WO2009101867A1 - 樹脂用組成物およびそれを含む光学レンズ - Google Patents

樹脂用組成物およびそれを含む光学レンズ Download PDF

Info

Publication number
WO2009101867A1
WO2009101867A1 PCT/JP2009/051689 JP2009051689W WO2009101867A1 WO 2009101867 A1 WO2009101867 A1 WO 2009101867A1 JP 2009051689 W JP2009051689 W JP 2009051689W WO 2009101867 A1 WO2009101867 A1 WO 2009101867A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
weight
parts
bis
resin composition
Prior art date
Application number
PCT/JP2009/051689
Other languages
English (en)
French (fr)
Inventor
Motoharu Takeuchi
Takashi Aoki
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to KR1020107019816A priority Critical patent/KR101522755B1/ko
Priority to EP09710421.0A priority patent/EP2243798B1/en
Priority to JP2009553393A priority patent/JP5487976B2/ja
Priority to US12/865,014 priority patent/US8394920B2/en
Priority to CN2009801039951A priority patent/CN101932630B/zh
Publication of WO2009101867A1 publication Critical patent/WO2009101867A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes

Definitions

  • the present invention relates to a resin composition, and further relates to an optical material having a high refractive index and an Abbe number obtained by using a resin composition containing an inorganic compound having a sulfur atom and / or a selenium atom.
  • the optical material obtained by the present invention is suitably used for optical products such as plastic lenses, prisms, optical fibers, information recording bases, filters and adhesives, especially plastic lenses for spectacles.
  • Plastic materials have been widely used in recent years for various optical materials, particularly spectacle lenses, because they are light and tough and easy to dye.
  • the most important performance required for optical materials, particularly spectacle lenses, is a high refractive index and a high Abbe number, which enables the lens to be thinned, and a high Abbe number reduces the chromatic aberration of the lens.
  • many polyepisulfide compounds having an excellent balance between the refractive index and the Abbe number have been reported (for example, Japanese Patent Application Laid-Open Nos. 9-71580 and 9-110979). JP, 9-255781, A).
  • the optical material obtained from the polyepisulfide compound of these inventions has achieved a high refractive index and a high Abbe number of 1.7 or more, a material having a higher refractive index has been demanded.
  • Japanese Patent Application Laid-Open No. 2001-27883 proposes an optical material using an inorganic compound having a sulfur atom and / or a selenium atom in order to further increase the refractive index.
  • the preparation of the composition of the compound involves prepolymerization reaction and desorption. Qi treatment is necessary.
  • the viscosity of the composition rises during these prepolymerization reaction and degassing treatment steps, especially when increasing the compounding amount of inorganic compounds having sulfur atoms and / or selenium atoms and aiming for a high refractive index, filtration and molding. While usual casting polymerization operations such as pouring are difficult, the color tone of the resulting material may be greatly deteriorated.
  • JP-A-2006-348285, JP-A-2006-348286, and JP-A-2006-348289 disclose compounds having one SH group, compounds having one or more disulfide bonds, NH groups and / or Alternatively, the addition of a compound having one or more NH 2 groups was proposed, and the refractive index of the obtained optical material was limited to about 1.76.
  • Japanese Patent Laid-Open No. 9-71580 Japanese Patent Laid-Open No. 9-110979 Japanese Patent Laid-Open No. 9-255781 Japanese Patent Laid-Open No. 2001-2783 JP 2004-197005 A Japanese Patent Laid-Open No. 2004-137482 JP 2006-348285 A JP 2006-348286 A JP 2006-348289 A
  • the problem to be solved by the present invention is to provide an optical material having a higher refractive index and to provide a resin composition capable of improving the color tone of the obtained optical material.
  • the compound represented by the following formula (2) is a resin composition containing an inorganic compound having a sulfur atom and / or a selenium atom. It has been found that the viscosity can be lowered to facilitate the casting polymerization operation and the above problems can be solved.
  • the addition amount of the compound (a) is 1 to 50 parts by weight when the total of the compound (a) and the compound (b) is 100 parts by weight, and the addition amount of the compound (b) When the total of the compound (a) and the compound (b) is 100 parts by weight, it is 50 to 99 parts by weight, and the amount of the compound (c) added is the compound (a) and the compound (b).
  • the resin composition is characterized by being 1 to 50 parts by weight when the total amount of the compounds is 100 parts by weight.
  • the compound (a) is sulfur is preferable.
  • the resin composition of the present invention preferably has an embodiment in which the compound (b) is bis ( ⁇ -epithiopropyl) sulfide or bis ( ⁇ -epithiopropyl) disulfide.
  • the resin composition of the present invention preferably has an embodiment in which the compound (c) is bis (mercaptomethyl) disulfide or bis (dimercaptomethyl) disulfide.
  • Another embodiment of the present invention is a step of mixing (a) an inorganic compound having a sulfur atom and / or a selenium atom and (b) a compound represented by the following formula (1): Preliminarily polymerizing the mixture at 0 ° C. to 150 ° C.
  • the addition amount of the compound (a) is 1 to 50 parts by weight when the total of the compound (a) and the compound (b) is 100 parts by weight, and the addition amount of the compound (b) When the total of the compound (a) and the compound (b) is 100 parts by weight, it is 50 to 99 parts by weight, and the amount of the compound (c) added is the compound (a) and the compound (b).
  • a method for producing a resin composition comprising 1 to 50 parts by weight when the total amount of compounds is 100 parts by weight.
  • Still another embodiment of the present invention includes (a) an inorganic compound having a sulfur atom and / or a selenium atom, and a compound (b) represented by the following formula (1): (A represents an integer from 0 to 4, b represents an integer from 0 to 2) A step of mixing a compound (c) represented by the following formula (2): Preliminarily polymerizing the mixture at 0 ° C. to 150 ° C. for 1 minute to 72 hours.
  • the addition amount of the compound (a) is 1 to 50 parts by weight when the total of the compound (a) and the compound (b) is 100 parts by weight, and the addition amount of the compound (b) When the total of the compound (a) and the compound (b) is 100 parts by weight, it is 50 to 99 parts by weight, and the amount of the compound (c) added is the compound (a) and the compound (b).
  • a method for producing a resin composition comprising 1 to 50 parts by weight when the total amount of compounds is 100 parts by weight.
  • Still another embodiment of the present invention includes (a) an inorganic compound having a sulfur atom and / or a selenium atom, and a compound (b) represented by the following formula (1): (A represents an integer from 0 to 4, b represents an integer from 0 to 2) A step of mixing a compound (c) represented by the following formula (2): Preliminarily polymerizing the mixture at 0 ° C. to 150 ° C. for 1 minute to 72 hours; A step of further mixing the compound (c) represented by the following formula (2) with the prepolymerized mixture.
  • the addition amount of the compound (a) is 1 to 50 parts by weight when the total of the compound (a) and the compound (b) is 100 parts by weight, and the addition amount of the compound (b) When the total of the compound (a) and the compound (b) is 100 parts by weight, it is 50 to 99 parts by weight, and the total amount of the compound (c) added is the compound (a) and the compound ( b) A method for producing a resin composition, wherein the total amount of the compound is 1 to 50 parts by weight when the total amount is 100 parts by weight.
  • the method for producing the resin composition of the present invention preferably further comprises a step of degassing at 0 to 100 ° C. for 1 minute to 24 hours under a reduced pressure of 0.005 to 250 torr.
  • Yet another embodiment of the present invention is a method for producing an optical material, wherein the resin composition obtained by the method for producing a resin composition is polymerized and cured.
  • Yet another embodiment of the present invention is an optical material containing the above resin composition, wherein the optical material has a refractive index of 1.76 or more.
  • the optical material of the present invention preferably has an aspect in which the refractive index is 1.77 or more. Further, the optical material of the present invention preferably has an aspect in which the Abbe number of the optical material is 20 to 80.
  • the optical material of the present invention preferably has an embodiment in which the softening point of the optical material is 50 to 200 ° C. Further, the optical material of the present invention preferably has an aspect in which the color tone (YI value) of the optical material is 0 to 10. Yet another embodiment of the present invention is an optical lens made of the above optical material.
  • Yet another embodiment of the present invention is the use of a composition for producing an optical material having a refractive index of 1.76 or more, wherein the composition has a sulfur atom and / or a selenium atom ( a) an inorganic compound, a compound (b) represented by the following formula (1), and (A represents an integer from 0 to 4, b represents an integer from 0 to 2) Containing the compound (c) represented by the following formula (2), (C represents 0 or 1, d represents 0 or 1, e represents an integer of 1 to 10, R represents H, SH, CH 2 SH, or an aromatic ring)
  • the content of the compound (a) is 1 to 50 parts by weight when the total of the compound (a) and the compound (b) is 100 parts by weight, and the content of the compound (b) When the total of the compound (a) and the compound (b) is 100 parts by weight, it is 50 to 99 parts by weight, and the content of the compound (c) is the compound (a) and the compound (b).
  • Yet another embodiment of the present invention is the use of a compound for reducing the viscosity of a prepolymerized and degassed resin composition used in the production of an optical lens to a range of 10 to 200 mPa ⁇ s.
  • the refractive index of the obtained optical material was limited to about 1.76.
  • the refractive index of the optical material can be improved to about 1.78. Has an effect.
  • the viscosity of the resin composition containing the inorganic compound which has a sulfur atom and / or a selenium atom is reduced by containing the specific amount of the compound represented by the above formula (2). It also has an excellent effect of facilitating the casting polymerization operation.
  • the (a) inorganic compound having a sulfur atom and / or selenium atom includes all inorganic compounds having at least one sulfur atom and / or selenium atom.
  • the term “inorganic compound” as used herein is as described in “Standard Chemistry Dictionary” (edited by Chemical Society of Japan (1991) Maruzen).
  • inorganic compounds having a sulfur atom include, for example, sulfur, hydrogen sulfide, carbon disulfide, carbon selenosulfide, ammonium sulfide; sulfur oxides such as sulfur dioxide and sulfur trioxide; Carbonate, sulfuric acid and its salts, hydrogen sulfate, sulfite, hyposulfite, persulfate, thiocyanate, thiosulfate; halides such as sulfur dichloride, thionyl chloride, thiophosgene; boron sulfide, nitrogen sulfide, Examples thereof include silicon sulfide, phosphorus sulfide, arsenic sulfide, metal sulfide, and metal hydrosulfide.
  • sulfur, carbon disulfide, phosphorus sulfide, selenium sulfide, metal sulfide and metal hydrosulfide are preferable, sulfur, carbon disulfide and selenium sulfide are more preferable, and sulfur is particularly preferable.
  • the inorganic compound having a selenium atom include, for example, selenium, hydrogen selenide, carbon diselenide, ammonium selenide; selenium oxides such as selenium dioxide; selenic acid and salts thereof, selenious acid and salts thereof, Hydrogen selenate, selenosulfuric acid and salts thereof, selenopyrosulfuric acid and salts thereof; halides such as selenium tetrabromide and selenium oxychloride; selenocyanate, boron selenide, phosphorus selenide, arsenic selenide, metal selenide Etc.
  • the compound is a compound represented by the following formula (1).
  • a represents an integer of 0 to 4, preferably 0 to 2.
  • b represents an integer of 0 to 2, preferably 0 to 1.
  • the compound (b) include bis ( ⁇ -epithiopropyl) sulfide, bis ( ⁇ -epithiopropyl) disulfide, bis ( ⁇ -epithiopropyl) trisulfide, and bis ( ⁇ -epithiopropyl).
  • preferred specific examples are bis ( ⁇ -epithiopropyl) sulfide and bis ( ⁇ -epithiopropyl) disulfide, and the most preferred compound is bis ( ⁇ -epithiopropyl) sulfide.
  • Examples of the method for producing the compound represented by the formula (1) include E.I. P. Adams et al. Chem. Soc. There are known methods described in page 2665 (1960), Japanese Patent No. 3491660, and the like.
  • the mixing ratio of the compound is preferably 30% by weight or more in the resin composition. When this ratio is less than 30% by weight, the obtained optical material cannot be made to have a high refractive index.
  • the addition amount of the compound (a) is 1 to 50 parts by weight, preferably 5 to 50 parts by weight, more preferably 10 to 45 parts when the total of the compounds (a) and (b) is 100 parts by weight. Part by weight, particularly preferably 15 to 40 parts by weight, most preferably 20 to 35 parts by weight.
  • the refractive index of the target optical material is preferably 1.72 or more, more preferably 1.74 or more, still more preferably 1.76 or more, particularly preferably 1.77 or more, and most preferably 1.78 or more. Yes, the higher the refractive index, the more pronounced the effect of the present invention.
  • the addition amount of the compound (b) is 50 to 99 parts by weight, preferably 50 to 95 parts by weight, more preferably 60 to 90 parts when the total of the compounds (a) and (b) is 100 parts by weight. Part by weight, particularly preferably 65 to 85 parts by weight, most preferably 70 to 80 parts by weight.
  • the compound is a compound represented by the following formula (2).
  • c is 0 or 1
  • d is 0 or 1
  • e is an integer of 1 to 10
  • R represents H, SH, CH 2 SH, or an aromatic ring.
  • the aromatic ring include benzene, thiophene, naphthalene, and derivatives thereof.
  • c and d are preferably 0.
  • e is preferably an integer of 1 to 5, more preferably 1 or 2, and particularly preferably 1.
  • R is preferably H, SH or CH 2 SH, and more preferably H.
  • compound (c) examples include, for example, bis (mercaptomethyl) disulfide, bis (dimercaptomethyl) disulfide, bis (1,2-dimercaptoethyl) disulfide, bis (2-mercapto-2-phenylmethyl).
  • Disulfide bis (mercaptoethyl) disulfide, bis (2,2-dimercaptoethyl) disulfide, bis (2,3-dimercaptopropyl) disulfide, bis (2-mercapto-2-phenylethyl) disulfide, (mercaptomethyl) (Mercaptoethyl) disulfide, (dimercaptomethyl) (dimercaptoethyl) disulfide, and the like.
  • preferred specific examples are bis (mercaptomethyl) disulfide and bis (dimercaptomethyl) disulfide, and the most preferred specific example is bis (mercaptomethyl) disulfide.
  • C You may use a compound individually or in mixture of 2 or more types.
  • a low-viscosity resin composition may be obtained, but there is a problem that the color tone of the optical material obtained by polymerization and curing is greatly deteriorated. It was.
  • the compound represented by the above formula (2) is added in a specific amount to reduce the viscosity of the resin composition containing an inorganic compound having a sulfur atom and / or a selenium atom. No mention is made of the excellent inventive concept of facilitating mold polymerization operations.
  • the refractive index of the optical material obtained so far was limited to about 1.76, in a preferred embodiment of the present invention, the refractive index of the obtained optical material is improved to about 1.78, It's amazing.
  • c is 0 or 1
  • d is 0 or 1
  • e is an integer of 1 to 10
  • R represents H, SH, CH 2 SH, or an aromatic ring.
  • the amount of the compound (c) used is 1 to 50 parts by weight, preferably 2 to 40 parts by weight, more preferably 3 to 30 parts when the total of the compounds (a) and (b) is 100 parts by weight. Part by weight, particularly preferably 4 to 25 parts by weight, most preferably 5 to 20 parts by weight.
  • the low-viscosity resin composition for the purpose of the present invention is not particularly limited as long as it is a viscosity at which a casting polymerization operation can be performed satisfactorily, but preferably has a viscosity of 300 mPa ⁇ s or less, more preferably a viscosity of 200 mPa ⁇ s or less.
  • the viscosity is 140 mPa ⁇ s or less, and the lower limit is usually about 10 mPa ⁇ s.
  • the casting polymerization operation is possible at a viscosity of 200 mPa ⁇ s or less.
  • the viscosity exceeds 300 mPa ⁇ s, the casting polymerization operation (filtration: usually using a filter having a pore size of 0.01 to 10 ⁇ m) becomes difficult, and the viscosity is 500 mPa. ⁇ If it exceeds s, cast polymerization operation (filtration) becomes impossible.
  • the viscosity mentioned here can be measured by the method described in the column of Examples described later.
  • the good color tone of the optical material targeted by the present invention is not particularly limited as long as the appearance is colorless and transparent, but preferably has a YI value (index indicating yellowness, 2.5 mm thickness) of 10 or less, more preferably Is 5 or less.
  • the lower limit of the YI value is usually about zero.
  • YI value index indicating yellowness, 2.5 mm thickness
  • the YI value mentioned here can be measured by the method described in the column of Examples described later.
  • the optical material obtained by using the resin composition of the present invention preferably has a softening point of 50 to 200 ° C., more preferably 70 to 200 ° C., which is an index of heat resistance.
  • a softening point of 50 ° C. or higher is preferable because there is little deformation in post-processing of the lens that involves heating such as coating or dyeing.
  • the softening point mentioned here can be measured by the method described in the column of Examples described later.
  • the optical material obtained by using the resin composition of the present invention preferably has an Abbe number of 20 to 80, more preferably 30 to 70. It is preferable that the Abbe number is 20 or more because color bleeding is less likely to be seen. The Abbe number here can be measured by the method described in the column of Examples described later.
  • a polymerization catalyst When polymerizing and curing the resin composition of the present invention, (d) a polymerization catalyst can be added as necessary.
  • Polymerization catalysts include amines, phosphines, quaternary ammonium salts, quaternary phosphonium salts, condensates of aldehydes and amine compounds, salts of carboxylic acids and ammonia, urethanes, thiourethanes, guanidines, Thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates, tertiary sulfonium salts, secondary iodonium salts, mineral acids, Lewis acids, organic acids, silicic acids, tetrafluoride Examples thereof include boric acids, peroxides, azo compounds, and acidic phosphate esters. The typical examples of the compound (d) are shown below.
  • Polyamine diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, octylamine, di (2-ethylhexyl) ) Amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2-, 3-, 4-picoline, 2,4-, 2,6-, 3,5-lupetidine, diphenylamine, N-methylaniline, N-ethylaniline , Secondary amines such as dibenzylamine, methylbenzylamine, dinaphthylamine, pyrrole, indoline, indole, morpholine; N, N′-dimethylethylenediamine, N, N′-dimethyl-1,2-diaminopropane, N, N '-Dimethyl-1,3-d
  • Trimethylphosphine Trimethylphosphine, triethylphosphine, tri-iso-propylphosphine, tri-n-butylphosphine, tri-n-hexylphosphine, tri-n-octylphosphine, tricyclohexylphosphine, triphenylphosphine, tribenzylphosphine, tris (2-methylphenyl) phosphine, tris (3-methylphenyl) phosphine, tris (4-methylphenyl) phosphine, tris (diethylamino) phosphine, tris (4-methylphenyl) phosphine, dimethylphenylphosphine, diethylphenylphosphine, dicyclohexyl Phosphines such as phenylphosphine, ethyldiphenylphosphine, diphenylcyclohexylphosphine
  • reaction product of acetaldehyde and ammonia condensate of formaldehyde and paraylidine, condensate of acetaldehyde and paraylidine, reaction product of formaldehyde and aniline, reaction product of acetaldehyde and aniline, reaction product of butyraldehyde and aniline, formaldehyde and acetaldehyde Reaction product of aniline, reaction product of acetaldehyde and butyraldehyde and aniline, condensation product of butyraldehyde and monobutylamine, reaction product of butyraldehyde and butylideneaniline, reaction product of heptaldehyde and aniline, reaction of tricrotonylidene-tetramine Products, condensates of ⁇ -ethyl- ⁇ -propylacrolein and aniline, condensates of aldehyde and amine compounds such as condensates of formaldehyde and alky
  • Salts of carboxylic acid and ammonia such as ammonium acetate, ammonium benzoate, ammonium carbamate, ammonium trifluoroacetate and the like.
  • Xanthates such as sodium isopropylxanthate, zinc isopropylxanthate, zinc butylxanthate, and dibutylxanthate disulfide.
  • Secondary iodonium salts such as diphenyliodonium chloride, diphenyliodonium bromide, and diphenyliodonium iodide.
  • Mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and carbonic acid, and half esters thereof.
  • Lewis acids represented by boron trifluoride, boron trifluoride etherate, and the like.
  • Organic acids and their half esters. (21) Silicic acid and tetrafluoroboric acid.
  • the compound (d) has been exemplified above, but the compound is not limited to these listed compounds as long as it exhibits polymerization and curing.
  • These (d) compounds may be used alone or in combination of two or more.
  • preferred specific examples include tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, quaternary ammonium salts such as 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, Quaternary phosphonium salts such as tetraphenylphosphonium bromide can be mentioned.
  • the amount of the compound (d) added is 0.001 to 5 parts by weight, preferably 0.002 to 5 parts by weight, more preferably 100 parts by weight of the total of the compounds (a) and (b). Is 0.005 to 3 parts by weight.
  • the compound (e) which is a polymerization regulator
  • the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. The typical examples of these are shown below.
  • Silicon tetrachloride methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, ethyltrichlorosilane, diethyldichlorosilane, triethylchlorosilane, propyltrichlorosilane, dipropyldichlorosilane, tripropylchlorosilane, n-butyltrichlorosilane, di-n -Butyldichlorosilane, tri-n-butylchlorosilane, t-butyltrichlorosilane, di-t-butyldichlorosilane, tri-t-butylchlorosilane, octyltrichlorosilane, dioctyldichlorosilane, trioctylchlorosilane, phenyltrichlorosilane, diphenyldichlor
  • Antimony pentachloride methyl antimony tetrachloride, dimethyl antimony trichloride, trimethyl antimony dichloride, tetramethyl antimony chloride, ethyl antimony tetrachloride, diethyl antimony trichloride, triethyl antimony dichloride, tetraethyl antimony chloride, butyl antimony tetrachloride, dibutyl Convert all or part of antimony trichloride, tributylantimony dichloride, tetrabutylantimony chloride, phenylantimony tetrachloride, diphenylantimony trichloride, triphenylantimony dichloride, tetraphenylantimony chloride, and all or part of these chlorines to fluorine, bromine, iodine Antimony halo compounds Down monster.
  • chlorides such as aluminum chloride, indium chloride, thallium chloride, phosphorus trichloride, phosphorus pentachloride, bismuth chloride, etc., and compounds in which all or part of these chlorines are changed to fluorine, bromine, iodine, diphenylchloroboron, Phenyldichloroboron, diethylchlorogallium, dimethylchloroindium, diethylchlorothallium, diphenylchlorothallium, ethyldichlorophosphine, butyldichlorophosphine, triphenylphosphinedichloride, diphenylchloroarsenic, tetraphenylchloroarsenic, diphenyldichloroselenium, phenylchloroselenium, Compounds having halogen and hydrocarbon groups, such as diphenyldichlorotellurium, and
  • (e) compounds may be used alone or in admixture of two or more.
  • preferred are halides of silicon, germanium, tin and antimony. More preferred are chlorides of silicon, germanium, tin and antimony, and further preferred are chlorides of germanium, tin and antimony having an alkyl group.
  • dibutyltin dichloride butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride.
  • the amount of the compound (e) added is 0.001 to 5 parts by weight, preferably 0.002 to 5 parts by weight, more preferably 100 parts by weight in total of the compounds (a) and (b). Is 0.005 to 3 parts by weight.
  • the prepolymerization reaction is carried out at 0 ° C. to 150 ° C. for 1 minute to 24 hours when handling the solid (a) compound. This is an effective means, and the resulting optical material has good transparency.
  • a prepolymerization reaction catalyst for promoting the reaction between the compound (a) and the compound (b) may be added.
  • the prepolymerization reaction catalyst include the compound (d) described above, among which compounds containing nitrogen or phosphorus atoms are preferred, and compounds containing nitrogen or phosphorus atoms and having an unsaturated bond are more preferred. Particularly preferred are imidazoles, and most preferred is 2-mercapto-1-methylimidazole.
  • the addition amount of the prepolymerization reaction catalyst is 0.001 to 5 parts by weight, preferably 0.002 to 5 parts by weight, based on 100 parts by weight of the total of the compounds (a) and (b).
  • the amount is preferably 0.005 to 3 parts by weight.
  • a method of reacting the compound (a) and the compound (b) with a prepolymerization reaction catalyst that promotes the reaction between the compounds will be specifically described.
  • a part or all of the compound (a) and the compound (b) are reacted in the presence or absence of a prepolymerization reaction catalyst at 0 ° C. to 150 ° C. for 1 minute to 72 hours with or without stirring.
  • a resin composition preferably 1 minute to 72 hours, preferably 10 minutes to 48 hours, and more preferably 30 minutes to 24 hours.
  • the reaction temperature is 0 ° C. to 150 ° C., preferably 10 ° C. to 120 ° C., more preferably 20 ° C. to 100 ° C.
  • the compound (a) is preferably reacted for 10% or more (reaction rate before reaction is 0%), more preferably 20% or more.
  • the reaction may be carried out in an atmosphere such as air, presence of a gas such as nitrogen or oxygen, sealed under normal pressure or increased or reduced pressure, or any atmosphere such as reduced pressure.
  • a gas such as nitrogen or oxygen
  • the compound (d) compound, (e) compound, a compound capable of reacting with some or all of the composition components used as a performance improving agent described later You may carry out by adding various additives, such as a ultraviolet absorber.
  • liquid chromatography and / or measuring the viscosity and / or specific gravity and / or refractive index of this reaction product are preferable for controlling the reaction progress and obtaining a homogeneous resin composition.
  • liquid chromatography and / or a method for measuring a refractive index is preferable because of high sensitivity, and further, a method for measuring a refractive index is more preferable because it is simple.
  • a compound capable of reacting with a part or all of the components of the composition component and to cure by polymerization it is also possible to add a compound capable of reacting with a part or all of the components of the composition component and to cure by polymerization.
  • a known polymerization catalyst can be added separately as necessary for the reaction.
  • Carboxylic acids exemplified as the starting material of the partner to be reacted with the epihalohydrin described in the epoxy compound of (2).
  • Carboxylic anhydrides exemplified as the raw material of the partner to be reacted with the epihalohydrin described in the epoxy compound of (2).
  • Phenols exemplified as the raw material of the partner to be reacted with the epihalohydrin described in the epoxy compound of (2).
  • Amines exemplified as the raw material of the partner to be reacted with the epihalohydrin described in the epoxy compound of (2).
  • an optical material of the present invention it is possible to add various additives such as known antioxidants, bluing agents, ultraviolet absorbers, deodorants, and fragrances to further improve the practicality of the resulting material.
  • various additives such as known antioxidants, bluing agents, ultraviolet absorbers, deodorants, and fragrances
  • a known external and / or internal adhesion improver is added, or when it is difficult to peel off from the mold, a known external and / or internal mold release is added. It is also effective to add a property improver to improve the adhesiveness or releasability between the resulting optical material and the mold.
  • the deaeration treatment is performed before mixing the compound (a), the compound (b), the compound (c), a compound capable of reacting with some or all of the composition components, the compound (d), the compound (e), and various additives. It is performed under reduced pressure during or after mixing. Preferably, it is performed under reduced pressure during or after mixing.
  • the degassing conditions are 0 to 100 ° C. under a reduced pressure of 0.001 to 500 torr for 1 minute to 24 hours.
  • the degree of vacuum is preferably 0.005 to 250 torr, more preferably 0.01 to 100 torr, and the degree of vacuum may be varied within these ranges.
  • the deaeration time is preferably 5 minutes to 18 hours, more preferably 10 minutes to 12 hours.
  • the temperature at the time of deaeration is preferably 5 ° C. to 80 ° C., more preferably 10 ° C. to 60 ° C., and the temperature may be varied within these ranges.
  • renewing the interface of the resin composition by stirring, blowing of gas, vibration by ultrasonic waves, or the like is a preferable operation for enhancing the deaeration effect.
  • the components removed by the degassing treatment are mainly dissolved gases such as hydrogen sulfide and low-boiling substances such as low molecular weight mercaptans, but the types are particularly limited as long as the effects of the degassing treatment are expressed. Not.
  • the method for producing the optical material of the present invention is specifically as follows.
  • a compound and (b) compound and / or a reaction product obtained by prepolymerizing a mixture of (a) compound and (b) compound, (c) a compound, and a component or all of the components can be reacted.
  • Compound, (d) compound, (e) compound, adhesion improver or releasability improver, antioxidant, bluing agent, ultraviolet absorber, deodorant, fragrance and other various additives are all the same They may be mixed in a container at the same time with stirring, each raw material may be added and mixed in stages, or several components may be mixed separately and then mixed again in the same container. Each raw material, additive and the like may be mixed in any order.
  • each component may be mixed after the preliminary reaction is performed in advance by the above-described method.
  • the set temperature, the time required for this, etc. basically need only be the conditions that each component is sufficiently mixed, but the excessive temperature, time is an undesirable reaction between each raw material and additive, Furthermore, the viscosity is increased, making the casting operation difficult, and so on.
  • the mixing temperature should be in the range of about ⁇ 50 ° C. to 100 ° C., the preferred temperature range is ⁇ 30 ° C. to 70 ° C., and more preferably ⁇ 5 ° C. to 50 ° C.
  • the mixing time is 1 minute to 12 hours, preferably 5 minutes to 10 hours, and most preferably about 5 minutes to 6 hours.
  • the active energy ray may be blocked and mixed. Then, you may perform a deaeration process by the above-mentioned method.
  • a filter in order to further improve the quality of the optical material of the present invention.
  • the pore size of the filter used here is about 0.05 to 10 ⁇ m, generally 0.1 to 5 ⁇ m is used, and the filter material is preferably PTFE, PET, PP or the like.
  • the resin composition thus obtained is injected into a glass or metal mold and then polymerized and cured by an electric furnace or an active energy ray generator.
  • the polymerization time is usually from 0.1 to 100 hours.
  • the polymerization temperature is -10 to 160 ° C, usually -10 to 140 ° C.
  • the polymerization can be carried out by holding at a predetermined polymerization temperature for a predetermined time, raising the temperature from 0.1 ° C. to 100 ° C./h, lowering the temperature from 0.1 ° C. to 100 ° C./h, and combinations thereof.
  • annealing the material at a temperature of 50 to 150 ° C. for about 5 minutes to 5 hours is a preferable treatment for removing distortion of the optical material.
  • surface treatments such as dyeing, hard coating, antireflection, antifogging, antifouling and impact resistance can be performed as necessary.
  • the viscosity of the resin composition, the refractive index and Abbe number of the obtained cured product (optical material), heat resistance and color tone were evaluated by the following methods.
  • the viscosity was measured at 30 ° C. using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., DV-II + Pro, using cone rotor CRE-40).
  • B-type viscometer manufactured by Toki Sangyo Co., Ltd., DV-II + Pro, using cone rotor CRE-40.
  • the viscosity of the resin composition is 200 mPa ⁇ s or less, filtration by casting polymerization is possible.
  • ⁇ d (n d ⁇ 1) / (n F ⁇ n C )
  • the refractive index (n e ) and Abbe number ( ⁇ d ) were measured at 25 ° C. using a digital precision refractometer (manufactured by Kalnew Optical, KPR-200). For heat resistance, a sample was cut into a thickness of 3 mm, a weight of 10 g was applied to a 0.5 mm ⁇ pin, the temperature was raised from 30 ° C.
  • TMA measurement (manufactured by Seiko Instruments, TMA / SS6100) was performed, and softening Points were measured.
  • the color tone a YI value in a transmitted light of a flat plate having a thickness of 2.5 mm was measured using a spectral colorimeter (manufactured by Color Techno System, JS555).
  • Bis ( ⁇ -epithiopropyl) disulfide was synthesized by oxidizing 3-mercaptopropylene sulfide with iodine.
  • C The compound bis (mercaptomethyl) disulfide or bis (dimercaptomethyl) disulfide is published by the Chemical Society of Japan, edited by Maruzen Co., Ltd., Laboratory Science Course 17 Synthesis of Organic Compounds I (above), page 214 (1957) It was synthesized according to the production method of disulfide by oxidation described in 1.
  • bis (mercaptomethyl) disulfide was synthesized by oxidizing methanedithiol with iodine and purifying it by distillation (boiling point: 85-88 ° C./0.3 torr).
  • Bis (dimercaptomethyl) disulfide was synthesized by oxidizing methanetrithiol with iodine and purifying it by distillation (boiling point: 108-112 ° C./0.3 torr).
  • Example 1 (A) 29 parts by weight of sulfur (hereinafter referred to as “a-1 compound”) as compound, (b) 71 parts by weight of bis ( ⁇ -epithiopropyl) sulfide (hereinafter referred to as “b-1 compound”) as compound And 14 parts by weight of bis (mercaptomethyl) disulfide (hereinafter referred to as “c-1 compound”) as the compound (c) were mixed well at 50 ° C. to make uniform. Next, 0.15 parts by weight of 2-mercapto-1-methylimidazole was added as a prepolymerization reaction catalyst, and a prepolymerization reaction was carried out until no sulfur precipitated even when cooled to 30 ° C with good stirring at 50 ° C. The reaction time was 30 minutes.
  • a-1 compound bis ( ⁇ -epithiopropyl) sulfide
  • c-1 compound bis (mercaptomethyl) disulfide
  • the viscosity of the resin composition after the deaeration treatment was 100 mPa ⁇ s
  • the viscosity of the resin composition after 30 hours at 2 ° C. was 140 mPa ⁇ s, and no significant increase in viscosity was observed.
  • the refractive index and Abbe number of the obtained optical material were 1.776 and 30, respectively.
  • the heat resistance (softening point) from the TMA measurement was 120 ° C. or higher, and the color tone (YI value) was a low value of 8.6.
  • the evaluation results are summarized in Table 1.
  • Example 2 Example 2 was repeated except that 14 parts by weight of c-1 compound was added to 19 parts by weight.
  • Table 1 shows the evaluation results of the viscosity of the resin composition after degassing treatment and after 2 hours, the refractive index and Abbe number of the obtained optical material, heat resistance and color tone.
  • Example 1 (Comparative Example 1) (C) Example 1 was repeated except that no compound was used. The resin composition gelled after the deaeration treatment, and a cured product could not be obtained.
  • Example 1 Comparative Example 3 (C) Example 1 was repeated except that 10 parts by weight of benzyl mercaptan having one SH group (hereinafter referred to as “o-2 compound”) was used in place of the compound c-1 compound.
  • the resin composition after the deaeration treatment had a high viscosity of 220 mPa ⁇ s and required a very long time for filtration.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance and color tone of the obtained optical material. Compared with the examples, the refractive index was low and the color tone was not good.
  • Example 1 Comparative Example 4 (C) Example 1 was repeated except that 10 parts by weight of diphenyl disulfide having a disulfide bond (hereinafter referred to as “o-3 compound”) was used instead of the compound c-1 which is a compound.
  • the resin composition after the deaeration treatment had a high viscosity of 200 mPa ⁇ s and required a very long time for filtration.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance and color tone of the obtained optical material. Compared with the examples, the refractive index was low and the color tone was not good.
  • Comparative Example 5 Comparative Example 5 was repeated except that 35 parts by weight of the a-1 compound, 65 parts by weight of the b-1 compound and 10 parts by weight of the o-2 compound were used.
  • the resin composition after the deaeration treatment had a high viscosity of 380 mPa ⁇ s and required a very long time for filtration.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance and color tone of the obtained optical material. Although the refractive index increased, the color tone was greatly deteriorated.
  • Comparative Example 6 Comparative Example 4 was repeated except that 35 parts by weight of the a-1 compound, 65 parts by weight of the b-1 compound and 10 parts by weight of the o-3 compound were used.
  • the resin composition after the deaeration treatment had a high viscosity of 350 mPa ⁇ s and required a very long time for filtration.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance and color tone of the obtained optical material. Although the refractive index increased, the color tone was greatly deteriorated.
  • Example 1 In Example 1, the a-1 compound, b-1 compound and c-1 compound were changed to the compounds shown in Table 2 below, and the addition amount of each compound was changed to the amount shown in Table 2 below.
  • the resin composition was prepared in the same manner as in Example 1, and the viscosity of the resin composition after deaeration treatment and after 2 hours, the refractive index and Abbe number of the obtained optical material, the heat resistance and the evaluation of the color tone were evaluated. Is carried out in the same manner as in Example 1.
  • the present invention relates to a resin composition and an optical material obtained therefrom.
  • the optical material of the present invention is suitably used for optical products such as plastic lenses, prisms, optical fibers, information recording boards, filters, and adhesives, especially plastic lenses for spectacles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Eyeglasses (AREA)

Abstract

 本発明の好ましい態様によれば、硫黄原子および/またはセレン原子を有する無機化合物、エピスルフィド化合物、およびメルカプトジスルフィド化合物を含有する樹脂用組成物を提供することができる。また、本発明の好ましい態様では、樹脂用組成物の粘度を低減させて注型重合操作を容易にし、得られる光学材料の色調を改善する樹脂用組成物を提供することができる。更に、本発明の好ましい態様によれば、上記樹脂用組成物を硬化して得られる高屈折率を有する光学材料を提供することができる。

Description

樹脂用組成物およびそれを含む光学レンズ
 本発明は樹脂用組成物に関し、更には、硫黄原子および/またはセレン原子を有する無機化合物を含む樹脂用組成物を使用して得られる屈折率およびアッベ数の高い光学材料に関する。本発明によって得られる光学材料は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター、接着剤等の光学製品、中でも眼鏡用プラスチックレンズに好適に使用される。
 プラスチック材料は軽量かつ靭性に富み、また染色が容易であることから、各種光学材料、特に眼鏡レンズに近年多用されている。光学材料、中でも眼鏡レンズに要求される最も重要な性能は、高屈折率と高アッベ数であり、高屈折率はレンズの薄肉化を可能とし、高アッベ数はレンズの色収差を低減する。高屈折率と高アッベ数を目的として、近年、屈折率とアッベ数のバランスに優れたポリエピスルフィド化合物が数多く報告されている(一例として特開平9-71580号公報、特開平9-110979号公報、特開平9-255781号公報参照)。これらの発明のポリエピスルフィド化合物から得られる光学材料により、屈折率が1.7以上の高屈折率と高アッベ数は達成されたが、さらに高屈折率を有する材料が求められていた。
 このような背景から特開2001-2783号公報には、さらに高屈折率化を志向して、硫黄原子および/またはセレン原子を有する無機化合物を用いた光学材料が提案されている。この場合、特開2004-197005号公報、特開2004-137481号公報に述べられるように得られる光学材料の透明性を確保するために、該化合物の組成物の調製には予備重合反応および脱気処理が必要である。しかし、これら予備重合反応および脱気処理工程中に組成物の粘度が上昇し、特に硫黄原子および/またはセレン原子を有する無機化合物の配合量を増やして高屈折率を志向した場合、ろ過やモールド注入などの通常の注型重合操作が困難であるとともに、得られる材料の色調が大幅に悪化する場合があった。このため、特開2006-348285号公報、特開2006-348286号公報、特開2006-348289号公報には、SH基を1個有する化合物やジスルフィド結合を1個以上有する化合物やNH基および/またはNH基を1個以上有する化合物の添加が提案され、得られた光学材料の屈折率は1.76程度が限界であった。
特開平9-71580号公報 特開平9-110979号公報 特開平9-255781号公報 特開2001-2783号公報 特開2004-197005号公報 特開2004-137481号公報 特開2006-348285号公報 特開2006-348286号公報 特開2006-348289号公報
 本発明が解決しようとする課題は、更なる高屈折率を有する光学材料を創出し、得られる光学材料の色調を改善することが可能な樹脂用組成物を提供することである。
 本発明者らは、このような状況に鑑み、鋭意研究を重ねた結果、下記(2)式で表される化合物が、硫黄原子および/またはセレン原子を有する無機化合物を含む樹脂用組成物の粘度を低下させて注型重合操作を容易にし、上記課題を解決することができることを見出した。
 すなわち、本発明の一実施形態は、硫黄原子および/またはセレン原子を有する(a)無機化合物、下記(1)式で表される(b)化合物および
Figure JPOXMLDOC01-appb-C000012
(aは0~4の整数、bは0~2の整数を表す)
下記(2)式で表される(c)化合物を含有する樹脂用組成物であって、
Figure JPOXMLDOC01-appb-C000013
(cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
 前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする、前記樹脂用組成物である。
 本発明の樹脂用組成物は、前記(a)化合物が硫黄である態様が好ましい。また、本発明の樹脂用組成物は、前記(b)化合物がビス(β-エピチオプロピル)スルフィドまたはビス(β-エピチオプロピル)ジスルフィドである態様が好ましい。更に、本発明の樹脂用組成物は、前記(c)化合物がビス(メルカプトメチル)ジスルフィドまたはビス(ジメルカプトメチル)ジスルフィドである態様が好ましい。
 本発明の別の一実施形態は、硫黄原子および/またはセレン原子を有する(a)無機化合物と、下記(1)式で表される(b)化合物とを混合する工程と、
 該混合物を1分間~72時間、0℃~150℃で予備重合反応させる工程と、
Figure JPOXMLDOC01-appb-C000014
(aは0~4の整数、bは0~2の整数を表す)
 該予備重合させた混合物に、下記(2)式で表される(c)化合物を混合する工程と、を有し、
Figure JPOXMLDOC01-appb-C000015
(cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
 前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする樹脂用組成物の製造方法である。
 本発明の更に別の一実施形態は、硫黄原子および/またはセレン原子を有する(a)無機化合物と、下記(1)式で表される(b)化合物と、
Figure JPOXMLDOC01-appb-C000016
(aは0~4の整数、bは0~2の整数を表す)
 下記(2)式で表される(c)化合物とを混合する工程と、
 該混合物を1分間~72時間、0℃~150℃で予備重合反応させる工程と、を有し
Figure JPOXMLDOC01-appb-C000017
(cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
 前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする樹脂用組成物の製造方法である。
 本発明の更に別の一実施形態は、硫黄原子および/またはセレン原子を有する(a)無機化合物と、下記(1)式で表される(b)化合物と、
Figure JPOXMLDOC01-appb-C000018
(aは0~4の整数、bは0~2の整数を表す)
 下記(2)式で表される(c)化合物とを混合する工程と、
 該混合物を1分間~72時間、0℃~150℃で予備重合反応させる工程と、
 該予備重合させた混合物に、更に下記(2)式で表される(c)化合物を混合する工程と、を有し
Figure JPOXMLDOC01-appb-C000019
(cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
 前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量の合計が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする樹脂用組成物の製造方法である。
 本発明の樹脂用組成物の製造方法は、更に、0.005~250torrの減圧下、1分間~24時間、0℃~100℃で脱気処理する工程を有する態様が好ましい。
 本発明の更に別の一実施形態は、上記樹脂用組成物の製造方法によって得られた樹脂用組成物を重合硬化することを特徴とする光学材料の製造方法である。
 本発明の更に別の一実施形態は、上記樹脂用組成物を含有する光学材料であって、該光学材料の屈折率が1.76以上であることを特徴とする光学材料である。
 本発明の光学材料は、前記屈折率が1.77以上である態様が好ましい。また、本発明の光学材料は、該光学材料のアッベ数が、20~80である態様が好ましい。また、本発明の光学材料は、該光学材料の軟化点が、50~200℃である態様が好ましい。更に、本発明の光学材料は、該光学材料の色調(YI値)が、0~10である態様が好ましい。
 本発明の更に別の一実施形態は、上記光学材料からなる光学レンズである。
 本発明の更に別の一実施形態は、1.76以上の屈折率を有する光学材料を製造するための組成物の使用であって、該組成物が、硫黄原子および/またはセレン原子を有する(a)無機化合物、下記(1)式で表される(b)化合物および
Figure JPOXMLDOC01-appb-C000020
(aは0~4の整数、bは0~2の整数を表す)
下記(2)式で表される(c)化合物を含有し、
Figure JPOXMLDOC01-appb-C000021
(cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
 前記(a)化合物の含有量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の含有量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の含有量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部である、前記組成物の使用である。
 本発明の更に別の一実施形態は、光学レンズの製造に用いられ、予備重合および脱気処理された樹脂用組成物の粘度を10~200mPa・sの範囲に下げるための化合物の使用であって、該化合物が下記(2)式で表される化合物である、前記化合物の使用である。
Figure JPOXMLDOC01-appb-C000022
(cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
 従来、得られた光学材料の屈折率は1.76程度が限界であったが、本発明の好ましい態様によれば、光学材料の屈折率を1.78程度まで向上させることができるという顕著な効果を有する。しかも、本発明の好ましい態様によれば、上記(2)式で表される化合物を特定量含有させることにより、硫黄原子および/またはセレン原子を有する無機化合物を含む樹脂用組成物の粘度を低下させて注型重合操作を容易にするという優れた効果も有する。
 以下、本発明について更に詳細に説明する。
 本発明において、硫黄原子および/またはセレン原子を有する(a)無機化合物は、硫黄原子および/またはセレン原子を1個以上有する全ての無機化合物を包含する。ここでいう無機化合物とは、「標準化学用語辞典」(日本化学会編(1991)丸善)に記載されている通りとする。
 (a)化合物の内、硫黄原子を有する無機化合物の具体例としては、例えば、硫黄、硫化水素、二硫化炭素、セレノ硫化炭素、硫化アンモニウム;二酸化硫黄、三酸化硫黄等の硫黄酸化物;チオ炭酸塩、硫酸およびその塩、硫酸水素塩、亜硫酸塩、次亜硫酸塩、過硫酸塩、チオシアン酸塩、チオ硫酸塩;二塩化硫黄、塩化チオニル、チオホスゲン等のハロゲン化物;硫化硼素、硫化窒素、硫化珪素、硫化リン、硫化砒素、金属硫化物、金属水硫化物等が挙げられる。これらの中で好ましいものは硫黄、二硫化炭素、硫化リン、硫化セレン、金属硫化物および金属水硫化物であり、より好ましくは硫黄、二硫化炭素および硫化セレンであり、特に好ましくは硫黄である。
 セレン原子を有する無機化合物の具体例としては、例えば、セレン、セレン化水素、二セレン化炭素、セレン化アンモニウム;二酸化セレン等のセレン酸化物;セレン酸およびその塩、亜セレン酸およびその塩、セレン酸水素塩、セレノ硫酸およびその塩、セレノピロ硫酸およびその塩;四臭化セレン、オキシ塩化セレン等のハロゲン化物;セレノシアン酸塩、セレン化硼素、セレン化リン、セレン化砒素、金属のセレン化物等が挙げられる。これらの中で好ましいものは、セレン、二セレン化炭素、セレン化リン、金属のセレン化物であり、特に好ましくはセレンおよび二セレン化炭素である。これら硫黄原子およびセレン原子を有する無機化合物は、単独でも、2種類以上を混合して使用しても良い。 (b)化合物は、下記(1)式で表される化合物である。
Figure JPOXMLDOC01-appb-C000023
 式中、aは0~4の整数を表し、好ましくは0~2を表す。bは0~2の整数を表し、好ましくは0~1を表す。
 (b)化合物の具体例としては、例えば、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、ビス(β-エピチオプロピルチオエチル)スルフィドなどのエピスルフィド類が挙げられる。(b)化合物は単独でも、2種類以上を混合して用いても構わない。中でも好ましい具体例は、ビス(β-エピチオプロピル)スルフィドおよびビス(β-エピチオプロピル)ジスルフィドであり、最も好ましい化合物は、ビス(β-エピチオプロピル)スルフィドである。
 上記(1)式で表される化合物の製造方法としては、E.P.Adamsら著のJ.Chem.Soc.2665頁(1960年)、特許3491660号公報などに記載の公知の方法が挙げられる。
 (a)化合物の混合割合は、樹脂用組成物中30重量%以上であることが好ましい。この割合が、30重量%未満である場合、得られた光学材料の高屈折率化が達成されない。(a)化合物の添加量は、(a)および(b)化合物の合計を100重量部とした場合、1~50重量部使用するが、好ましくは5~50重量部、より好ましくは10~45重量部、特に好ましくは15~40重量部、最も好ましくは20~35重量部である。目的とする光学材料の屈折率としては、好ましくは1.72以上、より好ましくは1.74以上、更に好ましくは1.76以上、特に好ましくは1.77以上、最も好ましくは1.78以上であり、高屈折率になるほど本発明の効果が顕著に現れる。
 (b)化合物の添加量は、(a)および(b)化合物の合計を100重量部とした場合、50~99重量部使用するが、好ましくは50~95重量部、より好ましくは60~90重量部、特に好ましくは65~85重量部、最も好ましくは70~80重量部である。
 (c)化合物は、下記(2)式で表される化合物である。
Figure JPOXMLDOC01-appb-C000024
 式中、cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す。芳香環としては、例えば、ベンゼン、チオフェン、ナフタレンおよびこれらの誘導体等が挙げられる。
 特に、cおよびdは0であることが好ましい。eは1~5の整数であることが好ましく、1または2であることがより好ましく、1であることが特に好ましい。Rは、H、SHまたはCHSHであることが好ましく、Hであることがより好ましい。
 (c)化合物の具体例としては、例えば、ビス(メルカプトメチル)ジスルフィド、ビス(ジメルカプトメチル)ジスルフィド、ビス(1,2-ジメルカプトエチル)ジスルフィド、ビス(2-メルカプト-2-フェニルメチル)ジスルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(2,2-ジメルカプトエチル)ジスルフィド、ビス(2,3-ジメルカプトプロピル)ジスルフィド、ビス(2-メルカプト-2-フェニルエチル)ジスルフィド、(メルカプトメチル)(メルカプトエチル)ジスルフィド、(ジメルカプトメチル)(ジメルカプトエチル)ジスルフィド、等が挙げられる。中でも好ましい具体例は、ビス(メルカプトメチル)ジスルフィドおよびビス(ジメルカプトメチル)ジスルフィドであり、最も好ましい具体例は、ビス(メルカプトメチル)ジスルフィドである。(c)化合物は単独でも、2種類以上を混合して用いても構わない。
 本発明者らは、(a)化合物と(b)化合物からなる樹脂用組成物の低粘度化および該組成物から色調が良好な光学材料を得るために鋭意検討した結果、上記(2)式で表される(c)化合物を特定量添加してなる樹脂用組成物が効果的であることを見出した。 一方、特開2004-137481号公報などで推奨されているSH基を2個以上有する化合物では、低粘度な樹脂用組成物が得られない場合があった。また、特開2006-348285号公報、特開2006-348286号公報、および特開2006-348289号公報などで推奨されているSH基を1個有する化合物やジスルフィド結合を1個以上有する化合物やNH基および/またはNH基を1個以上有する化合物では、低粘度な樹脂用組成物が得られる場合があるが、重合硬化して得られた光学材料の色調が大幅に悪化するという問題があった。上記従来公知の文献には、上記(2)式で表される化合物を特定量含有させることにより、硫黄原子および/またはセレン原子を有する無機化合物を含む樹脂用組成物の粘度を低下させて注型重合操作を容易にするという優れた発明概念に関しては全く記載されていない。また、これまでに得られた光学材料の屈折率は1.76程度が限界であったが、本発明の好ましい態様では、得られる光学材料の屈折率は1.78程度まで向上しており、驚くべきことである。
 上記(2)式で表される(c)化合物の製造方法としては、数多ある公知のジスルフィド化合物の合成手法が適用可能である。それらの中でも、日本化学会編丸善株式会社発行、実験科学講座17有機化合物の合成I(上)、214頁(1957年)などで一般的に知られている下記(3)式で示されるメルカプタンの酸化反応による製造方法が簡便である。
Figure JPOXMLDOC01-appb-C000025
 式中、cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す。
 (c)化合物の添加量は、(a)および(b)化合物の合計を100重量部とした場合、1~50重量部使用するが、好ましくは2~40重量部、より好ましくは3~30重量部、特に好ましくは4~25重量部、最も好ましくは5~20重量部である。
 本発明の目的とする低粘度な樹脂用組成物とは、注型重合操作が良好に行える粘度であれば特に制限はないが、好ましくは粘度300mPa・s以下、より好ましくは粘度200mPa・s以下、特に好ましくは粘度140mPa・s以下であり、下限値は通常10mPa・s程度である。通常、粘度200mPa・s以下では注型重合操作が可能であり、粘度300mPa・sを超えると注型重合操作(ろ過:通常、孔径0.01~10μmのフィルターを使用)が困難となり、粘度500mPa・sを超えると注型重合操作(ろ過)が不可能となる。ここで言う粘度とは、後述する実施例の欄で記載された方法で測定することができる。
 本発明の目的とする光学材料の良好な色調とは、外観が無色透明であれば特に制限はないが、好ましくはYI値(黄色度を表す指数、2.5mm厚)が10以下、より好ましくは5以下である。YI値の下限値は通常0程度である。通常、YI値が5以下ではブルーイング剤などの添加により、外観を無色透明とすることが容易であるが、YI値が20を超えると困難となる。ここで言うYI値とは、後述する実施例の欄で記載された方法で測定することができる。
 本発明の樹脂用組成物を用いて得られる光学材料は、耐熱性の指標である軟化点が50~200℃であることが好ましく、70~200℃であることがより好ましい。軟化点が50℃以上であると、コーティングや染色など加熱を伴うレンズの後加工での変形が少なく好ましい。ここで言う軟化点とは、後述する実施例の欄で記載された方法で測定することができる。
 また、本発明の樹脂用組成物を用いて得られる光学材料は、アッベ数が20~80であることが好ましく、30~70であることがより好ましい。アッベ数が20以上であると、色のにじみが少なく見えやすくなることから好ましい。ここで言うアッベ数とは、後述する実施例の欄で記載された方法で測定することができる。
 本発明の樹脂用組成物を重合硬化する際には、必要に応じて(d)重合触媒を添加することができる。重合触媒としては、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、アルデヒドとアミン系化合物の縮合物、カルボン酸とアンモニアとの塩、ウレタン類、チオウレタン類、グアニジン類、チオ尿素類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ系化合物、酸性リン酸エステル類を挙げることができる。以下に、(d)化合物の代表的な具体例を示す。
 (1)エチルアミン、n-プロピルアミン、sec-プロピルアミン、n-ブチルアミン、sec-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミン、ミスチリルアミン、1,2-ジメチルヘキシルアミン、3-ペンチルアミン、2-エチルヘキシルアミン、アリルアミン、アミノエタノール、1-アミノプロパノール、2-アミノプロパノール、アミノブタノール、アミノペンタノール、アミノヘキサノール、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-(2-エチルヘキシロキシ)プロピルアミン、アミノシクロペンタン、アミノシクロヘキサン、アミノノルボルネン、アミノメチルシクロヘキサン、アミノベンゼン、ベンジルアミン、フェネチルアミン、α-フェニルエチルアミン、ナフチルアミン、フルフリルアミン等の1級アミン;エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ビス-(3-アミノプロピル)エーテル、1,2-ビス-(3-アミノプロポキシ)エタン、1,3-ビス-(3-アミノプロポキシ)-2,2’-ジメチルプロパン、アミノエチルエタノールアミン、1,2-、1,3-あるいは1,4-ビスアミノシクロヘキサン、1,3-あるいは1,4-ビスアミノメチルシクロヘキサン、1,3-あるいは1,4-ビスアミノエチルシクロヘキサン、1,3-あるいは1,4-ビスアミノプロピルシクロヘキサン、水添4,4’-ジアミノジフェニルメタン、2-あるいは4-アミノピペリジン、2-あるいは4-アミノメチルピペリジン、2-あるいは4-アミノエチルピペリジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、イソホロンジアミン、メンタンジアミン、1,4-ビスアミノプロピルピペラジン、o-、m-、あるいはp-フェニレンジアミン、2,4-あるいは2,6-トリレンジアミン、2,4-トルエンジアミン、m-アミノベンジルアミン、4-クロロ-o-フェニレンジアミン、テトラクロロ-p-キシリレンジアミン、4-メトキシ-6-メチル-m-フェニレンジアミン、m-、あるいはp-キシリレンジアミン、1,5-あるいは、2,6-ナフタレンジアミン、ベンジジン、4,4’-ビス(o-トルイジン)、ジアニシジン、4,4’-ジアミノジフェニルメタン、2,2-(4,4’-ジアミノジフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-チオジアニリン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジトリルスルホン、メチレンビス(o-クロロアニリン)、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ジエチレントリアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、1,4-ビス(アミノエチルピペラジン)、1,4-ビス(アミノプロピルピペラジン)、2,6-ジアミノピリジン、ビス(3,4-ジアミノフェニル)スルホン等の1級ポリアミン;ジエチルアミン、ジプロピルアミン、ジ-n-ブチルアミン、ジ-sec-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジ-3-ペンチルアミン、ジヘキシルアミン、オクチルアミン、ジ(2-エチルヘキシル)アミン、メチルヘキシルアミン、ジアリルアミン、ピロリジン、ピペリジン、2-、3-、4-ピコリン、2,4-、2,6-、3,5-ルペチジン、ジフェニルアミン、N-メチルアニリン、N-エチルアニリン、ジベンジルアミン、メチルベンジルアミン、ジナフチルアミン、ピロール、インドリン、インドール、モルホリン等の2級アミン;N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,6-ジアミノヘキサン、ピペラジン、2-メチルピペラジン、2,5-あるいは2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)メタン、1,2-ジ-(4-ピペリジル)エタン、1,3-ジ-(4-ピペリジル)プロパン、1,4-ジ-(4-ピペリジル)ブタン、テトラメチルグアニジン等の2級ポリアミン;トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-iso-プロピルアミン、トリ-1,2-ジメチルプロピルアミン、トリ-3-メトキシプロピルアミン、トリ-n-ブチルアミン、トリ-iso-ブチルアミン、トリ-sec-ブチルアミン、トリ-ペンチルアミン、トリ-3-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、トリ-2-エチルヘキシルアミン、トリ-ドデシルアミン、トリ-ラウリルアミン、ジシクロヘキシルエチルアミン、シクロヘキシルジエチルアミン、トリ-シクロヘキシルアミン、N,N-ジメチルヘキシルアミン、N-メチルジヘキシルアミン、N,N-ジメチルシクロヘキシルアミン、N-メチルジシクロヘキシルアミン、N、N-ジエチルエタノールアミン、N、N-ジメチルエタノールアミン、N-エチルジエタノールアミン、トリエタノールアミン、トリベンジルアミン、N,N-ジメチルベンジルアミン、ジエチルベンジルアミン、トリフェニルアミン、N,N-ジメチルアミノ-p-クレゾール、N,N-ジメチルアミノメチルフェノール、2-(N,N-ジメチルアミノメチル)フェノール、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ピリジン、キノリン、N-メチルモルホリン、N-メチルピペリジン、2-(2-ジメチルアミノエトキシ)-4-メチル-1,3,2-ジオキサボルナン等の3級アミン;テトラメチルエチレンジアミン、ピラジン、N,N’-ジメチルピペラジン、N,N’-ビス((2-ヒドロキシ)プロピル)ピペラジン、ヘキサメチレンテトラミン、N,N,N’,N’-テトラメチル-1,3-ブタンアミン、2-ジメチルアミノ-2-ヒドロキシプロパン、ジエチルアミノエタノール、N,N,N-トリス(3-ジメチルアミノプロピル)アミン、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、ヘプタメチルイソビグアニド等の3級ポリアミン;イミダゾール、N-メチルイミダゾール、2-メチルイミダゾール、4-メチルイミダゾール、N-エチルイミダゾール、2-エチルイミダゾール、4-エチルイミダゾール、N-ブチルイミダゾール、2-ブチルイミダゾール、N-ウンデシルイミダゾール、2-ウンデシルイミダゾール、N-フェニルイミダゾール、2-フェニルイミダゾール、N-ベンジルイミダゾール、2-ベンジルイミダゾール、1-ベンジル-2-メチルイミダゾール、N-(2’-シアノエチル)-2-メチルイミダゾール、N-(2’-シアノエチル)-2-ウンデシルイミダゾール、N-(2’-シアノエチル)-2-フェニルイミダゾール、3,3-ビス-(2-エチル-4-メチルイミダゾリル)メタン、2-メルカプトイミダゾール、2-メルカプト-1-メチルイミダゾール、2-メルカプトベンゾイミダゾール、3-メルカプト-4-メチル-4H-1,2,4-トリアゾール、5-メルカプト-1-メチル-テトラゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、アルキルイミダゾールとイソシアヌール酸の付加物、アルキルイミダゾールとホルムアルデヒドの縮合物等のイミダゾール類;3,5-ジメチルピラゾール、3,5-ジ(2-ピリジル)ピラゾール、3,5-ジメチル-1-ヒドロキシメチルピラゾール、3,5-ジイソプロピルピラゾール、3,5-ジメチル-1-フェニルピラゾール、3-メチルピラゾール、4-メチルピラゾール、N-メチルピラゾール、5-(チエニル)ピラゾール等のピラゾール類;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、1,5-ジアザビシクロ(4,3,0)ノネン-5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)ウンデセン-7等のアミジン類;等に代表されるアミン系化合物。
(2)トリメチルホスフィン、トリエチルホスフィン、トリ-iso-プロピルホスフィン、トリ-n-ブチルホスフィン、トリ-n-ヘキシルホスフィン、トリ-n-オクチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリベンジルホスフィン、トリス(2-メチルフェニル)ホスフィン、トリス(3-メチルフェニル)ホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(ジエチルアミノ)ホスフィン、トリス(4-メチルフェニル)ホスフィン、ジメチルフェニルホスフィン、ジエチルフェニルホスフィン、ジシクロヘキシルフェニルホスフィン、エチルジフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、クロロジフェニルホスフィン等のホスフィン類。
(3)テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムアセテート、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムフルオライド、テトラ-n-ブチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムブロマイド、テトラ-n-ブチルアンモニウムヨーダイド、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムボロハイドライド、テトラ-n-ブチルアンモニウムヘキサフルオロホスファイト、テトラ-n-ブチルアンモニウムハイドロゲンサルファイト、テトラ-n-ブチルアンモニウムテトラフルオロボーレート、テトラ-n-ブチルアンモニウムテトラフェニルボーレート、テトラ-n-ブチルアンモニウムパラトルエンスルフォネート、テトラ-n-ヘキシルアンモニウムクロライド、テトラ-n-ヘキシルアンモニウムブロマイド、テトラ-n-ヘキシルアンモニウムアセテート、テトラ-n-オクチルアンモニウムクロライド、テトラ-n-オクチルアンモニウムブロマイド、テトラ-n-オクチルアンモニウムアセテート、トリメチル-n-オクチルアンモニウムクロライド、トリメチルデシルアンモニウムクロライド、トリメチルドデシルアンモニウムクロライド、トリメチルセチルアンモニウムクロライド、トリメチルラウリルアンモニウムクロライド、トリメチルベンジルアンモニウムクロライド、トリメチルベンジルアンモニウムブロマイド、トリエチル-n-オクチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムブロマイド、トリ-n-ブチル-n-オクチルアンモニウムクロライド、トリ-n-ブチルベンジルアンモニウムフルオライド、トリ-n-ブチルベンジルアンモニウムクロライド、トリ-n-ブチルベンジルアンモニウムブロマイド、トリ-n-ブチルベンジルアンモニウムヨーダイド、n-ブチルジメチルベンジルアンモニウムクロライド、n-オクチルジメチルベンジルアンモニウムクロライド、デシルジメチルベンジルアンモニウムクロライド、ドデシルジメチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド、メチルトリフェニルアンモニウムクロライド、メチルトリベンジルアンモニウムクロライド、メチルトリフェニルアンモニウムブロマイド、メチルトリベンジルアンモニウムブロマイド、エチルトリフェニルアンモニウムクロライド、エチルトリベンジルアンモニウムクロライド、エチルトリフェニルアンモニウムブロマイド、エチルトリベンジルアンモニウムブロマイド、n-ブチルトリフェニルアンモニウムクロライド、n-ブチルトリベンジルアンモニウムクロライド、n-ブチルトリフェニルアンモニウムブロマイド、n-ブチルトリベンジルアンモニウムブロマイド、1-メチルピリジニウムクロライド、1-メチルピリジニウムブロマイド、1-エチルピリジニウムクロライド、1-エチルピリジニウムブロマイド、1-n-ブチルピリジニウムクロライド、1-n-ブチルピリジニウムブロマイド、1-n-ヘキシルピリジニウムクロライド、1-n-ヘキシルピリジニウムブロマイド、1-n-オクチルピリジニウムブロマイド、1-n-ドデシルピリジニウムクロライド、1-n-ドデシルピリジニウムブロマイド、1-n-セチルピリジニウムクロライド、1-n-セチルピリジニウムブロマイド、1-フェニルピリジニウムクロライド、1-フェニルピリジニウムブロマイド、1-ベンジルピリジニウムクロライド、1-ベンジルピリジニウムブロマイド、1-メチルピコリニウムクロライド、1-メチルピコリニウムブロマイド、1-エチルピコリニウムクロライド、1-エチルピコリニウムブロマイド、1-n-ブチルピコリニウムクロライド、1-n-ブチルピコリニウムブロマイド、1-n-ヘキシルピコリニウムクロライド、1-n-ヘキシルピコリニウムブロマイド、1-n-オクチルピコリニウムクロライド、1-n-オクチルピコリニウムブロマイド、1-n-ドデシルピコリニウムクロライド、1-n-ドデシルピコリニウムブロマイド、1-n-セチルピコリニウムクロライド、1-n-セチルピコリニウムブロマイド、1-フェニルピコリニウムクロライド、1-フェニルピコリニウムブロマイド1-ベンジルピコリニウムクロライド、1-ベンジルピコリニウムブロマイド等の第4級アンモニウム塩類。
(4)テトラメチルホスホニウムクロライド、テトラメチルホスホニウムブロマイド、テトラエチルホスホニウムクロライド、テトラエチルホスホニウムブロマイド、テトラ-n-ブチルホスホニウムクロライド、テトラ-n-ブチルホスホニウムブロマイド、テトラ-n-ブチルホスホニウムヨーダイド、テトラ-n-ヘキシルホスホニウムブロマイド、テトラ-n-オクチルホスホニウムブロマイド、メチルトリフェニルホスホニウムブロマイド、メチルトリフェニルホスホニウムヨーダイド、エチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムヨーダイド、n-ブチルトリフェニルホスホニウムブロマイド、n-ブチルトリフェニルホスホニウムヨーダイド、n-ヘキシルトリフェニルホスホニウムブロマイド、n-オクチルトリフェニルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、テトラキスヒドロキシメチルホスホニウムクロライド、テトラキスヒドロキシメチルホスホニウムブロマイド、テトラキスヒドロキシエチルホスホニウムクロライド、テトラキスヒドロキシブチルホスホニウムクロライド等の第4級ホスホニウム塩類。
(5)アセトアルデヒドとアンモニアの反応物、ホルムアルデヒドとパライルイジンの縮合物、アセトアルデヒドとパライルイジンの縮合物、ホルムアルデヒドとアニリンの反応物、アセトアルデヒドとアニリンの反応物、ブチルアルデヒドとアニリンの反応物、ホルムアルデヒドとアセトアルデヒドとアニリンの反応物、アセトアルデヒドとブチルアルデヒドとアニリンの反応物、ブチルアルデヒドとモノブチルアミンの縮合物、ブチルアルデヒドとブチリデンアニリンの反応物、ヘプトアルデヒドとアニリンの反応物、トリクロトニリデン-テトラミンの反応物、α-エチル-β-プロピルアクロレインとアニリンの縮合物、ホルムアルデヒドとアルキルイミダゾールの縮合物等のアルデヒドとアミン系化合物の縮合物。
(6)酢酸アンモニウム、安息香酸アンモニウム、カルバミン酸アンモニウム、アンモニウムトリフルオロアセテート等のカルボン酸とアンモニアとの塩類。
(7)アルコールとイソシアネートの反応により得られるウレタン類。
(8)メルカプタンとイソシアネートの反応により得られるチオウレタン類。
(9)ジフェニルグアニジン、フェニルトリルグアニジン、フェニルキシリルグアニジン、トリルキシリルグアニジン、ジオルトトリルグアニジン、オルトトリルグアニド、ジフェニルグアニジンフタレート、テトラメチルグアニジン、グアニジンチオシアネート、トリフェニルグアニジン、アミノグアニジン硫酸塩、1,3-ジフェニルグアニジン硫酸塩、ジカテコールホウ酸のジオルトトリルグアニジン塩等のグアニジン類。
(10)チオカルボアニリド、ジオルトトリルチオ尿素、エチレンチオ尿素、ジエチルチオ尿素、ジブチルチオ尿素、ジラウリルチオ尿素、トリメチルチオ尿素、ジメチルエチルチオ尿素、テトラメチルチオ尿素、1,3-ジフェニル-2-チオ尿素、1-アリル-2-チオ尿素、グアニルチオ尿素等のチオ尿素類。
(11)2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(モルホリノジチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、N,N-ジエチルチオカルバモイル-2-ベンゾチアゾリルスルフィド、1,3-ビス(2-ベンゾチアゾリルメルカプトメチル)尿素、ベンゾチアジアジルチオベンゾエート、2-メルカプトチアゾリン、2-メルカプト-5-メチル-1,3,4-チアジアゾール、2-メルカプト-5-メチルチオ-1,3,4-チアジアゾール、2-(モルホリノチオ)ベンゾチアゾール、2-メルカプトベンゾチアゾールのナトリウム塩、2-メルカプトベンゾチアゾールの亜鉛塩、ジベンゾチアジルジスルフィドと塩化亜鉛の錯塩等のチアゾール類。
(12)N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-tert-ブチル-2-ベンゾチアジルスルフェンアミド、N-tert-オクチル-2-ベンゾチアジルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアジルスルフェンアミド、N,N-ジエチル-2-ベンゾチアジルスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアジルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド類。
(13)テトラメチルチウラムモノスルフィド、テトラエチルチウラムモノスルフィド、テトラブチルチウラムモノスルフィド、ジペンタメチレンチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、N,N’-ジメチル-N,N’-ジフェニルチウラムジスルフィド、N,N’-ジエチル-N,N’-ジフェニルチウラムジスルフィド、ジペンタメチレンチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド、環状チウラム等のチウラム類。
(14)ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジブチルジチオカルバミン酸ナトリウム、ペンタメチレンジチオカルバミン酸ナトリウム、シクロヘキシルエチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸カリウム、ジメチルジチオカルバミン酸鉛、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、ジフェニルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ペンタメチレンジチオカルバミン酸亜鉛、ジメチルペンタメチレンジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ビスマス、ジエチルジチオカルバミン酸カドミウム、ペンタメチレンジチオカルバミン酸カドミウム、ジメチルジチオカルバミン酸セレン、ジエチルジチオカルバミン酸セレン、ジメチルジチオカルバミン酸テルル、ジエチルジチオカルバミン酸テルル、ジメチルジチオカルバミン酸鉄、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸ジエチルアンモニウム、ジブチルジチオカルバミン酸N,N-シクロヘキシルアンモニウム、ペンタメチレンジチオカルバミン酸ピペリジン、シクロヘキシルエチルジチオカルバミン酸シクロヘキシルエチルアンモニウムナトリウム、メチルペンタメチレンジチオカルバミン酸ピペコリン、ピペコリルジチオカルバミン酸ピペコリウム、N-フェニルジチオカルバミン酸亜鉛、ペンタメチレンジチオカルバミン酸亜鉛とピペリジンの錯化合物等のジチオカルバミン酸塩類。
(15)イソプロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛、ジブチルキサントゲン酸ジスルフィド等のキサントゲン酸塩類。
(16)トリメチルスルホニウムブロマイド、トリエチルスルホニウムブロマイド、トリ-n-ブチルスルホニウムクロライド、トリ-n-ブチルスルホニウムブロマイド、トリ-n-ブチルスルホニウムヨーダイド、トリ-n-ブチルスルホニウムテトラフルオロボーレート、トリ-n-ヘキシルスルホニウムブロマイド、トリ-n-オクチルスルホニウムブロマイド、トリフェニルスルホニウムクロライド、トリフェニルスルホニウムブロマイド、トリフェニルスルホニウムヨーダイド等の第3級スルホニウム塩類。
(17)ジフェニルヨードニウムクロライド、ジフェニルヨードニウムブロマイド、ジフェニルヨードニウムヨーダイド等の第2級ヨードニウム塩類。
(18)塩酸、硫酸、硝酸、燐酸、炭酸等の鉱酸類およびこれらの半エステル類。
(19)3フッ化硼素、3フッ化硼素のエーテラート等に代表されるルイス酸類。
(20)有機酸類およびこれらの半エステル類。
(21)ケイ酸、四フッ化ホウ酸。
(22)クミルパーオキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、ジアリルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、クミルパーオキシネオヘキサノエート、tert-ヘキシルパーオキシネオデカノエート、tert-ブチルパーオキシネオデカノエート、tert-ヘキシルパーオキシネオヘキサノエート、tert-ブチルパーオキシネオヘキサノエート、2,4-ジクロロベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-ter-ブチルパーオキサイド等のパーオキサイド類;クメンヒドロパーオキサイド、tert-ブチルヒドロパーオキサイド等の過酸化物類。
(23)2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-〔(1-シアノ-1-メチルエチル)アゾ〕ホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチル-バレロニトリル2、2’-アゾビス(2-メチルプロパン)、2、2’-アゾビス(2、4、4-トリメチルペンタン)等のアゾ系化合物類。
(24)モノ-および/またはジメチルリン酸、モノ-および/またはジエチルリン酸、モノ-および/またはジプロピルリン酸、モノ-および/またはジブチルリン酸、モノ-および/またはジヘキシルリン酸、モノ-および/またはジオクチルリン酸、モノ-および/またはジデシルリン酸、モノ-および/またはジドデシルリン酸、モノ-および/またはジフェニルリン酸、モノ-および/またはジベンジルリン酸、モノ-および/またはジデカノ-ルリン酸等の酸性リン酸エステル類。
 以上、(d)化合物を例示したが、重合硬化を発現するものであれば、これら列記化合物に限定されるものではない。また、これら(d)化合物は単独でも2種類以上を混合して使用しても構わない。これらのうち好ましい具体例は、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1-n-ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。これらの中で、さらに好ましい具体例は、トリエチルベンジルアンモニウムクロライドおよびテトラ-n-ブチルホスホニウムブロマイドであり、最も好ましい具体例は、テトラ-n-ブチルホスホニウムブロマイドである。
 (d)化合物の添加量は、(a)および(b)化合物の合計100重量部に対して、0.001~5重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
 樹脂用組成物を重合硬化する際に、ポットライフの延長や重合発熱の分散化などを目的として、必要に応じて重合調整剤である(e)化合物を添加することができる。重合調整剤は、長期周期律表における第13~16族のハロゲン化物を挙げることができる。以下にこれらの代表的な具体例を示す。
(1)四塩化ケイ素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、エチルトリクロロシラン、ジエチルジクロロシラン、トリエチルクロロシラン、プロピルトリクロロシラン、ジプロピルジクロロシラン、トリプロピルクロロシラン、n-ブチルトリクロロシラン、ジn-ブチルジクロロシラン、トリn-ブチルクロロシラン、t-ブチルトリクロロシラン、ジt-ブチルジクロロシラン、トリt-ブチルクロロシラン、オクチルトリクロロシラン、ジオクチルジクロロシラン、トリオクチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、トリフェニルクロロシラン、アリルクロロジメチルシラン、トリクロロアリルシラン、t-ブチルクロロジメチルシラン、ジフェニルーt-ブチルクロロシラン、t-ブトキシクロロジフェニルシラン、トリメチル(2-クロロアリル)シラン、トリメチルクロロメチルシラン、n-ブチルクロロジメチルシラン、およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えた化合物等のシランのハロゲン化物。
(2)四塩化ゲルマニウム、メチルゲルマニウムトリクロライド、ジメチルゲルマニウムジクロライド、トリメチルゲルマニウムクロライド、エチルゲルマニウムトリクロライド、ジエチルゲルマニウムジクロライド、トリエチルゲルマニウムクロライド、プロピルゲルマニウムトリクロライド、ジプロピルゲルマニウムジクロライド、トリプロピルゲルマニウムクロライド、n-ブチルゲルマニウムトリクロライド、ジn-ブチルゲルマニウムジクロライド、トリn-ブチルゲルマニウムクロライド、t-ブチルゲルマニウムトリクロライド、ジt-ブチルゲルマニウムジクロライド、トリt-ブチルゲルマニウムクロライド、アミルゲルマニウムトリクロライド、ジアミルゲルマニウムジクロライド、トリアミルゲルマニウムクロライド、オクチルゲルマニウムトリクロライド、ジオクチルゲルマニウムジクロライド、トリオクチルゲルマニウムクロライド、フェニルゲルマニウムトリクロライド、ジフェニルゲルマニウムジクロライド、トリフェニルゲルマニウムクロライド、トルイルゲルマニウムトリクロライド、ジトルイルゲルマニウムジクロライド、トリトルイルゲルマニウムクロライド、ベンジルゲルマニウムトリクロライド、ジベンジルゲルマニウムジクロライド、トリベンジルゲルマニウムクロライド、シクロヘキシルゲルマニウムトリクロライド、ジシクロヘキシルゲルマニウムジクロライド、トリシクロヘキシルゲルマニウムクロライド、ビニルゲルマニウムトリクロライド、ジビニルゲルマニウムジクロライド、トリビニルゲルマニウムクロライド、アリルトリクロロゲルマン、ビス(クロロメチル)ジメチルゲルマン、クロロメチルトリクロロゲルマン、t-ブチルジメチルクロロゲルマン、カルボキシエチルトリクロロゲルマン、クロロメチルトリメチルゲルマン、ジクロロメチルトリメチルゲルマン、3-クロロプロピルトリクロロゲルマン、フェニルジメチルクロロゲルマン、3-(トリクロロゲルミル)プロピオニルクロライド、およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えた化合物等のゲルマニウムのハロゲン化物。
(3)四塩化スズ、ジエチルジクロロシラン、ジメチルスズジクロライド、トリメチルスズクロライド、エチルスズトリクロライド、ジエチルスズジクロライド、トリエチルスズクロライド、プロピルスズトリクロライド、ジプロピルスズジクロライド、トリプロピルスズクロライド、n-ブチルスズトリクロライド、ジn-ブチルスズジクロライド、トリn-ブチルスズクロライド、t-ブチルスズトリクロライド、ジt-ブチルスズジクロライド、トリt-ブチルスズクロライド、アミルスズトリクロライド、ジアミルスズジクロライド、トリアミルスズクロライド、オクチルスズトリクロライド、ジオクチルスズジクロライド、トリオクチルスズクロライド、フェニルスズトリクロライド、ジフェニルスズジクロライド、トリフェニルスズクロライド、トルイルスズトリクロライド、ジトルイルスズジクロライド、トリトルイルスズクロライド、ベンジルスズトリクロライド、ジベンジルスズジクロライド、トリベンジルスズクロライド、シクロヘキシルスズトリクロライド、ジシクロヘキシルスズジクロライド、トリシクロヘキシルスズクロライド、ビニルスズトリクロライド、ジビニルスズジクロライド、トリビニルスズクロライド、ブチルクロロジヒドロキシスズ、ビス(2,4-ペンタジオナート)ジクロロスズ、カルボメトキシエチルトリクロロスズ、クロロメチルトリメチルスズ、ジアリルジクロロスズ、ジブチルブトキシクロロスズ、トリn-ペンチルクロロスズ、およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えた化合物等のスズのハロゲン化物。
(4)五塩化アンチモン、メチルアンチモンテトラクロライド、ジメチルアンチモントリクロライド、トリメチルアンチモンジクロライド、テトラメチルアンチモンクロライド、エチルアンチモンテトラクロライド、ジエチルアンチモントリクロライド、トリエチルアンチモンジクロライド、テトラエチルアンチモンクロライド、ブチルアンチモンテトラクロライド、ジブチルアンチモントリクロライド、トリブチルアンチモンジクロライド、テトラブチルアンチモンクロライド、フェニルアンチモンテトラクロライド、ジフェニルアンチモントリクロライド、トリフェニルアンチモンジクロライド、テトラフェニルアンチモンクロライド、およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えた化合物等のアンチモンのハロゲン化物。
(5)塩化アルミニウム、塩化インジウム、塩化タリウム、三塩化リン、五塩化リン、塩化ビスマス等の塩化物およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えた化合物、ジフェニルクロロホウ素、フェニルジクロロホウ素、ジエチルクロロガリウム、ジメチルクロロインジウム、ジエチルクロロタリウム、ジフェニルクロロタリウム、エチルジクロロホスフィン、ブチルジクロロホスフィン、トリフェニルホスフィンジクロライド、ジフェニルクロロヒ素、テトラフェニルクロロヒ素、ジフェニルジクロロセレン、フェニルクロロセレン、ジフェニルジクロロテルル等のハロゲンと炭化水素基を有する化合物およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えた化合物、クロロフェノール、ジクロロフェノール、トリクロロフェノール、クロロアニリン、ジクロロアニリン、クロロニトロベンゼン、ジクロロニトロベンゼン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロアセトフェノン、クロロトルエン、クロロニトロアニリン、クロロベンジルシアナイド、クロロベンズアルデヒド、クロロベンゾトリクロライド、クロロナフタレン、ジクロロナフタレン、クロロチオフェノール、ジクロロチオフェノール、メタリルクロライド、塩化ベンジル、塩化ベンジルクロライド、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、クロロコハク酸、シュウ酸ジクロライド、トリグリコールジクロライド、メタンスルホニルクロライド、クロロ安息香酸、クロロサリチル酸、4,5-ジクロロフタル酸、3,5-ジクロロサリチル酸、イソプロピルクロライド、アリルクロライド、エピクロロヒドリン、クロロメチルチイラン、プロピレンクロロヒドリン、クロラニル、ジクロロジシアノベンゾキノン、ジクロロフェン、ジクロロ-1,4-ベンゾキノン、ジクロロベンゾフェノン、N-クロロフタルイミド、1,3-ジクロロ-2-プロパノール、2,3-ジクロロプロピオン酸メチル、p-クロロベンゼンスルホン酸、2-クロロプロピオン酸エチル、ジクロロメタン、クロロホルム、四塩化炭素等の炭化水素のハロゲン置換体や安息香酸クロライド、フタル酸クロライド、イソフタル酸クロライド、テレフタル酸クロライド、メタクリル酸クロライド、コハク酸クロライド、フマル酸クロライド、ニコチン酸クロライド、クロロニコチン酸クロライド、オレイン酸クロライド、塩化ベンゾイル、クロロベンゾイルクロライド、プロピオン酸クロライド等の酸クロライドに代表される有機ハロゲン化物およびこれらの塩素の全部または一部をフッ素、臭素、ヨウ素へ変えたその他のハロゲン化合物等が挙げられる。
 これら(e)化合物は単独でも2種類以上を混合して使用しても構わない。これらのうち好ましいものはケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物である。より好ましいものはケイ素、ゲルマニウム、スズ、アンチモンの塩化物であり、さらに好ましくはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。最も好ましいものの具体例はジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、トリフェニルアンチモンジクロライドである。
 (e)化合物の添加量は、(a)および(b)化合物の合計100重量部に対して、0.001~5重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
 本発明においては、(a)化合物と(b)化合物を混合した後、1分間~24時間、0℃~150℃で予備重合反応させることは、固体の(a)化合物をハンドリングする際には有効な手段であり、得られる光学材料の透明性も良好となる。この際に、(a)化合物と(b)化合物の反応を促進させる予備重合反応触媒を加えても構わない。予備重合反応触媒としては、前記した(d)化合物が挙げられるが、中でも窒素または燐原子を含む化合物が好ましく、窒素または燐原子を含みかつ不飽和結合を有する化合物がより好ましい。特に好ましくはイミダゾール類であり、最も好ましくは2-メルカプト-1-メチルイミダゾールである。予備重合反応触媒の添加量は、(a)と(b)化合物の合計を100重量部に対して、0.001~5重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
 (a)化合物と(b)化合物に、この両者の反応を促進させる予備重合反応触媒を加え、反応させる方法を具体的に述べる。(a)化合物と(b)化合物をそれぞれ一部または全部を予備重合反応触媒の存在または非存在下、撹拌下または非撹拌下、0℃~150℃で、1分間~72時間かけて反応させ、樹脂用組成物とする。反応時間は、1分間~72時間であり、好ましくは10分間~48時間であり、より好ましくは30分間~24時間である。反応温度は、0℃~150℃であり、好ましくは10℃~120℃であり、より好ましくは20℃~100℃である。さらには、この反応により、(a)化合物を10%以上(反応前の反応率を0%とする)反応させておくことが好ましく、20%以上反応させておくことがより好ましい。反応は、大気、窒素または酸素等の気体の存在下、常圧もしくは加減圧による密閉下、または減圧下等の任意の雰囲気下で行ってよい。また、この反応の際には、(c)化合物の一部または全部、(d)化合物、(e)化合物、後述する性能改良剤として使用する組成成分の一部もしくは全部と反応可能な化合物、紫外線吸収剤などの各種添加剤を加えて行っても構わない。また、この反応物を液体クロマトグラフィーおよび/または粘度および/または比重および/または屈折率を測定することは、反応進行度を制御し、均質な樹脂用組成物とする上で好ましい。中でも、液体クロマトグラフィーおよび/または屈折率を測定する手法が高感度であることから好ましく、さらには、屈折率を測定する手法が簡便であることからより好ましい。屈折率を測定する場合、リアルタイムで反応の進行状況を確認できることから、インライン型の屈折計を用いることが好ましい。
 耐酸化性、耐候性、染色性、強度、屈折率等の各種性能改良を目的として組成成分の化合物と一部もしくは全部と反応可能な化合物を添加して重合硬化することも可能である。この場合は、反応のために必要に応じて公知の重合触媒を別途加えることができる。
 組成成分の一部もしくは全部と反応可能な化合物として、SH基を有する化合物類、エポキシ化合物類、イソ(チオ)シアネート類、カルボン酸類、カルボン酸無水物類、フェノール類、アミン類、ビニル化合物類、アリル化合物類、アクリル化合物類、メタクリル化合物類等が挙げられる。以下にこれらの代表的な具体例を示す。
(1)ビス(2-メルカプトエチル)スルフィド、ビス(2,3-ジメルカプトプロピル)スルフィド、1,2-ビス(2-メルカプトエチルチオ)エタン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,4-ビス(メルカプトメチル)-1,5-ジメルカプト-3-チアペンタン、4,8-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,2,7-トリメルカプト-4,6-ジチアヘプタン、1,2,9-トリメルカプト-4,6,8-トリチアノナン、1,2,8,9-テトラメルカプト-4,6-ジチアノナン、1,2,10,11-テトラメルカプト-4,6,8-トリチアウンデカン、1,2,12,13-テトラメルカプト-4,6,8,10-テトラチアトリデカン、テトラキス(4-メルカプト-2-チアブチル)メタン、テトラキス(7-メルカプト-2,5-ジチアヘプチル)メタン、1,5-ジメルカプト-3-メルカプトメチルチオ-2,4-ジチアペンタン、3,7-ビス(メルカプトメチルチオ)-1,9-ジメルカプト-2,4,6,8-テトラチアノナン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、2,5-ビス(2-メルカプトエチル)-1,4-ジチアン、2,5-ビス(メルカプトメチル)-1-チアン、2,5-ビス(2-メルカプトエチル)-1-チアン、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトメチルフェニル)スルフィド、3,4-チオフェンジチオール、等のSH基を有する化合物類。
(2)エチレンオキサイド、プロピレオキサイド等のモノエポキシ化合物類、ヒドロキノン、カテコール、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールエーテル、ハロゲン化ビスフェノールA、ノボラック樹脂等の多価フェノール化合物とエピハロヒドリンの縮合により製造されるフェノール系エポキシ化合物、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1、3-プロパンジオール、1、4-ブタンジオール、1、6-ヘキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、1、3-および1、4-シクロヘキサンジオール、1、3-および1、4-シクロヘキサンジメタノール、水添ビスフェノールA、ビスフェノールA・エチレンオキサイド付加物、ビスフェノールA・プロピレンオキサイド付加物等のアルコール化合物とエピハロヒドリンの縮合により製造されるアルコール系エポキシ化合物、上述のアルコールおよびフェノール化合物とジイソシアネート等から製造されるウレタン系エポキシ化合物、酢酸、プロピオン酸、安息香酸、アジピン酸、セバチン酸、ドデカンジカルボン酸、ダイマー酸、フタル酸、イソ、テレフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ヘキサヒドロフタル酸、ヘット酸、ナジック酸、マレイン酸、コハク酸、フマール酸、トリメリット酸、ベンゼンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ナフタリンジカルボン酸、ジフェニルジカルボン酸、アクリル酸、メタクリル酸、マレイン酸、フマル酸等のカルボン酸化合物とエピハロヒドリンの縮合により製造されるグリシジルエステル系エポキシ化合物、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、ビス-(3-アミノプロピル)エーテル、1,2-ビス-(3-アミノプロポキシ)エタン、1,3-ビス-(3-アミノプロポキシ)-2,2’-ジメチルプロパン、1,2-、1,3-あるいは1,4-ビスアミノシクロヘキサン、1,3-あるいは1,4-ビスアミノメチルシクロヘキサン、1,3-あるいは1,4-ビスアミノエチルシクロヘキサン、1,3-あるいは1,4-ビスアミノプロピルシクロヘキサン、水添4,4’-ジアミノジフェニルメタン、イソホロンジアミン、1,4-ビスアミノプロピルピペラジン、m-、あるいはp-フェニレンジアミン、2,4-あるいは2,6-トリレンジアミン、m-、あるいはp-キシリレンジアミン、1,5-あるいは、2,6-ナフタレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、2,2-(4,4’-ジアミノジフェニル)プロパン、N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,6-ジアミノヘキサン、ピペラジン、2-メチルピペラジン、2,5-あるいは2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)-メタン、1,2-ジ-(4-ピペリジル)-エタン、1,3-ジ-(4-ピペリジル)-プロパン、1,4-ジ-(4-ピペリジル)-ブタンとエピハロヒドリンの縮合により製造されるアミン系エポキシ化合物、ビス(β-エポキシプロピル)スルフィド、ビス(β-エポキシプロピル)ジスルフィド、ビス(β-エポキシプロピルチオ)メタン、ビス(β-エポキシプロピルジチオ)メタン、1,2-ビス(β-エポキシプロピルチオ)エタン、1,3-ビス(β-エポキシプロピルチオ)プロパン、1,2-ビス(β-エポキシプロピルチオ)プロパン、1-(β-エポキシプロピルチオ)-2-(β-エポキシプロピルチオメチル)プロパン、1,4-ビス(β-エポキシプロピルチオ)ブタン、1,3-ビス(β-エポキシプロピルチオ)ブタン、1-(β-エポキシプロピルチオ)-3-(β-エポキシプロピルチオメチル)ブタン、1,5-ビス(β-エポキシプロピルチオ)ペンタン、1-(β-エポキシプロピルチオ)-4-(β-エポキシプロピルチオメチル)ペンタン、1,6-ビス(β-エポキシプロピルチオ)ヘキサン、1-(β-エポキシプロピルチオ)-5-(β-エポキシプロピルチオメチル)ヘキサン、1-(β-エポキシプロピルチオ)-2-〔(2-β-エポキシプロピルチオエチル)チオ〕エタン、1-(β-エポキシプロピルチオ)-2-[〔2-(2-β-エポキシプロピルチオエチル)チオエチル〕チオ]エタン、テトラキス(β-エポキシプロピルチオメチル)メタン、1,1,1-トリス(β-エポキシプロピルチオメチル)プロパン、1,5-ビス(β-エポキシプロピルチオ)-2-(β-エポキシプロピルチオメチル)-3-チアペンタン、1,5-ビス(β-エポキシプロピルチオ)-2,4-ビス(β-エポキシプロピルチオメチル)-3-チアペンタン、1-(β-エポキシプロピルチオ)-2,2-ビス(β-エポキシプロピルチオメチル)-4-チアヘキサン、1,5,6-トリス(β-エポキシプロピルチオ)-4-(β-エポキシプロピルチオメチル)-3-チアヘキサン、1,8-ビス(β-エポキシプロピルチオ)-4-(β-エポキシプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エポキシプロピルチオ)-4,5ビス(β-エポキシプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エポキシプロピルチオ)-4,4-ビス(β-エポキシプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エポキシプロピルチオ)-2,4,5-トリス(β-エポキシプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エポキシプロピルチオ)-2,5-ビス(β-エポキシプロピルチオメチル)-3,6-ジチアオクタン、1,9-ビス(β-エポキシプロピルチオ)-5-(β-エポキシプロピルチオメチル)-5-〔(2-β-エポキシプロピルチオエチル)チオメチル〕-3,7-ジチアノナン、1,10-ビス(β-エポキシプロピルチオ)-5,6-ビス〔(2-β-エポキシプロピルチオエチル)チオ〕-3,6,9-トリチアデカン、1,11-ビス(β-エポキシプロピルチオ)-4,8-ビス(β-エポキシプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(β-エポキシプロピルチオ)-5,7-ビス(β-エポキシプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(β-エポキシプロピルチオ)-5,7-〔(2-β-エポキシプロピルチオエチル)チオメチル〕-3,6,9-トリチアウンデカン、1,11-ビス(β-エポキシプロピルチオ)-4,7-ビス(β-エポキシプロピルチオメチル)-3,6,9-トリチアウンデカン、1,3および1,4-ビス(β-エポキシプロピルチオ)シクロヘキサン、1,3および1,4-ビス(β-エポキシプロピルチオメチル)シクロヘキサン、ビス〔4-(β-エポキシプロピルチオ)シクロヘキシル〕メタン、2,2-ビス〔4-(β-エポキシプロピルチオ)シクロヘキシル〕プロパン、ビス〔4-(β-エポキシプロピルチオ)シクロヘキシル〕スルフィド、2,5-ビス(β-エポキシプロピルチオメチル)-1,4-ジチアン、2,5-ビス(β-エポキシプロピルチオエチルチオメチル)-1,4-ジチアン、1,3および1,4-ビス(β-エポキシプロピルチオ)ベンゼン、1,3および1,4-ビス(β-エポキシプロピルチオメチル)ベンゼン、ビス〔4-(β-エポキシプロピルチオ)フェニル〕メタン、2,2-ビス〔4-(β-エポキシプロピルチオ)フェニル〕プロパン、ビス〔4-(β-エポキシプロピルチオ)フェニル〕スルフィド、ビス〔4-(β-エポキシプロピルチオ)フェニル〕スルフォン、4,4’-ビス(β-エポキシプロピルチオ)ビフェニル等の含硫エポキシ化合物、3、4-エポキシシクロヘキシル-3、4-エポキシシクロヘキサンカルボキシレート、ビニルシクリヘキサンジオキサイド、2-(3、4-エポキシシクロヘキシル)-5、5-スピロ-3、4-エポキシシクロヘキサン-メタ-ジオキサン、ビス(3、4-エポキシシクロヘキシル)アジペート等の脂環式エポキシ化合物、シクロペンタジエンエポキシド、エポキシ化大豆油、エポキシ化ポリブタジエン、ビニルシクロヘキセンエポキシド等の不飽和化合物のエポキシ化により製造されるエポキシ化合物、ビニルフェニルグリシジルエーテル、ビニルベンジルグリシジルエーテル、グリシジルメタクリレート、グリシジルアクリレート、アリルグリシジルエーテル等の不飽和基を有するエポキシ化合物、等のエポキシ化合物類。
(3)メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、iso-プロピルイソシアネート、n-ブチルイソシアネート、sec-ブチルイソシアネート、tert-ブチルイソシアネート、ペンチルイソシアネート、ヘキシルイソシアネート、オクチルイソシアネート、ドデシルイソシアネート、シクロヘキシルイソシアネート、フェニルイソシアネート、トルイルイソシアネート等のモノイソシアネート類、ジエチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、2,5-ビス(イソシアナトメチル)ノルボルネン、2,6-ビス(イソシアナトメチル)デカヒドロナフタレン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、2,6-ビス(イソシアナトメチル)-1,4-ジチアン、リジントリイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、o-トリジンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、3-(2’-イソシアネートシクロヘキシル)プロピルイソシアネート、トリス(フェニルイソシアネート)チオホスフェート、イソプロピリデンビス(シクロヘキシルイソシアネート)、2,2’-ビス(4-イソシアネートフェニル)プロパン、トリフェニルメタントリイソシアネート、ビス(ジイソシアネートトリル)フェニルメタン、4,4’,4’’-トリイソシアネート-2,5-ジメトキシフェニルアミン、3,3’-ジメトキシベンジジン-4,4’-ジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジイソシアナトビフェニル、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、ジシクロヘキシルメタン-4,4’-ジイソシアナト、1,1’-メチレンビス(4-イソシアナトベンゼン)、1,1’-メチレンビス(3-メチル-4-イソシアナトベンゼン)、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、1,3-ビス(1-イソシアネート-1-メチルエチル)ベンゼン、1,4-ビス(1-イソシアネート-1-メチルエチル)ベンゼン、1,3-ビス(2-イソシアナト-2-プロピル)ベンゼン、2,6-ビス(イソシアナトメチル)ナフタレン、1,5-ナフタレンジイソシアネート、ビス(イソシアネートメチル)テトラヒドロジシクロペンタジエン、ビス(イソシアネートメチル)ジシクロペンタジエン、ビス(イソシアネートメチル)テトラヒドロチオフェン、ビス(イソシアネートメチル)チオフェン、2,5-ジイソシアネートメチルノルボルネン、ビス(イソシアネートメチル)アダマンタン、3,4-ジイソシアネートセレノファン、2,6-ジイソシアネート-9-セレナビシクロノナン、ビス(イソシアネートメチル)セレノファン、3,4-ジイソシアネート-2,5-ジセレノラン、ダイマー酸ジイソシアネート、1,3,5-トリ(1-イソシアナトヘキシル)イソシアヌル酸等のポリイソシアネート類、これらのポリイソシアネート類のビュレット型反応による二量体、これらのポリイソシアネート類の環化三量体およびこれらのポリイソシアネート類とアルコールもしくはチオールの付加物等のイソシアネート類、さらには、上記のイソシアネート基を1分子あたり1個以上有する化合物のイソシアネート基の全部または一部をイソチオシアネート基に変えたイソチオシアネート類。
(4)(2)のエポキシ化合物のところで説明したエピハロヒドリンと反応させる相手の原料として例示したカルボン酸類。
(5)(2)のエポキシ化合物のところで説明したエピハロヒドリンと反応させる相手の原料として例示したカルボン酸の無水物類。
(6)(2)のエポキシ化合物のところで説明したエピハロヒドリンと反応させる相手の原料として例示したフェノール類。
(7)(2)のエポキシ化合物のところで説明したエピハロヒドリンと反応させる相手の原料として例示したアミン類。
(8)ビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、2-エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、2-クロロエチルビニルエーテル、シクロヘキシルビニルエーテル、ビニルグリシジルエーテル、ビニルアルコール、メチルビニルカルビノール、エチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、テトラメチレングリコールモノビニルエーテル、ジビニルスルフィド、ビニルエチルスルフィド、ビニルフェニルスルフィド、メチルビニルケトン、ジビニルジカーボネイト、ビニルジグリコールカーボネイト、ビニレンカーボネイト、酢酸ビニル、クロロ酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ヘキサン酸ビニル、2-エチルヘキサン酸ビニル、アジピン酸ジビニル、安息香酸ビニル、サリチル酸ビニル、アクリル酸ビニル、メタクリル酸ビニル、ビニルブロマイド、ビニルアイオダイド、ビニルリン酸、ビニル尿素、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4,6-トリメチルスチレン、4-t-ブチルスチレン、スチルベン、ビニルフェノール、3-ビニルベンジルアルコール、4-ビニルベンジルアルコール、2-(4-ビニルフェニルチオ)エタノール、2-(3-ビニルフェニルチオ)エタノール、2-(4-ビニルベンジルチオ)エタノール、2-(3-ビニルベンジルチオ)エタノール、1,3-ビス(4-ビニルベンジルチオ)-2-プロパノール、1,3-ビス(3-ビニルベンジルチオ)-2-プロパノール、2,3-ビス(4-ビニルベンジルチオ)-1-プロパノール、2,3-ビス(3-ビニルベンジルチオ)-1-プロパノール、シンナミルアルコール、シンナムアルデヒド、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、トリビニルベンゼン、ジビニルフタレート、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、3-クロロメチルスチレン、4-クロロメチルスチレン、4-アミノスチレン、3-シアノメチルスチレン、4-シアノメチルスチレン、4-ビニルビフェニル、2,2’-ジビニルビフェニル、4,4’-ジビニルビフェニル、2,2’-ジスチリルエーテル、4,4’-ジスチリルエーテル、2,2’-ジスチリルスルフィド、4,4’-ジスチリルスルフィド、2,2-ビス(4-ビニルフェニル)プロパン、ビス(4-ビニルフェニル)エーテル、2,2-ビス(4-ビニロキシフェニル)プロパン等のビニル化合物類。
(9)(8)のビニル化合物類で例示した化合物のビニル基の一部もしくは全部がアリル基に置き換わったアリル化合物類。
(10)メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、シクロヘキシルアクリレート、2-ヒドロキシエチルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルアクリレート、3-フェノキシ-2-ヒドロキシプロピルアクリレート、トリメチロールプロパンモノアクリレート、2-ヒドロキシエチルイソシアヌレートモノアクリレート、2-ヒドロキシエチルイソシアヌレートジアクリレート、2-ヒドロキシエチルシアヌレートモノアクリレート、2-ヒドロキシエチルシアヌレートジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、プロピレングリコールジアクリレート、1、3-プロパンジオールジアクリレート、1,3-ブタンジオールジアクリレート、1、4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ポリプロピレングリコールジアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス〔4-(アクリロキシエトキシ)フェニル〕プロパン、2,2-ビス〔4-(アクリロキシエトキシ)シクロヘキシル〕プロパン、2,2-ビス〔4-(2-ヒドロキシ-3-アクリロキシプロポキシ)フェニル〕プロパン、2,2-ビス〔4-(アクリロキシ・ジエトキシ)フェニル〕プロパン、2,2-ビス〔4-(アクリロキシ・ポリエトキシ)フェニル〕プロパン、トリメチロールプロパントリアクリレート、ペンタエリスリトールモノアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ビス(2,2,2-トリメチロールエチル)エーテルのペンタアクリレート、ビス(2,2,2-トリメチロールエチル)エーテルのヘキサアクリレート、ビス(4-アクロイルチオフェニル)スルフィド等のアクリル化合物類。
(11)(10)のアクリル化合物類で例示した化合物のアクリル基の一部もしくは全部がメタクリル基に置き換わったメタクリル化合物類。
 本発明の光学材料の製造方法において、公知の酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、香料等の各種添加剤を加えて、得られる材料の実用性をより向上せしめることはもちろん可能である。また、本発明の光学材料は重合中に型から剥がれやすい場合には公知の外部および/または内部密着性改善剤を添加し、または型から剥がれにくい場合には公知の外部および/または内部離型性改善剤を添加して、得られる光学材料と型の密着性または離型性を向上せしめることも有効である。
 本発明の樹脂用組成物に対してあらかじめ脱気処理を行うことは、光学材料の高度な透明性を達成する面から好ましい。脱気処理は、(a)化合物、(b)化合物、(c)化合物、組成成分の一部もしくは全部と反応可能な化合物、(d)化合物、(e)化合物、各種添加剤の混合前、混合時あるいは混合後に、減圧下に行う。好ましくは、混合時あるいは混合後に、減圧下に行う。脱気処理条件は、0.001~500torrの減圧下、1分間~24時間、0℃~100℃で行う。減圧度は、好ましくは0.005~250torrであり、より好ましくは0.01~100torrであり、これらの範囲で減圧度を可変しても構わない。脱気時間は、好ましくは5分間~18時間であり、より好ましくは10分間~12時間である。脱気の際の温度は、好ましくは5℃~80℃であり、より好ましくは10℃~60℃であり、これらの範囲で温度を可変しても構わない。脱気処理の際は、撹拌、気体の吹き込み、超音波などによる振動などによって、樹脂用組成物の界面を更新することは、脱気効果を高める上で好ましい操作である。脱気処理により、除去される成分は、主に硫化水素等の溶存ガスや低分子量のメルカプタン等の低沸点物等であるが、脱気処理の効果を発現するのであれば、特に種類は限定されない。
 本発明の光学材料の製造方法は、具体的には以下の通りである。(a)化合物と(b)化合物および/または(a)化合物と(b)化合物の混合物を予備重合反応して得られる反応物、(c)化合物、組成成分の一部もしくは全部と反応可能な化合物、(d)化合物、(e)化合物、密着性改善剤または離型性改善剤、酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、香料などの各種添加剤等は、全て同一容器内で同時に撹拌下に混合しても、各原料を段階的に添加混合しても、数成分を別々に混合後さらに同一容器内で再混合しても良い。各原料および添加剤等はいかなる順序で混合しても構わない。さらに、各成分の2種類以上をあらかじめ、前述の方法で予備的な反応を行った後、混合しても構わない。混合にあたり、設定温度、これに要する時間等は基本的には各成分が十分に混合される条件であればよいが、過剰の温度、時間は各原料、添加剤間の好ましくない反応が起こり、さらには粘度の上昇をきたし注型操作を困難にする等適当ではない。混合温度は-50℃から100℃程度の範囲で行われるべきであり、好ましい温度範囲は-30℃から70℃、さらに好ましいのは、-5℃から50℃である。混合時間は、1分から12時間、好ましくは5分から10時間、最も好ましいのは5分から6時間程度である。必要に応じて、活性エネルギー線を遮断して混合しても構わない。その後、前述の方法で脱気処理を行ってもよい。注型操作の直前に、これらの樹脂用組成物をフィルターで不純物等をろ過し精製することは本発明の光学材料の品質をさらに高める上から必要である。ここで用いるフィルターの孔径は0.05~10μm程度であり、一般的には0.1~5μmのものが使用され、フィルターの材質としては、PTFEやPETやPPなどが好適に使用される。ろ過を行わなかったり、孔径が10μmを超えるフィルターでろ過を行った場合は、樹脂用組成物に異物が混入したり、透明性が低下したりするため、通常光学材料として使用に耐えなくなる。
 このようにして得られた樹脂用組成物は、ガラスや金属製の型に注入後、電気炉や活性エネルギー線発生装置等による重合硬化を行うが、重合時間は0.1~100時間、通常1~48時間であり、重合温度は-10~160℃、通常-10~140℃である。重合は所定の重合温度で所定時間のホールド、0.1℃~100℃/hの昇温、0.1℃~100℃/hの降温およびこれらの組み合わせで行うことができる。また、重合終了後、材料を50から150℃の温度で5分から5時間程度アニール処理を行う事は、光学材料の歪を除くために好ましい処理である。さらに必要に応じて染色、ハードコート、反射防止、防曇性、防汚性、耐衝撃性付与等の表面処理を行うことができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、樹脂用組成物の粘度、得られた硬化物(光学材料)の屈折率およびアッベ数、耐熱性および色調の評価は以下の方法で行った。
 粘度は、B型粘度計(東機産業製、DV-II+Pro、コーンローターCRE-40使用)を用いて、30℃で測定した。一般的に樹脂用組成物の粘度が200mPa・s以下では注型重合操作でのろ過が可能であり、粘度300mPa・sを超えるとろ過工程が困難となり、粘度500mPa・sを超えるとろ過が不可能となる。
 ν=(n-1)/(nF-nC
 屈折率(ne)およびアッベ数(υd)は、デジタル精密屈折計(カルニュー光学製、KPR-200)を用い、25℃で測定した。
 耐熱性は、サンプルを厚さ3mmに切り出し、0.5mmφのピンに10gの加重を与え、30℃から10℃/分で昇温しTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行い、軟化点を測定した。
 色調は、分光色彩計(カラーテクノシステム製、JS555)を用いて2.5mm厚の平板の透過光でのYI値を測定した。
 原料モノマー;
 (b)化合物であるビス(β-エピチオプロピル)スルフィドまたはビス(β-エピチオプロピル)ジスルフィドは、それぞれ特許第3491660号またはE.P.Adamsら著のJ.Chem.Soc.2665頁(1960年)の製造法に従い合成した。
 即ち、ビス(β-エピチオプロピル)スルフィドは、エピクロルヒドリンと水硫化ソーダおよび苛性ソーダとを反応させビス(β-エポキシプロピル)スルフィドとし、ついでこれにチオ尿素を反応させて合成した。ビス(β-エピチオプロピル)ジスルフィドは、3-メルカプトプロピレンスルフィドをヨウ素で酸化し、合成した。
 (c)化合物であるビス(メルカプトメチル)ジスルフィドまたはビス(ジメルカプトメチル)ジスルフィドは、日本化学会編丸善株式会社発行、実験科学講座17有機化合物の合成I(上)、214頁(1957年)に記載の酸化によるジスルフィドの製造法に従い合成した。
 即ち、ビス(メルカプトメチル)ジスルフィドは、メタンジチオールをヨウ素で酸化し、蒸留精製し(沸点は、85-88℃/0.3torr)合成した。ビス(ジメルカプトメチル)ジスルフィドは、メタントリチオールをヨウ素で酸化し、蒸留精製し(沸点は、108-112℃/0.3torr)合成した。
(実施例1)
 (a)化合物として硫黄(以下、「a-1化合物」と呼ぶ)29重量部、(b)化合物としてビス(β-エピチオプロピル)スルフィド(以下、「b-1化合物」と呼ぶ)71重量部、(c)化合物としてビス(メルカプトメチル)ジスルフィド(以下、「c-1化合物」と呼ぶ)14重量部、を50℃でよく混合し均一とした。次いで、予備重合反応触媒として2-メルカプト-1-メチルイミダゾール0.15重量部を加え50℃でよく攪拌しながら30℃に冷却しても硫黄が析出しなくなるまで予備重合反応させた。反応の所要時間は30分であった。その後、上記の予備重合した樹脂用組成物に、c-1化合物1重量部(合計15重量部)、(d)化合物としてテトラブチルホスホニウムブロマイド0.03重量部、(e)化合物としてジn-ブチルスズジクロライド0.1重量部を30℃で加え、よく混合し均一混合物とした。この混合物を100torr、10分間、30℃の条件下で脱気処理した。続いてこの脱気処理した樹脂用組成物を5μmのPTFE製のメンブランフィルターでろ過し、2枚のガラス板とガスケットから構成される、厚さ2.5mmの平板型モールドに注入し、30℃で10時間保持し、その後30℃から100℃まで10時間かけて100℃まで一定速度昇温させ、最後に100℃で1時間加熱し、重合反応を完結させた。室温まで放冷した後、モールドから離型し、硬化した光学材料を得た。
 脱気処理後の樹脂用組成物の粘度は100mPa・sであり、30℃、2時間経過後の樹脂用組成物の粘度は140mPa・sであり、大きな粘度上昇は観察されなかった。得られた光学材料の屈折率およびアッベ数は、それぞれ1.776および30であった。TMA測定からの耐熱性(軟化点)は、120℃以上で、色調(YI値)は8.6と低い値であった。評価結果を表1にまとめた。
(実施例2)
 c-1化合物を14重量部加えるところを19重量部とする以外は実施例1を繰り返した。脱気処理後および2時間経過後の樹脂用組成物の粘度、得られた光学材料の屈折率およびアッベ数、耐熱性および色調の評価結果を表1に示した。
(比較例1)
 (c)化合物を使用しない以外は実施例1を繰り返した。脱気処理後に樹脂用組成物がゲル化して硬化物を得ることができなかった。
(比較例2)
 (c)化合物であるc-1化合物の代わりに、SH基を2個有するビス(2-メルカプトエチル)スルフィド(以下、「o-1化合物」と呼ぶ)を10重量部使用する以外は実施例1を繰り返した。脱気処理後に樹脂用組成物がゲル化して硬化物を得ることができなかった。
(比較例3)
 (c)化合物であるc-1化合物の代わりに、SH基を1個有するベンジルメルカプタン(以下、「o-2化合物」と呼ぶ)を10重量部使用する以外は実施例1を繰り返した。脱気処理後の樹脂用組成物は粘度が220mPa・sと高く、ろ過に非常に長い時間を要した。得られた光学材料の屈折率およびアッベ数、耐熱性および色調の評価結果を表1に示した。実施例と比較して、屈折率が低い上に、色調も良くなかった。
(比較例4)
 (c)化合物であるc-1化合物の代わりに、ジスルフィド結合を有するジフェニルジスルフィド(以下、「o-3化合物」と呼ぶ)を10重量部使用する以外は実施例1を繰り返した。脱気処理後の樹脂用組成物は粘度が200mPa・sと高く、ろ過に非常に長い時間を要した。得られた光学材料の屈折率およびアッベ数、耐熱性および色調の評価結果を表1に示した。実施例と比較して、屈折率が低い上に、色調も良くなかった。
(比較例5)
 a-1化合物35重量部、b-1化合物65重量部、o-2化合物10重量部を使用する以外は比較例3を繰り返した。脱気処理後の樹脂用組成物は粘度が380mPa・sと高く、ろ過に非常に長い時間を要した。得られた光学材料の屈折率およびアッベ数、耐熱性および色調の評価結果を表1に示した。屈折率は上がったが、色調の悪化が著しかった。
(比較例6)
 a-1化合物35重量部、b-1化合物65重量部、o-3化合物10重量部を使用する以外は比較例4を繰り返した。脱気処理後の樹脂用組成物は粘度が350mPa・sと高く、ろ過に非常に長い時間を要した。得られた光学材料の屈折率およびアッベ数、耐熱性および色調の評価結果を表1に示した。屈折率は上がったが、色調の悪化が著しかった。
Figure JPOXMLDOC01-appb-T000026
(実施例3~14)
 実施例1において、a-1化合物、b-1化合物およびc-1化合物を下記表2に示される化合物に変更し、更に各化合物の添加量を下記表2に示される量に変更する以外は、実施例1と同様に樹脂用組成物を調製し、脱気処理後および2時間経過後の樹脂用組成物の粘度、得られた光学材料の屈折率およびアッベ数、耐熱性および色調の評価を実施例1と同様に行う。
Figure JPOXMLDOC01-appb-T000027
 本発明によれば、硫黄原子および/またはセレン原子を有する無機化合物を含む樹脂用組成物の粘度を低下させることができるので、ろ過工程を含む注型重合操作が容易になるとともに得られる光学材料の色調が良好となった。
 本発明は、樹脂用組成物およびそれから得られる光学材料に関する。本発明の光学材料は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター、接着剤等の光学製品、中でも眼鏡用プラスチックレンズに好適に使用される。

Claims (17)

  1.  硫黄原子および/またはセレン原子を有する(a)無機化合物、下記(1)式で表される(b)化合物および
    (aは0~4の整数、bは0~2の整数を表す)
    下記(2)式で表される(c)化合物を含有する樹脂用組成物であって、
    Figure JPOXMLDOC01-appb-C000002
    (cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
     前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする、前記樹脂用組成物。
  2.  前記(a)化合物が硫黄である請求項1に記載の樹脂用組成物。
  3.  前記(b)化合物がビス(β-エピチオプロピル)スルフィドまたはビス(β-エピチオプロピル)ジスルフィドである請求項1に記載の樹脂用組成物。
  4.  前記(c)化合物がビス(メルカプトメチル)ジスルフィドまたはビス(ジメルカプトメチル)ジスルフィドである請求項1に記載の樹脂用組成物。
  5.  硫黄原子および/またはセレン原子を有する(a)無機化合物と、下記(1)式で表される(b)化合物とを混合する工程と、
     該混合物を1分間~72時間、0℃~150℃で予備重合反応させる工程と、
    Figure JPOXMLDOC01-appb-C000003
    (aは0~4の整数、bは0~2の整数を表す)
     該予備重合させた混合物に、下記(2)式で表される(c)化合物を混合する工程と、を有し、
    Figure JPOXMLDOC01-appb-C000004
    (cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
     前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする樹脂用組成物の製造方法。
  6.  硫黄原子および/またはセレン原子を有する(a)無機化合物と、下記(1)式で表される(b)化合物と、
    Figure JPOXMLDOC01-appb-C000005
    (aは0~4の整数、bは0~2の整数を表す)
     下記(2)式で表される(c)化合物とを混合する工程と、
     該混合物を1分間~72時間、0℃~150℃で予備重合反応させる工程と、を有し
    Figure JPOXMLDOC01-appb-C000006
    (cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
     前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする樹脂用組成物の製造方法。
  7.  硫黄原子および/またはセレン原子を有する(a)無機化合物と、下記(1)式で表される(b)化合物と、
    Figure JPOXMLDOC01-appb-C000007
    (aは0~4の整数、bは0~2の整数を表す)
     下記(2)式で表される(c)化合物とを混合する工程と、
     該混合物を1分間~72時間、0℃~150℃で予備重合反応させる工程と、
     該予備重合させた混合物に、更に下記(2)式で表される(c)化合物を混合する工程と、を有し
    Figure JPOXMLDOC01-appb-C000008
    (cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
     前記(a)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の添加量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の添加量の合計が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であることを特徴とする樹脂用組成物の製造方法。
  8.  更に、0.005~250torrの減圧下、1分間~24時間、0℃~100℃で脱気処理する工程を有する請求項5から7のいずれかに記載の樹脂用組成物の製造方法。
  9.  請求項5から8のいずれかに記載の樹脂用組成物の製造方法によって得られた樹脂用組成物を重合硬化することを特徴とする光学材料の製造方法。
  10.  請求項1から4のいずれかに記載の樹脂用組成物を含有する光学材料であって、該光学材料の屈折率が1.76以上であることを特徴とする光学材料。
  11.  前記屈折率が1.77以上である請求項10に記載の光学材料。
  12.  前記光学材料のアッベ数が、20~80である請求項10に記載の光学材料。
  13.  前記光学材料の軟化点が、50~200℃である請求項10に記載の光学材料。
  14.  前記光学材料の色調(YI値)が、0~10である請求項10に記載の光学材料。
  15.  請求項10から14のいずれかに記載の光学材料からなる光学レンズ。
  16.  1.76以上の屈折率を有する光学材料を製造するための組成物の使用であって、該組成物が、硫黄原子および/またはセレン原子を有する(a)無機化合物、下記(1)式で表される(b)化合物および
    Figure JPOXMLDOC01-appb-C000009
    (aは0~4の整数、bは0~2の整数を表す)
    下記(2)式で表される(c)化合物を含有し、
    Figure JPOXMLDOC01-appb-C000010
    (cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
     前記(a)化合物の含有量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部であり、前記(b)化合物の含有量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、50~99重量部であり、前記(c)化合物の含有量が、前記(a)化合物および前記(b)化合物の合計を100重量部とした場合に、1~50重量部である、前記組成物の使用。
  17.  光学レンズの製造に用いられ、予備重合および脱気処理された樹脂用組成物の粘度を10~200mPa・sの範囲に下げるための化合物の使用であって、該化合物が下記(2)式で表される化合物である、前記化合物の使用。
    Figure JPOXMLDOC01-appb-C000011
    (cは0または1、dは0または1、eは1~10の整数、Rは、H、SH、CHSH、または芳香環を表す)
PCT/JP2009/051689 2008-02-13 2009-02-02 樹脂用組成物およびそれを含む光学レンズ WO2009101867A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107019816A KR101522755B1 (ko) 2008-02-13 2009-02-02 수지용 조성물 및 그것을 포함하는 광학렌즈
EP09710421.0A EP2243798B1 (en) 2008-02-13 2009-02-02 Composition for resin and optical lens obtained therefrom
JP2009553393A JP5487976B2 (ja) 2008-02-13 2009-02-02 樹脂用組成物およびそれを含む光学レンズ
US12/865,014 US8394920B2 (en) 2008-02-13 2009-02-02 Composition for resin and optical lens obtained therefrom
CN2009801039951A CN101932630B (zh) 2008-02-13 2009-02-02 树脂用组合物和含有该组合物的光学透镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-031793 2008-02-13
JP2008031793 2008-02-13

Publications (1)

Publication Number Publication Date
WO2009101867A1 true WO2009101867A1 (ja) 2009-08-20

Family

ID=40956896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051689 WO2009101867A1 (ja) 2008-02-13 2009-02-02 樹脂用組成物およびそれを含む光学レンズ

Country Status (6)

Country Link
US (1) US8394920B2 (ja)
EP (1) EP2243798B1 (ja)
JP (1) JP5487976B2 (ja)
KR (1) KR101522755B1 (ja)
CN (1) CN101932630B (ja)
WO (1) WO2009101867A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249564A (ja) * 2008-04-09 2009-10-29 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2010043181A (ja) * 2008-08-12 2010-02-25 Mitsui Chemicals Inc 重合性組成物、重合性組成物の製造方法、樹脂の製造方法、樹脂、およびその使用
JP2012167198A (ja) * 2011-02-15 2012-09-06 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
JP2016026260A (ja) * 2010-09-17 2016-02-12 Hoya株式会社 ウレタン系光学部材の製造方法
WO2016152400A1 (ja) * 2015-03-24 2016-09-29 三菱瓦斯化学株式会社 新規な硫黄化合物及びそれを含む光学材料用組成物
WO2016158156A1 (ja) * 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 新規エピスルフィド化合物およびそれを含む光学材料組成物
WO2016158157A1 (ja) * 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 新規なエピスルフィド化合物およびそれを含む光学材料用組成物
JPWO2020213716A1 (ja) * 2019-04-19 2020-10-22

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017216A (zh) 2009-05-14 2014-09-03 三菱瓦斯化学株式会社 高折射率高强度光学材料用组合物
US8470948B2 (en) * 2009-08-28 2013-06-25 Florida State University Research Foundation, Inc. High refractive index polymers
US8853346B2 (en) 2010-02-24 2014-10-07 Mitsubishi Gas Chemical Company, Inc. Curable resin composition
JP5799949B2 (ja) 2010-02-25 2015-10-28 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
JP5668296B2 (ja) 2010-02-25 2015-02-12 三菱瓦斯化学株式会社 エピスルフィド化合物の製造方法
WO2017011533A1 (en) * 2015-07-13 2017-01-19 The Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur to synthesize high sulfur content polymeric materials
US9632221B2 (en) * 2012-04-17 2017-04-25 Boe Technology Group Co., Ltd. Optical resin composition and use thereof
TWI570112B (zh) * 2012-06-26 2017-02-11 Mitsubishi Gas Chemical Co Preparation of bis (β-epoxypropyl) sulfide and bis (β-epoxypropyl) polysulfide
TWI601720B (zh) * 2013-03-14 2017-10-11 三菱瓦斯化學股份有限公司 Novel episulfide and optical material compositions
CN103342822B (zh) * 2013-06-27 2014-12-17 东北林业大学 三氯苯酚封闭型异氰酸酯预聚体胶束制备方法
WO2015074080A1 (en) 2013-11-18 2015-05-21 Florida State Research Foundation, Inc. Thiol-ene polymer metal oxide nanoparticle high refractive index composites
EP3312216B1 (en) * 2015-06-17 2020-11-11 Mitsubishi Gas Chemical Company, Inc. Composition for optical material and optical material using the same
JP6586170B2 (ja) 2015-09-16 2019-10-02 三井化学株式会社 光学材料用重合性組成物、光学材料、光学材料用重合性組成物の製造方法および光学材料の製造方法
KR101816722B1 (ko) * 2017-04-21 2018-01-11 주식회사 케이오씨솔루션 에폭시 아크릴계 중굴절 광학렌즈용 수지 조성물 및 그 제조방법
WO2018232155A1 (en) 2017-06-15 2018-12-20 Arizona Board Of Regents On Behalf Of The University Of Arizona Chalcogenide hybrid inorganic/organic polymer (chip) materials as improved crosslinking agents for vulcanization
CN108760961B (zh) * 2018-08-06 2020-09-22 青岛中科荣达新材料有限公司 一种液相色谱法检测固体福美钾纯度的方法
CN112513012B (zh) * 2018-08-08 2022-09-20 三菱瓦斯化学株式会社 新型烯丙基化合物和光学材料用组合物
KR20200025519A (ko) * 2018-08-30 2020-03-10 주식회사 케이오씨솔루션 에피설파이드계 고굴절 광학재료용 안정제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법
US11421082B2 (en) * 2019-03-13 2022-08-23 Hrl Laboratories, Llc Broadband-transparent polysulfide-based copolymers
KR102657702B1 (ko) * 2019-03-26 2024-04-15 미쓰이 가가쿠 가부시키가이샤 에피설파이드계 고굴절 광학재료용 조성물과 이를 이용한 광학재료의 제조방법
KR102372880B1 (ko) 2019-05-21 2022-03-08 주식회사 엘지화학 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
CN110846018A (zh) * 2019-11-06 2020-02-28 中国石油集团渤海钻探工程有限公司 一种小分子阳离子表面活性剂型防膨剂及其制备方法
CN115667369B (zh) * 2020-05-27 2024-04-05 三菱瓦斯化学株式会社 光学材料用组合物
CN112480095B (zh) * 2020-11-25 2022-06-10 益丰新材料股份有限公司 一种双(2,3-环硫丙基)硫醚的制备方法
CN114854018B (zh) * 2022-06-07 2023-10-27 福建师范大学 一种聚合硫材料及其在制备锂硫电池中的应用
CN116478108B (zh) * 2023-03-31 2023-10-13 益丰新材料股份有限公司 一种含硫杂环化合物及其光学材料组合物和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971580A (ja) 1995-09-08 1997-03-18 Mitsubishi Gas Chem Co Inc 新規な分岐アルキルスルフィド型エピスルフィド化合物
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JPH09255781A (ja) 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP2001002783A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
WO2004005374A1 (ja) * 2002-07-08 2004-01-15 Mitsubishi Gas Chemical Company, Inc. 重合性組成物、それからなる光学材料、及びその製造方法
JP2004137481A (ja) 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2004197005A (ja) 2002-12-19 2004-07-15 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2005325274A (ja) * 2004-05-17 2005-11-24 Mitsui Chemicals Inc 高屈折率エピスルフィド化合物
WO2006123731A1 (ja) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. 硬化性組成物
JP2006348286A (ja) 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2006348289A (ja) 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2006348285A (ja) 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807975A (en) * 1995-08-16 1998-09-15 Mitsubishi Gas Chemical Company,Inc. Alkyl sulfide type episulfide compound
US5945504A (en) * 1996-01-17 1999-08-31 Mitsubishi Gas Chemical Company, Inc. Episulfide compound
JP2001002933A (ja) * 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
KR20080103082A (ko) * 2006-02-21 2008-11-26 미쓰이 가가쿠 가부시키가이샤 폴리티오우레탄계 광학재료용 중합성 조성물

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JP3491660B2 (ja) 1995-08-16 2004-01-26 三菱瓦斯化学株式会社 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JPH0971580A (ja) 1995-09-08 1997-03-18 Mitsubishi Gas Chem Co Inc 新規な分岐アルキルスルフィド型エピスルフィド化合物
JPH09255781A (ja) 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP2001002783A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
WO2004005374A1 (ja) * 2002-07-08 2004-01-15 Mitsubishi Gas Chemical Company, Inc. 重合性組成物、それからなる光学材料、及びその製造方法
JP2004137481A (ja) 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2004197005A (ja) 2002-12-19 2004-07-15 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2005325274A (ja) * 2004-05-17 2005-11-24 Mitsui Chemicals Inc 高屈折率エピスルフィド化合物
WO2006123731A1 (ja) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. 硬化性組成物
JP2006348286A (ja) 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2006348289A (ja) 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2006348285A (ja) 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. P. ADAMS ET AL., J. CHEM. SOC., 1960, pages 2665
See also references of EP2243798A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249564A (ja) * 2008-04-09 2009-10-29 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2010043181A (ja) * 2008-08-12 2010-02-25 Mitsui Chemicals Inc 重合性組成物、重合性組成物の製造方法、樹脂の製造方法、樹脂、およびその使用
JP2016026260A (ja) * 2010-09-17 2016-02-12 Hoya株式会社 ウレタン系光学部材の製造方法
JP2012167198A (ja) * 2011-02-15 2012-09-06 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
JPWO2016152400A1 (ja) * 2015-03-24 2017-07-20 三菱瓦斯化学株式会社 新規な硫黄化合物及びそれを含む光学材料用組成物
WO2016152400A1 (ja) * 2015-03-24 2016-09-29 三菱瓦斯化学株式会社 新規な硫黄化合物及びそれを含む光学材料用組成物
US10131749B2 (en) 2015-03-24 2018-11-20 Mitsubishi Gas Chemical Company, Inc. Sulfur compound and composition for optical materials containing same
WO2016158156A1 (ja) * 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 新規エピスルフィド化合物およびそれを含む光学材料組成物
JP6172414B2 (ja) * 2015-03-31 2017-08-02 三菱瓦斯化学株式会社 新規エピスルフィド化合物およびそれを含む光学材料組成物
JPWO2016158156A1 (ja) * 2015-03-31 2017-08-31 三菱瓦斯化学株式会社 新規エピスルフィド化合物およびそれを含む光学材料組成物
JPWO2016158157A1 (ja) * 2015-03-31 2017-08-31 三菱瓦斯化学株式会社 新規なエピスルフィド化合物およびそれを含む光学材料用組成物
EP3228652A4 (en) * 2015-03-31 2017-12-13 Mitsubishi Gas Chemical Company, Inc. Novel episulfide compound and optical material composition including same
KR20180061429A (ko) * 2015-03-31 2018-06-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규한 에피설파이드 화합물 및 이것을 포함하는 광학재료용 조성물
US10065940B2 (en) 2015-03-31 2018-09-04 Mitsubishi Gas Chemical Company, Inc. Episulfide compound and optical material composition containing same
US10132961B2 (en) 2015-03-31 2018-11-20 Mitsubishi Gas Chemical Company, Inc. Episulfide compound and optical material composition including same
WO2016158157A1 (ja) * 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 新規なエピスルフィド化合物およびそれを含む光学材料用組成物
KR102482153B1 (ko) 2015-03-31 2022-12-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규한 에피설파이드 화합물 및 이것을 포함하는 광학재료용 조성물
JPWO2020213716A1 (ja) * 2019-04-19 2020-10-22
WO2020213716A1 (ja) * 2019-04-19 2020-10-22 三井化学株式会社 光学材料、光学材料用重合性組成物、硬化物、光学材料、プラスチックレンズ、光学材料の製造方法及び使用方法
JP7270195B2 (ja) 2019-04-19 2023-05-10 三井化学株式会社 光学材料、光学材料用重合性組成物、硬化物、光学材料、プラスチックレンズ、光学材料の製造方法及び使用方法

Also Published As

Publication number Publication date
US8394920B2 (en) 2013-03-12
JP5487976B2 (ja) 2014-05-14
JPWO2009101867A1 (ja) 2011-06-09
US20100331515A1 (en) 2010-12-30
EP2243798A1 (en) 2010-10-27
EP2243798B1 (en) 2014-04-16
KR101522755B1 (ko) 2015-05-26
EP2243798A4 (en) 2013-07-17
CN101932630B (zh) 2012-12-05
CN101932630A (zh) 2010-12-29
KR20100111745A (ko) 2010-10-15

Similar Documents

Publication Publication Date Title
JP5487976B2 (ja) 樹脂用組成物およびそれを含む光学レンズ
EP1882713B1 (en) Curable composition
JP4127169B2 (ja) 光学材料の製造方法
JP3738817B2 (ja) 光学材料用組成物
JP4561946B2 (ja) 光学材料用組成物
JP4857489B2 (ja) 光学材料用脂肪族環状化合物
JP2006348285A (ja) 樹脂用組成物
JP2006348286A (ja) 樹脂用組成物
JP5103788B2 (ja) 樹脂用組成物
JP3632761B2 (ja) 樹脂用組成物
JP2004269673A (ja) 樹脂用組成物
JP2004197005A (ja) 樹脂用組成物
JP4506929B2 (ja) 環状ポリチオール化合物
JP4139956B2 (ja) エピスルフィド化合物
JP5028718B2 (ja) 光学材料用化合物
JP4645979B2 (ja) 光学材料用組成物
JP2003026674A (ja) 新規なエピスルフィド化合物
JP5692253B2 (ja) 樹脂用組成物
JP2013100534A (ja) 樹脂用組成物
JP3879820B2 (ja) 高屈折率光学材料用組成物
JP2004059664A (ja) 高純度含硫黄化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103995.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553393

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12865014

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009710421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107019816

Country of ref document: KR

Kind code of ref document: A