WO2009110206A1 - ブラシレスモータ装置及び制御装置 - Google Patents

ブラシレスモータ装置及び制御装置 Download PDF

Info

Publication number
WO2009110206A1
WO2009110206A1 PCT/JP2009/000909 JP2009000909W WO2009110206A1 WO 2009110206 A1 WO2009110206 A1 WO 2009110206A1 JP 2009000909 W JP2009000909 W JP 2009000909W WO 2009110206 A1 WO2009110206 A1 WO 2009110206A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless motor
rotor
energization
degree
degrees
Prior art date
Application number
PCT/JP2009/000909
Other languages
English (en)
French (fr)
Inventor
大西良孝
川村敏
上野友裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010501790A priority Critical patent/JP4987119B2/ja
Priority to US12/812,426 priority patent/US8395337B2/en
Priority to DE112009000209T priority patent/DE112009000209T5/de
Publication of WO2009110206A1 publication Critical patent/WO2009110206A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the present invention controls, for example, a brushless motor device used as a drive source of an exhaust gas control actuator such as an EGR (Exhaust Gas Recirculation) valve for vehicles, a VG (Variable Geometric) turbo actuator, and the drive of the brushless motor. It is related with the control apparatus which performs.
  • EGR Exhaust Gas Recirculation
  • VG Vehicle Geometric
  • a brushless motor device is used as a drive source of an exhaust gas control actuator such as an EGR valve for a vehicle, a VG turbo actuator, or the like.
  • an exhaust gas control actuator such as an EGR valve for a vehicle, a VG turbo actuator, or the like.
  • a 120-degree energization method and a 180-degree energization method are known.
  • the coils that are energized are switched every 60 degrees in electrical angle, and there is a non-energization period of 60 degrees electrical angle when the energization direction of each coil is switched.
  • the presence of this non-energization period has a feature that the influence of rotor position detection and magnetization variation can be reduced. For this reason, in general, a 120-degree energization method is generally employed.
  • the rotational speed of the brushless motor is controlled based on the control parameter calculated according to the deviation between the target motor rotational speed and the actual rotational speed
  • the energization phase angle is controlled based on the detection signal of the rotational position of the brushless motor.
  • the energization phase angle can be corrected freely by using a high-resolution rotational position sensor and a high-performance microcomputer as in Patent Document 1.
  • a high-resolution rotational position sensor cannot be used in an inexpensive system.
  • FIG. 18 is a graph showing the responsiveness of the 120-degree energization method and the 180-degree energization method in a brushless motor with variations in the rotor rotational position sensor that can be detected every 60 degrees of electrical angle.
  • the target position is determined in steps.
  • the result of having simulated the response to the said target position in the case of changing is shown.
  • the curve with symbol A is the simulation result of responsiveness at 120 degrees energization drive (advance angle 0 degree)
  • the curve with symbol B is 180 degrees energization drive (advance angle 0 degree).
  • the 180-degree energization drive (advance angle 0 degree) is slower than the 120-degree energization drive (advance angle 0 degree).
  • the energization width is wide in the 180-degree energization method, the response until reaching the target position is worse than that in the 120-degree energization method as shown in FIG. Therefore, desired responsiveness cannot be obtained by simply switching between energization methods having different responsiveness.
  • the present invention has been made to solve the above-described problems.
  • the brushless motor device and the brushless motor have improved responsiveness of the brushless motor by appropriately switching between the 120-degree energization method and the 180-degree energization method.
  • An object is to obtain a control device that controls driving.
  • the brushless motor device includes a three-phase brushless motor having a rotational position sensor for detecting the rotational position of the rotor, and a parameter related to the rotational speed as a parameter for switching the energization method based on a detection signal of the rotational position sensor.
  • a control device that calculates a value and switches the driving of the brushless motor between a 120-degree energization method and a 180-degree energization method advanced by a predetermined amount in accordance with a comparison result between the parameter value and a predetermined threshold. It is to be prepared.
  • the brushless motor is driven between the 120 degree energization method and the 180 degree energization method in which the drive of the brushless motor is advanced by a predetermined amount according to the comparison result between the parameter value related to the rotation speed and the predetermined threshold value. Since switching is performed, there is an effect that the response of the brushless motor can be improved.
  • FIG. 1 is a cross-sectional view showing an EGR valve structure to which a brushless motor device according to Embodiment 1 of the present invention is applied, cut in the axial direction.
  • This EGR valve is roughly composed of a brushless motor 1 and a valve mechanism 2.
  • the brushless motor 1 is configured by a cylindrical rotor 4 screwed to a motor shaft 3 being inserted into a hollow portion of a stator 6 fixed to a case 5 and rotatably supported by a bearing 7. Yes.
  • a magnetic pole position detection magnet 8 is fixed to the rotor 4 so as to be a surface perpendicular to the axis.
  • a hall switch (rotor rotational position sensor) 10 is mounted on the printed circuit board 9.
  • the hall switch 10 is composed of an IC in which a hall element is incorporated.
  • the printed circuit board 9 is attached to the case 5 so that the hall switch 10 faces the magnetic pole position detection magnet 8.
  • the motor shaft 3 screwed to the rotor 4 is movable in the axial direction (vertical direction in FIG. 1) by the rotation of the rotor 4, and the movement amount of the motor shaft 3 per one rotation of the rotor 4. Are formed in the motor shaft 3 and the rotor 4 so that the predetermined amount is reduced.
  • the valve mechanism 2 is provided with a valve shaft 12 to which a valve 11 is fixed, and the shaft thereof is arranged at the same position as the shaft of the motor shaft 3.
  • the valve shaft 12 is urged by a return spring 13 in a direction in which the valve 11 is closed (hereinafter referred to as “valve closing direction”) in order to realize a fail-safe function.
  • the valve shaft 12 is movable in the axial direction (arrow direction in the figure) when the motor shaft 3 abuts on one end thereof.
  • FIG. 2 is a plan view seen from the end surface of the motor shaft of the brushless motor in FIG.
  • the number of slots of the stator 6 of the brushless motor 1 is “9”, the number of poles of the rotor 4 is “12”, and the number of poles of the magnetic pole position detection magnet 8 is “12”.
  • a brushless motor device having the same number of poles of the rotor 4 and the number of poles of the magnetic pole position detection magnet 8 and including three hall switches 10 is referred to as “single precision brushless motor” in this specification. Called “device”.
  • the hall switch 10 disposed so as to face the magnetic pole position detection magnet 8 includes three hall switches such as a U hall switch, a V hall switch, and a W hall switch.
  • FIG. 3 is a block diagram showing the configuration of a control device that controls the driving of the brushless motor in FIG.
  • the control device 14 includes a hall switch interface 15, a microcomputer (hereinafter abbreviated as “microcomputer”) 16, high-side FET drive circuits 17-1 to 17-3, and a low-side FET drive circuit 18-1. 18-3, high-side FETs 19-1 to 19-3, low-side FETs 20-1 to 20-3, a first overcurrent detection circuit 21, a second overcurrent detection circuit 22, and a latch circuit 23.
  • the control device 14 may be integrally provided as a control unit of the brushless motor 1 or may be provided as an electronic control unit separate from the brushless motor 1.
  • the hall switch interface 15 includes a signal sent from the U hall switch via the hall switch terminal (U), a signal sent from the V hall switch via the hall switch terminal (V), and a hall switch from the hall switch.
  • a signal sent via the terminal (W) is input, and after predetermined amplification or the like, it is sent to the microcomputer 16.
  • the microcomputer (control unit) 16 generates a motor control signal based on the signal sent from the hall switch interface 15 and outputs the high-side FET drive circuits 17-1 to 17-3 and the low-side FET drive circuit 18 from the PWM output port. -1 to 18-3. Further, the microcomputer 16 stops generating the motor control signal when the drive stop signal is sent from the latch circuit 23.
  • the high-side FET drive circuits (drive circuit units) 17-1 to 17-3 send drive signals based on the motor control signal sent from the microcomputer 16 when the drive stop signal is not sent from the latch circuit 23. Generated and sent to the gates of the high-side FETs (drive circuit units) 19-1 to 19-3, respectively.
  • the high side FETs 19-1 to 19-3 are turned on according to the drive signals sent from the high side FET drive circuits 17-1 to 17-3 at a predetermined timing, and the first overcurrent detection circuit 21
  • the current sent via the resistor R1 is sent to the winding of the stator 6 of the brushless motor 1 via the motor terminal (U), the motor terminal (V) or the motor terminal (W).
  • the low-side FET drive circuits (drive circuit units) 18-1 to 18-3 receive motor control signals sent from the microcomputer 16 when no drive stop signal is sent from the latch circuit (drive circuit unit) 23. Based on this, a drive signal is generated and sent to the gates of the low-side FETs (drive circuit units) 20-1 to 20-3.
  • the low-side FETs 20-1 to 20-3 are turned on in response to drive signals sent from the low-side FET drive circuits 18-1 to 18-3 at a predetermined timing, and the motor terminals (U), The current sent via the motor terminal (V) or the motor terminal (W) is supplied to the ground via the resistor R2 of the second overcurrent detection circuit 22.
  • the first overcurrent detection circuit (drive circuit unit) 21 includes a resistor R1 and an operational amplifier AMP1 that detects a voltage across the resistor R1.
  • the high-side FETs 19-1 to 19-3 are connected from a power source.
  • an overcurrent signal indicating an overcurrent is generated and sent to the latch circuit 23.
  • the second overcurrent detection circuit (drive circuit unit) 22 includes a resistor R2 and an operational amplifier AMP2 that detects a voltage across the resistor R2.
  • an overcurrent signal indicating an overcurrent is sent to the latch circuit 23.
  • the latch circuit (drive circuit unit) 23 latches the overcurrent signals sent from the first overcurrent detection circuit 21 and the second overcurrent detection circuit 22, and uses the high side FET drive circuits 17-1 to 17-1 as drive stop signals. 17-3 and the low-side FET drive circuits 18-1 to 18-3 and also to the microcomputer 16. As a result, generation of drive signals in the high-side FET drive circuits 17-1 to 17-3 and low-side FET drive circuits 18-1 to 18-3 is stopped, and generation of motor control signals by the microcomputer 16 is stopped. .
  • the control device 14 drives the brushless motor 1 in the 120 ° energization direction in the rotor opening direction (CCW direction)
  • the energization direction is V phase ⁇ U phase
  • the high side FET 19-2 and the low side FET 20-1 are turned on. Is done.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-2 ⁇ the motor terminal (V) ⁇ the winding of the stator 6 ⁇ the motor terminal (U) ⁇ the low side FET 20-1 ⁇ the second overcurrent detection circuit 22 ⁇ Current flows through a path called ground, and the winding of the stator 6 is excited.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-3 ⁇ the motor terminal (W) ⁇ the winding of the stator 6 ⁇ the motor terminal (U) ⁇ the low side FET 20-1 ⁇ the second overcurrent detection circuit 22 ⁇ A current flows through a path called ground, and the winding of the stator 6 is excited.
  • the high side FET 19-3 and the low side FET 20-2 are turned on. Accordingly, the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-3 ⁇ the motor terminal (W) ⁇ the winding of the stator 6 ⁇ the motor terminal (V) ⁇ the low side FET 20-2 ⁇ the second overcurrent detection circuit 22 ⁇ A current flows through a path called ground, and the winding of the stator 6 is excited.
  • the high side FET 19-1 and the low side FET 20-2 are turned on.
  • the high side FET 19-1 and the low side FET 20-3 are turned on. Accordingly, the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-1 ⁇ the motor terminal (U) ⁇ the winding of the stator 6 ⁇ the motor terminal (W) ⁇ the low side FET 20-3 ⁇ the second overcurrent detection circuit 22 ⁇ A current flows through a path called ground, and the winding of the stator 6 is excited.
  • the high side FET 19-2 and the low side FET 20-3 are turned on. Accordingly, the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-2 ⁇ the motor terminal (V) ⁇ the winding of the stator 6 ⁇ the motor terminal (W) ⁇ the low side FET 20-3 ⁇ the second overcurrent detection circuit 22 ⁇ A current flows through a path called ground, and the winding of the stator 6 is excited.
  • the control device 14 drives the brushless motor 1 in the 180 ° energization method in the rotor opening direction (CCW direction)
  • the energization direction is V phase ⁇ U, W phase
  • the high side FET 19-2 and the low side FET 20 -1,20-3 are turned on.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-2 ⁇ the motor terminal (V) ⁇ the winding of the stator 6 ⁇ the motor terminals (U, W) ⁇ the low side FETs 20-1, 20-3 ⁇ the second.
  • a current flows through the path of the overcurrent detection circuit 22 ⁇ ground, and the winding of the stator 6 is excited.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FETs 19-2 and 19-3 ⁇ the motor terminals (V, W) ⁇ the winding of the stator 6 ⁇ the motor terminal (U) ⁇ the low side FET 20-1 ⁇ the second.
  • a current flows through the path of the overcurrent detection circuit 22 ⁇ ground, and the winding of the stator 6 is excited.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-3 ⁇ the motor terminal (W) ⁇ the winding of the stator 6 ⁇ the motor terminals (U, V) ⁇ the low side FETs 20-1 and 20-2 ⁇ the second.
  • a current flows through the path of the overcurrent detection circuit 22 ⁇ ground, and the winding of the stator 6 is excited.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FETs 19-1, 19-3 ⁇ the motor terminals (U, W) ⁇ the winding of the stator 6 ⁇ the motor terminal (V) ⁇ the low side FET 20-2 ⁇ the second.
  • a current flows through the path of the overcurrent detection circuit 22 ⁇ ground, and the winding of the stator 6 is excited.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FET 19-1 ⁇ the motor terminal (U) ⁇ the winding of the stator 6 ⁇ the motor terminal (V, W) ⁇ the low side FET 20-2, 20-3 ⁇ the second A current flows through the path of the overcurrent detection circuit 22 ⁇ ground, and the winding of the stator 6 is excited.
  • the power source ⁇ the first overcurrent detection circuit 21 ⁇ the high side FETs 19-1 and 19-2 ⁇ the motor terminals (U, V) ⁇ the winding of the stator 6 ⁇ the motor terminal (W) ⁇ the low side FET 20-3 ⁇ the second.
  • a current flows through the path of the overcurrent detection circuit 22 ⁇ ground, and the winding of the stator 6 is excited.
  • FIG. 4 is a diagram for explaining the relationship between the energization direction, the electrical angle, and the Hall switch output during operation of the brushless motor apparatus in FIG. 1, and FIG. 4 (a) shows a case of 120-degree energization drive.
  • FIG. 4B shows the case of 180-degree energization drive.
  • 4A and 4B are both energization switching patterns of the single-precision brushless motor device shown in FIG.
  • a magnetic pole position detecting magnet 8 having 12 poles and three hall switches 10 are used.
  • the U Hall switch, V Hall switch, and W Hall switch corresponding to the U phase, V phase, and W phase, respectively, are equiangularly spaced (electrical angle 120 °) within a pair of N pole and S pole (electrical angle 360 °). ), And there are six states within one period (mechanical angle 60 °, electrical angle 360 °) of a pair of N and S poles.
  • FIG. 5 is a timing chart showing the relationship between the energization direction and the signal output from the hall switch when the rotor is rotated in the valve opening direction by the 120-degree energization method with an advance angle of 0 degrees.
  • the microcomputer 16 Based on the signal sent from the hall switch 10, the microcomputer 16 has a high side FET 19-1 (high side FET U), a high side FET 19-2 (high side FET V), and a high side FET 19-3 (high side FET W).
  • the low-side FET 20-1 (low-side FET U), the low-side FET 20-2 (low-side FET V), and the low-side FET 20-3 (low-side FET W) are sequentially turned on / off in ascending order of motor energization numbers at the timing shown in the figure. Then, the rotor 4 is rotated in the valve opening direction.
  • FIG. 6 is a diagram showing an energization sequence when the rotor is rotated in the valve opening direction by the energization pattern of the 120-degree energization method, and the torque point of the rotor in each energization. That is, in order to advance the rotor 4 in the valve opening direction, the energization pattern must be switched in the order of the motor energization number (1) ⁇ (6) indicated by the numbers in parentheses in the figure.
  • FIG. 7 is a timing chart showing the relationship between the energization direction and the signal output from the hall switch when the rotor is rotated in the valve closing direction by a 120 degree energization method with an advance angle of 0 degrees.
  • the microcomputer 16 Based on the signal sent from the hall switch 10, the microcomputer 16 has a high side FET 19-1 (high side FET U), a high side FET 19-2 (high side FET V), and a high side FET 19-3 (high side FET W).
  • the low-side FET 20-1 (low-side FET U), the low-side FET 20-2 (low-side FET V) and the low-side FET 20-3 (low-side FET W) are sequentially turned on / off in descending order of the motor energization number at the timing shown in the figure. Then, the rotor 4 is rotated in the valve closing direction.
  • FIG. 8 is a diagram showing an energization sequence when the rotor is rotated in the valve closing direction by the energization pattern of the 120-degree energization method, and the torque point of the rotor in each energization. That is, in order to advance the rotor 4 in the valve closing direction, the energization pattern must be switched in the order of the motor energization number (6) ⁇ (1) indicated by the numbers in parentheses in the figure.
  • FIG. 9 is a timing chart showing the relationship between the energization direction and the signal output from the hall switch when the rotor is rotated in the valve opening direction by the 180 degree energization method with an advance angle of 0 degrees.
  • the microcomputer 16 Based on the signal sent from the hall switch 10, the microcomputer 16 has a high side FET 19-1 (high side FET U), a high side FET 19-2 (high side FET V), and a high side FET 19-3 (high side FET W).
  • the low-side FET 20-1 (low-side FET U), the low-side FET 20-2 (low-side FET V), and the low-side FET 20-3 (low-side FET W) are sequentially turned on / off in ascending order of motor energization numbers at the timing shown in the figure. Then, the rotor 4 is rotated in the valve opening direction.
  • FIG. 10 is a diagram showing an energization sequence when the rotor is rotated in the valve opening direction by the energization pattern of the 180 degree energization method, and the torque point of the rotor in each energization. That is, in order to advance the rotor 4 in the valve opening direction, the energization pattern must be switched in the order of motor energization numbers (1) ⁇ (12) indicated by numbers in parentheses in the figure.
  • FIG. 11 is a timing chart showing the relationship between the energization direction and the signal output from the hall switch when the rotor is rotated in the valve closing direction by a 180 degree energization method with an advance angle of 0 degrees.
  • the microcomputer 16 Based on the signal sent from the hall switch 10, the microcomputer 16 has a high side FET 19-1 (high side FET U), a high side FET 19-2 (high side FET V), and a high side FET 19-3 (high side FET W).
  • the low-side FET 20-1 (low-side FET U), the low-side FET 20-2 (low-side FET V) and the low-side FET 20-3 (low-side FET W) are sequentially turned on / off in descending order of the motor energization number at the timing shown in the figure. Then, the rotor 4 is rotated in the valve closing direction.
  • FIG. 12 is a diagram showing an energization sequence and a torque point of the rotor in each energization when the rotor is rotated in the valve closing direction by the energization pattern of the 180-degree energization method. That is, in order to advance the rotor 4 in the valve closing direction, the energization pattern must be switched in the order of the motor energization number (12) ⁇ (1) indicated by the numbers in parentheses in the figure.
  • the microcomputer 16 of the control device 14 calculates the rotation speed of the brushless motor 1 based on the rotation position detection signal input from the hall switch 10 via the hall switch interface 15.
  • the brushless motor 1 is driven by a 120-degree energization method without performing advance angle control (advance angle 0 degree).
  • the microcomputer 16 switches from 120 degrees energization to 180 degrees energization advanced by a predetermined advance amount to drive the brushless motor 1.
  • the energization period in 180-degree energization drive is advanced by an electrical angle of 30 degrees, which is a half period of the non-energization period in 120-degree energization.
  • the microcomputer 16 drives the brushless motor 1 by returning from the 180-degree energization to the 120-degree energization again.
  • FIG. 13 shows the relationship between the energization direction and the signal output from the hall switch when the rotor is rotated in the valve opening direction by 180 ° energization with no advance and 180 ° energization drive with 30 ° advance.
  • 13A is a timing chart
  • FIG. 13A shows a case of 180 ° energization with no advance angle
  • FIG. 13B shows a case of 180 ° energization advanced by 30 degrees.
  • FIG. 13B shows a high side FET 19-3 (high side FET W), a low side FET 20-1 (low side FET U), a low side FET 20-2 (low side FET V), and a low side FET 20-3 (low side FET W).
  • the change in the magnetic poles of the rotor 4 detected by the hall switch 10 is sequentially turned on / off in ascending order of the motor energization number at a timing preceding the electrical angle by 30 degrees By turning off, the rotor 4 is rotated in the valve opening direction.
  • the 180-degree energization (non-advance) Hall switch 10 shown in FIG. 5 the 180-degree energization (non-advance) energization switching shown in FIG.
  • the 180 degree energization (30 degree advance) energization switching timing shown in FIG. 13B is the same as the 120 degree energization (no advance angle) energization switching timing.
  • the time until the target position is reached by 120-degree energization drive (advance angle 0 degree).
  • the 180-degree energization drive (advance angle 30 degrees) is faster than the responsiveness.
  • the advance amount of the 180-degree energization is set to 30 degrees. However, if the responsiveness of the 180-degree energization method is not impaired, the advance angle is 30 degrees or less. There may be.
  • the positional deviation between the actual position of the rotational position of the rotor 4 and the target position is determined by the brushless motor. It may be obtained as a parameter related to the rotational speed of 1 and the energization switching may be performed according to this position deviation.
  • the microcomputer 16 calculates the actual position of the rotational position based on the detection signal of the magnetic pole position of the rotor 4 sent from the hall switch 10, and compares the positional deviation between the actual position and the target position with a predetermined threshold value. To do.
  • the rotation speed and the position deviation may be compared with respective threshold values, and switching from 120-degree energization to 180-degree energization may be performed when at least one of these exceeds the threshold. By doing in this way, when rotation speed is required, it can switch to 180 degree
  • a threshold value that is a criterion for switching from 120-degree energization to 180-degree energization when the rotation speed is increasing, and 180-degree energization to 120-degree energization when the rotation speed is decreasing.
  • the threshold value serving as the determination criterion for switching to is set to a value separated by a predetermined interval.
  • FIG. 14 is a diagram for explaining the hysteresis characteristic provided in the determination criterion for switching the energization.
  • FIG. 14A shows a case where the rotational speed is increasing, and FIG. Shows the case.
  • a threshold A1 is used as a determination criterion for switching from 180-degree energization to 120-degree energization
  • a threshold A2 is used as a determination criterion for switching from 120-degree energization to 180-degree energization. It is assumed that threshold value A1 ⁇ threshold value A2, and threshold values A1 and A2 are values separated by an interval that can absorb fluctuations in rotational speed (minute fluctuations in rotational speed).
  • the controller 14 drives the brushless motor 1 and does not switch from 120-degree energization to 180-degree energization even when the rotational speed increases and exceeds the threshold value A1.
  • the rotational speed further increases and exceeds the threshold value A2
  • a dead zone is not obtained with respect to switching from 180-degree energization to 120-degree energization, and frequent energization switching does not occur.
  • FIG. 15 is a diagram illustrating an example of the arrangement of hall switches in a single-precision and double-precision brushless motor device.
  • a 12-pole magnetic pole position detecting magnet 8 and three hall switches 10 are used.
  • the U Hall switch, V Hall switch, and W Hall switch corresponding to the U phase, V phase, and W phase, respectively, are equiangularly spaced (electrical angle 120 °) within a pair of N pole and S pole (electrical angle 360 °). ), And there are six states within one period (mechanical angle 60 °, electrical angle 360 °) of a pair of N and S poles.
  • a brushless motor device In order to increase the resolution of detecting the rotational position of the rotor, a brushless motor device has been developed in which the number of poles of the magnetic pole position detecting magnet 8 is “24”, which is twice the single precision as shown in FIG. .
  • Such a brushless motor device in which the number of poles of the magnetic pole position detection magnet 8 is twice the number of poles of the rotor 4 and includes three Hall switches 10 is referred to as “double precision brushless” in this specification. It is called a “motor device”.
  • the resolution for detecting the rotational position of the rotor can be improved to twice that of the single-precision brushless motor device.
  • a 24-pole magnetic pole position detection magnet 8 and three hall switches 10 are used.
  • U Hall switch, V Hall switch, and W Hall switch corresponding to U phase, V phase, and W phase respectively within a pair of N pole and S pole (electrical angle 360 °) are equiangularly spaced (electrical angle 120 °)
  • the three states exist within one cycle (mechanical angle 30 °, electrical angle 360 °) of the pair of N and S poles.
  • the hall switch 10 serves as a brush in the DC motor.
  • FIG. 16 shows the response of the rotational speed of the rotor until it reaches the target position for the non-advanced and advanced 120 ° energization drive and 180 ° energization drive for the brushless motor with variations in the rotor rotation position sensor. It is a figure which shows a simulation result, and targets the above-mentioned double precision brushless motor apparatus.
  • FIG. 16A is a simulation result of behavior until the target position is reached when the target position of the rotational position of the rotor 4 is changed in steps (steps).
  • FIG. Based on the result of (a), the values obtained by normalizing the responsiveness in each energization method with reference to 120-degree energization drive (advance angle 0 degree) are shown. In FIG. 16, it is assumed that the drive duty of the PWM drive circuit (microcomputer 16) of the brushless motor 1 is 100%, and the operation of the motor alone, that is, no load.
  • the response waveform of the brushless motor 1 varies depending on the energization method and the advance amount.
  • the result (curve a) obtained by advancing the angle by 60 degrees by the 180-degree energization drive has the best response, and the response was 59% as shown in FIG.
  • the responsiveness of the 180-degree energization drive (curve b) advanced by 30 degrees is 71%
  • the responsiveness of the 120-degree energization drive (curve c) advanced by 60 degrees is 75%, advanced by 30 degrees.
  • the microcomputer 16 of the control device 14 when the rotational speed increases and the rotational speed is in the middle speed range exceeding the predetermined first threshold, the microcomputer 16 of the control device 14 The brushless motor 1 is driven by switching from the non-advanced 120 degree energization to the 180 degree energization advanced by 30 degrees. Further, when the rotational speed increases and enters a high speed range exceeding a predetermined second threshold, the microcomputer 16 switches to 180 degree energization that is further advanced by 30 degrees (60 degrees advance) to drive the brushless motor 1. .
  • the microcomputer 16 returns to energization of 180 degrees with a 30 degree advance angle to drive the brushless motor 1, and if the rotation speed falls below the first threshold value, no advance is made. Switch to 120 degree energization at the corner.
  • 180-degree energization drive that can control a wide range of rotational speeds that cannot be obtained by 120-degree energization without impairing the responsiveness of both 120-degree energization and 180-degree energization. it can.
  • the brushless motor 1 is driven by energizing 120 degrees advanced by 30 degrees in the low speed range, switched to 180 degrees energizing advanced by 30 degrees in the medium speed range, and further advanced by 30 degrees in the high speed range. You may make it switch to 180 degree energization made to advance. Further, the brushless motor 1 may be driven by 120-degree energization advanced by 60 degrees in the low-medium speed range, and switched to 180-degree energization advanced by 60 degrees in the high-speed range.
  • FIG. 17 is a diagram showing an example of the arrangement of hall switches in a brushless motor device with a quadruple precision.
  • six hall switches 10 are used. Up Hall switch, Vp hall switch and Wp hall are shifted by a predetermined offset with respect to the U hall switch, V hall switch and W hall switch arranged in the double precision brushless motor device shown in FIG. Each switch is arranged.
  • the amount of offset is 1/12 of the angle of the pair of N poles and S poles (mechanical angle 30 °, electrical angle 360 °) constituting the magnetic pole position detection magnet 8, and the mechanical angle is 2.5 ° (electrical angle). 15 °).
  • the brushless motor apparatus shown in FIG. 17 has a detection resolution of a double rotational position by providing an Up Hall switch, a Vp Hall switch, and a Wp Hall switch in a double precision brushless motor apparatus.
  • the present invention can also be applied to such a so-called “quadruple precision brushless motor device”.
  • the brushless motor 1 is driven by 180 degrees energization that is advanced every 120 degrees of electrical angle determined according to the detection accuracy of the rotor rotational position from 120 degrees energization driving. Further, in the case of quadruple precision, 150-degree conduction drive is also possible.
  • the present invention can also be applied to an n-times precision brushless motor device in which the number of poles of the magnetic pole position detection magnet 8 is n times that of single precision.
  • the drive of the brushless motor 1 is advanced by the 120-degree energization method and the electrical angle of 30 degrees according to the comparison result between the parameter value related to the rotation speed and the predetermined threshold value.
  • Switch between the 180 degree energization method the control device 14 calculates the rotational speed of the brushless motor 1 as a parameter related to the rotational speed, and when the rotational speed exceeds a predetermined threshold, the brushless motor 1 is driven from the 120-degree energization method to the electrical angle. Switch to the 180-degree energization method advanced by 30 degrees.
  • the driving of the brushless motor 1 can be switched to an appropriate energization method according to the speed.
  • the control device 14 when the control device 14 reversibly switches between the 120-degree energization method and the 180-degree energization method to control the driving of the brushless motor 1, the forward direction switching and the reverse direction switching are performed.
  • the threshold values different from each other are set, and the value of the parameter related to the rotational speed is compared with the threshold value to switch between the forward direction and the reverse direction. In this way, by providing the threshold with hysteresis characteristics, it is possible to prevent ringing due to a change in the parameter related to the rotation speed in the vicinity of the threshold, and the brushless motor 1 can be driven stably.
  • the control device 14 includes a control unit including the microcomputer 16 that generates a motor control signal for controlling the driving of the brushless motor 1, and the above-described operation based on the motor control signal.
  • the threshold value that is the determination criterion for switching the energization method may be appropriately set in the microcomputer 16 of the control device 14 from the outside using an input device (not shown).
  • the brushless motor apparatus drives the brushless motor according to the comparison result between the parameter value related to the rotational speed of the brushless motor and the predetermined threshold value, and advances the driving of the brushless motor by a predetermined amount of time. Since it is configured to switch between the 180 ° energization system that is squared, the responsiveness of the brushless motor can be improved, and it is suitable for use in an EGR valve to which a brushless motor device is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 ブラシレスモータ1の回転速度と所定の閾値の比較結果に応じて、ブラシレスモータ1の駆動を120度通電方式と電気角30度進角させた180度通電方式との間で切り替える。

Description

ブラシレスモータ装置及び制御装置
 この発明は、例えば車用のEGR(Exhaust Gas Recirculation:排気ガス再循環)バルブ、VG(Variable Geometric)ターボアクチュエータ等の排ガス制御用アクチュエータの駆動源として用いられるブラシレスモータ装置及びブラシレスモータの駆動を制御する制御装置に関するものである。
 従来、車用のEGRバルブ、VGターボアクチュエータ等といった排ガス制御用アクチュエータの駆動源としてブラシレスモータ装置が用いられる。このブラシレスモータ装置の駆動方式には、120度通電方式と180度通電方式などが知られている。例えば、3相ブラシレスモータの120度通電駆動の場合、電気角で60度ごとに通電するコイルの切り替えが行われ、各コイルの通電方向の切り替え時に電気角60度の無通電期間が存在する。この無通電期間の存在によりロータ位置の検出や着磁のばらつきの影響を小さくできる特徴を有する。このため、従来は、一般に120度通電方式が多く採用されている。
 一方、近年、ブラシレスモータの応答性向上の要求が高まっており、上記のような無通電期間を有する120度通電駆動では市場の要求を満足することができなくなっている。例えば、特許文献1に記載されるブラシレスモータの駆動制御装置では、目標モータ回転数と実際の回転数との偏差に応じて算出された制御パラメータを基にブラシレスモータの回転数を制御するとともに、ブラシレスモータの回転位置の検出信号に基いて通電位相角を制御している。このように回転数制御の制御パラメータを用いて駆動回路の通電位相角を補正することにより、回転数の変化に対する応答性の確保を図っている。
特開2005-192338号公報
 ブラシレスモータの応答性を向上させるには、特許文献1のように高分解能の回転位置センサと高性能なマイコンを用いることで自由に通電位相角を補正できる。しかしながら、安価なシステムにおいては、高分解能回転位置センサは使用できない。
 図18は、電気角60度ごとに検出できるロータ回転位置センサにばらつきのある、ブラシレスモータにおける120度通電方式と180度通電方式の応答性を示すグラフであり、目標位置をステップ(段階)で変化させた場合における前記目標位置に達するまでの応答性をシミュレーションした結果を示している。ここで、図18中で符号Aを付した曲線が120度通電駆動(進角0度)での応答性のシミュレーション結果であり、符号Bを付した曲線が180度通電駆動(進角0度)での応答性のシミュレーション結果である。
 図18において、180度通電駆動(進角0度)は、120度通電駆動(進角0度)より遅くなっている。このように180度通電方式では通電幅は広いが、図18に示すように120度通電方式よりも目標位置に達するまでの応答性が悪い。従って、互いに応答性の異なる通電方式を単に切り替えても所望の応答性を得ることができない。
 この発明は、上記のような課題を解決するためになされたもので、120度通電方式と180度通電方式を適宜切り替えることにより、ブラシレスモータの応答性を向上させたブラシレスモータ装置及びブラシレスモータの駆動を制御する制御装置を得ることを目的とする。
 この発明に係るブラシレスモータ装置は、ロータの回転位置を検出する回転位置センサを有する3相のブラシレスモータと、回転位置センサの検出信号に基づき、通電方式切り替えのパラメータとして回転速度に関係するパラメータの値を算出し、当該パラメータの値と所定の閾値との比較結果に応じて、ブラシレスモータの駆動を120度通電方式と所定量進角させた180度通電方式との間で切り替える制御装置とを備えるものである。
 この発明によれば、回転速度に関係するパラメータの値と所定の閾値との比較結果に応じて、ブラシレスモータの駆動を120度通電方式と所定量進角させた180度通電方式との間で切り替えるので、ブラシレスモータの応答性を向上させることができるという効果がある。
この発明の実施の形態1に係るブラシレスモータ装置が適用されたEGRバルブの構造を軸方向に切断して示す断面図である。 図1中のブラシレスモータのモータシャフト端面から見た平面図である。 図1中のブラシレスモータの駆動を制御する制御装置の構成を示すブロック図である。 図1中のブラシレスモータ装置の運転時における通電方向、電気角及びホールスイッチの出力の関係を説明するための図である。 進角0度で120度通電方式によりバルブの開弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。 120度通電方式の通電パターンでロータを開弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。 進角0度で120度通電方式によりバルブの閉弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。 120度通電方式の通電パターンでロータを閉弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。 進角0度で180度通電方式によりバルブの開弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。 180度通電方式の通電パターンでロータを開弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。 進角0度で180度通電方式によりバルブの閉弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。 180度通電方式の通電パターンでロータを閉弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。 無進角の180度通電と30度進角させた180度通電駆動でバルブの開弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。 通電切り替えの判定基準に設けたヒステリシス特性を説明するための図である。 単精度及び2倍精度のブラシレスモータ装置におけるホールスイッチの配置の例を示す図である。 無進角及び進角させた120度通電駆動と180度通電駆動とで、ロータの回転速度が目標位置に達するまでの応答性のシミュレーション結果を示す図である。 4倍精度のブラシレスモータ装置におけるホールスイッチの配置の例を示す図である。 無進角の120度通電と180度通電における目標位置に達するまでの応答性のシミュレーション結果を示す図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1によるブラシレスモータ装置を適用したEGRバルブの構造を軸方向に切断して示す断面図である。このEGRバルブは、大きく分けると、ブラシレスモータ1とバルブ機構2とから構成されている。ブラシレスモータ1は、モータシャフト3に螺合された円筒状のロータ4が、ケース5に固着されたステータ6の中空部に挿入されて、ベアリング7によって回転自在に支持されることにより構成されている。また、ロータ4には、その軸に垂直な面となるように、磁極位置検出用マグネット8が固着されている。
 また、プリント基板9にはホールスイッチ(ロータ回転位置センサ)10が搭載されている。ホールスイッチ10は、ホール素子が組み込まれたICから構成されている。プリント基板9は、ホールスイッチ10が磁極位置検出用マグネット8に対向する位置になるようにケース5に取り付けられている。ロータ4に螺合されるモータシャフト3は、ロータ4の回転によって、その軸方向(図1中の上下方向)に移動可能になっており、ロータ4の1回転当たりのモータシャフト3の移動量が所定量になるように、モータシャフト3及びロータ4にねじが形成されている。
 バルブ機構2には、バルブ11が固着されたバルブシャフト12が設けられており、その軸はモータシャフト3の軸と同一位置になるように配置されている。このバルブシャフト12は、フェイルセーフ機能を実現するために、リターンスプリング13によって、バルブ11が閉じる方向(以下、「閉弁方向」という)に付勢されている。バルブシャフト12は、その一端にモータシャフト3が当接することにより、その軸方向(図示矢印方向)に移動可能になっている。
 図2は、図1中のブラシレスモータのモータシャフト端面から見た平面図である。このブラシレスモータ1のステータ6のスロット数は「9」であり、ロータ4の極数は「12」であり、磁極位置検出用マグネット8の極数は「12」である。このように、ロータ4の極数と磁極位置検出用マグネット8の極数とが同一であり、かつ3個のホールスイッチ10を備えたブラシレスモータ装置を、この明細書では「単精度のブラシレスモータ装置」と呼ぶ。磁極位置検出用マグネット8に対向するように配置されたホールスイッチ10は、図2に示すように、Uホールスイッチ、Vホールスイッチ、Wホールスイッチといった3個のホールスイッチから構成されている。
 図3は、図1中のブラシレスモータの駆動を制御する制御装置の構成を示すブロック図である。図3に示すように、制御装置14は、ホールスイッチインタフェース15、マイクロコンピュータ(以下、「マイコン」と略す)16、ハイサイドFETドライブ回路17-1~17-3、ローサイドFETドライブ回路18-1~18-3、ハイサイドFET19-1~19-3、ローサイドFET20-1~20-3、第1過電流検出回路21、第2過電流検出回路22及びラッチ回路23を備える。なお、制御装置14は、ブラシレスモータ1の制御部として一体に設けてもよく、またブラシレスモータ1とは別個の電子制御ユニットとして設けてもよい。
 ホールスイッチインタフェース15は、Uホールスイッチからホールスイッチ端子(U)を介して送られてくる信号、Vホールスイッチからホールスイッチ端子(V)を介して送られてくる信号及びWホールスイッチからホールスイッチ端子(W)を介して送られてくる信号を入力し、所定の増幅等を行った後に、マイコン16に送る。
 マイコン(制御部)16は、ホールスイッチインタフェース15から送られてくる信号に基づき、モータ制御信号を生成し、PWM出力ポートからハイサイドFETドライブ回路17-1~17-3及びローサイドFETドライブ回路18-1~18-3に送る。また、マイコン16は、ラッチ回路23からの駆動停止信号が送られてきた場合に、モータ制御信号の生成を停止する。
 ハイサイドFETドライブ回路(駆動回路部)17-1~17-3は、ラッチ回路23から駆動停止信号が送られてきていない場合に、マイコン16から送られてくるモータ制御信号に基づき駆動信号を生成し、ハイサイドFET(駆動回路部)19-1~19-3のゲートにそれぞれ送る。ハイサイドFET19-1~19-3は、ハイサイドFETドライブ回路17-1~17-3から所定のタイミングで送られてくる駆動信号に応じてターンオンし、電源から第1過電流検出回路21の抵抗R1を経由して送られてくる電流を、モータ端子(U)、モータ端子(V)又はモータ端子(W)をそれぞれ経由してブラシレスモータ1のステータ6の巻線に送る。
 ローサイドFETドライブ回路(駆動回路部)18-1~18-3は、ラッチ回路(駆動回路部)23から駆動停止信号が送られてきていない場合に、マイコン16から送られてくるモータ制御信号に基づき駆動信号を生成し、ローサイドFET(駆動回路部)20-1~20-3のゲートにそれぞれ送る。ローサイドFET20-1~20-3は、ローサイドFETドライブ回路18-1~18-3から所定のタイミングで送られてくる駆動信号に応じてターンオンし、ステータ6の巻線からモータ端子(U)、モータ端子(V)又はモータ端子(W)をそれぞれ経由して送られてくる電流を、第2過電流検出回路22の抵抗R2を経由してグランドに流す。
 第1過電流検出回路(駆動回路部)21は、抵抗R1と、この抵抗R1の両端の電圧を検出する演算増幅器AMP1とから構成されており、電源からハイサイドFET19-1~19-3を経由してステータ6の巻線に流れる電流が所定値以上になったことを検出した場合に、過電流である旨を表す過電流信号を生成し、ラッチ回路23に送る。第2過電流検出回路(駆動回路部)22は、抵抗R2と、この抵抗R2の両端の電圧を検出する演算増幅器AMP2とから構成されており、ステータ6の巻線からローサイドFET20-1~20-3を経由してグランドに流れる電流が所定値以上になったことを検出した場合に、過電流である旨を表す過電流信号をラッチ回路23に送る。
 ラッチ回路(駆動回路部)23は、第1過電流検出回路21及び第2過電流検出回路22から送られてくる過電流信号をラッチし、駆動停止信号としてハイサイドFETドライブ回路17-1~17-3及びローサイドFETドライブ回路18-1~18-3に送るとともに、マイコン16に送る。これにより、ハイサイドFETドライブ回路17-1~17-3及びローサイドFETドライブ回路18-1~18-3における駆動信号の生成が停止されるとともに、マイコン16によるモータ制御信号の生成が停止される。
 制御装置14が、ブラシレスモータ1を120度通電方式でロータ開側方向(CCW方向)へ駆動させる際、通電方向がV相→U相の場合、ハイサイドFET19-2及びローサイドFET20-1がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-2→モータ端子(V)→ステータ6の巻線→モータ端子(U)→ローサイドFET20-1→第2過電流検出回路22→グランドという経路で電流が流れて、ステータ6の巻線が励磁される。
 通電方向がW相→U相の場合、ハイサイドFET19-3及びローサイドFET20-1がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-3→モータ端子(W)→ステータ6の巻線→モータ端子(U)→ローサイドFET20-1→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がW相→V相の場合、ハイサイドFET19-3及びローサイドFET20-2がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-3→モータ端子(W)→ステータ6の巻線→モータ端子(V)→ローサイドFET20-2→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がU相→V相の場合は、ハイサイドFET19-1及びローサイドFET20-2がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-1→モータ端子(U)→ステータ6の巻線→モータ端子(V)→ローサイドFET20-2→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がU相→W相の場合は、ハイサイドFET19-1及びローサイドFET20-3がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-1→モータ端子(U)→ステータ6の巻線→モータ端子(W)→ローサイドFET20-3→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がV相→W相の場合は、ハイサイドFET19-2及びローサイドFET20-3がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-2→モータ端子(V)→ステータ6の巻線→モータ端子(W)→ローサイドFET20-3→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 一方、制御装置14が、ブラシレスモータ1を180度通電方式でロータ開側方向(CCW方向)へ駆動させる際、通電方向がV相→U,W相の場合、ハイサイドFET19-2及びローサイドFET20-1,20-3がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-2→モータ端子(V)→ステータ6の巻線→モータ端子(U,W)→ローサイドFET20-1,20-3→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がV,W相→U相の場合、ハイサイドFET19-2,19-3及びローサイドFET20-1がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-2,19-3→モータ端子(V,W)→ステータ6の巻線→モータ端子(U)→ローサイドFET20-1→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がW相→U,V相の場合、ハイサイドFET19-3及びローサイドFET20-1,20-2がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-3→モータ端子(W)→ステータ6の巻線→モータ端子(U,V)→ローサイドFET20-1,20-2→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がU,W相→V相の場合は、ハイサイドFET19-1,19-3及びローサイドFET20-2がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-1,19-3→モータ端子(U,W)→ステータ6の巻線→モータ端子(V)→ローサイドFET20-2→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がU相→V,W相の場合は、ハイサイドFET19-1及びローサイドFET20-2,20-3がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-1→モータ端子(U)→ステータ6の巻線→モータ端子(V,W)→ローサイドFET20-2,20-3→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 通電方向がU,V相→W相の場合は、ハイサイドFET19-1,19-2及びローサイドFET20-3がターンオンされる。これにより、電源→第1過電流検出回路21→ハイサイドFET19-1,19-2→モータ端子(U,V)→ステータ6の巻線→モータ端子(W)→ローサイドFET20-3→第2過電流検出回路22→グランドという経路で電流が流れ、ステータ6の巻線が励磁される。
 図4は、図1中のブラシレスモータ装置の運転時における通電方向、電気角及びホールスイッチの出力の関係を説明するための図であり、図4(a)は120度通電駆動の場合を示しており、図4(b)は180度通電駆動の場合を示している。なお、図4(a)及び図4(b)はいずれも図2に示した単精度のブラシレスモータ装置の通電切り替えパターンである。
 単精度のブラシレスモータ装置の場合は、12極の磁極位置検出用マグネット8及び3個のホールスイッチ10が使用されている。この場合、一対のN極及びS極(電気角360°)内にU相、V相及びW相にそれぞれ対応するUホールスイッチ、Vホールスイッチ及びWホールスイッチが等角度間隔(電気角120°)で配置され、一対のN極及びS極の1周期(機械角60°、電気角360°)内に6つの状態が存在するようになっている。
 図4(a)に示すように、120度通電駆動では、バルブ11の開弁方向(開方向)にロータ4を回転させる場合は、ステータ6のU相、V相及びW相の各巻線に対して、V→U、W→U、W→V、U→V、U→W、V→Wの順番で通電が繰り返される。一方、閉弁方向(閉方向)にロータ4を回転させる場合は、ステータ6のU相、V相及びW相の各巻線に対して、W→V、W→U、V→U、V→W、U→W、U→Vの順番で通電が繰り返される。
 一方、図4(b)に示すように、180度通電駆動では、バルブ11の開弁方向(開方向)にロータ4を回転させる場合は、ステータ6のU相、V相及びW相の各巻線に対して、V→UW、VW→U、W→UV、UW→V、U→VW、UV→W、V→UWの順番で通電が繰り返される。一方、閉弁方向(閉方向)にロータ4を回転させる場合は、ステータ6のU相、V相及びW相の各巻線に対して、UW→V、W→UV、VW→U、V→UW、UV→W、U→VW、UW→Vの順番で通電が繰り返される。
 図5は、進角0度で120度通電方式によりバルブの開弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。マイコン16は、ホールスイッチ10から送られてくる信号に基づき、ハイサイドFET19-1(ハイサイドFET U)、ハイサイドFET19-2(ハイサイドFET V)、ハイサイドFET19-3(ハイサイドFET W)、ローサイドFET20-1(ローサイドFET U)、ローサイドFET20-2(ローサイドFET V)及びローサイドFET20-3(ローサイドFET W)を、図示するタイミングでモータ通電番号の昇順に順次オン/オフさせることにより、ロータ4を開弁方向に回転させる。
 図6は、120度通電方式の通電パターンでロータを開弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。つまり、ロータ4を開弁方向に進角させるためには、通電パターンを、図中の括弧付き数字で示されるモータ通電番号(1)→(6)の順番で切り替えなければならない。
 図7は、進角0度で120度通電方式によりバルブの閉弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。マイコン16は、ホールスイッチ10から送られてくる信号に基づき、ハイサイドFET19-1(ハイサイドFET U)、ハイサイドFET19-2(ハイサイドFET V)、ハイサイドFET19-3(ハイサイドFET W)、ローサイドFET20-1(ローサイドFET U)、ローサイドFET20-2(ローサイドFET V)及びローサイドFET20-3(ローサイドFET W)を、図示するタイミングでモータ通電番号の降順に順次オン/オフさせることにより、ロータ4を閉弁方向に回転させる。
 図8は、120度通電方式の通電パターンでロータを閉弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。つまり、ロータ4を閉弁方向に進角させるためには、通電パターンを、図中の括弧付き数字で示されるモータ通電番号(6)→(1)の順番で切り替えなければならない。
 図9は、進角0度で180度通電方式によりバルブの開弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。マイコン16は、ホールスイッチ10から送られてくる信号に基づき、ハイサイドFET19-1(ハイサイドFET U)、ハイサイドFET19-2(ハイサイドFET V)、ハイサイドFET19-3(ハイサイドFET W)、ローサイドFET20-1(ローサイドFET U)、ローサイドFET20-2(ローサイドFET V)及びローサイドFET20-3(ローサイドFET W)を、図示するタイミングでモータ通電番号の昇順に順次オン/オフさせることにより、ロータ4を開弁方向に回転させる。
 図10は、180度通電方式の通電パターンでロータを開弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。つまり、ロータ4を開弁方向に進角させるためには、通電パターンを、図中の括弧付き数字で示されるモータ通電番号(1)→(12)の順番で切り替えなければならない。
 図11は、進角0度で180度通電方式によりバルブの閉弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートである。マイコン16は、ホールスイッチ10から送られてくる信号に基づき、ハイサイドFET19-1(ハイサイドFET U)、ハイサイドFET19-2(ハイサイドFET V)、ハイサイドFET19-3(ハイサイドFET W)、ローサイドFET20-1(ローサイドFET U)、ローサイドFET20-2(ローサイドFET V)及びローサイドFET20-3(ローサイドFET W)を、図示するタイミングでモータ通電番号の降順に順次オン/オフさせることにより、ロータ4を閉弁方向に回転させる。
 図12は、180度通電方式の通電パターンでロータを閉弁方向に回転させる場合の通電順序と、各通電におけるロータのトルク点を示す図である。つまり、ロータ4を閉弁方向に進角させるためには、通電パターンを、図中の括弧付き数字で示されるモータ通電番号(12)→(1)の順番で切り替えなければならない。
 次に、この実施の形態1によるブラシレスモータ1の駆動制御について説明する。
(1)通電方式の切り替え
 先ず、ブラシレスモータ1が単精度のブラシレスモータである場合を例に挙げて説明する。制御装置14のマイコン16は、ホールスイッチインタフェース15を介してホールスイッチ10から入力する回転位置の検出信号に基づいて、ブラシレスモータ1の回転速度を算出する。ここで、回転速度が所定の閾値以下の低中速範囲では、進角制御を行わず(進角0度)に120度通電方式でブラシレスモータ1を駆動させる。
 この後、回転速度が上がっていき上記所定の閾値を超えた高速範囲になると、マイコン16は、120度通電から所定の進角量だけ進角させた180度通電へ切り替えてブラシレスモータ1を駆動させる。例えば、180度通電駆動における通電期間を120度通電における無通電期間の半期間である電気角30度だけ進角させる。一方、回転速度が落ちて上記所定の閾値以下になれば、マイコン16は、180度通電から再び120度通電に戻してブラシレスモータ1を駆動させる。
 図13は、無進角の180度通電と30度進角させた180度通電駆動でバルブの開弁方向にロータを回転させるときの通電方向とホールスイッチから出力される信号との関係を示すタイミングチャートであり、図13(a)は無進角の180度通電の場合を示し、図13(b)は30度進角させた180度通電の場合を示している。マイコン16は、回転速度が上記所定の閾値を超えると、ホールスイッチ10から送られてくる信号に基づき、ハイサイドFET19-1(ハイサイドFET U)、ハイサイドFET19-2(ハイサイドFET V)、ハイサイドFET19-3(ハイサイドFET W)、ローサイドFET20-1(ローサイドFET U)、ローサイドFET20-2(ローサイドFET V)及びローサイドFET20-3(ローサイドFET W)を、図13(b)に示すようにホールスイッチ10で検出されたロータ4の磁極の変化(図13中のホールスイッチ10の出力論理の変化)に対し電気角30度分先行させるタイミングでモータ通電番号の昇順に順次オン/オフさせることにより、ロータ4を開弁方向に回転させる。
 図5に示した120度通電(無進角)のホールスイッチ10の切り替わりタイミングでは、図13(a)に示す180度通電(無進角)の通電の切り替えは作れない。しかし、図13(b)に示す180度通電(30度進角)の通電切り替えタイミングは、120度通電(無進角)の通電切り替えタイミングと同じになる。
 図16で後述する目標位置をステップ(段階)で変化させた場合における目標位置に達するまでの応答性をシミュレーションした結果において、120度通電駆動(進角0度)で目標位置に到達するまでの応答性に対して、180度通電駆動(進角30度)の方が速い。
 なお、単精度のブラシレスモータ1において、180度通電の進角量を30度とする場合を示したが、180度通電方式の応答性を損なわない範囲であれば30度以下の進角量であってもよい。
 また、上述の説明では、ブラシレスモータ1の回転速度に応じて120度通電から180度通電へ切り替える場合を示したが、ロータ4の回転位置の実位置と目標位置との位置偏差を、ブラシレスモータ1の回転速度に関係するパラメータとして求め、この位置偏差に応じて通電切り替えを行うようにしてもよい。
 例えば、マイコン16が、ホールスイッチ10から送られてくるロータ4の磁極位置の検出信号に基づいて回転位置の実位置を算出し、この実位置と目標位置との位置偏差を所定の閾値と比較する。このとき、位置偏差が上記所定の閾値を超えて実位置との位置偏差が大きい場合、回転速度を上げて偏差を低減する必要があるので180度通電(進角30度)へ切り替える。
 なお、回転速度及び位置偏差をそれぞれの閾値と比較し、これらの少なくとも一方が閾値を超えたことに応じて120度通電から180度通電へ切り替えるようにしてもよい。このようにすることにより、回転速度が必要な際に確実に180度通電へ切り替えることができる。
(2)通電切り替えの判定基準のヒステリシス特性
 ブラシレスモータ1の駆動状況として、回転速度が上昇している場合と回転速度が下降している場合の双方において、120度通電と180度通電を切り替える回転速度に関係するパラメータの閾値が同一であると、閾値周辺で通電切り替えが頻繁に発生する可能性がある。このように通電切り替えが頻繁になると、各通電方式でブラシレスモータ1に供給する電流波形にリンギングを生じさせ、ブラシレスモータ1の動作が不安定になる。
 そこで、この実施の形態1では、回転速度が上昇している場合に120度通電から180度通電へ切り替える判定基準となる閾値と、回転速度が下降している場合に180度通電から120度通電へ切り替える判定基準となる閾値とを、所定の間隔だけ離れた値にそれぞれ設定する。
 図14は、通電切り替えの判定基準に設けたヒステリシス特性を説明するための図であり、図14(a)は回転速度が上昇している場合、図14(b)は回転速度が下降している場合を示している。図14(a)に示すように、180度通電から120度通電へ切り替える判定基準となる閾値A1とし、120度通電から180度通電へ切り替える判定基準となる閾値A2とする。閾値A1<閾値A2であり、閾値A1,A2は回転速度のふらつき(回転速度の微小変動)を吸収できる間隔だけ離れた値であるものとする。
 制御装置14は、ブラシレスモータ1を駆動させ、回転速度が上昇して閾値A1を超えても120度通電から180度通電への切り替えは行わない。さらに回転速度が上昇して閾値A2を超えると、120度通電(進角制御無し)から180度通電(進角制御有り)への切り替えを実行する。このようにすることで、閾値A2近辺で回転速度が上下に変動しても、180度通電から120度通電への切り替えに関しては不感帯となり、頻繁に通電切り替えが発生することがない。
 一方、図14(b)に示す回転速度が下降している場合は、回転速度が下降して閾値A2以下となっても180度通電から120度通電への切り替えは行わない。さらに回転速度が下降して閾値A1以下になると、制御装置14は、180度通電から120度通電(進角制御無し)への切り替えを実行する。これにより、閾値A1近辺で回転速度が上下に変動しても、120度通電から180度通電への切り替えに関しては不感帯となり、頻繁に通電切り替えが発生することがない。
 このように、通電切り替えの判定基準にヒステリシス特性を持たせることにより、リンギングを防止することができ、ひいてはブラシレスモータ1を安定して動作させることができる。
(3)n倍精度のブラシレスモータにおける通電方式の切り替え制御
 上述まででは単精度のブラシレスモータ1を駆動対象とした場合を説明したが、この発明は、これ以外の構成のブラシレスモータ装置に対しても適用可能である。
 図15は、単精度及び2倍精度のブラシレスモータ装置におけるホールスイッチの配置の例を示す図である。単精度のブラシレスモータ装置の場合は、12極の磁極位置検出用マグネット8及び3個のホールスイッチ10が使用されている。この場合、一対のN極及びS極(電気角360°)内にU相、V相及びW相にそれぞれ対応するUホールスイッチ、Vホールスイッチ及びWホールスイッチが等角度間隔(電気角120°)で配置され、一対のN極及びS極の1周期(機械角60°、電気角360°)内に6つの状態が存在するようになっている。
 また、ロータの回転位置検出の分解能を上げるために、磁極位置検出用マグネット8の極数を、図15に示すように単精度の2倍の「24」にしたブラシレスモータ装置が開発されている。このような、磁極位置検出用マグネット8の極数がロータ4の極数の2倍であり、かつ3個のホールスイッチ10を備えたブラシレスモータ装置を、この明細書では「2倍精度のブラシレスモータ装置」と呼ぶ。この2倍精度のブラシレスモータ装置によれば、ロータの回転位置検出の分解能を、単精度のブラシレスモータ装置の2倍に向上させることができる。
 図15に示す2倍精度のブラシレスモータ装置には、24極の磁極位置検出用マグネット8及び3個のホールスイッチ10が使用されている。また、一対のN極及びS極(電気角360°)内にU相、V相及びW相にそれぞれ対応するUホールスイッチ、Vホールスイッチ及びWホールスイッチが等角度間隔(電気角120°)で配置され、一対のN極及びS極の1周期(機械角30°、電気角360°)内に3つの状態が存在するようになっている。単精度及び2倍精度のいずれの場合も、ホールスイッチ10は、DCモータにおけるブラシの役割を果たすものである。
 図16は、ロータ回転位置センサにばらつきのあるブラシレスモータに対し、無進角及び進角させた120度通電駆動と180度通電駆動とでロータの回転速度が目標位置に達するまでの応答性のシミュレーション結果を示す図であり、上述の2倍精度のブラシレスモータ装置を対象としている。また、図16(a)は、ロータ4の回転位置の目標位置をステップ(段階)で変化させた場合の目標位置に達するまでの挙動のシミュレーション結果であり、図16(b)は、図16(a)の結果を基に120度通電駆動(進角0度)を基準として各通電方式での応答性を正規化した値を示している。なお、図16では、ブラシレスモータ1のPWM駆動回路(マイコン16)の駆動デューティが100%であり、モータ単体での動作、すなわち無負荷である場合を想定している。
 図16(a)に示すように、ブラシレスモータ1の応答波形は、通電方式やその進角量によって異なる。180度通電駆動で60度進角させた結果(曲線a)が最も応答性がよく、図16(b)のように応答性が59%であった。また、30度進角させた180度通電駆動(曲線b)の応答性が71%、60度進角させた120度通電駆動(曲線c)の応答性が75%、30度進角させた120度通電駆動(曲線d)の応答性が92%となった反面、無進角の120度通電駆動(曲線e)及び180度通電駆動(曲線f)の応答性はそれぞれ100%、114%であった。このように、120度通電及び180度通電の双方とも進角制御により応答性が向上する。
 そこで、この実施の形態1では、2倍精度のブラシレスモータ1において、回転速度が上がっていき、回転速度が所定の第1の閾値を超えた中速範囲になると、制御装置14のマイコン16が、無進角の120度通電から30度進角させた180度通電へ切り替えてブラシレスモータ1を駆動させる。さらに、回転速度が上がって所定の第2の閾値を超えた高速範囲になると、マイコン16が、さらに30度進角(60度進角)させた180度通電へ切り替えてブラシレスモータ1を駆動させる。
 一方、回転速度が落ちて上記第2の閾値以下になれば、マイコン16が、30度進角の180度通電に戻してブラシレスモータ1を駆動させ、上記第1の閾値以下になれば無進角の120度通電に切り替える。このように駆動制御することにより、120度通電と180度通電の双方の応答性を損なうことなく、120度通電で得られない広範囲な回転速度の制御が可能な180度通電駆動に切り替えることができる。
 また、低速範囲において30度進角させた120度通電でブラシレスモータ1を駆動させ、中速範囲で30度進角させた180度通電に切り替え、高速範囲でさらに進角量30度進めて60度進角させた180度通電に切り替えるようにしてもよい。さらに、低中速範囲において60度進角させた120度通電でブラシレスモータ1を駆動させ、高速範囲で60度進角させた180度通電に切り替えるようにしてもよい。
 図17は、4倍精度のブラシレスモータ装置におけるホールスイッチの配置の例を示す図である。この場合、6個のホールスイッチ10が使用される。図15に示した2倍精度のブラシレスモータ装置で配置されているUホールスイッチ、Vホールスイッチ及びWホールスイッチに対し、所定のオフセットだけずらした位置に、Upホールスイッチ、Vpホールスイッチ及びWpホールスイッチがそれぞれ配置されている。オフセットの量は、磁極位置検出用マグネット8を構成する一対のN極およびS極の角度(機械角30°、電気角360°)の1/12であり、機械角2.5°(電気角15°)となる。
 図17に示すブラシレスモータ装置は、2倍精度のブラシレスモータ装置にUpホールスイッチ、Vpホールスイッチ及びWpホールスイッチを設けたことにより、さらに2倍の回転位置の検出分解能を有する。このようないわゆる「4倍精度のブラシレスモータ装置」に対しても、本発明を適用することができる。例えば、120度通電駆動から、ロータ回転位置の検出精度に応じて決定した電気角15度毎に進角させた180度通電でブラシレスモータ1を駆動させる。さらに、4倍精度の場合は、150度通電駆動も可能である。
 なお、本発明は、磁極位置検出用マグネット8の極数を単精度のn倍にしたn倍精度のブラシレスモータ装置についても適用可能である。
 以上のように、この実施の形態1によれば、回転速度に関係するパラメータの値と所定の閾値との比較結果に応じて、ブラシレスモータ1の駆動を120度通電方式と電気角30度進角させた180度通電方式との間で切り替える。この構成において、制御装置14が、回転速度に関係するパラメータとしてブラシレスモータ1の回転速度を算出し、この回転速度が所定の閾値を超えると、ブラシレスモータ1の駆動を120度通電方式から電気角30度進角させた180度通電方式へ切り替える。このように駆動制御することにより、応答性を向上させたブラシレスモータ装置を提供することができる。
 また、この実施の形態1によれば、回転速度に関係するパラメータとして、ブラシレスモータ1の回転速度、及びロータ4の回転位置の目標位置との位置偏差、のうちの少なくとも一方を用いるので、回転速度に応じてブラシレスモータ1の駆動を適切な通電方式に切り替えることができる。
 さらに、この実施の形態1によれば、制御装置14が120度通電方式と180度通電方式とを可逆的に切り替えてブラシレスモータ1の駆動を制御するにあたり、正方向の切り替えと逆方向の切り替えで互いに異なる閾値を設定し、回転速度に関係するパラメータの値と前記閾値とをそれぞれ比較して正方向と逆方向の切り替えを行う。このように、閾値にヒステリシス特性を持たせることにより、当該閾値近辺での回転速度に関係するパラメータの変動に伴うリンギングの発生を防止することができ、ブラシレスモータ1を安定駆動させることができる。
 さらに、この実施の形態1によれば、制御装置14が、ブラシレスモータ1の駆動を制御するためのモータ制御信号を生成するマイコン16からなる制御部と、このモータ制御信号に基づいて上述のようなブラシレスモータ1の通電方式の切り替えを行う、ハイサイドFETドライブ回路17-1~17-3、ローサイドFETドライブ回路18-1~18-3、ハイサイドFET19-1~19-3、ローサイドFET20-1~20-3、第1過電流検出回路21、第2過電流検出回路22及びラッチ回路23からなる駆動回路部とを備えたので、ブラシレスモータ1の応答性を向上させることができる。
 なお、上記実施の形態1において、通電方式の切り替えの判定基準となる閾値は、不図示の入力装置を用い、外部から制御装置14のマイコン16に適宜設定できるようにしてもよい。
 以上のように、この発明に係るブラシレスモータ装置は、ブラシレスモータの回転速度に関係するパラメータの値と所定の閾値との比較結果に応じて、ブラシレスモータの駆動を120度通電方式と所定量進角させた180度通電方式との間で切り替えるように構成したので、ブラシレスモータの応答性を向上させることができ、ブラシレスモータ装置を適用したEGRバルブなどに用いるのに適している。

Claims (9)

  1.  ロータの回転位置を検出する回転位置センサを有する3相のブラシレスモータと、
     前記回転位置センサの検出信号に基づき、通電方式切り替えのパラメータとして回転速度に関係するパラメータの値を算出し、当該パラメータの値と所定の閾値との比較結果に応じて、前記ブラシレスモータの駆動を120度通電方式と所定量進角させた180度通電方式との間で切り替える制御装置とを備えたブラシレスモータ装置。
  2.  制御装置は、回転速度に関係するパラメータが所定の閾値を超えると、ブラシレスモータの駆動を120度通電方式から電気角30度進角させた180度通電方式へ切り替えることを特徴とする請求項1記載のブラシレスモータ装置。
  3.  ブラシレスモータは、固定的に配置されたステータと、前記ステータが複数の励磁パターンによって順次に励磁されることにより回転する所定の極数を有したロータと、前記ロータの磁極位置を検出するロータ回転位置センサとを備え、
     制御装置は、前記ロータ回転位置センサの検出信号に基づいて算出した回転速度に関係するパラメータの値が所定の閾値を超えると、前記ブラシレスモータの駆動を120度通電方式から電気角30度進角させた180度通電方式へ切り替えることを特徴とする請求項2記載のブラシレスモータ装置。
  4.  ブラシレスモータは、固定的に配置されたステータと、前記ステータが複数の励磁パターンによって順次に励磁されることにより回転する所定の極数を有したロータと、前記ロータの電気角30度相当の分解能を有するロータ回転位置センサを備え、
     制御装置は、前記ロータ回転位置センサの検出信号に基づいて算出した回転速度に関係するパラメータの値が第1の閾値を超えると、前記ブラシレスモータの駆動を120度通電方式から電気角30度進角させた180度通電方式へ切り替え、さらに前記パラメータの値が第2の閾値を超えると、電気角60度進角させた180度通電方式へ切り替えることを特徴とする請求項2記載のブラシレスモータ装置。
  5.  ブラシレスモータは、固定的に配置されたステータと、前記ステータが複数の励磁パターンによって順次に励磁されることにより回転する所定の極数を有したロータと、前記ロータの電気角15度相当の分解能を有するロータ回転位置センサを備え、
     制御装置は、前記ロータ回転位置センサの検出信号に基づいて算出した回転速度に関係するパラメータの値が所定の閾値を超えると、前記ブラシレスモータの駆動を120度通電方式から電気角30度進角させた180度通電方式へ切り替えることを特徴とする請求項2記載のブラシレスモータ装置。
  6.  ブラシレスモータは、固定的に配置されたステータと、前記ステータが複数の励磁パターンによって順次に励磁されることにより回転する所定の極数を有したロータと、前記ロータの電気角15度相当の分解能を有するロータ回転位置センサを備え、
     制御装置は、前記ロータ回転位置センサの検出信号に基づいて算出した回転速度に関係するパラメータの値が第1の閾値を超えると、前記ブラシレスモータの駆動を120度通電方式から電気角30度進角させた180度通電方式へ切り替え、さらに前記パラメータの値が第2の閾値を超えると、電気角60度進角させた180度通電方式へ切り替えることを特徴とする請求項2記載のブラシレスモータ装置。
  7.  制御装置は、120度通電方式と180度通電方式とを可逆的に切り替えてブラシレスモータの駆動を制御するにあたり、正方向の切り替えと逆方向の切り替えで互いに異なる閾値を設定し、回転速度に関係するパラメータの値と前記閾値とをそれぞれ比較して前記正方向と前記逆方向の切り替えを行うことを特徴とする請求項1記載のブラシレスモータ装置。
  8.  通電方式切り替えのパラメータは、ブラシレスモータの回転速度、及びロータの回転位置の目標位置との位置偏差のうちの少なくとも一つであることを特徴とする請求項1記載のブラシレスモータ装置。
  9.  ブラシレスモータの駆動を制御する制御装置において、
     請求項1記載の制御を行うためのモータ制御信号を生成する制御部と、
     前記モータ制御信号に基づいて前記ブラシレスモータの通電方式を切り替える駆動回路部とを備えたことを特徴とする制御装置。
PCT/JP2009/000909 2008-03-04 2009-02-27 ブラシレスモータ装置及び制御装置 WO2009110206A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010501790A JP4987119B2 (ja) 2008-03-04 2009-02-27 ブラシレスモータ装置及び制御装置
US12/812,426 US8395337B2 (en) 2008-03-04 2009-02-27 Brushless motor device and control device
DE112009000209T DE112009000209T5 (de) 2008-03-04 2009-02-27 Bürstenlose Vorrichtung und Steuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-053574 2008-03-04
JP2008053574 2008-03-04

Publications (1)

Publication Number Publication Date
WO2009110206A1 true WO2009110206A1 (ja) 2009-09-11

Family

ID=41055771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000909 WO2009110206A1 (ja) 2008-03-04 2009-02-27 ブラシレスモータ装置及び制御装置

Country Status (4)

Country Link
US (1) US8395337B2 (ja)
JP (1) JP4987119B2 (ja)
DE (1) DE112009000209T5 (ja)
WO (1) WO2009110206A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250663A (ja) * 2010-05-31 2011-12-08 Denso Corp モータ制御装置及びバルブタイミング調整装置並びにインバータ回路の通電制御方法
JP2012005219A (ja) * 2010-06-16 2012-01-05 Canon Inc モータ制御装置及び制御方法
JP2013524750A (ja) * 2010-03-31 2013-06-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電動機を駆動する方法、および回路構成
WO2016135923A1 (ja) * 2015-02-26 2016-09-01 三菱電機株式会社 電動パワーステアリング装置
JP2016189678A (ja) * 2015-03-30 2016-11-04 株式会社デンソー 回転電機の制御装置
US11218108B2 (en) 2019-06-21 2022-01-04 Aisin Seiki Kabushiki Kaisha Motor controller
WO2022029949A1 (ja) * 2020-08-06 2022-02-10 三菱電機株式会社 モータ制御装置、ブラシレスdcモータ、アクチュエータ及びegrバルブ装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161612B2 (ja) * 2008-02-22 2013-03-13 株式会社東芝 永久磁石式回転電機、永久磁石式回転電機の組立方法及び永久磁石式回転電機の分解方法
EP2110921B1 (en) 2008-04-14 2013-06-19 Stanley Black & Decker, Inc. Battery management system for a cordless tool
JP5960008B2 (ja) * 2012-09-21 2016-08-02 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置
US9893384B2 (en) 2014-05-18 2018-02-13 Black & Decker Inc. Transport system for convertible battery pack
EP3654488A1 (en) 2014-05-18 2020-05-20 Black & Decker Inc. Ac/dc power tools with brushless motors
JP6428042B2 (ja) * 2014-08-21 2018-11-28 株式会社デンソー モータ制御装置
JP6357996B2 (ja) * 2014-09-12 2018-07-18 アイシン精機株式会社 インバータ装置
US10693344B2 (en) 2014-12-18 2020-06-23 Black & Decker Inc. Packaging of a control module for a brushless motor
EP3235119B1 (en) 2014-12-18 2021-10-13 Black & Decker Inc. Control scheme to increase power output of a power tool using conduction band and advance angle
WO2017079295A1 (en) * 2015-11-02 2017-05-11 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
EP3560062A4 (en) 2016-12-23 2020-06-24 Black & Decker Inc. CORDLESS ELECTRIC TOOL SYSTEM
JP6707050B2 (ja) * 2017-03-27 2020-06-10 株式会社日立産機システム 同期電動機の制御装置
CN106992722A (zh) * 2017-04-24 2017-07-28 卧龙电气集团股份有限公司 直流无刷电机控制电路和采用该控制电路的pcb单面板
EP3806273A1 (en) 2019-10-11 2021-04-14 Black & Decker Inc. Power tool receiving different capacity batttery packs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255494A (ja) * 1988-04-01 1989-10-12 Alps Electric Co Ltd 3相直流モータの駆動方法
JP2004320861A (ja) * 2003-04-14 2004-11-11 Denso Corp 車両用3相電動発電機の制御装置
WO2007148480A1 (ja) * 2006-06-23 2007-12-27 Mitsubishi Electric Corporation ブラシレスモータ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760392A (en) * 1972-05-15 1973-09-18 Allis Chalmers Capacitive position sensor
US4835448A (en) * 1987-12-28 1989-05-30 Sundstrand Corporation Brushless DC motor torque control
JP3381411B2 (ja) * 1994-10-14 2003-02-24 株式会社デンソー 車両用電動発電装置
US6034494A (en) * 1998-01-20 2000-03-07 Denso Corporation Control device for brushless DC motor
JP3586593B2 (ja) * 1999-08-04 2004-11-10 シャープ株式会社 モータ制御装置
FR2811824B1 (fr) * 2000-07-17 2002-10-18 Sagem Moteur electrique a deux modes de communication d'alimentation
US6995679B2 (en) 2002-04-30 2006-02-07 International Rectifier Corporation Electronically controlled power steering system for vehicle and method and system for motor control
JP2005192338A (ja) 2003-12-25 2005-07-14 Mitsubishi Electric Corp ブラシレスモータの駆動方法およびブラシレスモータの駆動制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255494A (ja) * 1988-04-01 1989-10-12 Alps Electric Co Ltd 3相直流モータの駆動方法
JP2004320861A (ja) * 2003-04-14 2004-11-11 Denso Corp 車両用3相電動発電機の制御装置
WO2007148480A1 (ja) * 2006-06-23 2007-12-27 Mitsubishi Electric Corporation ブラシレスモータ装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524750A (ja) * 2010-03-31 2013-06-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電動機を駆動する方法、および回路構成
US9030138B2 (en) 2010-03-31 2015-05-12 Robert Bosch Gmbh Method for driving an electric motor
JP2011250663A (ja) * 2010-05-31 2011-12-08 Denso Corp モータ制御装置及びバルブタイミング調整装置並びにインバータ回路の通電制御方法
JP2012005219A (ja) * 2010-06-16 2012-01-05 Canon Inc モータ制御装置及び制御方法
JPWO2016135923A1 (ja) * 2015-02-26 2017-07-20 三菱電機株式会社 電動パワーステアリング装置
WO2016135923A1 (ja) * 2015-02-26 2016-09-01 三菱電機株式会社 電動パワーステアリング装置
CN107249966A (zh) * 2015-02-26 2017-10-13 三菱电机株式会社 电动助力转向装置
US10196085B2 (en) 2015-02-26 2019-02-05 Mitsubishi Electric Corporation Electric power steering device
JP2016189678A (ja) * 2015-03-30 2016-11-04 株式会社デンソー 回転電機の制御装置
US11218108B2 (en) 2019-06-21 2022-01-04 Aisin Seiki Kabushiki Kaisha Motor controller
WO2022029949A1 (ja) * 2020-08-06 2022-02-10 三菱電機株式会社 モータ制御装置、ブラシレスdcモータ、アクチュエータ及びegrバルブ装置
JPWO2022029949A1 (ja) * 2020-08-06 2022-02-10
JP7415012B2 (ja) 2020-08-06 2024-01-16 三菱電機株式会社 モータ制御装置、ブラシレスdcモータ、アクチュエータ及びegrバルブ装置

Also Published As

Publication number Publication date
JPWO2009110206A1 (ja) 2011-07-14
DE112009000209T5 (de) 2011-01-05
US20100283416A1 (en) 2010-11-11
JP4987119B2 (ja) 2012-07-25
US8395337B2 (en) 2013-03-12

Similar Documents

Publication Publication Date Title
JP4987119B2 (ja) ブラシレスモータ装置及び制御装置
JP4772146B2 (ja) ブラシレスモータ装置
JP5131432B2 (ja) モータ用制御装置
JP4987000B2 (ja) ブラシレスモータ装置
US10033311B2 (en) Actuator with a brushless two-phase DC motor
WO2015093514A1 (ja) 開閉体制御装置及び開閉体制御方法
US8587232B2 (en) System and method for aligning a resting rotor to a known position
EP1429449B1 (en) Torque stabilizer for brushless servo motor
JP5857825B2 (ja) モータ制御装置
WO2003032480A1 (fr) Systeme de commande de moteur
JP5591508B2 (ja) ドライバ回路
CN110875708A (zh) 电机
WO2018186061A1 (ja) ポンプ制御装置
WO2008103630A1 (en) Adjusting commutation of a brusheless dc motor to increase motor speed
JP5591507B2 (ja) ドライバ回路
JP4147826B2 (ja) ブラシレスモータ駆動制御装置
JP2016136820A (ja) モータ駆動装置
JP2004088838A (ja) モータ制御装置
JP2005176457A (ja) ブラシレスモータの位置検出回路
JP5384908B2 (ja) ブラシレスモータ起動方法及び制御装置
JP2002369569A (ja) ブラシレスモータ駆動制御装置
JP2005229724A (ja) スイッチトリラクタンスモータの制御装置
KR101080028B1 (ko) 브러시리스 모터 기동 방법 및 제어 장치
Norhisam et al. Driving System Configuration for Multi-type Interior Permanent Magnet Motor
JP2005176456A (ja) ブラシレスモータの位置検出回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501790

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12812426

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009000209

Country of ref document: DE

Date of ref document: 20110105

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09717820

Country of ref document: EP

Kind code of ref document: A1