WO2009104293A1 - 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 - Google Patents
圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 Download PDFInfo
- Publication number
- WO2009104293A1 WO2009104293A1 PCT/JP2008/065551 JP2008065551W WO2009104293A1 WO 2009104293 A1 WO2009104293 A1 WO 2009104293A1 JP 2008065551 W JP2008065551 W JP 2008065551W WO 2009104293 A1 WO2009104293 A1 WO 2009104293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base substrate
- piezoelectric vibrator
- substrate wafer
- piezoelectric
- electrodes
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 76
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 239000000758 substrate Substances 0.000 claims abstract description 256
- 239000011521 glass Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 11
- 235000012431 wafers Nutrition 0.000 claims description 173
- 230000008569 process Effects 0.000 claims description 54
- 235000014676 Phragmites communis Nutrition 0.000 claims description 44
- 238000001816 cooling Methods 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 16
- 238000007639 printing Methods 0.000 claims description 16
- 238000003825 pressing Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 8
- 244000273256 Phragmites communis Species 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 6
- 238000007650 screen-printing Methods 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 2
- 230000005284 excitation Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229910000679 solder Inorganic materials 0.000 description 11
- 238000004891 communication Methods 0.000 description 10
- 238000005530 etching Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000008602 contraction Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005498 polishing Methods 0.000 description 7
- 239000011162 core material Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000005361 soda-lime glass Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 238000006748 scratching Methods 0.000 description 3
- 230000002393 scratching effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/10—Mounting in enclosures
- H03H9/1007—Mounting in enclosures for bulk acoustic wave [BAW] devices
- H03H9/1014—Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
- H03H9/1021—Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/21—Crystal tuning forks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/026—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
Definitions
- the piezoelectric vibrator 200 includes a piezoelectric substrate 201 on which a piezoelectric vibrating piece 201a is formed, and a base substrate 202 and a lid substrate that are joined to the piezoelectric substrate 201 with the piezoelectric substrate 201 sandwiched from above and below. 203 and three layers.
- the piezoelectric substrate 201 is made of a piezoelectric material such as quartz, and includes a frame part 201b and the piezoelectric vibrating piece 201a connected to the frame part 201b. The portion of the frame portion 201b is joined to both the substrates 202 and 203.
- the piezoelectric vibrating piece 201a is accommodated in a cavity C formed by recesses 202a and 203a formed on both substrates 202 and 203.
- the piezoelectric vibrating piece 201a is patterned with electrodes 204a and 204b for vibrating the piezoelectric vibrating piece 201a when a voltage is applied.
- Both the substrates 202 and 203 are transparent insulators such as glass, and are bonded (for example, anodic bonded) to the frame portion 201 b of the piezoelectric substrate 201 through the bonding film 205. Further, as described above, the two substrates 202 and 203 are respectively provided with recesses 202a and 203a for forming the cavity C on the inner surface. Outer electrodes 206a and 206b are formed on the bottom surface of the base substrate 202 of both the substrates 202 and 203 over the side surfaces.
- one external electrode 206a is electrically connected to one electrode 204a of the piezoelectric vibrating piece 201a
- the other external electrode 206b is electrically connected to the other electrode 204b of the piezoelectric vibrating piece 201a.
- the conventional piezoelectric vibrator 200 still has the following problems. First, with the recent miniaturization of electronic devices, there is a demand for further miniaturization of the piezoelectric vibrator 200 mounted on these various electronic devices. However, since the conventional piezoelectric vibrator 200 is a three-layer structure type in which the piezoelectric substrate 201 is sandwiched between the base substrate 202 and the lid substrate 203 from above and below, a thickness is inevitably generated, and further reduction in thickness is achieved. It was difficult. In particular, since it is necessary to form the recesses 202a and 203a for forming the cavity C in both the base substrate 202 and the lid substrate 203, the thickness of both the substrates 202 and 203 needs to be a certain value or more. . In this respect, it is difficult to reduce the thickness.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface-mount type piezoelectric vibrator that is much thinner than before and can be made compact. . Another object of the present invention is to provide a method of manufacturing a piezoelectric vibrator that efficiently manufactures the piezoelectric vibrator at a time, and an oscillator, an electronic device, and a radio timepiece having the piezoelectric vibrator.
- a forming step forming a plurality of pairs of through holes penetrating the base substrate wafer; filling the plurality of formed through holes with a conductor to form a plurality of pairs of through electrodes;
- a lead electrode forming step is performed in which a conductive material is patterned on the upper surface of the base substrate wafer to form a plurality of lead electrodes electrically connected to the pair of through electrodes.
- the routing electrode is formed so as to be accommodated in the recess formed in the lid substrate wafer.
- a bonding film forming process is performed in which a bonding film is formed on the upper surface of the base substrate wafer so as to surround the periphery of the concave portion at the same time as or before or after the routing electrode forming process.
- a mounting step is performed in which a plurality of piezoelectric vibrating reeds are joined to the upper surface of the base substrate wafer via the routing electrodes. Thereby, each joined piezoelectric vibrating piece will be in the state which conduct
- an overlaying process for overlaying the base substrate wafer and the lid substrate wafer is performed. As a result, the plurality of bonded piezoelectric vibrating reeds are housed in a cavity surrounded by the recess and both wafers.
- a bonding process is performed in which the two superimposed wafers are bonded via a bonding film.
- the piezoelectric vibrating piece can be sealed in the cavity.
- a conductive material is patterned on the lower surface of the base substrate wafer to perform an external electrode forming step of forming a plurality of pairs of external electrodes respectively electrically connected to the plurality of pairs of through electrodes.
- the piezoelectric vibrating piece sealed in the cavity can be operated using the external electrode.
- a cutting process is performed in which the bonded base substrate wafer and lid substrate wafer are cut into small pieces into a plurality of piezoelectric vibrators.
- the entire thickness can be reduced by the conventional piezoelectric substrate because the base substrate and the lid substrate are bonded to each other. Accordingly, it is possible to make the thickness much thinner than in the past, and to achieve a compact size.
- the piezoelectric vibrating piece may be bump-bonded to the upper surface of the base substrate wafer via the bump.
- the piezoelectric vibrating piece is bump-bonded to the upper surface of the base substrate, it is supported in a state of being lifted from the base substrate. Therefore, the minimum vibration gap necessary for vibration can be secured naturally. Therefore, unlike the lid substrate, it is not necessary to form a cavity recess on the base substrate side, and a flat substrate may be used. Therefore, the thickness of the base substrate can be made as thin as possible without considering the recess. Also in this respect, the piezoelectric vibrator can be thinned.
- the pump may be formed after performing a plasma cleaning process on the routing electrode for at least 10 seconds.
- plasma for example, oxygen plasma
- the routing electrode to perform a plasma cleaning process.
- contamination sources such as dust
- the surface on which the bump is formed becomes a clean surface, and the surface is modified.
- the plasma since the plasma is irradiated for at least 10 seconds, it can be reliably removed without leaving a contamination source. Therefore, adhesiveness and adhesiveness with the bump can be improved, and the shear peeling strength of the bump can be increased. Therefore, the mounting performance of the piezoelectric vibrating piece can be improved, and as a result, the quality of the piezoelectric vibrator can be improved.
- a surface processing step may be performed in which the upper surface of the base substrate wafer is subjected to surface processing so that the arithmetic average roughness Ra is 10 nm or less.
- the arithmetic average roughness Ra of the upper surface of the base substrate wafer is set to 10 nm or less.
- the upper surface of the base substrate wafer that serves as a base on which the bumps are formed can be brought as close to the smooth surface as possible. Therefore, the adhesiveness and adhesiveness with the bump can be improved, and the shear peeling strength of the bump can be increased. Accordingly, the mounting performance of the piezoelectric vibrating piece can be improved, and the quality of the piezoelectric vibrator can be improved.
- the base substrate wafer and the lid substrate wafer may be anodically bonded.
- the base substrate wafer and the lid substrate wafer are anodically bonded, the two wafers can be bonded in a tightly adhered state. Therefore, the piezoelectric vibrating piece can be more reliably sealed in the cavity, and the vibration characteristics can be improved.
- the recess forming step includes a printing step of screen-printing a paste with a predetermined pattern on the surface of the lid substrate wafer; a drying step of drying the printed paste; The printing step and the drying step may be repeated a plurality of times until formation, and then a baking step of baking the paste that has been applied and dried may be further provided.
- the recess can be formed without performing a cutting process such as etching.
- a printing process is performed in which a paste is screen-printed on the surface of the lid substrate wafer so as to surround a predetermined pattern, that is, a portion that becomes a recess.
- a drying process for drying the printed paste is performed.
- the printing process is performed again, and a new paste is screen-printed and overlaid on the dried paste.
- the printing process and the drying process are repeated a plurality of times until the concave portion is formed by the pasting of the paste.
- the baking process which bakes and hardens the paste which has been applied and dried is performed.
- the concave portion can be formed in the lid substrate wafer without performing a cutting process such as etching.
- the load applied to the wafer can be reduced, and the quality of the piezoelectric vibrator can be improved.
- the through-hole forming step includes a setting step of setting the base substrate wafer between a lower die and an upper die having pins protruding toward the lower die; A pressing step of pressing the base substrate wafer with the mold and the upper die and forming the through hole using the pins; and a cooling step of cooling and solidifying the base substrate wafer. good.
- a wafer having a circular shape in plan view may be used as the base substrate wafer.
- the base substrate wafer has a circular shape, even if expansion or contraction occurs due to heating by the pressing process or cooling by the cooling process, the shape is hardly deformed on the way, and the dimensional accuracy and thickness accuracy are at a high level. Can be maintained. If the wafer has a rectangular shape in plan view, when expansion or contraction occurs due to heating or cooling, the shape may be deformed in the middle, and the dimensional accuracy and thickness accuracy are lowered. This is because the corners are present in the wafer, so that the internal stress tends to concentrate near the corners during expansion. For this reason, the expansion state and the contraction state are not uniform, and it is considered that it is difficult to return to the original state.
- the piezoelectric vibrator according to the present invention includes a base substrate made of a glass material having a bonding film formed on an upper surface thereof; a recess for a cavity is formed, and the recess is opposed to the base substrate.
- a; Re and lead-out electrode which is electrically connected.
- the piezoelectric vibrating piece may be bump-bonded to the upper surface of the base substrate via a bump.
- the bump may be formed in a region that has been subjected to a plasma cleaning process for at least 10 seconds.
- the upper surface of the base substrate may have an arithmetic average roughness Ra of 10 nm or less.
- the base substrate and the lid substrate may be anodically bonded.
- the piezoelectric vibrator described in any one of (9) to (13) is electrically connected to an integrated circuit as an oscillator.
- the piezoelectric vibrator described in any one of (9) to (13) is electrically connected to the time measuring unit.
- the piezoelectric vibrator described in any one of (9) to (13) is electrically connected to the filter unit.
- the piezoelectric vibrator according to the present invention it can be made much thinner than before and can be made compact.
- the compact surface-mounted piezoelectric vibrator can be efficiently manufactured at a time, and the cost can be reduced.
- the piezoelectric vibrator since the piezoelectric vibrator is provided, it is possible to reduce the size in the same manner, and to meet future needs for further downsizing. .
- FIG. 1 is a diagram showing an embodiment of the present invention, and is an external perspective view of a piezoelectric vibrator.
- FIG. 2 is an internal configuration diagram of the piezoelectric vibrator shown in FIG. 1 and is a view of the piezoelectric vibrating piece viewed from above with the lid substrate removed.
- FIG. 3 is a cross-sectional view of the piezoelectric vibrator taken along line AA shown in FIG.
- FIG. 4 is an exploded perspective view of the piezoelectric vibrator shown in FIG.
- FIG. 5 is a top view of the piezoelectric vibrating piece constituting the piezoelectric vibrator shown in FIG. 6 is a bottom view of the piezoelectric vibrating piece shown in FIG.
- FIG. 7 is a cross-sectional view taken along the line BB shown in FIG.
- FIG. 8 is a flowchart showing a flow of manufacturing the piezoelectric vibrator shown in FIG.
- FIG. 9 is a diagram showing a step in manufacturing the piezoelectric vibrator according to the flowchart shown in FIG. 8, and shows a state in which a plurality of recesses are formed on the lid substrate wafer that is the base of the lid substrate. It is.
- FIG. 10 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG. 8, and illustrates a state in which a pair of through holes are formed in a base substrate wafer that is a base substrate.
- FIG. 11 is a diagram showing a state in which, after the state shown in FIG. 10, a through electrode is formed in a pair of through holes, and a bonding film and a lead electrode are patterned on the upper surface of the base substrate wafer.
- FIG. 12 is an overall view of the base substrate wafer in the state shown in FIG.
- FIG. 13 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG. 8, and includes a base substrate wafer, a lid substrate wafer, and a piezoelectric substrate in a state where the piezoelectric vibrating piece is accommodated in the cavity. It is a disassembled perspective view of the wafer body by which anodic bonding was performed.
- FIG. 12 is an overall view of the base substrate wafer in the state shown in FIG.
- FIG. 13 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG. 8, and includes a base substrate wafer, a
- FIG. 14 is a diagram illustrating an equivalent circuit of the piezoelectric vibrator.
- FIG. 15 is a diagram showing an equation for calculating the series capacitance shown in FIG.
- FIG. 16 shows the result of comparing C1 and C0 when the piezoelectric vibrating piece is mounted by solder bonding and when the piezoelectric vibrating piece is mounted by bump bonding.
- FIG. 17 is a diagram showing a CL curve.
- FIG. 18 is a diagram showing an embodiment according to the present invention and is a configuration diagram of an oscillator.
- FIG. 19 is a diagram illustrating an embodiment of the present invention, and is a configuration diagram of an electronic device.
- FIG. 20 is a diagram showing an embodiment according to the present invention and is a configuration diagram of a radio timepiece.
- FIG. 21 is a view showing a modification in the case of manufacturing the piezoelectric vibrator according to the present invention, and is a flowchart in the case of forming a cavity concave portion by screen printing a paste.
- FIG. 22 is a diagram showing one process when forming a recess according to the flowchart shown in FIG. 21, and shows a state in which a print mask is set after fixing a lid substrate wafer on a wafer fixing plate.
- FIG. FIG. 23 is a diagram showing a state in which paste is screen-printed from the state shown in FIG.
- FIG. 24 is a diagram illustrating a state in which a concave portion is formed by repeatedly performing screen printing and drying from the state illustrated in FIG. 23.
- FIG. 25 is a cross-sectional arrow CC view shown in FIG.
- FIG. 26 is a view showing a modification in the case of manufacturing the piezoelectric vibrator according to the present invention, and is a flowchart in the case of forming a through hole in the base substrate wafer by pressing a mold.
- FIG. 27 is a diagram showing one process when a through hole is formed along the flowchart shown in FIG. 26, and shows a state in which a base substrate wafer is set between a lower die and an upper die. is there.
- FIG. 28 is a diagram showing a state in which the base substrate wafer is pressed by the lower die and the upper die after the state shown in FIG. FIG.
- FIG. 33 is a view showing still another modified example of the piezoelectric vibrator according to the present invention, in which a through electrode is formed by firing a glass cylinder and a conductive core material.
- FIG. FIG. 34 is a perspective view of the cylinder shown in FIG.
- FIG. 35 is a cross-sectional view showing an example of a conventional three-layer structure type piezoelectric vibrator.
- the piezoelectric vibrator 1 of the present embodiment is formed in a box shape in which a base substrate 2 and a lid substrate 3 are laminated in two layers as shown in FIGS.
- This is a surface-mount type piezoelectric vibrator in which the resonator element 4 is housed.
- the excitation electrode 15, the extraction electrodes 19 and 20, the mount electrodes 16 and 17, and the weight metal film 21, which will be described later, are omitted for easy understanding of the drawing.
- the piezoelectric vibrating piece 4 is a tuning fork type vibrating piece formed of a piezoelectric material such as crystal, lithium tantalate, or lithium niobate, and when a predetermined voltage is applied. It vibrates.
- the piezoelectric vibrating reed 4 includes a pair of vibrating arm portions 10 and 11 arranged in parallel, a base portion 12 that integrally fixes the base end sides of the pair of vibrating arm portions 10 and 11, and a pair of vibrating arm portions.
- the piezoelectric vibrating reed 4 includes groove portions 18 formed along the longitudinal direction of the vibrating arm portions 10 and 11 on both main surfaces of the pair of vibrating arm portions 10 and 11.
- the groove portion 18 is formed from the proximal end side of the vibrating arm portions 10 and 11 to the vicinity of the middle.
- the excitation electrode 15 including the first excitation electrode 13 and the second excitation electrode 14 is an electrode that vibrates the pair of vibrating arm portions 10 and 11 at a predetermined resonance frequency in a direction approaching or separating from each other. Patterned on the outer surfaces of the vibrating arm portions 10 and 11 while being electrically separated from each other. Specifically, as shown in FIG. 7, the first excitation electrode 13 is mainly formed on the groove portion 18 of one vibration arm portion 10 and on both side surfaces of the other vibration arm portion 11. Two excitation electrodes 14 are mainly formed on both side surfaces of one vibrating arm portion 10 and on a groove portion 18 of the other vibrating arm portion 11.
- the first excitation electrode 13 and the second excitation electrode 14 are electrically connected to the mount electrodes 16 and 17 via the extraction electrodes 19 and 20 on both main surfaces of the base portion 12, respectively. Connected. A voltage is applied to the piezoelectric vibrating reed 4 via the mount electrodes 16 and 17.
- the excitation electrode 15, the mount electrodes 16 and 17, and the extraction electrodes 19 and 20 described above are made of a conductive film such as chromium (Cr), nickel (Ni), aluminum (Al), or titanium (Ti). It is formed.
- a weight metal film 21 for adjusting (frequency adjustment) so as to vibrate its own vibration state within a predetermined frequency range is coated on the tips of the pair of vibrating arm portions 10 and 11.
- the weight metal film 21 is divided into a coarse adjustment film 21a used when the frequency is roughly adjusted and a fine adjustment film 21b used when the frequency is finely adjusted.
- the piezoelectric vibrating reed 4 configured as described above is bump-bonded to the upper surface of the base substrate 2 using bumps B such as gold as shown in FIGS. More specifically, bump bonding is performed with a pair of mount electrodes 16 and 17 in contact with two bumps B formed on routing electrodes 36 and 37 (described later) patterned on the upper surface of the base substrate 2. ing. As a result, the piezoelectric vibrating reed 4 is supported in a state of floating from the upper surface of the base substrate 2 and the mount electrodes 16 and 17 and the routing electrodes 36 and 37 are electrically connected to each other.
- the lid substrate 3 is a transparent insulating substrate made of a glass material, for example, soda-lime glass, and is formed in a plate shape as shown in FIGS.
- a rectangular recess 3 a in which the piezoelectric vibrating reed 4 is accommodated is formed on the bonding surface side to which the base substrate 2 is bonded.
- the concave portion 3 a is a cavity concave portion 3 a that becomes a cavity C that accommodates the piezoelectric vibrating reed 4 when the two substrates 2 and 3 are overlapped.
- the lid substrate 3 is anodically bonded to the base substrate 2 with the recess 3a facing the base substrate 2 side.
- the base substrate 2 is a transparent insulating substrate made of a glass material, for example, soda lime glass, like the lid substrate 3, and has a size that can be superimposed on the lid substrate 3 as shown in FIGS. It is formed in a plate shape.
- the base substrate 2 is formed with a pair of through holes (through holes) 30 and 31 that penetrate the base substrate 2. At this time, the pair of through holes 30 and 31 are formed so as to be accommodated in the cavity C. More specifically, one through hole 30 is positioned on the base 12 side of the mounted piezoelectric vibrating reed 4, and the other through hole 31 is positioned on the distal end side of the vibrating arm portions 10 and 11. .
- the through holes 30 and 31 that pass straight through the base substrate 2 will be described as an example.
- the present invention is not limited to this case.
- the diameter gradually decreases toward the lower surface of the base substrate 2. You may form in a taper shape. In any case, it only has to penetrate the base substrate 2.
- a bump B is formed on the pair of routing electrodes 36 and 37, and the piezoelectric vibrating reed 4 is mounted using the bump B.
- one mount electrode 16 of the piezoelectric vibrating reed 4 is electrically connected to one through electrode 32 through one routing electrode 36, and the other mount electrode 17 is passed through the other routing electrode 37 to the other penetration electrode.
- the electrode 33 is electrically connected.
- external electrodes 38 and 39 are formed on the lower surface of the base substrate 2 so as to be electrically connected to the pair of through electrodes 32 and 33, respectively. That is, one external electrode 38 is electrically connected to the first excitation electrode 13 of the piezoelectric vibrating reed 4 via one through electrode 32 and one routing electrode 36. The other external electrode 39 is electrically connected to the second excitation electrode 14 of the piezoelectric vibrating reed 4 via the other through electrode 33 and the other routing electrode 37.
- a predetermined drive voltage is applied to the external electrodes 38 and 39 formed on the base substrate 2.
- a current can flow through the excitation electrode 15 including the first excitation electrode 13 and the second excitation electrode 14 of the piezoelectric vibrating reed 4, and is predetermined in a direction in which the pair of vibrating arm portions 10 and 11 are approached and separated.
- Can be vibrated at a frequency of The vibration of the pair of vibrating arm portions 10 and 11 can be used as a time source, a control signal timing source, a reference signal source, and the like.
- the piezoelectric vibrating reed manufacturing step is performed to manufacture the piezoelectric vibrating reed 4 shown in FIGS. 5 to 7 (S10). Specifically, a quartz Lambert rough is first sliced at a predetermined angle to obtain a wafer having a constant thickness. Subsequently, the wafer is lapped and subjected to rough processing, and then the work-affected layer is removed by etching, and then mirror polishing such as polishing is performed to obtain a wafer having a predetermined thickness.
- the wafer is patterned with the outer shape of the piezoelectric vibrating reed 4 by photolithography technique, and a metal film is formed and patterned to obtain the excitation electrode 15, Lead electrodes 19 and 20, mount electrodes 16 and 17, and weight metal film 21 are formed. Thereby, the some piezoelectric vibrating piece 4 is producible.
- the resonance frequency is coarsely adjusted. This is done by irradiating the coarse adjustment film 21a of the weight metal film 21 with laser light to evaporate a part thereof and changing the weight. Note that fine adjustment for adjusting the resonance frequency with higher accuracy is performed after mounting. This will be described later.
- a first wafer manufacturing process is performed in which a lid substrate wafer 50 to be the lid substrate 3 later is manufactured up to a state immediately before anodic bonding (S20).
- a disk-shaped lid substrate wafer 50 is formed by removing the outermost work-affected layer by etching or the like ( S21).
- a recess forming step is performed in which a plurality of recesses 3a for the cavity C are formed in the matrix direction by etching or the like on the bonding surface of the lid substrate wafer 50 (S22). At this point, the first wafer manufacturing process is completed.
- a second wafer manufacturing process is performed in which the base substrate wafer 40 to be the base substrate 2 is manufactured up to the state immediately before anodic bonding (S30).
- a disk-shaped base substrate wafer 40 is formed by removing the outermost work-affected layer by etching or the like (S31).
- a through hole forming step (S 32) is performed in which a plurality of pairs of through holes 30 and 31 that penetrate the base substrate wafer 40 are formed.
- the dotted line M shown in FIG. 10 has shown the cutting line cut
- a plurality of pairs of through holes 30 and 31 are formed so as to be accommodated in the recess 3 a formed in the lid substrate wafer 50.
- one through hole 30 is formed on the base 12 side of the piezoelectric vibrating reed 4 to be mounted later, and the other through hole 31 is formed on the tip side of the vibrating arm portions 10 and 11.
- a through electrode forming step for filling the plurality of pairs of through holes 30 and 31 with a conductor (not shown) to form the pair of through electrodes 32 and 33 is performed (S33).
- a conductive material is patterned on the upper surface of the base substrate wafer 40, and a bonding film forming step (S34) for forming the bonding film 35 is performed as shown in FIGS.
- the dotted line M shown in FIG.11 and FIG.12 has shown the cutting line cut
- FIG. 8 it is set as the process sequence which performs the routing electrode formation process (S35) after the bonding film formation process (S34).
- the bonding film formation is performed.
- Step (S34) may be performed, or both steps may be performed simultaneously. Regardless of the order of steps, the same effects can be obtained. Therefore, the process order may be changed as necessary.
- a mounting step is performed in which the produced plurality of piezoelectric vibrating reeds 4 are bump-bonded to the upper surface of the base substrate wafer 40 via the routing electrodes 36 and 37, respectively (S40).
- bumps B such as gold are formed on the pair of lead-out electrodes 36 and 37, respectively.
- the piezoelectric vibrating piece 4 is pressed against the bump B while heating the bump B to a predetermined temperature.
- the piezoelectric vibrating reed 4 is mechanically supported by the bumps B, and the mount electrodes 16 and 17 and the routing electrodes 36 and 37 are electrically connected.
- the pair of excitation electrodes 15 of the piezoelectric vibrating reed 4 are in a conductive state with respect to the pair of through electrodes 32 and 33, respectively.
- the piezoelectric vibrating reed 4 is bump-bonded, it is supported in a state where it floats from the upper surface of the base substrate wafer 40.
- an overlaying process for overlaying the lid substrate wafer 50 on the base substrate wafer 40 is performed (S50). Specifically, both wafers 40 and 50 are aligned at the correct positions while using a reference mark (not shown) as an index. As a result, the mounted piezoelectric vibrating reed 4 is housed in a cavity C surrounded by the recess 3 a formed in the base substrate wafer 40 and the wafers 40 and 50.
- the two superposed wafers 40 and 50 are put into an anodic bonding apparatus (not shown), and a bonding process is performed in which a predetermined voltage is applied in a predetermined temperature atmosphere to perform anodic bonding (S60). Specifically, a predetermined voltage is applied between the bonding film 35 and the lid substrate wafer 50. As a result, an electrochemical reaction occurs at the interface between the bonding film 35 and the lid substrate wafer 50, and the two are firmly bonded and anodically bonded. Thereby, the piezoelectric vibrating reed 4 can be sealed in the cavity C, and the wafer body 60 shown in FIG. 13 in which the base substrate wafer 40 and the lid substrate wafer 50 are bonded can be obtained. In FIG.
- a state in which the wafer body 60 is disassembled is illustrated, and the bonding film 35 is not illustrated from the base substrate wafer 40.
- a dotted line M shown in FIG. 13 illustrates a cutting line that is cut in a cutting process to be performed later.
- a conductive material is patterned on the lower surface of the base substrate wafer 40, and a pair of external electrodes 38 and 39 electrically connected to the pair of through electrodes 32 and 33, respectively.
- a plurality of external electrode forming steps are formed (S70). Through this step, the piezoelectric vibrating reed 4 sealed in the cavity C can be operated using the external electrodes 38 and 39.
- a fine adjustment step of finely adjusting the frequency of each piezoelectric vibrator 1 sealed in the cavity C to be within a predetermined range is performed (S80). More specifically, a voltage is applied to the external electrodes 38 and 39 to vibrate the piezoelectric vibrating reed 4. Then, laser light is irradiated from the outside through the lid substrate wafer 50 while measuring the frequency, and the fine adjustment film 21b of the weight metal film 21 is evaporated. Thereby, since the weight of the tip end side of the pair of vibrating arm portions 10 and 11 is changed, the frequency of the piezoelectric vibrating piece 4 can be finely adjusted so as to be within a predetermined range of the nominal frequency.
- a cutting process is performed in which the bonded wafer body 60 is cut along the cutting line M shown in FIG. 13 into small pieces (S90).
- the piezoelectric vibrating reed 4 is sealed in the cavity C formed between the base substrate 2 and the lid substrate 3 that are anodically bonded to each other. Multiple products can be manufactured.
- the order of processes in which the fine adjustment process (S80) is performed may be used.
- the fine adjustment step (S80) by performing the fine adjustment step (S80) first, the fine adjustment can be performed in the state of the wafer body 60, so that the plurality of piezoelectric vibrators 1 can be finely adjusted more efficiently. Therefore, the throughput can be improved, which is more preferable.
- an internal electrical characteristic inspection is performed (S100). That is, the resonance frequency, resonance resistance value, drive level characteristic (excitation power dependency of the resonance frequency and resonance resistance value) and the like of the piezoelectric vibrating piece 4 are measured and checked. In addition, the insulation resistance characteristics and the like are also checked. Finally, an appearance inspection of the piezoelectric vibrator 1 is performed to finally check dimensions, quality, and the like. This completes the manufacture of the piezoelectric vibrator 1.
- the piezoelectric vibrator 1 of the present embodiment has a two-layer structure in which the base substrate 2 and the lid substrate 3 are joined. Can be made thinner. Accordingly, it is possible to make the thickness much thinner than in the past, and to achieve a compact size.
- the piezoelectric vibrating reed 4 is supported in a state of being lifted from the base substrate 2 by bump bonding, a minimum vibration gap necessary for vibration can be secured naturally. Therefore, unlike the lid substrate 3, it is not necessary to form the concave portion 3a for the cavity C on the base substrate 2 side, and a flat substrate may be used. Therefore, the thickness of the base substrate 2 can be made as thin as possible without considering the recess 3a. Also in this respect, the piezoelectric vibrator 1 can be thinned.
- a plurality of thin piezoelectric vibrators 1 can be manufactured at a time, so that the cost can be reduced.
- C0 is a parallel capacitance in the equivalent circuit of the vibrator shown in FIG. 14, and is a numerical value that can be actually measured.
- C1 is the series capacitance in the equivalent circuit shown in FIG. 14, and is a numerical value obtained by calculation from the calculation formula shown in FIG. In this case, ⁇ f, C0, CL, and Fr in the calculation formula are values that can be measured.
- the capacity ratio ⁇ (C0 / C1) was larger than that in the case of solder bonding because the bump bonding had lower C1 characteristics.
- the capacity ratio ⁇ increases, a low CL (capacitance load) can be achieved, leading to a reduction in power consumption. Therefore, when the bump bonding is performed, it is possible to produce a power-saving piezoelectric vibrator as compared with the case of solder bonding.
- the capacity cost ⁇ affects the curve characteristics of the CL curve (horizontal axis: CL, vertical axis ⁇ f / f) shown in FIG. 17, and the larger the value, the faster the curve approaches the horizontal. Become.
- the CL curve (L2) indicated by the dotted line can be changed from the CL curve (L1) indicated by the solid line. Therefore, it is easy to drive the CL curve within a predetermined range of ⁇ f / f (for example, ⁇ 20 ppm), and an effect that manufacturing is facilitated can be achieved.
- the oscillator 100 is configured by configuring the piezoelectric vibrator 1 as an oscillator electrically connected to the integrated circuit 101.
- the oscillator 100 includes a substrate 103 on which an electronic component 102 such as a capacitor is mounted.
- the integrated circuit 101 for the oscillator is mounted on the substrate 103, and the piezoelectric vibrating piece 4 of the piezoelectric vibrator 1 is mounted in the vicinity of the integrated circuit 101.
- the electronic component 102, the integrated circuit 101, and the piezoelectric vibrator 1 are electrically connected by a wiring pattern (not shown).
- Each component is molded with a resin (not shown).
- the piezoelectric vibrating reed 4 in the piezoelectric vibrator 1 vibrates. This vibration is converted into an electric signal by the piezoelectric characteristics of the piezoelectric vibrating piece 4 and input to the integrated circuit 101 as an electric signal.
- the input electrical signal is subjected to various processes by the integrated circuit 101 and is output as a frequency signal.
- the piezoelectric vibrator 1 functions as an oscillator.
- the oscillator 100 of the present embodiment since the piezoelectric vibrator 1 that is much thinner and compacter than the conventional one is provided, the oscillator 100 itself can be similarly compact. It is possible to meet future needs for further downsizing. In addition to this, it is possible to obtain a highly accurate frequency signal that is stable over a long period of time.
- the portable information device 110 having the above-described piezoelectric vibrator 1 will be described as an example of the electronic device.
- the portable information device 110 according to the present embodiment is represented by, for example, a mobile phone, and is a development and improvement of a wrist watch in the related art. The appearance is similar to that of a wristwatch, and a liquid crystal display is arranged in a portion corresponding to a dial so that the current time and the like can be displayed on this screen.
- a communication device it is possible to perform communication similar to that of a conventional mobile phone by using a speaker and a microphone that are removed from the wrist and incorporated in the inner portion of the band. However, it is much smaller and lighter than conventional mobile phones.
- the portable information device 110 includes the piezoelectric vibrator 1 and a power supply unit 111 for supplying power.
- the power supply unit 111 is made of, for example, a lithium secondary battery.
- the power supply unit 111 includes a control unit 112 that performs various controls, a clock unit 113 that counts time, a communication unit 114 that communicates with the outside, a display unit 115 that displays various types of information, A voltage detection unit 116 that detects the voltage of the functional unit is connected in parallel.
- the power unit 111 supplies power to each functional unit.
- the control unit 112 controls each function unit to control operation of the entire system such as transmission and reception of voice data, measurement and display of the current time, and the like.
- the control unit 112 includes a ROM in which a program is written in advance, a CPU that reads and executes the program written in the ROM, and a RAM that is used as a work area of the CPU.
- the clock unit 113 includes an integrated circuit including an oscillation circuit, a register circuit, a counter circuit, an interface circuit, and the like, and the piezoelectric vibrator 1.
- the piezoelectric vibrator 1 When a voltage is applied to the piezoelectric vibrator 1, the piezoelectric vibrating reed 4 vibrates, and the vibration is converted into an electric signal by the piezoelectric characteristics of the crystal, and input to the oscillation circuit as an electric signal.
- the output of the oscillation circuit is binarized and counted by a register circuit and a counter circuit. Then, signals are transmitted to and received from the control unit 112 via the interface circuit, and the current time, current date, calendar information, or the like is displayed on the display unit 115.
- the ring tone generator 123 generates a ring tone in response to a call from the base station.
- the switching unit 119 switches the amplifying unit 120 connected to the voice processing unit 118 to the ringing tone generating unit 123 only when an incoming call is received, so that the ringing tone generated in the ringing tone generating unit 123 is transmitted via the amplifying unit 120.
- the call control memory unit 124 stores a program related to incoming / outgoing call control of communication.
- the telephone number input unit 122 includes, for example, a number key from 0 to 9 and other keys. By pressing these number keys and the like, a telephone number of a call destination is input.
- the voltage detection unit 116 detects the voltage drop and notifies the control unit 112 of the voltage drop.
- the predetermined voltage value at this time is a value set in advance as a minimum voltage necessary for stably operating the communication unit 114, and is, for example, about 3V.
- the control unit 112 prohibits the operations of the radio unit 117, the voice processing unit 118, the switching unit 119, and the ring tone generation unit 123. In particular, it is essential to stop the operation of the wireless unit 117 with high power consumption. Further, the display unit 115 displays that the communication unit 114 has become unusable due to insufficient battery power.
- the operation of the communication unit 114 can be prohibited by the voltage detection unit 116 and the control unit 112, and that effect can be displayed on the display unit 115.
- This display may be a text message, but as a more intuitive display, a x (X) mark may be attached to the telephone icon displayed at the top of the display surface of the display unit 115.
- the function of the communication part 114 can be stopped more reliably by providing the power supply cutoff part 126 that can selectively cut off the power of the part related to the function of the communication part 114.
- the portable information device 110 of the present embodiment since the piezoelectric vibrator 1 that is much thinner and compacter than the conventional one is provided, the portable information device itself is similarly reduced in size. This can meet future needs for further downsizing. In addition to this, it is possible to display highly accurate clock information that is stable over a long period of time.
- the radio timepiece 130 of this embodiment includes the piezoelectric vibrator 1 electrically connected to the filter unit 131, and receives a standard radio wave including timepiece information to accurately It is a clock with a function of automatically correcting and displaying the correct time.
- a standard radio wave including timepiece information to accurately It is a clock with a function of automatically correcting and displaying the correct time.
- transmitting stations transmit standard radio waves in Fukushima Prefecture (40 kHz) and Saga Prefecture (60 kHz), each transmitting standard radio waves.
- Long waves such as 40 kHz or 60 kHz have the property of propagating the surface of the earth and the property of propagating while reflecting the ionosphere and the surface of the earth, so the propagation range is wide, and the above two transmitting stations cover all of Japan. is doing.
- the antenna 132 receives a long standard wave of 40 kHz or 60 kHz.
- the long-wave standard radio wave is obtained by subjecting time information called a time code to AM modulation on a 40 kHz or 60 kHz carrier wave.
- the received long standard wave is amplified by the amplifier 133 and filtered and tuned by the filter unit 131 having the plurality of piezoelectric vibrators 1.
- the piezoelectric vibrator 1 according to this embodiment includes crystal vibrator portions 138 and 139 having resonance frequencies of 40 kHz and 60 kHz that are the same as the carrier frequency.
- the filtered signal having a predetermined frequency is detected and demodulated by the detection and rectification circuit 134. Subsequently, the time code is taken out via the waveform shaping circuit 135 and counted by the CPU 136.
- the CPU 136 reads information such as the current year, accumulated date, day of the week, and time. The read information is reflected in the RTC 137, and accurate time information is displayed. Since the carrier wave is 40 kHz or 60 kHz, the crystal vibrator units 138 and 139 are preferably vibrators having the tuning fork type structure described above.
- the frequency of the long standard radio wave is different overseas.
- a standard radio wave of 77.5 KHz is used. Accordingly, when the radio timepiece 130 that can be used overseas is incorporated in a portable device, the piezoelectric vibrator 1 having a frequency different from that in Japan is required.
- the radio-controlled timepiece 130 of the present embodiment since the piezoelectric vibrator 1 that is much thinner and compacter than the conventional one is provided, the radio-controlled timepiece itself can be made compact in the same manner. Can meet future needs for further miniaturization. In addition to this, it is possible to count time stably and with high accuracy over a long period of time.
- a grooved piezoelectric vibrating piece in which the groove portions 18 are formed on both surfaces of the vibrating arm portions 10 and 11 has been described as an example.
- a piezoelectric vibrating piece may be used.
- the tuning fork type piezoelectric vibrating piece 4 has been described as an example.
- the tuning fork type is not limited to the tuning fork type.
- it may be a thickness sliding vibration piece.
- the piezoelectric vibrating reed 4 is bump-bonded, but is not limited to bump bonding.
- the bonding method is not limited to anodic bonding.
- the base substrate 2 and the lid substrate 3 may be joined using gold tin solder.
- the base substrate wafer 40 and the lid substrate wafer 50 may be bonded by gold-tin solder in the bonding step.
- the concave portion forming process for forming the concave portion 3a for the cavity in the lid substrate wafer 50 is performed by etching or the like.
- the concave portion is formed without performing such cutting.
- 3a may be formed.
- you may form the recessed part 3a by screen-printing the glass paste P1.
- a printing step S22a, a drying step S22b, and a firing step S22c may be performed during the recess forming step S22.
- the lid substrate wafer 50 that has been cleaned is placed on the wafer fixing plate 70, and the periphery is fixed by a fixing jig 51. Then, a printing mask 52 serving as a screen is set on the surface of the fixed lid substrate wafer 50.
- the printing mask 52 is a mask arranged so as to cover a region that will later become the recess 3a, and has a thickness of about 50 ⁇ m to 200 ⁇ m.
- the squeegee 53 is moved to extend the whole while pressing the paste P1.
- the paste P1 is pushed out to an unmasked region, and is thus screen-printed on the unmasked lid substrate wafer 50. That is, it is possible to perform screen printing in a state where the glass paste P1 is patterned so as to surround the periphery of the portion to be the recess 3a. Thereby, printing process S22a is complete
- a drying step S22b for drying the printed glass paste P1 is performed.
- the wafer fixing plate 70 is put in a furnace and dried at a temperature of about 100 ° C. for about 30 minutes.
- the glass paste P1 printed earlier is in a dry state.
- the above-described printing step S22a is performed again, and a new glass paste P1 is screen-printed and applied onto the dried paste P1.
- the new paste P1 is dried again by the drying step S22b.
- the printing step S22a and the drying step S22b are repeated a plurality of times until the concave portion 3a is formed by applying the paste P1.
- 24 and 25 illustrate a case where the concave portion 3a is formed by performing the printing step S22a and the drying step S22b three times. That is, the total height of the paste P1 that has been applied is 150 ⁇ m when the thickness of the print mask 52 is 50 ⁇ m. This 150 ⁇ m is the depth of the recess 3a.
- the baking process S22c which bakes and dries the paste P1 which has been coated and dried completely is performed. Thereby, the pasted paste P1 and the lid substrate wafer 50 are integrated.
- the recess 3a can be formed in the lid substrate wafer 50 without performing a cutting process such as etching.
- the load applied to the wafer 50 can be reduced, and the quality of the piezoelectric vibrator 1 can be improved.
- the thickness of the print mask 52, the number of times of printing, and the like may be set freely.
- the through hole when the through hole is formed in the base substrate wafer 40, it may be formed by mechanical drilling, laser processing, or sand blasting. . At this time, drilling and laser processing are employed when forming a straight through hole, and sandblasting is employed when forming a tapered through hole.
- a method for forming a through hole simply and reliably, a method of forming by pressing with a mold is preferable. In this case, as shown in FIG. 26, a setting step 32a, a pressing step 32b, and a cooling step 32c may be performed during the through hole forming step S32. Each of these steps will be described in detail.
- the pin 81a is formed in a tapered shape whose diameter gradually decreases toward the tip.
- a positioning pin 81b that enters into a positioning hole 80a provided in the lower die 80 is attached to the upper die 81.
- an insertion hole 40a through which the positioning pin 81b is inserted is opened in the base substrate wafer 40, and the insertion hole 40a is set so as to face the positioning hole 80a.
- the whole is placed in a furnace to heat the base substrate wafer 40 to a predetermined temperature (a temperature equal to or higher than the glass softening point), and is pressed with the lower mold 80 and the upper mold 81 as shown in FIG.
- a pressing step 32b for forming a through hole in the base substrate wafer 40 using the pins 81a of the upper die 81 is performed.
- the positioning pins 81 a of the upper mold 81 are inserted through the insertion holes 40 a of the base substrate wafer 40 and enter the positioning holes 80 a of the lower mold 80. Accordingly, since the lower mold 80, the upper mold 81, and the base substrate wafer 40 are positioned reliably, the through hole can be formed at a desired position with high accuracy.
- a cooling step 32c for cooling and solidifying the base substrate wafer 40 is performed.
- through-hole formation process S32 is complete
- the through holes can be formed at once by a simple method of pressing with a mold, the production efficiency can be increased.
- a tapered through hole can be formed.
- the wafer 40 of planar view circular shape As mentioned above. That is, when the base substrate wafer 40 has a circular shape, even if thermal expansion or thermal contraction occurs in the wafer due to heating by the pressing step 32b or cooling by the cooling step 32c, it is difficult to deform in the middle, dimensional accuracy, The thickness accuracy can be maintained at a high level. If the wafer has a rectangular shape in plan view (for example, rectangular shape in plan view), it may be deformed in the middle when it expands or contracts due to heating or cooling, resulting in low dimensional accuracy and thickness accuracy. turn into.
- a rectangular shape in plan view for example, rectangular shape in plan view
- the routing electrodes 36 and 37 are irradiated with plasma (for example, oxygen plasma) for at least 10 seconds or more to perform a plasma cleaning process. It is preferable to apply. Thereby, contamination sources such as dust can be removed, the surface on which the bumps B are formed can be cleaned, and the surface can be modified. In particular, since plasma is irradiated for at least 10 seconds, it can be reliably removed without leaving a contamination source. Therefore, adhesiveness and adhesiveness with the bump B can be improved, and the shear peel strength of the bump B can be increased. Therefore, the mounting performance of the piezoelectric vibrating piece 4 can be improved, and as a result, the quality of the piezoelectric vibrator 1 can be improved.
- plasma for example, oxygen plasma
- FIG. 29 shows the result of actually scratching the bump B when the bump B is formed without the plasma cleaning process and when the bump B is formed after the plasma cleaning process.
- the test at the time of performing the plasma cleaning process was tested in two ways: a case where the plasma was irradiated for 10 seconds and a case where the plasma was irradiated for 30 seconds.
- the scratch test was performed 100 times in any case.
- the scratching strength of the bumps B was 55 (gf) on average when plasma cleaning was not performed, 78 (gf) on average when irradiated with plasma for 10 seconds, and irradiated with plasma for 30 seconds. In some cases, an average of 83 (gf) was tested.
- the fracture mode A indicates that the bump B is not removed and remains almost perfect as a result of the scratch test.
- the fracture mode B indicates that, as a result of the scratch test, the bump B was slightly removed but most of it remained.
- the fracture mode C indicates that as a result of the scratch test, most of the bumps B have been removed and some of them have remained.
- the fracture mode D indicates that all of the bumps B have been removed as a result of the scratch test.
- bump B before forming bump B, it is preferable to surface-process the upper surface of the wafer 40 for base substrates, and to perform the surface processing process which makes arithmetic mean roughness (Ra) 10 nm or less.
- the surface processing method include mirror polishing such as polishing, surface grinding by grinding, and the like.
- the upper surface of the base substrate wafer 40 that becomes a base on which the bumps B are formed can be made as close to a smooth surface as possible by surface processing. Therefore, the adhesiveness and adhesiveness with the bump B can be improved, and the shear peel strength of the bump B can be increased.
- the mounting performance of the piezoelectric vibrating reed 4 can be improved, and as a result, the quality of the piezoelectric vibrator 1 can be improved.
- combining this method with the above-described plasma cleaning treatment can improve the effect, which is preferable.
- the through-holes 32 and 33 are formed by filling the through-holes 30 and 31 with a conductor (not shown).
- the paste P3 containing the plurality of metal fine particles P2 shown in FIG. It is possible to form the through electrodes 85 and 86 as shown in FIG. In this case, the through electrodes 85 and 86 have electrical conductivity ensured by the plurality of metal fine particles P2 included in the paste P3 being in contact with each other. Therefore, it can function reliably as an electrode.
- the through electrode forming step S33 may be performed as follows. First, a filling process for filling the through holes 30 and 31 with the paste P3 containing the metal fine particles P2 without gaps to close the through holes 30 and 31 is performed. Subsequently, a firing step is performed in which the filled paste P3 is fired and cured at a predetermined temperature. As a result, the paste P3 is firmly fixed to the inner surfaces of the through holes 30 and 31. By the way, since the organic substance in the paste P3 (not shown) evaporates at the time of baking, the cured paste P3 has a reduced volume as compared with the filling process. Therefore, a dent is inevitably generated on the surface of the paste P3.
- a polishing process is performed in which both surfaces of the base substrate wafer 40 are polished by a predetermined thickness after firing.
- both surfaces of the paste P3 cured by baking can be polished simultaneously, so that the periphery of the recessed portion can be scraped off. That is, the surface of the paste P3 can be flattened.
- the surface of the base substrate wafer 40 and the surfaces of the through electrodes 85 and 86 can be substantially flush with each other.
- the through electrode forming process is completed.
- the through electrodes 85 and 86 can be formed using the paste P3.
- FIG. 31 the case of through holes 30 and 31 formed in a tapered shape is taken as an example. In this case, when the through holes 30 and 31 are formed, the through holes 30 and 31 may be formed by a sandblast method or the above-described press using a mold.
- the through electrodes 87 and 88 may be formed by curing the paste P3 containing a plurality of glass beads GB. Absent. In this case, since the amount of the paste P3 can be reduced by the amount of the glass beads GB, the amount of organic matter that is reduced by firing can be reduced. Therefore, the dent of the surface which appears after hardening of paste P3 can be made small so that it can be disregarded. Therefore, there is an advantage that the polishing step can be eliminated.
- the cylindrical body 91 embedded in the through holes 30 and 31 and the center hole 91a of the cylindrical body 91 are inserted and fixed integrally by firing.
- the through electrodes 89 and 90 may be configured with the conductive core 92.
- the case of the through holes 30 and 31 formed in a tapered shape is taken as an example.
- the through electrode forming step in this case may be performed as follows. First, a setting process is performed in which the cylindrical body 91 is embedded in the through holes 30 and 31 and the core material 92 is inserted into the center hole 91 a of the cylindrical body 91. As shown in FIG. 34, the cylindrical body 91 is preliminarily fired with the same glass material as that of the base substrate 2 and is formed into a cylindrical shape having both ends flat and substantially the same thickness as the base substrate 2. To do. In addition, a center hole 91a penetrating through the cylindrical body 91 is formed at the center, and the outer shape is formed so as to be conical (cross section tapered) in accordance with the through holes 30 and 31. On the other hand, as shown in FIG. 33, the core material 92 is a conductive core material formed in a cylindrical shape from a metal material, and is formed to have substantially the same thickness as the base substrate 2 in the same manner as the cylindrical body 91. Is used.
- the baking process which bakes the embedded cylinder 91 at predetermined temperature is performed.
- the through holes 30 and 31, the cylindrical body 91, and the core material 92 can be fixed integrally.
- the penetration electrodes 89 and 90 can be formed, and a penetration electrode formation process is complete
- the glass cylinder 91 is used instead of the paste P3, the volume of the cylinder 91 is difficult to decrease after firing, and the surface is unlikely to be dented. Accordingly, the through electrodes 89 and 90 can be formed without performing a polishing process.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
圧電基板201は、水晶等の圧電材料から形成されており、枠部201bと、この枠部201bに連結された上記圧電振動片201aとで構成されている。なお、この枠部201bの部分が、両基板202、203と接合するようになっている。
一方、圧電振動片201aは、両基板202、203に形成された凹部202a、203aで構成されるキャビティC内に収納されている。この圧電振動片201aには、電圧が印加されたときに圧電振動片201aを振動させるための電極204a、204bがパターニングされている。
両基板202、203のうち、ベース基板202の底面には、側面に亘って外部電極206a、206bが形成されている。このうち一方の外部電極206aが、圧電振動片201aの一方の電極204aに電気的に接続されており、他方の外部電極206bが、圧電振動片201aの他方の電極204bに電気的に接続されている。
はじめに、近年の電子機器の小型化に伴って、これら各種の電子機器に搭載される圧電振動子200に関してもさらなる小型化が求められている。ところが、従来の圧電振動子200は、圧電基板201を、ベース基板202とリッド基板203とで上下から挟み込む3層構造タイプであるので、どうしても厚みが生じてしまい、これ以上のさらなる薄型化を図ることが困難なものであった。特に、キャビティCを構成するための凹部202a、203aをベース基板202及びリッド基板203の両方にそれぞれ形成する必要があるので、両基板202、203の厚みを一定値以上の厚みにする必要がある。この点においても、薄型化を図ることが難しいものであった。
また、この圧電振動子を、一度に効率良く製造する圧電振動子の製造方法と、圧電振動子を有する発振器、電子機器、電波時計とを提供することである。
(1)本発明に係る圧電振動子の製造方法は、互いに接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された圧電振動子を、ベース基板用ウエハとリッド基板用ウエハとを利用して一度に複数製造する方法であって、前記リッド基板用ウエハに、両ウエハが重ね合わされたときに前記キャビティを形成するキャビティ用の凹部を複数形成する凹部形成工程と;前記ベース基板用ウエハを貫通する一対の貫通孔を複数形成する貫通孔形成工程と;複数形成された前記一対の貫通孔を導電体で埋めて、一対の貫通電極を複数形成する貫通電極形成工程と;前記ベース基板用ウエハの上面に、前記凹部の周囲を囲むように接合膜を形成する接合膜形成工程と;前記ベース基板用ウエハの上面に、前記一対の貫通電極に対してそれぞれ電気的に接続された引き回し電極を複数形成する引き回し電極形成工程と;前記引き回し電極を介して複数の前記圧電振動片を前記ベース基板用ウエハの上面に接合するマウント工程と;前記ベース基板用ウエハと前記リッド基板用ウエハとを重ね合わせて、前記凹部と両ウエハとで囲まれる前記キャビティ内に圧電振動片を収納する重ね合わせ工程と;前記ベース基板用ウエハと前記リッド基板用ウエハとを前記接合膜を介して接合し、前記圧電振動片を前記キャビティ内に封止する接合工程と;前記ベース基板用ウエハの下面に、前記一対の貫通電極にそれぞれ電気的に接続された一対の外部電極を複数形成する外部電極形成工程と;接合された前記両ウエハを切断して、複数の前記圧電振動子に小片化する切断工程と;を備えている。
そして、引き回し電極を介して複数の圧電振動片をベース基板用ウエハの上面に接合するマウント工程を行う。これにより、接合された各圧電振動片は、引き回し電極を介して一対の貫通電極に対して導通した状態となる。
マウント終了後、ベース基板用ウエハとリッド基板用ウエハとを重ね合わせる重ね合わせ工程を行う。これにより、接合された複数の圧電振動片は、凹部と両ウエハとで囲まれるキャビティ内に収納された状態となる。
最後に、接合されたベース基板用ウエハ及びリッド基板用ウエハを切断して、複数の圧電振動子に小片化する切断工程を行う。
そのため、圧電振動片のマウント性能を高めることができ、結果的に圧電振動子の高品質化を図ることができる。
まず、ベース基板を下型と上型との間にセットするセット工程を行う。そして、ベース基板用ウエハを所定温度に加熱した状態で下型と上型とでプレスし、上型のピンを利用してベース基板用ウエハに貫通孔を形成するプレス工程を行う。そして、最後にベース基板用ウエハを冷却固化させる冷却工程を行う。これにより、貫通孔を一度に確実に形成することができる。特に、下型及び上型からなる金型を利用するので、貫通孔の位置精度を高めることができる。
しかしながら、角部がない円形状のウエハを利用するので、加熱、冷却を伴ったプレス加工で貫通孔を形成したとしても、上述した問題が生じる恐れが少ない。
C キャビティ
P1 ペースト
1 圧電振動子
2 ベース基板
3 リッド基板
3a キャビティ用の凹部
4 圧電振動片
30、31 スルーホール(貫通孔)
32、33、85、86、98、88、89、90 貫通電極
35 接合膜
36、37 引き回し電極
38、39 外部電極
40 ベース基板用ウエハ
50 リッド基板用ウエハ
80 下型
81 上型
81a ピン
100 発振器
101 発振器の集積回路
110 携帯情報機器(電子機器)
113 電子機器の計時部
130 電波時計
131 電波時計のフィルタ部
本実施形態の圧電振動子1は、図1から図4に示すように、ベース基板2とリッド基板3とで2層に積層された箱状に形成されており、内部のキャビティC内に圧電振動片4が収納された表面実装型の圧電振動子である。
なお、図4においては、図面を見易くするために後述する励振電極15、引き出し電極19、20、マウント電極16、17及び重り金属膜21の図示を省略している。
この圧電振動片4は、平行に配置された一対の振動腕部10、11と、この一対の振動腕部10、11の基端側を一体的に固定する基部12と、一対の振動腕部10、11の外表面上に形成されて一対の振動腕部10、11を振動させる第1の励振電極13と第2の励振電極14とからなる励振電極15と、第1の励振電極13及び第2の励振電極14に電気的に接続されたマウント電極16、17とを有している。
また、本実施形態の圧電振動片4は、一対の振動腕部10、11の両主面上に、振動腕部10、11の長手方向に沿ってそれぞれ形成された溝部18を備えている。この溝部18は、振動腕部10、11の基端側から略中間付近まで形成されている。
なお、上述した励振電極15、マウント電極16、17及び引き出し電極19、20は、例えば、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)やチタン(Ti)等の導電性膜の被膜により形成されたものである。
このベース基板2には、ベース基板2を貫通する一対のスルーホール(貫通孔)30、31が形成されている。この際、一対のスルーホール30、31は、キャビティC内に収まるように形成されている。より詳しく説明すると、マウントされた圧電振動片4の基部12側に一方のスルーホール30が位置し、振動腕部10、11の先端側に他方のスルーホール31が位置するように形成されている。また、本実施形態では、ベース基板2を真っ直ぐに貫通したスルーホール30、31を例に挙げて説明するが、この場合に限られず、例えばベース基板2の下面に向かって漸次径が縮径するテーパー状に形成しても構わない。いずれにしても、ベース基板2を貫通していれば良い。
ベース基板2の上面側(リッド基板3が接合される接合面側)には、導電性材料(例えば、アルミニウム)により、陽極接合用の接合膜35と、一対の引き回し電極36、37とがパターニングされている。このうち接合膜35は、リッド基板3に形成された凹部3aの周囲を囲むようにベース基板2の周縁に沿って形成されている。
そして、これら一対の引き回し電極36、37上にバンプBが形成されており、このバンプBを利用して圧電振動片4がマウントされている。これにより、圧電振動片4の一方のマウント電極16が、一方の引き回し電極36を介して一方の貫通電極32に導通し、他方のマウント電極17が、他方の引き回し電極37を介して他方の貫通電極33に導通するようになっている。
この際、後に両ウエハ40、50を重ね合わせたときに、リッド基板用ウエハ50に形成した凹部3a内に収まるように一対のスルーホール30、31を複数形成する。しかも、一方のスルーホール30が後にマウントする圧電振動片4の基部12側に位置し、他方のスルーホール31が振動腕部10、11の先端側に位置するように形成する。
続いて、ベース基板用ウエハ40の上面に導電性材料をパターニングして、図11及び図12に示すように、接合膜35を形成する接合膜形成工程(S34)を行うと共に、一対の貫通電極32、33にそれぞれ電気的に接続された引き回し電極36、37を複数形成する引き回し電極形成工程を行う(S35)。なお、図11及び図12に示す点線Mは、後に行う切断工程で切断する切断線を図示している。また、図12では、接合膜35の図示を省略している。
この工程を行うことにより、一方の貫通電極32と一方の引き回し電極36とが導通すると共に、他方の貫通電極33と他方の引き回し電極37とが導通した状態となる。この時点で第2のウエハ作製工程が終了する。
ところで、陽極接合を行う際、ベース基板用ウエハ40に形成されたスルーホール30、31は、貫通電極32、33によって完全に塞がれているので、キャビティC内の気密がスルーホール30、31を通じて損なわれることがない。
なお、切断工程(S90)を行って個々の圧電振動子1に小片化した後に、微調工程(S80)を行う工程順序でも構わない。但し、上述したように、微調工程(S80)を先に行うことで、ウエハ体60の状態で微調を行うことができるので、複数の圧電振動子1をより効率よく微調することができる。よって、スループットの向上化を図ることができるので、より好ましい。
また、本実施形態の製造方法によれば、薄型化された上記圧電振動子1を一度に複数製造することができるので、低コスト化を図ることができる。
即ち、バンプ接合した場合には、半田接合した場合に比べて、C0特性はほぼ同一であるが、C1特性を小さくすることができる。ここで、C0、C1について、簡単に説明する。C0は、図14に示す振動子の等価回路における並列容量であり、実際に計測可能な数値である。一方、C1は、図14に示す等価回路における直列容量であり、図15に示す計算式より算出して得られる数値である。なお、この際、計算式中のΔf、C0、CL、Frは、それぞれ計測可能な数値である。
その結果、図16に示すように、バンプ接合した場合の方が半田接合した場合に比べて、C1特性が低いことが確認された。これは、圧電振動片4のマウント状況によるものと考えられる。つまり、半田接合の場合には、圧電振動片4が半田に対して面接触した状態でマウントされてしまう。一方、バンプ接合の場合には、圧電振動片4がバンプBに対して点接触に近い状態でマウントされる。そのため、圧電振動片は、より接触が少ない状態で浮き、C1特性が低くなったと考えられる。
また、容量費γは、図17に示すCL曲線(横軸:CL、縦軸Δf/f)のカーブ特性に影響を与えるものであり、大きくなるほど、より速やかに曲線が水平に近づいた状態になる。つまり、実線で示すCL曲線(L1)から点線で示すCL曲線(L2)にすることができる。従って、予め決められたΔf/fの範囲(例えば、±20ppm)内に、CL曲線を追い込み易くなり、製造が容易になるという効果も奏することができる。
本実施形態の発振器100は、図18に示すように、圧電振動子1を、集積回路101に電気的に接続された発振子として構成したものである。この発振器100は、コンデンサ等の電子部品102が実装された基板103を備えている。基板103には、発振器用の上記集積回路101が実装されており、この集積回路101の近傍に、圧電振動子1の圧電振動片4が実装されている。これら電子部品102、集積回路101及び圧電振動子1は、図示しない配線パターンによってそれぞれ電気的に接続されている。なお、各構成部品は、図示しない樹脂によりモールドされている。
また、集積回路101の構成を、例えば、RTC(リアルタイムクロック)モジュール等を要求に応じて選択的に設定することで、時計用単機能発振器等の他、当該機器や外部機器の動作日や時刻を制御したり、時刻やカレンダー等を提供したりする機能を付加することができる。
無線部117は、音声データ等の各種データを、アンテナ125を介して基地局と送受信のやりとりを行う。音声処理部118は、無線部117又は増幅部120から入力された音声信号を符号化及び複号化する。増幅部120は、音声処理部118又は音声入出力部121から入力された信号を、所定のレベルまで増幅する。音声入出力部121は、スピーカやマイクロフォン等からなり、着信音や受話音声を拡声したり、音声を集音したりする。
なお、呼制御メモリ部124は、通信の発着呼制御に係るプログラムを格納する。また、電話番号入力部122は、例えば、0から9の番号キー及びその他のキーを備えており、これら番号キー等を押下することにより、通話先の電話番号等が入力される。
なお、通信部114の機能に係る部分の電源を、選択的に遮断することができる電源遮断部126を備えることで、通信部114の機能をより確実に停止することができる。
本実施形態の電波時計130は、図20に示すように、フィルタ部131に電気的に接続された圧電振動子1を備えたものであり、時計情報を含む標準の電波を受信して、正確な時刻に自動修正して表示する機能を備えた時計である。
日本国内には、福島県(40kHz)と佐賀県(60kHz)とに、標準の電波を送信する送信所(送信局)があり、それぞれ標準電波を送信している。40kHz若しくは60kHzのような長波は、地表を伝播する性質と、電離層と地表とを反射しながら伝播する性質とを併せもつため、伝播範囲が広く、上述した2つの送信所で日本国内を全て網羅している。
アンテナ132は、40kHz若しくは60kHzの長波の標準電波を受信する。長波の標準電波は、タイムコードと呼ばれる時刻情報を、40kHz若しくは60kHzの搬送波にAM変調をかけたものである。受信された長波の標準電波は、アンプ133によって増幅され、複数の圧電振動子1を有するフィルタ部131によって濾波、同調される。
本実施形態における圧電振動子1は、上記搬送周波数と同一の40kHz及び60kHzの共振周波数を有する水晶振動子部138、139をそれぞれ備えている。
搬送波は、40kHz若しくは60kHzであるから、水晶振動子部138、139は、上述した音叉型の構造を持つ振動子が好適である。
また、上記実施形態では、音叉型の圧電振動片4を例に挙げて説明したが、音叉型に限られるものではない。例えば、厚み滑り振動片としても構わない。
また、ベース基板2とリッド基板3とを陽極接合した場合を例に挙げて説明したが、接合方法は陽極接合に限定されるものではない。例えば、金錫半田を利用して、ベース基板2とリッド基板3とを接合しても構わない。この場合には、接合工程の際に、ベース基板用ウエハ40とリッド基板用ウエハ50とを金錫半田により接合すれば良い。
続いて、図23に示すように、リッド基板用ウエハ50の表面に印刷インクとなるガラスのペーストP1を供給した後、スキージ53を移動させてペーストP1を加圧しながら全体に延ばす。これにより、ペーストP1は、マスクされていない領域に押し出されるので、マスクされていないリッド基板用ウエハ50上にスクリーン印刷される。つまり、ガラスのペーストP1を、凹部3aとなる部分の周囲を囲むようにパターニングした状態でスクリーン印刷することができる。これにより、印刷工程S22aが終了する。なお、一度に印刷されるペーストP1の厚みは、印刷マスク52の厚みと同じとなる。
そして、再度上述した印刷工程S22aを行って、乾燥したペーストP1の上に新たなガラスのペーストP1をスクリーン印刷して塗り重ねる。その後、再度乾燥工程S22bによって新たなペーストP1を乾燥させる。
そして、ペーストP1の塗り重ねによって凹部3aを形成した後、塗り重なって乾燥しているペーストP1を焼成して完全に硬化させる焼成工程S22cを行う。これにより、塗り重ねたペーストP1とリッド基板用ウエハ50とが一体となる。
特に、スルーホールを簡便にしかも確実に形成する方法として、金型によるプレスで形成する方法が好ましい。この場合には、図26に示すように、貫通孔形成工程S32の際にセット工程32aと、プレス工程32bと、冷却工程32cとを行えば良い。これら各工程について、詳細に説明する。
特に、金型でプレスするだけの簡便な方法でスルーホールを一度に形成できるので、製造効率を高めることができる。しかも、テーパー状のスルーホールを形成することができる。
仮に、平面視矩形状(例えば、平面視長方形状)のウエハである場合には、加熱、冷却によって膨張、収縮が生じたときに、途中で変形する恐れがあり、寸法精度、厚み精度が低くなってしまう。これは、ウエハに角部が存在するので、膨張時に角度付近に応力集中し易い。そのため、膨張具合と収縮具合とが不均一になってしまい、元の状態に戻り難いことが考えられる。また、平面視矩形状のウエハを利用した場合には、寸法精度、厚み精度が低くなるだけでなく、膨張具合と収縮具合との不均一の影響を受けてピン81aに無理な負荷が作用してしまい、ピン81aが変形或いは折れてしまう可能性もあった。
しかしながら、角部がない円形状のウエハを利用するので、加熱、冷却を伴ったプレス加工でスルーホールを形成したとしても、上述した問題が生じる恐れが少ない。なお、冷却工程32c後、ベース基板用ウエハ40の両面を研磨しても構わない。こうすることで、より確実な貫通を実現することができる。
なお、プラズマクリーニング処理を施した場合の試験は、プラズマを10秒照射した場合と、30秒照射した場合との2通りで試験した。また、引っ掻き試験は、いずれの場合も100回行った。また、バンプBを引っ掻く強度、即ち、剪断強度としては、プラズマクリーニング処理をしない場合には平均55(gf)、プラズマを10秒照射した場合には平均78(gf)、プラズマを30秒照射した場合には平均83(gf)で試験した。
また、破断モードAとは、引っ掻き試験した結果、バンプBが除去されずほぼ完全な状態で残ったことを示すものである。破断モードBとは、引っ掻き試験した結果、バンプBが若干除去されたが大部分が残ったことを示すものである。破断モードCとは、引っ掻き試験した結果、バンプBの大部分が除去されてしまい、一部が若干残ったことを示すものである。破断モードDとは、引っ掻き試験した結果、バンプBの全てが除去されてしまったことを示すものである。
このように、プラズマクリーニング処理を施した後にバンプBを形成することで、バンプBの剪断剥離強度が高くなったことが実際に確認できた。また、少なくとも10秒プラズマを照射することで、十分な効果を発揮できることを確認できた。
特に、この方法と上述したプラズマクリーニング処理とを組み合わせることで、より効果を高めることができ、好ましい。
まず、スルーホール30、31内に金属微粒子P2を含んだペーストP3を隙間なく埋め込んでスルーホール30、31を塞ぐ充填工程を行う。続いて、充填したペーストP3を所定の温度で焼成して硬化させる焼成工程を行う。これにより、スルーホール30、31の内面にペーストP3が強固に固着した状態となる。ところで、硬化したペーストP3は、焼成時に図示しないペーストP3内の有機物が蒸発してしまうので、充填工程時に比べて体積が減少してしまう。そのため、ペーストP3の表面には、どうしても凹みが生じてしまう。
その結果、ペーストP3を利用して貫通電極85、86を形成することができる。なお、図31では、テーパー状に形成されたスルーホール30、31の場合を例に挙げている。この場合には、スルーホール30、31を形成する際、サンドブラスト法や上述した金型によるプレスによって形成すれば良い。
まず、スルーホール30、31内に筒体91を埋め込むと共に、筒体91の中心孔91aに芯材92を挿入するセット工程を行う。なお、筒体91は、図34に示すように、ベース基板2と同じガラス材料によって予め仮焼成され、両端が平坦で且つベース基板2と略同じ厚みの円筒状に形成されているものを使用する。しかも、中心には筒体91を貫通する中心孔91aが形成されており、外形がスルーホール30、31に合わせて円錐状(断面テーパ状)になるように形成されているものを使用する。一方、芯材92は、図33に示すように、金属材料により円柱状に形成された導電性の芯材であり、筒体91と同様にベース基板2と略同じ厚みに形成されているものを使用する。
特に、ペーストP3ではなくガラスの筒体91を利用しているので、焼成後に筒体91の体積が減少し難く、表面に凹みが生じ難い。従って、やはり研磨工程を行うことなく、貫通電極89、90を形成することができる。
Claims (16)
- 互いに接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された圧電振動子を、ベース基板用ウエハとリッド基板用ウエハとを利用して一度に複数製造する方法であって、
前記リッド基板用ウエハに、両ウエハが重ね合わされたときに前記キャビティを形成するキャビティ用の凹部を複数形成する凹部形成工程と;
前記ベース基板用ウエハを貫通する一対の貫通孔を複数形成する貫通孔形成工程と;
複数形成された前記一対の貫通孔を導電体で埋めて、一対の貫通電極を複数形成する貫通電極形成工程と;
前記ベース基板用ウエハの上面に、前記凹部の周囲を囲むように接合膜を形成する接合膜形成工程と;
前記ベース基板用ウエハの上面に、前記一対の貫通電極に対してそれぞれ電気的に接続された引き回し電極を複数形成する引き回し電極形成工程と;
前記引き回し電極を介して複数の前記圧電振動片を前記ベース基板用ウエハの上面に接合するマウント工程と;
前記ベース基板用ウエハと前記リッド基板用ウエハとを重ね合わせて、前記凹部と両ウエハとで囲まれる前記キャビティ内に圧電振動片を収納する重ね合わせ工程と;
前記ベース基板用ウエハと前記リッド基板用ウエハとを前記接合膜を介して接合し、前記圧電振動片を前記キャビティ内に封止する接合工程と;
前記ベース基板用ウエハの下面に、前記一対の貫通電極にそれぞれ電気的に接続された一対の外部電極を複数形成する外部電極形成工程と;
接合された前記両ウエハを切断して、複数の前記圧電振動子に小片化する切断工程と;を備えている;
ことを特徴とする圧電振動子の製造方法。 - 請求項1に記載の圧電振動子の製造方法であって、
前記マウント工程の際、前記引き回し電極上にバンプを形成した後、バンプを介して前記圧電振動片を前記ベース基板用ウエハの上面にバンプ接合する。 - 請求項2に記載の圧電振動子の製造方法であって、
前記マウント工程の際、前記引き回し電極に対して少なくとも10秒以上プラズマクリーニング処理を施した後に、前記パンプを形成する。 - 請求項2に記載の圧電振動子の製造方法であって、
前記貫通孔形成工程後、前記ベース基板用ウエハの上面を表面加工して、算術平均粗さRaを10nm以下とする表面加工工程を行う。 - 請求項1に記載の圧電振動子の製造方法であって、
前記接合工程の際、前記ベース基板用ウエハと前記リッド基板用ウエハとを陽極接合する。 - 請求項1に記載の圧電振動子の製造方法であって、
前記凹部形成工程は、
前記リッド基板用ウエハの表面に所定のパターンでペーストをスクリーン印刷する印刷工程と;
印刷した前記ペーストを乾燥させる乾燥工程と;
前記ペーストの塗り重ねによって前記凹部を形成するまで前記印刷工程と前記乾燥工程とを複数回繰り返し行った後、塗り重なって乾燥しているペーストを焼成する焼成工程と;
を備える。 - 請求項1に記載の圧電振動子の製造方法であって、
前記貫通孔形成工程は、
下型と下型に向けて突出したピンを有する上型との間に前記ベース基板用ウエハをセットするセット工程と;
所定温度に加熱した状態で前記下型と前記上型とで前記ベース基板用ウエハをプレスし、前記ピンを利用して前記貫通孔を形成するプレス工程と;
前記ベース基板用ウエハを冷却固化させる冷却工程と;
を備える。 - 請求項7に記載の圧電振動子の製造方法であって、
前記ベース基板用ウエハとして、平面視円形状のウエハを用いる。 - 上面に接合膜が形成されたガラス材料からなるベース基板と;
キャビティ用の凹部が形成され、凹部を前記ベース基板に対向させた状態でベース基板に前記接合膜を介して接合されたガラス材料からなるリッド基板と;
前記凹部を利用して前記ベース基板と前記リッド基板との間に形成されたキャビティ内に収納された状態で、ベース基板の上面に接合された圧電振動片と;
前記ベース基板の下面に形成された一対の外部電極と;
前記ベース基板を貫通するように形成され、前記キャビティ内の気密を維持すると共に、前記一対の外部電極に対してそれぞれ電気的に接続された一対の貫通電極と;
前記ベース基板の上面に形成され、前記一対の貫通電極を接合された前記圧電振動片に対してそれぞれ電気的に接続する引き回し電極と;を備えている;
ことを特徴とする圧電振動子。 - 請求項9に記載の圧電振動子であって、
前記圧電振動片は、バンプを介して前記ベース基板の上面にバンプ接合されている。 - 請求項10に記載の圧電振動子であって、
前記バンプは、少なくとも10秒以上プラズマクリーニング処理が施された領域に形成されている。 - 請求項10に記載の圧電振動子であって、
前記ベース基板の上面は、算術平均粗さRaが10nm以下とされている。 - 請求項1に記載の圧電振動子であって、
前記ベース基板と前記リッド基板とは、陽極接合されている。 - 請求項9から13のいずれか1項に記載の圧電振動子が、発振子として集積回路に電気的に接続されている;
ことを特徴とする発振器。 - 請求項9から13のいずれか1項に記載の圧電振動子が、計時部に電気的に接続されている;
ことを特徴とする電子機器。 - 請求項9から13のいずれか1項に記載の圧電振動子が、フィルタ部に電気的に接続されている;
ことを特徴とする電波時計。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200880127418.1A CN101946401B (zh) | 2008-02-18 | 2008-08-29 | 压电振动器的制造方法、压电振动器、振荡器、电子设备及电波钟 |
JP2009554185A JP5147868B2 (ja) | 2008-02-18 | 2008-08-29 | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 |
TW098122294A TW201017942A (en) | 2008-08-29 | 2009-07-01 | Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electric machine and electric wave clock |
US12/858,314 US20100308697A1 (en) | 2008-02-18 | 2010-08-17 | Method of manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic device, and radio clock |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008036423 | 2008-02-18 | ||
JP2008-036423 | 2008-02-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/858,314 Continuation US20100308697A1 (en) | 2008-02-18 | 2010-08-17 | Method of manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic device, and radio clock |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104293A1 true WO2009104293A1 (ja) | 2009-08-27 |
Family
ID=40985188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/065551 WO2009104293A1 (ja) | 2008-02-18 | 2008-08-29 | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100308697A1 (ja) |
JP (1) | JP5147868B2 (ja) |
CN (1) | CN101946401B (ja) |
WO (1) | WO2009104293A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110066100A (ko) * | 2009-12-10 | 2011-06-16 | 세이코 인스트루 가부시키가이샤 | 패키지의 제조 방법, 압전 진동자 및 발진기 |
JP2011182343A (ja) * | 2010-03-03 | 2011-09-15 | Seiko Instruments Inc | パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計 |
KR101752501B1 (ko) * | 2010-01-07 | 2017-06-29 | 세이코 인스트루 가부시키가이샤 | 패키지의 제조 방법, 압전 진동자 및 발진기 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102160285B (zh) * | 2008-03-31 | 2014-04-30 | 株式会社村田制作所 | 压电振动元件 |
WO2009157587A1 (ja) * | 2008-06-27 | 2009-12-30 | 京セラ株式会社 | 弾性波装置 |
JP2011160350A (ja) * | 2010-02-03 | 2011-08-18 | Seiko Instruments Inc | 圧電振動片、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計 |
JP2012085253A (ja) * | 2010-03-25 | 2012-04-26 | Nippon Dempa Kogyo Co Ltd | 表面実装型の水晶デバイス及び水晶デバイスの製造方法 |
JP2012169376A (ja) * | 2011-02-10 | 2012-09-06 | Seiko Instruments Inc | 陽極接合装置、パッケージ製造方法、圧電振動子、発振器、電子機器および電波時計 |
US10568213B2 (en) | 2014-07-31 | 2020-02-18 | Skyworks Solutions, Inc. | Multilayered transient liquid phase bonding |
US10541152B2 (en) | 2014-07-31 | 2020-01-21 | Skyworks Solutions, Inc. | Transient liquid phase material bonding and sealing structures and methods of forming same |
US20180159502A1 (en) | 2016-12-02 | 2018-06-07 | Skyworks Solutions, Inc. | Methods of manufacturing electronic devices to prevent water ingress during manufacture |
JP6635605B2 (ja) * | 2017-10-11 | 2020-01-29 | 国立研究開発法人理化学研究所 | 電流導入端子並びにそれを備えた圧力保持装置及びx線撮像装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH098595A (ja) * | 1995-06-20 | 1997-01-10 | Matsushita Electric Ind Co Ltd | 弾性表面波装置及びその製造方法 |
JPH10144813A (ja) * | 1996-11-06 | 1998-05-29 | Sumitomo Kinzoku Electro Device:Kk | Icパッケージの電極構造及びその製造方法 |
JP2000332140A (ja) * | 1999-05-18 | 2000-11-30 | Sumitomo Metal Electronics Devices Inc | 枠状ガラスシールの形成方法 |
JP2002121037A (ja) * | 2000-08-07 | 2002-04-23 | Nippon Sheet Glass Co Ltd | 電子部品パッケージ用多数個取りガラス板の製造方法 |
JP2003100799A (ja) * | 2002-09-17 | 2003-04-04 | Matsushita Electric Ind Co Ltd | バンプ付きワークの実装方法 |
JP2007013636A (ja) * | 2005-06-30 | 2007-01-18 | Kyocera Kinseki Corp | 圧電振動子の製造方法及び圧電振動子 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354133A (en) * | 1980-08-29 | 1982-10-12 | The United States Of America As Represented By The Secretary Of The Army | Hermetically sealed container |
US5275330A (en) * | 1993-04-12 | 1994-01-04 | International Business Machines Corp. | Solder ball connect pad-on-via assembly process |
JPH10284972A (ja) * | 1997-04-04 | 1998-10-23 | Toyo Commun Equip Co Ltd | 圧電振動子のパッケージ内支持構造 |
JP3521708B2 (ja) * | 1997-09-30 | 2004-04-19 | セイコーエプソン株式会社 | インクジェット式記録ヘッドおよびその製造方法 |
US6568978B2 (en) * | 2000-03-31 | 2003-05-27 | Sharp Kabushiki Kaisha | Electrode substrate, method for producing the same, and display device including the same |
US6710682B2 (en) * | 2000-10-04 | 2004-03-23 | Matsushita Electric Industrial Co., Ltd. | Surface acoustic wave device, method for producing the same, and circuit module using the same |
JP4147753B2 (ja) * | 2001-07-02 | 2008-09-10 | ソニー株式会社 | 光情報記録媒体、光情報記録媒体用原盤およびその製造方法 |
US7266869B2 (en) * | 2003-07-30 | 2007-09-11 | Kyocera Corporation | Method for manufacturing a piezoelectric oscillator |
CN1918783A (zh) * | 2004-02-17 | 2007-02-21 | 精工爱普生株式会社 | 压电振荡器及其制造方法 |
US8278801B2 (en) * | 2005-09-30 | 2012-10-02 | Daishinku Corporation | Piezoelectric resonator device |
-
2008
- 2008-08-29 JP JP2009554185A patent/JP5147868B2/ja not_active Expired - Fee Related
- 2008-08-29 CN CN200880127418.1A patent/CN101946401B/zh not_active Expired - Fee Related
- 2008-08-29 WO PCT/JP2008/065551 patent/WO2009104293A1/ja active Application Filing
-
2010
- 2010-08-17 US US12/858,314 patent/US20100308697A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH098595A (ja) * | 1995-06-20 | 1997-01-10 | Matsushita Electric Ind Co Ltd | 弾性表面波装置及びその製造方法 |
JPH10144813A (ja) * | 1996-11-06 | 1998-05-29 | Sumitomo Kinzoku Electro Device:Kk | Icパッケージの電極構造及びその製造方法 |
JP2000332140A (ja) * | 1999-05-18 | 2000-11-30 | Sumitomo Metal Electronics Devices Inc | 枠状ガラスシールの形成方法 |
JP2002121037A (ja) * | 2000-08-07 | 2002-04-23 | Nippon Sheet Glass Co Ltd | 電子部品パッケージ用多数個取りガラス板の製造方法 |
JP2003100799A (ja) * | 2002-09-17 | 2003-04-04 | Matsushita Electric Ind Co Ltd | バンプ付きワークの実装方法 |
JP2007013636A (ja) * | 2005-06-30 | 2007-01-18 | Kyocera Kinseki Corp | 圧電振動子の製造方法及び圧電振動子 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110066100A (ko) * | 2009-12-10 | 2011-06-16 | 세이코 인스트루 가부시키가이샤 | 패키지의 제조 방법, 압전 진동자 및 발진기 |
JP2011124801A (ja) * | 2009-12-10 | 2011-06-23 | Seiko Instruments Inc | パッケージの製造方法、圧電振動子および発振器 |
CN102163690A (zh) * | 2009-12-10 | 2011-08-24 | 精工电子有限公司 | 封装的制造方法、压电振子以及振荡器 |
TWI514521B (zh) * | 2009-12-10 | 2015-12-21 | Seiko Instr Inc | A manufacturing method of a package, a piezoelectric vibrator and an oscillator |
KR101688664B1 (ko) * | 2009-12-10 | 2016-12-21 | 세이코 인스트루 가부시키가이샤 | 패키지의 제조 방법, 압전 진동자 및 발진기 |
KR101752501B1 (ko) * | 2010-01-07 | 2017-06-29 | 세이코 인스트루 가부시키가이샤 | 패키지의 제조 방법, 압전 진동자 및 발진기 |
JP2011182343A (ja) * | 2010-03-03 | 2011-09-15 | Seiko Instruments Inc | パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計 |
CN102195587A (zh) * | 2010-03-03 | 2011-09-21 | 精工电子有限公司 | 封装件的制造方法、封装件、压电振动器、振荡器、电子设备及电波钟 |
Also Published As
Publication number | Publication date |
---|---|
US20100308697A1 (en) | 2010-12-09 |
JP5147868B2 (ja) | 2013-02-20 |
CN101946401B (zh) | 2014-09-03 |
JPWO2009104293A1 (ja) | 2011-06-16 |
CN101946401A (zh) | 2011-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5147868B2 (ja) | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 | |
JP5103297B2 (ja) | 圧電振動子の製造方法 | |
JP5135510B2 (ja) | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 | |
JP5091261B2 (ja) | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 | |
JP5121493B2 (ja) | 圧電振動子の製造方法 | |
JP5065494B2 (ja) | 圧電振動子、発振器、電子機器及び電波時計並びに圧電振動子の製造方法 | |
JP5180975B2 (ja) | 圧電振動子の製造方法および圧電振動子 | |
JP5189378B2 (ja) | 圧電振動子の製造方法 | |
JP2011190509A (ja) | マスク材、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計 | |
JP5258958B2 (ja) | 圧電振動子の製造方法及び基板の製造方法 | |
JP2011160350A (ja) | 圧電振動片、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計 | |
JP2012199735A (ja) | 圧電振動子の製造方法、圧電振動子、該圧電振動子を有する発振器、電子機器及び電波時計 | |
WO2009104328A1 (ja) | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 | |
JP5421690B2 (ja) | パッケージの製造方法 | |
JP5827088B2 (ja) | 電子部品の端子接続構造、パッケージ、圧電振動子、発振器、電子機器および電波時計 | |
JP5258957B2 (ja) | 圧電振動子の製造方法及び基板の製造方法 | |
JP5184648B2 (ja) | 圧電振動子の製造方法 | |
JP2011176502A (ja) | パッケージの製造方法、圧電振動子、発振器、電子機器および電波時計 | |
JP2011151758A (ja) | パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計 | |
JP2009194789A (ja) | 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 | |
JP2012169788A (ja) | パッケージ製造方法、圧電振動子、発振器、電子機器および電波時計 | |
JP2011049993A (ja) | パッケージの製造方法、圧電振動子の製造方法、圧電振動子、発振器、電子機器および電波時計 | |
JP2011250372A (ja) | パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計 | |
JP2011114693A (ja) | パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計 | |
JP2011193290A (ja) | パッケージの製造方法、圧電振動子、発振器、電子機器および電波時計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880127418.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08872661 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009554185 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08872661 Country of ref document: EP Kind code of ref document: A1 |