WO2009113278A1 - 光情報記録媒体の製造方法及び光情報記録媒体 - Google Patents

光情報記録媒体の製造方法及び光情報記録媒体 Download PDF

Info

Publication number
WO2009113278A1
WO2009113278A1 PCT/JP2009/000992 JP2009000992W WO2009113278A1 WO 2009113278 A1 WO2009113278 A1 WO 2009113278A1 JP 2009000992 W JP2009000992 W JP 2009000992W WO 2009113278 A1 WO2009113278 A1 WO 2009113278A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
curable resin
light
layer
intermediate layer
Prior art date
Application number
PCT/JP2009/000992
Other languages
English (en)
French (fr)
Inventor
久田和也
留河優子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009800003191A priority Critical patent/CN101681653B/zh
Priority to JP2009542857A priority patent/JP5350268B2/ja
Priority to US12/598,816 priority patent/US8211522B2/en
Publication of WO2009113278A1 publication Critical patent/WO2009113278A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to a method for manufacturing an optical information recording medium and an optical information recording medium, and more particularly to a method for manufacturing a multilayer optical information recording medium having a plurality of information recording layers and a plurality of intermediate layers, and a multilayer optical information recording medium.
  • optical information recording can be densified and can be recorded / reproduced in a non-contact manner, and has been applied to a wide range of applications as a method that can be realized at low cost.
  • current optical disks CDs, DVDs, Blu-ray disks and the like are widely used.
  • Blu-ray discs currently use 50 GB capacity playback / write-once / rewritable media with two information recording layers. Further, as a method capable of realizing a large capacity and a high density, research and proposal of a multi-layer Blu-ray disc having three or more information recording layers has been performed (see, for example, Patent Document 1 and Patent Document 2).
  • the basic structure of this multilayer Blu-ray disc is to protect the information recording layer by transmitting a substrate having a thickness of approximately 1.1 mm, a plurality of information recording layers separated by an intermediate layer, and recording / reproducing light. It consists of a light transmission layer.
  • a substrate having a thickness of approximately 1.1 mm, a plurality of information recording layers separated by an intermediate layer, and recording / reproducing light. It consists of a light transmission layer.
  • polycarbonate is used as a substrate
  • a UV curable resin is used as a material for an intermediate layer and a light transmission layer.
  • this multilayer optical information recording medium has a structure in which a plurality of intermediate layers and a plurality of information recording layers are stacked in order, the information recording layer is damaged by thermal deformation or water absorption deformation due to changes in the use environment. Has the problem of being easy to receive. In particular, it was found that the information recording layer sandwiched between the two intermediate layers is susceptible to damage.
  • the two intermediate layers are formed using the same UV curable resin, such damage to the information recording layer occurs.
  • the two intermediate layers are not formed at the same time.
  • the lower intermediate layer is formed by curing with UV light irradiation, and then the information recording layer is sandwiched between the UV curable resin and the intermediate layer. Is applied and then cured by UV light irradiation to form an upper intermediate layer.
  • the upper intermediate layer is formed, the lower intermediate layer is again irradiated with UV light.
  • the linear expansion coefficient of each intermediate layer to be created varies greatly depending on the irradiation amount of UV light and the type of UV light source, the same as described above, as in the case of using different UV curable resins. It was found that the above problem occurred in the phenomenon.
  • an object of the present invention is to provide a method for producing a multilayer optical information recording medium having at least a plurality of information recording layers and two intermediate layers sandwiching the information recording layers.
  • An optical information recording medium manufacturing method is an optical information recording medium manufacturing method including three information recording layers, two intermediate layers, and a light transmission layer, Providing a first UV curable resin on the first information recording layer; As the first UV light irradiation, UV light is irradiated from above the first UV curable resin at a first dose to cure the first UV curable resin to form a first intermediate layer. And steps to Providing a second information recording layer on the first intermediate layer; Providing a second UV curable resin on the second information recording layer; As the second UV light irradiation, a second intermediate layer is formed by irradiating the second UV curable resin with UV light at a second dose to cure the second UV curable resin.
  • the first UV curable resin and the second UV curable resin have substantially the same relationship between the total amount of UV light irradiation and the linear expansion coefficient, The first, second, and third UVs so that the total amount of UV light applied to the first intermediate layer is substantially the same as the total amount of UV light applied to the second intermediate layer.
  • the first irradiation amount, the second irradiation amount, and the third irradiation amount are controlled.
  • the optical information recording layer is less likely to be stressed due to a difference in elongation of the intermediate layer due to heat, and a highly reliable optical information recording medium can be obtained. .
  • the dose total P 1 and the first as the dose total P 2 to UV light is substantially identical to the second intermediate layer to UV light to the first intermediate layer,
  • the first irradiation amount UV 1 , the second irradiation amount UV 2 , and the third irradiation amount UV 3 are controlled.
  • first UV curable resin and the second UV curable resin may be the same. This makes it possible to manufacture a highly reliable optical information recording medium in which the linear expansion coefficients of intermediate layers made of the same material are substantially equal, and the information recording layer is not cracked by thermal stress.
  • a first stamper having a groove or a concavo-convex pit for the second information recording layer is opposed to and adhered to the first UV curable resin
  • the first intermediate layer may be formed by irradiating UV light from above the first UV curable resin through the first stamper to cure the first UV curable resin.
  • a second stamper having a groove or a concave / convex pit for the third information recording layer is opposed to and adhered to the second UV curable resin
  • the second intermediate layer may be formed by irradiating UV light from above the second UV curable resin through the second stamper to cure the second UV curable resin.
  • An optical information recording medium comprising: a substrate; an n information recording layer where n is a natural number of 3 or more; an n-1 intermediate layer; and a single light transmission layer.
  • the i-th UV curable resin having a natural number i between 1 and n ⁇ 1 has substantially the same relationship between the total amount of UV light irradiation and the linear expansion coefficient,
  • the total irradiation amount Ps of UV light to the s-th intermediate layer represented by the following formula is substantially the same for each intermediate layer. (N is a natural number of 3 or more, s is a natural number in the range of 1 to n ⁇ 1, and i and j are natural numbers of 2 or more)
  • the i-th stamper having a groove or an uneven pit for the (i + 1) -th information recording layer is placed on the i-th UV curable resin so as to face each other.
  • the i-th intermediate layer may be formed by irradiating UV light from above the i-th UV curable resin through the i-th stamper to cure the i-th UV curable resin. .
  • An optical information recording medium manufacturing method is an optical information recording medium manufacturing method including three information recording layers, two intermediate layers, and a light transmission layer, Providing a first UV curable resin on the first information recording layer; As the first UV light irradiation, UV light is irradiated from above the first UV curable resin at a first dose to cure the first UV curable resin to form a first intermediate layer. And steps to Providing a second information recording layer on the first intermediate layer; Providing a second UV curable resin on the second information recording layer; As the second UV light irradiation, a second intermediate layer is formed by irradiating the second UV curable resin with UV light at a second dose to cure the second UV curable resin.
  • the third UV curable resin is irradiated with a third amount of UV light from above the third UV curable resin to cure the third UV curable resin to form a light transmission layer.
  • Steps, Including The first UV curable resin and the second UV curable resin are different UV curable resins, The linear expansion coefficient of the first intermediate layer that has received the first, second, and third UV light irradiations, and the linear expansion coefficient of the second intermediate layer that has received the second and third UV light irradiations, For the first, second and third UV light irradiations so that the difference is less than 2.5 ⁇ 10 ⁇ 4 (1 / ° C.). The third irradiation amount is controlled.
  • a first stamper having a groove or a concavo-convex pit for the second information recording layer is opposed to and adhered to the first UV curable resin
  • the first intermediate layer may be formed by irradiating UV light from above the first UV curable resin through the first stamper to cure the first UV curable resin.
  • a second stamper having a groove or a concave / convex pit for the third information recording layer is opposed to and adhered to the second UV curable resin
  • the second intermediate layer may be formed by irradiating UV light from above the second UV curable resin through the second stamper to cure the second UV curable resin.
  • An optical information recording medium is an optical information recording medium having a plurality of information recording layers of three or more layers manufactured by the method for manufacturing an optical information recording medium,
  • the optical information recording medium has two intermediate layers sandwiching one information recording layer,
  • the difference in linear expansion coefficient between the two intermediate layers in contact with each other through the information recording layer is less than 2.5 ⁇ 10 ⁇ 4 (1 / ° C.).
  • the difference in linear expansion coefficient between the two intermediate layers in contact with each other via the information recording layer may be 1.9 ⁇ 10 ⁇ 4 (1 / ° C.) or less. As a result, an optical information recording medium with higher reliability against heat can be obtained.
  • the tensile elastic modulus of the two intermediate layers in contact with each other via the information recording layer may be 100 MPa or more at a temperature of 60 ° C. or less.
  • the resin layer can stably maintain the shape of the grooves or uneven pits, and the reliability of the optical information recording medium can be maintained.
  • the method for manufacturing an optical information recording medium and the optical information recording medium of the present invention in the optical information recording medium in which the intermediate layer is formed using the UV curable resin, the information recording layer sandwiched between the two intermediate layers is heated. Thus, an optical information recording medium that is not damaged by the deformation of the intermediate layer can be produced.
  • UV light irradiation amounts UV 1 , UV 2 , UV 3 , UV 4 , first intermediate layer, second intermediate layer is a graph showing the relationship between each dose total P 1 of the UV light, P 2, P 3 of the third intermediate layer.
  • FIG. 1 shows an example of an optical information recording medium according to the present invention.
  • This optical information recording medium is a so-called three-layer optical information recording medium having three information recording layers 105, 106, 107, and includes a substrate 101 and two intermediate layers 102, 103 separating each information recording layer, The light transmission layer 104 that protects the third information recording layer 107 and transmits recording / reproducing light is provided.
  • the substrate 101 has a disk shape with a thickness of approximately 1.1 mm and a diameter of approximately 120 mm, and has a central hole with a diameter of 15 mm.
  • the thickness of the first intermediate layer 102 is approximately 25 ⁇ m ( ⁇ 2 ⁇ m), and the thickness of the second intermediate layer 103 is approximately 18 ⁇ m ( ⁇ 2 ⁇ m).
  • the thickness of each of the intermediate layers 102 and 103 is preferably 30 ⁇ m or less.
  • the thickness of the light transmission layer 104 is preferably 70 ⁇ m or less.
  • a protective layer for protecting the surface of the light transmission layer 104 may be further provided.
  • the optical information recording medium according to Embodiment 1 is characterized in that the difference in linear expansion coefficient between the first intermediate layer 102 and the second intermediate layer 103 is less than 2.5 ⁇ 10 ⁇ 4 (1 / ° C.). To do. Further, in the method for manufacturing the optical information recording medium according to the first embodiment, the UV light irradiation is controlled three times in consideration of the transmittance of the second information recording layer 106 and the third information recording layer 107, The first intermediate layer 102 and the second intermediate layer 103 made of different UV curable resins are formed so that the difference in linear expansion coefficient is less than 2.5 ⁇ 10 ⁇ 4 (1 / ° C.). .
  • the substrate 101 is formed by injection molding using polycarbonate as a material.
  • the first intermediate layer 102, the second intermediate layer 103, and the light transmission layer 104 are mainly made of acrylic, but are made of different UV curable resins.
  • UV curable resins include: Among the (A) urethane (meth) acrylate and / or epoxy (meth) acrylate (B) (meth) acrylate monomer (C) photopolymerization initiator (D) additive, a UV curable resin containing a plurality of types is used. be able to. Further, the substrate 101 and the intermediate layers 102 and 103 have grooves and uneven pits necessary for recording and reproduction. As the optical information recording medium, a rewritable type and a write once type were prepared.
  • the second information recording layer of the rewritable optical information recording medium was formed by laminating a transmittance adjusting layer / reflective layer / second dielectric layer / recording layer / interface layer / first dielectric layer in order from the side closer to the substrate. It consists of a layer structure, and the total thickness of the six layers is approximately 120 nm.
  • the second information recording layer of the write-once optical information recording medium has a four-layer structure in which a reflective layer / second dielectric layer / recording layer / first dielectric layer are laminated in order from the side closer to the substrate.
  • the total thickness of the layer is approximately 50 nm.
  • Table 1 shows the results of measuring the linear expansion coefficient of the intermediate layer formed from each type of UV curable resin used.
  • optical information recording media were prepared by combining the respective UV curable resins, and Table 2 shows the presence or absence of cracks in the second information recording layer 106.
  • indicates the case without cracks, and ⁇ indicates the case with cracks. Again, the presence or absence of cracks was the same for the rewritable and write-once types.
  • the stress generated by heat is proportional to the linear expansion coefficient, temperature difference, and elastic modulus. Even if there is a large difference in linear expansion coefficient, stress may not be generated if the elastic modulus is almost 0 MPa. However, if the elastic modulus is too low, the intermediate layer cannot maintain the shapes of the grooves and the uneven pits of the first information recording layer and the second information recording layer, and the recording characteristics of the optical information recording medium are extremely deteriorated. In order to maintain the shape of the grooves and the uneven pits normally, it is preferable that the elastic modulus is 100 MPa or more at 60 ° C. or less within the temperature range in which the use of the optical information recording medium is assumed. Since the intermediate layer must maintain this high elastic modulus, the linear expansion coefficient between the first intermediate layer 102 and the second intermediate layer 103 must maintain the above-described difference.
  • Embodiment 2 a method for manufacturing an optical information recording medium according to Embodiment 2 of the present invention will be described with reference to the drawings. Note that overlapping description of portions similar to those described in Embodiment 1 is omitted.
  • the UV curable resin for forming the first intermediate layer 202 and the UV curable resin for forming the second intermediate layer 203 are:
  • the relationship between the sum and the linear expansion coefficient has substantially the same characteristics.
  • the first intermediate layer 202 and the second intermediate layer 203 have the same UV curable property as an example of a UV curable resin having the same relationship between the total irradiation amount of UV light and the linear expansion coefficient. The case where it forms from a resin material is demonstrated.
  • the present invention is not limited to the above, and different UV curable resins may be used as long as the relationship between the total amount of UV light irradiation and the linear expansion coefficient has substantially the same characteristics.
  • the first intermediate layer 202 and the second intermediate layer 203 are formed from the same UV curable resin.
  • the optical information recording medium thus formed was repeatedly tested in the thermal cycle between 25 ° C. and 60 ° C. as described in Embodiment 1, cracks occurred in the second information recording layer 206. did.
  • the linear expansion coefficient around 40 ° C. was 0.5 ⁇ 10 ⁇ 4 (1 / ° C.) in the first intermediate layer 102, and the second The intermediate layer 103 was found to be significantly different from 3.1 ⁇ 10 ⁇ 4 (1 / ° C.).
  • Table 3 shows the relationship between the irradiation amount and the linear expansion coefficient when the UV curable resin used for the intermediate layer is irradiated with UV light.
  • the UV lamp used was RC-747 type manufactured by Xenon. It can be seen that the linear expansion coefficient varies greatly depending on the irradiation amount of the UV light even if the intermediate layer is formed from the same UV curable resin. Therefore, even when a plurality of intermediate layers are formed from the same UV curable resin, it is preferable that the linear expansion coefficients of the respective intermediate layers be approximately the same.
  • the difference in linear expansion coefficient between the first intermediate layer 202 and the second intermediate layer 203 is preferably less than 2.5 ⁇ 10 ⁇ 4 (1 / ° C.). Further, it is preferably 1.9 ⁇ 10 ⁇ 4 (1 / ° C.) or less.
  • the UV curable resin 212 is cured by UV light irradiation to form the second intermediate layer 203.
  • a part of the UV light is also irradiated to the first intermediate layer 202 through the second information recording layer 206 at the same time. For this reason, in a normal manufacturing method, there is a problem that a larger amount of UV light is irradiated by the first intermediate layer 202 than by the second intermediate layer 203.
  • the first intermediate layer 202 has a larger UV light irradiation amount than the second intermediate layer 203, so the second intermediate layer 203 has a linear expansion coefficient that is greater than that of the first intermediate layer 202. It will be high.
  • the first intermediate layer 202 and the second intermediate layer 203 are considered in consideration of the transmittance of the second information recording layer 206 and the third information recording layer 207.
  • the amount of UV light irradiation is controlled three times so that the total amount of UV light irradiated on the surface becomes substantially the same.
  • FIG. 2A is a cross-sectional view of the substrate 201 provided with the first information recording layer 205.
  • the substrate 201 is a substrate manufactured by injection molding from a polycarbonate material, and has a thickness of approximately 1.1 mm, a diameter of approximately 120 mm, and a center hole diameter of approximately 15 mm.
  • One main surface of the substrate 201 has grooves or concave / convex pits for the first information recording layer 205.
  • An information recording layer 205 made of metal is formed on the main surface having the first groove or uneven pit by sputtering.
  • a UV curable resin 212 was applied to the first information recording layer 205 by a spin coating method with a thickness of about 25 ⁇ m.
  • the spin coating method is used as the coating method, but other methods may be used.
  • the first stamper substrate 222 having grooves or concavo-convex pits for recording / reproducing of the second information recording layer was brought into close contact with the applied UV curable resin 212 and irradiated with UV light from the UV lamp 208. As a result, the UV curable resin 212 was cured to form the first intermediate layer 202.
  • the groove or the concave / convex pits are transferred on the side of the first intermediate layer 202 facing the first stamper substrate 222.
  • the first stamper substrate 222 preferably transmits the UV light.
  • the first stamper substrate 222 is made of polycarbonate and is formed by injection molding. The thickness of the first stamper substrate 222 was approximately 0.6 mm, and the diameter and center hole diameter were substantially the same as those of the substrate 201.
  • the first stamper substrate 222 was peeled from the first intermediate layer 202 formed by curing the UV curable resin 212. Thereafter, the second information recording layer 206 was formed by sputtering on the grooves or uneven pits transferred on the first intermediate layer 202.
  • a UV curable resin 212 was applied on the second information recording layer 206 to a thickness of about 18 ⁇ m.
  • the spin coating method is used here as the coating method, but other methods may be used.
  • the second stamper substrate 223 having grooves or concave / convex pits for recording / reproduction of the third information recording layer is brought into close contact with the applied UV curable resin 212, and the second stamper substrate 223 is attached from the UV lamp 208. UV light was irradiated. Similar to the first stamper substrate 222, the second stamper substrate 223 was also formed from polycarbonate by injection molding.
  • the UV curable resin 212 was applied with a thickness of approximately 57 ⁇ m, and the UV curable resin 212 was cured by irradiating with UV light to form the light transmission layer 204.
  • a spin coating method was used as a method for forming the UV curable resin. Specifically, for example, the methods described in Japanese Patent No. 3955867 and Japanese Patent Application Laid-Open No. 2005-210950 are available.
  • the irradiation amount Total P 1 of the UV light to the first intermediate layer 202, the dose total P 2 of UV light to the second intermediate layer 203 And the difference in linear expansion coefficient between the first intermediate layer 202 and the second intermediate layer 203 is within the aforementioned range (2.5 ⁇ 10 ⁇ 4 (1 / It is characterized in that the irradiation amounts UV 1 , UV 2 , and UV 3 of the respective UV light are adjusted so as to be less than (° C.)).
  • the difference in linear expansion coefficient between the first intermediate layer 202 and the second intermediate layer 203 can be adjusted within the above-described range, so that the second information recording sandwiched between the first intermediate layer 202 and the second intermediate layer 203 is performed. Damage due to cracks or the like of the layer 206 can be prevented.
  • UV light irradiation is performed three times from the direction opposite to the substrate 201. In this case, consider how much the total irradiation amount of UV light in each of the intermediate layers 202 and 203 is. First, since the reflection of UV light from each information recording layer is slight, it is ignored. Further, since the UV light is actually irradiated through the first stamper substrate 222 and the second stamper substrate 223, in detail, it is necessary to consider the transmittance of the stamper substrates 222 and 223 in the irradiated UV light. is there. However, in order to facilitate the discussion, the irradiation amount of the UV light transmitted through the respective stamper substrates 222 and 223 is used.
  • the irradiation amount of the first UV light transmitted to the UV curable resin 212 through the first stamper substrate 222 is UV 1
  • the second UV light applied to the UV curable resin 212 is transmitted through the second stamper substrate 223.
  • the irradiation amount is UV 2
  • the third UV light irradiation amount to the UV curable resin 212 is UV 3 .
  • the transmittance of the second information recording layer 206 is t 2
  • the transmittance of the third information recording layer 207 is t 3 .
  • the UV light irradiation totals P 1 and P 2 in the respective intermediate layers 202 and 203 are calculated in consideration of the transmittance for the UV light in the respective information recording layers 206 and 207. .
  • FIG. 5 shows three methods of manufacturing an optical information recording medium including an information recording layer according to the second embodiment.
  • the three UV irradiation doses UV 1 , UV 2 , UV 3 and the first intermediate layer are shown in FIG.
  • a dose total P 1 of the UV light to 202 is a graph showing the relationship between dose total P 2 of UV light to the second intermediate layer 203.
  • the second UV light irradiation for forming the second intermediate layer 203 not only the upper second intermediate layer 203 but also the second information recording layer 206 is used.
  • the lower first intermediate layer 202 is also irradiated.
  • the UV light irradiation amount is applied three times as shown in FIG. 5 in consideration of the transmittance of the second information recording layer 206 and the third information recording layer 207.
  • the optical information recording medium having three information recording layers is considered.
  • the case of an optical information recording medium having four information recording layers is considered.
  • the first UV light irradiation amount UV 1 irradiated when the first intermediate layer is formed and the second UV light irradiation irradiated when the second intermediate layer is formed.
  • the dose total P1 of UV light applied to the first intermediate layer, dose total P 2 of UV light applied to the second intermediate layer, UV light irradiation amount sum P of irradiating the third intermediate layer Each of the three is represented as follows.
  • P 1 UV 1 + UV 2 ⁇ t 2 + UV 3 ⁇ t 2 ⁇ t 3 + UV 4 ⁇ t 2 ⁇ t 3 ⁇ t 4
  • P 2 UV 2 + UV 3 ⁇ t 3 + UV 4 ⁇ t 3 ⁇ t 4
  • P 3 UV 3 + UV 4 ⁇ t 4
  • the conditions that each irradiation amount sum is substantially equal to each other are expressed as follows.
  • FIG. 6 shows the four UV light irradiation amounts UV 1 , UV 2 , UV 3 , UV 4 , the total UV light irradiation amount P 1 for the first intermediate layer, a dose total P 2 of UV light to the second intermediate layer is a graph showing the relationship between the dose total P 3 of the UV light to the third intermediate layer.
  • a dose total P 2 of UV light to the second intermediate layer is a graph showing the relationship between the dose total P 3 of the UV light to the third intermediate layer.
  • the gradient of the increase in the dose is gentler than the gradient of the increase in the dose of the second intermediate layer.
  • the third UV light irradiation for forming the third intermediate layer not only the upper third intermediate layer is irradiated but also the lower second intermediate layer via the third information recording layer. Irradiated and further irradiated to the lower first intermediate layer through the third information recording layer and the second information recording layer.
  • the fourth UV light irradiation for forming the light transmission layer the UV light reaches the first intermediate layer through the fourth information recording layer, the third information recording layer, and the second information recording layer. To do.
  • UV light reaches the second intermediate layer through the fourth information recording layer and the third information recording layer. UV light reaches the third intermediate layer via the fourth information recording layer.
  • the transmittance of the second information recording layer, the third information recording layer, and the fourth information recording layer is taken into consideration as shown in FIG.
  • the total amount of UV light applied to the third intermediate layer can be made approximately the same.
  • an optical information recording medium having n information recording layers has an n ⁇ 1 intermediate layer and one light transmission layer.
  • the total irradiation amount Ps of UV light to the s-th intermediate layer can be expressed by the following formula.
  • n is a natural number of 3 or more
  • s can take a natural number from 1 to n-1.
  • I and j are natural numbers of 1 or more.
  • t i is the transmittance of the i-th information recording layer.
  • a manufacturing method having a different UV irradiation process for example, when UV irradiation is performed from the substrate direction, when combining UV irradiation from above and UV irradiation from the substrate direction, has five or more information recording layers The same applies to any of the methods for manufacturing an optical information recording medium.
  • the second embodiment of the present invention has been described by way of example, but the present invention is not limited to the above-described embodiment, and can be applied to other embodiments based on the technical idea of the present invention. .
  • the method for producing an optical information recording medium and the optical information recording medium according to the present invention are useful for providing a multilayer optical information recording medium having high reliability.

Abstract

 3層の情報記録層と、2層の中間層と、光透過層とを含む光情報記録媒体の製造方法であって、第1情報記録層の上に第1のUV硬化性樹脂を設けるステップと、1回目のUV光照射として、前記第1のUV硬化性樹脂の上からUV光を第1の照射量で照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成するステップと、前記第1中間層の上に第2情報記録層を設けるステップと、前記第2情報記録層の上に第2のUV硬化性樹脂を設けるステップと、2回目のUV光照射として、前記第2のUV硬化性樹脂の上からUV光を第2の照射量で照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成するステップと、前記第2中間層の上に第3情報記録層を設けるステップと、前記第3情報記録層の上に第3のUV硬化性樹脂を設けるステップと、3回目のUV光照射として、前記第3のUV硬化性樹脂の上からUV光を第3の照射量で照射して、前記第3のUV硬化性樹脂を硬化させて光透過層を形成するステップと、を含み、前記第1のUV硬化性樹脂と、前記第2のUV硬化性樹脂とは、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有すると共に、前記第1中間層へのUV光の照射量合計と、前記第2中間層へのUV光の照射量合計とが実質的に同じとなるように、前記1回目、2回目、3回目のUV光照射について、前記第1の照射量、前記第2の照射量、前記第3の照射量を制御する。

Description

光情報記録媒体の製造方法及び光情報記録媒体
 本発明は、光情報記録媒体の製造方法及び光情報記録媒体に関し、特に、例えば、複数の情報記録層と複数の中間層を有する多層光情報記録媒体の製造方法および多層光情報記録媒体に関する。
 近年、情報記録の分野では様々な光情報記録に関する研究が進められている。この光情報記録は、高密度化が可能であり、また、非接触で記録・再生が行うことができ、それを安価に実現できる方式として幅広い用途での応用が実現されている。現在の光ディスクとしては、CD、DVD、Blu-rayディスクなどが広く使用されている。
 Blu-rayディスクは、現在、2つの情報記録層を有する容量50GBの再生型・追記型・書き換え型の媒体が使われている。さらに、大容量・高密度を実現できる方法として、3層以上の情報記録層を有する多層Blu-rayディスクの研究・提案も行われている(例えば、特許文献1及び特許文献2参照。)。
 この多層型のBlu-rayディスクの基本的な構造は、およそ1.1mmの厚みを有する基板と、中間層によって隔てられた複数の情報記録層、および記録再生光が透過し情報記録層を守る光透過層から成る。基板としてはポリカーボネート、中間層および光透過層はUV硬化性樹脂を材料として用いられることが多い。
特許第3763763号公報 特開2005-141816号公報
 しかしながらこの多層型の光情報記録媒体は、複数の中間層と複数の情報記録層が順に積み上げられた構造を持っているため、使用環境の変化による熱変形や吸水変形によって情報記録層がダメージを受け易いという課題を持っている。特に、2つの中間層に挟まれた情報記録層がダメージを受け易いことがわかった。
 この現象を解析したところ、2つの中間層の線膨張係数が異なるために、それぞれの中間層で熱による膨張又は収縮が発生した場合に、2つの中間層の界面で歪みが起こりやすく、その界面に存在する情報記録層がダメージを受けてしまう、ということがわかった。
 さらに、例え2つの中間層をまったく同じUV硬化性樹脂を用いて作成した場合においても、このような情報記録層へのダメージは発生してしまう。2つの中間層は同時に形成されるわけではなく、UV硬化性樹脂を塗布した後、UV光照射で硬化して下層の中間層を形成し、その後、情報記録層を挟んで、UV硬化性樹脂を塗布した後、UV光照射で硬化して上層の中間層を形成する。このように上層の中間層を形成する際には下層の中間層にもUV光が再度照射されてしまう。このため、UV光の照射量やUV光源の種類によって、作成されるそれぞれの中間層の線膨張係数が大きく異なるために、異なるUV硬化性樹脂を用いた場合と同様に、上述したのと同じ現象で上記問題が発生していることがわかった。
 そこで、本発明の目的は、複数の情報記録層と、情報記録層を挟む2層の中間層を少なくとも有する多層光情報記録媒体の製造方法を提供することである。
 本発明に係る光情報記録媒体の製造方法は、3層の情報記録層と、2層の中間層と、光透過層とを含む光情報記録媒体の製造方法であって、
 第1情報記録層の上に第1のUV硬化性樹脂を設けるステップと、
 1回目のUV光照射として、前記第1のUV硬化性樹脂の上からUV光を第1の照射量で照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成するステップと、
 前記第1中間層の上に第2情報記録層を設けるステップと、
 前記第2情報記録層の上に第2のUV硬化性樹脂を設けるステップと、
 2回目のUV光照射として、前記第2のUV硬化性樹脂の上からUV光を第2の照射量で照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成するステップと、
 前記第2中間層の上に第3情報記録層を設けるステップと、
 前記第3情報記録層の上に第3のUV硬化性樹脂を設けるステップと、
 3回目のUV光照射として、前記第3のUV硬化性樹脂の上からUV光を第3の照射量で照射して、前記第3のUV硬化性樹脂を硬化させて光透過層を形成するステップと、
を含み、
 前記第1のUV硬化性樹脂と、前記第2のUV硬化性樹脂とは、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有すると共に、
 前記第1中間層へのUV光の照射量合計と、前記第2中間層へのUV光の照射量合計とが実質的に同じとなるように、前記1回目、2回目、3回目のUV光照射について、前記第1の照射量、前記第2の照射量、前記第3の照射量を制御することを特徴とする。
 上記本発明の光情報記録媒体の製造方法により、熱による中間層の伸びの違いで光情報記録層がストレスを受けることが少なくなり、信頼性の高い光情報記録媒体を得ることが可能となる。
 前記第2情報記録層の透過率t、前記第3情報記録層の透過率t、前記1回目のUV光照射の第1の照射量UV、前記2回目のUV光照射の第2の照射量UV、前記3回目のUV光照射の第3の照射量UVについて、前記第1中間層へのUV光への照射量合計Pは、
=UV+UV・t+UV・t・t
と表され、前記第2中間層へのUV光への照射量合計Pは、
=UV+UV・t
と表される。この場合に、前記第1中間層へのUV光への照射量合計Pと前記第2中間層へのUV光への照射量合計Pとが実質的に同じとなるように1回目、2回目、3回目のUV光照射について、第1の照射量UV、第2の照射量UV、第3の照射量UVを制御する。
 また、前記第1のUV硬化性樹脂と前記第2のUV硬化性樹脂が、同じであってもよい。これによって、同じ材料から作製した中間層の線膨張係数がほぼ等しくなり、熱ストレスによる情報記録層のひび割れが起こらない、信頼性の高い光情報記録媒体の製造が可能となる。
 また、前記第1中間層を形成するステップでは、前記第1のUV硬化性樹脂の上に前記第2情報記録層のための溝または凹凸ピットを有する第1のスタンパを対向させて密着させ、前記第1のスタンパを介して前記第1のUV硬化性樹脂の上からUV光を照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成してもよい。
 さらに、前記第2中間層を形成するステップでは、前記第2のUV硬化性樹脂の上に前記第3情報記録層のための溝または凹凸ピットを有する第2のスタンパを対向させて密着させ、前記第2のスタンパを介して前記第2のUV硬化性樹脂の上からUV光を照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成してもよい。
 光情報記録媒体の製造方法は、基板と、nが3以上の自然数であるn層の情報記録層と、n-1層の中間層と、1層の光透過層とを有する光情報記録媒体の製造方法であって、
(1)自然数iについて、1からn-1までについて、以下のステップ、
  a)第i情報記録層の上に第iのUV硬化性樹脂を設けるステップと、
  b)i回目のUV光照射として、前記第iのUV硬化性樹脂の上からUV光を第iの照射量UVで照射して、前記第iのUV硬化性樹脂を硬化させて第i中間層を形成するステップと、
  c)前記第i中間層の上に第(i+1)情報記録層を設けるステップと、
を繰り返すと共に、
(2)第(n-1)情報記録層の上に第nのUV硬化性樹脂を設けるステップと、
(3)n回目のUV光照射として、前記第nのUV硬化性樹脂の上からUV光を第nの照射量UVで照射して、前記第nのUV硬化性樹脂を硬化させて光透過層を形成するステップと、
を含み、
 自然数iが1からn-1の間にある前記第iのUV硬化性樹脂は、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有すると共に、
 下記式で表される第s中間層へのUV光の照射量合計Psが各中間層について実質的に同じであることを特徴とする。
Figure JPOXMLDOC01-appb-I000001
 (nは3以上の自然数であり、sは1からn-1の範囲の自然数であり、i、jは、2以上の自然数)
 また、前記第i中間層を形成するステップでは、前記第iのUV硬化性樹脂の上に前記第(i+1)情報記録層のための溝または凹凸ピットを有する第iのスタンパを対向させて密着させ、前記第iのスタンパを介して前記第iのUV硬化性樹脂の上からUV光を照射して、前記第iのUV硬化性樹脂を硬化させて第i中間層を形成してもよい。
 本発明に係る光情報記録媒体の製造方法は、3層の情報記録層と、2層の中間層と、光透過層とを含む光情報記録媒体の製造方法であって、
 第1情報記録層の上に第1のUV硬化性樹脂を設けるステップと、
 1回目のUV光照射として、前記第1のUV硬化性樹脂の上からUV光を第1の照射量で照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成するステップと、
 前記第1中間層の上に第2情報記録層を設けるステップと、
 前記第2情報記録層の上に第2のUV硬化性樹脂を設けるステップと、
 2回目のUV光照射として、前記第2のUV硬化性樹脂の上からUV光を第2の照射量で照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成するステップと、
 前記第2中間層の上に第3情報記録層を設けるステップと、
 前記第3情報記録層の上に第3のUV硬化性樹脂を設けるステップと、
 3回目のUV光照射として、前記第3のUV硬化性樹脂の上からUV光を第3の照射量で照射して、前記第3のUV硬化性樹脂を硬化させて光透過層を形成するステップと、
を含み、
 前記第1のUV硬化性樹脂と、前記第2のUV硬化性樹脂とは、異なるUV硬化性樹脂であって、
 前記1回目、2回目、3回目のUV光照射を受けた前記第1中間層の線膨張係数と、前記2回目、3回目のUV光照射を受けた前記第2中間層の線膨張係数との差が、2.5×10-4(1/℃)未満となるように、前記1回目、2回目、3回目のUV光照射について、前記第1の照射量、前記第2の照射量、前記第3の照射量を制御することを特徴とする。
 また、前記第1中間層を形成するステップでは、前記第1のUV硬化性樹脂の上に前記第2情報記録層のための溝または凹凸ピットを有する第1のスタンパを対向させて密着させ、前記第1のスタンパを介して前記第1のUV硬化性樹脂の上からUV光を照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成してもよい。
 さらに、前記第2中間層を形成するステップでは、前記第2のUV硬化性樹脂の上に前記第3情報記録層のための溝または凹凸ピットを有する第2のスタンパを対向させて密着させ、前記第2のスタンパを介して前記第2のUV硬化性樹脂の上からUV光を照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成してもよい。
 本発明に係る光情報記録媒体は、前記光情報記録媒体の製造方法によって製造された3層以上の複数の情報記録層を有する光情報記録媒体であって、
 前記光情報記録媒体は、1層の情報記録層を挟む2層の中間層を有し、
 前記情報記録層を介して接する2つの前記中間層の線膨張係数の差が、2.5×10-4(1/℃)未満であることを特徴とする。
 また、前記情報記録層を介して接する2つの前記中間層の前記線膨張係数の差が1.9×10-4(1/℃)以下であってもよい。これによってさらに熱に対する信頼性の高い光情報記録媒体を得ることができる。
 さらに、前記情報記録層を介して接する2つの前記中間層の引張弾性率が、60℃以下の温度において、100MPa以上であってもよい。これによって樹脂層が安定に溝またや凹凸ピットの形状を維持し、光情報記録媒体の信頼性を保つことが可能となる。
 本発明の光情報記録媒体の製造方法および光情報記録媒体によれば、UV硬化性樹脂を用いて中間層を形成する光情報記録媒体において、2つの中間層に挟まれた情報記録層が熱による中間層の変形によってダメージを受けることのない光情報記録媒体を作製することができる。
本発明の実施の形態1に係る光情報記録媒体の一例を示す断面図である。 本発明の実施の形態2における、光情報記録媒体の製造方法の一例を示す断面図である。 本発明の実施の形態2における、光情報記録媒体の製造方法の一例を示す断面図である。 本発明の実施の形態2における、光情報記録媒体の製造方法の一例を示す断面図である。 本発明の実施の形態2に係る3層の情報記録層を含む光情報記録媒体の製造方法において、3回のUV光の照射量UV、UV、UVと、第1中間層、第2中間層へのそれぞれのUV光の照射量合計P、Pとの関係を示すグラフである。 本発明の実施の形態2の変形例に係る4層の情報記録層を含む光情報記録媒体の製造方法において、4回のUV光の照射量UV、UV、UV、UVと、第1中間層、第2中間層、第3中間層へのそれぞれのUV光の照射量合計P、P、Pとの関係を示すグラフである。
符号の説明
101,201  基板
102,202  第1中間層
103,203  第2中間層
104,204  光透過層
105,205  第1情報記録層
106,206  第2情報記録層
107,207  第3情報記録層
208  UVランプ
212  UV硬化性樹脂
222  第1スタンパ基板
223  第2スタンパ基板
 以下、本発明の実施の形態について、添付図面を参照しながら説明する。図面は特に断りのない限り断面図で示し、対称である場合、対称な軸から一方のみを示し、もう一方は省略する場合がある。また、図面において実質的に同一の部材には同一の符号を付している。
(実施の形態1)
 以下、図面を参照しながら本発明の実施の形態について説明する。
 図1に本発明に係る光情報記録媒体の一例を示す。この光情報記録媒体は、3つの情報記録層105、106、107を有するいわゆる3層光情報記録媒体であって、基板101と、それぞれの情報記録層を隔てる2層の中間層102、103と、第3情報記録層107を保護し、記録再生光が透過する光透過層104を有する。基板101は、厚みがおよそ1.1mm、直径がおよそ120mmの円盤形状で、直径15mmの中心孔を有する。第1中間層102の厚みはおよそ25μm(±2μm)、第2中間層103の厚みはおよそ18μm(±2μm)である。なお、各中間層102、103の厚みは30μm以下が好ましい。光透過層104の厚みは70μm以下が好ましい。光透過層104の表面を保護するための保護層をさらに設けても構わない。
 本実施の形態1に係る光情報記録媒体では、第1中間層102と第2中間層103の線膨張係数の差は2.5×10-4(1/℃)未満であることを特徴とする。
 また、本実施の形態1に係る光情報記録媒体の製造方法では、第2情報記録層106及び第3情報記録層107の透過率を考慮して3回のUV光の照射を制御して、それぞれ異なるUV硬化性樹脂からなる第1中間層102と第2中間層103の線膨張係数の差は2.5×10-4(1/℃)未満となるように形成することを特徴とする。
 本実施の形態では、基板101は、ポリカーボネートを材料として射出成形で形成した。また、第1中間層102と第2中間層103と光透過層104は、アクリルを主成分とするが、それぞれ異なるUV硬化性樹脂を材料として形成した。UV硬化性樹脂としては、例えば、
(A)ウレタン(メタ)アクリレート及び/又はエポキシ(メタ)アクリレート
(B)(メタ)アクリレートモノマー
(C)光重合開始剤
(D)添加剤
のうち、複数種類を含有するUV硬化性樹脂を用いることができる。また、基板101や中間層102、103は、記録再生に必要な溝や凹凸ピットを有している。光情報記録媒体としては、書き換え型と追記型についてそれぞれ作製した。
 この3層光情報記録媒体に対して、実使用を考えた場合、光情報記録媒体の信頼性試験として、室温(25℃)から60℃程度の高温の状態に繰り返し投入する熱サイクル試験がある。これは、夏場にラック内の置かれたレコーダやプレーヤ、車内のAV機器で光情報記録媒体を使用することを想定している。こういった状況では、機器内部が60℃程度まで昇温する場合があるため、機器で記録や再生を行うために光情報記録媒体を挿入、取り出しすることを考慮した試験である。ここでは、25℃に1時間、60℃に1時間のサイクルを10回繰り返した後、光情報記録媒体の記録特性を調べた。
 この熱サイクル試験によって、第2情報記録層106の記録特性が悪くなる場合があることがわかった。光学顕微鏡で第2情報記録層106を観察したところ、記録層表面にひび割れのようなダメージが発生していた。このひび割れは書き換え型、追記型の両方の媒体で発生した。書き換え型光情報記録媒体の第2情報記録層は、基板に近い側から順に、透過率調整層/反射層/第2誘電体層/記録層/界面層/第1誘電体層を積層した6層構造からなり、6層全体の厚みは合わせておよそ120nmである。また、追記型光情報記録媒体の第2情報記録層は、基板に近い側から順に、反射層/第2誘電体層/記録層/第1誘電体層を積層した4層構造からなり、4層全体の厚みは合わせておよそ50nmである。
 そこで、第2情報記録層106を挟んでいる第1中間層102と第2中間層103のUV硬化性樹脂の材料の組み合わせを色々試したところ、UV硬化性樹脂の組み合わせによっては上述のようなダメージが発生するが、ある組み合わせでは上述のようなダメージが発生しないことがわかった。さらに詳細に調べた結果、第1中間層102と第2中間層103の物性のうち、2つの中間層102、103の線膨張係数の差がどれくらいかによって、上記ダメージ発生には差があることがわかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 使用したUV硬化性樹脂の種類別について、それぞれから形成した中間層の線膨張係数を測定した結果を表1に示す。また、それぞれのUV硬化性樹脂の組み合わせで光情報記録媒体を作製し、第2情報記録層106のひび割れの有無を表2に示す。表2では、○はひび割れ無しの場合を示しており、×はひび割れ有りの場合を示している。ここでもひび割れの有無は書き換え型と追記型で結果が同じであった。
 表2の結果から、25℃から60℃の各温度での線膨張係数の差が2.5×10-4(1/℃)以上だとひび割れが発生しており、線膨張係数の差が1.9×10-4(1/℃)以下だとひび割れが発生しないということがわかる。この結果から、第1中間層102と第2中間層103の線膨張係数の差は2.5×10-4(1/℃)未満であることが好ましい。さらには線膨張係数の差が1.9×10-4(1/℃)以下であることがより好ましい。
 さらに詳細に現象について考察すると、一般に、熱によって発生する応力は、線膨張係数、温度差、弾性率に比例する。もし線膨張係数に大きく差があった場合でも、弾性率がほとんど0MPaであれば応力は発生しないかもしれない。しかしながら弾性率が低すぎると、中間層は第1情報記録層および第2情報記録層の溝や凹凸ピットの形状を維持できず、光情報記録媒体の記録特性は非常に悪くなってしまう。溝や凹凸ピットの形状を正常に維持するには、光情報記録媒体の使用を想定している温度範囲内、60℃以下において、弾性率が100MPa以上であることが好ましい。中間層がこの高い弾性率を維持する状態でなければならないため、第1中間層102と第2中間層103の線膨張係数は前記した差を維持しなければならない。
 ここまで本実施の形態では3層光情報記録媒体について説明してきたが、4層以上の光情報記録媒体においても、2つの中間層に挟まれた情報記録層においては同じ現象が起こる。したがって、情報記録層を介して接する2つの中間層においては同様の線膨張係数の差であることが好ましい。
 以上、本発明の実施の形態について例をあげて説明したが、本発明は、上記実施の形態に限定されず、本発明の技術的思想に基づき他の実施の形態に適用することができる。
(実施の形態2)
 以下、図面を参照しながら本発明の実施の形態2に係る光情報記録媒体の製造方法について説明する。なお、実施の形態1で説明した部分と同様の部分については、重複する説明を省略する。
 実施の形態1では、第1中間層102と第2中間層103が異なるUV硬化性樹脂材料から形成される場合について示した。この実施の形態2に係る光情報記録媒体の製造方法では、第1中間層202を形成するUV硬化性樹脂と、第2中間層203を形成するUV硬化性樹脂とは、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有するものとする。以下の説明では、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有するUV硬化性樹脂の一例として、第1中間層202と第2中間層203を同じUV硬化性樹脂材料から形成した場合について説明する。なお、上記に限られず、異なるUV硬化性樹脂であっても、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有するものであればよい。
 この実施の形態2では、第1中間層202と第2中間層203を同じUV硬化性樹脂から形成する。しかし、このようにして形成した光情報記録媒体を、実施の形態1で述べたような25℃と60℃との間の熱サイクルで繰り返し試験したところ、第2情報記録層206でひび割れが発生した。
 第1中間層102と第2中間層103の線膨張係数を測定したところ、40℃付近の線膨張係数が、第1中間層102で0.5×10-4(1/℃)、第2中間層103で3.1×10-4(1/℃)と大きく異なっていることがわかった。
Figure JPOXMLDOC01-appb-T000003
 次に、中間層に用いるUV硬化性樹脂にUV光を照射したときの、照射量と線膨張係数の関係を表3に示す。UVランプはキセノン社製RC-747型を使用した。UV光の照射量によって、同じUV硬化性樹脂から中間層を形成しても線膨張係数が大きく異なることがわかる。したがって、同じUV硬化性樹脂から複数の中間層を形成する場合においても、それぞれの中間層の線膨張係数を同程度にすることが好ましい。実施の形態1の結果とあわせて考えると、第1中間層202と第2中間層203の線膨張係数の差は2.5×10-4(1/℃)未満であることが好ましい。さらには1.9×10-4(1/℃)以下であることが好ましい。
 しかし、第1中間層202、第2情報記録層206、第2中間層203の順に積層されて順に形成されるため、UV硬化性樹脂212をUV光照射で硬化させて第2中間層203を形成する際には、第1中間層202にも同時にUV光の一部が第2情報記録層206を介して照射される。このため、通常の製造方法では、第2中間層203に比べて第1中間層202により多量のUV光が照射されてしまうという問題がある。この場合には上述のように第1中間層202のほうが第2中間層203よりUV光の照射量合計が多くなるため、第2中間層203のほうが第1中間層202よりも線膨張係数が高くなってしまう。
 そこで、本実施の形態2に係る光情報記録媒体の製造方法では、第2情報記録層206及び第3情報記録層207の透過率を考慮して、第1中間層202及び第2中間層203に照射されるUV光の照射量合計がほぼ同程度となるように、3回のUV光の照射量を制御することを特徴とする。
 ここで、本実施の形態2における3層光情報記録層の製造方法を示し、本製造方法においてそれぞれの中間層202、203へのUV光の照射量合計を同程度にする方法についての一例を示す。
 (a)まず、第1情報記録層205を設けた基板201を用意した。図2(a)は、第1情報記録層205を設けた基板201の断面図である。この基板201は、ポリカーボネート材料から射出成形で作製した基板であり、厚みがおよそ1.1mm、直径がおよそ120mm、中心孔径がおよそ15mmである。この基板201の一主面に、第1情報記録層205のための溝または凹凸ピットを有する。第1この溝または凹凸ピットを有する主面にスパッタ法によって金属からなる情報記録層205を形成している。
 (b)次に、図2(b)のように、第1情報記録層205上に、UV硬化性樹脂212を厚みおよそ25μmでスピンコート法によって塗布した。なお、ここでは塗布方法としてはスピンコート法を用いたが、それ以外の方法でも構わない。
 (c)次いで、第2情報記録層の記録再生のための溝または凹凸ピットを有する第1スタンパ基板222を、塗布したUV硬化性樹脂212に密着させ、UVランプ208からUV光を照射した。これによってUV硬化性樹脂212を硬化させ、第1中間層202とした。なお、第1中間層202の第1スタンパ基板222に面した側には上記溝又は凹凸ピットが転写されている。
 なお、第1スタンパ基板222を透してUV光の照射を行うため、第1スタンパ基板222はUV光を透過することが好ましい。また、第1スタンパ基板222はポリカーボネートを材料とし、射出成形によって形成した。第1スタンパ基板222の厚みはおよそ0.6mmで、直径や中心孔径は基板201とほぼ同じとした。
 (d)次に、図3(a)のように、UV硬化性樹脂212を硬化して形成した第1中間層202から第1スタンパ基板222を剥離した。その後、第1中間層202の上に転写された溝又は凹凸ピット上に第2情報記録層206をスパッタ法によって形成した。
 (e)同様にして、図3(b)のように、第2情報記録層206上に、UV硬化性樹脂212を厚みおよそ18μmで塗布した。塗布方法としてはここでもスピンコート法を用いたが、それ以外の方法でも構わない。
 (f)次いで、第3情報記録層の記録再生のための溝または凹凸ピットを有する第2スタンパ基板223を、塗布したUV硬化性樹脂212に密着させ、UVランプ208から第2スタンパ基板223を介してUV光を照射した。なお、第1スタンパ基板222と同様に、第2スタンパ基板223もポリカーボネートから射出成形によって形成した。
 (g)図4(a)のように、UV硬化性樹脂212を硬化して形成した第2中間層203から第2スタンパ基板223を剥離した後、第2中間層203に第3情報記録層207をスパッタによって形成した。
 (h)最後に、図4(b)のように、UV硬化性樹脂212を厚みおよそ57μmで塗布し、UV光を照射してUV硬化性樹脂212を硬化して光透過層204を形成した。UV硬化性樹脂の形成方法としてはスピンコート法を用いた。詳しくは、例えば特許第3955867号や特開2005-210950号公報に記載の方法などである。
 本発明の実施の形態2に係る光情報記録媒体の製造方法では、第1中間層202へのUV光の照射量合計Pと、第2中間層203へのUV光の照射量合計Pとがほぼ等しくなるように、もしくは多少違いが出たとしても、第1中間層202と第2中間層203の線膨張係数の差が前述した範囲内(2.5×10-4(1/℃)未満)になるように、それぞれのUV光の照射量UV、UV、UVを調整することを特徴とする。
 これによって、第1中間層202と第2中間層203の線膨張係数の差が前述した範囲内に調整できるので、第1中間層202と第2中間層203の間に挟まれる第2情報記録層206のひび割れ等による破損を防ぐことができる。
 本製造方法においては、基板201とは反対側の方向からUV光の照射を3回行っている。この場合にそれぞれの中間層202、203におけるUV光の照射量合計がどれぐらいになるかを考える。まず、各情報記録層からのUV光の反射はわずかなので無視する。また、実際にはUV光は第1スタンパ基板222、第2スタンパ基板223を介して照射されるので、詳細には照射されたUV光のうちスタンパ基板222、223の透過率も考慮する必要がある。しかし、考察を容易にするために、それぞれのスタンパ基板222、223を透過したUV光の照射量を用いることとする。すなわち、UV硬化性樹脂212への1回目のUV光の第1スタンパ基板222を透過した照射量をUV、UV硬化性樹脂212への2回目のUV光の第2スタンパ基板223を透過した照射量をUV、UV硬化性樹脂212への3回目のUV光の照射量をUVとする。また、第2情報記録層206の透過率をt、第3情報記録層207の透過率をtとする。
 以上の条件に基づいて、それぞれの情報記録層206、207におけるUV光に対する透過率を考慮したうえで、それぞれの中間層202、203でのUV光の照射量合計P、Pを算出する。まず、第1中間層202に照射されるUV光の照射量合計Pは、
 P=UV+UV・t+UV・t・t
となる。また、第2中間層203に照射されるUV光の照射量合計P2は、
 P=UV+UV・t
となる。
 次に、第1中間層202へのUV光の照射量合計Pと、第2中間層203へのUV光の照射量合計Pとがほぼ等しいという条件を式で表すと、以下のようになる。
≒P
 さらに、UV、UV、UV、t、tを用いて表すと、
UV+UV・t+UV・t・t=UV+UV・t
UV=(1-t)(UV+UV・t
となる。
 図5は、本実施の形態2に係る3層の情報記録層を含む光情報記録媒体の製造方法において、3回のUV光の照射量UV、UV、UVと、第1中間層202へのUV光の照射量合計Pと、第2中間層203へのUV光の照射量合計Pとの関係を示すグラフである。図5に示すように、第2中間層203を形成するための2回目のUV光の照射において、上層の第2中間層203に照射されるだけでなく、第2情報記録層206を介して下層の第1中間層202にも照射される。この場合、第2情報記録層206を透過して第1中間層202へ到達するため照射量増加の傾斜は第2中間層203への照射量増加の傾斜よりも緩くなる。なお、光透過層204を形成するための3回目のUV光の照射においても、第1中間層202には第3情報記録層207及び第2情報記録層206を介してUV光が到達し、第2中間層203には第3情報記録層207を介してUV光が到達する。実施の形態2に係る光情報記録媒体の製造方法では、第2情報記録層206、第3情報記録層207の透過率を考慮して、図5に示すように3回のUV光の照射量UV、UV、UVについて制御することにより、第1中間層202へのUV光の照射量合計と第2中間層203へのUV光の照射量合計とを同程度にすることができる。
(変形例)
 なお、本実施の形態2では、3層の情報記録層を有する光情報記録媒体について考察したが、さらに変形例として4層の情報記録層を有する光情報記録媒体の場合について考察する。この場合、4回のUV光の照射について、第1中間層の形成時に照射する第1回目のUV光の照射量UV、第2中間層の形成時に照射する第2回目のUV光の照射量UV、第3中間層の形成時に照射する第3回目のUV照射量UV、光透過層の形成時に照射する第4回目のUV光の照射量UVとする。
 そこで、第1中間層に照射されるUV光の照射量合計P1、第2中間層に照射されるUV光の照射量合計P、第3中間層に照射されるUV光の照射量合計Pのそれぞれは以下のように表される。
=UV+UV・t+UV・t・t+UV・t・t・t
=UV+UV・t+UV・t・t
=UV+UV・t
 また、それぞれの照射量合計が互いにほぼ等しいという条件は以下のように表される。
≒P≒P≒P
 図6は、実施の形態2の変形例における4回のUV光の照射量UV、UV、UV、UVと、第1中間層へのUV光の照射量合計Pと、第2中間層へのUV光の照射量合計Pと、第3中間層へのUV光の照射量合計Pとの関係を示すグラフである。図6に示すように、第2中間層を形成するための2回目のUV光の照射において、上層の第2中間層に照射されるだけでなく、第2情報記録層を介して下層の第1中間層にも照射される。この場合、第2情報記録層を透過して第1中間層へ到達するため照射量増加の傾斜は第2中間層への照射量増加の傾斜よりも緩くなる。また、第3中間層を形成するための3回目のUV光の照射において、上層の第3中間層に照射されるだけでなく、第3情報記録層を介して下層の第2中間層にも照射され、第3情報記録層及び第2情報記録層を介してさらに下層の第1中間層にも照射される。なお、光透過層を形成するための4回目のUV光の照射においても、第1中間層には第4情報記録層、第3情報記録層及び第2情報記録層を介してUV光が到達する。第2中間層には第4情報記録層及び第3情報記録層を介してUV光が到達する。第3中間層には第4情報記録層を介してUV光が到達する。実施の形態2の変形例に係る光情報記録媒体の製造方法では、第2情報記録層、第3情報記録層及び第4情報記録層の透過率を考慮して、図6に示すように4回のUV光の照射量UV、UV、UV、UVについて制御することにより、第1中間層へのUV光の照射量合計、第2中間層へのUV光の照射量合計、第3中間層へのUV光の照射量合計を同程度にすることができる。
 なお、n層の情報記録層を有する光情報記録媒体は、n-1層の中間層と、1層の光透過層を有する。この場合、第s中間層へのUV光の照射量合計Psは、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-I000002
 ここで、nは3以上の自然数であり、sは1からn-1の自然数をとりうる。また、i、jは、1以上の自然数である。tは第i情報記録層の透過率である。
 さらに、各中間層へのUV光の照射量合計Psがそれぞれ同程度であるという条件は、以下のように表される。
≒P≒P≒・・・≒Pn-1
 ここまで光情報記録媒体の製造方法の一例を挙げ、その際に同一のUV硬化性樹脂からなる各中間層に照射されるUV光の照射量合計をほぼ同程度にする方法について述べてきた。さらに、例えば光透過層の表面に、傷つき防止のための保護層をUV硬化性樹脂で設ける場合においても、その際の各中間層におけるUV光の照射量合計も同様の方法で算出し、各中間層に照射されるUV光の照射量合計を同程度とするように、各UV光の照射量を制御することが好ましい。これによって、各中間層における線膨張係数の差を上記好ましい範囲内とすることができる。
 さらに、UV照射のプロセスが異なる製造方法、例えば、基板方向からUV照射を行う場合、上方からのUV光照射と基板方向からのUV光照射とを組み合わせる場合、5層以上の情報記録層を有する光情報記録媒体の製造方法の場合等のいずれにおいても同様である。
 以上、本発明の実施の形態2について例をあげて説明したが、本発明は、上記実施の形態に限定されず、本発明の技術的思想に基づき他の実施の形態に適用することができる。
(実施の形態3)
 実施の形態1および2においては、Blu-rayディスク型の構造を持つ光情報記録媒体について例を示してきた。しかしながら、中間層に挟まれた光情報記録層が、それぞれの中間層の線膨張係数差によって昇温時にダメージを受けることは、ディスク全体の構造によらず、例えば多層型のHD DVDやそれ以外の次世代記録媒体でも同様である。実施の形態1および2で述べたように、それぞれの中間層の線膨張係数差を小さくすることが好ましい。
 本発明に係る光情報記録媒体の製造方法及び光情報記録媒体は、高い信頼性を有する多層光情報記録媒体を提供するために有用である。

Claims (11)

  1.  3層の情報記録層と、2層の中間層と、光透過層とを含む光情報記録媒体の製造方法であって、
     第1情報記録層の上に第1のUV硬化性樹脂を設けるステップと、
     1回目のUV光照射として、前記第1のUV硬化性樹脂の上からUV光を第1の照射量で照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成するステップと、
     前記第1中間層の上に第2情報記録層を設けるステップと、
     前記第2情報記録層の上に第2のUV硬化性樹脂を設けるステップと、
     2回目のUV光照射として、前記第2のUV硬化性樹脂の上からUV光を第2の照射量で照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成するステップと、
     前記第2中間層の上に第3情報記録層を設けるステップと、
     前記第3情報記録層の上に第3のUV硬化性樹脂を設けるステップと、
     3回目のUV光照射として、前記第3のUV硬化性樹脂の上からUV光を第3の照射量で照射して、前記第3のUV硬化性樹脂を硬化させて光透過層を形成するステップと、
    を含み、
     前記第1のUV硬化性樹脂と、前記第2のUV硬化性樹脂とは、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有すると共に、
     前記第1中間層へのUV光の照射量合計と、前記第2中間層へのUV光の照射量合計とが実質的に同じとなるように、前記1回目、2回目、3回目のUV光照射について、前記第1の照射量、前記第2の照射量、前記第3の照射量を制御することを特徴とする光情報記録媒体の製造方法。
  2.  前記第2情報記録層の透過率t、前記第3情報記録層の透過率t、前記1回目のUV光照射の第1の照射量UV、前記2回目のUV光照射の第2の照射量UV、前記3回目のUV光照射の第3の照射量UVについて、前記第1中間層へのUV光への照射量合計Pは、
    =UV+UV・t+UV・t・t
    と表され、前記第2中間層へのUV光への照射量合計Pは、
    =UV+UV・t
    と表され、前記第1中間層へのUV光への照射量合計Pと前記第2中間層へのUV光への照射量合計Pとが実質的に同じとなるように1回目、2回目、3回目のUV光照射について、第1の照射量UV、第2の照射量UV、第3の照射量UVを制御することを特徴とする請求項1に記載の光情報記録媒体の製造方法。
  3.  前記第1のUV硬化性樹脂と前記第2のUV硬化性樹脂が、同じであることを特徴とする請求項1に記載の光情報記録媒体の製造方法。
  4.  前記第1中間層を形成するステップでは、前記第1のUV硬化性樹脂の上に前記第2情報記録層のための溝または凹凸ピットを有する第1のスタンパを対向させて密着させ、前記第1のスタンパを介して前記第1のUV硬化性樹脂の上からUV光を照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成すると共に、
     前記第2中間層を形成するステップでは、前記第2のUV硬化性樹脂の上に前記第3情報記録層のための溝または凹凸ピットを有する第2のスタンパを対向させて密着させ、前記第2のスタンパを介して前記第2のUV硬化性樹脂の上からUV光を照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成することを特徴とする請求項1に記載の光情報記録媒体の製造方法。
  5.  基板と、nが3以上の自然数であるn層の情報記録層と、n-1層の中間層と、1層の光透過層とを有する光情報記録媒体の製造方法であって、
    (1)自然数iについて、1からn-1までについて、以下のステップ、
      a)第i情報記録層の上に第iのUV硬化性樹脂を設けるステップと、
      b)i回目のUV光照射として、前記第iのUV硬化性樹脂の上からUV光を第iの照射量UVで照射して、前記第iのUV硬化性樹脂を硬化させて第i中間層を形成するステップと、
      c)前記第i中間層の上に第(i+1)情報記録層を設けるステップと、
    を繰り返すと共に、
    (2)第(n-1)情報記録層の上に第nのUV硬化性樹脂を設けるステップと、
    (3)n回目のUV光照射として、前記第nのUV硬化性樹脂の上からUV光を第nの照射量UVで照射して、前記第nのUV硬化性樹脂を硬化させて光透過層を形成するステップと、
    を含み、
     自然数iが1からn-1の間にある前記第iのUV硬化性樹脂は、UV光の照射量合計と線膨張係数との関係が実質的に同じ特性を有すると共に、
     下記式で表される第s中間層へのUV光の照射量合計Psが各中間層について実質的に同じであることを特徴とする光情報記録媒体の製造方法。
    Figure JPOXMLDOC01-appb-I000003
     (nは3以上の自然数であり、sは1からn-1の範囲の自然数であり、i、jは、2以上の自然数であり、tは、第i情報記録層の透過率)
  6.  前記第i中間層を形成するステップでは、前記第iのUV硬化性樹脂の上に前記第(i+1)情報記録層のための溝または凹凸ピットを有する第iのスタンパを対向させて密着させ、前記第iのスタンパを介して前記第iのUV硬化性樹脂の上からUV光を照射して、前記第iのUV硬化性樹脂を硬化させて第i中間層を形成することを特徴とする請求項5に記載の光情報記録媒体の製造方法。
  7.  3層の情報記録層と、2層の中間層と、光透過層とを含む光情報記録媒体の製造方法であって、
     第1情報記録層の上に第1のUV硬化性樹脂を設けるステップと、
     1回目のUV光照射として、前記第1のUV硬化性樹脂の上からUV光を第1の照射量で照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成するステップと、
     前記第1中間層の上に第2情報記録層を設けるステップと、
     前記第2情報記録層の上に第2のUV硬化性樹脂を設けるステップと、
     2回目のUV光照射として、前記第2のUV硬化性樹脂の上からUV光を第2の照射量で照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成するステップと、
     前記第2中間層の上に第3情報記録層を設けるステップと、
     前記第3情報記録層の上に第3のUV硬化性樹脂を設けるステップと、
     3回目のUV光照射として、前記第3のUV硬化性樹脂の上からUV光を第3の照射量で照射して、前記第3のUV硬化性樹脂を硬化させて光透過層を形成するステップと、
    を含み、
     前記第1のUV硬化性樹脂と、前記第2のUV硬化性樹脂とは、異なるUV硬化性樹脂であって、
     前記1回目、2回目、3回目のUV光照射を受けた前記第1中間層の線膨張係数と、前記2回目、3回目のUV光照射を受けた前記第2中間層の線膨張係数との差が、2.5×10-4(1/℃)未満となるように、前記1回目、2回目、3回目のUV光照射について、前記第1の照射量、前記第2の照射量、前記第3の照射量を制御することを特徴とする光情報記録媒体の製造方法。
  8.  前記第1中間層を形成するステップでは、前記第1のUV硬化性樹脂の上に前記第2情報記録層のための溝または凹凸ピットを有する第1のスタンパを対向させて密着させ、前記第1のスタンパを介して前記第1のUV硬化性樹脂の上からUV光を照射して、前記第1のUV硬化性樹脂を硬化させて第1中間層を形成すると共に、
     前記第2中間層を形成するステップでは、前記第2のUV硬化性樹脂の上に前記第3情報記録層のための溝または凹凸ピットを有する第2のスタンパを対向させて密着させ、前記第2のスタンパを介して前記第2のUV硬化性樹脂の上からUV光を照射して、前記第2のUV硬化性樹脂を硬化させて第2中間層を形成することを特徴とする請求項7に記載の光情報記録媒体の製造方法。
  9.  請求項1に記載の光情報記録媒体の製造方法によって製造された3層以上の複数の情報記録層を有する光情報記録媒体であって、
     前記光情報記録媒体は、1層の情報記録層を挟む2層の中間層を有し、
     前記情報記録層を介して接する2つの前記中間層の線膨張係数の差が、2.5×10-4(1/℃)未満であることを特徴とする光情報記録媒体。
  10.  前記情報記録層を介して接する2つの前記中間層の前記線膨張係数の差が1.9×10-4(1/℃)以下であることを特徴とする請求項9に記載の光情報記録媒体。
  11.  前記情報記録層を介して接する2つの前記中間層の引張弾性率が、60℃以下の温度において、100MPa以上であることを特徴とする請求項9に記載の光情報記録媒体。
PCT/JP2009/000992 2008-03-10 2009-03-05 光情報記録媒体の製造方法及び光情報記録媒体 WO2009113278A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009800003191A CN101681653B (zh) 2008-03-10 2009-03-05 光信息记录介质的制造方法及光信息记录介质
JP2009542857A JP5350268B2 (ja) 2008-03-10 2009-03-05 光情報記録媒体の製造方法及び光情報記録媒体
US12/598,816 US8211522B2 (en) 2008-03-10 2009-03-05 Manufacturing method for optical information recording medium and optical information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-058925 2008-03-10
JP2008058925 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009113278A1 true WO2009113278A1 (ja) 2009-09-17

Family

ID=41064952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000992 WO2009113278A1 (ja) 2008-03-10 2009-03-05 光情報記録媒体の製造方法及び光情報記録媒体

Country Status (4)

Country Link
US (1) US8211522B2 (ja)
JP (1) JP5350268B2 (ja)
CN (1) CN101681653B (ja)
WO (1) WO2009113278A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190793A1 (ja) * 2012-06-18 2013-12-27 パナソニック株式会社 赤外線検出装置
ITVI20130147A1 (it) 2013-06-05 2014-12-06 Delio Cegalin Un gruppo di fissaggio di moduli solari ad una superficie di supporto

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056546A (ja) * 1991-06-28 1993-01-14 Casio Comput Co Ltd 情報再生装置及び情報記録再生装置
JPH10255323A (ja) * 1997-03-17 1998-09-25 Toray Ind Inc 光記録媒体
JPH11286168A (ja) * 1998-04-02 1999-10-19 Olympus Optical Co Ltd インクジェット用感圧接着性プリントフィルム
JP2003085836A (ja) * 2001-09-11 2003-03-20 Tdk Corp 光ディスクの製造方法および装置
WO2004061836A1 (ja) * 2002-12-27 2004-07-22 Tdk Corporation 光情報媒体の製造方法
JP2005280261A (ja) * 2004-03-30 2005-10-13 Mitsubishi Chemicals Corp 樹脂成形体の製造方法
JP2005332564A (ja) * 2004-04-22 2005-12-02 Mitsubishi Chemicals Corp 光記録媒体
JP2006085845A (ja) * 2004-09-17 2006-03-30 Hitachi Maxell Ltd 多層光情報記録媒体及び光情報記録再生装置
JP2006335861A (ja) * 2005-06-01 2006-12-14 Nippon Zeon Co Ltd 接着剤、接着剤フィルム、半導体部品パッケージ、および半導体部品パッケージの製造方法
JP2007026479A (ja) * 2005-07-12 2007-02-01 Canon Inc 多層光記録媒体、および多層光記録媒体におけるフォーカスジャンプ方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187122A3 (en) 2000-09-12 2007-11-28 Matsushita Electric Industrial Co., Ltd. Method and apparatus for producing an optical information recording medium, and optical information recording medium
JP2005141816A (ja) 2003-11-05 2005-06-02 Tdk Corp 光記録媒体の製造方法
CN1950900B (zh) 2004-04-22 2010-12-29 三菱化学媒体株式会社 光记录介质
JP4458027B2 (ja) * 2005-11-28 2010-04-28 Tdk株式会社 多層光記録媒体、多層光記録媒体の情報記録方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056546A (ja) * 1991-06-28 1993-01-14 Casio Comput Co Ltd 情報再生装置及び情報記録再生装置
JPH10255323A (ja) * 1997-03-17 1998-09-25 Toray Ind Inc 光記録媒体
JPH11286168A (ja) * 1998-04-02 1999-10-19 Olympus Optical Co Ltd インクジェット用感圧接着性プリントフィルム
JP2003085836A (ja) * 2001-09-11 2003-03-20 Tdk Corp 光ディスクの製造方法および装置
WO2004061836A1 (ja) * 2002-12-27 2004-07-22 Tdk Corporation 光情報媒体の製造方法
JP2005280261A (ja) * 2004-03-30 2005-10-13 Mitsubishi Chemicals Corp 樹脂成形体の製造方法
JP2005332564A (ja) * 2004-04-22 2005-12-02 Mitsubishi Chemicals Corp 光記録媒体
JP2006085845A (ja) * 2004-09-17 2006-03-30 Hitachi Maxell Ltd 多層光情報記録媒体及び光情報記録再生装置
JP2006335861A (ja) * 2005-06-01 2006-12-14 Nippon Zeon Co Ltd 接着剤、接着剤フィルム、半導体部品パッケージ、および半導体部品パッケージの製造方法
JP2007026479A (ja) * 2005-07-12 2007-02-01 Canon Inc 多層光記録媒体、および多層光記録媒体におけるフォーカスジャンプ方法

Also Published As

Publication number Publication date
CN101681653A (zh) 2010-03-24
US8211522B2 (en) 2012-07-03
JP5350268B2 (ja) 2013-11-27
JPWO2009113278A1 (ja) 2011-07-21
CN101681653B (zh) 2012-08-29
US20100157784A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
WO1999000794A1 (fr) Support d'enregistrement optique et dispositif de disque optique
JPWO2005088629A1 (ja) 多層情報記録媒体及びその製造方法
JPH1131337A (ja) 光記録媒体及び光学ディスク装置
JP5350268B2 (ja) 光情報記録媒体の製造方法及び光情報記録媒体
TW201003649A (en) Optical recording medium and composition of reactive crosslinkable resin for use in producing the same
WO2000072318A1 (fr) Disque optique et son procede de production
TW200527382A (en) Optical disc and its manufacturing method
JP2014035775A (ja) 光記録媒体および光記録媒体の製造方法
WO2007108507A1 (ja) 多層情報記録媒体
JP4150514B2 (ja) 光情報媒体
JP5122387B2 (ja) 多層光記録媒体
US7993818B2 (en) Optical disk manufacturing method
JP2002092969A (ja) 光ディスクの製造方法および光ディスク
JP2007250082A (ja) 光記録媒体形成用基板および光記録媒体の製造方法と装置
US8524347B2 (en) Optical information recording medium and method of manufacturing the same
JP4642312B2 (ja) 情報記録媒体並びに該情報記録媒体を用いた情報処理装置
JP4260929B2 (ja) 光学的情報記録媒体及びその製造方法
JP4333624B2 (ja) 光記録媒体の製造方法
JP2013196741A (ja) 多層光ディスク
WO2006009010A1 (ja) 多層光記録媒体及びその製造方法
JP2001143319A (ja) 光ディスク媒体
WO2013118289A1 (ja) パターン転写方法
JP2008027517A (ja) 情報記録媒体及びその製造方法、並びに情報記録再生装置
WO2003017266A1 (fr) Support d'enregistrement optique
JPH02162547A (ja) 光ディスクの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000319.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009542857

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12598816

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718862

Country of ref document: EP

Kind code of ref document: A1