WO2009104293A1 - 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 - Google Patents

圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 Download PDF

Info

Publication number
WO2009104293A1
WO2009104293A1 PCT/JP2008/065551 JP2008065551W WO2009104293A1 WO 2009104293 A1 WO2009104293 A1 WO 2009104293A1 JP 2008065551 W JP2008065551 W JP 2008065551W WO 2009104293 A1 WO2009104293 A1 WO 2009104293A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
piezoelectric vibrator
substrate wafer
piezoelectric
electrodes
Prior art date
Application number
PCT/JP2008/065551
Other languages
English (en)
French (fr)
Inventor
潔 荒武
理志 沼田
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to CN200880127418.1A priority Critical patent/CN101946401B/zh
Priority to JP2009554185A priority patent/JP5147868B2/ja
Priority to TW098122294A priority patent/TW201017942A/zh
Publication of WO2009104293A1 publication Critical patent/WO2009104293A1/ja
Priority to US12/858,314 priority patent/US20100308697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the piezoelectric vibrator 200 includes a piezoelectric substrate 201 on which a piezoelectric vibrating piece 201a is formed, and a base substrate 202 and a lid substrate that are joined to the piezoelectric substrate 201 with the piezoelectric substrate 201 sandwiched from above and below. 203 and three layers.
  • the piezoelectric substrate 201 is made of a piezoelectric material such as quartz, and includes a frame part 201b and the piezoelectric vibrating piece 201a connected to the frame part 201b. The portion of the frame portion 201b is joined to both the substrates 202 and 203.
  • the piezoelectric vibrating piece 201a is accommodated in a cavity C formed by recesses 202a and 203a formed on both substrates 202 and 203.
  • the piezoelectric vibrating piece 201a is patterned with electrodes 204a and 204b for vibrating the piezoelectric vibrating piece 201a when a voltage is applied.
  • Both the substrates 202 and 203 are transparent insulators such as glass, and are bonded (for example, anodic bonded) to the frame portion 201 b of the piezoelectric substrate 201 through the bonding film 205. Further, as described above, the two substrates 202 and 203 are respectively provided with recesses 202a and 203a for forming the cavity C on the inner surface. Outer electrodes 206a and 206b are formed on the bottom surface of the base substrate 202 of both the substrates 202 and 203 over the side surfaces.
  • one external electrode 206a is electrically connected to one electrode 204a of the piezoelectric vibrating piece 201a
  • the other external electrode 206b is electrically connected to the other electrode 204b of the piezoelectric vibrating piece 201a.
  • the conventional piezoelectric vibrator 200 still has the following problems. First, with the recent miniaturization of electronic devices, there is a demand for further miniaturization of the piezoelectric vibrator 200 mounted on these various electronic devices. However, since the conventional piezoelectric vibrator 200 is a three-layer structure type in which the piezoelectric substrate 201 is sandwiched between the base substrate 202 and the lid substrate 203 from above and below, a thickness is inevitably generated, and further reduction in thickness is achieved. It was difficult. In particular, since it is necessary to form the recesses 202a and 203a for forming the cavity C in both the base substrate 202 and the lid substrate 203, the thickness of both the substrates 202 and 203 needs to be a certain value or more. . In this respect, it is difficult to reduce the thickness.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface-mount type piezoelectric vibrator that is much thinner than before and can be made compact. . Another object of the present invention is to provide a method of manufacturing a piezoelectric vibrator that efficiently manufactures the piezoelectric vibrator at a time, and an oscillator, an electronic device, and a radio timepiece having the piezoelectric vibrator.
  • a forming step forming a plurality of pairs of through holes penetrating the base substrate wafer; filling the plurality of formed through holes with a conductor to form a plurality of pairs of through electrodes;
  • a lead electrode forming step is performed in which a conductive material is patterned on the upper surface of the base substrate wafer to form a plurality of lead electrodes electrically connected to the pair of through electrodes.
  • the routing electrode is formed so as to be accommodated in the recess formed in the lid substrate wafer.
  • a bonding film forming process is performed in which a bonding film is formed on the upper surface of the base substrate wafer so as to surround the periphery of the concave portion at the same time as or before or after the routing electrode forming process.
  • a mounting step is performed in which a plurality of piezoelectric vibrating reeds are joined to the upper surface of the base substrate wafer via the routing electrodes. Thereby, each joined piezoelectric vibrating piece will be in the state which conduct
  • an overlaying process for overlaying the base substrate wafer and the lid substrate wafer is performed. As a result, the plurality of bonded piezoelectric vibrating reeds are housed in a cavity surrounded by the recess and both wafers.
  • a bonding process is performed in which the two superimposed wafers are bonded via a bonding film.
  • the piezoelectric vibrating piece can be sealed in the cavity.
  • a conductive material is patterned on the lower surface of the base substrate wafer to perform an external electrode forming step of forming a plurality of pairs of external electrodes respectively electrically connected to the plurality of pairs of through electrodes.
  • the piezoelectric vibrating piece sealed in the cavity can be operated using the external electrode.
  • a cutting process is performed in which the bonded base substrate wafer and lid substrate wafer are cut into small pieces into a plurality of piezoelectric vibrators.
  • the entire thickness can be reduced by the conventional piezoelectric substrate because the base substrate and the lid substrate are bonded to each other. Accordingly, it is possible to make the thickness much thinner than in the past, and to achieve a compact size.
  • the piezoelectric vibrating piece may be bump-bonded to the upper surface of the base substrate wafer via the bump.
  • the piezoelectric vibrating piece is bump-bonded to the upper surface of the base substrate, it is supported in a state of being lifted from the base substrate. Therefore, the minimum vibration gap necessary for vibration can be secured naturally. Therefore, unlike the lid substrate, it is not necessary to form a cavity recess on the base substrate side, and a flat substrate may be used. Therefore, the thickness of the base substrate can be made as thin as possible without considering the recess. Also in this respect, the piezoelectric vibrator can be thinned.
  • the pump may be formed after performing a plasma cleaning process on the routing electrode for at least 10 seconds.
  • plasma for example, oxygen plasma
  • the routing electrode to perform a plasma cleaning process.
  • contamination sources such as dust
  • the surface on which the bump is formed becomes a clean surface, and the surface is modified.
  • the plasma since the plasma is irradiated for at least 10 seconds, it can be reliably removed without leaving a contamination source. Therefore, adhesiveness and adhesiveness with the bump can be improved, and the shear peeling strength of the bump can be increased. Therefore, the mounting performance of the piezoelectric vibrating piece can be improved, and as a result, the quality of the piezoelectric vibrator can be improved.
  • a surface processing step may be performed in which the upper surface of the base substrate wafer is subjected to surface processing so that the arithmetic average roughness Ra is 10 nm or less.
  • the arithmetic average roughness Ra of the upper surface of the base substrate wafer is set to 10 nm or less.
  • the upper surface of the base substrate wafer that serves as a base on which the bumps are formed can be brought as close to the smooth surface as possible. Therefore, the adhesiveness and adhesiveness with the bump can be improved, and the shear peeling strength of the bump can be increased. Accordingly, the mounting performance of the piezoelectric vibrating piece can be improved, and the quality of the piezoelectric vibrator can be improved.
  • the base substrate wafer and the lid substrate wafer may be anodically bonded.
  • the base substrate wafer and the lid substrate wafer are anodically bonded, the two wafers can be bonded in a tightly adhered state. Therefore, the piezoelectric vibrating piece can be more reliably sealed in the cavity, and the vibration characteristics can be improved.
  • the recess forming step includes a printing step of screen-printing a paste with a predetermined pattern on the surface of the lid substrate wafer; a drying step of drying the printed paste; The printing step and the drying step may be repeated a plurality of times until formation, and then a baking step of baking the paste that has been applied and dried may be further provided.
  • the recess can be formed without performing a cutting process such as etching.
  • a printing process is performed in which a paste is screen-printed on the surface of the lid substrate wafer so as to surround a predetermined pattern, that is, a portion that becomes a recess.
  • a drying process for drying the printed paste is performed.
  • the printing process is performed again, and a new paste is screen-printed and overlaid on the dried paste.
  • the printing process and the drying process are repeated a plurality of times until the concave portion is formed by the pasting of the paste.
  • the baking process which bakes and hardens the paste which has been applied and dried is performed.
  • the concave portion can be formed in the lid substrate wafer without performing a cutting process such as etching.
  • the load applied to the wafer can be reduced, and the quality of the piezoelectric vibrator can be improved.
  • the through-hole forming step includes a setting step of setting the base substrate wafer between a lower die and an upper die having pins protruding toward the lower die; A pressing step of pressing the base substrate wafer with the mold and the upper die and forming the through hole using the pins; and a cooling step of cooling and solidifying the base substrate wafer. good.
  • a wafer having a circular shape in plan view may be used as the base substrate wafer.
  • the base substrate wafer has a circular shape, even if expansion or contraction occurs due to heating by the pressing process or cooling by the cooling process, the shape is hardly deformed on the way, and the dimensional accuracy and thickness accuracy are at a high level. Can be maintained. If the wafer has a rectangular shape in plan view, when expansion or contraction occurs due to heating or cooling, the shape may be deformed in the middle, and the dimensional accuracy and thickness accuracy are lowered. This is because the corners are present in the wafer, so that the internal stress tends to concentrate near the corners during expansion. For this reason, the expansion state and the contraction state are not uniform, and it is considered that it is difficult to return to the original state.
  • the piezoelectric vibrator according to the present invention includes a base substrate made of a glass material having a bonding film formed on an upper surface thereof; a recess for a cavity is formed, and the recess is opposed to the base substrate.
  • a; Re and lead-out electrode which is electrically connected.
  • the piezoelectric vibrating piece may be bump-bonded to the upper surface of the base substrate via a bump.
  • the bump may be formed in a region that has been subjected to a plasma cleaning process for at least 10 seconds.
  • the upper surface of the base substrate may have an arithmetic average roughness Ra of 10 nm or less.
  • the base substrate and the lid substrate may be anodically bonded.
  • the piezoelectric vibrator described in any one of (9) to (13) is electrically connected to an integrated circuit as an oscillator.
  • the piezoelectric vibrator described in any one of (9) to (13) is electrically connected to the time measuring unit.
  • the piezoelectric vibrator described in any one of (9) to (13) is electrically connected to the filter unit.
  • the piezoelectric vibrator according to the present invention it can be made much thinner than before and can be made compact.
  • the compact surface-mounted piezoelectric vibrator can be efficiently manufactured at a time, and the cost can be reduced.
  • the piezoelectric vibrator since the piezoelectric vibrator is provided, it is possible to reduce the size in the same manner, and to meet future needs for further downsizing. .
  • FIG. 1 is a diagram showing an embodiment of the present invention, and is an external perspective view of a piezoelectric vibrator.
  • FIG. 2 is an internal configuration diagram of the piezoelectric vibrator shown in FIG. 1 and is a view of the piezoelectric vibrating piece viewed from above with the lid substrate removed.
  • FIG. 3 is a cross-sectional view of the piezoelectric vibrator taken along line AA shown in FIG.
  • FIG. 4 is an exploded perspective view of the piezoelectric vibrator shown in FIG.
  • FIG. 5 is a top view of the piezoelectric vibrating piece constituting the piezoelectric vibrator shown in FIG. 6 is a bottom view of the piezoelectric vibrating piece shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 8 is a flowchart showing a flow of manufacturing the piezoelectric vibrator shown in FIG.
  • FIG. 9 is a diagram showing a step in manufacturing the piezoelectric vibrator according to the flowchart shown in FIG. 8, and shows a state in which a plurality of recesses are formed on the lid substrate wafer that is the base of the lid substrate. It is.
  • FIG. 10 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG. 8, and illustrates a state in which a pair of through holes are formed in a base substrate wafer that is a base substrate.
  • FIG. 11 is a diagram showing a state in which, after the state shown in FIG. 10, a through electrode is formed in a pair of through holes, and a bonding film and a lead electrode are patterned on the upper surface of the base substrate wafer.
  • FIG. 12 is an overall view of the base substrate wafer in the state shown in FIG.
  • FIG. 13 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG. 8, and includes a base substrate wafer, a lid substrate wafer, and a piezoelectric substrate in a state where the piezoelectric vibrating piece is accommodated in the cavity. It is a disassembled perspective view of the wafer body by which anodic bonding was performed.
  • FIG. 12 is an overall view of the base substrate wafer in the state shown in FIG.
  • FIG. 13 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG. 8, and includes a base substrate wafer, a
  • FIG. 14 is a diagram illustrating an equivalent circuit of the piezoelectric vibrator.
  • FIG. 15 is a diagram showing an equation for calculating the series capacitance shown in FIG.
  • FIG. 16 shows the result of comparing C1 and C0 when the piezoelectric vibrating piece is mounted by solder bonding and when the piezoelectric vibrating piece is mounted by bump bonding.
  • FIG. 17 is a diagram showing a CL curve.
  • FIG. 18 is a diagram showing an embodiment according to the present invention and is a configuration diagram of an oscillator.
  • FIG. 19 is a diagram illustrating an embodiment of the present invention, and is a configuration diagram of an electronic device.
  • FIG. 20 is a diagram showing an embodiment according to the present invention and is a configuration diagram of a radio timepiece.
  • FIG. 21 is a view showing a modification in the case of manufacturing the piezoelectric vibrator according to the present invention, and is a flowchart in the case of forming a cavity concave portion by screen printing a paste.
  • FIG. 22 is a diagram showing one process when forming a recess according to the flowchart shown in FIG. 21, and shows a state in which a print mask is set after fixing a lid substrate wafer on a wafer fixing plate.
  • FIG. FIG. 23 is a diagram showing a state in which paste is screen-printed from the state shown in FIG.
  • FIG. 24 is a diagram illustrating a state in which a concave portion is formed by repeatedly performing screen printing and drying from the state illustrated in FIG. 23.
  • FIG. 25 is a cross-sectional arrow CC view shown in FIG.
  • FIG. 26 is a view showing a modification in the case of manufacturing the piezoelectric vibrator according to the present invention, and is a flowchart in the case of forming a through hole in the base substrate wafer by pressing a mold.
  • FIG. 27 is a diagram showing one process when a through hole is formed along the flowchart shown in FIG. 26, and shows a state in which a base substrate wafer is set between a lower die and an upper die. is there.
  • FIG. 28 is a diagram showing a state in which the base substrate wafer is pressed by the lower die and the upper die after the state shown in FIG. FIG.
  • FIG. 33 is a view showing still another modified example of the piezoelectric vibrator according to the present invention, in which a through electrode is formed by firing a glass cylinder and a conductive core material.
  • FIG. FIG. 34 is a perspective view of the cylinder shown in FIG.
  • FIG. 35 is a cross-sectional view showing an example of a conventional three-layer structure type piezoelectric vibrator.
  • the piezoelectric vibrator 1 of the present embodiment is formed in a box shape in which a base substrate 2 and a lid substrate 3 are laminated in two layers as shown in FIGS.
  • This is a surface-mount type piezoelectric vibrator in which the resonator element 4 is housed.
  • the excitation electrode 15, the extraction electrodes 19 and 20, the mount electrodes 16 and 17, and the weight metal film 21, which will be described later, are omitted for easy understanding of the drawing.
  • the piezoelectric vibrating piece 4 is a tuning fork type vibrating piece formed of a piezoelectric material such as crystal, lithium tantalate, or lithium niobate, and when a predetermined voltage is applied. It vibrates.
  • the piezoelectric vibrating reed 4 includes a pair of vibrating arm portions 10 and 11 arranged in parallel, a base portion 12 that integrally fixes the base end sides of the pair of vibrating arm portions 10 and 11, and a pair of vibrating arm portions.
  • the piezoelectric vibrating reed 4 includes groove portions 18 formed along the longitudinal direction of the vibrating arm portions 10 and 11 on both main surfaces of the pair of vibrating arm portions 10 and 11.
  • the groove portion 18 is formed from the proximal end side of the vibrating arm portions 10 and 11 to the vicinity of the middle.
  • the excitation electrode 15 including the first excitation electrode 13 and the second excitation electrode 14 is an electrode that vibrates the pair of vibrating arm portions 10 and 11 at a predetermined resonance frequency in a direction approaching or separating from each other. Patterned on the outer surfaces of the vibrating arm portions 10 and 11 while being electrically separated from each other. Specifically, as shown in FIG. 7, the first excitation electrode 13 is mainly formed on the groove portion 18 of one vibration arm portion 10 and on both side surfaces of the other vibration arm portion 11. Two excitation electrodes 14 are mainly formed on both side surfaces of one vibrating arm portion 10 and on a groove portion 18 of the other vibrating arm portion 11.
  • the first excitation electrode 13 and the second excitation electrode 14 are electrically connected to the mount electrodes 16 and 17 via the extraction electrodes 19 and 20 on both main surfaces of the base portion 12, respectively. Connected. A voltage is applied to the piezoelectric vibrating reed 4 via the mount electrodes 16 and 17.
  • the excitation electrode 15, the mount electrodes 16 and 17, and the extraction electrodes 19 and 20 described above are made of a conductive film such as chromium (Cr), nickel (Ni), aluminum (Al), or titanium (Ti). It is formed.
  • a weight metal film 21 for adjusting (frequency adjustment) so as to vibrate its own vibration state within a predetermined frequency range is coated on the tips of the pair of vibrating arm portions 10 and 11.
  • the weight metal film 21 is divided into a coarse adjustment film 21a used when the frequency is roughly adjusted and a fine adjustment film 21b used when the frequency is finely adjusted.
  • the piezoelectric vibrating reed 4 configured as described above is bump-bonded to the upper surface of the base substrate 2 using bumps B such as gold as shown in FIGS. More specifically, bump bonding is performed with a pair of mount electrodes 16 and 17 in contact with two bumps B formed on routing electrodes 36 and 37 (described later) patterned on the upper surface of the base substrate 2. ing. As a result, the piezoelectric vibrating reed 4 is supported in a state of floating from the upper surface of the base substrate 2 and the mount electrodes 16 and 17 and the routing electrodes 36 and 37 are electrically connected to each other.
  • the lid substrate 3 is a transparent insulating substrate made of a glass material, for example, soda-lime glass, and is formed in a plate shape as shown in FIGS.
  • a rectangular recess 3 a in which the piezoelectric vibrating reed 4 is accommodated is formed on the bonding surface side to which the base substrate 2 is bonded.
  • the concave portion 3 a is a cavity concave portion 3 a that becomes a cavity C that accommodates the piezoelectric vibrating reed 4 when the two substrates 2 and 3 are overlapped.
  • the lid substrate 3 is anodically bonded to the base substrate 2 with the recess 3a facing the base substrate 2 side.
  • the base substrate 2 is a transparent insulating substrate made of a glass material, for example, soda lime glass, like the lid substrate 3, and has a size that can be superimposed on the lid substrate 3 as shown in FIGS. It is formed in a plate shape.
  • the base substrate 2 is formed with a pair of through holes (through holes) 30 and 31 that penetrate the base substrate 2. At this time, the pair of through holes 30 and 31 are formed so as to be accommodated in the cavity C. More specifically, one through hole 30 is positioned on the base 12 side of the mounted piezoelectric vibrating reed 4, and the other through hole 31 is positioned on the distal end side of the vibrating arm portions 10 and 11. .
  • the through holes 30 and 31 that pass straight through the base substrate 2 will be described as an example.
  • the present invention is not limited to this case.
  • the diameter gradually decreases toward the lower surface of the base substrate 2. You may form in a taper shape. In any case, it only has to penetrate the base substrate 2.
  • a bump B is formed on the pair of routing electrodes 36 and 37, and the piezoelectric vibrating reed 4 is mounted using the bump B.
  • one mount electrode 16 of the piezoelectric vibrating reed 4 is electrically connected to one through electrode 32 through one routing electrode 36, and the other mount electrode 17 is passed through the other routing electrode 37 to the other penetration electrode.
  • the electrode 33 is electrically connected.
  • external electrodes 38 and 39 are formed on the lower surface of the base substrate 2 so as to be electrically connected to the pair of through electrodes 32 and 33, respectively. That is, one external electrode 38 is electrically connected to the first excitation electrode 13 of the piezoelectric vibrating reed 4 via one through electrode 32 and one routing electrode 36. The other external electrode 39 is electrically connected to the second excitation electrode 14 of the piezoelectric vibrating reed 4 via the other through electrode 33 and the other routing electrode 37.
  • a predetermined drive voltage is applied to the external electrodes 38 and 39 formed on the base substrate 2.
  • a current can flow through the excitation electrode 15 including the first excitation electrode 13 and the second excitation electrode 14 of the piezoelectric vibrating reed 4, and is predetermined in a direction in which the pair of vibrating arm portions 10 and 11 are approached and separated.
  • Can be vibrated at a frequency of The vibration of the pair of vibrating arm portions 10 and 11 can be used as a time source, a control signal timing source, a reference signal source, and the like.
  • the piezoelectric vibrating reed manufacturing step is performed to manufacture the piezoelectric vibrating reed 4 shown in FIGS. 5 to 7 (S10). Specifically, a quartz Lambert rough is first sliced at a predetermined angle to obtain a wafer having a constant thickness. Subsequently, the wafer is lapped and subjected to rough processing, and then the work-affected layer is removed by etching, and then mirror polishing such as polishing is performed to obtain a wafer having a predetermined thickness.
  • the wafer is patterned with the outer shape of the piezoelectric vibrating reed 4 by photolithography technique, and a metal film is formed and patterned to obtain the excitation electrode 15, Lead electrodes 19 and 20, mount electrodes 16 and 17, and weight metal film 21 are formed. Thereby, the some piezoelectric vibrating piece 4 is producible.
  • the resonance frequency is coarsely adjusted. This is done by irradiating the coarse adjustment film 21a of the weight metal film 21 with laser light to evaporate a part thereof and changing the weight. Note that fine adjustment for adjusting the resonance frequency with higher accuracy is performed after mounting. This will be described later.
  • a first wafer manufacturing process is performed in which a lid substrate wafer 50 to be the lid substrate 3 later is manufactured up to a state immediately before anodic bonding (S20).
  • a disk-shaped lid substrate wafer 50 is formed by removing the outermost work-affected layer by etching or the like ( S21).
  • a recess forming step is performed in which a plurality of recesses 3a for the cavity C are formed in the matrix direction by etching or the like on the bonding surface of the lid substrate wafer 50 (S22). At this point, the first wafer manufacturing process is completed.
  • a second wafer manufacturing process is performed in which the base substrate wafer 40 to be the base substrate 2 is manufactured up to the state immediately before anodic bonding (S30).
  • a disk-shaped base substrate wafer 40 is formed by removing the outermost work-affected layer by etching or the like (S31).
  • a through hole forming step (S 32) is performed in which a plurality of pairs of through holes 30 and 31 that penetrate the base substrate wafer 40 are formed.
  • the dotted line M shown in FIG. 10 has shown the cutting line cut
  • a plurality of pairs of through holes 30 and 31 are formed so as to be accommodated in the recess 3 a formed in the lid substrate wafer 50.
  • one through hole 30 is formed on the base 12 side of the piezoelectric vibrating reed 4 to be mounted later, and the other through hole 31 is formed on the tip side of the vibrating arm portions 10 and 11.
  • a through electrode forming step for filling the plurality of pairs of through holes 30 and 31 with a conductor (not shown) to form the pair of through electrodes 32 and 33 is performed (S33).
  • a conductive material is patterned on the upper surface of the base substrate wafer 40, and a bonding film forming step (S34) for forming the bonding film 35 is performed as shown in FIGS.
  • the dotted line M shown in FIG.11 and FIG.12 has shown the cutting line cut
  • FIG. 8 it is set as the process sequence which performs the routing electrode formation process (S35) after the bonding film formation process (S34).
  • the bonding film formation is performed.
  • Step (S34) may be performed, or both steps may be performed simultaneously. Regardless of the order of steps, the same effects can be obtained. Therefore, the process order may be changed as necessary.
  • a mounting step is performed in which the produced plurality of piezoelectric vibrating reeds 4 are bump-bonded to the upper surface of the base substrate wafer 40 via the routing electrodes 36 and 37, respectively (S40).
  • bumps B such as gold are formed on the pair of lead-out electrodes 36 and 37, respectively.
  • the piezoelectric vibrating piece 4 is pressed against the bump B while heating the bump B to a predetermined temperature.
  • the piezoelectric vibrating reed 4 is mechanically supported by the bumps B, and the mount electrodes 16 and 17 and the routing electrodes 36 and 37 are electrically connected.
  • the pair of excitation electrodes 15 of the piezoelectric vibrating reed 4 are in a conductive state with respect to the pair of through electrodes 32 and 33, respectively.
  • the piezoelectric vibrating reed 4 is bump-bonded, it is supported in a state where it floats from the upper surface of the base substrate wafer 40.
  • an overlaying process for overlaying the lid substrate wafer 50 on the base substrate wafer 40 is performed (S50). Specifically, both wafers 40 and 50 are aligned at the correct positions while using a reference mark (not shown) as an index. As a result, the mounted piezoelectric vibrating reed 4 is housed in a cavity C surrounded by the recess 3 a formed in the base substrate wafer 40 and the wafers 40 and 50.
  • the two superposed wafers 40 and 50 are put into an anodic bonding apparatus (not shown), and a bonding process is performed in which a predetermined voltage is applied in a predetermined temperature atmosphere to perform anodic bonding (S60). Specifically, a predetermined voltage is applied between the bonding film 35 and the lid substrate wafer 50. As a result, an electrochemical reaction occurs at the interface between the bonding film 35 and the lid substrate wafer 50, and the two are firmly bonded and anodically bonded. Thereby, the piezoelectric vibrating reed 4 can be sealed in the cavity C, and the wafer body 60 shown in FIG. 13 in which the base substrate wafer 40 and the lid substrate wafer 50 are bonded can be obtained. In FIG.
  • a state in which the wafer body 60 is disassembled is illustrated, and the bonding film 35 is not illustrated from the base substrate wafer 40.
  • a dotted line M shown in FIG. 13 illustrates a cutting line that is cut in a cutting process to be performed later.
  • a conductive material is patterned on the lower surface of the base substrate wafer 40, and a pair of external electrodes 38 and 39 electrically connected to the pair of through electrodes 32 and 33, respectively.
  • a plurality of external electrode forming steps are formed (S70). Through this step, the piezoelectric vibrating reed 4 sealed in the cavity C can be operated using the external electrodes 38 and 39.
  • a fine adjustment step of finely adjusting the frequency of each piezoelectric vibrator 1 sealed in the cavity C to be within a predetermined range is performed (S80). More specifically, a voltage is applied to the external electrodes 38 and 39 to vibrate the piezoelectric vibrating reed 4. Then, laser light is irradiated from the outside through the lid substrate wafer 50 while measuring the frequency, and the fine adjustment film 21b of the weight metal film 21 is evaporated. Thereby, since the weight of the tip end side of the pair of vibrating arm portions 10 and 11 is changed, the frequency of the piezoelectric vibrating piece 4 can be finely adjusted so as to be within a predetermined range of the nominal frequency.
  • a cutting process is performed in which the bonded wafer body 60 is cut along the cutting line M shown in FIG. 13 into small pieces (S90).
  • the piezoelectric vibrating reed 4 is sealed in the cavity C formed between the base substrate 2 and the lid substrate 3 that are anodically bonded to each other. Multiple products can be manufactured.
  • the order of processes in which the fine adjustment process (S80) is performed may be used.
  • the fine adjustment step (S80) by performing the fine adjustment step (S80) first, the fine adjustment can be performed in the state of the wafer body 60, so that the plurality of piezoelectric vibrators 1 can be finely adjusted more efficiently. Therefore, the throughput can be improved, which is more preferable.
  • an internal electrical characteristic inspection is performed (S100). That is, the resonance frequency, resonance resistance value, drive level characteristic (excitation power dependency of the resonance frequency and resonance resistance value) and the like of the piezoelectric vibrating piece 4 are measured and checked. In addition, the insulation resistance characteristics and the like are also checked. Finally, an appearance inspection of the piezoelectric vibrator 1 is performed to finally check dimensions, quality, and the like. This completes the manufacture of the piezoelectric vibrator 1.
  • the piezoelectric vibrator 1 of the present embodiment has a two-layer structure in which the base substrate 2 and the lid substrate 3 are joined. Can be made thinner. Accordingly, it is possible to make the thickness much thinner than in the past, and to achieve a compact size.
  • the piezoelectric vibrating reed 4 is supported in a state of being lifted from the base substrate 2 by bump bonding, a minimum vibration gap necessary for vibration can be secured naturally. Therefore, unlike the lid substrate 3, it is not necessary to form the concave portion 3a for the cavity C on the base substrate 2 side, and a flat substrate may be used. Therefore, the thickness of the base substrate 2 can be made as thin as possible without considering the recess 3a. Also in this respect, the piezoelectric vibrator 1 can be thinned.
  • a plurality of thin piezoelectric vibrators 1 can be manufactured at a time, so that the cost can be reduced.
  • C0 is a parallel capacitance in the equivalent circuit of the vibrator shown in FIG. 14, and is a numerical value that can be actually measured.
  • C1 is the series capacitance in the equivalent circuit shown in FIG. 14, and is a numerical value obtained by calculation from the calculation formula shown in FIG. In this case, ⁇ f, C0, CL, and Fr in the calculation formula are values that can be measured.
  • the capacity ratio ⁇ (C0 / C1) was larger than that in the case of solder bonding because the bump bonding had lower C1 characteristics.
  • the capacity ratio ⁇ increases, a low CL (capacitance load) can be achieved, leading to a reduction in power consumption. Therefore, when the bump bonding is performed, it is possible to produce a power-saving piezoelectric vibrator as compared with the case of solder bonding.
  • the capacity cost ⁇ affects the curve characteristics of the CL curve (horizontal axis: CL, vertical axis ⁇ f / f) shown in FIG. 17, and the larger the value, the faster the curve approaches the horizontal. Become.
  • the CL curve (L2) indicated by the dotted line can be changed from the CL curve (L1) indicated by the solid line. Therefore, it is easy to drive the CL curve within a predetermined range of ⁇ f / f (for example, ⁇ 20 ppm), and an effect that manufacturing is facilitated can be achieved.
  • the oscillator 100 is configured by configuring the piezoelectric vibrator 1 as an oscillator electrically connected to the integrated circuit 101.
  • the oscillator 100 includes a substrate 103 on which an electronic component 102 such as a capacitor is mounted.
  • the integrated circuit 101 for the oscillator is mounted on the substrate 103, and the piezoelectric vibrating piece 4 of the piezoelectric vibrator 1 is mounted in the vicinity of the integrated circuit 101.
  • the electronic component 102, the integrated circuit 101, and the piezoelectric vibrator 1 are electrically connected by a wiring pattern (not shown).
  • Each component is molded with a resin (not shown).
  • the piezoelectric vibrating reed 4 in the piezoelectric vibrator 1 vibrates. This vibration is converted into an electric signal by the piezoelectric characteristics of the piezoelectric vibrating piece 4 and input to the integrated circuit 101 as an electric signal.
  • the input electrical signal is subjected to various processes by the integrated circuit 101 and is output as a frequency signal.
  • the piezoelectric vibrator 1 functions as an oscillator.
  • the oscillator 100 of the present embodiment since the piezoelectric vibrator 1 that is much thinner and compacter than the conventional one is provided, the oscillator 100 itself can be similarly compact. It is possible to meet future needs for further downsizing. In addition to this, it is possible to obtain a highly accurate frequency signal that is stable over a long period of time.
  • the portable information device 110 having the above-described piezoelectric vibrator 1 will be described as an example of the electronic device.
  • the portable information device 110 according to the present embodiment is represented by, for example, a mobile phone, and is a development and improvement of a wrist watch in the related art. The appearance is similar to that of a wristwatch, and a liquid crystal display is arranged in a portion corresponding to a dial so that the current time and the like can be displayed on this screen.
  • a communication device it is possible to perform communication similar to that of a conventional mobile phone by using a speaker and a microphone that are removed from the wrist and incorporated in the inner portion of the band. However, it is much smaller and lighter than conventional mobile phones.
  • the portable information device 110 includes the piezoelectric vibrator 1 and a power supply unit 111 for supplying power.
  • the power supply unit 111 is made of, for example, a lithium secondary battery.
  • the power supply unit 111 includes a control unit 112 that performs various controls, a clock unit 113 that counts time, a communication unit 114 that communicates with the outside, a display unit 115 that displays various types of information, A voltage detection unit 116 that detects the voltage of the functional unit is connected in parallel.
  • the power unit 111 supplies power to each functional unit.
  • the control unit 112 controls each function unit to control operation of the entire system such as transmission and reception of voice data, measurement and display of the current time, and the like.
  • the control unit 112 includes a ROM in which a program is written in advance, a CPU that reads and executes the program written in the ROM, and a RAM that is used as a work area of the CPU.
  • the clock unit 113 includes an integrated circuit including an oscillation circuit, a register circuit, a counter circuit, an interface circuit, and the like, and the piezoelectric vibrator 1.
  • the piezoelectric vibrator 1 When a voltage is applied to the piezoelectric vibrator 1, the piezoelectric vibrating reed 4 vibrates, and the vibration is converted into an electric signal by the piezoelectric characteristics of the crystal, and input to the oscillation circuit as an electric signal.
  • the output of the oscillation circuit is binarized and counted by a register circuit and a counter circuit. Then, signals are transmitted to and received from the control unit 112 via the interface circuit, and the current time, current date, calendar information, or the like is displayed on the display unit 115.
  • the ring tone generator 123 generates a ring tone in response to a call from the base station.
  • the switching unit 119 switches the amplifying unit 120 connected to the voice processing unit 118 to the ringing tone generating unit 123 only when an incoming call is received, so that the ringing tone generated in the ringing tone generating unit 123 is transmitted via the amplifying unit 120.
  • the call control memory unit 124 stores a program related to incoming / outgoing call control of communication.
  • the telephone number input unit 122 includes, for example, a number key from 0 to 9 and other keys. By pressing these number keys and the like, a telephone number of a call destination is input.
  • the voltage detection unit 116 detects the voltage drop and notifies the control unit 112 of the voltage drop.
  • the predetermined voltage value at this time is a value set in advance as a minimum voltage necessary for stably operating the communication unit 114, and is, for example, about 3V.
  • the control unit 112 prohibits the operations of the radio unit 117, the voice processing unit 118, the switching unit 119, and the ring tone generation unit 123. In particular, it is essential to stop the operation of the wireless unit 117 with high power consumption. Further, the display unit 115 displays that the communication unit 114 has become unusable due to insufficient battery power.
  • the operation of the communication unit 114 can be prohibited by the voltage detection unit 116 and the control unit 112, and that effect can be displayed on the display unit 115.
  • This display may be a text message, but as a more intuitive display, a x (X) mark may be attached to the telephone icon displayed at the top of the display surface of the display unit 115.
  • the function of the communication part 114 can be stopped more reliably by providing the power supply cutoff part 126 that can selectively cut off the power of the part related to the function of the communication part 114.
  • the portable information device 110 of the present embodiment since the piezoelectric vibrator 1 that is much thinner and compacter than the conventional one is provided, the portable information device itself is similarly reduced in size. This can meet future needs for further downsizing. In addition to this, it is possible to display highly accurate clock information that is stable over a long period of time.
  • the radio timepiece 130 of this embodiment includes the piezoelectric vibrator 1 electrically connected to the filter unit 131, and receives a standard radio wave including timepiece information to accurately It is a clock with a function of automatically correcting and displaying the correct time.
  • a standard radio wave including timepiece information to accurately It is a clock with a function of automatically correcting and displaying the correct time.
  • transmitting stations transmit standard radio waves in Fukushima Prefecture (40 kHz) and Saga Prefecture (60 kHz), each transmitting standard radio waves.
  • Long waves such as 40 kHz or 60 kHz have the property of propagating the surface of the earth and the property of propagating while reflecting the ionosphere and the surface of the earth, so the propagation range is wide, and the above two transmitting stations cover all of Japan. is doing.
  • the antenna 132 receives a long standard wave of 40 kHz or 60 kHz.
  • the long-wave standard radio wave is obtained by subjecting time information called a time code to AM modulation on a 40 kHz or 60 kHz carrier wave.
  • the received long standard wave is amplified by the amplifier 133 and filtered and tuned by the filter unit 131 having the plurality of piezoelectric vibrators 1.
  • the piezoelectric vibrator 1 according to this embodiment includes crystal vibrator portions 138 and 139 having resonance frequencies of 40 kHz and 60 kHz that are the same as the carrier frequency.
  • the filtered signal having a predetermined frequency is detected and demodulated by the detection and rectification circuit 134. Subsequently, the time code is taken out via the waveform shaping circuit 135 and counted by the CPU 136.
  • the CPU 136 reads information such as the current year, accumulated date, day of the week, and time. The read information is reflected in the RTC 137, and accurate time information is displayed. Since the carrier wave is 40 kHz or 60 kHz, the crystal vibrator units 138 and 139 are preferably vibrators having the tuning fork type structure described above.
  • the frequency of the long standard radio wave is different overseas.
  • a standard radio wave of 77.5 KHz is used. Accordingly, when the radio timepiece 130 that can be used overseas is incorporated in a portable device, the piezoelectric vibrator 1 having a frequency different from that in Japan is required.
  • the radio-controlled timepiece 130 of the present embodiment since the piezoelectric vibrator 1 that is much thinner and compacter than the conventional one is provided, the radio-controlled timepiece itself can be made compact in the same manner. Can meet future needs for further miniaturization. In addition to this, it is possible to count time stably and with high accuracy over a long period of time.
  • a grooved piezoelectric vibrating piece in which the groove portions 18 are formed on both surfaces of the vibrating arm portions 10 and 11 has been described as an example.
  • a piezoelectric vibrating piece may be used.
  • the tuning fork type piezoelectric vibrating piece 4 has been described as an example.
  • the tuning fork type is not limited to the tuning fork type.
  • it may be a thickness sliding vibration piece.
  • the piezoelectric vibrating reed 4 is bump-bonded, but is not limited to bump bonding.
  • the bonding method is not limited to anodic bonding.
  • the base substrate 2 and the lid substrate 3 may be joined using gold tin solder.
  • the base substrate wafer 40 and the lid substrate wafer 50 may be bonded by gold-tin solder in the bonding step.
  • the concave portion forming process for forming the concave portion 3a for the cavity in the lid substrate wafer 50 is performed by etching or the like.
  • the concave portion is formed without performing such cutting.
  • 3a may be formed.
  • you may form the recessed part 3a by screen-printing the glass paste P1.
  • a printing step S22a, a drying step S22b, and a firing step S22c may be performed during the recess forming step S22.
  • the lid substrate wafer 50 that has been cleaned is placed on the wafer fixing plate 70, and the periphery is fixed by a fixing jig 51. Then, a printing mask 52 serving as a screen is set on the surface of the fixed lid substrate wafer 50.
  • the printing mask 52 is a mask arranged so as to cover a region that will later become the recess 3a, and has a thickness of about 50 ⁇ m to 200 ⁇ m.
  • the squeegee 53 is moved to extend the whole while pressing the paste P1.
  • the paste P1 is pushed out to an unmasked region, and is thus screen-printed on the unmasked lid substrate wafer 50. That is, it is possible to perform screen printing in a state where the glass paste P1 is patterned so as to surround the periphery of the portion to be the recess 3a. Thereby, printing process S22a is complete
  • a drying step S22b for drying the printed glass paste P1 is performed.
  • the wafer fixing plate 70 is put in a furnace and dried at a temperature of about 100 ° C. for about 30 minutes.
  • the glass paste P1 printed earlier is in a dry state.
  • the above-described printing step S22a is performed again, and a new glass paste P1 is screen-printed and applied onto the dried paste P1.
  • the new paste P1 is dried again by the drying step S22b.
  • the printing step S22a and the drying step S22b are repeated a plurality of times until the concave portion 3a is formed by applying the paste P1.
  • 24 and 25 illustrate a case where the concave portion 3a is formed by performing the printing step S22a and the drying step S22b three times. That is, the total height of the paste P1 that has been applied is 150 ⁇ m when the thickness of the print mask 52 is 50 ⁇ m. This 150 ⁇ m is the depth of the recess 3a.
  • the baking process S22c which bakes and dries the paste P1 which has been coated and dried completely is performed. Thereby, the pasted paste P1 and the lid substrate wafer 50 are integrated.
  • the recess 3a can be formed in the lid substrate wafer 50 without performing a cutting process such as etching.
  • the load applied to the wafer 50 can be reduced, and the quality of the piezoelectric vibrator 1 can be improved.
  • the thickness of the print mask 52, the number of times of printing, and the like may be set freely.
  • the through hole when the through hole is formed in the base substrate wafer 40, it may be formed by mechanical drilling, laser processing, or sand blasting. . At this time, drilling and laser processing are employed when forming a straight through hole, and sandblasting is employed when forming a tapered through hole.
  • a method for forming a through hole simply and reliably, a method of forming by pressing with a mold is preferable. In this case, as shown in FIG. 26, a setting step 32a, a pressing step 32b, and a cooling step 32c may be performed during the through hole forming step S32. Each of these steps will be described in detail.
  • the pin 81a is formed in a tapered shape whose diameter gradually decreases toward the tip.
  • a positioning pin 81b that enters into a positioning hole 80a provided in the lower die 80 is attached to the upper die 81.
  • an insertion hole 40a through which the positioning pin 81b is inserted is opened in the base substrate wafer 40, and the insertion hole 40a is set so as to face the positioning hole 80a.
  • the whole is placed in a furnace to heat the base substrate wafer 40 to a predetermined temperature (a temperature equal to or higher than the glass softening point), and is pressed with the lower mold 80 and the upper mold 81 as shown in FIG.
  • a pressing step 32b for forming a through hole in the base substrate wafer 40 using the pins 81a of the upper die 81 is performed.
  • the positioning pins 81 a of the upper mold 81 are inserted through the insertion holes 40 a of the base substrate wafer 40 and enter the positioning holes 80 a of the lower mold 80. Accordingly, since the lower mold 80, the upper mold 81, and the base substrate wafer 40 are positioned reliably, the through hole can be formed at a desired position with high accuracy.
  • a cooling step 32c for cooling and solidifying the base substrate wafer 40 is performed.
  • through-hole formation process S32 is complete
  • the through holes can be formed at once by a simple method of pressing with a mold, the production efficiency can be increased.
  • a tapered through hole can be formed.
  • the wafer 40 of planar view circular shape As mentioned above. That is, when the base substrate wafer 40 has a circular shape, even if thermal expansion or thermal contraction occurs in the wafer due to heating by the pressing step 32b or cooling by the cooling step 32c, it is difficult to deform in the middle, dimensional accuracy, The thickness accuracy can be maintained at a high level. If the wafer has a rectangular shape in plan view (for example, rectangular shape in plan view), it may be deformed in the middle when it expands or contracts due to heating or cooling, resulting in low dimensional accuracy and thickness accuracy. turn into.
  • a rectangular shape in plan view for example, rectangular shape in plan view
  • the routing electrodes 36 and 37 are irradiated with plasma (for example, oxygen plasma) for at least 10 seconds or more to perform a plasma cleaning process. It is preferable to apply. Thereby, contamination sources such as dust can be removed, the surface on which the bumps B are formed can be cleaned, and the surface can be modified. In particular, since plasma is irradiated for at least 10 seconds, it can be reliably removed without leaving a contamination source. Therefore, adhesiveness and adhesiveness with the bump B can be improved, and the shear peel strength of the bump B can be increased. Therefore, the mounting performance of the piezoelectric vibrating piece 4 can be improved, and as a result, the quality of the piezoelectric vibrator 1 can be improved.
  • plasma for example, oxygen plasma
  • FIG. 29 shows the result of actually scratching the bump B when the bump B is formed without the plasma cleaning process and when the bump B is formed after the plasma cleaning process.
  • the test at the time of performing the plasma cleaning process was tested in two ways: a case where the plasma was irradiated for 10 seconds and a case where the plasma was irradiated for 30 seconds.
  • the scratch test was performed 100 times in any case.
  • the scratching strength of the bumps B was 55 (gf) on average when plasma cleaning was not performed, 78 (gf) on average when irradiated with plasma for 10 seconds, and irradiated with plasma for 30 seconds. In some cases, an average of 83 (gf) was tested.
  • the fracture mode A indicates that the bump B is not removed and remains almost perfect as a result of the scratch test.
  • the fracture mode B indicates that, as a result of the scratch test, the bump B was slightly removed but most of it remained.
  • the fracture mode C indicates that as a result of the scratch test, most of the bumps B have been removed and some of them have remained.
  • the fracture mode D indicates that all of the bumps B have been removed as a result of the scratch test.
  • bump B before forming bump B, it is preferable to surface-process the upper surface of the wafer 40 for base substrates, and to perform the surface processing process which makes arithmetic mean roughness (Ra) 10 nm or less.
  • the surface processing method include mirror polishing such as polishing, surface grinding by grinding, and the like.
  • the upper surface of the base substrate wafer 40 that becomes a base on which the bumps B are formed can be made as close to a smooth surface as possible by surface processing. Therefore, the adhesiveness and adhesiveness with the bump B can be improved, and the shear peel strength of the bump B can be increased.
  • the mounting performance of the piezoelectric vibrating reed 4 can be improved, and as a result, the quality of the piezoelectric vibrator 1 can be improved.
  • combining this method with the above-described plasma cleaning treatment can improve the effect, which is preferable.
  • the through-holes 32 and 33 are formed by filling the through-holes 30 and 31 with a conductor (not shown).
  • the paste P3 containing the plurality of metal fine particles P2 shown in FIG. It is possible to form the through electrodes 85 and 86 as shown in FIG. In this case, the through electrodes 85 and 86 have electrical conductivity ensured by the plurality of metal fine particles P2 included in the paste P3 being in contact with each other. Therefore, it can function reliably as an electrode.
  • the through electrode forming step S33 may be performed as follows. First, a filling process for filling the through holes 30 and 31 with the paste P3 containing the metal fine particles P2 without gaps to close the through holes 30 and 31 is performed. Subsequently, a firing step is performed in which the filled paste P3 is fired and cured at a predetermined temperature. As a result, the paste P3 is firmly fixed to the inner surfaces of the through holes 30 and 31. By the way, since the organic substance in the paste P3 (not shown) evaporates at the time of baking, the cured paste P3 has a reduced volume as compared with the filling process. Therefore, a dent is inevitably generated on the surface of the paste P3.
  • a polishing process is performed in which both surfaces of the base substrate wafer 40 are polished by a predetermined thickness after firing.
  • both surfaces of the paste P3 cured by baking can be polished simultaneously, so that the periphery of the recessed portion can be scraped off. That is, the surface of the paste P3 can be flattened.
  • the surface of the base substrate wafer 40 and the surfaces of the through electrodes 85 and 86 can be substantially flush with each other.
  • the through electrode forming process is completed.
  • the through electrodes 85 and 86 can be formed using the paste P3.
  • FIG. 31 the case of through holes 30 and 31 formed in a tapered shape is taken as an example. In this case, when the through holes 30 and 31 are formed, the through holes 30 and 31 may be formed by a sandblast method or the above-described press using a mold.
  • the through electrodes 87 and 88 may be formed by curing the paste P3 containing a plurality of glass beads GB. Absent. In this case, since the amount of the paste P3 can be reduced by the amount of the glass beads GB, the amount of organic matter that is reduced by firing can be reduced. Therefore, the dent of the surface which appears after hardening of paste P3 can be made small so that it can be disregarded. Therefore, there is an advantage that the polishing step can be eliminated.
  • the cylindrical body 91 embedded in the through holes 30 and 31 and the center hole 91a of the cylindrical body 91 are inserted and fixed integrally by firing.
  • the through electrodes 89 and 90 may be configured with the conductive core 92.
  • the case of the through holes 30 and 31 formed in a tapered shape is taken as an example.
  • the through electrode forming step in this case may be performed as follows. First, a setting process is performed in which the cylindrical body 91 is embedded in the through holes 30 and 31 and the core material 92 is inserted into the center hole 91 a of the cylindrical body 91. As shown in FIG. 34, the cylindrical body 91 is preliminarily fired with the same glass material as that of the base substrate 2 and is formed into a cylindrical shape having both ends flat and substantially the same thickness as the base substrate 2. To do. In addition, a center hole 91a penetrating through the cylindrical body 91 is formed at the center, and the outer shape is formed so as to be conical (cross section tapered) in accordance with the through holes 30 and 31. On the other hand, as shown in FIG. 33, the core material 92 is a conductive core material formed in a cylindrical shape from a metal material, and is formed to have substantially the same thickness as the base substrate 2 in the same manner as the cylindrical body 91. Is used.
  • the baking process which bakes the embedded cylinder 91 at predetermined temperature is performed.
  • the through holes 30 and 31, the cylindrical body 91, and the core material 92 can be fixed integrally.
  • the penetration electrodes 89 and 90 can be formed, and a penetration electrode formation process is complete
  • the glass cylinder 91 is used instead of the paste P3, the volume of the cylinder 91 is difficult to decrease after firing, and the surface is unlikely to be dented. Accordingly, the through electrodes 89 and 90 can be formed without performing a polishing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 この圧電振動子は、上面に接合膜が形成されたガラス材料からなるベース基板と;キャビティ用の凹部が形成され、凹部を前記ベース基板に対向させた状態でベース基板に前記接合膜を介して接合されたガラス材料からなるリッド基板と;前記凹部を利用して前記ベース基板と前記リッド基板との間に形成されたキャビティ内に収納された状態で、ベース基板の上面に接合された圧電振動片と;前記ベース基板の下面に形成された一対の外部電極と;前記ベース基板を貫通するように形成され、前記キャビティ内の気密を維持すると共に、前記一対の外部電極に対してそれぞれ電気的に接続された一対の貫通電極と;前記ベース基板の上面に形成され、前記一対の貫通電極を接合された前記圧電振動片に対してそれぞれ電気的に接続する引き回し電極と;を備えている。                                                                                   

Description

圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
 本発明は、接合された2枚の基板の間に形成されたキャビティ内に、圧電振動片が封止された表面実装型(SMD)の圧電振動子と、この圧電振動子を製造する圧電振動子の製造方法と、この圧電振動子を有する発振器、電子機器及び電波時計とに関する。
 近年、携帯電話や携帯情報端末機器には、時刻源や制御信号等のタイミング源、リファレンス信号源等として水晶等を利用した圧電振動子が用いられている。この種の圧電振動子は、様々なものが知られているが、その1つとして、表面実装型の圧電振動子が知られている。この種の圧電振動子は、圧電振動片が形成された圧電基板を、ベース基板とリッド基板とで上下から挟み込むように接合した3層構造タイプのものが一般的に知られている(特許文献1及び2参照)。
 ここで、3層構造タイプの圧電振動子について簡単に説明する。図35に示すように、圧電振動子200は、圧電振動片201aが形成された圧電基板201と、この圧電基板201を上下から挟み込んだ状態で圧電基板201に接合されたベース基板202及びリッド基板203と、で3層に構成されている。
 圧電基板201は、水晶等の圧電材料から形成されており、枠部201bと、この枠部201bに連結された上記圧電振動片201aとで構成されている。なお、この枠部201bの部分が、両基板202、203と接合するようになっている。
 一方、圧電振動片201aは、両基板202、203に形成された凹部202a、203aで構成されるキャビティC内に収納されている。この圧電振動片201aには、電圧が印加されたときに圧電振動片201aを振動させるための電極204a、204bがパターニングされている。
 両基板202、203は、ガラス等の透明な絶縁体であり、接合膜205を介して圧電基板201の枠部201bに接合(例えば、陽極接合)されている。また、両基板202、203は、上述したようにそれぞれ内面にキャビティCを構成するための凹部202a、203aが形成されている。
 両基板202、203のうち、ベース基板202の底面には、側面に亘って外部電極206a、206bが形成されている。このうち一方の外部電極206aが、圧電振動片201aの一方の電極204aに電気的に接続されており、他方の外部電極206bが、圧電振動片201aの他方の電極204bに電気的に接続されている。
特開2006-148758号公報 特開2007-184810号公報
 しかしながら、従来の圧電振動子200には、まだ以下の課題が残されていた。
 はじめに、近年の電子機器の小型化に伴って、これら各種の電子機器に搭載される圧電振動子200に関してもさらなる小型化が求められている。ところが、従来の圧電振動子200は、圧電基板201を、ベース基板202とリッド基板203とで上下から挟み込む3層構造タイプであるので、どうしても厚みが生じてしまい、これ以上のさらなる薄型化を図ることが困難なものであった。特に、キャビティCを構成するための凹部202a、203aをベース基板202及びリッド基板203の両方にそれぞれ形成する必要があるので、両基板202、203の厚みを一定値以上の厚みにする必要がある。この点においても、薄型化を図ることが難しいものであった。
  本発明は、このような事情に考慮してなされたもので、その目的は、従来よりも遥かに薄型化され、コンパクト化を図ることができる表面実装型の圧電振動子を提供することである。
 また、この圧電振動子を、一度に効率良く製造する圧電振動子の製造方法と、圧電振動子を有する発振器、電子機器、電波時計とを提供することである。
  本発明は、前記課題を解決して係る目的を達成するために以下の手段を提供する。
(1)本発明に係る圧電振動子の製造方法は、互いに接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された圧電振動子を、ベース基板用ウエハとリッド基板用ウエハとを利用して一度に複数製造する方法であって、前記リッド基板用ウエハに、両ウエハが重ね合わされたときに前記キャビティを形成するキャビティ用の凹部を複数形成する凹部形成工程と;前記ベース基板用ウエハを貫通する一対の貫通孔を複数形成する貫通孔形成工程と;複数形成された前記一対の貫通孔を導電体で埋めて、一対の貫通電極を複数形成する貫通電極形成工程と;前記ベース基板用ウエハの上面に、前記凹部の周囲を囲むように接合膜を形成する接合膜形成工程と;前記ベース基板用ウエハの上面に、前記一対の貫通電極に対してそれぞれ電気的に接続された引き回し電極を複数形成する引き回し電極形成工程と;前記引き回し電極を介して複数の前記圧電振動片を前記ベース基板用ウエハの上面に接合するマウント工程と;前記ベース基板用ウエハと前記リッド基板用ウエハとを重ね合わせて、前記凹部と両ウエハとで囲まれる前記キャビティ内に圧電振動片を収納する重ね合わせ工程と;前記ベース基板用ウエハと前記リッド基板用ウエハとを前記接合膜を介して接合し、前記圧電振動片を前記キャビティ内に封止する接合工程と;前記ベース基板用ウエハの下面に、前記一対の貫通電極にそれぞれ電気的に接続された一対の外部電極を複数形成する外部電極形成工程と;接合された前記両ウエハを切断して、複数の前記圧電振動子に小片化する切断工程と;を備えている。
 上記製造方法によれば、まずリッド基板用ウエハに、キャビティ用の凹部を複数形成する凹部形成工程を行う。これら凹部は、後に両ウエハを重ね合わせた際に、キャビティとなる凹部である。また、この工程と同時或いは前後のタイミングで、ベース基板用ウエハを貫通する一対の貫通孔を複数形成する貫通孔形成工程を行う。この際、後に両ウエハを重ね合わせたときに、リッド基板用ウエハに形成した凹部内に収まるように一対の貫通孔を複数形成する。続いて、複数の一対の貫通孔を導電体で埋めて、一対の貫通電極を複数形成する貫通電極形成工程を行う。
 続いて、ベース基板用ウエハの上面に導電性材料をパターニングして、一対の貫通電極にそれぞれ電気的に接続された引き回し電極を複数形成する引き回し電極形成工程を行う。この際、後に両ウエハを重ね合わせたときに、リッド基板用ウエハに形成した凹部内に収まるように引き回し電極を形成する。また、この引き回し電極形成工程と同時或いは前後のタイミングで、ベース基板用ウエハの上面に、凹部の周囲を囲むように接合膜を形成する接合膜形成工程を行う。
 そして、引き回し電極を介して複数の圧電振動片をベース基板用ウエハの上面に接合するマウント工程を行う。これにより、接合された各圧電振動片は、引き回し電極を介して一対の貫通電極に対して導通した状態となる。
 マウント終了後、ベース基板用ウエハとリッド基板用ウエハとを重ね合わせる重ね合わせ工程を行う。これにより、接合された複数の圧電振動片は、凹部と両ウエハとで囲まれるキャビティ内に収納された状態となる。
 次に、重ね合わせた両ウエハを、接合膜を介して接合する接合工程を行う。これにより、圧電振動片をキャビティ内に封止することができる。この際、ベース基板用ウエハに形成された貫通孔は、貫通電極によって塞がれているので、キャビティ内の気密が貫通孔によって損なわれることがない。そして、接合後、ベース基板用ウエハの下面に導電性材料をパターニングして、複数の一対の貫通電極にそれぞれ電気的に接続された一対の外部電極を複数形成する外部電極形成工程を行う。この工程により、外部電極を利用して、キャビティ内に封止された圧電振動片を作動させることができる。
 最後に、接合されたベース基板用ウエハ及びリッド基板用ウエハを切断して、複数の圧電振動子に小片化する切断工程を行う。
 その結果、互いに陽極接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された表面実装型の圧電振動子を一度に複数製造することができる。特に、従来の3層構造とは異なり、ベース基板とリッド基板とが接合された2層構造であるので、従来の圧電基板分だけ全体の厚みを薄くすることができる。従って、従来に比べて厚みを遥かに薄くすることができ、コンパクト化を図ることができる。
(2)前記マウント工程の際、前記引き回し電極上にバンプを形成した後、バンプを介して前記圧電振動片を前記ベース基板用ウエハの上面にバンプ接合しても良い。
 この場合、圧電振動片がベース基板の上面にバンプ接合されているので、ベース基板から浮いた状態で支持されている。そのため、振動に必要な最低限の振動ギャップを自然と確保することができる。よって、リッド基板とは異なり、ベース基板側にキャビティ用の凹部を形成する必要がなく、平板状の基板として構わない。従って、凹部を考慮しない分、ベース基板の厚みをできるだけ薄くすることができる。この点においても、圧電振動子の薄型化を図ることができる。
(3)前記マウント工程の際、前記引き回し電極に対して少なくとも10秒以上プラズマクリーニング処理を施した後に、前記パンプを形成しても良い。
 この場合、バンプを形成する前に、引き回し電極に対してプラズマ(例えば、酸素プラズマ)を照射してプラズマクリーニング処理を施す。これにより、塵埃等の汚染源を除去することができ、バンプが形成される面が清浄な面になるうえ、表面が改質される。特に、少なくとも10秒プラズマを照射するので、汚染源を残すことなく確実に除去することができる。よって、バンプとの密着性、接着性を向上することができ、バンプの剪断剥離強度を高めることができる。
 そのため、圧電振動片のマウント性能を高めることができ、結果的に圧電振動子の高品質化を図ることができる。
(4)前記貫通孔形成工程後、前記ベース基板用ウエハの上面を表面加工して、算術平均粗さRaを10nm以下とする表面加工工程をしても良い。
 この場合、バンプを形成する前に、ベース基板用ウエハの上面の算術平均粗さRaを10nm以下にする。これにより、バンプが形成される土台となるベース基板用ウエハの上面をできるだけ平滑した面に近づけることができる。そのため、バンプとの密着性、接着性を向上することができ、バンプの剪断剥離強度を高めることができる。従って、圧電振動片のマウント性能を高めることができ、圧電振動子の高品質化を図ることができる。
(5)前記接合工程の際、前記ベース基板用ウエハと前記リッド基板用ウエハとを陽極接合しても良い。
 この場合、ベース基板用ウエハとリッド基板用ウエハとを陽極接合するので、両ウエハをより強固に密着させた状態で接合することができる。従って、圧電振動片をキャビティ内により確実に封止することができ、振動特性を向上させることができる。
(6)前記凹部形成工程は、前記リッド基板用ウエハの表面に所定のパターンでペーストをスクリーン印刷する印刷工程と;印刷した前記ペーストを乾燥させる乾燥工程と;前記ペーストの塗り重ねによって前記凹部を形成するまで前記印刷工程と前記乾燥工程とを複数回繰り返し行った後、塗り重なって乾燥しているペーストを焼成する焼成工程と;をさらに備えても良い。
 この場合、リッド基板用ウエハにキャビティ用の凹部を形成する際に、エッチング等の切削加工を施すことなく凹部を形成することができる。まず、リッド基板用ウエハの表面に所定のパターン、即ち、凹部となる部分の周囲を囲むようにペーストをスクリーン印刷する印刷工程を行う。続いて、印刷したペーストを乾燥させる乾燥工程を行う。そして、再度印刷工程を行って、乾燥したペーストの上に新たなペーストをスクリーン印刷して塗り重ねる。このように、ペーストの塗り重ねによって凹部が形成されるまで、印刷工程と乾燥工程とを複数回繰り返し行う。そして、ペーストの塗り重ねによって凹部を形成した後、塗り重なって乾燥しているペーストを焼成して硬化させる焼成工程を行う。
 その結果、エッチング等の切削加工を施すことなく、リッド基板用ウエハに凹部を形成することができる。特に、リッド基板用ウエハを切削する必要がないので、ウエハに与える負荷を軽減することができ、圧電振動子の品質向上に繋げることができる。
(7)前記貫通孔形成工程は、下型と下型に向けて突出したピンを有する上型との間に前記ベース基板用ウエハをセットするセット工程と;所定温度に加熱した状態で前記下型と前記上型とで前記ベース基板用ウエハをプレスし、前記ピンを利用して前記貫通孔を形成するプレス工程と;前記ベース基板用ウエハを冷却固化させる冷却工程と;をさらに備えても良い。
 この場合、ベース基板用ウエハに貫通孔を形成する際に、金型を利用した簡便な方法で貫通孔を確実に形成することができる。
 まず、ベース基板を下型と上型との間にセットするセット工程を行う。そして、ベース基板用ウエハを所定温度に加熱した状態で下型と上型とでプレスし、上型のピンを利用してベース基板用ウエハに貫通孔を形成するプレス工程を行う。そして、最後にベース基板用ウエハを冷却固化させる冷却工程を行う。これにより、貫通孔を一度に確実に形成することができる。特に、下型及び上型からなる金型を利用するので、貫通孔の位置精度を高めることができる。
(8)前記ベース基板用ウエハとして、平面視円形状のウエハを用いても良い。
 この場合、ベース基板用ウエハが円形状であるので、プレス工程による加熱、冷却工程による冷却によって膨張、収縮が生じたとしても、途中で形状が変形し難く、寸法精度、厚み精度を高いレベルに維持することができる。仮に、平面視矩形状のウエハである場合には、加熱、冷却によって膨張、収縮が生じたときに、途中で形状が変形する恐れがあり、寸法精度、厚み精度が低くなってしまう。これは、ウエハに角部が存在するので、膨張時に角部付近に内部応力が集中し易い。そのため、膨張具合と収縮具合とが不均一になってしまい、元の状態に戻り難いことが考えられる。また、平面視矩形状のウエハを利用した場合には、寸法精度、厚み精度が低くなるだけでなく、膨張具合と収縮具合との不均一の影響によって上型のピンに無理な負荷が作用してしまい、ピンが変形或いは折れてしまう可能性もあった。
 しかしながら、角部がない円形状のウエハを利用するので、加熱、冷却を伴ったプレス加工で貫通孔を形成したとしても、上述した問題が生じる恐れが少ない。
(9)また、本発明に係る圧電振動子は、上面に接合膜が形成されたガラス材料からなるベース基板と;キャビティ用の凹部が形成され、この凹部を前記ベース基板に対向させた状態でベース基板に前記接合膜を介して接合されたガラス材料からなるリッド基板と;前記凹部を利用して前記ベース基板と前記リッド基板との間に形成されたキャビティ内に収納された状態で、ベース基板の上面に接合された圧電振動片と;前記ベース基板の下面に形成された一対の外部電極と;前記ベース基板を貫通するように形成され、前記キャビティ内の気密を維持すると共に、前記一対の外部電極に対してそれぞれ電気的に接続された一対の貫通電極と;前記ベース基板の上面に形成され、前記一対の貫通電極を接合された前記圧電振動片に対してそれぞれ電気的に接続する引き回し電極と;を備えている。
 この場合、上記(1)に記載の圧電振動子の製造方法と同様の作用効果を奏することができる。
(10)前記圧電振動片は、バンプを介して前記ベース基板の上面にバンプ接合されていても良い。
 この場合、上記(2)に記載の圧電振動子の製造方法と同様の作用効果を奏することができる。
(11)前記バンプは、少なくとも10秒以上プラズマクリーニング処理が施された領域に形成されていても良い。
 この場合、上記(3)に記載の圧電振動子の製造方法と同様の作用効果を奏することができる。
(12)前記ベース基板の上面は、算術平均粗さRaが10nm以下とされていても良い。
 この場合、上記(4)に記載の圧電振動子の製造方法と同様の作用効果を奏することができる。
(13)前記ベース基板と前記リッド基板とは、陽極接合されていても良い。
 この場合、上記(5)に記載の圧電振動子の製造方法と同様の作用効果を奏することができる。
(14)また、本発明に係る発振器は、上記(9)から(13)のいずれか1項に記載の圧電振動子が、発振子として集積回路に電気的に接続されている。
(15)また、本発明に係る電子機器は、上記(9)から(13)のいずれか1項に記載の圧電振動子が、計時部に電気的に接続されている。
(16)また、本発明に係る電波時計は、上記(9)から(13)のいずれか1項に記載の圧電振動子が、フィルタ部に電気的に接続されている。
 上記発振器、電子機器及び電波時計によれば、従来のものに比べて遥かに薄くコンパクト化された圧電振動子を備えているので、同様にコンパクト化を図ることができ、今後のさらなる小型化のニーズに対応することができる。
 本発明に係る圧電振動子によれば、従来よりも遥かに薄型にすることができ、コンパクト化を図ることができる。
 また、本発明に係る圧電振動子の製造方法によれば、コンパクト化された表面実装型の上記圧電振動子を一度に効率良く製造することができ、低コスト化を図ることができる。
 また、本発明に係る発振器、電子機器及び電波時計によれば、上記圧電振動子を備えているので、同様にコンパクト化を図ることができ、今後のさらなる小型化のニーズに対応することができる。
図1は、本発明の一実施形態を示す図であって、圧電振動子の外観斜視図である。 図2は、図1に示す圧電振動子の内部構成図であって、リッド基板を取り外した状態で圧電振動片を上方から見た図である。 図3は、図2に示すA-A線に沿った圧電振動子の断面図である。 図4は、図1に示す圧電振動子の分解斜視図である。 図5は、図1に示す圧電振動子を構成する圧電振動片の上面図である。 図6は、図5に示す圧電振動片の下面図である。 図7は、図5に示す断面矢視B-B図である。 図8は、図1に示す圧電振動子を製造する際の流れを示すフローチャートである。 図9は、図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、リッド基板の元となるリッド基板用ウエハに複数の凹部を形成した状態を示す図である。 図10は、図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、ベース基板の元となるベース基板用ウエハに一対のスルーホールを形成した状態を示す図である。 図11は、図10に示す状態の後、一対のスルーホール内に貫通電極を形成すると共に、ベース基板用ウエハの上面に接合膜及び引き回し電極をパターニングした状態を示す図である。 図12は、図11に示す状態のベース基板用ウエハの全体図である。 図13は、図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、圧電振動片をキャビティ内に収容した状態でベース基板用ウエハとリッド基板用ウエハとが陽極接合されたウエハ体の分解斜視図である。 図14は、圧電振動子の等価回路を示す図である。 図15は、図14に示す直列容量を算出する式を示す図である。 図16は、半田接合によって圧電振動片をマウントした場合と、バンプ接合によって圧電振動片をマウントした場合とで、C1とC0とを比較した結果を示す。 図17は、CL曲線を示す図である。 図18は、本発明に係る一実施形態を示す図であって、発振器の構成図である。 図19は、本発明に係る一実施形態を示す図であって、電子機器の構成図である。 図20は、本発明に係る一実施形態を示す図であって、電波時計の構成図である。 図21は、本発明に係る圧電振動子を製造する場合の変形例を示す図であって、ペーストをスクリーン印刷することでキャビティ用の凹部を形成する場合のフローチャートである。 図22は、図21に示すフローチャートに沿って凹部を形成する場合の一工程図を示す図であって、ウエハ固定板上にリッド基板用ウエハを固定した後、印刷マスクをセットした状態を示す図である。 図23は、図22に示す状態からペーストをスクリーン印刷している状態を示す図である。 図24は、図23に示す状態からスクリーン印刷と乾燥とを繰り返し行って、凹部を形成した状態を示す図である。 図25は、図24に示す断面矢視C-C図である。 図26は、本発明に係る圧電振動子を製造する場合の変形例を示す図であって、金型をプレスすることでベース基板用ウエハに貫通孔を形成する場合のフローチャートである。 図27は、図26に示すフローチャートに沿って貫通孔を形成する場合の一工程図を示す図であって、下型と上型との間にベース基板用ウエハをセットした状態を示す図である。 図28は、図27に示す状態の後、下型と上型とでベース基板用ウエハをプレスした状態を示す図である。 図29は、本発明に係る圧電振動子を製造する際に、プラズマクリーニング処理を施さないでバンプを形成した場合と、施した後にバンプを形成した場合とで、バンプの引っ掻き試験を行った結果を比較した図である。 図30は、金属微粒子を含んだペーストの拡大図である。 図31は、本発明に係る圧電振動子の変形例を示す図であって、図30に示すペーストを利用して貫通電極を形成した場合の圧電振動子を示す図である。 図32は、本発明に係る圧電振動子の別の変形例を示す図であって、図30に示すペーストにガラスビーズを含ませて貫通電極を形成した場合の圧電振動子を示す図である。 図33は、本発明に係る圧電振動子のさらに別の変形例を示す図であって、ガラスの筒体と導電性の芯材とを焼成することで貫通電極を形成した場合の圧電振動子を示す図である。 図34は、図33に示す筒体の斜視図である。 図35は、従来の3層構造タイプの圧電振動子の一例を示す断面図である。
符号の説明
 B バンプ
 C キャビティ
 P1 ペースト
 1 圧電振動子
 2 ベース基板
 3 リッド基板
 3a キャビティ用の凹部
 4 圧電振動片
 30、31 スルーホール(貫通孔)
 32、33、85、86、98、88、89、90 貫通電極
 35 接合膜
 36、37 引き回し電極
 38、39 外部電極
 40 ベース基板用ウエハ
 50 リッド基板用ウエハ
 80 下型
 81 上型
 81a ピン
 100 発振器
 101 発振器の集積回路
 110 携帯情報機器(電子機器)
 113 電子機器の計時部
 130 電波時計
 131 電波時計のフィルタ部
 以下、本発明に係る一実施形態を、図1から図17を参照して説明する。
 本実施形態の圧電振動子1は、図1から図4に示すように、ベース基板2とリッド基板3とで2層に積層された箱状に形成されており、内部のキャビティC内に圧電振動片4が収納された表面実装型の圧電振動子である。
 なお、図4においては、図面を見易くするために後述する励振電極15、引き出し電極19、20、マウント電極16、17及び重り金属膜21の図示を省略している。
 圧電振動片4は、図5から図7に示すように、水晶、タンタル酸リチウムやニオブ酸リチウム等の圧電材料から形成された音叉型の振動片であり、所定の電圧が印加されたときに振動するものである。
 この圧電振動片4は、平行に配置された一対の振動腕部10、11と、この一対の振動腕部10、11の基端側を一体的に固定する基部12と、一対の振動腕部10、11の外表面上に形成されて一対の振動腕部10、11を振動させる第1の励振電極13と第2の励振電極14とからなる励振電極15と、第1の励振電極13及び第2の励振電極14に電気的に接続されたマウント電極16、17とを有している。
 また、本実施形態の圧電振動片4は、一対の振動腕部10、11の両主面上に、振動腕部10、11の長手方向に沿ってそれぞれ形成された溝部18を備えている。この溝部18は、振動腕部10、11の基端側から略中間付近まで形成されている。
 第1の励振電極13と第2の励振電極14とからなる励振電極15は、一対の振動腕部10、11を互いに接近又は離間する方向に所定の共振周波数で振動させる電極であり、一対の振動腕部10、11の外表面に、それぞれ電気的に切り離された状態でパターニングされて形成されている。具体的には、図7に示すように、第1の励振電極13が、一方の振動腕部10の溝部18上と、他方の振動腕部11の両側面上とに主に形成され、第2の励振電極14が、一方の振動腕部10の両側面上と他方の振動腕部11の溝部18上とに主に形成されている。
 第1の励振電極13及び第2の励振電極14は、図5及び図6に示すように、基部12の両主面上において、それぞれ引き出し電極19、20を介してマウント電極16、17に電気的に接続されている。そして圧電振動片4は、このマウント電極16、17を介して電圧が印加されるようになっている。
 なお、上述した励振電極15、マウント電極16、17及び引き出し電極19、20は、例えば、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)やチタン(Ti)等の導電性膜の被膜により形成されたものである。
 一対の振動腕部10、11の先端には、自身の振動状態を所定の周波数の範囲内で振動するように調整(周波数調整)を行うための重り金属膜21が被膜されている。なお、この重り金属膜21は、周波数を粗く調整する際に使用される粗調膜21aと、微小に調整する際に使用される微調膜21bとに分かれている。これら粗調膜21a及び微調膜21bを利用して周波数調整を行うことで、一対の振動腕部10、11の周波数をデバイスの公称周波数の範囲内に収めることができる。
 このように構成された圧電振動片4は、図3及び図4に示すように、金等のバンプBを利用して、ベース基板2の上面にバンプ接合されている。より具体的には、ベース基板2の上面にパターニングされた後述する引き回し電極36、37上に形成された2つのバンプB上に、一対のマウント電極16、17がそれぞれ接触した状態でバンプ接合されている。これにより、圧電振動片4は、ベース基板2の上面から浮いた状態で支持されると共に、マウント電極16、17と引き回し電極36、37とがそれぞれ電気的に接続された状態となっている。
 上記リッド基板3は、ガラス材料、例えばソーダ石灰ガラスからなる透明の絶縁基板であり、図1、図3及び図4に示すように、板状に形成されている。そして、ベース基板2が接合される接合面側には、圧電振動片4が収まる矩形状の凹部3aが形成されている。この凹部3aは、両基板2、3が重ね合わされたときに、圧電振動片4を収容するキャビティCとなるキャビティ用の凹部3aである。そして、リッド基板3は、この凹部3aをベース基板2側に対向させた状態でベース基板2に対して陽極接合されている。
 上記ベース基板2は、リッド基板3と同様にガラス材料、例えばソーダ石灰ガラスからなる透明な絶縁基板であり、図1から図4に示すように、リッド基板3に対して重ね合わせ可能な大きさで板状に形成されている。
 このベース基板2には、ベース基板2を貫通する一対のスルーホール(貫通孔)30、31が形成されている。この際、一対のスルーホール30、31は、キャビティC内に収まるように形成されている。より詳しく説明すると、マウントされた圧電振動片4の基部12側に一方のスルーホール30が位置し、振動腕部10、11の先端側に他方のスルーホール31が位置するように形成されている。また、本実施形態では、ベース基板2を真っ直ぐに貫通したスルーホール30、31を例に挙げて説明するが、この場合に限られず、例えばベース基板2の下面に向かって漸次径が縮径するテーパー状に形成しても構わない。いずれにしても、ベース基板2を貫通していれば良い。
 そして、これら一対のスルーホール30、31には、スルーホール30、31を埋めるように形成された一対の貫通電極32、33が形成されている。この貫通電極32、33は、スルーホール30、31を完全に塞いでキャビティC内の気密を維持していると共に、後述する外部電極38、39と引き回し電極36、37とを導通させる役割を担っている。
 ベース基板2の上面側(リッド基板3が接合される接合面側)には、導電性材料(例えば、アルミニウム)により、陽極接合用の接合膜35と、一対の引き回し電極36、37とがパターニングされている。このうち接合膜35は、リッド基板3に形成された凹部3aの周囲を囲むようにベース基板2の周縁に沿って形成されている。
 一対の引き回し電極36、37は、一対の貫通電極32、33のうち、一方の貫通電極32と圧電振動片4の一方のマウント電極16とを電気的に接続すると共に、他方の貫通電極33と圧電振動片4の他方のマウント電極17とを電気的に接続するようにパターニングされている。より詳しく説明すると、図2及び図4に示すように、一方の引き回し電極36は、圧電振動片4の基部12の真下に位置するように一方の貫通電極32の真上に形成されている。また、他方の引き回し電極37は、一方の引き回し電極36に隣接した位置から、振動腕部10、11に沿って振動腕部10、11の先端側に引き回しされた後、他方の貫通電極33の真上に位置するように形成されている。
 そして、これら一対の引き回し電極36、37上にバンプBが形成されており、このバンプBを利用して圧電振動片4がマウントされている。これにより、圧電振動片4の一方のマウント電極16が、一方の引き回し電極36を介して一方の貫通電極32に導通し、他方のマウント電極17が、他方の引き回し電極37を介して他方の貫通電極33に導通するようになっている。
 ベース基板2の下面には、図1、図3及び図4に示すように、一対の貫通電極32、33に対してそれぞれ電気的に接続される外部電極38、39が形成されている。つまり、一方の外部電極38は、一方の貫通電極32及び一方の引き回し電極36を介して圧電振動片4の第1の励振電極13に電気的に接続されている。また、他方の外部電極39は、他方の貫通電極33及び他方の引き回し電極37を介して、圧電振動片4の第2の励振電極14に電気的に接続されている。
 このように構成された圧電振動子1を作動させる場合には、ベース基板2に形成された外部電極38、39に対して、所定の駆動電圧を印加する。これにより、圧電振動片4の第1の励振電極13及び第2の励振電極14からなる励振電極15に電流を流すことができ、一対の振動腕部10、11を接近・離間させる方向に所定の周波数で振動させることができる。そして、この一対の振動腕部10、11の振動を利用して、時刻源、制御信号のタイミング源やリファレンス信号源等として利用することができる。
 次に、上述した圧電振動子1を、図8に示すフローチャートを参照しながら、平面視円形状のベース基板用ウエハ40とリッド基板用ウエハ50とを利用して一度に複数製造する製造方法について以下に説明する。
 はじめに、圧電振動片作製工程を行って図5から図7に示す圧電振動片4を作製する(S10)。具体的には、まず水晶のランバート原石を所定の角度でスライスして一定の厚みのウエハとする。続いて、このウエハをラッピングして粗加工した後、加工変質層をエッチングで取り除き、その後、ポリッシュ等の鏡面研磨加工を行って、所定の厚みのウエハとする。続いて、ウエハに洗浄等の適切な処理を施した後、このウエハをフォトリソグラフィ技術によって圧電振動片4の外形形状でパターニングすると共に、金属膜の成膜及びパターニングを行って、励振電極15、引き出し電極19、20、マウント電極16、17、重り金属膜21を形成する。これにより、複数の圧電振動片4を作製することができる。
 圧電振動片4を作製した後、共振周波数の粗調を行っておく。これは、重り金属膜21の粗調膜21aにレーザ光を照射して一部を蒸発させ、重量を変化させることで行う。なお、共振周波数をより高精度に調整する微調に関しては、マウント後に行う。これについては、後に説明する。
 次に、後にリッド基板3となるリッド基板用ウエハ50を、陽極接合を行う直前の状態まで作製する第1のウエハ作製工程を行う(S20)。まず、ソーダ石灰ガラスを所定の厚さまで研磨加工して洗浄した後に、図9に示すように、エッチング等により最表面の加工変質層を除去した円板状のリッド基板用ウエハ50を形成する(S21)。次いで、リッド基板用ウエハ50の接合面に、エッチング等により行列方向にキャビティC用の凹部3aを複数形成する凹部形成工程を行う(S22)。この時点で、第1のウエハ作製工程が終了する。
 次に、上記工程と同時或いは前後のタイミングで、後にベース基板2となるベース基板用ウエハ40を、陽極接合を行う直前の状態まで作製する第2のウエハ作製工程を行う(S30)。まず、ソーダ石灰ガラスを所定の厚さまで研磨加工して洗浄した後に、エッチング等により最表面の加工変質層を除去した円板状のベース基板用ウエハ40を形成する(S31)。次いで、図10に示すように、ベース基板用ウエハ40を貫通する一対のスルーホール30、31を複数形成する貫通孔形成工程(S32)を行う。なお、図10に示す点線Mは、後に行う切断工程で切断する切断線を図示している。
 この際、後に両ウエハ40、50を重ね合わせたときに、リッド基板用ウエハ50に形成した凹部3a内に収まるように一対のスルーホール30、31を複数形成する。しかも、一方のスルーホール30が後にマウントする圧電振動片4の基部12側に位置し、他方のスルーホール31が振動腕部10、11の先端側に位置するように形成する。
 続いて、複数の一対のスルーホール30、31を図示しない導電体で埋めて、一対の貫通電極32、33を形成する貫通電極形成工程を行う(S33)。
 続いて、ベース基板用ウエハ40の上面に導電性材料をパターニングして、図11及び図12に示すように、接合膜35を形成する接合膜形成工程(S34)を行うと共に、一対の貫通電極32、33にそれぞれ電気的に接続された引き回し電極36、37を複数形成する引き回し電極形成工程を行う(S35)。なお、図11及び図12に示す点線Mは、後に行う切断工程で切断する切断線を図示している。また、図12では、接合膜35の図示を省略している。
 この工程を行うことにより、一方の貫通電極32と一方の引き回し電極36とが導通すると共に、他方の貫通電極33と他方の引き回し電極37とが導通した状態となる。この時点で第2のウエハ作製工程が終了する。
 ところで、図8では、接合膜形成工程(S34)の後に、引き回し電極形成工程(S35)を行う工程順序としているが、これとは逆に、引き回し電極形成工程(S35)の後に、接合膜形成工程(S34)を行っても構わないし、両工程を同時に行っても構わない。いずれの工程順序であっても、同一の作用効果を奏することができる。よって、必要に応じて適宜、工程順序を変更して構わない。
 次に、作製した複数の圧電振動片4を、それぞれ引き回し電極36、37を介してベース基板用ウエハ40の上面にバンプ接合するマウント工程を行う(S40)。まず、一対の引き回し電極36、37上にそれぞれ金等のバンプBを形成する。そして、圧電振動片4の基部12をバンプB上に載置した後、バンプBを所定温度に加熱しながら圧電振動片4をバンプBに押し付ける。これにより、圧電振動片4は、バンプBに機械的に支持されると共に、マウント電極16、17と引き回し電極36、37とが電気的に接続された状態となる。よって、この時点で圧電振動片4の一対の励振電極15は、一対の貫通電極32、33に対してそれぞれ導通した状態となる。特に、圧電振動片4は、バンプ接合されるので、ベース基板用ウエハ40の上面から浮いた状態で支持される。
 圧電振動片4のマウントが終了した後、ベース基板用ウエハ40に対してリッド基板用ウエハ50を重ね合わせる重ね合わせ工程を行う(S50)。具体的には、図示しない基準マーク等を指標としながら、両ウエハ40、50を正しい位置にアライメントする。これにより、マウントされた圧電振動片4が、ベース基板用ウエハ40に形成された凹部3aと両ウエハ40、50とで囲まれるキャビティC内に収容された状態となる。
 重ね合わせ工程後、重ね合わせた2枚のウエハ40、50を図示しない陽極接合装置に入れ、所定の温度雰囲気で所定の電圧を印加して陽極接合する接合工程を行う(S60)。具体的には、接合膜35とリッド基板用ウエハ50との間に所定の電圧を印加する。すると、接合膜35とリッド基板用ウエハ50との界面に電気化学的な反応が生じ、両者がそれぞれ強固に密着して陽極接合される。これにより、圧電振動片4をキャビティC内に封止することができ、ベース基板用ウエハ40とリッド基板用ウエハ50とが接合した図13に示すウエハ体60を得ることができる。なお、図13においては、図面を見易くするために、ウエハ体60を分解した状態を図示しており、ベース基板用ウエハ40から接合膜35の図示を省略している。なお、図13に示す点線Mは、後に行う切断工程で切断する切断線を図示している。
 ところで、陽極接合を行う際、ベース基板用ウエハ40に形成されたスルーホール30、31は、貫通電極32、33によって完全に塞がれているので、キャビティC内の気密がスルーホール30、31を通じて損なわれることがない。
 そして、上述した陽極接合が終了した後、ベース基板用ウエハ40の下面に導電性材料をパターニングして、一対の貫通電極32、33にそれぞれ電気的に接続された一対の外部電極38、39を複数形成する外部電極形成工程を行う(S70)。この工程により、外部電極38、39を利用してキャビティC内に封止された圧電振動片4を作動させることができる。
 次に、ウエハ体60の状態で、キャビティC内に封止された個々の圧電振動子1の周波数を微調整して所定の範囲内に収める微調工程を行う(S80)。具体的に説明すると、外部電極38、39に電圧を印加して圧電振動片4を振動させる。そして、周波数を計測しながらリッド基板用ウエハ50を通して外部からレーザ光を照射し、重り金属膜21の微調膜21bを蒸発させる。これにより、一対の振動腕部10、11の先端側の重量が変化するので、圧電振動片4の周波数を、公称周波数の所定範囲内に収まるように微調整することができる。
 周波数の微調が終了した後、接合されたウエハ体60を図13に示す切断線Mに沿って切断して小片化する切断工程を行う(S90)。その結果、互いに陽極接合されたベース基板2とリッド基板3との間に形成されたキャビティC内に圧電振動片4が封止された、図1に示す表面実装型の圧電振動子1を一度に複数製造することができる。
 なお、切断工程(S90)を行って個々の圧電振動子1に小片化した後に、微調工程(S80)を行う工程順序でも構わない。但し、上述したように、微調工程(S80)を先に行うことで、ウエハ体60の状態で微調を行うことができるので、複数の圧電振動子1をより効率よく微調することができる。よって、スループットの向上化を図ることができるので、より好ましい。
 その後、内部の電気特性検査を行う(S100)。即ち、圧電振動片4の共振周波数、共振抵抗値、ドライブレベル特性(共振周波数及び共振抵抗値の励振電力依存性)等を測定してチェックする。また、絶縁抵抗特性等を併せてチェックする。そして、最後に圧電振動子1の外観検査を行って、寸法や品質等を最終的にチェックする。これをもって圧電振動子1の製造が終了する。
 特に、本実施形態の圧電振動子1は、従来の3層構造とは異なり、ベース基板2とリッド基板3とが接合された2層構造であるので、従来の圧電基板の分だけ全体の厚みを薄くすることができる。従って、従来に比べて厚みを遥かに薄くすることができ、コンパクト化を図ることができる。しかも、上述したように圧電振動片4はバンプ接合によってベース基板2から浮いた状態で支持されているので、振動に必要に最低限の振動ギャップを自然と確保することができる。よって、リッド基板3とは異なり、ベース基板2側にキャビティC用の凹部3aを形成する必要がなく、平板状の基板として構わない。従って、凹部3aを考慮しない分、ベース基板2の厚みをできるだけ薄くすることができる。この点においても、圧電振動子1の薄型化を図ることができる。
 また、本実施形態の製造方法によれば、薄型化された上記圧電振動子1を一度に複数製造することができるので、低コスト化を図ることができる。
 また、圧電振動片4をバンプ接合することで、一般的な半田接合に比べて以下の利点を得ることができる。
 即ち、バンプ接合した場合には、半田接合した場合に比べて、C0特性はほぼ同一であるが、C1特性を小さくすることができる。ここで、C0、C1について、簡単に説明する。C0は、図14に示す振動子の等価回路における並列容量であり、実際に計測可能な数値である。一方、C1は、図14に示す等価回路における直列容量であり、図15に示す計算式より算出して得られる数値である。なお、この際、計算式中のΔf、C0、CL、Frは、それぞれ計測可能な数値である。
 ここで、圧電振動片4を半田接合によってマウントした圧電振動子と、圧電振動片4をバンプ接合した上記実施形態の圧電振動子1とにおいて、実際にC0を実測した数値と、C1を算出した数値とを、図16に示す。なお、両圧電振動子は、半田接合されたか、バンプ接合されたかが異なるだけで、それ以外の条件は同じである。
 その結果、図16に示すように、バンプ接合した場合の方が半田接合した場合に比べて、C1特性が低いことが確認された。これは、圧電振動片4のマウント状況によるものと考えられる。つまり、半田接合の場合には、圧電振動片4が半田に対して面接触した状態でマウントされてしまう。一方、バンプ接合の場合には、圧電振動片4がバンプBに対して点接触に近い状態でマウントされる。そのため、圧電振動片は、より接触が少ない状態で浮き、C1特性が低くなったと考えられる。
 そして、バンプ接合の方がC1特性を低いので容量比γ(C0/C1)を半田接合の場合よりも大きくなったことが確認された。一般的に容量比γが大きくなると、低CL(キャパシタンスロード)化を図ることができ、低消費電力化に繋げることができる。従って、バンプ接合した場合には、半田接合した場合に比べて省電力の圧電振動子を製造することができるという効果を奏することができる。
 また、容量費γは、図17に示すCL曲線(横軸:CL、縦軸Δf/f)のカーブ特性に影響を与えるものであり、大きくなるほど、より速やかに曲線が水平に近づいた状態になる。つまり、実線で示すCL曲線(L1)から点線で示すCL曲線(L2)にすることができる。従って、予め決められたΔf/fの範囲(例えば、±20ppm)内に、CL曲線を追い込み易くなり、製造が容易になるという効果も奏することができる。
 次に、本発明に係る発振器の一実施形態について、図18を参照しながら説明する。
 本実施形態の発振器100は、図18に示すように、圧電振動子1を、集積回路101に電気的に接続された発振子として構成したものである。この発振器100は、コンデンサ等の電子部品102が実装された基板103を備えている。基板103には、発振器用の上記集積回路101が実装されており、この集積回路101の近傍に、圧電振動子1の圧電振動片4が実装されている。これら電子部品102、集積回路101及び圧電振動子1は、図示しない配線パターンによってそれぞれ電気的に接続されている。なお、各構成部品は、図示しない樹脂によりモールドされている。
 このように構成された発振器100において、圧電振動子1に電圧を印加すると、圧電振動子1内の圧電振動片4が振動する。この振動は、圧電振動片4が有する圧電特性により電気信号に変換されて、集積回路101に電気信号として入力される。入力された電気信号は、集積回路101によって各種処理がなされ、周波数信号として出力される。これにより、圧電振動子1が発振子として機能する。
 また、集積回路101の構成を、例えば、RTC(リアルタイムクロック)モジュール等を要求に応じて選択的に設定することで、時計用単機能発振器等の他、当該機器や外部機器の動作日や時刻を制御したり、時刻やカレンダー等を提供したりする機能を付加することができる。
 上述したように、本実施形態の発振器100によれば、従来のものに比べて遥かに薄くコンパクトかされた圧電振動子1を備えているので、発振器100自体も同様にコンパクト化を図ることができ、今後のさらなる小型化のニーズに対応することができる。さらにこれに加え、長期にわたって安定した高精度な周波数信号を得ることができる。
 次に、本発明に係る電子機器の一実施形態について、図19を参照して説明する。なお電子機器として、上述した圧電振動子1を有する携帯情報機器110を例にして説明する。始めに本実施形態の携帯情報機器110は、例えば、携帯電話に代表されるものであり、従来技術における腕時計を発展、改良したものである。外観は腕時計に類似し、文字盤に相当する部分に液晶ディスプレイを配し、この画面上に現在の時刻等を表示させることができるものである。また、通信機として利用する場合には、手首から外し、バンドの内側部分に内蔵されたスピーカ及びマイクロフォンによって、従来技術の携帯電話と同様の通信を行うことが可能である。しかしながら、従来の携帯電話と比較して、格段に小型化及び軽量化されている。
 次に、本実施形態の携帯情報機器110の構成について説明する。この携帯情報機器110は、図19に示すように、圧電振動子1と、電力を供給するための電源部111とを備えている。電源部111は、例えば、リチウム二次電池からなっている。この電源部111には、各種制御を行う制御部112と、時刻等のカウントを行う計時部113と、外部との通信を行う通信部114と、各種情報を表示する表示部115と、それぞれの機能部の電圧を検出する電圧検出部116とが並列に接続されている。そして、電源部111によって、各機能部に電力が供給されるようになっている。
 制御部112は、各機能部を制御して音声データの送信及び受信、現在時刻の計測や表示等、システム全体の動作制御を行う。また、制御部112は、予めプログラムが書き込まれたROMと、このROMに書き込まれたプログラムを読み出して実行するCPUと、このCPUのワークエリアとして使用されるRAM等とを備えている。
 計時部113は、発振回路、レジスタ回路、カウンタ回路及びインターフェース回路等を内蔵する集積回路と、圧電振動子1とを備えている。圧電振動子1に電圧を印加すると圧電振動片4が振動し、振動が水晶の有する圧電特性により電気信号に変換されて、発振回路に電気信号として入力される。発振回路の出力は二値化され、レジスタ回路とカウンタ回路とにより計数される。そして、インターフェース回路を介して、制御部112と信号の送受信が行われ、表示部115に、現在時刻や現在日付或いはカレンダー情報等が表示される。
 通信部114は、従来の携帯電話と同様の機能を有し、無線部117、音声処理部118、切替部119、増幅部120、音声入出力部121、電話番号入力部122、着信音発生部123及び呼制御メモリ部124を備えている。
 無線部117は、音声データ等の各種データを、アンテナ125を介して基地局と送受信のやりとりを行う。音声処理部118は、無線部117又は増幅部120から入力された音声信号を符号化及び複号化する。増幅部120は、音声処理部118又は音声入出力部121から入力された信号を、所定のレベルまで増幅する。音声入出力部121は、スピーカやマイクロフォン等からなり、着信音や受話音声を拡声したり、音声を集音したりする。
 また、着信音発生部123は、基地局からの呼び出しに応じて着信音を生成する。切替部119は、着信時に限って、音声処理部118に接続されている増幅部120を着信音発生部123に切り替えることによって、着信音発生部123において生成された着信音が増幅部120を介して音声入出力部121に出力される。
 なお、呼制御メモリ部124は、通信の発着呼制御に係るプログラムを格納する。また、電話番号入力部122は、例えば、0から9の番号キー及びその他のキーを備えており、これら番号キー等を押下することにより、通話先の電話番号等が入力される。
 電圧検出部116は、電源部111によって制御部112等の各機能部に対して加えられている電圧が、所定の値を下回った場合に、その電圧降下を検出して制御部112に通知する。このときの所定の電圧値は、通信部114を安定して動作させるために必要な最低限の電圧として予め設定されている値であり、例えば、3V程度となる。電圧検出部116から電圧降下の通知を受けた制御部112は、無線部117、音声処理部118、切替部119及び着信音発生部123の動作を禁止する。特に、消費電力の大きな無線部117の動作停止は、必須となる。更に、表示部115に、通信部114が電池残量の不足により使用不能になった旨が表示される。
 即ち、電圧検出部116と制御部112とによって、通信部114の動作を禁止し、その旨を表示部115に表示することができる。この表示は、文字メッセージであっても良いが、より直感的な表示として、表示部115の表示面の上部に表示された電話アイコンに、×(バツ)印を付けるようにしても良い。
 なお、通信部114の機能に係る部分の電源を、選択的に遮断することができる電源遮断部126を備えることで、通信部114の機能をより確実に停止することができる。
 上述したように、本実施形態の携帯情報機器110によれば、従来のものに比べて遥かに薄くコンパクト化された圧電振動子1を備えているので、携帯情報機器自体も同様にコンパクト化を図ることができ、今後のさらなる小型化のニーズに対応することができる。さらにこれに加え、長期にわたって安定した高精度な時計情報を表示することができる。
 次に、本発明に係る電波時計の一実施形態について、図20を参照して説明する。
 本実施形態の電波時計130は、図20に示すように、フィルタ部131に電気的に接続された圧電振動子1を備えたものであり、時計情報を含む標準の電波を受信して、正確な時刻に自動修正して表示する機能を備えた時計である。
 日本国内には、福島県(40kHz)と佐賀県(60kHz)とに、標準の電波を送信する送信所(送信局)があり、それぞれ標準電波を送信している。40kHz若しくは60kHzのような長波は、地表を伝播する性質と、電離層と地表とを反射しながら伝播する性質とを併せもつため、伝播範囲が広く、上述した2つの送信所で日本国内を全て網羅している。
 以下、電波時計130の機能的構成について詳細に説明する。
 アンテナ132は、40kHz若しくは60kHzの長波の標準電波を受信する。長波の標準電波は、タイムコードと呼ばれる時刻情報を、40kHz若しくは60kHzの搬送波にAM変調をかけたものである。受信された長波の標準電波は、アンプ133によって増幅され、複数の圧電振動子1を有するフィルタ部131によって濾波、同調される。
 本実施形態における圧電振動子1は、上記搬送周波数と同一の40kHz及び60kHzの共振周波数を有する水晶振動子部138、139をそれぞれ備えている。
 更に、濾波された所定周波数の信号は、検波、整流回路134により検波復調される。続いて、波形整形回路135を介してタイムコードが取り出され、CPU136でカウントされる。CPU136では、現在の年、積算日、曜日、時刻等の情報を読み取る。読み取られた情報は、RTC137に反映され、正確な時刻情報が表示される。
 搬送波は、40kHz若しくは60kHzであるから、水晶振動子部138、139は、上述した音叉型の構造を持つ振動子が好適である。
 なお、上述の説明は、日本国内の例で示したが、長波の標準電波の周波数は、海外では異なっている。例えば、ドイツでは77.5KHzの標準電波が用いられている。従って、海外でも対応可能な電波時計130を携帯機器に組み込む場合には、さらに日本の場合とは異なる周波数の圧電振動子1を必要とする。
 上述したように、本実施形態の電波時計130によれば、従来のものに比べて遥かに薄くコンパクトかされた圧電振動子1を備えているので、電波時計自体も同様にコンパクト化を図ることができ、今後のさらなる小型化のニーズに対応することができる。さらにこれに加え、長期にわたって安定して高精度に時刻をカウントすることができる。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施形態では、圧電振動片4の一例として振動腕部10、11の両面に溝部18が形成された溝付きの圧電振動片を例に挙げて説明したが、溝部18がないタイプの圧電振動片でも構わない。但し、溝部18を形成することで、一対の励振電極15に所定の電圧を印加させたときに、一対の励振電極15間における電界効率を上げることができるので、振動損失をより抑えて振動特性をさらに向上することができる。つまり、CI値(Crystal Impedance)をさらに低くすることができ、圧電振動片4のさらなる高性能化を図ることができる。この点において、溝部18を形成する方が好ましい。
 また、上記実施形態では、音叉型の圧電振動片4を例に挙げて説明したが、音叉型に限られるものではない。例えば、厚み滑り振動片としても構わない。
 また、上記各実施形態では、圧電振動片4をバンプ接合したが、バンプ接合に限定されるものではない。
 また、ベース基板2とリッド基板3とを陽極接合した場合を例に挙げて説明したが、接合方法は陽極接合に限定されるものではない。例えば、金錫半田を利用して、ベース基板2とリッド基板3とを接合しても構わない。この場合には、接合工程の際に、ベース基板用ウエハ40とリッド基板用ウエハ50とを金錫半田により接合すれば良い。
 また、上記実施形態では、リッド基板用ウエハ50にキャビティ用の凹部3aを形成する凹部形成工程を行う際に、エッチング等で形成した場合を説明したが、このような切削加工を施すことなく凹部3aを形成しても構わない。例えば、ガラスのペーストP1をスクリーン印刷することで凹部3aを形成しても構わない。この場合には、図21に示すように、凹部形成工程S22の際に印刷工程S22aと、乾燥工程S22bと、焼成工程S22cとを行えば良い。これら各工程について、詳細に説明する。
 まず、図22に示すように、洗浄等が終了したリッド基板用ウエハ50をウエハ固定板70上に載置すると共に、周囲を固定治具51で固定する。そして、固定されたリッド基板用ウエハ50の表面にスクリーンとなる印刷マスク52をセットする。この印刷マスク52は、後に凹部3aとなる領域を覆うように配置されたマスクであり、厚みが50μmから200μm程度のものである。
 続いて、図23に示すように、リッド基板用ウエハ50の表面に印刷インクとなるガラスのペーストP1を供給した後、スキージ53を移動させてペーストP1を加圧しながら全体に延ばす。これにより、ペーストP1は、マスクされていない領域に押し出されるので、マスクされていないリッド基板用ウエハ50上にスクリーン印刷される。つまり、ガラスのペーストP1を、凹部3aとなる部分の周囲を囲むようにパターニングした状態でスクリーン印刷することができる。これにより、印刷工程S22aが終了する。なお、一度に印刷されるペーストP1の厚みは、印刷マスク52の厚みと同じとなる。
 続いて、印刷したガラスのペーストP1を乾燥させる乾燥工程S22bを行う。例えば、ウエハ固定板70ごと炉の中に入れて、100℃前後の温度で30分ほど乾燥させる。これにより、先ほど印刷したガラスのペーストP1が乾燥した状態となる。
 そして、再度上述した印刷工程S22aを行って、乾燥したペーストP1の上に新たなガラスのペーストP1をスクリーン印刷して塗り重ねる。その後、再度乾燥工程S22bによって新たなペーストP1を乾燥させる。
 そして、図24及び図25に示すように、ペーストP1の塗り重ねによって凹部3aが形成されるまで印刷工程S22aと乾燥工程S22bとを複数回繰り返し行う。なお、図24及び図25では、印刷工程S22a及び乾燥工程S22bを3回行って、凹部3aを形成した場合を図示している。つまり、塗り重ねたペーストP1全体の高さは、印刷マスク52の厚みが50μmである場合には、150μmとなる。そして、この150μmが凹部3aの深さとなる。
 そして、ペーストP1の塗り重ねによって凹部3aを形成した後、塗り重なって乾燥しているペーストP1を焼成して完全に硬化させる焼成工程S22cを行う。これにより、塗り重ねたペーストP1とリッド基板用ウエハ50とが一体となる。
 その結果、エッチング等の切削加工を施すことなく、リッド基板用ウエハ50に凹部3aを形成することができる。特に、リッド基板用ウエハ50を切削する必要がないので、ウエハ50に与える負荷を軽減することができ、圧電振動子1の品質向上化に繋げることができる。なお、印刷マスク52の厚みや印刷回数等は、自由に設定して構わない。
 また、上記実施形態において、ベース基板用ウエハ40にスルーホールを形成する際、機械的にドリル加工することで形成したり、レーザ加工で形成したり、サンドブラスト加工で形成したりしても構わない。この際、ストレートのスルーホールを形成する場合には、ドリル加工及びレーザ加工を採用し、テーパー状のスルーホールを形成する場合には、サンドブラスト加工を採用すれば良い。
 特に、スルーホールを簡便にしかも確実に形成する方法として、金型によるプレスで形成する方法が好ましい。この場合には、図26に示すように、貫通孔形成工程S32の際にセット工程32aと、プレス工程32bと、冷却工程32cとを行えば良い。これら各工程について、詳細に説明する。
 まず、図27に示すように、洗浄等が終了したベース基板用ウエハ40を、下型80と、下型80に向けて突出したピン81aを有する上型81との間にセットするセット工程32aを行う。なお、このピン81aは、先端に向かって径が漸次縮径するテーパー状に形成されている。また、上型81には、ピン81aとは別に、下型80に設けられた位置決め孔80a内に入り込む位置決めピン81bが取り付けられている。また、セット工程32aを行う前、ベース基板用ウエハ40に位置決めピン81bが挿通する挿通孔40aを開けておき、この挿通孔40aが位置決め孔80aに対向するようにセットする。
 続いて、全体を炉の中に入れてベース基板用ウエハ40を所定温度(ガラス軟化点以上の温度)に加熱すると共に、図28に示すように下型80と上型81とでプレスし、上型81のピン81aを利用してベース基板用ウエハ40にスルーホールを形成するプレス工程32bを行う。この際、上型81の位置決め用ピン81aが、ベース基板用ウエハ40の挿通孔40aを挿通すると共に、下型80の位置決め孔80aに入り込む。従って、下型80と上型81とベース基板用ウエハ40とがそれぞれ確実に位置決めされるので、スルーホールを所望する位置に高精度に形成することができる。そして、最後にベース基板用ウエハ40を冷却固化させる冷却工程32cを行う。これにより、貫通孔形成工程S32が終了する。
 特に、金型でプレスするだけの簡便な方法でスルーホールを一度に形成できるので、製造効率を高めることができる。しかも、テーパー状のスルーホールを形成することができる。
 ところで、金型をプレスすることでスルーホールを形成する場合には、上述したように平面視円形状のウエハ40を用いることが好ましい。つまり、ベース基板用ウエハ40が円形状である場合には、プレス工程32bによる加熱、冷却工程32cによる冷却によってウエハに熱膨張、熱収縮が生じたとしても、途中で変形し難く、寸法精度、厚み精度を高いレベルに維持することができる。
 仮に、平面視矩形状(例えば、平面視長方形状)のウエハである場合には、加熱、冷却によって膨張、収縮が生じたときに、途中で変形する恐れがあり、寸法精度、厚み精度が低くなってしまう。これは、ウエハに角部が存在するので、膨張時に角度付近に応力集中し易い。そのため、膨張具合と収縮具合とが不均一になってしまい、元の状態に戻り難いことが考えられる。また、平面視矩形状のウエハを利用した場合には、寸法精度、厚み精度が低くなるだけでなく、膨張具合と収縮具合との不均一の影響を受けてピン81aに無理な負荷が作用してしまい、ピン81aが変形或いは折れてしまう可能性もあった。
 しかしながら、角部がない円形状のウエハを利用するので、加熱、冷却を伴ったプレス加工でスルーホールを形成したとしても、上述した問題が生じる恐れが少ない。なお、冷却工程32c後、ベース基板用ウエハ40の両面を研磨しても構わない。こうすることで、より確実な貫通を実現することができる。
 また、上記実施形態において、引き回し電極36、37上にバンプBを形成する前に、引き回し電極36、37に対して少なくとも10秒以上、プラズマ(例えば、酸素プラズマ)を照射してプラズマクリーニング処理を施すことが好ましい。これにより、塵埃等の汚染源を除去することができ、バンプBが形成される面を清浄にすることができると共に、表面を改質することができる。特に、少なくとも10秒はプラズマを照射するので、汚染源を残すことなく確実に除去することができる。よって、バンプBとの密着性、接着性を向上することができ、バンプBの剪断剥離強度を高めることができる。そのため、圧電振動片4のマウント性能を高めることができ、結果的に圧電振動子1の高品質化を図ることができる。
 ここで、プラズマクリーニング処理をしないでバンプBを形成した場合と、プラズマクリーニング処理を施した後にバンプBを形成した場合とで、バンプBを実際に引っ掻き試験した結果を図29に示す。
 なお、プラズマクリーニング処理を施した場合の試験は、プラズマを10秒照射した場合と、30秒照射した場合との2通りで試験した。また、引っ掻き試験は、いずれの場合も100回行った。また、バンプBを引っ掻く強度、即ち、剪断強度としては、プラズマクリーニング処理をしない場合には平均55(gf)、プラズマを10秒照射した場合には平均78(gf)、プラズマを30秒照射した場合には平均83(gf)で試験した。
 また、破断モードAとは、引っ掻き試験した結果、バンプBが除去されずほぼ完全な状態で残ったことを示すものである。破断モードBとは、引っ掻き試験した結果、バンプBが若干除去されたが大部分が残ったことを示すものである。破断モードCとは、引っ掻き試験した結果、バンプBの大部分が除去されてしまい、一部が若干残ったことを示すものである。破断モードDとは、引っ掻き試験した結果、バンプBの全てが除去されてしまったことを示すものである。
 図29に示すように、まず、プラズマクリーニング処理をしないで形成したバンプBに対して引っ掻き試験をした結果、85%が破断モードCであり、破断モードAに関しては0%であった。これに対して、プラズマクリーニング処理を施した後に形成したバンプBに対して引っ掻き試験をした結果、プラズマの照射時間が10秒、30秒いずれの場合であっても、100%が破断モードAであった。しかも、引っ掻き強度(剪断強度)が大きいにも関わらず、全てが破断モードAの状態であった。
 このように、プラズマクリーニング処理を施した後にバンプBを形成することで、バンプBの剪断剥離強度が高くなったことが実際に確認できた。また、少なくとも10秒プラズマを照射することで、十分な効果を発揮できることを確認できた。
 また、上記実施形態において、バンプBを形成する前に、ベース基板用ウエハ40の上面を表面加工して、算術平均粗さ(Ra)を10nm以下とする表面加工工程を行うことが好ましい。表面加工の方法としては、例えば、ポリッシング等の鏡面研磨や、グライディングによる表面研削等がある。いずれの方法であっても、表面加工することでバンプBが形成される土台となるベース基板用ウエハ40の上面をできるだけ平滑した面に近づけることができる。そのため、やはりバンプBとの密着性、接着性を向上することができ、バンプBの剪断剥離強度を高めることができる。よって、この方法であっても圧電振動片4のマウント性能を高めることができ、結果的に圧電振動子1の高品質化を図ることができる。
 特に、この方法と上述したプラズマクリーニング処理とを組み合わせることで、より効果を高めることができ、好ましい。
 また、上記実施形態では、スルーホール30、31を図示しない導電体で埋めることで貫通電極32、33を形成したが、図30に示す複数の金属微粒子P2を含んだペーストP3をスルーホール30、31に埋め、ペーストP3を硬化させることで図31に示すように貫通電極85、86としても構わない。この場合、貫通電極85、86は、ペーストP3に含まれる複数の金属微粒子P2が互いに接触し合っていることで、電気導通性が確保されている。そのため、電極として確実に機能させることができる。
 ここで、ペーストP3を利用して貫通電極85、86を形成する場合には、貫通電極形成工程S33を以下のように行えば良い。
 まず、スルーホール30、31内に金属微粒子P2を含んだペーストP3を隙間なく埋め込んでスルーホール30、31を塞ぐ充填工程を行う。続いて、充填したペーストP3を所定の温度で焼成して硬化させる焼成工程を行う。これにより、スルーホール30、31の内面にペーストP3が強固に固着した状態となる。ところで、硬化したペーストP3は、焼成時に図示しないペーストP3内の有機物が蒸発してしまうので、充填工程時に比べて体積が減少してしまう。そのため、ペーストP3の表面には、どうしても凹みが生じてしまう。
 そこで、焼成後にベース基板用ウエハ40の両面をそれぞれ所定の厚みだけ研磨する研磨工程を行う。この工程を行うことで、焼成によって硬化したペーストP3の両面も同時に研磨できるので、凹んでしまった部分の周囲を削り取ることができる。つまり、ペーストP3の表面を平坦にすることができる。これにより、ベース基板用ウエハ40の表面と、貫通電極85、86の表面とをほぼ面一の状態にすることができる。この研磨工程を行うことで、貫通電極形成工程が終了する。
 その結果、ペーストP3を利用して貫通電極85、86を形成することができる。なお、図31では、テーパー状に形成されたスルーホール30、31の場合を例に挙げている。この場合には、スルーホール30、31を形成する際、サンドブラスト法や上述した金型によるプレスによって形成すれば良い。
 また、ペーストP3を利用して貫通電極を形成する場合において、図32に示すように、複数のガラスビーズGBを含ませたペーストP3を硬化させることで貫通電極87、88を形成しても構わない。この場合には、ガラスビーズGBの分だけペーストP3の量を少なくすることができるので、焼成によって減少する有機物の量を少なくすることができる。よって、ペーストP3の硬化後に現れる表面の凹みを無視できるほど小さくすることができる。従って、研磨工程をなくすことができる利点がある。
 また、貫通電極の別の一例として、図33に示すように、スルーホール30、31内に埋め込まれた筒体91と、筒体91の中心孔91aに挿入され、焼成によって一体的に固定された導電性の芯体92とで貫通電極89、90を構成しても構わない。なお、この図33においても、テーパー状に形成されたスルーホール30、31の場合を例に挙げている。
 この場合の貫通電極形成工程は、以下のように行えばよい。
 まず、スルーホール30、31内に筒体91を埋め込むと共に、筒体91の中心孔91aに芯材92を挿入するセット工程を行う。なお、筒体91は、図34に示すように、ベース基板2と同じガラス材料によって予め仮焼成され、両端が平坦で且つベース基板2と略同じ厚みの円筒状に形成されているものを使用する。しかも、中心には筒体91を貫通する中心孔91aが形成されており、外形がスルーホール30、31に合わせて円錐状(断面テーパ状)になるように形成されているものを使用する。一方、芯材92は、図33に示すように、金属材料により円柱状に形成された導電性の芯材であり、筒体91と同様にベース基板2と略同じ厚みに形成されているものを使用する。
 そして、セット工程が終了した後、埋め込んだ筒体91を所定の温度で焼成する焼成工程を行う。これにより、スルーホール30、31と筒体91と芯材92とを一体的に固定することができる。これにより、貫通電極89、90を形成することができ、貫通電極形成工程が終了する。
 特に、ペーストP3ではなくガラスの筒体91を利用しているので、焼成後に筒体91の体積が減少し難く、表面に凹みが生じ難い。従って、やはり研磨工程を行うことなく、貫通電極89、90を形成することができる。

Claims (16)

  1.  互いに接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された圧電振動子を、ベース基板用ウエハとリッド基板用ウエハとを利用して一度に複数製造する方法であって、
     前記リッド基板用ウエハに、両ウエハが重ね合わされたときに前記キャビティを形成するキャビティ用の凹部を複数形成する凹部形成工程と;
     前記ベース基板用ウエハを貫通する一対の貫通孔を複数形成する貫通孔形成工程と;
     複数形成された前記一対の貫通孔を導電体で埋めて、一対の貫通電極を複数形成する貫通電極形成工程と;
     前記ベース基板用ウエハの上面に、前記凹部の周囲を囲むように接合膜を形成する接合膜形成工程と;
     前記ベース基板用ウエハの上面に、前記一対の貫通電極に対してそれぞれ電気的に接続された引き回し電極を複数形成する引き回し電極形成工程と;
     前記引き回し電極を介して複数の前記圧電振動片を前記ベース基板用ウエハの上面に接合するマウント工程と;
     前記ベース基板用ウエハと前記リッド基板用ウエハとを重ね合わせて、前記凹部と両ウエハとで囲まれる前記キャビティ内に圧電振動片を収納する重ね合わせ工程と;
     前記ベース基板用ウエハと前記リッド基板用ウエハとを前記接合膜を介して接合し、前記圧電振動片を前記キャビティ内に封止する接合工程と;
     前記ベース基板用ウエハの下面に、前記一対の貫通電極にそれぞれ電気的に接続された一対の外部電極を複数形成する外部電極形成工程と;
     接合された前記両ウエハを切断して、複数の前記圧電振動子に小片化する切断工程と;を備えている;
    ことを特徴とする圧電振動子の製造方法。
  2.  請求項1に記載の圧電振動子の製造方法であって、
     前記マウント工程の際、前記引き回し電極上にバンプを形成した後、バンプを介して前記圧電振動片を前記ベース基板用ウエハの上面にバンプ接合する。
  3.  請求項2に記載の圧電振動子の製造方法であって、
     前記マウント工程の際、前記引き回し電極に対して少なくとも10秒以上プラズマクリーニング処理を施した後に、前記パンプを形成する。
  4.  請求項2に記載の圧電振動子の製造方法であって、
     前記貫通孔形成工程後、前記ベース基板用ウエハの上面を表面加工して、算術平均粗さRaを10nm以下とする表面加工工程を行う。
  5.  請求項1に記載の圧電振動子の製造方法であって、
     前記接合工程の際、前記ベース基板用ウエハと前記リッド基板用ウエハとを陽極接合する。
  6.  請求項1に記載の圧電振動子の製造方法であって、
     前記凹部形成工程は、
     前記リッド基板用ウエハの表面に所定のパターンでペーストをスクリーン印刷する印刷工程と;
     印刷した前記ペーストを乾燥させる乾燥工程と;
     前記ペーストの塗り重ねによって前記凹部を形成するまで前記印刷工程と前記乾燥工程とを複数回繰り返し行った後、塗り重なって乾燥しているペーストを焼成する焼成工程と;
    を備える。
  7.  請求項1に記載の圧電振動子の製造方法であって、
     前記貫通孔形成工程は、
     下型と下型に向けて突出したピンを有する上型との間に前記ベース基板用ウエハをセットするセット工程と;
     所定温度に加熱した状態で前記下型と前記上型とで前記ベース基板用ウエハをプレスし、前記ピンを利用して前記貫通孔を形成するプレス工程と;
     前記ベース基板用ウエハを冷却固化させる冷却工程と;
    を備える。
  8.  請求項7に記載の圧電振動子の製造方法であって、
     前記ベース基板用ウエハとして、平面視円形状のウエハを用いる。
  9.  上面に接合膜が形成されたガラス材料からなるベース基板と;
     キャビティ用の凹部が形成され、凹部を前記ベース基板に対向させた状態でベース基板に前記接合膜を介して接合されたガラス材料からなるリッド基板と;
     前記凹部を利用して前記ベース基板と前記リッド基板との間に形成されたキャビティ内に収納された状態で、ベース基板の上面に接合された圧電振動片と;
     前記ベース基板の下面に形成された一対の外部電極と;
     前記ベース基板を貫通するように形成され、前記キャビティ内の気密を維持すると共に、前記一対の外部電極に対してそれぞれ電気的に接続された一対の貫通電極と;
     前記ベース基板の上面に形成され、前記一対の貫通電極を接合された前記圧電振動片に対してそれぞれ電気的に接続する引き回し電極と;を備えている;
    ことを特徴とする圧電振動子。
  10.  請求項9に記載の圧電振動子であって、
     前記圧電振動片は、バンプを介して前記ベース基板の上面にバンプ接合されている。
  11.  請求項10に記載の圧電振動子であって、
     前記バンプは、少なくとも10秒以上プラズマクリーニング処理が施された領域に形成されている。
  12.  請求項10に記載の圧電振動子であって、
     前記ベース基板の上面は、算術平均粗さRaが10nm以下とされている。
  13.  請求項1に記載の圧電振動子であって、
     前記ベース基板と前記リッド基板とは、陽極接合されている。
  14.  請求項9から13のいずれか1項に記載の圧電振動子が、発振子として集積回路に電気的に接続されている;
    ことを特徴とする発振器。
  15.  請求項9から13のいずれか1項に記載の圧電振動子が、計時部に電気的に接続されている;
    ことを特徴とする電子機器。
  16.  請求項9から13のいずれか1項に記載の圧電振動子が、フィルタ部に電気的に接続されている;
    ことを特徴とする電波時計。
PCT/JP2008/065551 2008-02-18 2008-08-29 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計 WO2009104293A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880127418.1A CN101946401B (zh) 2008-02-18 2008-08-29 压电振动器的制造方法、压电振动器、振荡器、电子设备及电波钟
JP2009554185A JP5147868B2 (ja) 2008-02-18 2008-08-29 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
TW098122294A TW201017942A (en) 2008-08-29 2009-07-01 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electric machine and electric wave clock
US12/858,314 US20100308697A1 (en) 2008-02-18 2010-08-17 Method of manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic device, and radio clock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008036423 2008-02-18
JP2008-036423 2008-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/858,314 Continuation US20100308697A1 (en) 2008-02-18 2010-08-17 Method of manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic device, and radio clock

Publications (1)

Publication Number Publication Date
WO2009104293A1 true WO2009104293A1 (ja) 2009-08-27

Family

ID=40985188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065551 WO2009104293A1 (ja) 2008-02-18 2008-08-29 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計

Country Status (4)

Country Link
US (1) US20100308697A1 (ja)
JP (1) JP5147868B2 (ja)
CN (1) CN101946401B (ja)
WO (1) WO2009104293A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066100A (ko) * 2009-12-10 2011-06-16 세이코 인스트루 가부시키가이샤 패키지의 제조 방법, 압전 진동자 및 발진기
JP2011182343A (ja) * 2010-03-03 2011-09-15 Seiko Instruments Inc パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計
KR101752501B1 (ko) * 2010-01-07 2017-06-29 세이코 인스트루 가부시키가이샤 패키지의 제조 방법, 압전 진동자 및 발진기

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160285B (zh) * 2008-03-31 2014-04-30 株式会社村田制作所 压电振动元件
WO2009157587A1 (ja) * 2008-06-27 2009-12-30 京セラ株式会社 弾性波装置
JP2011160350A (ja) * 2010-02-03 2011-08-18 Seiko Instruments Inc 圧電振動片、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2012085253A (ja) * 2010-03-25 2012-04-26 Nippon Dempa Kogyo Co Ltd 表面実装型の水晶デバイス及び水晶デバイスの製造方法
JP2012169376A (ja) * 2011-02-10 2012-09-06 Seiko Instruments Inc 陽極接合装置、パッケージ製造方法、圧電振動子、発振器、電子機器および電波時計
US10568213B2 (en) 2014-07-31 2020-02-18 Skyworks Solutions, Inc. Multilayered transient liquid phase bonding
US10541152B2 (en) 2014-07-31 2020-01-21 Skyworks Solutions, Inc. Transient liquid phase material bonding and sealing structures and methods of forming same
US20180159502A1 (en) 2016-12-02 2018-06-07 Skyworks Solutions, Inc. Methods of manufacturing electronic devices to prevent water ingress during manufacture
JP6635605B2 (ja) * 2017-10-11 2020-01-29 国立研究開発法人理化学研究所 電流導入端子並びにそれを備えた圧力保持装置及びx線撮像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098595A (ja) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd 弾性表面波装置及びその製造方法
JPH10144813A (ja) * 1996-11-06 1998-05-29 Sumitomo Kinzoku Electro Device:Kk Icパッケージの電極構造及びその製造方法
JP2000332140A (ja) * 1999-05-18 2000-11-30 Sumitomo Metal Electronics Devices Inc 枠状ガラスシールの形成方法
JP2002121037A (ja) * 2000-08-07 2002-04-23 Nippon Sheet Glass Co Ltd 電子部品パッケージ用多数個取りガラス板の製造方法
JP2003100799A (ja) * 2002-09-17 2003-04-04 Matsushita Electric Ind Co Ltd バンプ付きワークの実装方法
JP2007013636A (ja) * 2005-06-30 2007-01-18 Kyocera Kinseki Corp 圧電振動子の製造方法及び圧電振動子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354133A (en) * 1980-08-29 1982-10-12 The United States Of America As Represented By The Secretary Of The Army Hermetically sealed container
US5275330A (en) * 1993-04-12 1994-01-04 International Business Machines Corp. Solder ball connect pad-on-via assembly process
JPH10284972A (ja) * 1997-04-04 1998-10-23 Toyo Commun Equip Co Ltd 圧電振動子のパッケージ内支持構造
JP3521708B2 (ja) * 1997-09-30 2004-04-19 セイコーエプソン株式会社 インクジェット式記録ヘッドおよびその製造方法
US6568978B2 (en) * 2000-03-31 2003-05-27 Sharp Kabushiki Kaisha Electrode substrate, method for producing the same, and display device including the same
US6710682B2 (en) * 2000-10-04 2004-03-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device, method for producing the same, and circuit module using the same
JP4147753B2 (ja) * 2001-07-02 2008-09-10 ソニー株式会社 光情報記録媒体、光情報記録媒体用原盤およびその製造方法
US7266869B2 (en) * 2003-07-30 2007-09-11 Kyocera Corporation Method for manufacturing a piezoelectric oscillator
CN1918783A (zh) * 2004-02-17 2007-02-21 精工爱普生株式会社 压电振荡器及其制造方法
US8278801B2 (en) * 2005-09-30 2012-10-02 Daishinku Corporation Piezoelectric resonator device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098595A (ja) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd 弾性表面波装置及びその製造方法
JPH10144813A (ja) * 1996-11-06 1998-05-29 Sumitomo Kinzoku Electro Device:Kk Icパッケージの電極構造及びその製造方法
JP2000332140A (ja) * 1999-05-18 2000-11-30 Sumitomo Metal Electronics Devices Inc 枠状ガラスシールの形成方法
JP2002121037A (ja) * 2000-08-07 2002-04-23 Nippon Sheet Glass Co Ltd 電子部品パッケージ用多数個取りガラス板の製造方法
JP2003100799A (ja) * 2002-09-17 2003-04-04 Matsushita Electric Ind Co Ltd バンプ付きワークの実装方法
JP2007013636A (ja) * 2005-06-30 2007-01-18 Kyocera Kinseki Corp 圧電振動子の製造方法及び圧電振動子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066100A (ko) * 2009-12-10 2011-06-16 세이코 인스트루 가부시키가이샤 패키지의 제조 방법, 압전 진동자 및 발진기
JP2011124801A (ja) * 2009-12-10 2011-06-23 Seiko Instruments Inc パッケージの製造方法、圧電振動子および発振器
CN102163690A (zh) * 2009-12-10 2011-08-24 精工电子有限公司 封装的制造方法、压电振子以及振荡器
TWI514521B (zh) * 2009-12-10 2015-12-21 Seiko Instr Inc A manufacturing method of a package, a piezoelectric vibrator and an oscillator
KR101688664B1 (ko) * 2009-12-10 2016-12-21 세이코 인스트루 가부시키가이샤 패키지의 제조 방법, 압전 진동자 및 발진기
KR101752501B1 (ko) * 2010-01-07 2017-06-29 세이코 인스트루 가부시키가이샤 패키지의 제조 방법, 압전 진동자 및 발진기
JP2011182343A (ja) * 2010-03-03 2011-09-15 Seiko Instruments Inc パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計
CN102195587A (zh) * 2010-03-03 2011-09-21 精工电子有限公司 封装件的制造方法、封装件、压电振动器、振荡器、电子设备及电波钟

Also Published As

Publication number Publication date
US20100308697A1 (en) 2010-12-09
JP5147868B2 (ja) 2013-02-20
CN101946401B (zh) 2014-09-03
JPWO2009104293A1 (ja) 2011-06-16
CN101946401A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5147868B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5103297B2 (ja) 圧電振動子の製造方法
JP5135510B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5091261B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5121493B2 (ja) 圧電振動子の製造方法
JP5065494B2 (ja) 圧電振動子、発振器、電子機器及び電波時計並びに圧電振動子の製造方法
JP5180975B2 (ja) 圧電振動子の製造方法および圧電振動子
JP5189378B2 (ja) 圧電振動子の製造方法
JP2011190509A (ja) マスク材、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP5258958B2 (ja) 圧電振動子の製造方法及び基板の製造方法
JP2011160350A (ja) 圧電振動片、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2012199735A (ja) 圧電振動子の製造方法、圧電振動子、該圧電振動子を有する発振器、電子機器及び電波時計
WO2009104328A1 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5421690B2 (ja) パッケージの製造方法
JP5827088B2 (ja) 電子部品の端子接続構造、パッケージ、圧電振動子、発振器、電子機器および電波時計
JP5258957B2 (ja) 圧電振動子の製造方法及び基板の製造方法
JP5184648B2 (ja) 圧電振動子の製造方法
JP2011176502A (ja) パッケージの製造方法、圧電振動子、発振器、電子機器および電波時計
JP2011151758A (ja) パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2009194789A (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP2012169788A (ja) パッケージ製造方法、圧電振動子、発振器、電子機器および電波時計
JP2011049993A (ja) パッケージの製造方法、圧電振動子の製造方法、圧電振動子、発振器、電子機器および電波時計
JP2011250372A (ja) パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2011114693A (ja) パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2011193290A (ja) パッケージの製造方法、圧電振動子、発振器、電子機器および電波時計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127418.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554185

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872661

Country of ref document: EP

Kind code of ref document: A1