WO2009101796A1 - 光ディスクの検査方法および光ディスク媒体 - Google Patents

光ディスクの検査方法および光ディスク媒体 Download PDF

Info

Publication number
WO2009101796A1
WO2009101796A1 PCT/JP2009/000532 JP2009000532W WO2009101796A1 WO 2009101796 A1 WO2009101796 A1 WO 2009101796A1 JP 2009000532 W JP2009000532 W JP 2009000532W WO 2009101796 A1 WO2009101796 A1 WO 2009101796A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal quality
quality index
recording
speed
optical disc
Prior art date
Application number
PCT/JP2009/000532
Other languages
English (en)
French (fr)
Inventor
Shigeru Furumiya
Atsushi Nakamura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CA002686881A priority Critical patent/CA2686881A1/en
Priority to EP09710033A priority patent/EP2244259A4/en
Priority to CN2009800002220A priority patent/CN101681652B/zh
Priority to BRPI0902890A priority patent/BRPI0902890A2/pt
Priority to MX2009010940A priority patent/MX2009010940A/es
Priority to JP2009553361A priority patent/JP5437083B2/ja
Publication of WO2009101796A1 publication Critical patent/WO2009101796A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00458Verification, i.e. checking data during or after recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10314Improvement or modification of read or write signals signal quality assessment amplitude of the recorded or reproduced signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10361Improvement or modification of read or write signals signal quality assessment digital demodulation process
    • G11B20/10379Improvement or modification of read or write signals signal quality assessment digital demodulation process based on soft decisions, e.g. confidence values, probability estimates, likelihoods values or path metrics of a statistical decoding algorithm
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B2020/10935Digital recording or reproducing wherein a time constraint must be met
    • G11B2020/10981Recording or reproducing data when the data rate or the relative speed between record carrier and transducer is variable
    • G11B2020/1099Recording or reproducing data when the data rate or the relative speed between record carrier and transducer is variable wherein a disc is spun at a variable speed
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/218Write-once discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs

Definitions

  • the present invention relates to an optical disc inspection method and an optical disc medium suitable for high-speed recording.
  • CD-R, DVD-R, BD on which data can be additionally recorded on a recording medium that can optically record data and reproduce the recorded data (hereinafter simply referred to as an optical disc in the present specification).
  • a recording medium that can optically record data and reproduce the recorded data
  • All these optical discs have a standard recording speed.
  • the recording speed is specifically indicated by a linear speed or a transfer rate. In the present specification, the recording speed will be described mainly using the linear velocity.
  • BD-R is currently in practical use as a disc and recording apparatus capable of recording at 4 ⁇ speed.
  • An optical disc capable of recording at higher speed is also under development.
  • ⁇ double speed means how many times the standard speed of recording is.
  • optical disk manufacturers and verification organizations inspect whether or not the optical disk has predetermined characteristics suitable for high-speed recording. For example, test recording is actually performed on the inner, middle, and outer tracks of the sample optical disk to check whether the signal quality index value of the reproduction signal is within a predetermined range. Only optical discs that pass this inspection are shipped as products.
  • the current technical level is the optical disk in consideration of the rotational performance of the spindle motor, noise, safety against disk destruction, and the like. It is desirable to use at a rotational speed of about 10,000 rpm or less.
  • the optical disk is rotated at the same rotational speed, the linear velocity of recording obtained at the inner periphery with a small radius is smaller than that at the outer periphery with a large radius. For these reasons, when the maximum recording speed of the optical disc is increased, the rotational speed becomes too high on the inner track having a small radius, and high-speed data recording becomes difficult.
  • the rotational speed reaches about 9800 rpm. Furthermore, when the recording speed is set to 6 times or higher, the rotational speed at a position near a radius of 24 mm exceeds 12000 rpm.
  • the conventional optical disc inspection method uses a high speed on the inner track where the rotational speed of the disc increases. There was a problem that the signal quality index value of the recording could not be inspected.
  • An object of the present invention is to solve such a problem and to provide an optical disc inspection method and an optical disc in which quality is guaranteed to guarantee the quality in high-speed recording on an inner track that is usually difficult to inspect. .
  • the optical disc inspection method of the present invention includes a first radial position of the optical disc, a second radial position located on the inner circumferential side from the first radial position, and a third radial position located on the inner circumferential side from the second radial position.
  • the optical disc inspection method calculates the signal quality index value F and then checks whether the signal quality index values A, B, C, D, E, and F are below a predetermined value. It further includes a step.
  • the optical disc inspection method of the present invention includes a first radial position of the optical disc, a second radial position located on the inner circumferential side from the first radial position, and a third radial position located on the inner circumferential side from the second radial position.
  • the optical disc inspection method calculates the signal quality index value H, and then determines whether the signal quality index values A, B, C, D, E, F, G, and H are equal to or less than a predetermined value. It further includes the step of confirming whether or not.
  • the signal quality index value F is C + EB or (C 2 + E 2 -B 2 ) 0.5 .
  • the signal quality index value H is E + GD or (E 2 + G 2 ⁇ D 2 ) 0.5 .
  • the signal quality index value is a binarized jitter value.
  • the signal quality index value is a PRML error correlation value.
  • the standard recording power and recording pulse conditions at the recording speed V1 and the standard recording power and recording pulse conditions at the recording speed V2 higher than the V1 are stored in advance in the lead-in area.
  • the signal quality index values at the recording speed V1 and the recording speed V2 are less than or equal to a predetermined value. Become.
  • the optical disc of the present invention has a standard recording power and recording pulse condition at a recording speed V1 where V3> V2> V1, a standard recording power and recording pulse condition at a recording speed V2, and a standard recording power at a recording speed V3.
  • Recording pulse conditions are stored in advance in the lead-in area of the optical disk medium, and when the optical disk inspection method defined in claim 3 or 4 is performed using the standard recording power and recording pulse conditions,
  • the signal quality index values at the recording speed V1, the recording speed V2, and the recording speed V3 are below a predetermined value.
  • the optical disk inspection method of the present invention it is possible to provide a highly reliable optical disk that guarantees the signal quality of high-speed recording in the inner periphery, which is usually difficult to inspect. Further, according to the optical disk of the present invention, a performance margin in a disk device capable of recording or reproducing at a high speed can be ensured, and compatibility between devices is improved.
  • FIG. 1 is a block diagram of a disk device that executes an optical disk inspection method according to the present invention.
  • FIG. 1 schematically shows a track layout of an optical disc according to the present invention.
  • 3 schematically shows a relationship between a signal quality index value measured and calculated by an optical disc inspection method according to the present invention and a radial position.
  • FIG. 1 is a block diagram of a disk device for carrying out an optical disk inspection method according to the present invention.
  • the apparatus shown in FIG. 1 includes a motor 2, an optical head 3, a traverse mechanism 5, a reproduction signal processing unit 6, and a recording signal processing unit 8. Moreover, the system controller 10 which is a control part is provided. The system controller 10 receives various information from each component via the control bus 11 and controls each component.
  • the motor 2 mounts the optical disc 100 and rotates the optical disc 100 at a predetermined rotational speed based on a command from the system controller 10.
  • the optical head 3 includes a light source and irradiates the optical disc 100 with a light beam 4 emitted from the light source to record data. Further, the optical beam 100 is irradiated onto the optical disc 100 during reproduction, and the reflected light modulated based on the mark and space formed on the optical disc 100 is detected to generate a reproduction signal.
  • the traverse mechanism 5 moves the optical head 3 in the radial direction of the optical disc 100 so that the light beam 4 irradiates a track to be recorded or reproduced.
  • the recording signal processing unit 8 generates a recording signal 9 for trial writing to inspect the optical disc 100 and outputs it to the optical head 3.
  • the recording signal processing unit 8 includes a recording condition setting unit 12 for generating a random signal including a plurality of pulses in which marks and spaces having a plurality of lengths defined by a modulation rule are generated with a random probability. Set the light source drive conditions.
  • the reproduction signal processing unit 6 detects the characteristics of the reproduction signal 7 obtained from the optical head 3.
  • the reproduction signal processing unit 6 includes a signal index measurement unit 13 and measures the signal quality index value of the reproduction signal 7.
  • the signal quality index value an index value that directly represents the superiority or inferiority of the overall characteristics of the optical disc 3 is preferably used, and a binarized jitter value of the reproduced random signal is preferable.
  • PRML Partial Response Maximum Maximum Liquor Hood
  • MLSE Maximum Likely Food Sequence Error
  • SAM Sequenced Amplitude Margin
  • FIG. 2 shows a track layout of the optical disc 100 of the present invention to be inspected using the optical disc inspection method of the present invention.
  • the optical disc 100 includes a lead-in area 101 provided on the inner periphery side and a user data track 102 provided on the outer periphery side of the lead-in area 101.
  • the user data track 102 is a track for recording data desired by the user.
  • the portion where the user data track 102 is provided is also called a data area.
  • the optical disc 100 may be a write-once type or a rewritable type.
  • the optical disc 100 is of the write-once type, the data once recorded on the user data track 102 cannot be rewritten, but additional data can be written in the area where the data of the user data track 102 is not recorded.
  • the optical disc 100 is a rewritable type, the data recorded on the user data track 102 can be rewritten.
  • the inspection of the optical disc 100 is performed in the first radial position and the first radial position of the user data track 102. This is performed at the second radial position located on the circumferential side and the third radial position located on the inner circumferential side relative to the second radial position.
  • the first radial position, the second radial position, and the third radial position are r1, r2, and r3, respectively, the relationship r1> r2> r3 is satisfied.
  • r1, r2 and r3 are preferably 57 mm ⁇ r1 ⁇ 59 mm, 40 mm ⁇ r2 ⁇ 42 mm, and 23 mm ⁇ r3 ⁇ 25 mm, respectively.
  • the first radial position, the second radial position, and the third radial position are referred to as an outer circumferential track, a middle circumferential track, and an inner circumferential track.
  • the disk device shown in FIG. 1 may be realized as a device dedicated to the inspection of the optical disk 100, or in addition to the inspection of the optical disk 100, arbitrary user data may be recorded and the recorded data may be reproduced. You may implement
  • Each procedure of this method is stored as a computer-readable program (firmware) in, for example, an information recording medium such as an EEPROM or a RAM provided in the system controller 10.
  • the system controller 10 reads a program that defines this procedure, and controls each component according to the procedure.
  • Step 1 The optical head 3 is moved by the traverse mechanism 5 so that the light beam 4 emitted from the head 3 irradiates the outer track of the optical disk 1.
  • the optical disk 100 is rotated by the motor 2 so that the recording speed (linear velocity) V1 is obtained in the outer track of the optical disk 100.
  • Step 2 Predetermined data is recorded on the outer track of the optical disc 100. More specifically, the recording power setting unit 12 of the recording signal processing unit 8 sets the recording power and recording pulse conditions for the recording speed V1, drives the light source of the optical head 3 under the set conditions, and the light beam 4 is irradiated onto the optical disc 100. As a result, a plurality of marks having random mark lengths and space lengths corresponding to random signals are formed on the outer track of the optical disc 100.
  • Step 3 The data recorded on the outer track of the optical disc 100 is reproduced and the signal quality index value is measured. Specifically, the optical disk 100 is rotated by the motor 2 so that the optical disk 100 has a reproduction speed V0 in the outer track.
  • the reproduction speed V0 is equal to or lower than the recording speed V1 (a low reference speed that satisfies V0 ⁇ V1).
  • a light beam 4 having a reproduction intensity is emitted from the optical head 3 to irradiate the outer peripheral track of the optical disc 100.
  • the optical head 3 detects reflected light modulated based on the mark and space formed on the optical disc 100, and generates a reproduction signal 7.
  • the signal index measurement unit 13 of the reproduction signal processing unit 6 measures the signal quality index value of the reproduction signal 7.
  • the obtained index value A is stored in a memory in the system controller 10, for example.
  • Step 4 The optical head 3 is moved by the traverse mechanism 5 so that the light beam 4 emitted from the head 3 irradiates the intermediate track of the optical disk 1.
  • the optical disk 100 is rotated by the motor 2 so that the recording speed V1 is obtained in the middle track of the optical disk 100.
  • Step 5 A plurality of marks having random mark lengths and space lengths corresponding to random signals are formed in the middle track of the disk 100 by the same procedure as in step 2.
  • Step 6 By the same procedure as in Step 3, the data recorded on the middle track of the optical disc 100 is reproduced at the reproduction speed V0, and the signal quality index value of the reproduction signal 7 is measured.
  • the obtained index value B is stored in the memory in the system controller 10.
  • Step 7 The optical head 3 is moved by the traverse mechanism 5 so that the light beam 4 emitted from the head 3 irradiates the inner peripheral track of the optical disk 1. Further, the optical disk 100 is rotated by the motor 2 so that the recording speed V1 is obtained in the inner circumferential track of the optical disk 100.
  • Step 8 A plurality of marks having random mark lengths and space lengths corresponding to random signals are formed on the inner circumferential track of the disk 100 by the same procedure as in step 2.
  • Step 9 The data recorded on the inner track of the optical disc 100 is reproduced at the reproduction speed V0 by the same procedure as in Step 3, and the signal quality index value of the reproduction signal 7 is measured.
  • the obtained index value C is stored in the memory in the system controller 10.
  • Step 10 The optical head 3 is moved by the traverse mechanism 5 so that the light beam 4 emitted from the head 3 irradiates the outer track of the optical disk 1. Further, the optical disk 100 is rotated by the motor 2 so that the recording speed V2 is obtained in the outer track of the optical disk 100.
  • the recording speed V2 is set larger than the recording speed V1 (V2> V1).
  • Step 11 A plurality of marks having random mark lengths and space lengths corresponding to random signals are formed on the outer circumferential track of the disk 100 by the same procedure as in step 2.
  • Step 12 The data recorded on the outer track of the optical disc 100 is reproduced at the reproduction speed V0 by the same procedure as in step 3, and the signal quality index value of the reproduction signal 7 is measured.
  • the obtained index value D is stored in the memory in the system controller 10.
  • Step 13 The optical head 3 is moved by the traverse mechanism 5 so that the light beam 4 emitted from the head 3 irradiates the intermediate track of the optical disk 1. Further, the optical disk 100 is rotated by the motor 2 so that the recording speed V2 is obtained in the middle track of the optical disk 100.
  • Step 14 A plurality of marks having random mark lengths and space lengths corresponding to random signals are formed in the middle track of the disk 100 by the same procedure as in step 2.
  • Step 15 By the same procedure as in Step 3, the data recorded on the middle track of the optical disc 100 is reproduced at the reproduction speed V0, and the signal quality index value of the reproduction signal 7 is measured.
  • the obtained index value E is stored in a memory in the system controller 10.
  • Step 16 In the system controller 10, based on the difference between the signal quality index values B and E, a value obtained by correcting the signal quality index value C is recorded on the inner track of the optical disc 100 at the recording speed V2, and a random signal is recorded.
  • Step 17 The optical head 3 is moved by the traverse mechanism 5 so that the light beam 4 emitted from the head 3 irradiates the outer track of the optical disk 1.
  • the optical disk 100 is rotated by the motor 2 so that the recording speed is 3 in the outer track of the optical disk 100.
  • the recording speed V3 is set higher than the recording speed V2 (V3> V2).
  • Step 18 A plurality of marks having random mark lengths and space lengths corresponding to random signals are formed on the outer circumferential track of the disk 100 by the same procedure as in step 2.
  • Step 19 The data recorded on the outer track of the optical disc 100 is reproduced at the reproduction speed V0 by the same procedure as in step 3, and the signal quality index value of the reproduction signal 7 is measured.
  • the obtained index value G is stored in a memory in the system controller 10.
  • Step 20 In the system controller 10, based on the difference between the signal quality index values G and D, a value obtained by correcting the signal quality index value E is recorded on the middle track of the optical disc 100 at the recording speed V3.
  • the signal quality index value obtained when the data is reproduced Specifically, G 2 -D 2 is calculated, added to E 2 , and then the square root is obtained. That is, (E 2 + G 2 ⁇ D 2 ) 0.5 is calculated and the value is set as the signal index value H.
  • Step 21 In the system controller 10, based on the difference between the signal quality index values G and A, a value obtained by correcting the signal quality index value C is recorded as a random signal on the inner track of the optical disc 100 at the recording speed V3.
  • the signal quality index value obtained when the data is reproduced Specifically, G 2 -A 2 is calculated and added to C 2 , and then the square root is obtained. That is, (C 2 + G 2 ⁇ A 2 ) 0.5 is calculated and the value is set as the signal index value I.
  • Step 22 In the system controller 10, the measured signal quality index values A, B, C, D, E, G and the signal quality index values F, H, I obtained by calculation are compared with a predetermined value, and the optical disc 100 determines a predetermined signal. Determining whether the quality index is met. Specifically, when the signal quality index values A, B, C, D, E, F, G, H, and I are all equal to or lower than a predetermined value, the system controller 10 determines that the optical disk 100 is predetermined when the recording speed is V3 or lower. A signal indicating that the signal quality is provided is output to the outside. Alternatively, a display indicating that the optical disc 100 has a predetermined signal quality at a recording speed V3 or lower is performed on a display device (not shown) provided in the disc device shown in FIG.
  • steps 1 to 22 are not necessarily performed in this order, and the order may be changed as long as the recording / reproducing signal quality index value necessary for the inspection is obtained.
  • step 16 may be performed after steps 18 and 19.
  • a BD-R is used for the optical disc 100.
  • the linear velocity higher than the standard linear velocity is generally a positive integer multiple of the standard linear velocity, but is not limited to an integer and may be a positive real multiple. Also, a linear velocity that is slower than the standard linear velocity, such as 0.5 times (0.5x), may be defined. Accordingly, the recording speed is similarly defined as 2 ⁇ speed, 4 ⁇ speed, etc., but a speed such as 0.5 ⁇ speed or 4.5 ⁇ speed can also be defined.
  • a position near a radius of 24 mm is used as an inner track
  • a position near a radius of 41 mm is used as a middle track
  • a position near a radius of 58 mm is used as an outer track.
  • the recording speeds V1, V2, and V3 are set to 4 ⁇ , 6 ⁇ , and 10 ⁇ speeds of BD, respectively.
  • signal quality index values A to I are obtained.
  • Table 1 shows the signal quality index value and the rotation speed for each recording speed at each radial position.
  • Table 1 shows the position and recording speed on the optical disc 100 where the signal quality index values A to I are calculated in parentheses beside the signal quality index values A to I. Such notation is the same in the following figures and tables.
  • the rotation speed at each radial position does not exceed 10,000 rpm, and therefore the signal quality index value A in all of the outer track, the middle track, and the inner track. , B and C can be actually measured.
  • the rotation speed exceeds 10,000 rpm on the inner track and the inner track at the recording speed of 6 ⁇ and at the recording speed of 10 ⁇ , it is difficult to measure the signal quality index value.
  • FIG. 3 shows the relationship between the measurement result of the signal quality index value and the signal quality index value obtained by calculation and the radial position.
  • the horizontal axis indicates the radial position
  • the vertical axis indicates the signal quality index value.
  • Circle marks, triangle marks, and square marks indicate signal quality index values at recording speeds of V1 (4 ⁇ speed), V2 (6 ⁇ speed), and 10 ⁇ speed, respectively. The white outlines of these marks indicate calculated values, and the black indicates actually measured values.
  • the signal quality index value is actually measured at the recording speed and the radial position where measurement is possible, and the signal quality index value is measured at the inner peripheral side position where the rotation speed exceeds 10,000 rpm and measurement is difficult. Is calculated.
  • signal quality index values are obtained by measurement or calculation, and can be compared with predetermined values. More specifically, the pass / fail judgment of each item is performed using the inspection items as shown in Table 2.
  • a jitter value obtained by binarizing a reproduction random signal is used as a signal quality index value, and the jitter value is verified at recording speeds of 4 ⁇ , 6 ⁇ , and 10 ⁇ speeds.
  • the same value is used as the predetermined value. For example, if the jitter value is 7% or less, it is determined that a prescribed signal quality is obtained.
  • indicates that the signal quality index value is less than or equal to a predetermined value
  • indicates that it is greater than the predetermined value
  • the signal quality index value F in the inner track at the recording speed of 6 ⁇ is obtained by calculation. As described in step 16, the signal quality index value F is actually measured. This is obtained by correcting the signal quality index value C.
  • the signal quality of the optical disc 100 depends on the physical structure of the optical disc 100 at the position where the measurement is performed. Therefore, even if the signal quality index value in the inner track cannot be measured at the recording speed of 6 ⁇ speed, it is calculated based on the signal quality index value C in the inner track actually measured at the recording speed of 4 ⁇ speed.
  • the measured signal quality index value F is considered to be in good agreement with the signal quality index value obtained when the measurement is actually performed.
  • the optical disc 100 stores in advance the recording conditions used in the inspection for this purpose, that is, the recording power and recording pulse conditions for each recording speed in the lead-in area 101 shown in FIG. 2 as standard recording conditions for the optical disc. is doing.
  • the lead-in area 101 is provided in a read-only area using wobbles, pits, and the like of track grooves on the inner periphery of the disc. Specific examples of recording power and recording pulse conditions for each recording speed stored in the lead-in area 101 are shown in Table 3.
  • standard recording power and recording pulse conditions at a recording speed V1 where V3> V2> V1 are assigned to information of about 100 bytes from the header to the footer for each condition set serial number.
  • Table 3 shows an example of conditions for 4 ⁇ speed when the condition set serial number is I, conditions for 6 ⁇ speed when the condition set serial number is J, and conditions for 10 ⁇ speed when the condition set serial number is K.
  • the disk device used by the user moves the optical head to the lead-in area 101 and stores the above-mentioned recording speeds stored in the lead-in area 101 as DI (disc information).
  • the recording power and recording pulse conditions are read and these conditions are set in the disk device.
  • the recording is performed under the same conditions as when the optical disc 100 was inspected. Therefore, the signal quality when reproducing the recorded data is The same as when 100 was inspected. In other words, when the optical disc 100 is inspected, the signal quality index value is surely below the predetermined value. By using such an optical disc 100, the optical disc 100 exhibits more reliably guaranteed performance.
  • the present invention it is possible to provide the market with a highly reliable optical disk that guarantees the signal quality of high-speed recording in the inner periphery, which is usually difficult to inspect. Furthermore, the necessary recording conditions stored in the lead-in area when loaded in the drive device to be used are set in the device. Therefore, the performance inspected by the manufacturer or the verification organization is sufficiently reproduced in the market, and the compatibility between the disk devices is increased.
  • the recording speeds V1, V2, and V3 are set to 4 ⁇ , 6 ⁇ , and 10 ⁇ speeds of BD, respectively.
  • the upper limit of the disk rotation speed is allowed to 12000 rpm, for example, 6 ⁇ speed of BD
  • the speed may be 8 or 10 times speed, or 12 or 14 times speed.
  • Table 4 shows the relationship between each signal index value and the recording speed in this case.
  • the signal quality index value can be measured at all of the outer circumference, the middle circumference, and the inner circumference.
  • the rotation speed exceeds 12000 rpm at the inner circumference at the 8 ⁇ or 10 ⁇ recording speed and at the middle and inner circumferences at the 12 ⁇ or 14 ⁇ speed.
  • the signal quality index value can be obtained by calculation, and the characteristics r of the optical disc are ensured by inspecting the items shown in Table 4 using the calculated value. Can do.
  • the quality index value I may be obtained.
  • the signal quality index value I is obtained by calculation in step 21 and it is confirmed in step 22 that the signal quality index value I is not more than a predetermined value including the signal quality index value I.
  • the rotation speed is extremely high at the inner peripheral portion and it is a fundamental condition that cannot normally be used, it may be excluded from the inspection items.
  • the quality is guaranteed at the same predetermined value (for example, 7%) with respect to the signal quality index values measured or calculated at different recording speeds and measurement radial positions. This is to ensure equivalent signal quality at any available recording speed and any position in the user data track on the optical disc 100.
  • the predetermined value may be varied according to the recording speed or the measurement radius position.
  • the system controller of the disk device determines whether or not the signal quality index value is less than or equal to the predetermined value, but the signal quality index value is compared with the predetermined value. Whether the measured signal quality index value and the signal quality index value obtained by calculation are equal to or lower than a predetermined value may be checked by an operator of the disk device.
  • optical disc inspection method and optical disc according to the present invention are suitably used for optical discs that perform recording and reproduction at high speed. Further, the present invention suitably corresponds to a disk device capable of high-speed recording / reproduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Head (AREA)

Abstract

 本発明の光ディスクの検査方法は、光ディスクの第1半径位置、前記第1半径位置より内周側に位置する第2半径位置、および、前記第2半径位置よりも内周側に位置する第3半径位置において、記録速度V1でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値A、B、Cをそれぞれ測定するステップと、前記第1半径位置および前記第2半径位置において、V1よりも大きい記録速度V2でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値D、Eをそれぞれ測定するステップと、前記信号品質指標値BおよびEの相違に基づいて、前記信号品質指標値Cを補正することにより、前記第3半径位置において、前記速度V2でデータを記録し、記録したデータを再生した場合の信号品質指標値Fを算出するステップとを包含する。

Description

光ディスクの検査方法および光ディスク媒体
 本発明は、高速記録に適した光ディスクの検査方法および光ディスク媒体に関する。
 光学的にデータを記録し、記録されたデータを再生することのできる記録媒体(以下、本願明細書では単に光ディスクと呼ぶ)には、データの追記が可能なCD-R、DVD-R、BD-Rなどや、書き換えが可能なDVD-RW、DVD-RAM、BD-REなどがある。これらの光ディスクには全て標準の記録速度が規定されている。記録速度は、具体的には線速度または転送レートで示される。本願明細書では、主として線速度を用いて記録速度を説明する。
 近年、市場の要望および技術の進歩により、光ディスクへの最高記録速度が向上しており、すでにDVD-Rでは16倍速での記録が実用化されている。また、BD-Rは現在4倍速での記録を行うことのできるディスクおよび記録装置が実用化されている。さらに高速で記録を行うことのできる光ディスクも開発中である。ここで、「~倍速」とは、記録の標準の速さの何倍の速さであるかを意味する。
 光ディスクの最高記録速度が高くなるほど、記録条件は厳しくなる。このため、光ディスクの製造メーカや検証機関は、光ディスクが高速記録に適した所定の特性を備えているかどうかを検査する。たとえば、サンプル光ディスクの内周、中周および外周トラックなどで実際にテスト記録を行い、再生信号の信号品質指標値が予め決めた範囲内であるかどうかを確認する。この検査に合格した光ディスクだけが製品として出荷される。
 1.2mmの厚さおよび、12cm直径を有する一般的な光ディスクを用いて高速記録を行う場合、スピンドルモータの回転能力、騒音、ディスクの破壊に対する安全性などを考慮すると、現在の技術水準では光ディスクの回転速度は約10000rpm以下で使用することが望ましい。また、光ディスクを同一の回転速度で回転させる場合、半径の小さい内周で得られる記録の線速度は、半径の大きい外周に比べて小さい。こうした理由から、光ディスクの最高記録速度を高めていく場合、半径の小さい内周トラックにおいて回転速度が高くなり過ぎ、データの高速記録が困難となる。具体的には、たとえばBDの場合、半径24mm付近の位置では、記録速度が5倍速であれば、回転速度は約9800rpmに達する。さらに、記録速度を6倍速以上にする場合、半径24mm付近の位置における回転速度は12000rpmを超える。
 こうした理由から、仮に高速記録に適した所定の特性を備えているように設計、製造された光ディスクであっても、従来の光ディスクの検査方法では、ディスクの回転数が増大する内周トラックにおける高速記録の信号品質指標値を検査することができないという課題があった。
 また、仮に、検査に用いる光ディスク装置に強力なスピンドルモータを用い、10000rpmを超える回転数を実現したとしても、このような高速回転ではスピンドルモータおよび光ディスクの振動が極めて大きくなるため、トラッキングサーボが不安定となり、正確な光ディスクの検査を行うことが困難となる。このため、従来、光ディスクの内周トラックにおける高速記録時の信号品質を保証することができなかった。
 このような理由から、仮に内周トラックにおいて安定な高速記録を行うことのできるドライブ装置が開発されても、内周トラックにおける高速記録の信号品質が保証されていない光ディスク媒体を使わざるを得ないという課題があった。
 本発明は、このような課題を解決し、通常は検査が困難な内周トラックにおける高速記録における品質を保証するための光ディスクの検査方法および品質が保証された光ディスクを提供することを目的とする。
 本発明の光ディスクの検査方法は、光ディスクの第1半径位置、前記第1半径位置より内周側に位置する第2半径位置、および、前記第2半径位置よりも内周側に位置する第3半径位置において、記録速度V1でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値A、B、Cをそれぞれ測定するステップと、前記第1半径位置および前記第2半径位置において、V1よりも大きい記録速度V2でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値D、Eをそれぞれ測定するステップと、前記信号品質指標値BおよびEの相違に基づいて、前記信号品質指標値Cを補正することにより、前記第3半径位置において、前記速度V2でデータを記録し、記録したデータを再生した場合の信号品質指標値Fを算出するステップとを包含する。
 ある好ましい実施形態において、光ディスクの検査方法は、前記信号品質指標値Fを算出した後、前記信号品質指標値A、B、C、D、E、Fが所定値以下であるかどうかを確認するステップをさらに包含する。
 本発明の光ディスクの検査方法は、光ディスクの第1半径位置、前記第1半径位置より内周側に位置する第2半径位置、および、前記第2半径位置よりも内周側に位置する第3半径位置において、記録速度V1でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値A、B、Cをそれぞれ測定するステップと、前記第1半径位置および前記第2半径位置において、V1よりも大きい記録速度V2でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値D、Eをそれぞれ測定するステップと、前記信号品質指標値BおよびEの相違に基づいて、前記信号品質指標値Cを補正することにより、前記第3半径位置において、前記速度V2でデータを記録し、記録したデータを再生した場合の信号品質指標値Fを算出するステップと、前記第1半径位置において、V2よりも大きい記録速度V3でデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値Gを測定するステップと、前記信号品質指標値GおよびDの相違に基づいて、前記信号品質指標値Eを補正することにより、前記第2半径位置において、前記速度V3でデータを記録し、記録したデータを再生した場合の信号品質指標値Hを算出するステップとを包含する。
 ある好ましい実施形態において、光ディスクの検査方法は、前記信号品質指標値Hを算出した後、前記信号品質指標値A、B、C、D、E、F、G、Hが所定値以下であるかどうかを確認するステップをさらに包含する。
 ある好ましい実施形態において、前記信号品質指標値Fは、C+E-B、または、(C2+E2-B20.5である。
 ある好ましい実施形態において、前記信号品質指標値Hは、E+G-D、または、(E2+G2-D20.5である。
 ある好ましい実施形態において、前記信号品質指標値は、2値化のジッタ値である。
 ある好ましい実施形態において、前記信号品質指標値は、PRMLのエラー相関値である。
 本発明の光ディスクは、記録速度V1における標準の記録パワーおよび記録パルス条件と、前記V1より大きい記録速度V2における標準の記録パワーおよび記録パルス条件とが、リードイン領域に予め記憶されており、前記標準の記録パワーおよび記録パルス条件を用いて、請求項1から6のいずれかに規定される光ディスクの検査方法を実施したとき、記録速度V1と記録速度V2における信号品質指標値が所定値以下となる。
 本発明の光ディスクは、V3>V2>V1となる記録速度V1における標準の記録パワーおよび記録パルス条件と、記録速度V2における標準の記録パワーおよび記録パルス条件と、記録速度V3における標準の記録パワーおよび記録パルス条件とが、光ディスク媒体のリードイン領域に予め記憶されており、前記標準の記録パワーおよび記録パルス条件を用いて、請求項3または4に規定される光ディスクの検査方法を実施したとき、記録速度V1と記録速度V2と記録速度V3における信号品質指標値が所定値以下となる。
 本発明の光ディスクの検査方法によれば、通常は検査が困難な内周部の高速記録の信号品質を保証した信頼性の高い光ディスクを提供することができる。また、本発明の光ディスクによれば、高速で記録または再生が可能なディスク装置での性能マージンが確保でき、装置間の互換性が高まる。
本発明による光ディスク検査方法を実行するディスク装置のブロック図である。 本発明による光ディスクのトラックレイアウトを模式的に示している。 本発明による光ディスク検査方法によって測定および算出する信号品質指標値と半径位置との関係を模式的に示している。
符号の説明
2 モータ
3 ヘッド
6 再生信号処理部
8 記録信号処理部
10 システムコントローラ
100 光ディスク
 以下、図面を参照しながら、本発明による光ディスクの検査方法および光ディスクの実施形態を説明する。図1は、本発明による光ディスクの検査方法を実施するためのディスク装置のブロック図である。
 図1に示す装置は、モータ2と、光ヘッド3と、トラバース機構5と、再生信号処理部6と、記録信号処理部8とを備える。また、制御部であるシステムコントローラ10を備える。システムコントローラ10は、制御バス11を通じて各構成要素から種々の情報を受け取り、各構成要素を制御する。
 モータ2は、光ディスク100を装着し、システムコントローラ10からの指令に基づき、所定の回転速度で光ディスク100を回転させる。
 光ヘッド3は光源を含み、光源から出射する光ビーム4を光ディスク100に照射し、データの記録を行う。また、再生時に光ビーム4を光ディスク100に照射し、光ディスク100に形成されたマーク及びスペースに基づいて変調された反射光を検出し、再生信号を生成する。
 トラバース機構5は、記録または再生を行うべきトラックを光ビーム4が照射するように、光ヘッド3を光ディスク100の半径方向に移動させる。
 記録信号処理部8は光ディスク100の検査をするために行う試し書きのための記録信号9を生成し、光ヘッド3へ出力する。特に、記録信号処理部8は記録条件設定部12を含み、変調規則で定められている複数の長さのマークおよびスペースがランダムな確率で発生される複数のパルスを含むランダム信号を生成するための光源の駆動条件を設定する。
 再生信号処理部6は、光ヘッド3から得られる再生信号7の特性を検出する。特に、再生信号処理部6は信号指標測定部13を含み、再生信号7の信号品質指標値を測定する。信号品質指標値としては、光ディスク3の総合特性の優劣を端的に表す指標値を用いることが好ましく、再生ランダム信号の2値化のジッタ値が好ましい。また、再生方式として、PRML(パーシャル・レスポンス・マキシマム・ライクリフード)検出法を使うディスク装置では、そのエラー相関値を信号品質指標値として用いることが好ましい。具体的には、MLSE(マキシマム・ライクリフード・シーケンス・エラー)値、SAM(シーケンスド・アンプリチュード・マージン)値などが適する。
 図2は、本発明による光ディスクの検査方法を用いて検査される本発明の光ディスク100のトラックレイアウトを示している。図2に示すように光ディスク100は、内周側に設けられたリードイン領域101とリードイン領域101の外周側に設けられたユーザデータトラック102とを含む。ユーザデータトラック102はユーザが所望のデータを記録するトラックである。ユーザデータトラック102が設けられた部分をデータ領域とも呼ぶ。
 光ディスク100は追記型であってもよいし、書き換え型であってもよい。光ディスク100が追記型である場合、ユーザデータトラック102に一度記録されたデータを書き換えることはできないが、ユーザデータトラック102のデータが記録されていない領域には追記が可能である。光ディスク100が書き換え型である場合、ユーザデータトラック102に記録されたデータを書き換えることが可能である。
 ユーザデータトラック102の領域全体において、所定の信号品質を有する再生信号が得られるかどうかを保証するため、光ディスク100の検査は、ユーザデータトラック102の第1半径位置、第1半径位置よりも内周側に位置する第2半径位置および第2半径位置よりも内周側に位置する第3半径位置において行なわれる。第1半径位置、第2半径位置および第3半径位をそれぞれr1、r2およびr3とした場合、r1>r2>r3の関係を満たしている。光ディスク100の直径が約12cmである場合、r1、r2およびr3はそれぞれ57mm≦r1≦59mm、40mm≦r2≦42mm、23mm≦r3≦25mmであることが好ましい。また、r2=(r1+r3)/2であることが好ましい。より好ましくは、r1=58mm、r2=41mm、r3=24mmである。以下、第1半径位置、第2半径位置および第3半径位置を外周トラック、中周トラックおよび内周トラックと呼ぶ。
 なお、図1に示すディスク装置は、光ディスク100の検査専用の装置として実現してもよいし、光ディスク100の検査に加えて、任意のユーザデータを記録し、記録されたデータを再生することもできる光ディスク装置として実現してもよい。
 以下、図1に示すディスク装置を用いた本発明による光ディスク方法の実施形態を詳細に説明する。この方法の各手順は、コンピュータに読み取り可能なプログラム(ファームウェア)として、たとえば、システムコントローラ10に設けられたEEPROMやRAMなどの情報記録媒体等に格納される。システムコントローラ10は、この手順を規定したプログラムを読み出し、手順にしたがって各構成要素を制御する。
 (ステップ1)
 トラバース機構5によって、ヘッド3から出射する光ビーム4が光ディスク1の外周トラックを照射するように光ヘッド3を移動させる。また、モータ2によって、光ディスク100の外周トラックにおいて記録速度(線速度)V1となるように光ディスク100を回転させる。
 (ステップ2)
 光ディスク100の外周トラックに所定のデータを記録する。より具体的には、記録信号処理部8の記録条件設定部12によって、記録速度V1用の記録パワーと記録パルス条件を設定し、設定された条件で光ヘッド3の光源を駆動し、光ビーム4を光ディスク100に照射する。これにより、光ディスク100の外周トラックにおいて、ランダム信号に対応する、マーク長およびスペース長がランダムである複数のマークを形成する。
 (ステップ3)
 光ディスク100の外周トラックに記録されたデータを再生し、信号品質指標値を測定する。具体的には、モータ2によって、光ディスク100を外周トラックにおいて再生速度V0となるように光ディスク100を回転させる。再生速度V0は記録速度V1以下(V0≦V1となる低速の基準速度)である。
 次に、光ヘッド3から再生時の強度を有する光ビーム4を出射し、光ディスク100の外周トラックを照射する。光ディスク100に形成されたマーク及びスペースに基づいて変調された反射光を光ヘッド3が検出し、再生信号7を生成する。再生信号処理部6の信号指標測定部13は、再生信号7の信号品質指標値を測定する。得られた指標値Aを、例えばシステムコントローラ10内のメモリに記憶する。
 (ステップ4)
 トラバース機構5によって、ヘッド3から出射する光ビーム4が光ディスク1の中周トラックを照射するように光ヘッド3を移動させる。また、モータ2によって、光ディスク100の中周トラックにおいて記録速度V1となるように光ディスク100を回転させる。
 (ステップ5)
 ステップ2と同様の手順によって、ディスク100の中周トラックにおいて、ランダム信号に対応する、マーク長およびスペース長がランダムである複数のマークを形成する。
 (ステップ6)
 ステップ3と同様の手順によって、光ディスク100の中周トラックに記録されたデータを再生速度V0で再生し、再生信号7の信号品質指標値を測定する。得られた指標値Bをシステムコントローラ10内のメモリに記憶する。
 (ステップ7)
 トラバース機構5によって、ヘッド3から出射する光ビーム4が光ディスク1の内周トラックを照射するように光ヘッド3を移動させる。また、モータ2によって、光ディスク100の内周トラックにおいて記録速度V1となるように光ディスク100を回転させる。
 (ステップ8)
 ステップ2と同様の手順によって、ディスク100の内周トラックにおいて、ランダム信号に対応する、マーク長およびスペース長がランダムである複数のマークを形成する。
 (ステップ9)
 ステップ3と同様の手順によって、光ディスク100の内周トラックに記録されたデータを再生速度V0で再生し、再生信号7の信号品質指標値を測定する。得られた指標値Cをシステムコントローラ10内のメモリに記憶する。
 (ステップ10)
 トラバース機構5によって、ヘッド3から出射する光ビーム4が光ディスク1の外周トラックを照射するように光ヘッド3を移動させる。また、モータ2によって、光ディスク100の外周トラックにおいて記録速度V2となるように光ディスク100を回転させる。記録速度V2は記録速度V1よりも大きく設定する(V2>V1)。
 (ステップ11)
 ステップ2と同様の手順によって、ディスク100の外周トラックにおいて、ランダム信号に対応する、マーク長およびスペース長がランダムである複数のマークを形成する。
 (ステップ12)
 ステップ3と同様の手順によって、光ディスク100の外周トラックに記録されたデータを再生速度V0で再生し、再生信号7の信号品質指標値を測定する。得られた指標値Dをシステムコントローラ10内のメモリに記憶する。
 (ステップ13)
 トラバース機構5によって、ヘッド3から出射する光ビーム4が光ディスク1の中周トラックを照射するように光ヘッド3を移動させる。また、モータ2によって、光ディスク100の中周トラックにおいて記録速度V2となるように光ディスク100を回転させる。
 (ステップ14)
 ステップ2と同様の手順によって、ディスク100の中周トラックにおいて、ランダム信号に対応する、マーク長およびスペース長がランダムである複数のマークを形成する。
 (ステップ15)
 ステップ3と同様の手順によって、光ディスク100の中周トラックに記録されたデータを再生速度V0で再生し、再生信号7の信号品質指標値を測定する。得られた指標値Eをシステムコントローラ10内のメモリに記憶する。
 (ステップ16)
 システムコントローラ10において、信号品質指標値BおよびEの相違に基づいて、信号品質指標値Cを補正することによって求めた値を、記録速度V2で光ディスク100の内周トラックにランダム信号を記録し、再生した場合に得られる信号品質指標値とする。具体的には、E2-B2を算出し、C2に加えた後、その平方根を求める。つまり、(C2+E2-B20.5を算出し、その値を信号指標値Fとする。
 (ステップ17)
 トラバース機構5によって、ヘッド3から出射する光ビーム4が光ディスク1の外周トラックを照射するように光ヘッド3を移動させる。また、モータ2によって、光ディスク100の外周トラックにおいて記録速度3となるように光ディスク100を回転させる。記録速度V3は記録速度V2よりも大きく設定する(V3>V2)。
 (ステップ18)
 ステップ2と同様の手順によって、ディスク100の外周トラックにおいて、ランダム信号に対応する、マーク長およびスペース長がランダムである複数のマークを形成する。
 (ステップ19)
 ステップ3と同様の手順によって、光ディスク100の外周トラックに記録されたデータを再生速度V0で再生し、再生信号7の信号品質指標値を測定する。得られた指標値Gをシステムコントローラ10内のメモリに記憶する。
 (ステップ20)
 システムコントローラ10において、信号品質指標値GおよびDの相違に基づいて、信号品質指標値Eを補正することによって求めた値を、記録速度V3で光ディスク100の中周トラックにランダム信号を記録し、再生した場合に得られる信号品質指標値とする。具体的には、G2-D2を算出し、E2に加えた後、その平方根を求める。つまり、(E2+G2-D20.5を算出し、その値を信号指標値Hとする。
 (ステップ21)
 システムコントローラ10において、信号品質指標値GおよびAの相違に基づいて、信号品質指標値Cを補正することによって求めた値を、記録速度V3で光ディスク100の内周トラックにランダム信号を記録し、再生した場合に得られる信号品質指標値とする。具体的には、G2-A2を算出し、C2に加えた後、その平方根を求める。つまり、(C2+G2-A20.5を算出し、その値を信号指標値Iとする。
 (ステップ22)
  システムコントローラ10において、測定した信号品質指標値A、B、C、D、E、Gおよび計算によって求めた信号品質指標値F、H、Iと所定値とを比較し、光ディスク100が所定の信号品質指標の規定に適合しているかどうかを判定する。具体的には、信号品質指標値A、B、C、D、E、F、G、H、Iがすべて所定値以下である場合、システムコントローラ10は、光ディスク100が記録速度V3以下において、所定の信号品質を備えていることを示す信号を外部へ出力する。あるいは、図1に示すディスク装置に設けられた図示しない表示装置に、光ディスク100が記録速度V3以下において、所定の信号品質を備えていることを示す表示を行う。
 以上のステップ1から22は必ずしもこの順序で実施される必要はなく、検査に必要な記録再生信号品質指標値が求まる限り、順序が入れ替わってもよい。たとえば、ステップ16はステップ18および19の後に実行してもよい。
 ここで、最も好ましい具体例を説明する。光ディスク100にはBD-Rを用いる。
 BDの主な光学定数と物理フォーマットについては、「ブルーレイディスク読本」(オーム社出版)やブルーレイアソシエーションのホームページ(http://www.blu-raydisc.com/)に掲載されているホワイトペーパに開示されている。BD標準転送レート(1x)において標準線速度(基準線速度、1x)は4.9m/secである。2倍(2x)、4倍(4x)、6倍(6x)、8倍(8x)および10倍の線速度は、それぞれ、9.8m/sec、19.7m/sec、29.5m/sec、39.3m/secおよび49m/secである。標準線速度よりも高い線速度は一般的には、標準線速度の正の整数倍であるが、整数に限られず、正の実数倍であってもよい。また、0.5倍(0.5x)など、標準線速度よりも遅い線速度も定義し得る。したがって、記録速度も同様に、2倍速、4倍速等と定義されるが、0.5倍速あるいは4.5倍速といった速度も定義され得る。
 本実施形態では内周トラックとして半径24mm付近の位置、中周トラックとして半径41mm付近の位置、外周トラックとして半径58mm付近の位置を用いる。また、記録速度V1、V2、V3をそれぞれBDの4倍速、6倍速、10倍速とする。各半径位置において、V1、V2およびV3の速度で記録を行うことによって、AからIの信号品質指標値が得られる。表1は、各半径位置における、記録速度ごとの信号品質指標値および回転速度を示している。なお、表1では分かり易さのため、信号品質指標値A~Iの横に、括弧書きで信号品質指標値A~Iが算出された光ディスク100における位置および記録速度を示している。このような表記は以下の図および表においても同様である。
Figure JPOXMLDOC01-appb-T000001
 上述の手順によって、4倍速の記録速度で光ディスクの検査を行う場合、各半径位置における回転速度が10000rpmを超えないため、外周トラック、中周トラック、および内周トラックすべてにおいて、信号品質指標値A、B、Cを実際に測定することができる。一方、6倍速の記録速度における内周トラックおよび10倍速の記録速度における中周トラックおよび内周トラックでは、回転速度が10000rpmを超えるため、信号品質指標値の測定が困難である。
 しかし、本発明によれば、測定が困難な条件における信号指標値は計算によって求めることができる。図3は、上述した信号品質指標値の測定結果および計算によって求めた信号品質指標値と半径位置との関係を示している。図3において、横軸は半径位置を示しており、縦軸は、信号品質指標値を示している。また、丸印、三角印および四角印はそれぞれ、V1(4倍速)、V2(6倍速)および10倍速の記録速度における信号品質指標値を示している。これらの印の白抜きは計算値を示し、黒は実測値を示している。
 図3から分かるように、測定が可能な記録速度および半径位置では、信号品質指標値を実際に測定し、回転速度が10000rpmを超え、測定が困難となる内周側位置では、信号品質指標値を計算で求める。これにより、全ての記録速度と半径位置において、信号品質指標値が測定または計算によって求められ、予め決めた所定値と比較することが可能である。より具体的には、表2に示すような検査項目を用いて各項目の合否判定を行う。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、たとえば、信号品質指標値として、再生ランダム信号の2値化のジッタ値を用い、4倍速、6倍速および10倍速の記録速度でジッタ値を検証する。表2に示すように、たとえば、各記録速度および半径位置において、同程度の信号品質を保証する場合には、所定値として同じ値を用いる。たとえば、ジッタ値が7%以下であれば規定の信号品質が得られると判定する。
 表2において、○は信号品質指標値が所定値以下であることを示し、×は所定値よりも大きいことを示す。上述したように回転速度が10000rpmを超えるため、実測ができない半径位置および記録速度であっても、計算によって求めた信号品質指標値を用いることによって、光ディスクとして、通常は検査が困難な内周トラックの高速記録の信号品質を検証することができる。
 表2に示すように、6倍速の記録速度で内周トラックにおける信号品質指標値Fは計算によって求めたものであるが、ステップ16で説明したように、信号品質指標値Fは、実際に測定した信号品質指標値Cを補正することによって求めたものである。光ディスク100の信号品質は、測定を行った位置における光ディスク100の物理的構造に依存する。このため、6倍速の記録速度で内周トラックにおける信号品質指標値を測定することができなくても、4倍速の記録速度で実際に測定した内周トラックにおける信号品質指標値Cに基づいて算出した信号品質指標値Fは、実際に測定を行ったとした場合に得られる信号品質指標値によく一致していると考えられる。10倍速の記録速度における信号品質指標値H、Iについても同様である。したがって、このような計算によって算出した信号品質指標値F、H、Iを用いて、光ディスク100の特性を評価することには意味がある。
 このようにして、本発明の光ディスクの検査方法に合格した光ディスクをユーザが使用する場合、光ディスクの検査と同等レベルの性能が確保されていることが好ましい。本発明による光ディスク100は、このために検査で使用した記録条件、つまり、各記録速度用の記録パワーと記録パルス条件を光ディスクの標準的な記録条件として図2に示すリードイン領域101に予め記憶している。リードイン領域101は、ディスク内周部のトラック溝のウォブルやピットなどを用いた読み出し専用領域に設けられている。リードイン領域101に記憶される各記録速度用の記録パワーと記録パルス条件の具体例を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 たとえば、V3>V2>V1となる記録速度V1における標準の記録パワーおよび記録パルス条件と、記録速度V2における標準の記録パワーおよび記録パルス条件と、記録速度V3における標準の記録パワーおよび記録パルス条件とを、それぞれ条件セット連番毎にヘッダーからフッターまでの100バイト程度の情報に割り当てる。表3は、条件セット連番がIのとき4倍速用条件、条件セット連番がJのとき6倍速用条件、条件セット連番がKのとき10倍速用条件の一例を示している。
 ユーザが使用するディスク装置は、光ディスク100が装填された場合、リードイン領域101に光ヘッドを移動させ、リードイン領域101にDI(ディスク・インフォメーション)として記憶されていた上述の各記録速度用の記録パワーと記録パルス条件を読み出し、ディスク装置にこれらの条件を設定する。これらの条件を用いて、各記録速度で光ディスク100にデータの記録を行う場合、光ディスク100を検査したときと同じ条件で記録が行われるため、記録したデータを再生するときの信号品質は、光ディスク100を検査した時と同じである。言い換えれば、光ディスク100の検査を行った場合、信号品質指標値が確実に所定値以下となる。このような光ディスク100を用いることによって、光ディスク100は、より確実に保証された性能を発揮する。
 このように、本発明によれば、通常は検査が困難な内周部の高速記録の信号品質を保証した信頼性の高い光ディスクを市場に提供することができる。さらに、使用するドライブ装置に装填されたとき、リードイン領域に記憶されていた必要な記録条件が装置に設定される。したがって、製造メーカや検証機関で検査された性能が市場においても十分再現され、ディスク装置間の互換性も増す。
 なお、上記実施形態では、記録速度V1、V2、V3をそれぞれBDの4倍速、6倍速、10倍速としたが、ディスク回転数の上限を例えば12000rpmまで許容する場合は、それぞれBDの6倍速、8または10倍速、12または14倍速としてもよい。この場合の各信号指標値と記録速度との関係を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 6倍速の記録速度で光ディスクの検査を行う場合は、外周、中周、内周すべてにおいて、信号品質指標値を測定することができる。8倍速または10倍速の記録速度における内周、および、12倍速または14倍速における中周および内周では、回転速度が12000rpmを超える。しかし、本発明によれば、これらの場合において、信号品質指標値を計算によって求めることができ、計算値を用いて表4に示す項目の検査を行うことにより、光ディスクの特性rを保証することができる。
 また、上記実施形態では、信号指標値としてウインドウ幅に対するノイズエネルギー量を扱うので2乗加減算を用いた。しかし、単純加減算でも簡易的には実用的な結果が得られる。その場合、ステップ16では、F=C+E-Bによって信号品質指標値Fを求め、ステップ20では、H=E+G-Dによって信号品質指標値Hを求め、ステップ21において、I=C+G-Aによって信号品質指標値Iを求めてもよい。
 また、上記実施形態では、ステップ21において信号品質指標値Iを計算によって求め、ステップ22において、信号品質指標値Iを含め含めて所定値以下であることを確認する例を示した。しかし、内周部で極めて高速回転となり、通常は使用し得ない原理的な条件なので、検査項目から外してもよい。
 また、上記実施形態では、異なる記録速度および測定半径位置において測定または算出した信号品質指標値に対し、同じ所定値(例えば7%)で品質を保証した。これは、光ディスク100において、使用可能などの記録速度およびユーザデータトラックのどの位置においても、同等の信号品質を保証するためである。しかし、光ディスク100にも求められる仕様によっては、記録速度または測定半径位置に応じて、所定値を異ならせてもよい。
 また、上記実施形態では、信号品質指標値が所定値以下であるかどうかをディスク装置のシステムコントローラが信号品質指標値と所定値とを比較することによって行なっているが、所定値との比較つまり測定した信号品質指標値および計算によって求めた信号品質指標値が所定値以下であるかどうかの確認は、ディスク装置の操作者等が行なってもよい。
 本発明による光ディスクの検査方法および光ディスクは、高速で記録および再生を行う光ディスクに好適に用いられる。また、高速記録再生が可能なディスク装置に好適に対応する。

Claims (10)

  1.  光ディスクの第1半径位置、前記第1半径位置より内周側に位置する第2半径位置、および、前記第2半径位置よりも内周側に位置する第3半径位置において、記録速度V1でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値A、B、Cをそれぞれ測定するステップと、
     前記第1半径位置および前記第2半径位置において、V1よりも大きい記録速度V2でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値D、Eをそれぞれ測定するステップと、
     前記信号品質指標値BおよびEの相違に基づいて、前記信号品質指標値Cを補正することにより、前記第3半径位置において、前記速度V2でデータを記録し、記録したデータを再生した場合の信号品質指標値Fを算出するステップと、
    を包含する光ディスクの検査方法。
  2.  前記信号品質指標値Fを算出した後、前記信号品質指標値A、B、C、D、E、Fが所定値以下であるかどうかを確認するステップをさらに包含する請求項1に記載の光ディスクの検査方法。
  3.  光ディスクの第1半径位置、前記第1半径位置より内周側に位置する第2半径位置、および、前記第2半径位置よりも内周側に位置する第3半径位置において、記録速度V1でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値A、B、Cをそれぞれ測定するステップと、
     前記第1半径位置および前記第2半径位置において、V1よりも大きい記録速度V2でそれぞれデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値D、Eをそれぞれ測定するステップと、
     前記信号品質指標値BおよびEの相違に基づいて、前記信号品質指標値Cを補正することにより、前記第3半径位置において、前記速度V2でデータを記録し、記録したデータを再生した場合の信号品質指標値Fを算出するステップと、
     前記第1半径位置において、V2よりも大きい記録速度V3でデータを記録し、記録したデータを再生することにより、再生信号の信号品質指標値Gを測定するステップと、
     前記信号品質指標値GおよびDの相違に基づいて、前記信号品質指標値Eを補正することにより、前記第2半径位置において、前記速度V3でデータを記録し、記録したデータを再生した場合の信号品質指標値Hを算出するステップと、
    を包含する光ディスクの検査方法。
  4.  前記信号品質指標値Hを算出した後、前記信号品質指標値A、B、C、D、E、F、G、Hが所定値以下であるかどうかを確認するステップをさらに包含する請求項3に記載の光ディスクの検査方法。
  5.  前記信号品質指標値Fは、C+E-B、または、(C2+E2-B20.5である請求項1から4のいずれかに記載の光ディスクの検査方法。
  6.  前記信号品質指標値Hは、E+G-D、または、(E2+G2-D20.5である請求項3または4に記載の光ディスクの検査方法。
  7.  前記信号品質指標値は、2値化のジッタ値である請求項1から4のいずれかに記載の光ディスクの検査方法。
  8.  前記信号品質指標値は、PRMLのエラー相関値である請求項1から4のいずれかに記載の光ディスクの検査方法。
  9.  記録速度V1における標準の記録パワーおよび記録パルス条件と、前記V1より大きい記録速度V2における標準の記録パワーおよび記録パルス条件とが、リードイン領域に予め記憶されており、前記標準の記録パワーおよび記録パルス条件を用いて、請求項1から6のいずれかに規定される光ディスクの検査方法を実施したとき、記録速度V1と記録速度V2における信号品質指標値が所定値以下となる光ディスク。
  10.  V3>V2>V1となる記録速度V1における標準の記録パワーおよび記録パルス条件と、記録速度V2における標準の記録パワーおよび記録パルス条件と、記録速度V3における標準の記録パワーおよび記録パルス条件とが、光ディスク媒体のリードイン領域に予め記憶されており、前記標準の記録パワーおよび記録パルス条件を用いて、請求項3または4に規定される光ディスクの検査方法を実施したとき、記録速度V1と記録速度V2と記録速度V3における信号品質指標値が所定値以下となる光ディスク。
PCT/JP2009/000532 2008-02-15 2009-02-10 光ディスクの検査方法および光ディスク媒体 WO2009101796A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002686881A CA2686881A1 (en) 2008-02-15 2009-02-10 Optical disc test method and optical disc medium
EP09710033A EP2244259A4 (en) 2008-02-15 2009-02-10 TEST METHOD FOR AN OPTICAL PLATE AND OPTICAL PLATE MEDIUM
CN2009800002220A CN101681652B (zh) 2008-02-15 2009-02-10 光盘的检查方法以及光盘介质
BRPI0902890A BRPI0902890A2 (pt) 2008-02-15 2009-02-10 método de verificação de disco ótico e meio de disco ótico
MX2009010940A MX2009010940A (es) 2008-02-15 2009-02-10 Metodo de verificacion de discos opticos y medio de disco optico.
JP2009553361A JP5437083B2 (ja) 2008-02-15 2009-02-10 光ディスクの検査方法および光ディスク媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2893008P 2008-02-15 2008-02-15
US61/028,930 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009101796A1 true WO2009101796A1 (ja) 2009-08-20

Family

ID=40954995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000532 WO2009101796A1 (ja) 2008-02-15 2009-02-10 光ディスクの検査方法および光ディスク媒体

Country Status (10)

Country Link
US (1) US7990820B2 (ja)
EP (1) EP2244259A4 (ja)
JP (1) JP5437083B2 (ja)
KR (1) KR20100110720A (ja)
CN (1) CN101681652B (ja)
BR (1) BRPI0902890A2 (ja)
CA (1) CA2686881A1 (ja)
MX (1) MX2009010940A (ja)
RU (1) RU2009138050A (ja)
WO (1) WO2009101796A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299913A (ja) * 2007-05-29 2008-12-11 Hitachi Ltd 光ディスク装置及びその情報記録方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225571A (ja) * 1992-02-14 1993-09-03 Sony Corp 光ディスク記録装置およびその方法
JPH0757267A (ja) * 1993-08-09 1995-03-03 Olympus Optical Co Ltd 光ディスク装置
JPH0773470A (ja) * 1993-09-03 1995-03-17 Pioneer Electron Corp 追記型光ディスク及びその記録装置
JPH1064063A (ja) * 1996-08-22 1998-03-06 Sony Corp 記録媒体の感度特性検査装置の出力パワー管理方法
JPH10149586A (ja) * 1996-11-18 1998-06-02 Toray Ind Inc 記録媒体の製造方法および製造装置
JP2005100482A (ja) * 2003-09-22 2005-04-14 Hitachi Ltd 情報記録媒体、その制御方法及び情報記録再生方法
JP2006107696A (ja) * 2004-09-13 2006-04-20 Ricoh Co Ltd 光情報記録媒体、その記録方法及び試験方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963520A (en) * 1996-07-10 1999-10-05 Teac Corporation Method and apparatus for high speed data recovery from CD-ROMS or like disks or varying qualities
JP3442243B2 (ja) * 1996-07-12 2003-09-02 ティアック株式会社 デ−タ再生方法及び装置
JPH10112076A (ja) * 1996-10-04 1998-04-28 Hitachi Ltd 情報の記録媒体とその製造方法および記録媒体の前処理方法
CN1466126A (zh) * 2002-06-28 2004-01-07 上海乐金广电电子有限公司 确定光盘记录功率的最佳方法
JP2004086999A (ja) * 2002-08-27 2004-03-18 Ricoh Co Ltd 記録条件設定方法、プログラム及び記録媒体、並びに光ディスク装置
CN1983429A (zh) * 2002-12-17 2007-06-20 日本电气株式会社 光盘、光盘记录/再生装置以及光盘的信号品质评价方法
JP3833998B2 (ja) * 2002-12-20 2006-10-18 株式会社東芝 ディスク装置とディスク記録方法及びディスク
WO2005043515A1 (ja) * 2003-10-31 2005-05-12 Pioneer Corporation 情報記録装置及び方法、コンピュータプログラム、並びに情報記録媒体
JP2005149571A (ja) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd 光ディスク装置の記録方法及び光ディスク装置
JP2005216395A (ja) * 2004-01-30 2005-08-11 Sony Corp 記録媒体評価方法、記録再生装置、記録媒体
JP2006092638A (ja) * 2004-09-24 2006-04-06 Hitachi Ltd 記録媒体、情報記録装置、および情報記録方法
US20080084803A1 (en) * 2006-10-04 2008-04-10 Mediatek Inc. Optical Disc Access Apparatus for Evaluating a Disc and Method Thereof
WO2009016754A1 (ja) * 2007-08-01 2009-02-05 Pioneer Corporation 記録装置及び方法、コンピュータプログラム、並びに記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225571A (ja) * 1992-02-14 1993-09-03 Sony Corp 光ディスク記録装置およびその方法
JPH0757267A (ja) * 1993-08-09 1995-03-03 Olympus Optical Co Ltd 光ディスク装置
JPH0773470A (ja) * 1993-09-03 1995-03-17 Pioneer Electron Corp 追記型光ディスク及びその記録装置
JPH1064063A (ja) * 1996-08-22 1998-03-06 Sony Corp 記録媒体の感度特性検査装置の出力パワー管理方法
JPH10149586A (ja) * 1996-11-18 1998-06-02 Toray Ind Inc 記録媒体の製造方法および製造装置
JP2005100482A (ja) * 2003-09-22 2005-04-14 Hitachi Ltd 情報記録媒体、その制御方法及び情報記録再生方法
JP2006107696A (ja) * 2004-09-13 2006-04-20 Ricoh Co Ltd 光情報記録媒体、その記録方法及び試験方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Blu-ray Disc Reader", OHMSHA
See also references of EP2244259A4 *

Also Published As

Publication number Publication date
MX2009010940A (es) 2009-10-29
EP2244259A1 (en) 2010-10-27
US20090207705A1 (en) 2009-08-20
JPWO2009101796A1 (ja) 2011-06-09
JP5437083B2 (ja) 2014-03-12
KR20100110720A (ko) 2010-10-13
CN101681652B (zh) 2012-06-27
EP2244259A4 (en) 2011-08-24
CA2686881A1 (en) 2009-08-20
BRPI0902890A2 (pt) 2017-05-30
RU2009138050A (ru) 2011-04-20
CN101681652A (zh) 2010-03-24
US7990820B2 (en) 2011-08-02

Similar Documents

Publication Publication Date Title
JP3765223B2 (ja) 光ディスク記録方法および光ディスク記録装置
JPWO2009072287A1 (ja) 情報記録媒体、記録方法、記録装置および集積回路
JP2005038466A (ja) 試し書き処理制御方法及び光ディスク装置
JP2009129538A (ja) 光ディスクの記録条件を求める方法および装置
US8320231B2 (en) Recording apparatus and recording method
JP5437083B2 (ja) 光ディスクの検査方法および光ディスク媒体
CN101118753A (zh) 光盘装置和用于其的记录功率的修正方法
JP4460569B2 (ja) 光ディスク装置及びその記録パワー設定方法
JP4248518B2 (ja) 光ディスク記録再生装置および光ディスク記録再生方法
JP2014116045A (ja) 情報再生性能の評価方法、情報再生装置及び情報記録媒体
JP2008524765A (ja) 光記憶媒体の光効果の解析
JP2007149182A (ja) 光ディスク記録装置の記録制御方法及び光ディスク記録装置
JP4474372B2 (ja) 光学的情報記録方法および光学的情報記録装置
JP3734814B2 (ja) 光ディスク装置、パラメータ決定方法、プログラム及び記憶媒体
JP2007213711A (ja) 光ディスク記録方法および光ディスク記録装置
JP4470896B2 (ja) 光ディスク装置
KR20100080879A (ko) 광학적 정보 기록 매체의 검사 방법, 검사 장치, 광학적 정보 기록 매체 및 정보 기록 방법
JP3931137B2 (ja) 光ディスク記録装置および記録条件決定方法
KR20070004263A (ko) 최적 기록 파워 결정을 위한 광디스크 구동장치 및 그제어방법
JP2011159370A (ja) 光ディスク記録装置及び最適記録パワー決定方法
JP2007149337A (ja) 光ディスク記録装置
TW200537441A (en) Method for detecting the error information of an optical disc
US20080219120A1 (en) Method and System to Improve Playability of Optical Record Medium
KR20080104436A (ko) 광디스크 장치의 검사 방법
KR20080092059A (ko) 광 디스크 판별 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000222.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020097019510

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/010940

Country of ref document: MX

Ref document number: 2009710033

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6075/CHENP/2009

Country of ref document: IN

Ref document number: 2009553361

Country of ref document: JP

Ref document number: 2009138050

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2686881

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0902890

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091014