WO2018186061A1 - ポンプ制御装置 - Google Patents

ポンプ制御装置 Download PDF

Info

Publication number
WO2018186061A1
WO2018186061A1 PCT/JP2018/007443 JP2018007443W WO2018186061A1 WO 2018186061 A1 WO2018186061 A1 WO 2018186061A1 JP 2018007443 W JP2018007443 W JP 2018007443W WO 2018186061 A1 WO2018186061 A1 WO 2018186061A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
period
side switching
motor
energization
Prior art date
Application number
PCT/JP2018/007443
Other languages
English (en)
French (fr)
Inventor
青柳広輝
星子和彦
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to DE112018001865.2T priority Critical patent/DE112018001865T5/de
Priority to US16/497,488 priority patent/US20200036306A1/en
Priority to CN201880022400.9A priority patent/CN110463019A/zh
Publication of WO2018186061A1 publication Critical patent/WO2018186061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/10Inlet temperature

Definitions

  • the present invention relates to a pump control device that controls the operation of an electric pump.
  • the motor drive control device described in Patent Literature 1 includes an advance angle reference voltage generation unit that generates an advance angle reference voltage, and a phase signal of each phase based on a cross timing of the advance angle reference voltage and the counter electromotive voltage of each phase of the motor. Based on the phase signal of each phase and the back electromotive force comparison unit that generates the motor, the rotational speed of the motor is detected, the advance reference voltage is increased as the rotational speed goes from high speed to low speed, and the rotational speed increases from low speed to high speed. And a controller that lowers the advance angle reference voltage as it goes.
  • a control device for a brushless motor for an electric pump described in Patent Document 2 predetermines a drive circuit for energizing three-phase drive power to a motor coil of a brushless motor that drives the electric pump, and a plurality of energization patterns for the motor coil. And a starting means for starting the brushless motor by forcibly rotating the rotor by switching in a given order, and an oil temperature detecting means for detecting the oil temperature of the hydraulic oil supplied by the electric pump. Increases the switching cycle of the energization pattern as the oil temperature increases.
  • Patent Document 1 performs advance angle control based on the back electromotive force generated in the motor coil.
  • the back electromotive force is unstable (for example, immediately after startup), the advance angle control is appropriately performed. Can not do. Further, advance angle control cannot be performed during initial energization when no back electromotive force is generated.
  • the load of the electric pump fluctuates in accordance with the change in the oil temperature, but when the load fluctuates, the time during which the surge is generated (surge time) also changes when the power is switched.
  • the motor that drives the electric pump is controlled based on a position signal that is output according to the rotation of the motor. In such control, the position signal cannot be properly detected while the surge is occurring, and therefore a mask period is provided so that the position signal is not detected while the surge is occurring. For example, when a certain mask period is applied to the technique described in Patent Document 1, if the switching period of the energization pattern is changed according to the oil temperature, the surge time may be longer than the mask period when the oil temperature is low. There is.
  • the characteristic configuration of the pump control device includes a temperature information acquisition unit that acquires temperature information indicating the temperature of oil that is circulated by the electric pump when the electric pump is started, and the electric pump based on the temperature information.
  • An advance amount setting unit for setting an advance amount with respect to the permanent magnet of a coil that is energized so that an attractive force is applied to the permanent magnet of the motor among the coils of the motor to be driven; and a first power line;
  • Three arm portions each having a high-side switching element and a low-side switching element connected in series with a second power supply line connected to a potential lower than the potential of the first power supply line, It is in the point provided with the inverter which controls the electric current which flows into a coil, and the electricity supply control part which starts electricity supply to the said inverter based on the said advance amount.
  • the load of the electric pump can be estimated from the oil temperature, and the advance angle control can be performed according to the estimated load. It is also possible to change the amount of advance at the time of activation or after completion of activation, and it is possible to perform advance angle control according to the driving state.
  • the pump control device further includes a storage unit that stores a relationship between the temperature of the oil and the advance amount, and the advance amount setting unit includes the temperature of the oil indicated in the temperature information and the It is preferable to set the advance amount based on the relationship stored in the storage unit.
  • the advance amount setting unit can easily set the advance amount. Therefore, since the advance amount can be set according to the load of the electric pump, the electric pump can be appropriately operated.
  • the pump control device may be configured such that, based on the temperature information, a non-energization period in which both the high-side switching element and the low-side switching element included in one arm part of the three sets of arm parts are open.
  • a mask period setting unit that sets a mask period that is shorter than the non-energization period immediately after the start of the non-energization period, and detects the number of revolutions of the motor after the mask period ends in the non-energization period. It is preferable that the power supply control unit further drives the inverter based on a detection result of the detection unit.
  • the mask period can be set longer as the oil temperature decreases, and the mask period can be set shorter as the oil temperature increases. For this reason, since an appropriate mask time can be set according to the load of the electric pump, it is possible to prevent erroneous detection of surge without delaying detection of zero crossing. Therefore, since the sensing performance can be improved, the motor can be driven without a sensor without stepping out. In addition, the operating oil temperature range can be expanded.
  • the pump control device is configured so that the electric pump can be appropriately driven regardless of the load variation.
  • the pump control apparatus 1 of this embodiment is demonstrated.
  • FIG. 1 is a block diagram schematically showing the configuration of the pump control device 1.
  • the pump control apparatus 1 of the present embodiment includes a temperature information acquisition unit 10, an advance amount setting unit 11, a storage unit 12, an inverter 13, an energization control unit 14, a mask period setting unit 15, and a detection.
  • the temperature information acquisition unit 10, the advance amount setting unit 11, the storage unit 12, the energization control unit 14, the mask period setting unit 15, and the detection unit 16 are electrically operated.
  • the CPU is used as a core member and is constructed by hardware and / or software.
  • the temperature information acquisition unit 10 acquires temperature information indicating the temperature of oil to be circulated by the electric pump P when the electric pump P is started.
  • the electric pump P is driven by the rotational force output from the motor M.
  • the oil circulated by the electric pump P is oil circulated when the electric pump P is driven.
  • the temperature information acquisition unit 10 acquires temperature information indicating the temperature of the oil circulated when the electric pump P is driven.
  • the oil temperature may be detected by the temperature sensor 9 and the detection result of the temperature sensor 9 may be transmitted to the temperature information acquisition unit 10.
  • the temperature information acquisition unit 10 transmits the detection result of the temperature sensor 9 to the advance amount setting unit 11 described later as temperature information.
  • the advance amount setting unit 11 Based on the temperature information, the advance amount setting unit 11 has an attractive force between the permanent magnet PM (see FIG. 2) of the motor M among the coils L (see FIG. 2) of the motor M that drives the electric pump P.
  • the advance amount with respect to the permanent magnet PM of the coil L energized so as to act is set.
  • the temperature information is transmitted from the temperature information acquisition unit 10 as described above.
  • the motor M that drives the electric pump P is a motor M that outputs a rotational force that is a power source of the electric pump P.
  • FIG. 2 shows a schematic diagram of a three-phase motor having four poles and six slots as an example of the motor M.
  • the motor M includes six coils L and two sets of permanent magnets PM.
  • a three-phase motor has an attractive force and a repulsive force acting between a magnetic field generated around a coil L by energizing a predetermined coil L among six coils L and a magnetic flux of a permanent magnet PM. Rotate.
  • the coil L is fixed to the stator S, and the permanent magnet PM rotates.
  • the storage unit 12 stores the relationship between the oil temperature and the advance amount. For example, when the oil temperature is equal to or higher than a predetermined temperature (for example, 80 degrees), the advance amount is set to a predetermined angle (for example, 15 degrees), and the oil temperature is set to the predetermined temperature (for example, 80 degrees). In the case where the angle is less than the predetermined angle, it is preferable that the advance amount is set to an angle smaller than the predetermined angle (for example, 15 degrees). In the present embodiment, the advance amount setting unit 11 sets the advance amount based on the oil temperature indicated in the temperature information and the relationship stored in the storage unit 12.
  • the inverter 13 includes a high-side switching element QH connected in series between the first power supply line 2 and the second power supply line 3 connected to a potential lower than the potential of the first power supply line 2. Three arm portions A each having a low-side switching element QL are provided, and the current flowing through the coil L is controlled.
  • the first power supply line 2 is a cable connected to the power supply V.
  • the second power supply line 3 connected to a potential lower than the potential of the first power supply line 2 is a cable to which a potential lower than the output voltage of the power supply V is applied. In this embodiment, the cable is grounded. Corresponds.
  • the high side switching element QH is configured using a P-MOSFET
  • the low side switching element QL is configured using an N-MOSFET.
  • the high side switching element QH has a source terminal connected to the first power supply line 2 and a drain terminal connected to the drain terminal of the low side switching element QL.
  • the source terminal of the low side switching element QL is connected to the second power supply line 3.
  • the arm part A is constituted by the high-side switching element QH and the low-side switching element QL connected as described above, and the inverter 13 includes three sets of the arm part A.
  • the gate terminals of the high side switching element QH and the low side switching element QL are connected to the driver 8.
  • the driver 8 is provided between an energization control unit 14 (to be described later) and the inverter 13 and receives a PWM signal generated by the energization control unit 14.
  • the driver 8 improves the drive capability of the input PWM signal and outputs it to the inverter 13.
  • the drain terminal of the high side switching element QH of each arm part A is connected to three terminals of the motor M, respectively.
  • the energization control unit 14 starts energizing the inverter 13 based on the advance amount.
  • the advance amount is set and transmitted based on the oil temperature by the advance amount setting unit 11.
  • the energization control unit 14 generates a PWM signal and outputs the generated PWM signal to the driver 8 according to the advance amount.
  • the inverter 13 can be PWM-controlled. Since the PWM control by the PWM signal is known, the description thereof is omitted.
  • the pump control apparatus 1 sets the advance amount of the coil L with respect to the permanent magnet PM of the motor M according to the temperature of the oil at the time of starting of the electric pump P, and energizes according to the set advance amount.
  • the control unit 14 performs PWM control of the inverter 13, the electric pump P can be started appropriately.
  • the mask period setting unit 15 is in a non-energization period in which both the high-side switching element QH and the low-side switching element QL included in one arm part A of the three sets of arm parts A are open.
  • a mask period consisting of a period shorter than the non-energization period is set immediately after the start of the non-energization period.
  • the temperature information is transmitted from the temperature information acquisition unit 10.
  • the three sets of arm portions A are the three sets of arm portions A that constitute the inverter 13.
  • FIG. 4 shows an explanatory diagram of the energization period and the non-energization period.
  • FIG. 4 shows the conduction state of the high-side switching element QH and the low-side switching element QL constituting one arm part A among the three sets of arm parts A included in the inverter 13.
  • the high-side switching element QH and the low-side switching element QL are controlled by the PWM signal.
  • the high-side switching element QH is composed of a P-MOSFET, so that the PWM signal is the highest in FIG. The waveform in the upper part is inverted.
  • FIG. 4 also shows voltage waveforms at locations indicated by VU in FIG.
  • the energization period is a period in which one of the high-side switching element QH and the low-side switching element QL included in one arm part A of the three sets of arm parts A is closed. “One of the high-side switching element QH and the low-side switching element QL is in a closed state” means that one of the high-side switching element QH and the low-side switching element QL is in a conductive state. Specifically, in the example of FIG. 4, there is a period from time t1 to time t2, from time t3 to time t4, from time t5 to time t6, and from time t7 to time t8. Equivalent to. These periods are called energization periods because one of the high-side switching element QH and the low-side switching element QL included in one arm part A of the three sets of arm parts A is energized.
  • the energization period is a period in which one of the high-side switching element QH and the low-side switching element QL included in one arm part
  • the non-energization period is a period in which both the high-side switching element QH and the low-side switching element QL included in one arm part A of the three sets of arm parts A are open. “Both the high-side switching element QH and the low-side switching element QL are in the closed state” means that both the high-side switching element QH and the low-side switching element QL are in a non-conductive state. Specifically, in the example of FIG. 4, the period from time t2 to time t3, the period from time t4 to time t5, and the period from time t6 to time t7 correspond. These periods are referred to as non-energization periods because both the high-side switching element QH and the low-side switching element QL included in one arm part A of the three sets of arm parts A are not energized.
  • a mask period consisting of a period shorter than the non-energization period is set immediately after the start of the non-energization period.
  • the mask period consisting of a period shorter than the non-energization period is set means that the mask period is not set over the entire non-energization period, but only in a part of the non-energization period. Means that. In particular, the mask period starts after position detection (zero cross detection) and is released before the next position detection.
  • FIG. 4 shows an example of the mask period.
  • Such a mask period is set by the mask period setting unit 15, and the length of the mask period is set according to temperature information, that is, the temperature of the oil.
  • temperature information that is, the temperature of the oil.
  • FIG. 1 An example of the relationship between the surge time (time when the surge occurs) and the oil temperature (oil temperature) is shown in FIG.
  • the mask period needs to be longer than the surge time. Therefore, the mask period setting unit 15 sets the length of the mask period based on the oil temperature indicated in the temperature information and the relationship between the oil temperature and the surge time as shown in FIG.
  • the detection unit 16 detects the number of rotations of the motor M after the mask period ends in the non-energization period. In the present embodiment, the detection unit 16 detects the position of the rotor (not shown) of the motor M based on the motor current flowing through the motor M. In the present embodiment, the detection unit 16 is connected via a resistor R to a cable that connects the drain terminal of the high-side switching element QH of each arm unit A described above and each of the three terminals of the motor M. The By being connected in this way, the detection unit 16 detects the motor current and detects (calculates) the position of the rotor. Since this detection is publicly known, a description thereof will be omitted.
  • the detection unit 16 detects the number of rotations of the motor M based on the position of the rotor. As a result, the rotational speed of the motor M can be detected without being affected by the surge.
  • the detection result of the detection unit 16 is transmitted to the energization control unit 14, and the energization control unit 14 drives the inverter 13 based on the detection result of the detection unit 16.
  • the temperature information acquisition unit 10 acquires temperature information indicating the temperature of the oil (step # 2). Based on the oil temperature (oil temperature) indicated by the temperature information, the advance amount setting unit 11 sets the advance amount when the electric pump P is started (step # 3), and the electric pump P is started ( Step # 4).
  • the advance amount setting unit 11 sets the advance amount when the electric pump P is in a steady state (at the time of steady operation) (step # 6).
  • the amount of advance in the steady state is set based on the back electromotive force generated in the coil L, not the temperature information indicating the temperature of the oil.
  • the temperature information acquisition unit 10 acquires temperature information even when the electric pump P is in a steady operation state (step # 7).
  • the mask period setting unit 15 sets the mask period within the non-energization period based on the oil temperature (oil temperature) indicated by the temperature information (step # 8).
  • the detection unit 16 detects the number of rotations of the motor M based on the set mask period, and the energization control unit 14 performs sensorless control of the motor M based on the detection result (step # 9).
  • step # 10 No
  • the process returns to step # 6 and is continued.
  • the advance angle control at the time of initial energization or at the start-up time when the back electromotive force is not unstable is possible. It becomes.
  • an optimum advance angle can be set in consideration thereof.
  • the optimum advance angle can be set at the time of starting, there is no backlash (stopping or reverse rotation) at the time of starting, and the starting speed can be improved. Since the torque is smaller at the normal time than at the start-up, the electric pump P can be driven efficiently by setting the optimum advance angle.
  • the pump control device 1 has been described as including the storage unit 12 in which the relationship between the oil temperature and the advance amount is stored.
  • the storage unit 12 may not be provided.
  • the advance amount setting unit 11 is preferably configured to set the advance amount based on, for example, an expression that defines the relationship between the oil temperature and the advance amount.
  • the mask period setting unit 15 has been described as setting the mask period based on the temperature information.
  • the mask period setting unit 15 may be configured to set the mask period regardless of the temperature information.
  • a three-phase motor having four poles and six slots has been described as an example of the motor M.
  • the number of poles and the number of slots are merely examples, and other configurations may be used.
  • the motor M may not be a three-phase motor.
  • the relationship between the oil temperature and the advance amount is such that when the oil temperature is equal to or higher than a predetermined temperature, the advance amount is set to a predetermined angle, and the oil temperature is less than the predetermined temperature.
  • the relationship is such that the advance amount is smaller than the predetermined angle.
  • the present invention can be used in a pump control device that controls the operation of an electric pump.
  • Pump control device 2 First power line 3: Second power line 10: Temperature information acquisition unit 11: Advance amount setting unit 12: Storage unit 13: Inverter 14: Energization control unit 15: Mask period setting unit 16: Detection part A: Arm part L: Coil M: Motor P: Electric pump PM: Permanent magnet QH: High side switching element QL: Low side switching element

Abstract

ポンプ制御装置は、電動ポンプの起動時に当該電動ポンプで流通させる油の温度を示す温度情報を取得する温度情報取得部と、温度情報に基づいて、電動ポンプを駆動するモータのコイルのうち、モータの永久磁石との間で引力が作用するように通電するコイルの永久磁石に対する進角量を設定する進角量設定部と、第1の電源ラインと第1の電源ラインの電位よりも低い電位に接続される第2の電源ラインとの間で、直列に接続されたハイサイドスイッチング素子とローサイドスイッチング素子とを有するアーム部を3組備え、コイルに流れる電流を制御するインバータと、進角量に基づいて、インバータを駆動する通電制御部と、を備える。

Description

ポンプ制御装置
 本発明は、電動ポンプの運転を制御するポンプ制御装置に関する。
 従来、油の流通制御に電動ポンプが利用されてきた。この種の電動ポンプはモータから出力される回転力により運転される。ここで、油は当該油の温度(以下「油温」とする)に応じて粘性が変わる。油温が高くなると粘性が小さくなるので電動ポンプの負荷が軽くなり、油温が低くなると粘性が大きくなるので電動ポンプの負荷が重くなる。このため、モータを一定の速度で駆動していた場合であっても、油温に応じて電動ポンプの回転数が変動し、脱調する可能性があった。このような脱調を防止する技術として例えば下記に出典を示す特許文献1及び2に記載のものがある。
 特許文献1に記載のモータ駆動制御装置は、進角基準電圧を生成する進角基準電圧生成部と、進角基準電圧とモータの各相の逆起電圧とのクロスタイミングによって各相の位相信号を生成する逆起電圧比較部と、各相の位相信号に基づいてモータの回転速度を検出し、回転速度が高速から低速に向かうに従って進角基準電圧を上昇させ、回転速度が低速から高速に向かうに従って進角基準電圧を下降させる制御部と、を備えて構成される。
 特許文献2に記載の電動ポンプ用ブラシレスモータの制御装置は、電動ポンプを駆動するブラシレスモータのモータコイルに三相の駆動電力を通電する駆動回路と、モータコイルへの複数の通電パターンを予め定められた順序で切り替えることによりロータを強制的に回転させてブラシレスモータを起動させる起動手段と、電動ポンプが供給する作動油の油温を検出する油温検出手段とを備えて構成され、起動手段は油温が高くなるほど通電パターンの切り替え周期を早くする。
特開2016-174478号公報 特開2012-130178号公報
 特許文献1に記載の技術は、モータのコイルに生じる逆起電力に基づいて進角制御を行っているが、当該逆起電力が不安定な場合(例えば起動直後等)は適切に進角制御を行うことができない。また、逆起電力が生じていない初期通電時には、進角制御を行うことができない。
 ここで、上述したように油温の変化に応じて電動ポンプの負荷が変動するが、負荷が変動すると通電切り替え時にサージが生じる時間(サージ時間)も変化する。一方、電動ポンプを駆動するモータは、モータの回転に応じて出力される位置信号に基づき制御される。このような制御では、サージが生じている間には適切に位置信号を検出することができないので、サージが生じている間は位置信号を検出しないようにマスク期間が設けられている。例えば特許文献1に記載の技術に一定のマスク期間を適用した場合に、油温に応じて通電パターンの切り替え周期を変化させると、油温が低い時にはサージ時間がマスク期間よりも長くなる可能性がある。このサージ期間に位置信号を検出すると、位置信号の検出を正確に行うことができず、脱調に至る可能性がある。一方、油温が高い時にはサージ時間に対してマスク期間が長くなり過ぎ、本来ゼロクロスを検出したいポイントまでマスクしてしまい、通電切り換えの遅れにより効率が低下し、脱調に至る恐れもある。また、特許文献1に記載の技術は、モータのコイルに生じる逆起電力に基づき制御しているが、例えばモータの始動時(初回通電時)には逆起電力が不安定となるため適切に制御することができない可能性がある。このように、特許文献1に記載の技術では、電動ポンプを適切に駆動することができなくなってしまう。
 そこで、負荷の変動に拘らず、適切に電動ポンプを駆動することが可能なポンプ制御装置が求められる。
 本発明に係るポンプ制御装置の特徴構成は、電動ポンプの起動時に当該電動ポンプで流通させる油の温度を示す温度情報を取得する温度情報取得部と、前記温度情報に基づいて、前記電動ポンプを駆動するモータのコイルのうち、前記モータの永久磁石との間で引力が作用するように通電するコイルの前記永久磁石に対する進角量を設定する進角量設定部と、第1の電源ラインと前記第1の電源ラインの電位よりも低い電位に接続される第2の電源ラインとの間で、直列に接続されたハイサイドスイッチング素子とローサイドスイッチング素子とを有するアーム部を3組備え、前記コイルに流れる電流を制御するインバータと、前記進角量に基づいて、前記インバータへの通電を開始する通電制御部と、を備えている点にある。
 このような特徴構成とすれば、油温から電動ポンプの負荷を推定し、推定した負荷の大きさに応じて進角制御を行うことができる。また、起動時や起動完了後で進角量を変更することも可能であり、運転状態に応じた進角制御を行うことが可能となる。
 また、前記ポンプ制御装置は、前記油の温度と前記進角量との関係が記憶された記憶部を更に備え、前記進角量設定部は、前記温度情報に示される前記油の温度と前記記憶部に記憶された前記関係とに基づいて前記進角量を設定すると好適である。
 このような構成とすれば、進角量設定部が進角量を容易に設定することが可能となる。したがって、電動ポンプの負荷に応じて進角量を設定できるので、適切に電動ポンプを運転することが可能となる。
 また、前記ポンプ制御装置は、前記温度情報に基づいて、前記3組のアーム部のうちの1つのアーム部が有する前記ハイサイドスイッチング素子及び前記ローサイドスイッチング素子の双方が開状態となる非通電期間において、前記非通電期間の開始直後に前記非通電期間よりも短い期間からなるマスク期間を設定するマスク期間設定部と、前記非通電期間において前記マスク期間の終了後に前記モータの回転数を検出する検出部と、を更に備え、前記通電制御部は、前記検出部の検出結果に基づいて前記インバータを駆動すると好適である。
 このような構成とすれば、油の温度の低下に伴いマスク期間を長く設定し、油の温度の上昇に伴いマスク期間を短く設定することができる。このため、電動ポンプの負荷に応じて適切なマスク時間を設定することができるので、ゼロクロスの検出が遅れることなく、サージ誤検出を防止できる。したがって、センシング性能を向上できるので、モータが脱調することなくセンサレスで駆動することが可能となる。また、使用油温範囲も拡大することができる。
ポンプ制御装置の構成を模式的に示すブロック図である。 モータの構成を模式的に示した図である。 進角量の説明図である。 通電期間及び非通電期間の説明図である。 油温とサージ期間との関係を示す図である。 ポンプ制御装置の処理を示すフローチャートである。
 本発明に係るポンプ制御装置は、負荷の変動に拘らず、適切に電動ポンプを駆動できるように構成される。以下、本実施形態のポンプ制御装置1について説明する。
 図1はポンプ制御装置1の構成を模式的に示したブロック図である。図1に示されるように、本実施形態のポンプ制御装置1は、温度情報取得部10、進角量設定部11、記憶部12、インバータ13、通電制御部14、マスク期間設定部15、検出部16の各機能部を備えて構成され、特に温度情報取得部10、進角量設定部11、記憶部12、通電制御部14、マスク期間設定部15、検出部16の各機能部は電動ポンプPの駆動を行うために、CPUを中核部材としてハードウェア又はソフトウェア或いはその両方で構築されている。
 温度情報取得部10は、電動ポンプPの起動時に当該電動ポンプPで流通させる油の温度を示す温度情報を取得する。電動ポンプPは、モータMから出力される回転力により駆動される。電動ポンプPで流通させる油とは、電動ポンプPが駆動することにより流通される油である。温度情報取得部10は、このような電動ポンプPの駆動に先立ち、電動ポンプPが駆動することにより流通される油の温度を示す温度情報を取得する。なお、油の温度は温度センサ9により検出され、温度センサ9の検出結果が温度情報取得部10に伝達されるように構成すると良い。温度情報取得部10は、温度センサ9の検出結果を温度情報として後述する進角量設定部11に伝達する。
 進角量設定部11は、温度情報に基づいて、電動ポンプPを駆動するモータMのコイルL(図2参照)のうち、モータMの永久磁石PM(図2参照)との間で引力が作用するように通電するコイルLの永久磁石PMに対する進角量を設定する。温度情報は、上述したように温度情報取得部10から伝達される。電動ポンプPを駆動するモータMとは、電動ポンプPの動力源となる回転力を出力するモータMである。ここで、図2にはモータMの一例として、4極6スロットの三相モータの模式図が示される。図2の例では、モータMは6つのコイルLと、2組の永久磁石PMとを有する。周知のように、三相モータは、6つのコイルLのうちの所定のコイルLに通電することによりコイルLの周囲に生じる磁界と、永久磁石PMの磁束との間で作用する引力及び斥力により回転する。図2の例では、コイルLはステータSに固定され、永久磁石PMが回転する。
 ここで、周知のようにコイルLに電圧を印加しても、当該コイルLにはすぐに電流が流れず、所定の位相遅れがある。この位相遅れはモータMの回転速度が速くなる程、大きくなる。このため、コイルLと永久磁石PMとの間で引力及び斥力を適切に作用させるためには、コイルLに流れる電流の位相遅れを考慮してコイルLに印加する電圧の位相を進める必要がある。このような制御を進角制御と言い、その角度(量)を進角量と言う。
 具体的には、本ポンプ制御装置1では、永久磁石PMとコイルLとの間で引力及び斥力が適切に作用させるために、図3に示されるように、引力又は斥力が作用する永久磁石PM(図3の例ではN極N1)がコイルL(図3の例ではコイルL1)と対向する位置(図3における位置A)に達する前に(例えば図3における位置Bに位置する時に)コイルL1に印加(通電)される。このような永久磁石PM(N極N1)がコイルL1と対向する位置(位置A)から、前もって通電される位置(位置B)までの角度が上記進角量にあたり、進角量設定部11が設定する。
 記憶部12は、油の温度と進角量との関係が記憶されている。この関係は、例えば油の温度が所定の温度(例えば80度)以上である場合には進角量を所定の角度(例えば15度)にし、油の温度が前記所定の温度(例えば80度)未満である場合には進角量を前記所定の角度(例えば15度)より小さい角度にするような関係であると好適である。本実施形態では、進角量設定部11は、温度情報に示される油の温度と記憶部12に記憶された関係とに基づいて進角量を設定する。
 インバータ13は、第1の電源ライン2と当該第1の電源ライン2の電位よりも低い電位に接続される第2の電源ライン3との間で、直列に接続されたハイサイドスイッチング素子QHとローサイドスイッチング素子QLとを有するアーム部Aを3組備え、コイルLに流れる電流を制御する。第1の電源ライン2とは、電源Vに接続されるケーブルである。第1の電源ライン2の電位よりも低い電位に接続される第2の電源ライン3とは、電源Vの出力電圧よりも低い電位が印加されたケーブルであり、本実施形態では接地されたケーブルが相当する。
 本実施形態では、ハイサイドスイッチング素子QHはP-MOSFETを用いて構成され、ローサイドスイッチング素子QLはN-MOSFETを用いて構成される。ハイサイドスイッチング素子QHは、ソース端子が第1の電源ライン2に接続され、ドレーン端子がローサイドスイッチング素子QLのドレーン端子に接続される。ローサイドスイッチング素子QLのソース端子は第2の電源ライン3に接続される。このように接続されたハイサイドスイッチング素子QH及びローサイドスイッチング素子QLでアーム部Aを構成し、インバータ13はこのアーム部Aを3組備える。
 ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの夫々のゲート端子はドライバ8と接続される。ドライバ8は、後述する通電制御部14とインバータ13との間に設けられ、通電制御部14により生成されたPWM信号が入力される。ドライバ8は、入力されたPWM信号のドライブ能力を向上し、インバータ13に出力する。各アーム部Aのハイサイドスイッチング素子QHのドレーン端子は、モータMが有する3つの端子に夫々接続される。
 通電制御部14は、進角量に基づいて、インバータ13への通電を開始する。進角量は、進角量設定部11により油の温度に基づき設定され、伝達される。通電制御部14は、PWM信号を生成し、生成したPWM信号を進角量に応じてドライバ8に出力する。これにより、インバータ13をPWM制御することが可能となる。PWM信号によるPWM制御は、公知であるので説明は省略する。これにより、ポンプ制御装置1は、電動ポンプPの起動時における油の温度に応じて、モータMの永久磁石PMに対するコイルLの進角量を設定し、設定された進角量に応じて通電制御部14がインバータ13をPWM制御することにより電動ポンプPを適切に始動することが可能となる。
 マスク期間設定部15は、温度情報に基づいて、3組のアーム部Aのうちの1つのアーム部Aが有するハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの双方が開状態となる非通電期間において、非通電期間の開始直後に非通電期間よりも短い期間からなるマスク期間を設定する。温度情報は温度情報取得部10から伝達される。3組のアーム部Aとは、インバータ13を構成する3組のアーム部Aである。
 ここで、図4には通電期間と非通電期間の説明図が示される。図4には、インバータ13が有する3組のアーム部Aのうち、1つのアーム部Aを構成するハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの導通状態が示される。上述したように、ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLはPWM信号で制御されるが、本実施形態ではハイサイドスイッチング素子QHはP-MOSFETで構成されるため、PWM信号は図4の最上段の波形を反転したものとなる。また、図4には、図1においてVUで示した箇所の電圧波形も示される。
 通電期間は、3組のアーム部Aのうちの1つのアーム部Aが有するハイサイドスイッチング素子QH及びローサイドスイッチング素子QLのうちの一方が閉状態となる期間である。「ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLのうちの一方が閉状態となる」とは、ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLのうちの一方が導通状態となることを意味する。具体的には、図4の例にあっては、時間t1から時間t2までの間、時間t3から時間t4までの間、時間t5から時間t6までの間、時間t7から時間t8までの間が相当する。これらの期間は、3組のアーム部Aのうちの1つのアーム部Aが有するハイサイドスイッチング素子QH及びローサイドスイッチング素子QLのうちの一方が通電された状態であることから、通電期間と称される。
 非通電期間は、3組のアーム部Aのうちの1つのアーム部Aが有するハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの双方が開状態となる期間である。「ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの双方が閉状態となる」とは、ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの双方が導通していない状態となることを意味する。具体的には、図4の例にあっては、時間t2から時間t3までの間、時間t4から時間t5までの間、時間t6から時間t7までの間が相当する。これらの期間は、3組のアーム部Aのうちの1つのアーム部Aが有するハイサイドスイッチング素子QH及びローサイドスイッチング素子QLの双方が通電されていない状態であることから、非通電期間と称される。
 このような非通電期間には、通電期間からの移行直後にサージが発生する。そこで、非通電期間の開始直後に非通電期間よりも短い期間からなるマスク期間が設定される。「非通電期間よりも短い期間からなるマスク期間が設定される」とは、マスク期間は、非通電期間の全てに亘って設定されるわけではなく、非通電期間の一部においてのみ設定されることを意味する。特に、マスク期間は、位置検出(ゼロクロス検出)後から開始し、次の位置検出前までに解除される。図4には、マスク期間の一例が示される。このようなマスク期間はマスク期間設定部15により設定され、マスク期間の長さは温度情報、すなわち油の温度に応じて設定される。ここで、サージ時間(サージが生じる時間)と油の温度(油温)との関係の一例が図5に示される。一方、マスク期間はサージ時間よりも長い必要がある。そこでマスク期間設定部15は、温度情報に示される油の温度と図5に示されるような油の温度とサージ時間との関係とに基づいてマスク期間の長さを設定する。
 検出部16は、非通電期間において、マスク期間の終了後にモータMの回転数を検出する。本実施形態では、検出部16は、モータMに流れるモータ電流に基づいて、モータMのロータ(図示せず)の位置を検出する。本実施形態では、検出部16は、上述した各アーム部Aのハイサイドスイッチング素子QHのドレーン端子とモータMが有する3つの端子の夫々とを接続するケーブルに、抵抗器Rを介して接続される。このように接続されることにより、検出部16はモータ電流を検出し、ロータの位置を検出(算定)する。この検出については、公知であるので説明は省略する。検出部16は、ロータの位置に基づき、モータMの回転数を検出する。これにより、サージの影響を受けることなくモータMの回転数を検出することが可能となる。検出部16の検出結果は、通電制御部14に伝達され、通電制御部14は、検出部16の検出結果に基づいてインバータ13を駆動する。
 次に、ポンプ制御装置1が行う処理について図6のフローチャートを用いて説明する。まず、電動ポンプPを起動させる起動信号が入力されると(ステップ#01:Yes)、温度情報取得部10が油の温度を示す温度情報を取得する(ステップ#2)。この温度情報により示される油の温度(油温)に基づき、電動ポンプPの起動時の進角量を進角量設定部11が設定し(ステップ#3)、電動ポンプPが起動される(ステップ#4)。
 電動ポンプPの起動が完了すると(ステップ#5:Yes)、進角量設定部11が電動ポンプPの定常時(定常運転時)の進角量を設定する(ステップ#6)。この定常時の進角量は、油の温度を示す温度情報ではなく、コイルLに生じる逆起電力に基づき設定される。
 温度情報取得部10は、電動ポンプPが定常運転の状態となった場合でも温度情報を取得する(ステップ#7)。マスク期間設定部15は、温度情報により示される油の温度(油温)に基づき、非通電期間内にマスク期間を設定する(ステップ#8)。設定されたマスク期間に基づき検出部16がモータMの回転数を検出し、この検出結果に基づき通電制御部14がモータMのセンサレス制御を行う(ステップ#9)。電動ポンプPを停止しない場合には(ステップ#10:No)、ステップ#6に戻り処理が継続される。
 以上のように、本ポンプ制御装置1によれば、電動ポンプPの進角量を油温に応じて制御するため、初回通電時や逆起電力が不安定ない起動時の進角制御が可能となる。また、起動時は定常時に比べて大きなトルクが必要なため、それを考慮した最適な進角を設定することができる。また、起動時に最適な進角を設定できるため、起動時のもたつき(停止や逆転)がなくなり、起動スピードを向上することができる。定常時は起動時に比べてトルクが小さいため、最適な進角に設定することで効率良く電動ポンプPを駆動できる。
〔その他の実施形態〕
 上記実施形態では、ポンプ制御装置1が油の温度と進角量との関係が記憶された記憶部12を備えるとして説明した。しかしながら、記憶部12を備えなくても良い。この場合、進角量設定部11は、例えば油の温度と進角量との関係を規定した式に基づいて進角量を設定するように構成すると好適である。
 上記実施形態では、マスク期間設定部15が温度情報に基づいてマスク期間を設定するとして説明した。しかしながら、マスク期間設定部15は温度情報に拘らず、マスク期間を設定するように構成することも可能である。
 上記実施形態では、モータMの一例として、4極6スロットの三相モータを例に挙げて説明した。しかしながら、極数及びスロット数は単なる一例であり、他の構成であっても良い。また、モータMは三相モータでなくても良い。
 上記実施形態では、油の温度と進角量との関係は、油の温度が所定の温度以上である場合には進角量を所定の角度にし、油の温度が前記所定の温度未満である場合には進角量を前記所定の角度より小さい角度にするような関係であるとして説明した。しかしながら、例えば油の温度が低い程、進角量が小さくなり、油の温度が高い程、進角量が大きくなる関係とすることも可能である。
 本発明は、電動ポンプの運転を制御するポンプ制御装置に用いることが可能である。
 1:ポンプ制御装置
 2:第1の電源ライン
 3:第2の電源ライン
 10:温度情報取得部
 11:進角量設定部
 12:記憶部
 13:インバータ
 14:通電制御部
 15:マスク期間設定部
 16:検出部
 A:アーム部
 L:コイル
 M:モータ
 P:電動ポンプ
 PM:永久磁石
 QH:ハイサイドスイッチング素子
 QL:ローサイドスイッチング素子

Claims (3)

  1.  電動ポンプの起動時に当該電動ポンプで流通させる油の温度を示す温度情報を取得する温度情報取得部と、
     前記温度情報に基づいて、前記電動ポンプを駆動するモータのコイルのうち、前記モータの永久磁石との間で引力が作用するように通電するコイルの前記永久磁石に対する進角量を設定する進角量設定部と、
     第1の電源ラインと前記第1の電源ラインの電位よりも低い電位に接続される第2の電源ラインとの間で、直列に接続されたハイサイドスイッチング素子とローサイドスイッチング素子とを有するアーム部を3組備え、前記コイルに流れる電流を制御するインバータと、
     前記進角量に基づいて、前記インバータへの通電を開始する通電制御部と、
    を備えるポンプ制御装置。
  2.  前記油の温度と前記進角量との関係が記憶された記憶部を更に備え、
     前記進角量設定部は、前記温度情報に示される前記油の温度と前記記憶部に記憶された前記関係とに基づいて前記進角量を設定する請求項1に記載のポンプ制御装置。
  3.  前記温度情報に基づいて、前記3組のアーム部のうちの1つのアーム部が有する前記ハイサイドスイッチング素子及び前記ローサイドスイッチング素子の双方が開状態となる非通電期間において、前記非通電期間の開始直後に前記非通電期間よりも短い期間からなるマスク期間を設定するマスク期間設定部と、
     前記非通電期間において前記マスク期間の終了後に前記モータの回転数を検出する検出部と、を更に備え、
     前記通電制御部は、前記検出部の検出結果に基づいて前記インバータを駆動する請求項1又は2に記載のポンプ制御装置。
PCT/JP2018/007443 2017-04-03 2018-02-28 ポンプ制御装置 WO2018186061A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018001865.2T DE112018001865T5 (de) 2017-04-03 2018-02-28 Pumpensteuerungsvorrichtung
US16/497,488 US20200036306A1 (en) 2017-04-03 2018-02-28 Pump control device
CN201880022400.9A CN110463019A (zh) 2017-04-03 2018-02-28 泵控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073931A JP2018182790A (ja) 2017-04-03 2017-04-03 ポンプ制御装置
JP2017-073931 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186061A1 true WO2018186061A1 (ja) 2018-10-11

Family

ID=63712159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007443 WO2018186061A1 (ja) 2017-04-03 2018-02-28 ポンプ制御装置

Country Status (5)

Country Link
US (1) US20200036306A1 (ja)
JP (1) JP2018182790A (ja)
CN (1) CN110463019A (ja)
DE (1) DE112018001865T5 (ja)
WO (1) WO2018186061A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275833B2 (ja) * 2019-05-14 2023-05-18 株式会社アイシン モータ制御装置、及び電動ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162860A (ja) * 2002-11-15 2004-06-10 Daikin Ind Ltd 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置
JP2007074834A (ja) * 2005-09-08 2007-03-22 Aisin Seiki Co Ltd センサレスモータの起動装置
JP2007097363A (ja) * 2005-09-30 2007-04-12 Jtekt Corp 油圧用ブラシレスモータの制御方法および制御装置
JP2012253971A (ja) * 2011-06-06 2012-12-20 Aisin Seiki Co Ltd モータ制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004128B2 (en) * 2001-06-15 2006-02-28 Denso Corporation Control apparatus for device having dead band, and variable valve system
WO2011104885A1 (ja) * 2010-02-26 2011-09-01 トヨタ自動車 株式会社 内燃機関の制御装置
JP2016073039A (ja) * 2014-09-29 2016-05-09 Ntn株式会社 電気自動車の制御装置
CN204340699U (zh) * 2014-11-28 2015-05-20 重庆矢崎仪表有限公司 汽车仪表和背光组件的防浪涌显示抗静电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162860A (ja) * 2002-11-15 2004-06-10 Daikin Ind Ltd 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置
JP2007074834A (ja) * 2005-09-08 2007-03-22 Aisin Seiki Co Ltd センサレスモータの起動装置
JP2007097363A (ja) * 2005-09-30 2007-04-12 Jtekt Corp 油圧用ブラシレスモータの制御方法および制御装置
JP2012253971A (ja) * 2011-06-06 2012-12-20 Aisin Seiki Co Ltd モータ制御装置

Also Published As

Publication number Publication date
JP2018182790A (ja) 2018-11-15
DE112018001865T5 (de) 2019-12-12
US20200036306A1 (en) 2020-01-30
CN110463019A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US8896246B2 (en) Method for aligning and starting a BLDC three phase motor
JP2008141828A (ja) モータ駆動装置及びモータ駆動方法
JPWO2009110206A1 (ja) ブラシレスモータ装置及び制御装置
US8587232B2 (en) System and method for aligning a resting rotor to a known position
JP2011211799A (ja) モータ駆動装置
JP6450256B2 (ja) モータ駆動制御装置
WO2005117247A1 (en) Drive circuit for a synchronous electric motor
TWI459712B (zh) 晶片,電腦可讀記憶媒體,電動馬達及用於起始一馬達中的一轉子的旋轉的方法
JP6622263B2 (ja) モータ駆動制御装置及びモータの駆動制御方法
WO2018186061A1 (ja) ポンプ制御装置
US8698432B2 (en) Driving low voltage brushless direct current (BLDC) three phase motors from higher voltage sources
JP2007074834A (ja) センサレスモータの起動装置
JP4085818B2 (ja) 直流電動機の駆動方法および直流電動機の駆動装置
JP2018121501A (ja) モータ制御装置、及びモータ制御方法
JP2013236431A (ja) ブラシレスモータの制御方法及び制御装置
KR100282366B1 (ko) 센서리스 비엘디씨(bldc) 모터의 구동방법
JP2014090657A (ja) モータ駆動装置、モータ駆動の制御方法及びこれを利用したモータ
JP2013118782A (ja) モータ制御装置
JP2005312145A (ja) ブラシレスモータの駆動装置
KR20090008944A (ko) 무정류자 직류 모터용 구동 장치 및 방법
JP2008295249A (ja) 無刷子電動機の駆動装置
JP4312115B2 (ja) モータ駆動装置
JPH06141587A (ja) ブラシレスモータ駆動装置
JP2019050643A (ja) 電動機の駆動装置
JP4269920B2 (ja) ブラシレスモータの駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780370

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18780370

Country of ref document: EP

Kind code of ref document: A1