c) show a case in which color display is performed by the field sequential method on the see-through panel 1 and a white light source is used as the illumination device 2 ′ (see FIG. 4). The figure corresponding to (c) is shown.
  • the illumination device 2 ′ emits white light and the see-through panel 1 performs red display
  • the red light R, the green light G, and the blue light B are continuously emitted simultaneously.
  • the see-through panel 1 transmits red light in the R display period and does not transmit green light G and blue light B in the G display period and the B display period.
  • the red display color of the see-through panel 1 is affected by white light emitted from the illumination device 2 '. This is because not only the red light R but also the green light G and the blue light B are emitted toward the see-through panel 1 from the illumination device 2 ′ during the R display period of the see-through panel 1. For this reason, the red display of the see-through panel 1 to be observed (combination of the display of the see-through panel 1 in the R display period and the light emitted from the illumination device 2 ') is whitened and the color purity is lowered.
  • FIGS. 4A and 4B are synchronized with the case where the lighting device 2 is driven by a method other than the field sequential method when the see-through panel 1 is driven by the field sequential method (FIGS. 3A to 3C).
  • the difference in display actually observed in the case of driving in the field sequential method (FIGS. 2A to 2C) is shown.
  • FIG. 4A when the lighting device 2 ′ is driven by a method other than the field sequential method, the display image I1 ′ on the see-through panel 1 is observed in a desired color in a region overlapping the lighting device 2 ′. It is not visually recognized by the person V1. This is because the color light emitted from the illumination device 2 ′ is mixed with the display image on the see-through panel 1.
  • FIG. 4B when the illumination device 2 is also driven by a synchronized field sequential method, the display image I1 on the see-through panel 1 is appropriately displayed in a desired color with respect to the observer V1. Can be displayed.
  • the see-through panel 1 may have various forms. As an example, a configuration in the case where a liquid crystal display panel that operates in a TN (twisted nematic) mode is used as the see-through panel 1 will be described below.
  • FIGS. 5 and 6 are a cross-sectional view and a plan view schematically showing the configuration of the liquid crystal display panel 200 and the illumination element 210 used as the see-through panel 1 according to the present embodiment.
  • the liquid crystal display panel 200 has a plurality of pixels arranged in a matrix, and FIGS. 5 and 6 show structures corresponding to one pixel.
  • the liquid crystal display panel 200 includes a TFT substrate (back substrate) 10 and a counter substrate (front substrate) 20 facing each other, and a liquid crystal layer 30 provided between the TFT substrate 10 and the counter substrate 20.
  • the TFT substrate 10 includes a first electrode 11 provided in each of a plurality of pixels, and a second electrode 12 that generates a lateral electric field in the liquid crystal layer 30 together with the first electrode 11.
  • the first electrode 11 is provided on the second electrode 12 with the insulating layer 13 interposed therebetween.
  • the second electrode 12 is provided so as to be positioned below the first electrode 11 with the insulating layer 13 interposed therebetween.
  • the first electrode 11 positioned on the relatively upper side is referred to as “upper layer electrode”
  • the second electrode 12 positioned on the lower side is referred to as “lower layer electrode”.
  • the lower layer electrode 12, the insulating layer 13, and the upper layer electrode 11 are supported by an insulating transparent substrate (for example, a glass substrate) 10a.
  • the upper layer electrode 11 has a plurality of slits 11a extending in a predetermined direction d1, and a plurality of branch portions 11b extending in parallel to the direction d1 of the slit 11a.
  • the numbers of the slits 11a and the branch portions 11b are not limited to the examples shown in FIGS.
  • the width w1 of the slit 11a is typically 2 ⁇ m or more and 10 ⁇ m or less.
  • the width w2 of the branch portion 11b There is no particular limitation on the width w2 of the branch portion 11b.
  • the width w2 of the branch portion 11b is typically 2 ⁇ m or more and 10 ⁇ m or less.
  • the upper electrode 11 is made of a transparent conductive material (for example, ITO).
  • the lower layer electrode 12 does not have a slit. That is, the lower layer electrode 12 is a so-called solid electrode.
  • the lower layer electrode 12 is also formed from a transparent conductive material (for example, ITO).
  • the material of the insulating layer 13 there are no particular restrictions on the material of the insulating layer 13.
  • a material of the insulating layer 13 for example, an inorganic material such as silicon oxide (SiO 2 ) or silicon nitride (SiN x ) or an organic material such as a photosensitive resin can be used.
  • the counter substrate 20 includes a third electrode (hereinafter referred to as “counter electrode”) 21 provided to face the upper layer electrode 11 and the lower layer electrode 12.
  • the counter electrode 21 is supported by an insulating transparent substrate (for example, a glass substrate) 20a.
  • the counter electrode 21 generates a vertical electric field in the liquid crystal layer 30 together with the upper layer electrode 11 and the lower layer electrode 12.
  • the counter electrode 21 is made of a transparent conductive material (for example, ITO).
  • the liquid crystal layer 30 includes liquid crystal molecules 31 having positive dielectric anisotropy. That is, the liquid crystal layer 30 is formed from a positive liquid crystal material.
  • the alignment direction of the liquid crystal molecules 31 shown in FIGS. 5 and 6 is the alignment direction in a state where no voltage is applied to the liquid crystal layer 30.
  • the liquid crystal display panel 200 further includes a pair of horizontal alignment films 14 and 24 provided to face each other with the liquid crystal layer 30 interposed therebetween.
  • One of the pair of horizontal alignment films 14 and 24 (hereinafter also referred to as “first horizontal alignment film”) 14 is formed on the surface of the back substrate 10 on the liquid crystal layer 30 side.
  • the other of the pair of horizontal alignment films 14 and 24 (hereinafter also referred to as “second horizontal alignment film”) 24 is formed on the surface of the front substrate 20 on the liquid crystal layer 30 side.
  • Each of the first horizontal alignment film 14 and the second horizontal alignment film 24 is subjected to an alignment process, and alignment regulation for aligning the liquid crystal molecules 31 of the liquid crystal layer 30 in a predetermined direction (referred to as a “pretilt direction”). Have power.
  • a predetermined direction referred to as a “pretilt direction”.
  • the first horizontal alignment film 14 and the second horizontal alignment film 24 have an alignment regulating force so that the liquid crystal molecules 31 take a twist alignment in a state where no voltage is applied to the liquid crystal layer 30 (a state where no electric field is generated). Is granted.
  • the alignment regulating direction of the first horizontal alignment film 14 and the alignment regulating direction of the second horizontal alignment film 24 are different by 90 ° when viewed from the normal direction of the panel surface.
  • the pretilt direction defined by each of the first horizontal alignment film 14 and the second horizontal alignment film 24 forms an angle of about 45 ° with respect to the direction d1 in which the slit 11a of the upper electrode 11 extends. Yes.
  • the pretilt direction defined by the second horizontal alignment film 24 forms an angle of 90 ° with respect to the pretilt direction defined by the first horizontal alignment film 14. Therefore, in a state where no voltage is applied to the liquid crystal layer 30, the liquid crystal molecules 31 have 90 ° twist alignment.
  • the liquid crystal display panel 200 further includes a pair of polarizing plates 15 and 25 provided to face each other with the liquid crystal layer 30 interposed therebetween.
  • the transmission axis 15a of one of the pair of polarizing plates 15 and 25 (hereinafter also referred to as “first polarizing plate”) and the transmission axis 25a of the other (hereinafter also referred to as “second polarizing plate”) 25 are illustrated in FIG. As shown in FIG. That is, the first polarizing plate 15 and the second polarizing plate 25 are arranged in crossed Nicols.
  • the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25 are substantially parallel to or substantially parallel to the pretilt direction defined by the first horizontal alignment film 14 and the second horizontal alignment film 24, respectively. Orthogonal. Accordingly, the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25 form an angle of about 45 ° with respect to the direction d1 in which the slit 11a of the upper electrode 11 extends.
  • the lighting element (sometimes referred to as “backlight”) 210 is disposed on the back side of the liquid crystal display panel 200.
  • the illumination element 210 can switch and irradiate the liquid crystal display panel 200 with a plurality of color lights including red light R, green light G, and blue light B.
  • the light source 3 disposed on the ceiling of the case 8 is used as a light source for field sequential driving.
  • a light transmission type illumination element 210 installed behind the liquid crystal display panel 200 is used instead of the light source 3, and the observer passes the background through the liquid crystal display panel 200 and the illumination element 210. Can be observed.
  • the edge light type backlight 210 includes a light source unit 210a and a light guide plate 210b.
  • the light source unit 210a can emit a plurality of color lights including red light R, green light G, and blue light B.
  • the light source unit 210a includes, for example, a red LED, a green LED, and a blue LED.
  • the light guide plate 210b guides the color light emitted from the light source unit 210a to the liquid crystal display panel 200.
  • the liquid crystal display panel 200 and the lighting element 210 configured as described above perform color display by a field sequential method. Therefore, the liquid crystal display panel 200 does not have a color filter.
  • each pixel is provided so that the R display period, the G display period, and the B display period do not overlap in time.
  • a lateral electric field is generated in the liquid crystal layer 30.
  • the “lateral electric field” is an electric field including a component substantially parallel to the substrate surface.
  • the direction of the transverse electric field generated by the upper layer electrode 11 and the lower layer electrode 12 is substantially orthogonal to the direction d1 in which the slit 11a of the upper layer electrode 11 extends.
  • the “longitudinal electric field” is an electric field whose direction is substantially parallel to the normal direction of the substrate surface.
  • the liquid crystal display panel 200 has a configuration capable of controlling the strength of the horizontal electric field and the vertical electric field for each pixel.
  • the liquid crystal display device has a configuration capable of supplying a different voltage for each pixel for each of the upper layer electrode 11 and the lower layer electrode 12.
  • both the upper layer electrode 11 and the lower layer electrode 12 are formed separately for each pixel, and each pixel includes a switching element (for example, a thin film transistor; not shown) electrically connected to the upper layer electrode 11.
  • a switching element for example, a thin film transistor; not shown
  • a predetermined voltage is supplied to the upper layer electrode 11 and the lower layer electrode 12 via corresponding switching elements.
  • the counter electrode 21 is formed as a single conductive film that is continuous over all the pixels. Therefore, a common potential is applied to the counter electrode 21 in all the pixels.
  • FIG. 7 shows an example of a specific wiring structure on the back substrate 10.
  • each pixel is provided with a first TFT 16 ⁇ / b> A corresponding to the upper layer electrode 11 and a second TFT 16 ⁇ / b> B corresponding to the lower layer electrode 12.
  • the gate electrodes 16g of the first TFT 16A and the second TFT 16B are electrically connected to a gate bus line (scanning wiring) 17.
  • the portion of the gate bus line 17 that overlaps the channel regions of the first TFT 16A and the second TFT 16B functions as the gate electrode 16g.
  • the source electrodes 16s of the first TFT 16A and the second TFT 16B are electrically connected to a source bus line (signal wiring) 18.
  • a portion branched from the source bus line 18 functions as the source electrode 16s.
  • the drain electrode 16d of the first TFT 16A is electrically connected to the upper layer electrode 11.
  • the drain electrode 16d of the second TFT 16B is electrically connected to the lower layer electrode 12.
  • the wiring structure of the back substrate 10 is not limited to that illustrated in FIG.
  • each of the plurality of pixels has a “black display state” in which black display is performed in a state where a vertical electric field is generated in the liquid crystal layer 30, and a horizontal electric field is generated in the liquid crystal layer 30.
  • a “white display state” in which white display is performed and a “transparent display state” in which the back side (that is, the background) of the liquid crystal display panel 200 can be seen through when no voltage is applied to the liquid crystal layer 30. Can be presented.
  • FIG. 8A and 8B show the alignment state of the liquid crystal molecules 31 in the black display state.
  • a predetermined voltage is applied between the counter electrode 21 and the upper layer electrode 11 and the lower layer electrode 12 (for example, a potential of 0 V is applied to the counter electrode 21, and the upper layer electrode 11 and the lower layer electrode 12 are applied).
  • a vertical electric field is generated in the liquid crystal layer 30.
  • FIG. 8A the electric lines of force at this time are schematically shown by broken lines.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are substantially perpendicular to the substrate surfaces (the surfaces of the rear substrate 10 and the front substrate 20) (that is, the liquid crystal molecules as shown in FIGS. 8A and 8B). Oriented (substantially parallel to the layer normal direction of layer 30). Note that the liquid crystal molecules 31 in the immediate vicinity of the first horizontal alignment film 14 and the second horizontal alignment film 24 are strongly affected by the alignment regulating force of the first horizontal alignment film 14 and the second horizontal alignment film 24, so that the substrate surface However, since these liquid crystal molecules 31 are substantially parallel or substantially orthogonal to the transmission axis 15 a of the first polarizing plate 15, they pass through the first polarizing plate 15. Almost no phase difference is given to the light incident on the liquid crystal layer 30, and the contrast ratio is hardly lowered.
  • FIG. 9A and 9B show the alignment state of the liquid crystal molecules 31 in the white display state.
  • a predetermined voltage is applied between the upper layer electrode 11 and the lower layer electrode 12 (for example, a potential of 0 V is applied to the upper layer electrode 11 and the counter electrode 21, and a potential of 7.5 V is applied to the lower layer electrode 12. ),
  • a lateral electric field is generated in the liquid crystal layer 30.
  • FIG. 9A the electric lines of force at this time are schematically shown by broken lines.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are substantially parallel to the substrate surface (that is, substantially perpendicular to the layer normal direction of the liquid crystal layer 30). ) Orient. More specifically, the liquid crystal molecules 31 in the vicinity of the first horizontal alignment film 14 and the liquid crystal molecules 31 in the vicinity of the second horizontal alignment film 24 are aligned so as to form an angle of about 90 °, and as a result, the liquid crystal layer 30 The liquid crystal molecules 31 near the center in the thickness direction are aligned substantially parallel to the direction d1 in which the slits 11a of the upper electrode 11 extend.
  • the average orientation direction of the bulk liquid crystal is substantially parallel to the extending direction d1 of the slit 11a (that is, approximately 45 ° with respect to the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25). ).
  • 10A and 10B show the alignment state of the liquid crystal molecules 31 in the transparent display state.
  • no voltage is applied to the liquid crystal layer 30 (for example, a potential of 0 V is applied to the upper layer electrode 11, the lower layer electrode 12, and the counter electrode 21). None of the electric field is generated.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are twisted as shown in FIGS. 10 (a) and 10 (b). That is, the liquid crystal molecules 31 are aligned substantially parallel to the substrate surface (that is, substantially perpendicular to the layer normal direction of the liquid crystal layer 30).
  • the liquid crystal molecules 31 in the vicinity of the first horizontal alignment film 14 and the liquid crystal molecules 31 in the vicinity of the second horizontal alignment film 24 are aligned so as to form an angle of about 90 °.
  • the liquid crystal layer 30 is centered in the thickness direction.
  • the nearby liquid crystal molecules 31 are aligned substantially parallel to the direction d1 in which the slits 11a of the upper layer electrode 11 extend.
  • the average orientation direction of the liquid crystal molecules 31 of the bulk liquid crystal is substantially parallel to the extending direction d1 of the slit 11a (that is, with respect to the transmission axes 15a and 25a of the first polarizing plate 15 and the second polarizing plate 25, respectively). And makes an angle of approximately 45 °).
  • Each pixel of the liquid crystal display panel 200 has the highest light transmittance in this transparent display state (that is, in any of the black display state and the white display state).
  • a vertical electric field is generated in the liquid crystal layer 30 in the black display state and a horizontal electric field is generated in the liquid crystal layer 30 in the white display state.
  • Torque due to voltage application can be applied to the liquid crystal molecules 31 both at the transition from the display state to the black display state and at the rise (the transition from the black display state to the white display state). Therefore, excellent response characteristics can be obtained.
  • each pixel can exhibit not only a black display state and a white display state but also a transparent display state in which no voltage is applied to the liquid crystal layer 30.
  • the quality of see-through display can be improved.
  • the liquid crystal display panel 200 according to the present embodiment is excellent in both response characteristics and display quality, and is therefore preferably used as a see-through display.
  • Each of the plurality of pixels of the liquid crystal display panel 200 is in addition to a black display state showing luminance corresponding to the lowest gradation, a white display state showing luminance corresponding to the highest gradation, and a transparent display state performing see-through display.
  • a “halftone display state” indicating the luminance corresponding to the halftone can also be exhibited.
  • the strength of the lateral electric field (fringe field) generated in the liquid crystal layer 30 is adjusted (for example, a potential of 0 V is applied to the counter electrode 21 and a potential of 7.5 V is applied to the lower electrode 12, and the upper electrode 11 is given a potential of more than 0V and less than 7.5V), a desired transmittance can be realized.
  • the relationship between the potentials applied to the upper layer electrode 11 and the lower layer electrode 12 is not limited to that illustrated here.
  • halftone display may be realized by fixing the potential applied to the upper layer electrode 11 and making the potential applied to the lower layer electrode 12 variable.
  • the liquid crystal molecules 31 of the liquid crystal layer 30 are twisted.
  • a clearer (clear) transparent display can be realized.
  • the twist alignment since the liquid crystal molecules 31 are oriented in the same direction in a plane parallel to the display surface, diffraction due to the difference in refractive index within the plane and diffraction due to dark lines due to the display mode of the liquid crystal do not occur. Because.
  • the pixel in the display area where information is to be displayed exhibits a black display state, a white display state, or a halftone display state. Pixels other than are in a transparent display state.
  • a typical driving circuit for a liquid crystal display device includes an 8-bit driver IC and generates an output voltage for 256 gradations (0 to 255 gradations).
  • 0 gradation is assigned to a black display state
  • 1 to 254 gradations are assigned to a halftone display state
  • 255 gradations are assigned to a white display state.
  • the liquid crystal display panel 200 of the present embodiment for example, by assigning 0 gradation to a transparent display state, 1 gradation to a black display state, 2 to 254 gradations to a halftone display state, and 255 gradations to a white display state. Switching between the black display state, the halftone display state, the white display state, and the transparent display state can be realized.
  • the transparent display state is not necessarily assigned to the 0 gradation, and any gradation may be assigned to the transparent display state.
  • a specific gradation may be assigned to the transparent display state.
  • each pixel can be switched between a black display state, a white display state, and a transparent display state.
  • see-through display regardless of the type (liquid crystal display device, PDLC display, organic EL display, etc.), see-through display is performed in either a black display state or a white display state (that is, a black display state or a white display state). Since the gradation for the display state is assigned to the see-through display), the see-through display cannot be performed in a state where the applied voltage is different in both the black display state and the white display state.
  • each pixel can exhibit a transparent display state in which an applied voltage is different from the black display state and the white display state in addition to the black display state and the white display state.
  • the transparent display state is realized in a state where no voltage is applied to the liquid crystal layer, it is possible to prevent the refractive index distribution from occurring in the pixel in the transparent display state.
  • light scattering due to the refractive index distribution can be prevented, and the background can be prevented from being viewed twice by an observer who observes the background via the see-through display.
  • the electrode structure of the see-through panel 1 is not limited to the form shown in FIGS. 5 and 6.
  • the lower layer electrode 12 may have slits. Since the lower layer electrode 12 has a slit, it is possible to further improve response characteristics and light transmittance.
  • the upper layer electrode 11 may be formed so that a pair of comb-like electrodes are engaged with each other. A transverse electric field can be generated by the pair of comb-like electrodes.
  • the present invention is not limited to the liquid crystal display panel operating in the above TN mode, and a liquid crystal display panel having a liquid crystal layer with homogeneous alignment can also be used. More specifically, in the liquid crystal display panel 200 shown in FIGS. 5 and 6, the pretilt direction defined by each of the horizontal alignment films 14 and 24 is substantially orthogonal to the direction d1 in which the slit 11a of the upper electrode 11 extends. In addition, the pretilt direction defined by one horizontal alignment film 14 and the pretilt direction defined by the other horizontal alignment film 24 are set parallel or antiparallel to each other.
  • the polarizing plates 15 and 25 are arranged in crossed Nicols, and the transmission axes 15a and 25a of the polarizing plates 15 and 25 are approximately 45 ° with respect to the pretilt direction defined by the horizontal alignment films 14 and 24. It is set to make a corner.
  • black display can be performed by generating a vertical electric field in the liquid crystal layer 30 and aligning the liquid crystal molecules 31 substantially perpendicularly to the substrate surface. Further, a horizontal electric field (fringe electric field) is generated in the liquid crystal layer 30, and the liquid crystal molecules 31 are aligned so as to be substantially parallel to the substrate surface and substantially orthogonal to the direction d1 in which the slit 11a of the upper electrode 11 extends (that is, the horizontal electric field is changed). And the liquid crystal molecules 31 are aligned so as to form an angle of about 45 ° with respect to the transmission axes 15a and 25a of the polarizing plates 15 and 25, and white display can be performed.
  • a horizontal electric field fringe electric field
  • a voltage is not applied to the liquid crystal layer 30 and the liquid crystal molecules 31 are in a homogeneous orientation (an angle at which the major axis direction of the liquid crystal molecules 31 is approximately 45 ° with respect to the transmission axes 15a and 25a of the polarizing plates 15 and 25). In a transparent display state in which the light transmittance is the highest.
  • a liquid crystal display panel composed of a scattering type liquid crystal such as PDLC or PNLC may be used, and this may be driven in a field sequential manner.
  • an OCB (Optically Compensated Birefringence) mode liquid crystal display panel using bend alignment may be used, and this may be driven in a field sequential manner.
  • the display panel used as the see-through panel 1 is driven by the field sequential method. At this time, by synchronizing the display timing of the color light of the see-through panel 1 and the emission timing of the color light of the rear light source, the display of the see-through panel 1 can be suitably performed with high color reproducibility.
  • the see-through panel 1 is installed on the side surface of the box-shaped case 8. Further, the panel light source 3 is installed, for example, on the ceiling inside the case 8. The light source 3 can irradiate the see-through panel 1 by switching red light R, green light G, and blue light B in a time division manner. Also in this embodiment, the see-through panel 1 is driven by the field sequential method using the light source 3.
  • a rear panel 2 ⁇ / b> A is installed on the back side of the see-through panel 1.
  • the see-through panel 1 and the rear panel 2A are typically arranged so as to overlap each other when viewed from the front side. In this configuration, the image displayed by the rear panel 2 ⁇ / b> A is observed through the see-through panel 1.
  • the see-through panel 1 and the rear panel 2A are typically arranged with a space therebetween such that the panel surfaces are parallel to each other.
  • the rear panel 2A is also driven in a field sequential manner. Similarly to the first embodiment, the red light R, the green light G, and the blue light B are emitted in time division from the rear panel 2A in synchronization with the see-through panel 1.
  • a light source (not shown) for driving the rear panel 2A by a field sequential method is separately provided.
  • the light source for the rear panel 2A and the light source 3 for the see-through panel 1 are synchronized with each other so that different color lights are not emitted simultaneously.
  • the period and the period for emitting each color light are not necessarily the same in each of the light sources provided in both panels, but at least one light source and the other light source are not necessarily the same.
  • the light sources are synchronized so that different color lights are not emitted simultaneously.
  • the display panel itself provided with a light source for driving in a field sequential method may be referred to as a rear light source.
  • 12A shows the irradiation timing of the red light R, green light G, and blue light B of the light source of the rear panel 2A shown in FIG. 11 (that is, the R display period and the G display period in the rear panel 2A).
  • 12B shows the irradiation timing of the red light R, the green light G, and the blue light B of the light source 3 of the see-through panel 1 (that is, the R display period, the G display period in the see-through panel 1, and , B display period) and the response state D1 (transmittance) of the see-through panel 1 are shown.
  • the horizontal axis of the graph represents time t.
  • the rear panel 2A performs white display by transmitting all of the red light R, the green light G, and the blue light B, and the see-through panel. 1, the case where the red display which selectively permeate
  • the rear panel 2A and the see-through panel 1 When both the see-through panel 1 and the rear panel 2A are driven by the field sequential method, as shown in FIGS. 12A and 12B, the rear panel 2A and the see-through panel 1 have an R display period and a G display period. , And the B display period can be synchronized. As long as the display periods of the respective colors are synchronized in this way, for example, white display is performed on the rear panel 2A and red display is performed on the see-through panel 1. Display with high color purity can be performed.
  • the rear panel 2A transmits light of each color throughout the R display period, the G display period, and the B display period in order to perform white display.
  • the rear panel 2A that is synchronized performs display with the red light R.
  • the actually observed display of the see-through panel 1 (the combined display of the display of the see-through panel 1 and the display of the rear panel 2A) includes color components other than red light. It is executed with no state.
  • the see-through panel 1 does not transmit light during the G display period and the B display period, the green light G and the blue light B emitted from the rear panel 2A do not affect the display of the see-through panel 1. Therefore, a suitable display can be performed on the see-through panel 1 without reducing the color purity.
  • FIGS. 13A to 13C color display is performed by the field sequential method in the see-through panel 1, and the white light source and R, G, B in the rear panel 2A ′ (see FIG. 14A).
  • FIGS. 12A to 12C are diagrams corresponding to FIGS. 12A to 12C when color display is performed using the color filter.
  • the rear panel 2A performs white display and the see-through panel 1 performs red display
  • red light R, green light G, Blue light B is continuously emitted simultaneously.
  • the see-through panel 1 transmits the red light R in the R display period and does not transmit the green light G and the blue light B in the G display period and the B display period.
  • the purity of the red display color of the see-through panel 1 is affected by the white display on the rear panel 2A '. This is because, in the R display period of the see-through panel 1, not only the red light R from the R sub-pixel but also the green light G and the blue light B from the G sub-pixel and the B sub-pixel are seen from the rear panel 2A ′. This is because the light is emitted toward 1. For this reason, the red display of the see-through panel 1 to be observed (combination of the display of the see-through panel 1 and the display of the rear panel 2A ′ in the R display period) is whitened and the color purity is lowered.
  • a period in which only the R subpixel is driven to display only the red component of the display image, a period in which only the G subpixel is driven to display only the green component, and a blue component In order to display only the sub-pixels, the period for driving only the B sub-pixels may be provided in a time-sharing manner in synchronization with each color light display period of the see-through panel.
  • the rear panel 2A may be a self-luminous display panel such as an organic EL panel.
  • the light emitting elements corresponding to the colors of the rear panel 2A are sometimes synchronized with the display of the see-through panel 1.
  • the display of the see-through panel 1 can be suitably performed without reducing the color purity.
  • FIGS. 14A and 14B are synchronized with the case where the rear panel 2A ′ is driven by the color filter method when the see-through panel 1 is driven by the field sequential method (FIGS. 13A to 13C). Differences in display actually observed in the case of driving in the field sequential method (FIGS. 12A to 12C) are shown.
  • FIG. 14A when the rear panel 2A ′ is driven by the color filter method, the display image on the see-through panel 1 is visually recognized by the observer V1 in a desired color in a region R1 overlapping the rear panel 2A ′. Not. This is because the color of the display image on the rear panel 2 ⁇ / b> A ′ is mixed with the color of the display image on the see-through panel 1.
  • the display image I1 on the see-through panel 1 is observed regardless of the display image of the rear panel 2A.
  • the user V1 can appropriately display the desired color.
  • both the see-through panel 1 and the rear panel 2A may be liquid crystal display panels that operate in the TN mode described with reference to FIGS.
  • a front side polarizing plate and a rear side polarizing plate are provided in each panel according to the display mode.
  • a pair of polarizing plates arranged in crossed Nicols with a liquid crystal layer interposed therebetween are provided.
  • the polarization axis (transmission axis or absorption axis) of the back-side polarizing plate of the see-through panel 1 and the polarization axis (transmission axis or absorption axis) of the front-side polarizing plate of the rear panel 2A arranged on the back side thereof are. It is preferable to arrange each polarizing plate so as to have a parallel Nicol relationship. As a result, the polarized light emitted from the rear panel 2A is not absorbed by the back-side polarizing plate of the see-through panel 1, and the display of the rear panel 2A can be appropriately performed through the see-through panel 1.
  • the display device of the present embodiment is not limited to the form in which the see-through panel 1 and the rear panel 2A are attached to the case 8 as described above, and may have various forms.
  • the see-through panel 1 and the rear panel 2 ⁇ / b> A are arranged so as to overlap at least partially when viewed from the observer side, and a see-through panel light source is provided on the back side of the see-through panel 1.
  • a light source for the rear panel 2A may be provided on the back side of the rear panel 2A.
  • the display panel is not limited to a configuration including one see-through panel 1 and one rear panel 2A, and a larger number of display panels may be used.
  • FIG. 18 shows a form in which the first see-through panel 1A and the second see-through panel 1B are arranged in front of the rear panel 2A.
  • the first see-through panel 1A, the second see-through panel 1B, and the rear panel 2A are arranged so as to overlap at least partially when viewed from the observer V1.
  • the first see-through panel 1A, the second see-through panel 1B, and the rear panel 2A are all transmissive liquid crystal display panels.
  • the TN mode liquid crystal display panel may be used.
  • the two adjacent display panels are arranged in parallel Nicols so that the transmission axes of the two opposing polarizing plates are parallel to each other. That is, in the example shown in FIG. 18, the transmission axis (or absorption axis) A5 of the front-side polarizing plate of the rear panel 2A and the transmission axis of the rear-side polarizing plate of the second see-through panel 1B arranged in front of the rear panel 2A. (Or absorption axis) A4 is arranged in parallel.
  • Axis) A2 is arranged in parallel.
  • the twist orientation twist direction is reversed between adjacent liquid crystal display panels.
  • the liquid crystal layer of the rear panel 2A and the first see-through panel 1A achieves counterclockwise twist alignment using a left-handed chiral agent
  • the liquid crystal layer of the second see-through panel 1B uses a right-handed chiral agent. Orientation may be realized.
  • a right-handed chiral agent may be used for the liquid crystal layer of the rear panel 2A and the first see-through panel 1A
  • a left-handed chiral agent may be used for the liquid crystal layer of the second see-through panel 1B. In this way, since the direction in which the viewing angle characteristic is good can be aligned in all the panels, the viewing angle characteristic in a specific direction can be improved.
  • each liquid crystal display panel is high.
  • a display with a good transmittance and high display quality can be performed. Therefore, for example, it is possible to provide an unprecedented image with high quality such as providing a viewer with a more three-dimensional image.
  • the see-through panels 1A and 1B are synchronized. Display can be suitably performed with high color reproducibility.
  • FIG. 15 is a diagram for explaining a mode of adjusting the intensity of light emitted from the illumination device 2 and the light source 3 in the display device 100 of the first embodiment shown in FIG. 1 as the display device 103 of the third embodiment. is there.
  • the light emitted from the panel light source 3 reaches the see-through panel 1 through various paths. Among them, as shown as a path B, there is also light that is emitted from the light source 3, reflected by the inner wall of the case 8, and directed toward the see-through panel 1. For this reason, it is preferable that the inner wall of the case 8 is white to improve the light utilization efficiency. Further, the light emitted through the see-through panel 1 to the outside includes light emitted from the lighting device 2.
  • the light emitted from the see-through panel 1 can be roughly divided into light passing through the following four paths A to D.
  • Path A Light emitted from the light source 3 and directed directly to the see-through panel 1
  • Path B Light emitted from the light source 3 and reflected by the inner wall of the case 8 and then directed to the see-through panel 1
  • Path C emitted from the illumination device 2
  • Path D Light that is emitted from the light source 3, reflected by the lighting device 2, and then directed to the see-through panel 1
  • the display image when viewed from the front side of the see-through panel 1, the display image has a higher quality when there is no variation in brightness between the area where the illumination device 2 is present and the area where the illumination device 2 is not present.
  • the amount of light emitted from the see-through panel 1 in each region will be described.
  • the light amount L8 in the area where the illumination device 2 is not present behind and the inner wall of the case 8 is visible can be considered as the sum of the light amount A of the light of the path A and the light amount B of the light of the path B. It can be expressed as light amount A + light amount B.
  • the inner wall of the case 8 is set to have a high reflectivity, and can be set to a reflectivity of about 96% by, for example, painting white. For this reason, the ratio of the light amount B to the light amount A is relatively high. For example, when expressed as r1 ⁇ light amount A (where r1 ⁇ 1), r1 takes a relatively large value.
  • the reflectance of the illumination device 2 is relatively low at about 18%.
  • the reflectance of the lighting device 2 may vary depending on the form (color, material, etc.), but here, the average reflectance of the lighting device 2 is a standard reflectance value (18%). ) Is used.
  • the standard reflectance is widely known as an average reflectance of the entire subject in photography.
  • the ratio of the light amount D to the light amount A is relatively low, and can be expressed as, for example, r2 ⁇ light amount A (where r1> r2).
  • the light quantity B> the light quantity D is established. Further, the light amount B of the reflected light is smaller than the light amount A as described above, and the light amount A> the light amount B.
  • the luminance of the illumination device 2 is preferably set to about 0.75 to 0.8 times the luminance of the light source 3, for example.
  • the light amount C ⁇ the light amount A.
  • the light amount C may be reduced. It can be difficult.
  • color mixing white floating
  • the front light source 2 and the non-existing region can be seen from the front.
  • the brightness may be different.
  • the transmittance of the see-through panel 1 may be adjusted between a region where the rear light source 2 is present behind and a region where the rear light source 2 is not present.
  • FIGS. 16A to 16C show the gradation of the see-through panel 1 with an image I2 in a region overlapping the rear light source 2 and an image I8 in a region not overlapping with the rear light source 2 in the display image on the see-through panel 1. It is a figure for demonstrating the form which adjusts.
  • the image displayed on the see-through panel 1 includes an image I2 in an area that overlaps the rear light source 2 and an image I8 in an area that does not overlap the rear light source 2 (that is, the background is the case 8).
  • Image I8 which is an inner wall.
  • the pixels for displaying the image I8 for example, gradation display according to the image data is performed.
  • the pixels for displaying the image I2 are displayed with a lower gradation than the image data in order to reduce the influence of the rear light source 2.
  • FIG. 16B shows the liquid crystal response state (transmittance) D3 and the light emitted to the pixels in the region displaying the image I8 where the rear light source 2 does not exist behind.
  • FIG. 16C shows the response state (transmittance) D4 of the liquid crystal and the light applied to the pixels in the region displaying the image I2 in which the rear light source 2 is present behind.
  • the pixel is irradiated with red light R from the light source 3 and red light R from the rear light source 2.
  • the intensity of the irradiated red light R is relatively small in the area where the image I8 is displayed, and the intensity of the irradiated red light R is large in the area where the image I2 is displayed.
  • the strength is relatively large.
  • the response state D4 of the liquid crystal in the region displaying the image I2 is lowered compared to the response state D3 of the liquid crystal in the region displaying the image I8. ing.
  • an image with the same luminance can be displayed as an image of the see-through panel 1 regardless of whether or not the rear light source 2 is present in the background.
  • the in-plane luminance can be made more uniform, and the appearance can be improved.
  • the light amount B of the light reflected by the inner wall of the case 8 may be larger than the light amount C + the light amount D of the light from the rear light source 2.
  • the gradation in the area where the image I8 is displayed (area where the background is the inner wall of the case 8) may be set higher than the area where the image I2 is displayed (area where the background is the rear light source 2).
  • the illumination device (rear light source) 2 disposed behind the see-through panel 1 is transparent to make the background easier to see through the transparent display state see-through panel 1. A mode of providing light irradiation timing for display will be described.
  • the rear light source 2 has two roles, and one serves as a light source for display of the see-through panel 1. The other one functions as illumination for showing the product (for example, the rear light source itself) placed inside the case 8 to the observer.
  • the rear light source 2 is also driven in a field sequential manner in synchronism with the see-through panel 1, since the emission of each color light is performed in a time-sharing manner, the total amount of light tends to decrease.
  • the see-through panel 1 includes a polarizing plate, the amount of light emitted through the see-through panel 1 is about 40% or less of the original amount of light. It tends to end up.
  • FIGS. 17A and 17B show an embodiment in which a timing for emitting the white light W following the red light R, the green light G, and the blue light B from the rear light source 2 is provided.
  • FIGS. In b different forms are shown.
  • the light source 3 (see, for example, FIG. 1) for the see-through panel 1 also emits the same color light at the same timing as the color light emission timing of the rear light source 2 shown in FIGS. Are synchronized.
  • the white light W may be emitted using a white light source provided separately in the rear light source 2 or by emitting red light R, green light G, and blue light B simultaneously. May be.
  • the image display portion (here, the portion that performs red display) transmits light only at the timing when the red light R is emitted, as indicated by the response state D1. As a result, a red image is displayed on the see-through panel 1.
  • the state of transmitting light (for example, no voltage application state) is always maintained.
  • the transparent display state is, for example, an area (transparent display area) provided outside the image display area partially provided in the see-through panel 1 so that the background can be always viewed through the see-through panel 1. ).
  • the red light R, the green light G, the blue light B, and the white light W are irradiated in the portion that takes the transparent display state, so that the background behind the see-through panel 1 is sufficiently bright. Show products. Further, when the white light W is emitted from the rear light source 2, the response state D1 of the image display portion of the see-through panel 1 is set to the minimum (light non-transmission state). It does not affect the color of the image.
  • FIG. 17B is a diagram for explaining another example of the present embodiment.
  • the rear light source 2 emits red light R, green light G, blue light B, and white light W at a predetermined timing.
  • the response state D1 light is transmitted only at the timing when the red light R is emitted, and a red image is displayed.
  • the transparent display state of the see-through panel 1 transmits light when the red light R, the green light G, and the blue light B are emitted from the rear light source 2 as shown by the response state D0. The light is transmitted only when the white light W is emitted. Even in this way, it is possible to show a product or the like relatively brightly over the see-through panel 1 in the portion where the transparent display state is taken.
  • the brightness of the rear light source 2 is adjusted while reducing the influence on the brightness of the display image in the see-through panel 1 by providing a period for emitting the white light W in the rear light source 2.
  • Cheap therefore, for example, as described in Embodiment 3 above, the rear light source 2 emits red light R, green light G, and blue light B with lower luminance than the light source 3 for the see-through panel 1. It is possible to compensate for the uniformity of the brightness of the image and to illuminate the product in the case 8 brightly by irradiation with the white light W.
  • the frequency of color light emission and pixel driving in the rear light source 2 is high (for example, 200 Hz or more), even if a period for emitting the white light W is provided, the viewer flickers due to the emission of the white light W. It is hard to feel. For this reason, the image of the see-through panel 1 and the background through the see-through panel 1 can be shown to the observer without a sense of incongruity.
  • the embodiments of the present invention have been described above, but various modifications can be made.
  • the light source 3 and the rear light source such as the lighting device 2 (or the rear panel 2A) emit the red light R, the green light G, and the blue light B in a time division manner.
  • the light source 3 and the illumination device 2 may be configured to emit color light other than the red light R, the green light G, and the blue light B in a time division manner. Also in this case, by synchronizing the emission timings of the respective color lights, it is possible to reduce the color mixture in the see-through panel 1 and perform high-quality display.
  • a display device in which a rear light source such as a lighting device or a display device is provided on the back side of the see-through panel.
  • the display device according to the embodiment of the present invention is used as, for example, a display device for information display or digital signage, or a showcase.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Geometry (AREA)

Abstract

 表示装置(100)は、背景を透けて見せる透明表示状態を取り得るように構成された表示パネル(1)と、表示パネルに複数の色の色光を時分割で照射するパネル用光源(3)と、表示パネルの背面側に配置された後方光源(2)であって、複数の色の色光を時分割で出射する後方光源と、パネル用光源および後方光源から出射される色光の出射タイミングを制御する制御回路とを備え、パネル用光源と後方光源とは、制御回路によって同じタイミングで異なる色の色光が出射されないように同期が取られている。

Description

表示装置
 本発明は、表示装置に関し、特に、シースルー表示が可能な表示パネルを備える表示装置に関する。
 近年、インフォメーションディスプレイ用やデジタルサイネイジ用の表示装置として、シースルーディスプレイが注目を集めている。シースルーディスプレイでは、背景(表示パネルの背面側)が透けて見えるので、表示パネルに表示される情報を背景に重ね合せて表示することが可能である。これにより、従来の表示装置では実現できなかったような斬新な表示を実現することもできる。そのため、シースルーディスプレイは、訴求効果およびアイキャッチ効果に優れる。また、シースルーディスプレイを、ショーケースやショーウィンドウに用いることも提案されている。
 シースルーディスプレイとして液晶表示装置を用いる場合、その光利用効率が低いことがネックとなる。液晶表示装置の光利用効率が低いのは、一般的な液晶表示装置に設けられる、カラーフィルタや偏光板に起因している。カラーフィルタおよび偏光板は、特定の波長域の光や、特定の偏光方向の光を吸収する。
 そこで、フィールドシーケンシャル方式の液晶表示装置を用いることが考えられる。フィールドシーケンシャル方式では、照明素子から液晶表示パネルに照射される光の色が時分割で切り替えられることによってカラー表示が行われる。そのため、カラーフィルタが不要となり、光利用効率が向上する。ただし、フィールドシーケンシャル方式では、液晶表示装置に高速応答性が要求される。
 特許文献1および2には、液晶層に縦電界および横電界を切り替えて生成し得る電極構造を設けることによって応答特性が向上した液晶表示装置が開示されている。特許文献1および2に開示されている液晶表示装置では、黒表示状態から白表示状態への遷移(立ち上がり)、および、白表示状態から黒表示状態への遷移(立ち下がり)の一方においては、液晶層に縦電界が生成され、他方においては、液晶層に横電界(フリンジ電界)が生成される。そのため、立ち上がりおよび立ち下がりの両方において、電圧印加によるトルクが液晶分子に作用するので、優れた応答特性が得られる。
 また、特許文献3にも、立ち上がりおよび立ち下がりの両方において電界による配向規制力を液晶分子に作用させることによって高速応答性を実現させた液晶表示装置が提案されている。
特表2006-523850号公報 特開2002-365657号公報 国際公開第2013/001979号 国際公開第2011/043100号
 特許文献4には、PDLC(polymer dispersed liquid crystal:高分子分散型液晶)やPNLC(polymer network liquid crystal:ポリマーネットワーク型液晶)などの散乱型液晶を用いて構成されたシースルーディスプレイが開示されている。PDLCパネルやPNLCパネルは、印加電圧に応じて画素ごとに光散乱状態と光透過状態とを切り替えることができる。これらの表示モードでは偏光板が不要であるので、光利用効率を向上させることができる。
 また、特許文献4には、観察者側から見てパネル表示面が重なるように、複数のPDLCパネルを間隔を空けて並べて配置する構成も記載されている。この構成において、各PDLCパネルに適切な画像を表示させることによって、立体感のある表示等を行うことができる。
 しかし、本発明者の検討によれば、シースルーディスプレイとして用いられる表示パネル(以下、シースルーパネルと呼ぶことがある)の背面側に、他の表示装置や照明装置、種々の発光デバイスなどの光出射源(以下、後方光源と呼ぶことがある)を配置すると、シースルーパネルの画像が適切に表示されない場合があることがわかった。
 本発明は上記問題に鑑みてなされたものであり、その目的は、シースルーパネルとして用いられる表示パネルを備える表示装置において適切な表示を行うことである。
 本発明の実施形態による液晶表示装置は、背景を透けて見せる透明表示状態を取り得るように構成された表示パネルと、前記表示パネルに複数の色の色光を時分割で照射するパネル用光源と、前記表示パネルの背面側に配置された後方光源であって、複数の色の色光を時分割で出射する後方光源と、前記パネル用光源および前記後方光源から出射される色光の出射タイミングを制御する制御回路とを備え、前記パネル用光源と前記後方光源とは、前記制御回路によって、同じタイミングで異なる色の色光が出射されないように同期が取られている。
 ある実施形態において、前記表示パネルは、カラーフィルタを有しておらず、前記パネル用光源によってフィールドシーケンシャル駆動される。
 ある実施形態において、前記パネル用光源と、前記後方光源とは、同じタイミングで同じ色の色光を出射する。
 ある実施形態において、前記後方光源は、照明装置を含む。
 ある実施形態において、前記後方光源は、後方表示パネルを含む。
 ある実施形態において、前記表示パネルが一側面に取り付けられたケースをさらに備え、前記パネル用光源は、前記ケースの前記一側面とは異なる側面における内壁に設けられており、前記後方光源は前記ケースの内側に配置されている。
 ある実施形態において、前記ケースの内壁の反射率は、標準反射率である18%よりも大きい。
 ある実施形態において、前記後方光源から出射されて前記表示パネルに向かう色光の光量は、前記パネル用光源から出射されて前記表示パネルに向かう色光の光量よりも少ない。
 ある実施形態において、前記表示パネルのパネル面法線方向から見たときに、前記表示パネルと前記後方光源とが重なる第1領域と、前記表示パネルと前記後方光源とが重ならない第2領域とが前記表示パネルにおいて規定され、前記第1領域と前記第2領域とで同じ画像を表示する場合に、前記表示パネルは光透過率を異ならせて表示を行う。
 ある実施形態において、前記パネル用光源が前記表示パネルに対して照射する色光、および、前記後方光源が出射する色光は、赤色光、緑色光、および、青色光を含む。
 ある実施形態において、前記パネル用光源が前記表示パネルに対して照射する色光、および、前記後方光源が出射する色光は、さらに白色光を含む。
 ある実施形態において、前記後方光源が白色光を出射する期間において、前記表示パネルの画像表示領域は光を透過させない状態を取り、かつ、前記表示パネルの透明表示領域は光を透過させる状態を取る。
 ある実施形態において、上記の表示装置は、背景を透けて見せる透明表示状態を取り得るように構成された更なる表示パネルを備え、前記表示パネルのパネル面法線方向から見たときに、前記表示パネルと、前記後方光源と、前記更なる表示パネルとが少なくとも部分的に重なるように配置されている。
 ある実施形態において、前記表示パネルは、第1基板、第2基板、および、前記第1基板と前記第2基板との間に保持された液晶層を有し、前記第1基板は、第1電極と、前記第1電極とともに前記第1の液晶層に横電界を生成する第2電極とを有し、前記第2基板は、前記第1電極および前記第2電極に対向するように設けられ、前記第1電極および前記第2電極とともに前記液晶層に縦電界を生成する第3電極を有し、前記表示パネルは画素ごとに、前記液晶層に縦電界が生成された状態で黒表示が行われる黒表示状態と、前記液晶層に横電界が生成された状態で白表示が行われる白表示状態と、前記液晶層に電圧が印加されていない状態で前記表示パネルの背面側が透けて見える透明表示状態とを切り替えて呈し得る。
 ある実施形態において、前記液晶層は、TN型の液晶層である。
 本発明の実施形態の表示装置によれば、シースルーパネルの背面側において、後方光源が配置される場合にも、シースルーパネルの表示を適切に行うことができる。
本発明の実施形態1による表示装置を模式的に示す断面図である。 実施形態1の表示装置において、フィールドシーケンシャル方式での駆動を行うときの、RGB表示期間および液晶層の透過率の状態を示し、(a)は後方光源の状態、(b)はシースルーパネルの状態、(c)は後方光源からの光の影響を加味したシースルーパネルの状態を示す図である。 比較形態の表示装置における図2(a)~(c)に対応する図であり、(a)は後方光源の状態、(b)はシースルーパネルの状態、(c)は後方光源からの光の影響を加味したシースルーパネルの状態を示す図である。 (a)は、シースルーパネルの背後に設置された照明装置をフィールドシーケンシャル方式以外で駆動する場合の表示画像を示す図であり、(b)は、照明装置をフィールドシーケンシャル方式で同期させて駆動する場合の表示画像を示す図である。 本発明の実施形態に係る液晶表示パネルを模式的に示す断面図である。 本発明の実施形態に係る液晶表示パネルを模式的に示す平面図である。 本発明の実施形態に係る液晶表示パネルを模式的に示す平面図である。 (a)および(b)は、液晶表示パネルの黒表示状態における液晶分子の配向状態を示す断面図および平面図である。 (a)および(b)は、液晶表示パネルの白表示状態における液晶分子の配向状態を示す断面図および平面図である。 (a)および(b)は、液晶表示パネルの透明表示状態における液晶分子の配向状態を示す断面図および平面図である。 本発明の実施形態2による表示装置を模式的に示す断面図である。 実施形態2の表示装置において、フィールドシーケンシャル方式での駆動を行うときの、RGB表示期間および液晶層の透過率の状態を示し、(a)は後方光源の状態、(b)はシースルーパネルの状態、(c)は後方光源からの光の影響を加味したシースルーパネルの状態を示す図である。 比較形態の表示装置における図12(a)~(c)に対応する図であり、(a)は後方光源の状態、(b)はシースルーパネルの状態、(c)は後方光源からの光の影響を加味したシースルーパネルの状態を示す図である。 (a)は実施形態2の参考例の表示装置を示す斜視図であり、(b)は実施形態2の表示装置を示す斜視図である。 本発明の実施形態3による表示装置を模式的に示す断面図である。 (a)は実施形態3の表示装置におけるシースルーパネル上に表示された画像を示す平面図であり、(b)は後方光源と重ならない領域における照射光およびパネルの応答状態を示す図であり、(c)は後方光源と重なる領域における照射光およびパネルの応答状態を示す図である。 本発明の実施形態4による表示装置における後方光源からの出射光と、シースルーパネルの画像表示領域および透明表示領域における応答状態を示す図であり、(a)および(b)はそれぞれ別の形態を示す。 本発明の実施形態1の他の態様を示す側面図である。 シースルーパネルの表示と後方光源の色光出射とが同期している状態を説明するための図であり、(a)はシースルーパネルにおける各色光の表示タイミングを示し、(b)~(d)は後方光源における各色光の出射タイミングを示す。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 (実施形態1)
 図1は、実施形態1の表示装置100の構成を示す模式的な断面図である。表示装置100は、箱型のケース8と、箱型のケース8の1側面に設置されたシースルーパネル1と、ケース8の内側の天井に設置されたシースルーパネル1用の光源3(以下、パネル用光源3と呼ぶことがある)とを備えている。
 シースルーパネル1は、画像表示状態においてパネル面上に画像を表示し、かつ、透明表示状態において背景を透過させるように構成されている。シースルーパネル1が透明表示状態のとき、観察者は、シースルーパネル1越しに背景(ここでは、ケース8の内部)を視認することができる。シースルーパネル1は、画素単位で、画像表示状態と透明表示状態とを切り替えることができる。このため、パネル面内の一部の領域においてのみ背景を透過させるように動作させることもできる。なお、シースルーパネル1の詳細な構成例については後述する。
 本実施形態におけるシースルーパネル1は、パネル用光源3を用いてフィールドシーケンシャル方式で駆動される。シースルーパネル1には、例えば、赤色光表示期間(以下、R表示期間と呼ぶことがある)、緑色光表示期間(以下、G表示期間と呼ぶことがある)、および、青色光表示期間(以下、B表示期間と呼ぶことがある)が設定されている。R表示期間、G表示期間、および、B表示期間は、時間的に重複しないように設定されている。また、1つのR表示期間、1つのG表示期間および1つのB表示期間を含む少なくとも3つの表示期間が、1つのフルカラー画像を表示するための期間(1フレーム期間:例えば16.7ms)内に設定されている。このように動作するシースルーパネル1のパネル面では、1フレーム期間内に、フルカラー画像を構成する赤色成分画像、緑色成分画像、青色成分画像が時分割で連続的に表示される。
 また、パネル用光源3は、シースルーパネル1に対して、赤色光R、緑色光G、および、青色光Bを、時分割で切り替えて照射する。光源3は、シースルーパネル1のR表示期間において赤色光Rのみを照射し、G表示期間において緑色光Gのみを照射し、B表示期間において青色光Bのみを照射する。このように、シースルーパネル1における画素駆動のタイミングと、光源3における各色光の出射タイミングとは、同期が取られている必要がある。このため、表示装置100は、シースルーパネル1のR表示期間、G表示期間、B表示期間と、光源3からの赤色光R、緑色光G、青色光Bの照射タイミングとを同期させる制御回路を備えていてよい。制御回路は、例えば、シースルーパネル1に入力される垂直同期信号や水平同期信号に基づいて光源3における各色光R、G、Bの出射タイミングを制御するように構成された、公知のシーケンシャル駆動用の制御回路であってよい。
 パネル用光源3としては、例えば、光源ユニットと導光板とを有する照明装置を利用することができる。ここで、光源ユニットは、赤色光R、緑色光Gおよび青色光Bを含む複数の色光を発し得る。光源ユニットは、例えば、赤色LED、緑色LEDおよび青色LEDを含む。導光板は、光源ユニットから発せられた色光を、シースルーパネル1に導くことができる。なお、光源3(および上記の制御回路)としては、従来のフィールドシーケンシャル方式の表示装置で用いられていた種々の公知の照明素子を利用することができる。
 光源3は、シースルーパネル1に、赤色光R、緑色光G、および青色光Bを時分割で切り替えて照射する。光源3からの光をなるべく多くシースルーパネル1に入射させるために、ケース8の内側表面は、光拡散特性を有していてもよい。また、ケース8の内側表面を白色にすれば、すべての色光を効率的に反射させることができるので、赤色光R、緑色光G、および青色光Bのいずれについてもシースルーパネル1に向かう光を多くすることができる。
 なお、シースルーパネル1は、上記のようにフィールドシーケンシャル方式でカラー表示を行うので、カラーフィルタを有していない。つまり、シースルーパネル1は、カラーフィルタ方式の表示パネルのように、赤色成分を表示するためのRサブ画素、緑色成分を表示するためのGサブ画素、青色成分を表示するためのBサブ画素などの色画素を有していない。シースルーパネル1の画素は、それぞれが単独でフルカラー表示を行う画素として機能する。
 また、フィールドシーケンシャル方式では、上記のようにR表示期間、G表示期間、および、B表示期間が時間的に重複しないように設定される。このため、Rサブ画素、Gサブ画素およびBサブ画素を有し、R表示期間、G表示期間およびB表示期間が重複する(すなわち、3色を同時に表示する)一般的なカラーフィルタ方式の表示装置に比べて、画像表示のフレームレートを同じにしようとすると、画素の駆動周波数を例えば3倍にする必要がある。
 本実施形態の表示装置100において、ケース8内には照明装置2が備えられている。なお、照明装置2は、シースルーパネル1の背後に配置された光源(シースルーパネル1に届く光を出射し得る光源)と見なすことができるので、これを後方光源と呼ぶことがある。
 照明装置2は、例えば、ケース8内に置かれた商品を照らすためのライトであってよい。あるいは、照明装置2そのものが商品であってもよい。ただし、これらに限られず、照明装置2は種々の形態を有していてよい。例えば、照明装置(後方光源)2は、後述するような表示装置(例えば、バックライトと液晶パネルとを備える液晶表示装置)や、カラーLEDパネル、その他種々の発光デバイスなどであってよい。
 ここで、照明装置2は、パネル用光源3と同様に、赤色光R、緑色光G、および、青色光Bを、時分割で出射することができるように構成されている。照明装置2は、例えば、赤色LEDと、青色LEDと、緑色LEDを備え、各LEDの発光タイミングを制御する制御回路によって出射光の色を制御する照明装置であってよい。
 ここで、照明装置2における各色光の出射タイミングと、パネル用光源3における各色光の出射タイミングとは同期が取られている。本明細書で、「同期が取られている」または「同期している」などという場合、典型的には、同じ期間において同じ色光が出射されることを意味する。ただし、照明装置2とパネル用光源3とにおいて、各色光が発せられる周期や期間は必ずしも同一でなくてもよい。照明装置2とパネル用光源3とは、それぞれで異なる色光が同時期に発せられることはないように制御されている。
 図19(a)~(d)は、シースルーパネル1における各色光の表示期間(またはパネル用光源3における各色光の出射期間)と、照明装置(後方光源)2における各色光の出射期間とが同期している種々の形態を示す。図19(a)は、シースルーパネル1における各色光(ここでは、赤色光R、緑色光G、青色光B)の表示タイミングを示し、図19(b)~(d)は、照明装置2における各色光の出射タイミングの態様を示す図である。
 図19(a)に示すように、シースルーパネル1において、所定期間T1の間、赤色光Rによる表示、緑色光Gによる表示、および、青色光Bによる表示が、この順で連続的に行われるものとする。このとき、典型的には、照明装置2における赤色光Rの出射、緑色光Gの出射、および、青色光Bの出射も、同じ所定期間T1で同じ周期で連続的に行われて同期が取られる。
 ただし、照明装置2の各色光の出射期間およびタイミングは、図19(a)に示すパネル用光源3のものと同一でなくてもよい。例えば、図19(b)に示すように、照明装置2において赤色光Rと緑色光Gとのみが出射される場合(例えば、ケース内8に置かれた商品を黄色に照らしたい場合)、赤色光Rと緑色光Gとのそれぞれの出射のタイミングが照明装置2とパネル用光源3とで揃っていればよい。
 また、図19(c)に示すように、照明装置2は、所定期間T1よりも短い所定期間T2の間だけ、赤色光Rの出射、緑色光Gの出射、および、青色光Bの出射を行ってもよい。ただし、照明装置2とパネル用光源3とで、それぞれの色光の出射タイミングは揃っており、任意の時間において異なる色がそれぞれから出射されることはない。また、図19(c)に示すように、照明装置2は、パネル用光源3に比べて、より長い周期(より低い周波数)で各色光の出射を行ってもよい。
 さらに、図19(d)に示すように、照明装置2は、シースルーパネル1における所定期間T1よりも長い所定期間T3の間、赤色光Rの出射、緑色光Gの出射、および、青色光Bの出射を行ってもよい。ただし、この場合にも、シースルーパネル1における各色光の表示期間において、照明装置2が異なる色光を出射しないように制限される。
 本実施形態の表示装置100は、上記のように、シースルーパネル1の各色光の表示タイミング、パネル用光源3の各色光の出射タイミング、および、照明装置(後方光源)2の各色光の出射タイミングを同期させるように制御する制御回路を備えている。この制御回路としては、表示パネルをシーケンシャル駆動するための公知の種々の制御回路を利用することができる。制御回路は、例えば、シースルーパネル1の表示と同期してパネル用光源3に各色光を出射させるためのタイミング信号を生成し、生成したタイミング信号をパネル用光源3だけでなく照明装置2にも入力するように構成されていてよい。
 図2(a)は、照明装置(後方光源)2における、赤色光R、緑色光G、青色光Bの出射タイミングを示す。また、図2(b)は、シースルーパネル1における、赤色光R、緑色光G、および、青色光Bの出射タイミング(R表示期間、G表示期間、B表示期間)およびシースルーパネル1の応答状態D1(透過率)を示す。なお、グラフの横軸は時間tを表している。
 図2(a)および(b)からわかるように、本例の照明装置2は、赤色光R、緑色光G、青色光Bのすべてを出射させることで疑似的に白色光を照射している。一方、本例のシースルーパネル1では、赤色光Rを選択的に透過させることによって赤表示を行っている。
 シースルーパネル1と照明装置2との両方をフィールドシーケンシャル方式で駆動する場合、図2(a)および(b)に示すように、シースルーパネル1のR表示期間、G表示期間、および、B表示期間において、照明装置2は、これらの期間に同期して、赤色光R、緑色光G、および、青色光Bをそれぞれ出射する。このように各色の出射タイミングが同期している限りにおいて、色純度が高い表示を行うことができる。
 より具体的に説明すると、図2(c)に示すように、実際に観察されるシースルーパネル1の赤色表示(R表示期間におけるシースルーパネル1の表示と照明装置2からの出射光との合成)は、赤色光以外の色光成分が混じらない状態で実行される。これは、シースルーパネル1のR表示期間において、照明装置2も赤色光のみを出射しているからである。なお、シースルーパネル1は、応答状態D1として示すように、G表示期間およびB表示期間は光を透過させないので、照明装置2から出射された緑色光Gや青色光Bが、シースルーパネル1の表示に影響を与えることはない。したがって、シースルーパネル1において、色純度を落とすことなく、好適な表示を行うことができる。
 参考例として、図3(a)~(c)に、シースルーパネル1においてフィールドシーケンシャル方式でカラー表示を行うとともに、照明装置2’(図4参照)として白色光源を用いる場合の図2(a)~(c)に対応する図を示す。
 ここでも、照明装置2’が白色光を照射するとともに、シースルーパネル1は赤表示を行う場合を説明する。この場合、図3(a)に示すように、参考例の照明装置2’では、赤色光R、緑色光G、および、青色光Bが同時に継続的に出射される。一方で、図3(b)に示すように、シースルーパネル1では、R表示期間において赤色光を透過させるとともに、G表示期間およびB表示期間では、緑色光Gおよび青色光Bを透過させない。
 この場合において、図3(c)に示すように、シースルーパネル1の赤色表示の色は、照明装置2’が発する白色光の影響を受ける。これは、シースルーパネル1のR表示期間において、照明装置2’からは、赤色光Rだけでなく緑色光Gおよび青色光Bもシースルーパネル1に向かって出射されるからである。このため、観察されるシースルーパネル1の赤色表示(R表示期間におけるシースルーパネル1の表示と照明装置2’からの出射光との合成)は白浮きし、色純度が低下することになる。
 図4(a)および(b)は、シースルーパネル1をフィールドシーケンシャル方式で駆動するときに、照明装置2をフィールドシーケンシャル方式以外で駆動する場合(図3(a)~(c))と、同期させたフィールドシーケンシャル方式で駆動する場合(図2(a)~(c))とでの実際に観察される表示の違いを示す。図4(a)に示すように、照明装置2’をフィールドシーケンシャル方式以外で駆動する場合には、シースルーパネル1上の表示画像I1’は、照明装置2’と重なる領域において所望の色で観察者V1に視認されない。これは、照明装置2’が発する色光が、シースルーパネル1上の表示画像に混合されるからである。一方で、図4(b)に示すように照明装置2も同期が取られたフィールドシーケンシャル方式で駆動する場合、シースルーパネル1上の表示画像I1を観察者V1に対して所望の色で適切に表示することができる。
 以上、シースルーパネル1と、その背面側に配置された後方光源2とで色光の出射タイミングを同期させる形態を説明したが、シースルーパネル1は、種々の形態を有していてよい。下記には、一例として、TN(twisted nematic:捻じれネマティック)モードで動作する液晶表示パネルをシースルーパネル1として用いる場合の構成を説明する。
 図5および図6は、本実施形態によるシースルーパネル1として用いられる液晶表示パネル200および照明素子210の構成を模式的に示す断面図および平面図である。液晶表示パネル200は、マトリクス状に配列された複数の画素を有しており、図5および図6は1画素に対応する構造を示している。
 液晶表示パネル200は、互いに対向するTFT基板(背面基板)10および対向基板(前面基板)20と、TFT基板10および対向基板20の間に設けられた液晶層30とを有する。
 TFT基板10は、複数の画素のそれぞれに設けられた第1電極11と、第1電極11とともに液晶層30に横電界を生成する第2電極12とを有する。第1電極11は、絶縁層13を介して第2電極12上に位置するように設けられている。言い換えると、第2電極12は、絶縁層13を介して第1電極11下に位置するように設けられている。以下では、第1電極11および第2電極12のうち、相対的に上側に位置する第1電極11を「上層電極」と呼び、相対的に下側に位置する第2電極12を「下層電極」と呼ぶ。下層電極12、絶縁層13および上層電極11は、絶縁性を有する透明基板(例えばガラス基板)10aによって支持されている。
 上層電極11は、図5および図6に示すように、所定の方向d1に延びる複数のスリット11aと、スリット11aの延びる方向d1に平行に延びる複数の枝状部11bとを有する。なお、スリット11aおよび枝状部11bの本数は、図5および図6に示している例に限定されるものではない。また、スリット11aの幅w1に特に制限はない。スリット11aの幅w1は、典型的には、2μm以上10μm以下である。枝状部11bの幅w2にも特に制限はない。枝状部11bの幅w2は、典型的には、2μm以上10μm以下である。上層電極11は、透明な導電材料(例えばITO)から形成されている。
 下層電極12は、スリットを有していない。つまり、下層電極12は、いわゆるべた電極である。下層電極12も、透明な導電材料(例えばITO)から形成されている。
 絶縁層13の材料に特に制限はない。絶縁層13の材料としては、例えば、酸化シリコン(SiO2)や窒化シリコン(SiNx)のような無機材料や感光性樹脂のような有機材料を用いることができる。
 対向基板20は、上層電極11および下層電極12に対向するように設けられた第3電極(以下では「対向電極」と呼ぶ)21を有する。対向電極21は、絶縁性を有する透明基板(例えばガラス基板)20aによって支持されている。
 対向電極21は、上層電極11および下層電極12とともに液晶層30に縦電界を生成する。対向電極21は、透明な導電材料(例えばITO)から形成されている。
 液晶層30は、正の誘電異方性を有する液晶分子31を含む。つまり、液晶層30は、ポジ型の液晶材料から形成されている。なお、図5および図6に示されている液晶分子31の配向方向は、液晶層30に電圧が印加されていない状態における配向方向である。
 液晶表示パネル200は、液晶層30を介して互いに対向するように設けられた一対の水平配向膜14および24をさらに有する。一対の水平配向膜14および24の一方(以下では「第1水平配向膜」と呼ぶこともある)14は、背面基板10の液晶層30側の表面に形成されている。また、一対の水平配向膜14および24の他方(以下では「第2水平配向膜」と呼ぶこともある)24は、前面基板20の液晶層30側の表面に形成されている。
 第1水平配向膜14および第2水平配向膜24のそれぞれには、配向処理が施されており、液晶層30の液晶分子31を所定の方向(「プレチルト方向」と呼ばれる)に配向させる配向規制力を有する。配向処理としては、例えば、ラビング処理や光配向処理が行われる。第1水平配向膜14および第2水平配向膜24は、液晶層30に電圧が印加されていない状態(電界が生成されていない状態)において、液晶分子31がツイスト配向をとるように配向規制力を付与している。第1水平配向膜14の配向規制方向と第2水平配向膜24の配向規制方向とは、パネル面法線方向から見たときに90°異なっている。
 より具体的には、第1水平配向膜14および第2水平配向膜24のそれぞれによって規定されるプレチルト方向は、上層電極11のスリット11aの延びる方向d1に対して略45°の角をなしている。また、第2水平配向膜24によって規定されるプレチルト方向は、第1水平配向膜14によって規定されるプレチルト方向に対して90°の角をなしている。従って、液晶層30に電圧が印加されていない状態において、液晶分子31は、90°ツイスト配向をとる。
 また、液晶表示パネル200は、液晶層30を介して互いに対向するように設けられた一対の偏光板15および25をさらに有する。一対の偏光板15および25の一方(以下では「第1偏光板」とも呼ぶ)15の透過軸15aと、他方(以下では「第2偏光板」とも呼ぶ)25の透過軸25aとは、図7に示すように、略直交している。つまり、第1偏光板15および第2偏光板25は、クロスニコルに配置されている。
 第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aは、第1水平配向膜14および第2水平配向膜24のそれぞれによって規定されるプレチルト方向に対して略平行かまたは略直交する。従って、第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aは、上層電極11のスリット11aの延びる方向d1に対して略45°の角をなす。
 照明素子(「バックライト」と呼ばれることもある)210は、液晶表示パネル200の背面側に配置されている。照明素子210は、液晶表示パネル200に、赤色光R、緑色光Gおよび青色光Bを含む複数の色光を切り替えて照射することができる。なお、図1に示した表示装置100では、ケース8の天井に配置された光源3をフィールドシーケンシャル駆動用の光源として用いていた。これに対し、本実施形態では、光源3に代えて液晶表示パネル200の背後に設置された光透過型の照明素子210を用いており、観察者は液晶表示パネル200および照明素子210越しに背景を観察し得る。
 照明素子210としては、例えば、図6に示されているような、エッジライト方式のバックライトを用いることができる。エッジライト方式のバックライト210は、光源ユニット210aと、導光板210bとを有する。光源ユニット210aは、赤色光R、緑色光Gおよび青色光Bを含む複数の色光を発し得る。光源ユニット210aは、例えば、赤色LED、緑色LEDおよび青色LEDを含む。導光板210bは、光源ユニット210aから発せられた色光を、液晶表示パネル200に導く。
 このように構成された液晶表示パネル200および照明素子210は、フィールドシーケンシャル方式でカラー表示を行う。そのため、液晶表示パネル200は、カラーフィルタを有していない。フィールドシーケンシャル方式において、各画素には、R表示期間、G表示期間、および、B表示期間が時間的に重ならないように設けられる。
 液晶表示パネル200において、上層電極11と下層電極12との間に所定の電圧が印加されると(つまり所定の電位差が与えられると)、液晶層30に横電界(フリンジ電界)が生成される。「横電界」は、基板面に略平行な成分を含む電界である。上層電極11および下層電極12によって生成される横電界の向きは、上層電極11のスリット11aの延びる方向d1に対して略直交する。
 これに対し、対向電極21と、上層電極11および下層電極12との間に所定の電圧が印加されると(つまり所定の電位差が与えられると)、縦電界が生成される。「縦電界」は、その向きが基板面法線方向に略平行な電界である。
 液晶表示パネル200は、横電界および縦電界の強さを画素ごとに制御し得る構成を有している。典型的には、液晶表示装置は、上層電極11および下層電極12のそれぞれについて、画素ごとに異なる電圧を供給し得る構成を有する。具体的には、上層電極11および下層電極12の両方が画素ごとに分離して形成されており、各画素に、上層電極11に電気的に接続されたスイッチング素子(例えば薄膜トランジスタ;不図示)と、下層電極12に電気的に接続されたスイッチング素子(例えば薄膜トランジスタ;不図示)とが設けられている。上層電極11および下層電極12には、対応するスイッチング素子を介してそれぞれ所定の電圧が供給される。また、対向電極21は、すべての画素にわたって連続した単一の導電膜として形成されている。したがって、対向電極21には、すべての画素において共通の電位が与えられる。
 図7に、背面基板10における具体的な配線構造の一例を示す。図7に示す構成では、各画素には、上層電極11に対応する第1TFT16Aと、下層電極12に対応する第2TFT16Bとが設けられている。
 第1TFT16Aおよび第2TFT16Bのそれぞれのゲート電極16gは、ゲートバスライン(走査配線)17に電気的に接続されている。ここでは、ゲートバスライン17の、第1TFT16Aおよび第2TFT16Bのチャネル領域に重なる部分がゲート電極16gとして機能する。第1TFT16Aおよび第2TFT16Bのそれぞれのソース電極16sは、ソースバスライン(信号配線)18に電気的に接続されている。ここでは、ソースバスライン18から分岐した部分がソース電極16sとして機能する。第1TFT16Aのドレイン電極16dは、上層電極11に電気的に接続されている。これに対し、第2TFT16Bのドレイン電極16dは、下層電極12に電気的に接続されている。なお、背面基板10の配線構造は、図7に例示したものに限定されない。
 本実施形態の液晶表示パネル200において、複数の画素のそれぞれは、液晶層30に縦電界が生成された状態で黒表示が行われる「黒表示状態」と、液晶層30に横電界が生成された状態で白表示が行われる「白表示状態」と、液晶層30に電圧が印加されていない状態で液晶表示パネル200の背面側(つまり背景)が透けて見える「透明表示状態」とを切り替えて呈し得る。
 以下、図8、図9および図10を参照しながら、黒表示状態、白表示状態および透明表示状態をより詳しく説明する。
 図8(a)および(b)は、黒表示状態における液晶分子31の配向状態を示している。黒表示状態では、対向電極21と、上層電極11および下層電極12との間に所定の電圧が印加されており(例えば対向電極21に0Vの電位が与えられ、上層電極11および下層電極12に7.5Vの電位が与えられる)、液晶層30には縦電界が生成されている。図8(a)には、このときの電気力線が破線で模式的に示されている。
 この黒表示状態においては、液晶層30の液晶分子31は、図8(a)および(b)に示すように、基板面(背面基板10および前面基板20の表面)に略垂直に(つまり液晶層30の層法線方向に略平行に)配向する。なお、第1水平配向膜14および第2水平配向膜24のごく近傍の液晶分子31は、第1水平配向膜14および第2水平配向膜24の配向規制力の影響を強く受けるので、基板面に略平行に配向したままであるが、これらの液晶分子31は、第1偏光板15の透過軸15aに対して略平行かまたは略直交しているので、第1偏光板15を通過して液晶層30に入射した光に対してほとんど位相差を与えず、コントラスト比をほとんど低下させない。
 図9(a)および(b)は、白表示状態における液晶分子31の配向状態を示している。白表示状態では、上層電極11と下層電極12との間に所定の電圧が印加されており(例えば上層電極11および対向電極21に0Vの電位が与えられ、下層電極12に7.5Vの電位が与えられる)、液晶層30には横電界(フリンジ電界)が生成されている。図9(a)には、このときの電気力線が破線で模式的に示されている。
 この白表示状態においては、液晶層30の液晶分子31は、図9(a)および(b)に示すように、基板面に略平行に(つまり液晶層30の層法線方向に略垂直に)配向する。より具体的には、第1水平配向膜14近傍の液晶分子31と、第2水平配向膜24近傍の液晶分子31とが略90°の角をなすように配向し、その結果、液晶層30の厚さ方向における中央付近の液晶分子31は、上層電極11のスリット11aの延びる方向d1に略平行に配向する。そのため、バルク液晶の平均的な配向方向は、スリット11aの延びる方向d1に略平行となる(つまり第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aに対して略45°の角をなす)。
 図10(a)および(b)は、透明表示状態における液晶分子31の配向状態を示している。透明表示状態では、液晶層30には電圧が印加されておらず(例えば上層電極11、下層電極12および対向電極21にいずれも0Vの電位が与えられる)、液晶層30には縦電界および横電界のいずれも生成されていない。
 この透明表示状態においては、液晶層30の液晶分子31は、図10(a)および(b)に示すように、ツイスト配向をとる。つまり、液晶分子31は、基板面に略平行に(つまり液晶層30の層法線方向に略垂直に)配向する。第1水平配向膜14近傍の液晶分子31と、第2水平配向膜24近傍の液晶分子31とが略90°の角をなすように配向し、その結果、液晶層30の厚さ方向における中央付近の液晶分子31は、上層電極11のスリット11aの延びる方向d1に略平行に配向する。そのため、バルク液晶の液晶分子31の平均的な配向方向は、スリット11aの延びる方向d1に略平行となる(つまり第1偏光板15および第2偏光板25のそれぞれの透過軸15aおよび25aに対して略45°の角をなす)。液晶表示パネル200の各画素は、この透明表示状態において、もっとも(つまり黒表示状態および白表示状態のいずれにおいてよりも)光透過率が高くなる。
 上述したように、本実施形態における液晶表示パネル200においては、黒表示状態に液晶層30に縦電界が生成され、白表示状態に液晶層30に横電界が生成されるので、立ち下がり(白表示状態から黒表示状態への遷移)および立ち上がり(黒表示状態から白表示状態への遷移)の両方において、電圧印加によるトルクを液晶分子31に作用させることができる。そのため、優れた応答特性が得られる。
 また、本実施形態における液晶表示パネル200では、各画素は、黒表示状態および白表示状態だけでなく、液晶層30に電圧が印加されていない状態である透明表示状態も呈し得る。この透明表示状態で背景表示を行うことにより、シースルー表示の品位を向上させることができる。上述したように、本実施形態における液晶表示パネル200は、応答特性および表示品位の両方に優れているので、シースルーディスプレイとして好適に用いられる。
 なお、液晶表示パネル200の複数の画素のそれぞれは、最低階調に対応した輝度を示す黒表示状態、最高階調に対応した輝度を示す白表示状態およびシースルー表示を行う透明表示状態に加えて、中間調に対応した輝度を示す「中間調表示状態」も呈し得る。中間調表示状態においては、液晶層30に生成される横電界(フリンジ電界)の強さを調節する(例えば対向電極21に0V、下層電極12に7.5Vの電位が与えられるとともに、上層電極11に0Vを超え7.5V未満の電位が与えられる)ことにより、所望の透過率を実現することができる。なお、上層電極11および下層電極12に与えられる電位の関係は、勿論ここで例示したものに限定されない。例えば、上層電極11に与える電位を固定し、下層電極12に与える電位を可変とすることによって、中間調表示を実現してもよい。
 また、本実施形態では、透明表示状態において、液晶層30の液晶分子31は、ツイスト配向をとる。このことにより、いっそう鮮明な(クリアな)透明表示を実現することができる。ツイスト配向では、表示面に平行な面内で液晶分子31が同じ方向を向いているので、面内での屈折率差に起因する回折や、液晶の表示モードに起因する暗線による回折が発生しないからである。
 液晶表示パネル200において表示される情報と背景とを重ねあわせた表示を行う場合、表示領域のうち情報を表示したい部分の画素は、黒表示状態、白表示状態または中間調表示状態を呈し、それ以外の部分の画素は透明表示状態を呈する。これらの表示状態の切り替えは、例えば、以下のようにして行うことができる。
 一般的な液晶表示装置用の駆動回路は、8ビットのドライバICを備えており、256階調(0~255階調)分の出力電圧を発生させる。一般的な液晶表示装置では、0階調が黒表示状態、1~254階調が中間調表示状態、255階調が白表示状態に割り当てられる。
 本実施形態の液晶表示パネル200では、例えば、0階調を透明表示状態、1階調を黒表示状態、2~254階調を中間調表示状態、255階調を白表示状態に割り当てることにより、黒表示状態、中間調表示状態、白表示状態および透明表示状態の切り替えを実現することができる。なお、透明表示状態を必ずしも0階調に割り当てる必要はなく、どの階調を透明表示状態に割り当ててもよい。また、例示した256階調表示以外の場合も同様に、特定の階調を透明表示状態に割り当てればよい。
 上述したように、本実施形態の液晶表示パネル200では、各画素は、黒表示状態、白表示状態および透明表示状態を切り替えて呈し得る。従来のシースルーディスプレイでは、その種類(液晶表示装置、PDLCディスプレイ、有機ELディスプレイ等)を問わず、黒表示状態および白表示状態のいずれかでシースルー表示を行うことになる(つまり黒表示状態または白表示状態用の階調が、シースルー表示に割り当てられることになる)ので、黒表示状態および白表示状態のいずれとも印加電圧が異なった状態でシースルー表示を行うことはできない。これに対し、本実施形態の液晶表示パネル200では、各画素が、黒表示状態および白表示状態に加え、黒表示状態および白表示状態のいずれとも印加電圧の異なる透明表示状態を呈し得る。特に、液晶層に電圧が印加されていない状態で透明表示状態を実現しているので、透明表示状態において画素内で屈折率の分布が生じることが防止される。これにより、屈折率分布に起因する光の散乱を防ぐことができ、シースルーディスプレイを介して背景を観察する観察者に背景が二重に視認されてしまうことが防止される。
 以上、実施形態1の表示装置を説明したが、シースルーパネル1としては、種々の表示パネルを利用することができる。例えば、シースルーパネル1の電極構造は、図5および図6に示した形態に限られず、TFT基板10において、上層電極11だけでなく下層電極12もスリットを有していてよい。下層電極12がスリットを有していることにより、さらなる応答特性および光透過率の向上を図ることができる。また、上層電極11は、一対の櫛歯状電極が噛み合うようにして形成されていてもよい。この一対の櫛歯状電極によって横電界を生成することができる。
 また、上記のTNモードで動作する液晶表示パネルに限られず、ホモジニアス配向する液晶層を有する液晶表示パネルを用いることもできる。より具体的には、図5および図6に示した液晶表示パネル200において、水平配向膜14、24のそれぞれによって規定されるプレチルト方向が上層電極11のスリット11aの延びる方向d1に略直交するように、一方の水平配向膜14によって規定されるプレチルト方向と他方の水平配向膜24によって規定されるプレチルト方向とが互いに平行または反平行に設定される。この場合にも、偏光板15、25は、クロスニコルに配置され、偏光板15、25の透過軸15a、25aは、水平配向膜14、24によって規定されるプレチルト方向に対して略45°の角をなすように設定される。
 この構成において、液晶層30に縦電界を生成し、液晶分子31を基板面に略垂直に配向させることで黒表示を行うことができる。また、液晶層30に横電界(フリンジ電界)を生成し、液晶分子31を基板面に略平行かつ上層電極11のスリット11aの延びる方向d1に略直交するように配向させる(すなわち、横電界を用いて偏光板15、25の透過軸15a、25aに対して略45°の角をなすように液晶分子31を配向させる)ことによって白表示を行うことができる。また、液晶層30に電圧を印加せず、液晶分子31がホモジニアス配向をとった状態(偏光板15、25の透過軸15a、25aに対して液晶分子31の長軸方向が略45°の角をなすように配向した状態)において、光透過率がもっとも高くなる透明表示状態を実現することができる。
 また、上記以外にも、シースルーパネル1として、PDLCやPNLCなどの散乱型液晶から構成される液晶表示パネルを用い、これをフィールドシーケンシャル方式で駆動してもよい。また、シースルーパネル1として、ベンド配向を利用するOCB(Optically Compensated Birefringence)モードの液晶表示パネルを用い、これをフィールドシーケンシャル方式で駆動してもよい。
 ただし、いずれの場合にも、シースルーパネル1として用いられる表示パネルはフィールドシーケンシャル方式で駆動される。このとき、シースルーパネル1の色光の表示タイミングと、後方光源の色光の出射タイミングとを同期させることによって、シースルーパネル1の表示を色再現度高く好適に行うことができる。
(実施形態2)
 以下、実施形態2の表示装置102として、実施形態1の表示装置100が備える照明装置2の代わりに、後方パネル2Aを、シースルーパネル1の後方に配置する形態を説明する。なお、本実施形態の表示装置102において、実施形態1の表示装置100と同様の構成要素については、同じ参照符号を付すとともに詳細な説明を省略する場合がある。
 図11に示すように、本実施形態の表示装置102において、シースルーパネル1は、箱型のケース8の側面に設置されている。また、パネル用光源3は、ケース8の内側の例えば天井に設置されている。光源3は、シースルーパネル1に、赤色光R、緑色光G、および青色光Bを時分割で切り替えて照射することができる。本実施形態においても、シースルーパネル1は、光源3を用いてフィールドシーケンシャル方式で駆動される。
 また、ケース8内において、シースルーパネル1の背面側には、後方パネル2Aが設置されている。シースルーパネル1と後方パネル2Aとは、典型的には正面側から見て重なるように配置されている。この構成において、後方パネル2Aが表示する画像は、シースルーパネル1を介して観察されることになる。シースルーパネル1と後方パネル2Aとは、典型的には、パネル面が互いに平行になるように、間隔を空けて配置されている。
 本実施形態では、後方パネル2Aもまた、フィールドシーケンシャル方式で駆動される。また、実施形態1と同様に、後方パネル2Aからは、シースルーパネル1に同期して、赤色光R、緑色光G、および、青色光Bが時分割で出射される。
 後方パネル2Aの背面側には、後方パネル2Aをフィールドシーケンシャル方式で駆動するための光源(図示せず)が別途設けられている。後方パネル2Aのための光源と、シースルーパネル1のための光源3とは、異なる色光が同時に発せられることがないように両者で同期が取られる。
 なお、図19(a)~(d)に示したように、両パネルに設けられた光源のそれぞれで各色光を発する周期や期間は必ずしも同一でなくてもよいが、少なくとも一方の光源と他方の光源とで異なる色光が同時に発せられることがないように同期が取られる。なお、本明細書では、フィールドシーケンシャル方式で駆動するための光源を備えた表示パネル自体を、後方光源と称することがある。
 図12(a)は、図11に示した後方パネル2Aが有する光源の、赤色光R、緑色光G、および、青色光Bの照射タイミング(つまり、後方パネル2AにおけるR表示期間、G表示期間、および、B表示期間)および後方パネル2Aの応答状態D2(透過率)を示す。また、図12(b)は、シースルーパネル1が有する光源3の、赤色光R、緑色光G、および、青色光Bの照射タイミング(つまり、シースルーパネル1におけるR表示期間、G表示期間、および、B表示期間)およびシースルーパネル1の応答状態D1(透過率)を示す。なお、グラフの横軸は時間tを表している。
 図12(a)および(b)からわかるように、本例では、後方パネル2Aにおいて、赤色光R、緑色光G、青色光Bのすべてを透過させることによる白表示を行い、かつ、シースルーパネル1において、赤色光Rを選択的に透過させる赤表示を行う場合を説明する。
 シースルーパネル1と後方パネル2Aとの両方をフィールドシーケンシャル方式で駆動する場合、図12(a)および(b)に示すように、後方パネル2Aとシースルーパネル1とで、R表示期間、G表示期間、および、B表示期間を同期させることができる。このように各色による表示期間が同期している限りにおいて、例えば、後方パネル2Aで白表示を行い、シースルーパネル1で赤表示を行うというように、双方のパネルで異なる表示を行うときにも、色純度が高い表示を行うことができる。
 より具体的に説明すると、図12(a)に示すように、後方パネル2Aでは、白表示を行うために、R表示期間、G表示期間、B表示期間の全体にわたって各色の光を透過させる。ただし、シースルーパネル1のR表示期間において、同期が取られている後方パネル2Aは、赤色光Rによる表示を行っている。その結果、図12(c)に示すように、実際に観察されるシースルーパネル1の表示(シースルーパネル1の表示と後方パネル2Aの表示との合成表示)は、赤色光以外の色成分が混じらない状態で実行される。なお、シースルーパネル1は、G表示期間およびB表示期間において光を透過させないので、後方パネル2Aから出射された緑色光Gや青色光Bが、シースルーパネル1の表示に影響を与えることはない。したがって、シースルーパネル1において、色純度を落とすことなく、好適な表示を行うことができる。
 参考例として、図13(a)~(c)に、シースルーパネル1においてフィールドシーケンシャル方式でカラー表示を行うとともに、後方パネル2A’(図14(a)参照)において白色光源およびR、G、Bのカラーフィルタを用いてカラー表示を行う場合の図12(a)~(c)に対応する図を示す。
 ここでも、後方パネル2A’は白表示を行い、シースルーパネル1は赤色表示を行う場合を説明する。この場合、図13(a)に示すように、参考例の後方パネル2A’では、白表示を行うために、Rサブ画素、Gサブ画素、Bサブ画素から、赤色光R、緑色光G、青色光Bが同時に継続的に出射される。一方で、図13(b)に示すように、シースルーパネル1では、R表示期間において赤色光Rを透過させるとともに、G表示期間およびB表示期間では、緑色光Gおよび青色光Bを透過させない。
 このとき、図13(c)に示すように、シースルーパネル1の赤色表示の色は、後方パネル2A’における白表示の影響を受けて純度が低下する。これは、シースルーパネル1のR表示期間において、後方パネル2A’からは、Rサブ画素からの赤色光Rだけでなく、Gサブ画素およびBサブ画素からの緑色光Gおよび青色光Bもシースルーパネル1に向かって出射されているからである。このため、観察されるシースルーパネル1の赤色表示(R表示期間におけるシースルーパネル1の表示と後方パネル2A’の表示との合成)は白浮きし、色純度が低下することになる。
 なお、後方パネル2Aが、カラーフィルタを用いてRサブ画素、Gサブ画素、および、Bサブ画素を有している場合であっても、時分割で異なる色光を発するように後方パネル2Aの動作を制御することで、シースルーパネル1の表示と同期させることができる。例えば、上記の後方パネル2Aにおいて、表示画像の赤色成分のみを表示するためにRサブ画素だけを駆動する期間、緑色成分のみを表示するためにGサブ画素だけを駆動する期間、および、青色成分のみを表示するためにBサブ画素だけを駆動する期間を、シースルーパネルの各色光表示期間に同期させて時分割で設ければよい。
 また、後方パネル2Aは、有機ELパネルなどの自発光型の表示パネルであってもよく、この場合にも、シースルーパネル1の表示に同期させて後方パネル2Aの各色に対応する発光素子を時分割で発光させることにより、シースルーパネル1の表示を色純度を落とさず好適に行うことができる。
 図14(a)および(b)は、シースルーパネル1をフィールドシーケンシャル方式で駆動するときに、後方パネル2A’をカラーフィルタ方式で駆動する場合(図13(a)~(c))と、同期させたフィールドシーケンシャル方式で駆動する場合(図12(a)~(c))とでの実際に観察される表示の違いを示す。図14(a)に示すように、後方パネル2A’をカラーフィルタ方式で駆動する場合、シースルーパネル1上の表示画像は、後方パネル2A’と重なる領域R1において所望の色で観察者V1に視認されない。これは、後方パネル2A’の表示画像の色が、シースルーパネル1上の表示画像の色に混合されるからである。一方で、図14(b)に示すように、後方パネル2Aも同期が取られたフィールドシーケンシャル方式で駆動する場合、後方パネル2Aの表示画像にかかわらず、シースルーパネル1上の表示画像I1を観察者V1に対して所望の色で適切に表示することができる。
 以上、シースルーパネル1と、その背面側に配置された後方光源としての後方パネル2Aとで色光の出射タイミングを同期させる形態を説明したが、シースルーパネル1および後方パネル2Aは、種々の形態を有していてよい。例えば、シースルーパネル1および後方パネル2Aの両方が上記の図5~図10を用いて説明したTNモードで動作する液晶表示パネルであってもよい。
 なお、シースルーパネル1および後方パネル2AとしてTN型やVA(垂直配向)型などの液晶表示パネルを用いる場合、それぞれのパネルにおいて表示モードに応じて前側偏光板と背面側偏光板とが設けられる場合がある。例えば、図5~図10に示したTNモードの液晶パネルでは、液晶層を挟んでクロスニコルに配置された一対の偏光板が設けられる。この場合、シースルーパネル1の背面側偏光板の偏光軸(透過軸または吸収軸)と、その背面側に配置される後方パネル2Aの前面側偏光板の偏光軸(透過軸または吸収軸)とがパラレルニコルな関係になるように、各偏光板を配置することが好ましい。これによって、後方パネル2Aから出射された偏光がシースルーパネル1の背面側偏光板で吸収されることがなく、これにより、後方パネル2Aの表示をシースルーパネル1越しに適切に行うことができる。
 また、本実施形態の表示装置は、上記のようにケース8にシースルーパネル1および後方パネル2Aが取り付けられた形態に限られず、種々の形態を有していてよい。例えば、ケース8に収容されることなく、シースルーパネル1と後方パネル2Aとが観察者側から見て少なくとも部分的に重なるように配置されるとともに、シースルーパネル1の背面側にシースルーパネル用光源が設けられ、後方パネル2Aの背面側に後方パネル2A用の光源が設けられていてもよい。また、シースルーパネル1と後方パネル2Aとを1枚ずつ備える形態に限られず、より多数の表示パネルが用いられてもよい。
 図18は、後方パネル2Aの前方に、第1シースルーパネル1Aおよび第2シースルーパネル1Bが配置された形態を示す。第1シースルーパネル1A、第2シースルーパネル1Bおよび後方パネル2Aは、観察者V1から見たときに、少なくとも部分的に重なるように配置されている。第1シースルーパネル1A、第2シースルーパネル1B、および後方パネル2Aは、いずれも、透過型の液晶表示パネルであり、例えば、上記のTNモードの液晶表示パネルであってよい。
 このように3枚以上の表示パネルを用いる場合においても、隣接する2つの表示パネルにおいて、対向する2つの偏光板の透過軸が平行になるようにパラレルニコルに配置されている。すなわち、図18に示す例では、後方パネル2Aの前面側偏光板の透過軸(または吸収軸)A5と、後方パネル2Aの前方に配置される第2シースルーパネル1Bの背面側偏光板の透過軸(または吸収軸)A4とが平行に配置されている。また、第2シースルーパネル1Bの前面側偏光板の透過軸(または吸収軸)A3と、第2シースルーパネル1Bの前方に配置される第1シースルーパネル1Aの背面側偏光板の透過軸(または吸収軸)A2とが平行に配置されている。
 また、第1シースルーパネル1A、第2シースルーパネル1B、および後方パネル2AのいずれもがTNモードの液晶表示パネルである場合、ツイスト配向のねじれの向きを、隣接する液晶表示パネルで逆にしてもよい。例えば、後方パネル2Aおよび第1シースルーパネル1Aの液晶層では左巻きのカイラル剤を用いて左回りツイスト配向を実現し、第2シースルーパネル1Bの液晶層では右巻きのカイラル剤を用いて右回りツイスト配向を実現してもよい。また、後方パネル2Aおよび第1シースルーパネル1Aの液晶層には右巻きのカイラル剤を用い、第2シースルーパネル1Bの液晶層には左巻きのカイラル剤を用いてもよい。このようにすれば、視野角特性が良好な方向をすべてのパネルで揃えることができるので、特定方向の視野角特性を改善することができる。
 また、このように複数枚(特に3枚以上)の液晶表示パネルを重ねて配置する場合、各液晶表示パネルの透過率が高いことが好ましい。このためには、上記に説明したように、各液晶表示パネルにカラーフィルタを設けることなく、フィールドシーケンシャル方式でカラー表示を行うことが好適である。これにより、複数の液晶表示パネルを用いても、透過率が良好な表示品位の高い表示を行うことができる。したがって、例えば、より立体的な映像を観察者に提供するなど、今までにないような臨場感のある映像を高品位に提供し得る。
 このように複数の表示パネルが重なるように配置される場合において、シースルーパネル1A、1Bの色光の表示タイミングと、後方パネル2Aの色光の出射タイミングとを同期させることによって、シースルーパネル1A、1Bの表示を色再現度高く好適に行うことができる。
(実施形態3)
 図15は、実施形態3の表示装置103として、図1に示した実施形態1の表示装置100において、照明装置2や光源3からの出射光の強度を調整する形態を説明するための図である。
 図15に示すように、パネル用光源3から出射された光は、さまざまな経路を通ってシースルーパネル1に到達する。その中には、経路Bとして示すように、光源3から出射した後、ケース8の内壁で反射して、シースルーパネル1に向かう光もある。このため、ケース8の内壁を白色にし、光利用効率を向上させることが好ましい。また、シースルーパネル1を通過して外側に出射する光には、照明装置2から出射された光も含まれる。
 シースルーパネル1から出射される光を大別すると、以下に示す4つの経路A~Dを通る光に分けることができる。
  経路A:光源3から出射され、シースルーパネル1に直接向かう光
  経路B:光源3から出射され、ケース8の内壁で反射した後、シースルーパネル1に向かう光
  経路C:照明装置2から出射され、シースルーパネル1に直接向かう光
  経路D:光源3から出射され、照明装置2で反射した後、シースルーパネル1に向かう光
 ここで、シースルーパネル1の正面側から見たときに、後方に照明装置2が存在する領域と存在しない領域とで、明るさにばらつきがない方が表示画像としては高品位である。以下、それぞれの領域においてシースルーパネル1から出射した光の光量について説明する。
 まず、後方に照明装置2が存在せずケース8の内壁が見える領域における光量L8は、経路Aの光の光量Aと経路Bの光の光量Bとの合計として考えることができ、光量L8=光量A+光量Bと表すことができる。
 一方、後方に照明装置2が存在する領域における光量L2は、経路Aの光量Aと、経路Cの光量Cと、経路Dの光量Dとの合計として考えることができ、光量L2=光量A+光量C+光量Dと表すことができる。
 このため、上記の双方の領域で光量を同等にする場合には、光量A+光量B=光量A+光量C+光量Dが成り立つ、すなわち、光量B=光量C+光量Dが成り立つことが好ましい。
 ここで、ケース8の内壁は、反射率が高く設定されており、例えば、白く塗装することなどによって約96%の反射率に設定することができる。このため、光量Bの光量Aに対する比率は比較的高く、例えば、r1×光量A(ただし、r1<1)と表すときに、r1が比較的大きい値をとる。
 一方、照明装置2にて反射する光(経路Dの光)について述べると、照明装置2の反射率は約18%と比較的低い。なお、照明装置2の反射率は、その形態(色や素材など)に応じて様々に異なっていてよいが、ここでは照明装置2の平均的な反射率として、標準反射率の値(18%)を用いている。標準反射率は、写真撮影における被写体全体の平均的な反射率として広く一般に知られているものである。光量Dの光量Aに対する比率は比較的低く、例えば、r2×光量A(ただし、r1>r2)と表すことができる。
 したがって、一般には光量B>光量Dが成り立つ。また、反射光の光量Bは、上記のように光量Aよりは小さく、光量A>光量Bである。
 ここで、上記のパネル面内での光量を均一にするための条件式である光量B=光量C+光量D、すなわち、光量C=光量B-光量Dに上記の関係を適用すると、光量C=光量B-光量D<光量A-光量D<光量Aが導かれる。すなわち、光量C<光量Aが、パネル面内での明るさの変化を低減するために好ましい条件の一つであることがわかる。したがって、本実施形態では、光源3からシースルーパネル1に直接向かう光の光量Aが、照明装置2からシースルーパネル1に直接向かう光の光量Cよりも大きくなるように、光源3と照明装置2との輝度を適切に調節する。また、より好ましくは、照明装置2からの光の光量C=光量B-光量Dが成り立つように、光源3と照明装置2との輝度を適切に調節する。
 ここで、ケース8の内壁の反射率r1を96%と見積もり、一般的な反射率(標準反射率)r2を18%と見積もった場合、光量C=(0.96-0.18)×光量A=0.78×光量Aであることが好ましい。したがって、照明装置2の輝度を、光源3の輝度の例えば0.75~0.8倍程度に設定することが好ましいことがわかる。
 以上に説明したように、光量C<光量Aとなるようにすることがシースルーパネル1の表示の観点からは好ましいが、よりケース8内の商品を明るく照らすために、光量Cを小さくすることが困難な場合がある。また、後方光源2をシースルーパネル1に同期させてフィールドシーケンシャル駆動する場合において、色の混合(白浮)は避けられるが、背後に後方光源2が存在する領域と存在しない領域とで、正面から見たときに輝度が異なる場合が生じ得る。このため、本実施形態の他の態様においては、背後に後方光源2が存在する領域と存在しない領域とで、シースルーパネル1における透過率を調整してもよい。
 図16(a)~(c)は、シースルーパネル1における表示画像のうち、後方光源2と重なる領域の画像I2と、後方光源2と重ならない領域の画像I8とで、シースルーパネル1の階調を調整する形態を説明するための図である。
 図16(a)に示すように、シースルーパネル1に表示される画像には、後方光源2と重なる領域の画像I2と、後方光源2と重ならない領域の画像I8(すなわち、背景がケース8の内壁である画像I8)とが含まれる。このとき、画像I8を表示するための画素については、例えば画像データ通りの階調表示を行う。一方で、画像I2を表示するための画素については、後方光源2による影響を低減するために、画像データに比べて階調を低下させて表示を行う。なお、透明画像I0を表示している領域では、もっとも明るい透明表示を行い、ケース8の内部の商品を見やすくすることが好ましい。
 図16(b)は、背後に後方光源2が存在しない画像I8を表示する領域について、液晶の応答状態(透過率)D3と画素に照射される光とを示している。ここで、画素には、光源3からの赤色光Rのみが照射されている。一方、図16(c)は、背後に後方光源2が存在する画像I2を表示する領域について、液晶の応答状態(透過率)D4と画素に照射される光とを示している。ここで、画素には、光源3からの赤色光Rと、後方光源2からの赤色光Rとが照射されている。
 図16(b)および(c)からわかるように、画像I8を表示する領域では、照射される赤色光Rの強度が比較的小さく、画像I2を表示する領域では、照射される赤色光Rの強度が比較的大きい。このため、これらの領域での画像の明るさを同等にするために、画像I8を表示する領域における液晶の応答状態D3に比べて、画像I2を表示する領域における液晶の応答状態D4を低下させている。これによって、シースルーパネル1の画像として、背景に後方光源2が存在する/しないにかかわらず、同等の輝度での表示を行うことができる。このように、シースルーパネル1において階調調整を行うことによって、面内での輝度をより均一化することができ、よりきれいな見栄えとすることができる。
 なお、後方光源2の明るさが十分でない場合、ケース8の内壁で反射した光の光量Bの方が、後方光源2からの光の光量C+光量Dよりも大きくなることも考えられる。この場合、画像I8を表示する領域(背景がケース8の内壁である領域)における階調を、画像I2を表示する領域(背景が後方光源2である領域)よりも高く設定してもよい。
 (実施形態4)
 本実施形態では、図1に示した表示装置100において、シースルーパネル1の背後に配置された照明装置(後方光源)2に、透明表示状態のシースルーパネル1を通して背景をより見やすくするための、透明表示用の光照射タイミングを設ける形態を説明する。
 まず、本実施形態の表示装置の具体的な構成を説明する前に、後方光源2の役割について説明する。後方光源2には、2つの役割があり、1つはシースルーパネル1の表示の光源としての機能を果たす。また、もう1つは、ケース8の内部に置かれた商品(例えば、後方光源自体)を観察者に見せるための照明としての機能を果たす。
 ここで、商品用の照明としての機能を優先させると、シースルーパネル1の表示への影響が大きくなる可能性がある。一方で、シースルーパネル1の表示への影響を低下させようとすると、商品用の照明としての機能が低下するおそれがある。
 特に、後方光源2も、シースルーパネル1と同期させてフィールドシーケンシャル方式で駆動する場合、各色光の出射を時分割で行うため、全体の光量が低下しやすい。また、シースルーパネル1が偏光板を備えている場合、シースルーパネル1を通して出射される光の光量は元の光量の約40%以下となるので、シースルーパネル1越しだと観察者には暗く見えてしまいがちである。
 図17(a)および(b)は、後方光源2から、赤色光R、緑色光G、青色光Bに続いて白色光Wを出射させるタイミングを設ける形態を示し、図17(a)および(b)ではそれぞれ異なる形態を示している。ここで、シースルーパネル1のための光源3(例えば図1参照)も、図17(a)および(b)に示す後方光源2の色光出射タイミングと同様のタイミングで、同じ色光を出射するようにして同期が取られている。なお、白色光Wの出射は、後方光源2において別途設けられた白色光源を用いて行われてもよいし、赤色光R、緑色光G、および、青色光Bを同時に出射させることで行われてもよい。
 まず図17(a)に示す形態について説明すると、上記のように、後方光源2が、赤色光R、緑色光G、青色光Bおよび白色光Wを出射するとき、シースルーパネル1のパネル面における画像表示部分(ここでは赤色表示を行う部分)は、応答状態D1で示すように、赤色光Rが出射されているタイミングでのみ光を透過させる。これによって、シースルーパネル1では赤色の画像が表示される。
 一方、シースルーパネル1において、透明表示状態を取る部分では、応答状態D0で示すように、光を透過させる状態(例えば電圧無印加状態)が常に維持される。なお、透明表示状態を取る部分とは、例えば、シースルーパネル1において部分的に設けられた画像表示領域の外側において、シースルーパネル1越しに背景を常時視認できるように設けられた領域(透明表示領域)であってよい。
 このようにすれば、透明表示状態を取る部分において、赤色光R、緑色光G、青色光B、および、白色光Wが照射されるので、シースルーパネル1越しにも十分に明るい状態で背後の商品等を見せることができる。また、後方光源2から白色光Wが出射されるときは、シースルーパネル1の画像表示部分の応答状態D1は最小(光不透過状態)に設定されているので、白色光Wがシースルーパネル1の画像の色に影響を与えることはない。
 図17(b)は、本実施形態の別の例を説明するための図である。ここでも、後方光源2は、赤色光R、緑色光G、青色光Bおよび白色光Wを所定のタイミングで出射する。また、シースルーパネル1の画像表示部分では、応答状態D1で示すように、赤色光Rが出射されているタイミングでのみ光を透過させ、赤色の画像を表示する。一方で、シースルーパネル1における透明表示状態を取る部分では、応答状態D0で示すように、赤色光R、緑色光G、および、青色光Bが後方光源2から出射されているときは光を透過させず、白色光Wが出射されたときだけ光を透過させる。このようにしても、透明表示状態を取る部分において、シースルーパネル1越しに比較的明るく商品等をみせることができる。
 以上に説明したように、後方光源2において、白色光Wを出射させる期間を設けることによって、シースルーパネル1における表示画像の明るさに与える影響を低減しながら、後方光源2の明るさを調整しやすい。したがって、例えば、上記の実施形態3で説明したように、後方光源2では、シースルーパネル1のための光源3よりも低い輝度で赤色光R、緑色光G、青色光Bの出射を行うことで画像の明るさの均一性を補償するとともに、白色光Wの照射により、ケース8内の商品を明るく照らすことが可能になる。
 また、本実施形態では、後方光源2における色光出射や画素駆動の周波数が高い(例えば、200Hz以上)ので、白色光Wを出射する期間を設けても観察者には白色光Wの出射によるちらつきなどが感じられにくい。このため、観察者に対して違和感なくシースルーパネル1の画像やシースルーパネル1越しの背景を見せることができる。
 以上、本発明の実施形態を説明したが、種々の改変が可能である。例えば、上記には、光源3と、照明装置2(あるいは後方パネル2A)などの後方光源とが、赤色光R、緑色光G、および、青色光Bを時分割で出射する形態を説明したが、これに限られない。光源3および照明装置2は、赤色光R、緑色光G、および、青色光B以外の他の色光を時分割で出射するように構成されていてもよい。この場合にも、各色光の出射タイミングを同期させることによって、シースルーパネル1における混色を低減して高品位な表示を行うことができる。
 本発明の実施形態によると、シースルーパネルの背面側に、照明装置や表示装置などの後方光源を設けた表示装置が提供される。本発明の実施形態による表示装置は、例えば、インフォメーションディスプレイ用やデジタルサイネイジ用の表示装置、あるいは、ショーケースなどとして用いられる。
 1  シースルーパネル
 2  照明装置(後方光源)
 2A 後方パネル(後方光源)
 3  パネル用光源
 8  ケース
 10  TFT基板(背面基板)
 10a  透明基板
 11  第1電極(上層電極)
 11a  スリット
 11b  枝状部
 12  第2電極(下層電極)
 13  絶縁層
 14  第1水平配向膜
 15  第1偏光板
 15a  第1偏光板の透過軸
 16A  第1TFT
 16B  第2TFT
 16d ドレイン電極
 16g ゲート電極
 16s ソース電極
 17  ゲートバスライン
 18  ソースバスライン
 20  対向基板(前面基板)
 20a  透明基板
 21  第3電極(対向電極)
 24  第2水平配向膜
 25  第2偏光板
 25a  第2偏光板の透過軸
 30  液晶層
 31  液晶分子
 100 表示装置
 200 液晶表示パネル
 210 照明素子

Claims (15)

  1.  背景を透けて見せる透明表示状態を取り得るように構成された表示パネルと、
     前記表示パネルに複数の色の色光を時分割で照射するパネル用光源と、
     前記表示パネルの背面側に配置された後方光源であって、複数の色の色光を時分割で出射する後方光源と、
     前記パネル用光源および前記後方光源から出射される色光の出射タイミングを制御する制御回路と
     を備え、
     前記パネル用光源と前記後方光源とは、前記制御回路によって、同じタイミングで異なる色の色光が出射されないように同期が取られている、表示装置。
  2.  前記表示パネルは、カラーフィルタを有しておらず、前記パネル用光源によってフィールドシーケンシャル駆動される請求項1に記載の表示装置。
  3.  前記パネル用光源と、前記後方光源とは、同じタイミングで同じ色の色光を出射する、請求項1または2に記載の表示装置。
  4.  前記後方光源は、照明装置を含む、請求項1から3のいずれかに記載の表示装置。
  5.  前記後方光源は、後方表示パネルを含む、請求項1から3のいずれかに記載の表示装置。
  6.  前記表示パネルが一側面に取り付けられたケースをさらに備え、前記パネル用光源は、前記ケースの前記一側面とは異なる側面における内壁に設けられており、前記後方光源は前記ケースの内側に配置されている、請求項1から5のいずれかに記載の表示装置。
  7.  前記ケースの内壁の反射率は、標準反射率である18%よりも大きい、請求項6に記載の表示装置。
  8.  前記後方光源から出射されて前記表示パネルに向かう色光の光量は、前記パネル用光源から出射されて前記表示パネルに向かう色光の光量よりも少ない、請求項1から7のいずれかに記載の表示装置。
  9.  前記表示パネルのパネル面法線方向から見たときに、前記表示パネルと前記後方光源とが重なる第1領域と、前記表示パネルと前記後方光源とが重ならない第2領域とが前記表示パネルにおいて規定され、前記第1領域と前記第2領域とで同じ画像を表示する場合に、前記表示パネルは光透過率を異ならせて表示を行う、請求項1から8のいずれかに記載の表示装置。
  10.  前記パネル用光源が前記表示パネルに対して照射する色光、および、前記後方光源が出射する色光は、赤色光、緑色光、および、青色光を含む、請求項1から9のいずれかに記載の表示装置。
  11.  前記パネル用光源が前記表示パネルに対して照射する色光、および、前記後方光源が出射する色光は、さらに白色光を含む、請求項10に記載の表示装置。
  12.  前記後方光源が白色光を出射する期間において、前記表示パネルの画像表示領域は光を透過させない状態を取り、かつ、前記表示パネルの透明表示領域は光を透過させる状態を取る、請求項11に記載の表示装置。
  13.  背景を透けて見せる透明表示状態を取り得るように構成された更なる表示パネルを備え、前記表示パネルのパネル面法線方向から見たときに、前記表示パネルと、前記後方光源と、前記更なる表示パネルとが少なくとも部分的に重なるように配置されている、請求項1から12のいずれかに記載の表示装置。
  14.  前記表示パネルは、第1基板、第2基板、および、前記第1基板と前記第2基板との間に保持された液晶層を有し、
     前記第1基板は、第1電極と、前記第1電極とともに前記第1の液晶層に横電界を生成する第2電極とを有し、
     前記第2基板は、前記第1電極および前記第2電極に対向するように設けられ、前記第1電極および前記第2電極とともに前記液晶層に縦電界を生成する第3電極を有し、
     前記表示パネルは画素ごとに、
     前記液晶層に縦電界が生成された状態で黒表示が行われる黒表示状態と、
     前記液晶層に横電界が生成された状態で白表示が行われる白表示状態と、
     前記液晶層に電圧が印加されていない状態で前記表示パネルの背面側が透けて見える透明表示状態とを切り替えて呈し得る、請求項1から13のいずれかに記載の表示装置。
  15.  前記液晶層は、TN型の液晶層である、請求項14に記載の表示装置。
PCT/JP2015/066565 2014-06-13 2015-06-09 表示装置 WO2015190461A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/316,861 US10192493B2 (en) 2014-06-13 2015-06-09 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122444 2014-06-13
JP2014122444 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190461A1 true WO2015190461A1 (ja) 2015-12-17

Family

ID=54833551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066565 WO2015190461A1 (ja) 2014-06-13 2015-06-09 表示装置

Country Status (2)

Country Link
US (1) US10192493B2 (ja)
WO (1) WO2015190461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754875B2 (en) 2021-05-14 2023-09-12 Sharp Kabushiki Kaisha Liquid crystal display panel and 3D display device
US11874577B2 (en) 2021-08-27 2024-01-16 Sharp Kabushiki Kaisha See-through window display and liquid crystal display

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035578A1 (ja) * 2014-09-03 2016-03-10 シャープ株式会社 液晶表示装置
CN105741804B (zh) * 2016-04-08 2018-12-21 京东方科技集团股份有限公司 驱动基板及其驱动方法、液晶显示器
JP2018180195A (ja) * 2017-04-10 2018-11-15 株式会社ジャパンディスプレイ 表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365657A (ja) * 2001-06-07 2002-12-18 Seiko Epson Corp 液晶装置、投射型表示装置および電子機器
JP2004157492A (ja) * 2002-09-11 2004-06-03 Optrex Corp 画像表示装置
WO2009116637A1 (ja) * 2008-03-19 2009-09-24 旭硝子株式会社 被観察物からの光透過機能を有する画像表示装置
WO2014109026A1 (ja) * 2013-01-10 2014-07-17 パイオニア株式会社 表示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145583A (ja) * 1996-11-14 1998-05-29 Casio Comput Co Ltd 画像処理装置
US7995181B2 (en) 2002-08-26 2011-08-09 University Of Central Florida Research Foundation, Inc. High speed and wide viewing angle liquid crystal displays
DE102005043310B4 (de) * 2005-09-12 2007-10-04 Siemens Ag Anzeigesystem insbesondere für eine industrielle Automatisierungseinrichtung
US20090115711A1 (en) * 2005-09-14 2009-05-07 Sharp Kabushiki Kaisha Liquid crystal display device
US20100025722A1 (en) * 2006-11-14 2010-02-04 Harison Toshiba Lighting Corp. Light emitting device, its manufacturing method and its mounted substrate
US20080259099A1 (en) * 2007-04-17 2008-10-23 Seiko Epson Corporation Display device, method for driving display device, and electronic apparatus
KR101005466B1 (ko) * 2008-05-20 2011-01-05 한국과학기술원 투명한 시-스루 디스플레이 장치
JP2011039305A (ja) * 2009-08-11 2011-02-24 Sony Ericsson Mobile Communications Ab 表示装置および携帯端末
WO2011043100A1 (ja) 2009-10-09 2011-04-14 シャープ株式会社 表示パネル、表示システム、携帯端末、電子機器
JP2011100052A (ja) * 2009-11-09 2011-05-19 Sanyo Electric Co Ltd 画像表示装置
US20110267382A1 (en) * 2010-05-03 2011-11-03 Fergason Patent Properties, Llc Dual source backlight unit for use with a display, a display system and method
KR101279515B1 (ko) * 2011-05-24 2013-06-28 엘지전자 주식회사 디스플레이 모듈 및 이를 구비한 이동 단말기
WO2013001980A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶表示パネル及び液晶表示装置
JP5719439B2 (ja) 2011-06-27 2015-05-20 シャープ株式会社 液晶駆動装置及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365657A (ja) * 2001-06-07 2002-12-18 Seiko Epson Corp 液晶装置、投射型表示装置および電子機器
JP2004157492A (ja) * 2002-09-11 2004-06-03 Optrex Corp 画像表示装置
WO2009116637A1 (ja) * 2008-03-19 2009-09-24 旭硝子株式会社 被観察物からの光透過機能を有する画像表示装置
WO2014109026A1 (ja) * 2013-01-10 2014-07-17 パイオニア株式会社 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754875B2 (en) 2021-05-14 2023-09-12 Sharp Kabushiki Kaisha Liquid crystal display panel and 3D display device
US11874577B2 (en) 2021-08-27 2024-01-16 Sharp Kabushiki Kaisha See-through window display and liquid crystal display

Also Published As

Publication number Publication date
US20170103716A1 (en) 2017-04-13
US10192493B2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
KR101774678B1 (ko) 액정 표시 장치
WO2015190588A1 (ja) 液晶表示装置
WO2015190461A1 (ja) 表示装置
US20120001956A1 (en) Stereoscopic display device and display drive circuit
KR20120122049A (ko) 입체영상 표시장치와 그 구동방법
US9548013B2 (en) Image display device and drive method therefor
US20130176198A1 (en) Liquid crystal display device and display apparatus
WO2015186635A1 (ja) 液晶表示装置
US20110032343A1 (en) Liquid crystal shutter device and picture display system
JP5096848B2 (ja) 液晶表示装置
KR100840204B1 (ko) 액정표시소자 및 액정표시소자의 구동방법
US10067397B2 (en) Liquid crystal display device
WO2016175074A1 (ja) 液晶表示装置
US9236023B2 (en) Liquid crystal display device, driving method, and display apparatus
KR20110137606A (ko) 액정 표시 장치 및 그 구동 방법
KR20120069372A (ko) 멀티레이어 디스플레이 장치
KR101255713B1 (ko) 입체영상 표시장치와 그 구동방법
JP2009115963A (ja) 液晶表示装置およびその駆動方法
JP5349773B2 (ja) 液晶表示装置
JP5274052B2 (ja) 液晶表示装置
US9202436B2 (en) Display device with auxiliary capacitance line
JP2022045194A (ja) 液晶表示装置
KR101859968B1 (ko) 입체영상 표시장치와 그 구동방법
KR20120139221A (ko) 영상표시장치
WO2016175120A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15316861

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15806630

Country of ref document: EP

Kind code of ref document: A1