WO2009102058A1 - ハイブリッド電気自動車 - Google Patents

ハイブリッド電気自動車 Download PDF

Info

Publication number
WO2009102058A1
WO2009102058A1 PCT/JP2009/052546 JP2009052546W WO2009102058A1 WO 2009102058 A1 WO2009102058 A1 WO 2009102058A1 JP 2009052546 W JP2009052546 W JP 2009052546W WO 2009102058 A1 WO2009102058 A1 WO 2009102058A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fuel
rotation
vehicle
engine
drive
Prior art date
Application number
PCT/JP2009/052546
Other languages
English (en)
French (fr)
Inventor
Hisashi Ogata
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to CN200980104304XA priority Critical patent/CN101939186A/zh
Priority to JP2009553482A priority patent/JPWO2009102058A1/ja
Priority to US12/735,752 priority patent/US8360185B2/en
Publication of WO2009102058A1 publication Critical patent/WO2009102058A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/20Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear
    • F16H3/22Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear with gears shiftable only axially
    • F16H3/30Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear with gears shiftable only axially with driving and driven shafts not coaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/18Reluctance machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/385Constructional details of the ring or crown gear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a hybrid electric vehicle, and more particularly to a four-wheel drive hybrid electric vehicle in which left and right front wheels are driven by a liquid fuel engine and left and right rear wheels are driven by a switched reluctance motor.
  • This application claims priority based on Japanese Patent Application No. 2008-33587 filed in Japan on February 14, 2008 and Japanese Patent Application No. 2008-45928 filed in Japan on February 27, 2008. Is hereby incorporated by reference.
  • the driving force of the AC motor is transmitted to the differential gear of the rear wheel via the speed reducer and the electromagnetic clutch, and is transmitted to the left and right rear wheels by this differential gear.
  • the driving force of the AC motor is distributed.
  • mechanical parts such as a differential gear and an electromagnetic clutch, and it is difficult to reduce fuel consumption due to the weight of the mechanical parts. Therefore, further improvement in fuel consumption is demanded by reducing the weight of the mechanical parts.
  • a switched reluctance motor (hereinafter referred to as “SR motor”) is directly disposed in the left and right rear wheels without using a differential gear or an electromagnetic clutch, and the output shaft of the SR motor is fixed to the wheel.
  • SR motor switched reluctance motor
  • a structure has been proposed in which a driving force of an SR motor is transmitted to a wheel via a brake disk and connected to a brake disk to drive left and right rear wheels (see, for example, Patent Document 2).
  • an automobile generally transmits rotation of an engine shaft, which is an output part of a liquid fuel engine, to wheels, and travels by rotation of the wheels.
  • the engine shaft is rotated by the transmission in order to correspond to a traveling mode such as starting a vehicle on an uphill that is traveling at low speed and high torque, or traveling on an expressway that is traveling at high speed and low torque. It is decelerated or accelerated (shifted) and transmitted to the wheels. That is, the vehicle travels by rotating the drive shaft by rotating the engine shaft that has been decelerated or accelerated, and by rotating the wheels connected to the drive shaft. In particular, in order to start the vehicle from a stopped state, it is necessary to rotate the wheels with a large torque. Therefore, the transmission needs a mechanism for greatly reducing the rotation of the engine shaft.
  • FIG. 7 shows an example of a transmission attached to a liquid fuel engine of an automobile.
  • the figure shows the internal structure of a vehicle that is mounted on an automobile (so-called FF vehicle) in which a liquid fuel engine is disposed in front of the vehicle and drives left and right front wheels.
  • An engine shaft 30 of a liquid fuel engine is inserted into the transmission 3 and is rotatably arranged inside the transmission 3.
  • the engine shaft 30 inserted into the transmission 3 includes a reverse drive gear 32a and a first drive gear in order from the side closer to the liquid fuel engine (right side of the drawing) to the side farther from the liquid fuel engine (left side of the drawing).
  • 33a, the second drive gear 34a, the third drive gear 35a, and the fourth drive gear 36a are integrally formed.
  • the number of teeth z1 of the first drive gear 33a is the smallest, the number of teeth z2 of the second drive gear 34a, and the number of teeth of the third drive gear 35a.
  • the number of teeth is set to increase in the order of the number z3 and the number of teeth z4 of the fourth drive gear 36a.
  • a main shaft 31 as a driven shaft is rotatably disposed inside the transmission 3 like the engine shaft 30 at a position parallel to the engine shaft 30 as the main driving shaft.
  • the main shaft 31 includes a final drive gear 37a, a reverse driven gear 32b, a first driven gear 33b, a second driven gear 37a in order from the side closer to the liquid fuel engine (right side of the drawing) to the side farther from the liquid fuel engine (left side of the drawing).
  • the driven gear 34b, the third driven gear 35b, and the fourth driven gear 36b are provided.
  • the final drive gear 37a and the reverse driven gear 32b are integrally formed with the main shaft 31.
  • concave serrations 31a extending in the axial direction are formed on the surface at equal pitches in the circumferential direction.
  • the first driven gear 33b, the second driven gear 34b, the third driven gear 35b, and the fourth driven gear 36b are movable in the axial direction along the above-described recess shape of the main shaft 31, and the circumference of these gears Movement in the direction is blocked by the main shaft 31. Further, the axial movement of the first to fourth driven shafts (32b to 36b) is controlled by a command from the vehicle.
  • the number of teeth Z1 of the first driven gear 33b is the largest, the number of teeth Z2 of the second driven gear 34b, the number of teeth Z3 of the third driven gear 35b, The number of teeth is set to be smaller in the order of the number of teeth Z4 of the driven gear 36b.
  • the first driven gear 33b is set to mesh with the first drive gear 33a, and the first drive gear 33a and the first drive gear 33b are meshed to form a first gear pair 33.
  • the second driven gear 34b is set so as to mesh with the second drive gear 34a, and the second drive gear 34a and the second drive gear 34b mesh with each other to form a second gear pair 34.
  • the third driven gear 35b is set so as to mesh with the third drive gear 35a, and the third drive gear 35a and the second drive gear 35b mesh with each other to form a third gear pair 35.
  • the driven gear 36b is set so as to mesh with the fourth drive gear 36a, and the fourth drive gear 36a and the second drive gear 36b mesh with each other to form a fourth gear pair 36.
  • the first to fourth driven gears (33b to 36b) are moved in the axial direction of the main shaft 31 in response to a command from the vehicle. In this movement, the first to fourth gears are moved.
  • the gear ratio r1 of the first gear pair is Z1 / z1
  • the gear ratio r2 of the second gear pair is Z2 / z2
  • the gear ratio r3 of the third gear pair is Z3 / z3.
  • the gear ratio r4 of the fourth gear pair is Z4 / z4.
  • a drive shaft 39 is rotatably disposed on the transmission 3 in the same manner as the main shaft 31 at a position parallel to the main shaft 31, and the right front wheel drive shaft 39a is disposed in the transmission 3 in one direction (right direction on the page).
  • the left front wheel drive shaft 39b protrudes from the transmission 3 in the other direction (left rear 9 in the drawing).
  • a differential gear 38 is provided at the axial center of the drive shaft 39 inside the transmission 3.
  • a final driven gear 37 b is connected to the outer periphery of the differential gear 38.
  • the final driven gear 37b is set to mesh with a final drive gear 37a integrally formed with the main shaft 31, and a final gear pair 37 is formed by the final drive gear 37a and the final drive gear 37b.
  • the number of teeth of the final drive gear 37a is set to zf
  • the number of teeth of the final driven gear 37b is set to Zf
  • the reduction ratio rf of the final gear pair 37 is Zf / zf.
  • the reduction ratio rf is set to about 3 to about 6.
  • the rotation of the engine shaft 30 is decelerated by the final gear pair 37 after being shifted by one selected gear pair among the first to fourth gear pairs (33 to 36),
  • the gear ratio R1 is selected in the case of starting from a stop where low speed and high torque are required.
  • the transmission ratio R1 is set to about 11 to 15, the transmission ratio R2 is set to about 6 to 9, the transmission ratio R3 is about 4 to 7, and the transmission ratio R4 is set to about 3 to 5. .
  • the reverse drive gear 32a is integrally formed with the engine shaft 30 at the end of the engine shaft 30 inside the transmission 3 that is closer to the liquid fuel engine 2 (right side of the drawing).
  • a reverse driven gear 32 b is integrally formed with the main shaft 31 on the main shaft 31.
  • the reverse driven gear 32b is disposed at the same position in the axial direction as the reverse drive gear 32a, the reverse drive gear 32a and the reverse driven gear 32b are not directly meshed with each other.
  • the transmission 3 includes a reverse idle gear 32c that can move in the axial direction of the engine shaft 30 and the main shaft 31 that are arranged in parallel.
  • the reverse idle gear 32c is set to mesh with both the reverse drive gear 32a and the reverse driven gear 32b.
  • the reverse idle gear 32c is disposed at a position where it does not mesh with both the reverse drive gear 32a and the reverse driven gear 32b, and in the axial direction by a command for moving the vehicle backward from the vehicle. And is disposed at a position where it meshes with both the reverse drive gear 32a and the reverse driven gear 32b.
  • the reverse idle gear 32c meshes with both the reverse drive gear 32a and the reverse driven gear 32b, the rotation of the reverse drive gear 32a is transmitted to the reverse driven gear 32b via the reverse idle gear 32c, and the reverse driven gear 32b rotates.
  • the rotations of the first to fourth drive gears (33a to 36a) described above are directly transmitted to the first to fourth driven gears (33b to 36b), whereas the first to fourth drive gears ( Similarly to 33a to 36a), the rotation of the reverse drive gear 32a formed integrally with the engine shaft 30 is transmitted to the reverse driven gear 32b via the reverse idle gear 33c. Therefore, the rotation of the reverse idle gear 33c is opposite to the direction of rotation of the first to fourth driven gears (33b to 36b), and the main shaft 31 is reverse to the forward direction by a command for moving the vehicle backward from the vehicle. Rotated in the direction of. The rotation of the main shaft 31 is transmitted from the final drive gear 37a to the drive shaft 39 via the final driven gear 37b, and rotates the drive shaft 39 in the direction opposite to that during forward movement.
  • the number of teeth of the reverse drive gear 32a is set to zr
  • the number of teeth of the reverse driven gear 32b is set to Zr
  • the SR motor is mechanically connected to the brake disc, there is a problem that the SR motor becomes high temperature due to frictional heat generated during braking and the heat dissipation of the brake disc deteriorates. Furthermore, the brake parts are a subject of essential maintenance inspection at the time of vehicle inspection, etc. If the SR motor is arranged in the wheel, there is a problem that maintenance inspection work becomes complicated.
  • the present invention provides a four-wheel drive hybrid electric vehicle in which the SR motor is arranged on the vehicle body outside the wheel, thereby increasing the degree of freedom in layout and improving the heat dissipation of the SR motor and brake disc. Is the primary purpose.
  • a transmission provided in an automobile driven only by a normal liquid fuel engine has a transmission mechanism with a large transmission ratio that operates during forward and reverse travel.
  • a liquid fuel engine and an electric motor used in a hybrid vehicle have a difference in power performance that they are good at.
  • liquid fuel engines have better fuel efficiency at high speeds than at low speeds, and electric motors operate with relatively high input / output efficiency from low speeds. It is required to reduce the size of the transmission by actively utilizing the drive of the electric motor at the time of starting forward or starting backward using such a difference in power performance.
  • the present invention provides a four-wheel drive hybrid electric vehicle capable of reducing the size of the transmission by actively utilizing the drive of the electric motor when starting forward or starting backward. The purpose.
  • a hybrid electric vehicle of the present invention includes a vehicle body, a liquid fuel engine, a transmission, first and second front wheels, a liquid fuel tank, first and first vehicles. Two switched reluctance motors, first and second rear wheels, first and second inverters, and a first battery.
  • the liquid fuel engine has an engine shaft that is disposed at the front of the vehicle body and is rotated by the combustion of the liquid fuel.
  • the transmission is mechanically connected to the engine shaft of the liquid fuel engine, and has an output unit that accelerates or decelerates the rotation of the engine shaft and outputs the accelerated and decelerated rotation of the engine shaft.
  • the first and second front wheels are rotatably disposed on the left and right of the front portion of the vehicle main body and mechanically connected to the output portion of the transmission, and are connected to the liquid fuel engine via the transmission. It is rotated by the engine shaft.
  • the liquid fuel tank is disposed at a rear portion of the vehicle main body and accommodates the liquid fuel supplied to the liquid fuel engine.
  • the first and second switched reluctance motors are respectively disposed on the left and right of the rear portion of the vehicle body and have an output shaft.
  • the first and second rear wheels are rotatably disposed on the left and right of the rear portion of the vehicle body, and are mechanically connected to the output shafts of the first and second switched reluctance motors via a reduction mechanism, respectively.
  • the first and second inverters are connected to the first and second switched reluctance motors and receive first and second motor drive signals for driving the first and second switched reluctance motors.
  • the first battery is connected to the first and second inverters, and supplies power for supplying the first and second motor drive signals to the first and second switched reluctance motors. And to the second inverter.
  • a hybrid electric vehicle of the present invention includes a vehicle main body, a drive command means, a liquid fuel engine, a transmission, first and second front wheels, and a liquid fuel.
  • Tank first and second switched reluctance motors, first and second rear wheels, first and second inverters, first battery, first generator, and plug-in device
  • the drive command means outputs a forward start signal and a reverse start signal of the vehicle in accordance with a passenger's operation.
  • the liquid fuel engine has an engine shaft that is disposed at the front of the vehicle body and is rotated by the combustion of the liquid fuel.
  • the transmission is mechanically connected to the engine shaft of the liquid fuel engine, and has a drive shaft that accelerates or decelerates rotation of the engine shaft and outputs acceleration or decelerated rotation of the engine shaft. Further, the gear ratio of the rotation of the drive shaft to the rotation of the engine shaft is 10 or less.
  • the first and second front wheels are rotatably arranged on the left and right of the front portion of the vehicle main body, and are mechanically connected to the drive shaft of the transmission, and are connected to the liquid fuel engine via the transmission. It is rotated by the engine shaft.
  • the liquid fuel tank is disposed at a rear portion of the vehicle main body and accommodates the liquid fuel supplied to the liquid fuel engine.
  • the first and second switched reluctance motors have output shafts respectively arranged on the left and right of the rear portion of the vehicle main body, and are driven in a direction for moving the vehicle forward or a direction for moving the wheels backward.
  • the first and second rear wheels are rotatably disposed on the left and right of the rear portion of the vehicle body, and are mechanically connected to the output shafts of the first and second switched reluctance motors via a reduction mechanism, respectively. And rotated by rotation of the output shaft of the first and second switched reluctance motors.
  • the first and second inverters are connected to the first and second switched reluctance motors and receive first and second motor drive signals for driving the first and second switched reluctance motors.
  • the first battery is connected to the first and second inverters, and supplies power for generating the first and second motor drive signals to the first and second inverters.
  • the first generator is connected to the first battery and is disposed in the vicinity of the liquid fuel engine. The first generator generates electricity by the rotation of the engine shaft of the fuel engine, and the generated power is the first battery.
  • the plug-in device is disposed on the vehicle main body and connected to the first battery, has a connection terminal with a home plug, and supplies power from the home power source to the first battery.
  • the first and second front wheel rotation sensors are provided in the vicinity of the first and second front wheels and detect rotation information of the first and second front wheels.
  • the first and second rear wheel rotation sensors are provided in the vicinity of the first and second rear wheels and detect rotation information of the first and second rear wheels.
  • the rotation signal processing means is connected to the first and second front wheel sensors, and the first and second rear wheel sensors, and the first and second front wheels and the first and second rear wheels. And the vehicle speed signal is output.
  • the first control device is connected to the rotation signal processing means, and when the speed signal output from the rotation signal processing means exceeds a predetermined first value, the liquid fuel engine performs the first and second control signals. A first drive control signal for driving the two front wheels is generated, and the first drive control signal is supplied to the liquid fuel engine.
  • the second control device is connected to the drive command means, the rotation signal processing means, and the first and second inverters.
  • the speed signal output from the rotation signal processing means becomes a predetermined second value larger than the first value.
  • a forward command signal is output to the first and second inverters to instruct generation of first and second motor drive signals for driving the vehicle in the forward direction.
  • the second control device receives a reverse start signal from the drive command means, the first and second motor drives for driving the first and second inverters in the direction of moving the vehicle backward. A reverse command signal for commanding signal generation is output.
  • the layout freedom of the switched reluctance motor can be increased, and the heat dissipation of the SR motor and brake disc can be improved.
  • a switched reluctance motor (hereinafter referred to as “SR motor”) is driven instead of the liquid fuel engine when starting forward, so that the shift of the transmission connected to the liquid fuel engine can be changed.
  • the ratio can be 10 or less, and the number of parts of the transmission gear can be reduced.
  • the reverse gear group of the transmission can be reduced by driving the switched reluctance motor during reverse travel. Due to these reductions, it is possible to provide a four-wheel drive hybrid vehicle including a transmission that is reduced in size and weight.
  • FIG. 1 is a system block diagram of a hybrid electric vehicle according to an embodiment of the present invention. It is a figure which shows the drive designation
  • Vehicle body 2. Liquid fuel engine, 3. Transmission, 4. First generator, 40. Second generator, 5. First battery, 50. Second battery, 6. Plug-in device, 8. First switched. Reluctance motor (SR motor), 80 first inverter, 9 second switched reluctance motor (SR motor), 90 second inverter, 10 first reduction gear (deceleration mechanism), 11 second reduction gear ( Deceleration mechanism), 12 fuel tank, 13 fuel supply means, 14 first rotation sensor, 15 second rotation sensor, 16 third rotation sensor, 17 fourth rotation sensor, 18 rotation processing means, 19 first Control device, 20 second control device, 21 drive command means, 22 first front wheel, 23 second front wheel, 24 first rear wheel, 25 second rear wheel
  • FIG. 1 is a system block diagram showing a system configuration of a four-wheel drive hybrid electric vehicle of the present invention.
  • a liquid fuel engine 2 is disposed in a front portion of a vehicle body 1 of a four-wheel drive hybrid electric vehicle (hereinafter referred to as “hybrid 4WD”) 100, and the liquid fuel engine 2 is rotated by combustion of the liquid fuel. have.
  • hybrid 4WD four-wheel drive hybrid electric vehicle
  • a liquid fuel tank 12 is disposed at the rear of the vehicle body 1 and contains liquid fuel to be supplied to the liquid fuel engine 2.
  • a fuel supply means 13 for supplying the liquid fuel stored in the liquid fuel tank 12 to the liquid fuel engine 2 is provided between the liquid fuel tank 12 and the liquid fuel engine 2.
  • the transmission 3 is mechanically connected to the engine shaft 30 of the liquid fuel engine 2, and the rotation of the engine shaft 30 is accelerated or decelerated (shifted), and the accelerated or decelerated (shifted) rotation of the engine shaft 30 is output.
  • the drive shaft 39 is provided.
  • a first front wheel (front right wheel) 22 and a second front wheel (front left wheel) 23 are rotatably arranged on the left and right of the front portion of the vehicle body 1.
  • the drive shaft 39 of the transmission 3 includes a right front wheel drive shaft 39a and a left front wheel drive shaft 39b.
  • the first front wheel 22 is a right front wheel drive shaft 39a
  • the second front wheel 23 is a left front wheel drive shaft.
  • First and second SR motors 8 and 9 are arranged on the left and right of the rear part of the vehicle body 1, and the first and second SR motors 8 and 9 include first and second SR motors 8 and 9. Are provided with output shafts 8a and 9a.
  • first and second SR motors SR motors having the same structure are used as 8, 9, but the detailed structure will be described later.
  • the first and second SR motors 8 and 9 are arranged not in the wheel of the wheel but in the rear portion of the vehicle main body 1, thereby improving the degree of freedom of arrangement of the first and second SR motors. .
  • a first rear wheel (rear right wheel) 24 and a second rear wheel (rear left wheel) 25 are rotatably arranged on the left and right of the rear portion of the vehicle body 1.
  • the first rear wheel 24 is mechanically connected to the output shaft 8 a of the first SR motor 8 via the first reduction gear (reduction mechanism) 10, and the second rear wheel 25 is the second SR motor 9.
  • the output shaft 9a is mechanically connected via a second reduction gear (deceleration mechanism) 11.
  • the rotation of the output shafts 8a, 9a of the first and second SR motors 8, 9 is decelerated and transmitted to the first and second rear wheels 23, 24.
  • a first inverter 80 is integrally arranged and electrically connected to the first SR motor 8, and the first inverter 80 is a first motor for driving the first SR motor 8.
  • a drive signal is supplied to the first SR motor 8.
  • a second inverter 90 is integrally disposed in the second SR motor 9 and electrically connected to the motor body of the second SR motor 9, and the second inverter 90 is connected to the second SR motor 9.
  • a second motor drive signal for driving the SR motor 9 is supplied.
  • a first battery 5 is disposed at the rear of the vehicle body 1, and the first battery 5 is connected to the first and second inverters 80, 90, and the first and second inverters 80, 90 are connected to the first battery 5. Electric power for supplying the first and second motor drive signals to the first and second SR motors 8 and 9 is supplied to the first and second inverters 80 and 90.
  • the 1st battery 5 of this embodiment is a lithium ion battery with the electrical storage voltage of 50V or more.
  • a first generator 4 is disposed that is connected to the first battery 5, supplies power to the first battery 5, and charges the first battery 5. .
  • the first generator 4 is mechanically connected to the engine shaft of the liquid fuel engine 2, generates power by the rotation of the engine shaft, and supplies the generated power to the first battery 5.
  • a plug-in device 6 having a connection terminal 6a with a home plug 60 is disposed on the left side surface portion (left side of the paper surface) of the vehicle body 1.
  • the plug-in device 6 is connected to the first battery 5 via an AC / DC converter 7 that converts a power signal of an AC household power supply of 50 Hz or 60 Hz into a direct current.
  • the first battery 5 can also be charged from the power source.
  • First and second front wheel rotation sensors 14 and 15 are provided in the vicinity of the first and second front wheels 21 and 22, and the first and second front wheel rotation sensors 14 and 15 allow the first and second front wheel rotation sensors 14 and 15. The rotation information of the front wheels 21 and 22 is detected. Also, first and second rear wheel rotation sensors 16 and 17 are provided in the vicinity of the first and second rear wheels 23 and 24, and the first and second rear wheel rotation sensors 116 and 17 The rotation information of the first and second front wheels 21 and 22 is detected.
  • the first and second front wheel rotation sensors 14 and 15 and the first and second rear wheel rotation sensors 16 and 17 are connected to rotation processing means 18 provided in the vehicle body 1, respectively.
  • the speed signal of the electric vehicle 100 is processed.
  • the rotation processing means 18 is connected to the first and second control devices 19 and 20 arranged in the vehicle main body 1, and the speed signal of the electric vehicle (vehicle) 100 processed by the rotation processing means 18 is the first and The data is output to the second control devices 19 and 20.
  • the drive command means 21 is connected to the first control device 19 and the second control device 20, and commands driving of the vehicle.
  • the first control device 19 is connected to the liquid fuel engine 2, generates a first drive control signal for driving the first and second front wheels 21, 22 by the liquid fuel engine 2, and sends the first drive control signal to the liquid fuel engine 5. 1 drive signal is supplied.
  • the first control device 19 is also connected to the fuel supply means 13 and controls the supply of fuel from the fuel tank 12 to the liquid fuel engine 5. Further, the first control device 19 is also connected to the first generator 4 and controls the electric power generated by the first generator 4.
  • the second control device 20 is connected to the first and second inverters 80, 90, and drives the first and second SR motors 8, 9 to the first and second inverters 80, 90.
  • a command signal for instructing to supply the first and second motor drive signals is output.
  • FIG. 2 shows the configuration of the drive command means 21, the first and second control devices 19 and 20, and the rotation processing means 18.
  • FIG. 3 illustrates switching between driving by the liquid fuel engine 2 and driving by the first and second SR motors 8 and 9, wherein the horizontal axis represents time and the vertical axis represents vehicle speed.
  • a solid line indicates a state in which the vehicle 100 is driven by the first or second SR motor 8 or 9
  • a broken line indicates a state in which the vehicle 100 is driven by the liquid fuel engine 2. Is shown.
  • the drive command means 21 includes a shift lever 21a for designating a drive mode by a passenger's operation and a display unit 21b for displaying the drive mode.
  • the hybrid 4WD of the present embodiment includes an automatic transmission 3, and the setting of the drive command means 21 corresponds to the transmission 3. That is, “P (parking)” of the drive mode is the vehicle stop, “R (reverse)” is the reverse drive mode 21d of the vehicle, “N (neutral)” is the drive stop of the vehicle wheels (22 to 25), “ Both “D (drive)” and “L (low)” indicate the forward drive mode 21c of the vehicle.
  • the second control device 20 is connected to the drive designation means 21, the first and second inverters 80 and 90, and the rotation signal processing means 18.
  • a forward start signal is input from the drive designation means 21 to the second control device 20. Is done.
  • the second control device 20 operates in preference to the first control device 19. That is, the first and second motor drive signals for driving the first and second SR motors 8 and 9 are supplied from the second control device 20 to the first and second inverters 80 and 90.
  • a forward command signal for instructing to output is output. By this command signal, the vehicle starts forward from the stop state.
  • a reverse start signal is input from the drive specifying means 21 to the second control device 20.
  • the second control device 20 operates in preference to the first control device 19. That is, the first and second motor drive signals for driving the first and second SR motors 8 and 9 are supplied from the second control device 20 to the first and second inverters 80 and 90.
  • a reverse command signal for instructing to output is output. By this command signal, the vehicle starts backward from the stopped state.
  • the first and second SR motors 8 and 9 are set to be driven by a command signal from the second control device 20, and the liquid fuel engine 2 does not operate.
  • the speed signal output from the rotation signal processing means 18 after the vehicle starts forward from the stop state according to the command signal from the second control device 20 is a predetermined second value (in FIG. [km / h]), first and second motor drive signals for driving the first and second SR motors 8 and 9 are supplied to the first and second inverters 80 and 90.
  • a command signal for commanding is output.
  • the first control device 19 is connected to the liquid fuel engine 2 and when the speed signal output from the rotation signal processing means 18 exceeds a predetermined first value (50 [km / h] in FIG. 2).
  • the liquid fuel engine 5 generates a first drive control signal for driving the first and second front wheels 21 and 22, and supplies the first drive signal to the liquid fuel engine 5.
  • the first control device 19 is also connected to the fuel supply means 13 and controls the supply of fuel from the fuel tank 12 to the liquid fuel engine 5. Further, the first control device 19 is also connected to the first generator 4 and controls the electric power generated by the first generator 4.
  • the liquid fuel engine 2 travels.
  • the fuel consumption per distance is larger than the medium speed to the high speed state, and the low speed to the medium speed state is a so-called poor fuel consumption state. Therefore, in such a low-speed to medium-speed state, only the first and second SR motors 8 and 9 are actively driven by the second control device 20.
  • the first and second SR motors 8 and 9 are driven by the second control device, and the liquid fuel engine 5 is also driven by the first control device 19.
  • the fuel efficiency is further improved. Therefore, the first and second SR motors 8, 9 is stopped, and only the liquid fuel engine 5 is actively driven by the first control device 19. By switching the drive like this, fuel efficiency can be improved. Further, by allowing the first battery 5 to be charged from a household power source, it is possible to further improve fuel efficiency.
  • the first value and the second value are set to different values, and the vehicle 100 is driven by the liquid fuel engine 2 and the first and second SR motors in the medium speed to the high speed state. 8 and 9 are set so that the vehicle 100 is driven simultaneously. However, the first value and the second value are set to substantially the same value, and the driving speed of the vehicle 100 by the liquid fuel engine 2 and the driving of the vehicle 100 by the first and second SR motors 8 and 9 are simultaneously performed. May be set to switch from driving the vehicle 100 by the first and second SR motors 8 and 9 to driving the vehicle 100 by the liquid fuel engine 2 at the first value (second value).
  • a second battery apart from the first battery 5 that supplies power to the first and second SR motors 8 and 9, a second battery comprising a lead storage battery having a storage voltage of 50 V or less, as in a normal vehicle. 50.
  • the second battery 50 supplies electric power to vehicle auxiliary equipment such as headlamps other than the first and second SR motors 8 and 9.
  • the second battery 50 is connected to the second battery 50 and charged for the second battery 50 in the same manner as a normal vehicle.
  • the generator 40 is provided. Similar to the first generator 4, the second generator 40 is disposed in the vicinity of the liquid fuel engine 2. The second generator 40 generates power by the rotation of the engine shaft of the liquid fuel engine 2, and the generated power is supplied to the second battery 50. Supply.
  • FIG. 4 shows the structure of the transmission 3 according to the present embodiment. The structure will be described below with reference to FIG.
  • an engine shaft 30 of the liquid fuel engine 2 is inserted into the transmission 3, and is arranged rotatably inside the transmission 3.
  • the engine shaft 30 inserted into the transmission 3 includes a second drive gear 34a, a second drive gear 34a, and a second drive gear 34 in order from the side closer to the liquid fuel engine 2 (right side of the drawing) to the side farther from the liquid fuel engine 2 (left side of the drawing).
  • the third drive gear 35a and the fourth drive gear 36a are integrally formed.
  • the number of teeth z2 of the second drive gear 34a is the smallest, the number of teeth z3 of the third drive gear 35a, and the number of teeth of the fourth drive gear 36a.
  • the number of teeth is set to increase in the order of the number z4.
  • a main shaft 31 as a driven shaft is rotatably disposed inside the transmission 3 like the engine shaft 30 at a position parallel to the engine shaft 30 as the main driving shaft.
  • the main shaft 31 has a final drive gear 37a, a second driven gear 34b, and a third driven gear in order from the side closer to the liquid fuel engine 2 (right side of the drawing) to the side farther from the liquid fuel engine 2 (left side of the drawing). 35b and a fourth driven gear 36b are provided.
  • the final drive gear 37a is integrally formed with the main shaft 31.
  • a concave serration 31a extending in the axial direction is formed at an equal pitch in the circumferential direction on the circumferential surface portion (on the left side of the drawing) of the main shaft 31 where the final drive gear 37a is not formed.
  • 34b, the third driven gear 35b, and the fourth driven gear 36b are movable in the axial direction along the above-described recess shape of the main shaft 31, and are restrained by the main shaft 31 in the circumferential direction. Further, the axial movement of the second to fourth driven shafts (34b to 36b) is controlled by a command from the vehicle.
  • the number of teeth Z2 of the second driven gear 34b is the largest, the number of teeth Z3 of the third driven gear 35b, and the number of teeth Z4 of the fourth driven gear 36b in this order.
  • the number is set to be small.
  • the second driven gear 34b is set so as to mesh with the second drive gear 34a, and the second drive gear 34a and the second drive gear 34b mesh with each other to form the second gear pair 33.
  • the third driven gear 35b is set to mesh with the third drive gear 35a, and the third drive gear 35a and the second drive gear 35b are meshed to form a third gear pair 35.
  • the fourth driven gear 36b is set so as to mesh with the fourth drive gear 36a, and the fourth drive gear 36a and the second drive gear 36b mesh with each other to form a fourth gear pair 36.
  • the second to fourth driven gears (34b to 36b) are moved in the axial direction of the main shaft 31 by a command from the vehicle, and one of the second to fourth gear pairs (34 to 36) is moved. Only one gear pair is controlled to be selected.
  • the gear ratio r2 of the second gear pair is Z2 / z2
  • the gear ratio r3 of the third gear pair is Z3 / z3
  • the gear ratio r4 of the fourth gear pair is Z4 / z4.
  • the main shaft 31 rotates with the rotation of the engine shaft 30 decelerated or accelerated at the gear ratio (r2 to r4) of the selected gear pair.
  • the hybrid 4WD according to the present embodiment is required for starting because the liquid fuel engine 2 is not operated when starting forward, and the first and second SR motors 8 and 9 are operated. It is not necessary to rotate the drive shaft 39 with a sufficient torque. Therefore, as shown in FIG. 7 as a conventional example, the first gear pair 33 composed of the first drive gear 33a and the first driven gear 33b having a large gear ratio is unnecessary. Therefore, the number of parts can be reduced as compared with the conventional example.
  • a drive shaft 39 is rotatably disposed on the transmission 3 in the same manner as the main shaft 31 at a position parallel to the main shaft 31. In one direction (rightward in the drawing), the right front wheel drive shaft 39a is disposed in the transmission 3. The left front wheel drive shaft 39b protrudes from the transmission 3 in the other direction (left rear 9 in the drawing).
  • a differential gear 38 is provided at the axial center of the drive shaft 39 inside the transmission 3.
  • a final driven gear 37 b is connected to the outer periphery of the differential gear 38.
  • the final driven gear 37b is set to mesh with a final drive gear 37a integrally formed with the main shaft 31, and a final gear pair 37 is formed by the final drive gear 37a and the final drive gear 37b.
  • the number of teeth of the final drive gear 37a is set to zf
  • the number of teeth of the final driven gear 37b is set to Zf
  • the reduction ratio rf of the final gear pair 37 is Zf / zf.
  • the reduction ratio rf is set to about 3 to about 6.
  • the gear ratio R2 is selected.
  • the gear ratio R2 is set to about 6 to 9
  • the gear ratio R3 is set to about 4 to 7
  • the speed ratio R4 is set to about 3 to 5. Therefore, the first and second SR motors 8 and 9 are driven and the liquid fuel engine 2 is not driven under traveling conditions from forward start to medium speed and medium torque where low speed and high torque are required.
  • the speed ratio of the rotational speed Nd of the drive shaft 39 to the rotational speed Ne of the engine shaft 30 is set to be 10 or less.
  • the structure of the transmission 3 for reversing the vehicle is as described above at the end of the engine shaft 30 inside the transmission 3 closer to the liquid fuel engine (on the right side of the drawing).
  • the reverse drive gear 32 a is integrally formed with the engine shaft 30, and the reverse driven gear 32 b is integrally formed with the main shaft 31.
  • the transmission 3 includes a reverse idle gear 32c that can move in the axial direction of the engine shaft 30 and the main shaft 31 that are arranged in parallel.
  • the reverse gear group 32 including the reverse drive gear 32a, the reverse driven gear 32b, and the reverse idle gear 32c exists as a structure of the transmission 3 for reversing the vehicle.
  • the reverse of the vehicle is driven by the first and second SR motors 8 and 9 and is not driven by the liquid fuel engine 2. Therefore, in the transmission 3 of the present embodiment, the above-described reverse gear group 32 is not necessary, and the reverse gear group is not provided. Thereby, the number of parts of the transmission 3 is reduced as compared with the conventional example.
  • the transmission 3 does not require the first gear pair 33 and the reverse gear group 32 having a large gear ratio as in the conventional example shown in FIG.
  • the number of parts of the machine 3 is greatly reduced.
  • the transmission 3 is significantly smaller and lighter than the conventional example.
  • the dimension L in the axial direction of the drive shaft 31 is significantly reduced.
  • a four-wheel drive hybrid electric vehicle 100 in which the size reduction of the transmission 3 is improved is provided.
  • the first and second SR motors 8 and 9 are SR motors 8 (9) having the same structure described below.
  • 3 is a perspective view of the SR motor
  • FIG. 4 is a cross-sectional view of the SR motor indicated by AA in FIG.
  • the SR motor 8 (9) of the present embodiment includes a cylindrical stator 42 having six stator salient poles 46 integrally formed at an equal pitch radially inward, and rotatable inside the stator 42.
  • a rotor 44 having four rotor salient poles 47 arranged and integrally formed at an equal pitch radially outward is provided.
  • the stator 42 and the rotor 44 are formed by integrally laminating thin steel plates.
  • U-phase, V-phase, and W-phase coils 48 are wound around the stator salient poles 46, respectively.
  • a hole for fitting with the shaft 45 is provided, and the shaft 45 is fixed to the hole for fitting.
  • a front bracket 41 and an end bracket 42 are disposed at both ends of the stator 42 in which the rotor 44 is disposed, and are fixed to the stator 42 with set bolts 49.
  • bearings (not shown) are arranged at the center portions of the front bracket 41 and the end bracket 42, and the shaft 45 of the rotor 44 is rotatably supported by these bearings. Then, when the first or second motor drive signal is supplied to the coil 8, the rotor 44 rotates.
  • the first and second SR motors 8 and 9 are disposed not in the wheel but in the rear part of the vehicle body 1, thereby increasing the degree of freedom in layout of the first and second SR motors 8 and 9. It is possible to provide a four-wheel drive hybrid electric vehicle capable of improving the heat dissipation of the SR motor and the brake disc.
  • the SR motor by arranging the SR motor on the vehicle main body outside the wheel, the degree of freedom in laying out the SR motor on the vehicle is increased, and the heat dissipation of the SR motor and the brake disc can be improved.
  • a hybrid electric vehicle can be provided. Further, it is possible to provide a four-wheel drive hybrid electric vehicle capable of downsizing the transmission by actively using the drive of the electric motor when starting forward or backward.

Abstract

左右の前輪を液体燃料エンジンで駆動し、左右の後輪をスイッチトリラクタンスモータで駆動する4輪駆動のハイブリッド電気自動車において車両本体(1)の前部に第1および第2の前輪(21、22)を駆動するための液体燃料エンジン(2)を配置し、車両本体(1)の後部に第1および第2の後輪(23、24)を駆動する第1および第2のスイッチトリラクタンスモータ(8、9)を配置する。第1および第2の後輪(23、24)のホイール内ではなく、レイアウトスペースの広い車両本体(1)の後部に第1および第2のスイッチトリラクタンスモータ(8、9)を配置することで、スイッチトリラクタンスモータ(8、9)を車両にレイアウトする際の自由度を向上させることができる。

Description

ハイブリッド電気自動車
 本発明は、ハイブリッド電気自動車に関し、特に左右の前輪を液体燃料エンジンで駆動し、左右の後輪をスイッチトリラクタンスモータで駆動する4輪駆動のハイブリッド電気自動車に関する。
 本願は、2008年2月14日に日本に出願された特願2008-33587号及び2008年2月27日に日本に出願された特願2008-45928号に基づき優先権を主張し、その内容をここに援用する。
 近年、電動モータを駆動源として用いるいわゆる4輪駆動のハイブリッド自動車が提案されている。また、4輪駆動のハイブリッド電気自動車の中には、左右の前輪を液体燃料エンジンで駆動し、左右の後輪を直流モータで駆動するものが知られている(例えば、特許文献1参照)。
 特許文献1の例における4輪駆動のハイブリッド電気自動車においては、交流モータの駆動力は減速機と電磁クラッチを介して、後輪のディファレンシャルギヤに伝達され、このディファレンシャルギヤによって、左右の後輪に交流モータの駆動力が分配される。
 しかしながら、このような4輪駆動のハイブリッド電気自動車においては、ディファレンシャルギヤ、電磁クラッチなどの機械部品が存在し、その機械部品の重量により燃費の低減が困難である。そのため、その機械部品の重量の軽減により、より一層の燃費向上が求められている。
 そこで、ディファレンシャルギヤや電磁クラッチを介さずに、左右の後輪のホイール内にそれぞれスイッチトリラクタンスモータ(以下「SRモータ」という。)を直接配置し、SRモータの出力軸をホイールに固定されたブレーキディスクに接続し、SRモータの駆動力をブレーキディスク介してホイールに伝達し、左右の後輪を駆動する構造が提案されている(例えば、特許文献2参照)。
 一方、自動車は、一般に、液体燃料エンジンの出力部であるエンジンシャフトの回転を車輪に伝達し、車輪の回転より走行する。
 このとき、低速かつ高トルクでの走行である登坂での車両の発進などや、高速かつ低トルクでの走行である高速道路走行などの走行モードに対応させるため、変速機によりエンジンシャフトの回転は減速または加速(変速)され、車輪へと伝達される。すなわち、減速または加速されたエンジンシャフトの回転によりドライブシャフトを回転させ、ドライブシャフトに接続された車輪を回転させることにより自動車は走行する。特に、停止状態から車両を発進させるためには、車輪を大きなトルクで回転する必要があるため、変速機には、エンジンシャフトの回転を大幅に減速する機構が必要となる。
 さらに、自動車は、前方に走行するのみならず駐車場への車庫入れや車庫出し、あるいは方向転換等のため後方に移動する必要がある。そのため、変速機には、エンジンシャフトの回転の方向を、前方に走行するときに対して逆方向の回転に変換し、逆方向の回転に変換した回転をドライブシャフトに伝達し、ドライブシャフトを逆方向に回転させる機構が必要となっている。
 図7は、自動車の液体燃料エンジンに取り付けられる変速機の一例を示している。同図は、車両の前方に液体燃料エンジンが配置され、左右の前輪を駆動する自動車(いわゆるFF車)に搭載されるものの内部構造を示す。変速機3には、液体燃料エンジンのエンジンシャフト30が挿入され、変速機3の内部に回転自在に配置されている。
 変速機3に挿入されるエンジンシャフト30には、液体燃料エンジンに近い方(紙面右側)から、液体燃料エンジンから遠い方(紙面左側)に向け、順に、リバースドライブギヤ32a、第1のドライブギヤ33a、第2のドライブギヤ34a、第3のドライブギヤ35aおよび第4のドライブギヤ36aが一体形成されている。また、第1から第4のドライブギヤ(33aから36a)において、第1のドライブギヤ33aの歯数z1が最も少なく、第2のドライブギヤ34aの歯数z2、第3のドライブギヤ35aの歯数z3、第4のドライブギヤ36aの歯数z4の順に、歯数は大きくなるよう設定されている。
 主動軸であるエンジンシャフト30に平行の位置に、従動軸であるメインシャフト31が、エンジンシャフト30と同様に変速機3の内部に回転自在に配置されている。メインシャフト31には、液体燃料エンジンに近い方(紙面右側)から、液体燃料エンジンから遠い方(紙面左側)に向け、順に、ファイナルドライブギヤ37a、リバースドリブンギヤ32b、第1のドリブンギヤ33b、第2のドリブンギヤ34b、第3のドリブンギヤ35bおよび第4のドリブンギヤ36bが設けられている。ファイナルドライブギヤ37aおよびリバースドリブンギヤ32bは、メインシャフト31に一体形成されている。
 一方、メインシャフト31のファイナルドライブギヤ37aおよびリバースドライブギヤ32bが形成されていない部分(紙面左側)には、その表面に、軸方向に延びる凹部形状のセレーション31aが周方向に等ピッチにて形成されている。第1のドリブンギヤ33b、第2のドリブンギヤ34b、第3のドリブンギヤ35bおよび第4のドリブンギヤ36bは、メインシャフト31の上述の凹部形状に沿って軸方向に移動可能であり、かつこれらのギヤの周方向への移動はメインシャフト31により阻止されている。また、この第1から第4のドリブンシャフト(32bから36b)の軸方向の移動は、車両からの指令により制御される。
 第1から第4のドリブンギヤ(33bから36b)において、第1のドリブンギヤ33bの歯数Z1が最も多く、第2のドリブンギヤ34bの歯数Z2、第3のドリブンギヤ35bの歯数Z3、第4のドリブンギヤ36bの歯数Z4の順に、歯数は小さくなるように設定されている。
 第1のドリブンギヤ33bは、第1のドライブギヤ33aと噛み合うように設定され、第1のドライブギヤ33aと第1のドライブギヤ33bが噛み合って、第1のギヤ対33が形成される。同様に、第2のドリブンギヤ34bは、第2のドライブギヤ34aと噛み合うように設定され、第2のドライブギヤ34aと第2のドライブギヤ34bが噛み合って、第2のギヤ対34が形成され、第3のドリブンギヤ35bは、第3のドライブギヤ35aと噛み合うように設定され、第3のドライブギヤ35aと第2のドライブギヤ35bが噛み合って、第3のギヤ対35が形成され、第4のドリブンギヤ36bは、第4のドライブギヤ36aと噛み合うように設定され、第4のドライブギヤ36aと第2のドライブギヤ36bが噛み合って、第4のギヤ対36が形成される。
 ここで、上述のように第1から第4のドリブンギヤ(33bから36b)は、車両からの指令によりメインシャフト31の軸方向に移動されるが、この移動に際しては、第1から第4のギヤ対(33から36)のうち、一つのギヤ対のみが選択されるよう制御される。ここで、第1のギヤ対の変速比r1はZ1/z1であり、第2のギヤ対の変速比r2はZ2/z2であり、第3のギヤ対の変速比r3はZ3/z3であり、第4のギヤ対の変速比r4はZ4/z4である。車両からの指令により一つのギヤ対が選択されると、メインシャフト31は、選択されたギヤ対の変速比(r1乃至r4)にて、エンジンシャフト30の回転が減速または加速されて回転する。
 メインシャフト31に平行の位置に、ドライブシャフト39が、メインシャフト31と同様に変速機3に回転自在に配置され、一の方向(紙面右方向)には、右前輪ドライブシャフト39aが変速機3から突出し、他の方向(紙面左後方9には、左前輪ドライブシャフト39bが変速機3から突出している。変速機3内部のドライブシャフト39の軸方向中央部には、ディファレンシャルギヤ38が設けられ、ディファレンシャルギヤ38の外周部には、ファイナルドリブンギヤ37bが接続されている。
 ファイナルドリブンギヤ37bは、メインシャフト31に一体形成されたファイナルドライブギヤ37aと噛み合うように設定され、ファイナルドライブギヤ37aおよびファイナルドライブギヤ37bによりファイナルギヤ対37が形成される。ここで、ファイナルドライブギヤ37aの歯数はzf、ファイナルドリブンギヤ37bの歯数はZfに設定してあり、ファイナルギヤ対37の減速比rfはZf/zfである。なお、一般の車両において、減速比rfは、約3から約6に設定されている。
 上述のように、エンジンシャフト30の回転は、第1から第4のギヤ対(33から36)のうち、選択された一つのギヤ対にて変速された後に、ファイナルギヤ対37で減速され、ドライブシャフト39を回転させる。従って、エンジンシャフト30に対するうドライブシャフト39の変速比Rは、R1=r1×rf、R2=r2×rf、R3=r3×fr、R4=r4×rfとなり、R1が最も大きく、R2、R3、R4の順に小さくなり、R4が最も小さくなる(R1>R2>R3>R4)。
 ちなみに、低速かつ高トルクが求められる停車時からの発進の場合には、変速比R1が選択される。変速比R1の場合のドライブシャフト39の回転数Ndは、エンジンシャフト30の回転数をNeとすると、Nd=Ne/R1となり、回転数は小さくなる一方でトルクは向上する。なお、一般の車両において、変速比R1は約11から15、変速比R2は約6から9、変速比R3は約4から7、変速比R4は約3から5に設定されているものが多い。
 次に、車両を後退するための変速機3の構造およびその作用について説明する。
上述のように変速機3の内部のエンジンシャフト30の液体燃料エンジン2に近い方(紙面右側)の端部には、リバースドライブギヤ32aがエンジンシャフト30に一体形成されている。また、メインシャフト31には、リバースドリブンギヤ32bがメインシャフト31に一体形成されている。リバースドリブンギヤ32bは、リバースドライブギヤ32aと軸方向は同一の位置に配置されているものの、リバースドライブギヤ32aとリバースドリブンギヤ32bとは直接噛み合わない設定となっている。
 変速機3には、それぞれ平行に配置されたエンジンシャフト30及びメインシャフト31の軸方向に移動可能なリバースアイドルギヤ32cを備えている。リバースアイドルギヤ32cは、リバースドライブギヤ32aおよびリバースドリブンギヤ32bの双方に噛み合うように設定されている。そして、車両が前進している場合には、リバースアイドルギヤ32cは、リバースドライブギヤ32aおよびリバースドリブンギヤ32bの双方に噛み合わない位置に配置されるとともに、車両からの車両を後退させる指令により、軸方向に移動しリバースドライブギヤ32aおよびリバースドリブンギヤ32bの双方に噛み合う位置に配置される。リバースアイドルギヤ32cがリバースドライブギヤ32aおよびリバースドリブンギヤ32bの双方に噛み合うと、リバースドライブギヤ32aの回転は、リバースアイドルギヤ32cを介してリバースドリブンギヤ32bに伝達され、リバースドリブンギヤ32bは回転する。
 上述の第1から第4のドライブギヤ(33aから36a)の回転は、直接に第1から第4のドリブンギヤ(33bから36b)に伝達されるのに対し、第1から第4のドライブギヤ(33aから36a)と同様にエンジンシャフト30に一体形成されたリバースドライブギヤ32aの回転は、リバースアイドルギヤ33cを介して、リバースドドリブンギヤ32bに伝達される。そのため、リバースアイドルギヤ33cの回転は、第1から第4のドリブンギヤ(33bから36b)の回転の方向と逆になり、メインシャフト31は、車両からの車両を後退させる指令により、前進時と逆の方向に回転される。このメインシャフト31の回転は、ファイナルドライブギヤ37aからファイナルドリブンギヤ37bを介してドライブシャフト39へと伝達され、前進時と逆の方向にドライブシャフト39を回転させる。
 リバースドライブギヤ32aの歯数はzrに設定され、リバースドリブンギヤ32bの歯数はZrに設定され、リバースドライブギヤ32a、リバースドリブンギヤ32bおよびリバースアイドルギヤ32cから構成されるリバースギヤ群32の変速比は、rr=Zr/zrである。したがって、車両後進時の変速比Rrは、Rr=rr×rfとなっている。なお、後進時は停止状態からの発進となるため、低速かつ高トルクでドライブシャフト39を回転させる必要があるため、車両後進時の変速比Rrは、車両発進時の変速比R1に近接した値に設定されている(Rr≒R1)。なお、一般の車両において、変速比Rrは約10から14に設定されているものが多い。
 このように、液体燃料エンジンを駆動源とする自動車においては、低速から高速の広範囲の速度にて前進走行するとともに、後進走行の必要があり、図7に示すように種々の組み合わせのギヤが構成上不可欠である(例えば、特許文献3参照)。そのため、自動車の小型軽量化において変速機の軽量化も求められているにも拘わらず、変速機の大幅な小型軽量化には限界がある。
特開2006-288006号公報 特開2002-305861号公報 特開2007-147057号公報
 しかしながら、上述の左右の前輪を液体燃料エンジンで駆動し、左右の後輪を直流モータで駆動する4輪駆動のハイブリッド電気自動車の従来技術にあっては、ブレーキディスクおよびブレーキディスクに制動力を与えるブレーキキャリパー、ならびにパーキングブレーキが存在する左右の後輪のホイール内にSRモータを配置する構成のため、SRモータの配置する場所の自由度が制限され、SRモータを配置することが物理的に困難を伴うことが想定される。また、ホイール内にSRモータを配置するため、SRモータからの発熱を外部に放出することが困難であり、SRモータが高温となることが懸念される。さらに、ブレーキディスクにSRモータを機械的に接続する構造のため、ブレーキ時に生じる摩擦熱によってもSRモータが高温になるとともに、ブレーキディスクの放熱性が悪くなるという課題がある。
 さらに、ブレーキ部品は車検時等に必須の保守点検の対象であり、SRモータがホイール内に配置されていると、保守点検の作業が煩雑となる問題もある。
 そこで、本発明は、ホイールの外の車両本体にSRモータを配置することで、レイアウトの自由度を高め、SRモータやブレーキディスクの放熱性を向上できる4輪駆動のハイブリッド電気自動車を提供することを第一の目的とする。
 また、上記に記すように、通常の液体燃料エンジンのみで駆動する自動車に備わる変速機は、前進時および後進時に作動する変速比の大きい変速機構を有する。その点に関し、ハイブリッド自動車に用いられる液体燃料エンジンと電動モータは、その得意とする動力性能に違いを有している。例えば、液体燃料エンジンは、低速時よりも高速時において燃費性能が良く、電動モータは、低速時から比較的高い入出力効率にて動作する。このような、動力性能を違いを利用して、前方への発進時や後方への発進時に電動モータの駆動を積極的に利用して、変速機の小型化をすることが求められる。
 そこで、本発明は、前方への発進時や後方への発進時に電動モータの駆動を積極的に利用して、変速機の小型化上できる4輪駆動のハイブリッド電気自動車を提供することを第二の目的とする。
 上記の課題を解決するために、本発明のハイブリッド電気自動車は、車両の車両本体と、液体燃料エンジンと、変速機と、第1および第2の前輪と、液体燃料タンクと、第1および第2のスイッチトリラクタンスモータと、第1および第2の後輪と、第1および第2のインバータと、第1のバッテリーとを備える。
 液体燃料エンジンは、前記車両本体の前部に配置され、液体燃料の燃焼により回転されるエンジンシャフトを有する。変速機は、前記液体燃料エンジンの前記エンジンシャフトに機械的に接続され、前記エンジンシャフトの回転の回転を加速又は減速し、前記エンジンシャフトの加減速した回転を出力する出力部を有する。第1および第2の前輪は、前記車両本体の前部の左右に回転自在に配置されるとともに前記変速機の前記出力部に機械的に接続され、前記変速機を介し、前記液体燃料エンジンの前記エンジンシャフトにより回転される。液体燃料タンクは、前記車両本体の後部に配置され、前記液体燃料エンジンに供給する前記液体燃料を収容する。第1および第2のスイッチトリラクタンスモータは、前記車両本体の後部の左右にそれぞれ配置され、出力軸を有する。第1および第2の後輪は、前記車両本体の後部の左右に回転自在に配置され、それぞれ前記第1および第2のスイッチトリラクタンスモータの前記出力軸に減速機構を介して機械的に接続され、前記第1および第2のスイッチトリラクタンスモータの前記出力軸の回転により回転する。第1および第2のインバータは、前記第1および第2のスイッチトリラクタンスモータに接続され、前記第1および第2のスイッチトリラクタンスモータを駆動するための第1および第2のモータ駆動信号を供給する。第1のバッテリーは、前記第1および第2のインバータに接続され、前記第1および第2のスイッチトリラクタンスモータに前記第1および第2のモータ駆動信号を供給するための電力を前記第1および第2のインバータに供給する。
 また、上記の課題を解決するために、本発明のハイブリッド電気自動車は、車両の車両本体と、駆動指令手段と、液体燃料エンジンと、変速機と、第1および第2の前輪と、液体燃料タンクと、第1および第2のスイッチトリラクタンスモータと、第1および第2の後輪と、第1および第2のインバータと、第1のバッテリーと、第1の発電機と、プラグイン装置と、第1および第2の前輪回転センサと、第1および第2の後輪回転センサと、回転信号処理手段と、第1の制御装置と、第2の制御装置とを備える。
 駆動指令手段は、乗客の操作により、前記車両の前進の発進信号および後進の発進信号を出力する。液体燃料エンジンは、前記車両本体の前部に配置され、液体燃料の燃焼により回転されるエンジンシャフトを有する。変速機は、前記液体燃料エンジンの前記エンジンシャフトに機械的に接続され、前記エンジンシャフトの回転の回転を加速又は減速し、前記エンジンシャフトの加速または減速した回転を出力するドライブシャフトを有する。また、エンジンシャフトの回転に対するドライブシャフトの回転の変速比は10以下である。第1および第2の前輪は、前記車両本体の前部の左右に回転自在に配置されるとともに前記変速機の前記ドライブシャフトに機械的に接続され、前記変速機を介し、前記液体燃料エンジンの前記エンジンシャフトにより回転される。液体燃料タンクは、前記車両本体の後部に配置され、前記液体燃料エンジンに供給する前記液体燃料を収容する。第1および第2のスイッチトリラクタンスモータは、前記車両本体の後部の左右にそれぞれ配置された出力軸を有し、車両を前進させる方向又は車輪を後進させる方向に駆動する。第1および第2の後輪は、前記車両本体の後部の左右に回転自在に配置され、それぞれ前記第1および第2のスイッチトリラクタンスモータの前記出力軸に減速機構を介して機械的に接続され、前記第1および第2のスイッチトリラクタンスモータの前記出力軸の回転により回転する。第1および第2のインバータは、前記第1および第2のスイッチトリラクタンスモータに接続され、前記第1および第2のスイッチトリラクタンスモータを駆動するための第1および第2のモータ駆動信号を発生し、第1および第2のモータ駆動信号を前記第1および第2のスイッチトリラクタンスモータへそれぞれ供給する。第1のバッテリーは、前記第1および第2のインバータに接続され、前記第1および第2のモータ駆動信号を発生するための電力を前記第1および第2のインバータに供給する。第1の発電機は、前記第1のバッテリーと接続されるとともに前記液体燃料エンジンの近傍に配置され、前記燃料エンジンの前記エンジンシャフトの回転によって発電し、発電された電力を前記第1のバッテリーに供給する。プラグイン装置は、前記車両本体に配置されるとともに前記第1のバッテリーに接続され、家庭用プラグとの接続端子を有し、前記家庭用電源からの電力を前記第1のバッテリーに供給する。第1および第2の前輪回転センサは、前記第1および第2の前輪の近傍に設けられ、前記第1および第2の前輪の回転情報を検出する。第1および第2の後輪回転センサは、前記第1および第2の後輪の近傍に設けられ、前記第1および第2の後輪の回転情報を検出する。回転信号処理手段は、前記第1および第2の前輪センサ、ならびに前記第1および第2の後輪センサに接続され、前記第1および第2の前輪、ならびに前記第1および第2の後輪の回転情報を処理し、前記車両の速度信号を出力する。第1の制御装置は、前記回転信号処理手段に接続され、前記回転信号処理手段が出力する前記速度信号が、予め定められた第1の値を超えると前記液体燃料エンジンにより前記第1および第2の前輪を駆動する第1の駆動制御信号を発生し、前記液体燃料エンジンに第1の駆動制御信号を供給する。第2の制御装置は、前記駆動指令手段、前記回転信号処理手段、ならびに前記第1および第2のインバータに接続される。また、第2の制御装置は、前記駆動指令手段から前進の発進信号を受けると前記回転信号処理手段が出力する前記速度信号が、前記第1の値より大きい予め定められた第2の値に達するまでは前記第1および第2のインバータに、車両を前進させる方向に駆動するための第1および第2のモータ駆動信号の発生を指令する前進指令信号を出力する。さらに、第2の制御装置は、前記駆動指令手段から後進の発進信号を受けると、前記第1および第2のインバータに、車両を後進させる方向に駆動するための第1および第2のモータ駆動信号の発生を指令する後進指令信号を出力する。
 上記のように、ホイール内ではなくの車両本体の後部にスイッチトリラクタンスモータを配置することで、スイッチトリラクタンスモータのレイアウトの自由度を高め、SRモータやブレーキディスクの放熱性を向上できる。
 また、上記のように、前方への発進時に液体燃料エンジンではなくスイッチトリラクタンスモータ(以下「SRモータ」という。)を駆動させる構成とすることで、液体燃料エンジンに接続された変速機の変速比を10以下とすることができ、変速ギヤの部品点数の削減をすることができる。また、後進時にもスイッチトリラクタンスモータを駆動させる構成とすることで、変速機のリバースギヤ群の削減ができる。これらの削減により、小型軽量化された変速機を備える4輪駆動のハイブリッド自動車を提供することができる。
本発明の実施形態におけるハイブリッド電気自動車のシステムブロック図である。 本発明の実施形態における駆動指定手段を示す図である。 液体燃料エンジンによる車両の駆動とSRモータによる車両の駆動の切り替えについて説明した図である。 本発明の実施形態における変速機の内部構造を示す図である。 本発明の実施形態におけるSRモータの斜視図である。 図5にて、A-Aにして示すSRモータの断面図である。 従来例における変速機の内部構造を閉めす図である。
符号の説明
1 車両本体、2 液体燃料エンジン、3 変速機、4 第1の発電機、40 第2の発電機、5 第1のバッテリー、50 第2のバッテリー、6 プラグイン装置、8 第1のスイッチトリラクタンスモータ(SRモータ)、80 第1のインバータ、9 第2のスイッチトリラクタンスモータ(SRモータ)、90 第2のインバータ、10 第1の減速ギヤ(減速機構)、11 第2の減速ギヤ(減速機構)、12 燃料タンク、13 燃料供給手段、14 第1の回転センサ、15 第2の回転センサ、16 第3の回転センサ、17 第4の回転センサ、18 回転処理手段、19 第1の制御装置、20 第2の制御装置、21 駆動指令手段、22 第1の前輪、23 第2の前輪、24 第1の後輪、25 第2の後輪
 次に、この発明の第一実施形態を図1に基づいて説明する。
 図1は、本発明の4輪駆動のハイブリッド電気自動車のシステム構成を示すシステムブロック図である。4輪駆動のハイブリッド電気自動車(以下「ハイブリッド4WD」という)100の車両本体1の前部分には液体燃料エンジン2が配置され、液体燃料エンジン2は、液体燃料の燃焼により回転されるエンジンシャフト30を有している。
 車両本体1の後部には、液体燃料タンク12が配置され、液体燃料エンジン2に供給する液体燃料が収容されている。また、液体燃料タンク12と液体燃料エンジン2の間には、液体燃料タンク12に収容された液体燃料を液体燃料エンジン2に供給するための燃料供給手段13が設けられている。
 液体燃料エンジン2のエンジンシャフト30には、変速機3が機械的に接続され、エンジンシャフト30の回転を加速または減速(変速)し、加速または減速(変速)されたエンジンシャフト30の回転を出力するドライブシャフト39を有している。
 車両本体1の前部の左右には、第1の前輪(前方右側車輪)22および第2の前輪(前方左側車輪)23が回転自在に配置されている。上記の変速機3のドライブシャフト39は、右前輪ドライブシャフト39aと左前輪ドライブシャフト39bを備え、第1の前輪22は、右前輪ドライブシャフト39aに、第2の前輪23は、左前輪ドライブシャフトに、それぞれ機械的に接続され、変速機3を介し、液体燃料エンジン2のエンジンシャフト30の回転により回転される。
 車両本体1の後部の左右には、第1および第2のSRモータ8、9が配置され、第1および第2のSRモータ8、9には、第1および第2のSRモータ8、9の回転を出力する出力軸8a、9aが備えられている。なお、第1および第2のSRモータは8,9としては、同一構造のSRモータが用いられるが、その詳細な構造については後述する。このように、第1および第2のSRモータ8、9を、車輪のホイール内でなく車両本体1の後部に配置することで、第1および第2のSRモータの配置の自由度が向上する。
 車両本体1の後部の左右には、第1の後輪(後方右側車輪)24および第2の後輪(後方左側車輪)25が回転自在に配置されている。第1の後輪24は第1のSRモータ8の出力軸8aに第1の減速ギヤ(減速機構)10を介して機械的に接続され、第2の後輪25は第2のSRモータ9の出力軸9aに第2の減速ギヤ(減速機構)11を介して機械的に接続されている。第1および第2の後輪23、24には、第1および第2のSRモータ8、9の出力軸8a、9aの回転が減速され伝達される。
 第1のSRモータ8には、第1のインバータ80が一体的に配置されるとともに電気的に接続され、第1のインバータ80は、第1のSRモータ8を駆動するための第1のモータ駆動信号を第1のSRモータ8に供給する。同じく、第2のSRモータ9には、第2のインバータ90が第2のSRモータ9のモータ本体に一体的に配置されるとともに電気的に接続され、第2のインバータ90は、第2のSRモータ9を駆動するための第2のモータ駆動信号を供給する。
 車両本体1の後部には、第1のバッテリー5が配置され、第1のバッテリー5は、第1および第2のインバータ80、90に接続され、第1および第2のインバータ80、90から第1および第2のSRモータ8、9に第1および第2のモータ駆動信号を供給するための電力を、第1および第2のインバータ80、90に供給する。なお、本実施形態の第1のバッテリー5は、蓄電電圧50V以上のリチウムイオン電池である。
 液体燃料エンジン2の近傍には、第1のバッテリー5に接続され、第1のバッテリー5に電力を供給し、第1のバッテリー5を充電するための第1の発電機4が配置されている。第1の発電機4は、液体燃料エンジン2のエンジンシャフトに機械的に接続され、エンジンシャフトの回転によって発電し、発電した電力を第1のバッテリー5に供給する。
 車両本体1の左側側面部(紙面左側)には、家庭用プラグ60との接続端子6aを有するプラグイン装置6が配置されている。また、プラグイン装置6は、50Hzまたは60Hzの交流の家庭用電源の電力信号を直流に変換するAC/DCコンバータ7を介して、第1バッテリー5に接続され、家庭用プラグ60からの家庭用電源からも第1のバッテリー5は充電可能である。
 第1および第2の前輪21、22の近傍には、第1および第2の前輪回転センサ14、15が設けられ、第1および第2の前輪回転センサ14、15により、第1および第2の前輪21、22の回転情報が検出される。また、第1および第2の後輪23、24の近傍には、第1および第2の後輪回転センサ16、17が設けられ、第1および第2の後輪回転センサ116、17により、第1および第2の前輪21、22の回転情報が検出される。
 第1および第2の前輪回転センサ14、15、ならびに第1および第2の後輪回転センサ16、17は、それぞれ車両本体1に設けられた回転処理手段18に接続され、回転処理手段18により、電気自動車100の速度信号が処理される。
 回転処理手段18は、車両本体1に配置された第1および第2の制御装置19、20に接続され、回転処理手段18で処理された電気自動車(車両)100の速度信号が、第1および第2の制御装置19、20に出力される。
 駆動指令手段21は、第1の制御装置19および第2の制御装置20に接続され、車両の駆動を指令する。第1の制御装置19は、液体燃料エンジン2に接続され、液体燃料エンジン2により第1および第2の前輪21、22を駆動する第1の駆動制御信号を発生し、液体燃料エンジン5に第1の駆動信号を供給する。また、第1の制御装置19は、燃料供給手段13にも接続され、燃料タンク12から液体燃料エンジン5への燃料の供給も制御する。さらに、第1の制御装置19は、第1の発電機4にも接続され、第1の発電機4の発電する電力も制御する。
 第2の制御装置20は、第1および第2のインバータ80、90に接続され、第1および第2のインバータ80、90に、第1および第2のSRモータ8,9を駆動するための第1および第2のモータ駆動信号を供給するよう指令する指令信号を出力する。
 次に、液体燃料エンジン2による駆動と第1および第2のSRモータ8、9による駆動の切り換えについて、図2および図3を用いて説明する。図2は、駆動指令手段21と第1および第2の制御装置19、20並びに回転処理手段18の構成を示したものである。また、図3は、液体燃料エンジン2による駆動と第1および第2のSRモータ8、9による駆動の切り換えを図示したもので、横軸に時間、縦軸に車両の速度を示す。また、図中の(1)実線は第1または第2のSRモータ8、9により車両100が駆動している状態を、(2)破線は液体燃料エンジン2により車両100が駆動している状態を示している。
 図2に示すように、駆動指令手段21は、乗客の操作により駆動モードを指定するシフトレバー21aと駆動モードを表示する表示部21bを備えている。なお、本実施の形態のハイブリッド4WDは、オートマティック式の変速機3を備え、駆動指令手段21の設定は、その変速機3に対応している。すなわち、駆動モードの「P(パーキング)」は車両の停止、「R(リバース)」は車両の後進駆動モード21d、「N(ニュートラル)」は車両の車輪(22乃至25)の駆動停止、「D(ドライブ)」「L(ロー)」はいずれも車両の前進駆動モード21cを表示する。
 第2の制御装置20は、駆動指定手段21、第1および第2のインバータ80、90、並びに回転信号処理手段18に接続されている。車両を前方に発進させるため、乗客がシフトレバー21aを操作し、車両の駆動モードが前進駆動モード21cに指定されると、前進の発進信号が駆動指定手段21から第2の制御装置20に入力される。この場合、第1の制御装置19に優先して第2の制御装置20が動作する。すなわち、第2の制御装置20から、第1および第2のインバータ80、90に、第1および第2のSRモータ8,9を駆動するための第1および第2のモータ駆動信号を供給するよう指令する前進指令信号を出力する。この指令信号により、車両は停止状態から前方に発進する。
 車両を後方に発進させるため、乗客がシフトレバー21aを操作し、車両の駆動モードが後進駆動モード21dに指定されると、後進の発進信号が駆動指定手段21から第2の制御装置20に入力される。この場合も、第1の制御装置19に優先して第2の制御装置20が動作する。すなわち、第2の制御装置20から、第1および第2のインバータ80、90に、第1および第2のSRモータ8,9を駆動するための第1および第2のモータ駆動信号を供給するよう指令する後進指令信号を出力する。この指令信号により、車両は停止状態から後方に発進する。なお、車両の後進の場合は、第2の制御装置20からの指令信号により第1および第2のSRモータ8,9を駆動するよう設定され、液体燃料エンジン2は動作しない。
 車両の前進の場合には、車両の速度に応じて、第1および第2のSRモータ8,9の駆動と液体燃料エンジン2による駆動を切り換える制御を行うので、その内容について説明する。第2の制御装置20からの指令信号により、車両は停止状態から前方に発進した後は、回転信号処理手段18が出力する速度信号が、予め定められた第2の値(図2において、100[km/h])に達するまでは第1および第2のインバータ80、90に、第1および第2のSRモータ8,9を駆動するための第1および第2のモータ駆動信号を供給するよう指令する指令信号を出力する。
 第1の制御装置19は、液体燃料エンジン2に接続され、回転信号処理手段18が出力する速度信号が予め定められた第1の値(図2において、50[km/h])を超えると、液体燃料エンジン5により第1および第2の前輪21、22を駆動する第1の駆動制御信号を発生し、液体燃料エンジン5に第1の駆動信号を供給する。また、第1の制御装置19は、燃料供給手段13にも接続され、燃料タンク12から液体燃料エンジン5への燃料の供給も制御する。さらに、第1の制御装置19は、第1の発電機4にも接続され、第1の発電機4の発電する電力も制御する。
 回転信号処理手段18が出力する速度信号が、予め定められた第1の値(図2において、50[km/h])に達するまでのいわゆる低速から中速状態では、液体燃料エンジン2の走行距離辺り燃料消費量は、中速から高速状態に比べて多くなり、低速から中速状態はいわゆる燃費の悪い状態である。そこで、このような低速から中速状態では、第2の制御装置20により、第1および第2のSRモータ8,9のみを積極的に駆動させる。
 次に、速度信号が第1の値(図2において、50[km/h])から第2の値(図2において、100[km/h])の中速から高速状態では、比較的燃費が良くなるので第2の制御装置により第1および第2のSRモータ8,9を駆動させるとともに、第1の制御装置19により、液体燃料エンジン5を併用し駆動させる。
 さらに、速度信号が第2の値(図2において、100[km/h])を超える高速状態では、燃費が一層向上するので、第2の制御装置による第1および第2のSRモータ8,9を駆動は停止させ、第1の制御装置19により、液体燃料エンジン5のみを積極的に駆動させる。このような駆動の切り替えを行うことにより、燃費の向上が図られる。また、第1のバッテリー5に、家庭用電源からの充電も可能とすることで、さらなる燃費の向上が可能となる。
 なお、本実施の形態では、第1の値と第2の値は異なる値に設定され、中速から高速状態において、液体燃料エンジン2による車両100の駆動と、第1および第2のSRモータ8、9による車両100の駆動が同時になされる設定となっている。しかし、第1の値と第2の値を略同じ値にし、液体燃料エンジン2による車両100の駆動と、第1および第2のSRモータ8、9による車両100の駆動が同時になされる速度帯域を設けず、第1の値(第2の値)にて、第1および第2のSRモータ8、9による車両100の駆動から液体燃料エンジン2による車両100の駆動に切り換える設定としてもよい。
 本実施の形態では、第1および第2のSRモータ8、9に電力を供給する第1のバッテリー5とは別に、通常の車両と同様に蓄電電圧50V以下の鉛蓄電池からなる第2のバッテリー50を備えている。この第2のバッテリー50は、第1および第2のSRモータ8、9以外のヘッドランプ等の車両の補機に電力を供給する。また、第1のバッテリー5を充電するための第1の発電機4とは別に、通常の車両と同様に、第2のバッテリー50に接続され、第2のバッテリー50を充電するための第2の発電機40を備えている。第2の発電機40は、第1の発電機4と同様に液体燃料エンジン2の近傍に配置され、液体燃料エンジン2のエンジンシャフトの回転により発電し、発電した電力を第2のバッテリー50に供給する。
 上述のように、車両の前方への発進時から車両の速度が第1の値に達するまで及び後進時には、第1および第2のSRモータ8、9のみを駆動させ、液体燃料エンジン2は動作しない。従って、車両を前方に低速走行させ、または後進させるための機構が変速機3に不要となる。図4は、本実施形態の変速機3の構造を示すものであり、以下その構造について、同図に基づき説明する。
 図4に示すように、変速機3には、液体燃料エンジン2のエンジンシャフト30が挿入され、変速機3の内部に回転自在に配置されている。変速機3に挿入されるエンジンシャフト30には、液体燃料エンジン2に近い方(紙面右側)から、液体燃料エンジン2から遠い方(紙面左側)に向け、順に、第2のドライブギヤ34a、第3のドライブギヤ35aおよび第4のドライブギヤ36aが一体形成されている。また、第2から第4のドライブギヤ(34aから36a)において、第2のドライブギヤ34aの歯数z2が最も少なく、第3のドライブギヤ35aの歯数z3、第4のドライブギヤ36aの歯数z4の順に、歯数は大きくなるよう設定されている。
 主動軸であるエンジンシャフト30に平行の位置に、従動軸であるメインシャフト31が、エンジンシャフト30と同様に変速機3の内部に回転自在に配置されている。メインシャフト31には、液体燃料エンジン2に近い方(紙面右側)から、液体燃料エンジン2から遠い方(紙面左側)に向け、順に、ファイナルドライブギヤ37a、第2のドリブンギヤ34b、第3のドリブンギヤ35bおよび第4のドリブンギヤ36bが設けられている。ファイナルドライブギヤ37aは、メインシャフト31に一体形成されている。
 一方、メインシャフト31のファイナルドライブギヤ37aが形成されていない円周面部分(紙面左側)には、軸方向に延びる凹部形状のセレーション31aが周方向に等ピッチにて形成され、第2のドリブンギヤ34b、第3のドリブンギヤ35bおよび第4のドリブンギヤ36bは、メインシャフト31の上述の凹部形状に沿って軸方向に移動可能であり、かつ周方向に対してはメインシャフト31に拘束されている。また、この第2から第4のドリブンシャフト(34bから36b)の軸方向の移動は、車両からの指令により制御される。
 第2から第4のドリブンギヤ(34bから36b)において、第2のドリブンギヤ34bの歯数Z2が最も多く、第3のドリブンギヤ35bの歯数Z3、第4のドリブンギヤ36bの歯数Z4の順に、歯数が小さくなるように設定されている。
 第2のドリブンギヤ34bは、第2のドライブギヤ34aと噛み合うように設定され、第2のドライブギヤ34aと第2のドライブギヤ34bが噛み合って、第2のギヤ対33が形成される。同様に、第3のドリブンギヤ35bは、第3のドライブギヤ35aと噛み合うように設定され、第3のドライブギヤ35aと第2のドライブギヤ35bが噛み合って、第3のギヤ対35が形成され、第4のドリブンギヤ36bは、第4のドライブギヤ36aと噛み合うように設定され、第4のドライブギヤ36aと第2のドライブギヤ36bが噛み合って、第4のギヤ対36が形成される。
 上述のように第2から第4のドリブンギヤ(34bから36b)は、車両からの指令によりメインシャフト31の軸方向に移動され、第2から第4のギヤ対(34から36)のうち、一つのギヤ対のみが選択されるよう制御される。ここで、第2のギヤ対の変速比r2はZ2/z2であり、第3のギヤ対の変速比r3はZ3/z3であり、第4のギヤ対の変速比r4はZ4/z4である。車両からの指令により一つのギヤ対が選択されると、メインシャフト31は、選択されたギヤ対の変速比(r2乃至r4)にて、エンジンシャフト30の回転が減速または加速されて回転する。
 上述のように本実施の形態のハイブリッド4WDは、前方に発進する場合は、液体燃料エンジン2を動作させず、第1および第2のSRモータ8,9の動作にて行うため、発進時に必要なトルクにてドライブシャフト39を回転させる必要はない。従って、従来例として図7に示すように、変速比の大きな第1のドライブギヤ33aおよび第1のドリブンギヤ33bから構成される第1のギヤ対33が不要な構造となっている。従って、従来例に比べ部品点数の削減が図られる。
 メインシャフト31に平行の位置に、ドライブシャフト39が、メインシャフト31と同様に変速機3に回転自在に配置され、一の方向(紙面右方向)には、右前輪ドライブシャフト39aが変速機3から突出し、他の方向(紙面左後方9には、左前輪ドライブシャフト39bが変速機3から突出している。変速機3内部のドライブシャフト39の軸方向中央部には、ディファレンシャルギヤ38が設けられ、ディファレンシャルギヤ38の外周部には、ファイナルドリブンギヤ37bが接続されている。
 ファイナルドリブンギヤ37bは、メインシャフト31に一体形成されたファイナルドライブギヤ37aと噛み合うように設定され、ファイナルドライブギヤ37aおよびファイナルドライブギヤ37bによりファイナルギヤ対37が形成される。ここで、ファイナルドライブギヤ37aの歯数はzf、ファイナルドリブンギヤ37bの歯数はZfに設定され、ファイナルギヤ対37の減速比rfはZf/zfである。なお、一般の車両において、減速比rfは、約3から約6に設定されている。
 上述のように、エンジンシャフト30の回転は、第2から第4のギヤ対(34から36)のうち、選択された一つのギヤ対にて変速されたのに、ファイナルギヤ対37で減速され、ドライブシャフト39を回転させる。従って、エンジンシャフト30に対するうドライブシャフト39の変速比Rは、R2=r2×rf、R3=r3×fr、R4=r4×rfとなり、R2が最も大きく、R3、R4の順に小さくなり、R4が最も小さくなる(R2>R3>R4)。
 ちなみに、液体燃料エンジン2が駆動を開始する中速かつ中トルクが求められる場合には、変速比R2が選択される。変速比R2の場合のドライブシャフト39の回転数Ndは、エンジンシャフト30の回転数をNeとすると、Nd=Ne/R2となる。なお、一般の車両において、変速比R2は約6から9、変速比R3は約4から7、変速比R4は約3から5に設定されているものが多い。従って、低速かつ高トルクが求められる前方への発進から中速かつ中トルクまでの走行条件においては、第1および第2のSRモータ8、9が駆動し、液体燃料エンジン2の駆動されない本実施の形態では、エンジンシャフト30の回転数Neに対するドライブシャフト39の回転数Ndの変速比は、10以下となるように設定されている。
 図7に示す従来例においては、車両を後退するための変速機3の構造として、上述のように変速機3の内部のエンジンシャフト30の液体燃料エンジンに近い方(紙面右側)の端部には、リバースドライブギヤ32aがエンジンシャフト30に一体形成されているとともに、メインシャフト31には、リバースドリブンギヤ32bがメインシャフト31に一体形成されている。さらに、変速機3には、それぞれ平行に配置されたエンジンシャフト30及びメインシャフト31の軸方向に移動可能なリバースアイドルギヤ32cを備えている。このように、車両を後退するための変速機3の構造として、リバースドライブギヤ32a、リバースドリブンギヤ32bおよびリバースアイドルギヤ32cから構成されるリバースギヤ群32が存在する。
 しかしながら、本実施の形態では、車両の後進は、第1および第2のSRモータ8、9の駆動により行い、液体燃料エンジン2による駆動はなされない。従って、本実施の形態の変速機3においては、上述のリバースギヤ群32は不要であり、リバースギヤ群は、設けられていない。これにより、従来例に比べ変速機3の部品点数の削減が図られている。
  以上のように、本実施の形態の変速機3には、図7に示す従来例のように、変速比の大きな第1のギヤ対33およびリバースギヤ群32が不要な構成であるので、変速機3の部品点数は大幅に減少する。また、第1のギヤ対33およびリバースギヤ群32が設けられていないので変速機3は、従来例に比べ大幅な小型軽量化となっている。特に、ドライブシャフト31の軸の方向の寸法Lが大幅に小さくなっている。これにより、変速機3の小型化が向上された4輪駆動のハイブリッド電気自動車100が提供される。
 次に、本発明の実施形態にて用いられる第1および第2のSRモータ8、9の構造について説明する。また、第1および第2のSRモータ8、9は、以下に説明する同一構造のSRモータ8(9)が用いられている。図3は、SRモータの斜視図であり、図4は、図2にてA-Aにて示すSRモータの断面図である。
 本実施形態のSRモータ8(9)は、半径方向内側に等ピッチにて一体に形成された6個のステータ突極46を有する円筒形状のステータ42と、ステータ42の内側にて回転自在に配置され、半径方向外側に等ピッチにて一体に形成された4個のロータ突極47を有するロータ44を備えている。また、ステータ42とロータ44は、薄板の鋼板を一体的に積層させ形成されている。ステータ突極46には、U相、V相およびW相のコイル48が、それぞれ巻装されている。ロータ44の中央部には、シャフト45との勘合用の孔が設けられ、この勘合用の孔にシャフト45は固定されている。
 ロータ44が内部に配置されたステータ42の両端部には、それぞれフロントブラケット41およびエンドブラケット42が配置され、セットボルト49にてステータ42に固定されている。また、フロントブラケット41およびエンドブラケット42の中央部には、それぞれ軸受(図示せず)が配置され、これらの軸受によりロータ44のシャフト45は回転自在に軸支されている。そして、コイル8に第1または第2のモータ駆動信号が供給されることにより、ロータ44は回転する。
 このように、第1および第2のSRモータ8、9を、ホイール内ではなく車両本体1の後部に配置することで、第1および第2のSRモータ8、9のレイアウトの自由度を高め、SRモータやブレーキディスクの放熱性を向上できる4輪駆動のハイブリッド電気自動車を提供することができる。
 本発明によれば、ホイールの外の車両本体にSRモータを配置することで、SRモータを車両にレイアウトする際の自由度を高め、SRモータやブレーキディスクの放熱性を向上できる4輪駆動のハイブリッド電気自動車を提供することができる。また、前方や後方への発進時に電動モータの駆動を積極的に利用して、変速機を小型化上できる4輪駆動のハイブリッド電気自動車を提供することができる。

Claims (7)

  1.  車両の車両本体と、
     前記車両本体の前部に配置され、液体燃料の燃焼により回転されるエンジンシャフトを有する液体燃料エンジンと、
     前記液体燃料エンジンの前記エンジンシャフトに機械的に接続され、前記エンジンシャフトの回転の回転を加速又は減速し、前記エンジンシャフトの加減速した回転を出力する出力部を有する変速機と、
     前記車両本体の前部の左右に回転自在に配置されるとともに前記変速機の前記出力部に機械的に接続され、前記変速機を介し、前記液体燃料エンジンの前記エンジンシャフトにより回転される第1および第2の前輪と、
     前記車両本体の後部に配置され、前記液体燃料エンジンに供給する前記液体燃料を収容する液体燃料タンクと、
     前記車両本体の後部の左右にそれぞれ配置され、出力軸を有する第1および第2のスイッチトリラクタンスモータと、
     前記車両本体の後部の左右に回転自在に配置され、それぞれ前記第1および第2のスイッチトリラクタンスモータの前記出力軸に減速機構を介して機械的に接続され、前記第1および第2のスイッチトリラクタンスモータの前記出力軸の回転により回転する第1および第2の後輪と、
     前記第1および第2のスイッチトリラクタンスモータに接続され、前記第1および第2のスイッチトリラクタンスモータを駆動するための第1および第2のモータ駆動信号を供給する第1および第2のインバータと、
     前記第1および第2のインバータに接続され、前記第1および第2のスイッチトリラクタンスモータに前記第1および第2のモータ駆動信号を供給するための電力を前記第1および第2のインバータに供給する第1のバッテリーと、
     を備えるハイブリッド電気自動車。
  2.  前記第1および第2の前輪の近傍に設けられ、前記第1および第2の前輪の回転情報を検出する第1および第2の前輪回転センサと、
     前記第1および第2の後輪の近傍に設けられ、前記第1および第2の後輪の回転情報を検出する第1および第2の後輪センサと前記第1および第の2の前輪センサ、ならびに前記第1および第2の後輪センサに接続され、前記第1および第2の前輪、ならびに前記第1および第2の後輪の回転情報を処理し、前記車両の速度信号を出力する回転信号処理手段と、
     前記回転信号処理手段に接続され、前記回転信号処理手段が出力する前記速度信号が、予め定められた第1の値を超えると前記液体燃料エンジンにより前記第1および第2の前輪を駆動する第1の駆動制御信号を発生し、前記液体燃料エンジンに第1の駆動制御信号を供給する第1の制御装置と、
     前記回転信号処理手段、ならびに前記第1および第2のインバータに接続され、前記回転信号処理手段が出力する前記速度信号が、前記第1の値より大きい予め定められた第2の値に達するまでは前記第1および第2のインバータに、前記第1および第2のスイッチトリラクタンスモータを駆動するための第1および第2のモータ駆動信号を供給するための指令信号を出力する第2の制御装置と、
     を備える請求項1に記載のハイブリッド電気自動車。
  3.  前記第1のバッテリーに接続されるとともに前記液体燃料エンジンの近傍に配置され、前記燃料エンジンの前記エンジンシャフトの回転によって発電し、発電された電力を前記第1のバッテリーに供給する第1の発電機と、
     前記車両本体に配置されるとともに、前記第1のバッテリーに接続され、家庭用プラグとの接続端子を有し、前記家庭用電源からの電力を前記第1のバッテリーに供給するプラグイン装置と、
     を備える請求項2に記載のハイブリッド電気自動車。
  4.  車両の車両本体と、
     乗客の操作により、前記車両の前進の発進信号および後進の発進信号を出力する駆動指令手段と、
     前記車両本体の前部に配置され、液体燃料の燃焼により回転されるエンジンシャフトを有する液体燃料エンジンと、
     前記液体燃料エンジンの前記エンジンシャフトに機械的に接続され、前記エンジンシャフトの回転の回転を加速又は減速し、前記エンジンシャフトの加速または減速した回転を出力するドライブシャフトを有し、エンジンシャフトの回転に対するドライブシャフトの回転の変速比が10以下である変速機と、
     前記車両本体の前部の左右に回転自在に配置されるとともに前記変速機の前記ドライブシャフトに機械的に接続され、前記変速機を介し、前記液体燃料エンジンの前記エンジンシャフトにより回転される第1および第2の前輪と、
     前記車両本体の後部に配置され、前記液体燃料エンジンに供給する前記液体燃料を収容する液体燃料タンクと、
     前記車両本体の後部の左右にそれぞれ配置され、出力軸有し、車両を前進させる方向又は車輪を後進させる方向に駆動する第1および第2のスイッチトリラクタンスモータと、
     前記車両本体の後部の左右に回転自在に配置され、それぞれ前記第1および第2のスイッチトリラクタンスモータの前記出力軸に減速機構を介して機械的に接続され、前記第1および第2のスイッチトリラクタンスモータの前記出力軸の回転により回転する第1および第2の後輪と、
     前記第1および第2のスイッチトリラクタンスモータに接続され、前記第1および第2のスイッチトリラクタンスモータを駆動するための第1および第2のモータ駆動信号を発生し、第1および第2のモータ駆動信号を前記第1および第2のスイッチトリラクタンスモータへそれぞれ供給する第1および第2のインバータと、
     前記第1および第2のインバータに接続され、前記第1および第2のモータ駆動信号を発生するための電力を前記第1および第2のインバータに供給する第1のバッテリーと、
     前記第1のバッテリーと接続されるとともに前記液体燃料エンジンの近傍に配置され、前記燃料エンジンの前記エンジンシャフトの回転によって発電し、発電された電力を前記第1のバッテリーに供給する第1の発電機と、
     前記車両本体に配置されるとともに前記第1のバッテリーに接続され、家庭用プラグとの接続端子を有し、前記家庭用電源からの電力を前記第1のバッテリーに供給するプラグイン装置と、
     前記第1および第2の前輪の近傍に設けられ、前記第1および第2の前輪の回転情報を検出する第1および第2の前輪回転センサと、
     前記第1および第2の後輪の近傍に設けられ、前記第1および第2の後輪の回転情報を検出する第1および第2の後輪回転センサと、
     前記第1および第2の前輪センサ、ならびに前記第1および第2の後輪センサに接続され、前記第1および第2の前輪、ならびに前記第1および第2の後輪の回転情報を処理し、前記車両の速度信号を出力する回転信号処理手段と、
     前記回転信号処理手段に接続され、前記回転信号処理手段が出力する前記速度信号が、予め定められた第1の値を超えると前記液体燃料エンジンにより前記第1および第2の前輪を駆動する第1の駆動制御信号を発生し、前記液体燃料エンジンに第1の駆動制御信号を供給する第1の制御装置と、
     前記駆動指令手段、前記回転信号処理手段、ならびに前記第1および第2のインバータに接続され、前記駆動指令手段から前進の発進信号を受けると前記回転信号処理手段が出力する前記速度信号が、前記第1の値より大きい予め定められた第2の値に達するまでは前記第1および第2のインバータに、車両を前進させる方向に駆動するための第1および第2のモータ駆動信号の発生を指令する前進指令信号を出力するとともに、前記駆動指令手段から後進の発進信号を受けると、前記第1および第2のインバータに、車両を後進させる方向に駆動するための第1および第2のモータ駆動信号の発生を指令する後進指令信号を出力する第2の制御装置と、
     を備えるハイブリッド電気自動車。
  5.  前記第1の値と前記第2の値が略同一である請求項1に記載のハイブリッド電気自動車。
  6.  前記第1の値と前記第2の値が略同一である請求項4に記載のハイブリッド電気自動車。
  7.  前記第1および第2のスイッチトリラクタンスモータ以外の車両用補機に電力を供給するための蓄電電圧50V以下の鉛蓄電池である第2のバッテリーと、
     前記第2のバッテリーと接続されるとともに前記液体燃料エンジンの近傍に配置され、前記燃料エンジンの前記エンジンシャフトに回転から発電した電力を前記第2のバッテリーに供給する第2の発電機とを備え、
     前記第1のバッテリーは、蓄電電圧50Vを超えるリチウムイオン電池である請求項1乃至6のいずれかに記載のハイブリッド電気自動車。
PCT/JP2009/052546 2008-02-14 2009-02-16 ハイブリッド電気自動車 WO2009102058A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980104304XA CN101939186A (zh) 2008-02-14 2009-02-16 混合型电动汽车
JP2009553482A JPWO2009102058A1 (ja) 2008-02-14 2009-02-16 ハイブリッド電気自動車
US12/735,752 US8360185B2 (en) 2008-02-14 2009-02-16 Hybrid electric automobile

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008033587 2008-02-14
JP2008-033587 2008-02-14
JP2008045928 2008-02-27
JP2008-045928 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009102058A1 true WO2009102058A1 (ja) 2009-08-20

Family

ID=40957088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052546 WO2009102058A1 (ja) 2008-02-14 2009-02-16 ハイブリッド電気自動車

Country Status (4)

Country Link
US (1) US8360185B2 (ja)
JP (1) JPWO2009102058A1 (ja)
CN (1) CN101939186A (ja)
WO (1) WO2009102058A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966810A (zh) * 2010-10-22 2011-02-09 浙江吉利汽车研究院有限公司 一种用于汽车的基于轮毂电机混联驱动系统
CN102145691A (zh) * 2010-02-05 2011-08-10 F.波尔希名誉工学博士公司 用于运行混合动力车的方法
JP2017100606A (ja) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 ハイブリッド車両

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1392278B1 (it) * 2008-12-18 2012-02-24 Ferrari Spa Veicolo stradale con propulsione ibrida
IT1403609B1 (it) * 2010-12-22 2013-10-31 Rolic Invest Sarl Veicolo cingolato e metodo di controllo dello stesso
CN105150853B (zh) 2011-02-25 2017-05-17 Ntn株式会社 电动汽车
US9260068B2 (en) * 2012-10-29 2016-02-16 Sanyo Electric Co., Ltd. In-vehicle battery system
US9027682B2 (en) * 2013-02-01 2015-05-12 Daniel James LAMBERT Self charging electric vehicle
US20140358340A1 (en) * 2013-05-28 2014-12-04 Vladimir Radev Hybrid electric vehicle
GB2550555B (en) * 2016-05-16 2020-09-09 Jaguar Land Rover Ltd System for a drive line of a vehicle
CN106114228A (zh) * 2016-07-21 2016-11-16 安徽皖南新维电机有限公司 一种新能源汽车用高比功率永磁同步磁阻驱动电机系统
US10780770B2 (en) * 2018-10-05 2020-09-22 Polaris Industries Inc. Hybrid utility vehicle
DE102019205599A1 (de) * 2019-04-17 2020-10-22 Zf Friedrichshafen Ag Zahnrad für Elektrofahrzeuggetriebe
DE102019205600A1 (de) * 2019-04-17 2020-10-22 Zf Friedrichshafen Ag Zahnrad für Elektrofahrzeuggetriebe
CN111267596B (zh) * 2020-02-14 2021-08-17 北京理工大学 一种电动汽车驱动装置、系统以及电动汽车
CN113619373A (zh) * 2021-07-22 2021-11-09 武汉市深蓝动力科技有限公司 一种开关磁阻电机及其在井工矿车上的应用
CN113541408A (zh) * 2021-07-22 2021-10-22 武汉市深蓝动力科技有限公司 一种开关磁阻电机及其在装载机上的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112620A (ja) * 1993-10-18 1995-05-02 Suzuki Motor Corp ハイブリッド車両の重量バランス構造
JPH0946820A (ja) * 1995-08-02 1997-02-14 Aisin Aw Co Ltd 車両用駆動装置の制御装置
JP2002321542A (ja) * 2001-04-25 2002-11-05 Unisia Jecs Corp 車両の駆動制御装置
JP2005153790A (ja) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd 4輪駆動車両
JP2006347429A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp ハイブリッド車
JP2007210586A (ja) * 2006-01-10 2007-08-23 Hitachi Ltd 車両駆動システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823280A (en) * 1995-01-12 1998-10-20 Nevcor, Inc. Hybrid parallel electric vehicle
JP3419176B2 (ja) 1995-10-25 2003-06-23 株式会社デンソー 車両用駆動装置
JP2000278809A (ja) 1999-03-25 2000-10-06 Daihatsu Motor Co Ltd ハイブリッド車の駆動機構
JP4748872B2 (ja) 2001-03-30 2011-08-17 株式会社ミツバ 回転電機のアーマチュアおよびその製造方法
JP2004328991A (ja) 2003-04-09 2004-11-18 Nissan Motor Co Ltd 車両の左右輪駆動装置
JP2005253167A (ja) * 2004-03-03 2005-09-15 Hitachi Ltd 車両駆動装置及びそれを用いた電動4輪駆動車両
JP2005280475A (ja) 2004-03-29 2005-10-13 Toyota Motor Corp ハイブリッド車の制御装置
JP4648054B2 (ja) 2005-03-31 2011-03-09 日立オートモティブシステムズ株式会社 ハイブリッド車両,電動駆動装置用制御装置及び電動駆動装置
JP4902175B2 (ja) 2005-09-21 2012-03-21 日新製鋼株式会社 エスカレータのステップ構造
AU2006295147B2 (en) 2005-09-23 2011-04-28 Afs Trinity Power Corporation Method and apparatus for power electronics and control of plug-in hybrid propulsion with fast energy storage
JP2007147057A (ja) 2005-10-31 2007-06-14 Aichi Mach Ind Co Ltd 自動シフト式変速機およびこれを備える自動車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112620A (ja) * 1993-10-18 1995-05-02 Suzuki Motor Corp ハイブリッド車両の重量バランス構造
JPH0946820A (ja) * 1995-08-02 1997-02-14 Aisin Aw Co Ltd 車両用駆動装置の制御装置
JP2002321542A (ja) * 2001-04-25 2002-11-05 Unisia Jecs Corp 車両の駆動制御装置
JP2005153790A (ja) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd 4輪駆動車両
JP2006347429A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp ハイブリッド車
JP2007210586A (ja) * 2006-01-10 2007-08-23 Hitachi Ltd 車両駆動システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145691A (zh) * 2010-02-05 2011-08-10 F.波尔希名誉工学博士公司 用于运行混合动力车的方法
CN101966810A (zh) * 2010-10-22 2011-02-09 浙江吉利汽车研究院有限公司 一种用于汽车的基于轮毂电机混联驱动系统
JP2017100606A (ja) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 ハイブリッド車両

Also Published As

Publication number Publication date
JPWO2009102058A1 (ja) 2011-06-16
US20100307845A1 (en) 2010-12-09
US8360185B2 (en) 2013-01-29
CN101939186A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2009102058A1 (ja) ハイブリッド電気自動車
US7201690B2 (en) Drive unit for vehicle
CN109496185B (zh) 动力装置
EP1640202B1 (en) Hybrid drive device and automobile mounted with device
US20190248225A1 (en) Bearing device for wheels with auxiliary power device
JP4818368B2 (ja) ハイブリッド車両
JP5240369B2 (ja) 前後輪駆動車両
US7980349B2 (en) Drive system for vehicle
JP2004328991A (ja) 車両の左右輪駆動装置
JP2005153691A (ja) 車両の駆動機構
US20210075289A1 (en) Motor, vehicle power unit with motor, generator, vehicle wheel bearing with generator
JP2009142036A (ja) 電動車両
EP3517343B1 (en) Vehicle power assist system
JP3933125B2 (ja) 車両の動力出力装置
JP2009227221A (ja) ハイブリッド電気自動車
JP2012091759A (ja) 車両駆動装置
JP5446360B2 (ja) ハイブリッド自動車
JP2007112291A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
WO2017013843A1 (ja) 車両用電源装置および車両用電源装置の制御方法
US11623632B2 (en) Vehicle control device and vehicle
JP2007074833A (ja) ハイブリッド車両の駆動ユニット
JP6200312B2 (ja) 車両用電動機の制御装置
JP5967001B2 (ja) シフト位置監視装置
JP3419176B2 (ja) 車両用駆動装置
JP2020145875A (ja) 電動機およびこの電動機を備えた車両用動力装置、発電機およびこの発電機を備えた発電機付車輪用軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104304.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009553482

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12735752

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710176

Country of ref document: EP

Kind code of ref document: A1