WO2009099109A1 - ポリイミドガス分離膜およびガス分離方法 - Google Patents
ポリイミドガス分離膜およびガス分離方法 Download PDFInfo
- Publication number
- WO2009099109A1 WO2009099109A1 PCT/JP2009/051900 JP2009051900W WO2009099109A1 WO 2009099109 A1 WO2009099109 A1 WO 2009099109A1 JP 2009051900 W JP2009051900 W JP 2009051900W WO 2009099109 A1 WO2009099109 A1 WO 2009099109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas separation
- separation membrane
- vapor
- water vapor
- represented
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 159
- 239000012528 membrane Substances 0.000 title claims abstract description 149
- 239000004642 Polyimide Substances 0.000 title claims abstract description 79
- 229920001721 polyimide Polymers 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title abstract description 20
- 125000003118 aryl group Chemical group 0.000 claims abstract description 61
- 239000000203 mixture Substances 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 110
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 89
- 239000012510 hollow fiber Substances 0.000 claims description 61
- 230000005540 biological transmission Effects 0.000 claims description 32
- 150000002894 organic compounds Chemical class 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 16
- 238000001704 evaporation Methods 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 3
- 239000004305 biphenyl Substances 0.000 claims description 3
- 235000010290 biphenyl Nutrition 0.000 claims description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- JTPSHEWWGCFFLA-UHFFFAOYSA-N 1,2-diphenoxynaphthalene Chemical group C=1C=C2C=CC=CC2=C(OC=2C=CC=CC=2)C=1OC1=CC=CC=C1 JTPSHEWWGCFFLA-UHFFFAOYSA-N 0.000 claims description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 claims 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 abstract description 26
- 150000004985 diamines Chemical class 0.000 abstract description 19
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 abstract description 14
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 abstract description 12
- 150000004984 aromatic diamines Chemical class 0.000 abstract description 12
- 239000007789 gas Substances 0.000 description 114
- 239000000243 solution Substances 0.000 description 38
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 22
- 229940090668 parachlorophenol Drugs 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000012466 permeate Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- -1 phenol compound Chemical class 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 10
- 238000009987 spinning Methods 0.000 description 10
- 238000005345 coagulation Methods 0.000 description 9
- 230000015271 coagulation Effects 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- SJJLVTBMGZDXMR-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)naphthalen-1-yl]oxyaniline Chemical compound C1=CC(N)=CC=C1OC(C1=CC=CC=C11)=CC=C1OC1=CC=C(N)C=C1 SJJLVTBMGZDXMR-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- JKNRRIPQCCEGDC-UHFFFAOYSA-N 2-[1-(2-aminophenoxy)naphthalen-2-yl]oxyaniline Chemical compound NC1=CC=CC=C1OC1=CC=C(C=CC=C2)C2=C1OC1=CC=CC=C1N JKNRRIPQCCEGDC-UHFFFAOYSA-N 0.000 description 5
- LFBALUPVVFCEPA-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C(C(O)=O)=C1 LFBALUPVVFCEPA-UHFFFAOYSA-N 0.000 description 5
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 125000004427 diamine group Chemical group 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- GNQHLRFTGRZHLH-UHFFFAOYSA-N 2-[2-[2-[2-(2-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=CC=C(OC=2C(=CC=CC=2)N)C=1C(C)(C)C1=CC=CC=C1OC1=CC=CC=C1N GNQHLRFTGRZHLH-UHFFFAOYSA-N 0.000 description 2
- NBAUUNCGSMAPFM-UHFFFAOYSA-N 3-(3,4-dicarboxyphenyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C1=CC=CC(C(O)=O)=C1C(O)=O NBAUUNCGSMAPFM-UHFFFAOYSA-N 0.000 description 2
- KMKWGXGSGPYISJ-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=CC(N)=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(N)C=C1 KMKWGXGSGPYISJ-UHFFFAOYSA-N 0.000 description 2
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical group CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- NMJJFJNHVMGPGM-UHFFFAOYSA-N butyl formate Chemical compound CCCCOC=O NMJJFJNHVMGPGM-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000004683 dihydrates Chemical class 0.000 description 2
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- ZHDTXTDHBRADLM-UHFFFAOYSA-N hydron;2,3,4,5-tetrahydropyridin-6-amine;chloride Chemical compound Cl.NC1=NCCCC1 ZHDTXTDHBRADLM-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- 238000005371 permeation separation Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- ULPMRIXXHGUZFA-UHFFFAOYSA-N (R)-4-Methyl-3-hexanone Natural products CCC(C)C(=O)CC ULPMRIXXHGUZFA-UHFFFAOYSA-N 0.000 description 1
- SWLMAOZSUXXKNR-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ylbenzene Chemical class FC(F)(F)C(C(F)(F)F)C1=CC=CC=C1 SWLMAOZSUXXKNR-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- HFZLSTDPRQSZCQ-UHFFFAOYSA-N 1-pyrrolidin-3-ylpyrrolidine Chemical compound C1CCCN1C1CNCC1 HFZLSTDPRQSZCQ-UHFFFAOYSA-N 0.000 description 1
- OJSPYCPPVCMEBS-UHFFFAOYSA-N 2,8-dimethyl-5,5-dioxodibenzothiophene-3,7-diamine Chemical compound C12=CC(C)=C(N)C=C2S(=O)(=O)C2=C1C=C(C)C(N)=C2 OJSPYCPPVCMEBS-UHFFFAOYSA-N 0.000 description 1
- QHDSBTKCTUXBEG-UHFFFAOYSA-N 2-[2-(2-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC=C1OC1=CC=CC=C1OC1=CC=CC=C1N QHDSBTKCTUXBEG-UHFFFAOYSA-N 0.000 description 1
- NQOBNHOXRSNQAH-UHFFFAOYSA-N 2-[2-[2-(2-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC=C1OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1OC1=CC=CC=C1N NQOBNHOXRSNQAH-UHFFFAOYSA-N 0.000 description 1
- MQZCBPWIFIEALZ-UHFFFAOYSA-N 2-[2-[2-[2-(2-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropan-2-yl]phenoxy]aniline Chemical compound NC1=CC=CC=C1OC1=CC=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=CC=C1OC1=CC=CC=C1N MQZCBPWIFIEALZ-UHFFFAOYSA-N 0.000 description 1
- BATVGDQMONZKCV-UHFFFAOYSA-N 2-[3-(2-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC=C1OC1=CC=CC(OC=2C(=CC=CC=2)N)=C1 BATVGDQMONZKCV-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 1
- UENRXLSRMCSUSN-UHFFFAOYSA-N 3,5-diaminobenzoic acid Chemical compound NC1=CC(N)=CC(C(O)=O)=C1 UENRXLSRMCSUSN-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- DFSUKONUQMHUKQ-UHFFFAOYSA-N 3-[2-(2,3-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phthalic acid Chemical class OC(=O)C1=CC=CC(C(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)(C(F)(F)F)C(F)(F)F)=C1C(O)=O DFSUKONUQMHUKQ-UHFFFAOYSA-N 0.000 description 1
- PAHZZOIHRHCHTH-UHFFFAOYSA-N 3-[2-(2,3-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical class C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)(C)C1=CC=CC(C(O)=O)=C1C(O)=O PAHZZOIHRHCHTH-UHFFFAOYSA-N 0.000 description 1
- DVXYMCJCMDTSQA-UHFFFAOYSA-N 3-[2-(3-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=CC(N)=CC=1C(C)(C)C1=CC=CC(N)=C1 DVXYMCJCMDTSQA-UHFFFAOYSA-N 0.000 description 1
- QAOSTFBRPIGUKM-UHFFFAOYSA-N 3-[2-[2-[2-(2,3-dicarboxyphenoxy)phenyl]propan-2-yl]phenoxy]phthalic acid Chemical class C=1C=CC=C(OC=2C(=C(C(O)=O)C=CC=2)C(O)=O)C=1C(C)(C)C1=CC=CC=C1OC1=CC=CC(C(O)=O)=C1C(O)=O QAOSTFBRPIGUKM-UHFFFAOYSA-N 0.000 description 1
- WTJFWMVZFINOIM-UHFFFAOYSA-N 3-[4-(3-aminophenoxy)naphthalen-1-yl]oxyaniline Chemical compound NC1=CC=CC(OC=2C3=CC=CC=C3C(OC=3C=C(N)C=CC=3)=CC=2)=C1 WTJFWMVZFINOIM-UHFFFAOYSA-N 0.000 description 1
- MNOJRWOWILAHAV-UHFFFAOYSA-N 3-bromophenol Chemical compound OC1=CC=CC(Br)=C1 MNOJRWOWILAHAV-UHFFFAOYSA-N 0.000 description 1
- HORNXRXVQWOLPJ-UHFFFAOYSA-N 3-chlorophenol Chemical compound OC1=CC=CC(Cl)=C1 HORNXRXVQWOLPJ-UHFFFAOYSA-N 0.000 description 1
- PFCHFHIRKBAQGU-UHFFFAOYSA-N 3-hexanone Chemical compound CCCC(=O)CC PFCHFHIRKBAQGU-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- APXJLYIVOFARRM-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(C(O)=O)C(C(O)=O)=C1 APXJLYIVOFARRM-UHFFFAOYSA-N 0.000 description 1
- ZYEDGEXYGKWJPB-UHFFFAOYSA-N 4-[2-(4-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=C(N)C=CC=1C(C)(C)C1=CC=C(N)C=C1 ZYEDGEXYGKWJPB-UHFFFAOYSA-N 0.000 description 1
- YPGXCJNQPKHBLH-UHFFFAOYSA-N 4-[2-[2-[2-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropan-2-yl]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=CC=C1OC1=CC=C(N)C=C1 YPGXCJNQPKHBLH-UHFFFAOYSA-N 0.000 description 1
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 1
- HHLMWQDRYZAENA-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropan-2-yl]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)(C(F)(F)F)C(F)(F)F)C=C1 HHLMWQDRYZAENA-UHFFFAOYSA-N 0.000 description 1
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 1
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 1
- FJVIHKKXPLPDSV-UHFFFAOYSA-N 4-phenoxybenzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1OC1=CC=CC=C1 FJVIHKKXPLPDSV-UHFFFAOYSA-N 0.000 description 1
- AYFBSAPWFZYAGZ-UHFFFAOYSA-N 4-phenylbenzene-1,2,3,5-tetracarboxylic acid dihydrate Chemical compound O.O.OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C(O)=O)=C1C1=CC=CC=C1 AYFBSAPWFZYAGZ-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- BMXZWJONCPQMLL-UHFFFAOYSA-N NC1=C(OC2=C(C=CC=C2)C2=CC=C(C=C2)C2=CC=C(C=C2)C2=C(C=CC=C2)OC2=C(C=CC=C2)N)C=CC=C1 Chemical group NC1=C(OC2=C(C=CC=C2)C2=CC=C(C=C2)C2=CC=C(C=C2)C2=C(C=CC=C2)OC2=C(C=CC=C2)N)C=CC=C1 BMXZWJONCPQMLL-UHFFFAOYSA-N 0.000 description 1
- DIZZJXRDPWGPDG-UHFFFAOYSA-N NC1=CC=C(OC2=CC=C(C=C2)S(=O)(=O)C2=CC=C(C=C2)OC2=CC=C(C=C2)N)C=C1.NC1=CC=C(C=C1)C(C)(C)C1=CC(=CC=C1)N Chemical compound NC1=CC=C(OC2=CC=C(C=C2)S(=O)(=O)C2=CC=C(C=C2)OC2=CC=C(C=C2)N)C=C1.NC1=CC=C(C=C1)C(C)(C)C1=CC(=CC=C1)N DIZZJXRDPWGPDG-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- KZTYYGOKRVBIMI-UHFFFAOYSA-N S-phenyl benzenesulfonothioate Natural products C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000013849 propane Nutrition 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- VHNQIURBCCNWDN-UHFFFAOYSA-N pyridine-2,6-diamine Chemical compound NC1=CC=CC(N)=N1 VHNQIURBCCNWDN-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/105—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
- C08G73/1071—Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to a gas separation membrane comprising an aromatic polyimide having a specific chemical composition and excellent in water vapor transmission rate, ratio of water vapor transmission rate and organic vapor transmission rate, high temperature durability against organic vapor mixture, and the like. Furthermore, the present invention relates to a method for separating and collecting at least one kind of organic vapor by bringing the gas separation membrane into contact with an organic vapor mixture generated by heating and evaporating a liquid mixture containing an organic compound.
- organic vapor separation using a gas separation membrane module is performed as follows.
- An organic vapor mixture generated by heating and evaporating a liquid mixture containing an organic compound is supplied to the gas separation membrane module from the mixed gas inlet. While the organic vapor mixture flows in contact with the separation membrane, it separates the permeated vapor that has permeated through the separation membrane and the non-permeated vapor that has not permeated through the separation membrane. Are recovered from the non-permeate gas outlet.
- the permeate vapor is rich in a component having a fast permeation rate of the separation membrane (hereinafter sometimes referred to as a high permeation component), and the non-permeate vapor has a low high permeation component.
- the organic vapor mixture is separated into a permeate vapor rich in a high permeation component and a non-permeate vapor low in the high permeation component.
- Patent Document 1 discloses a high-concentration organic solvent by selectively removing moisture (water vapor) from a gas mixture (organic vapor mixture) containing an organic vapor and water vapor generated by vaporizing an aqueous solution containing an organic substance. It has been proposed to use a polyimide gas separation membrane in a gas separation membrane dehydration process (organic vapor dehydration) to obtain the above.
- a polyimide gas separation membrane As the polyimide forming the polyimide gas separation membrane, 3,3 ′, 4,4′-biphenyltetracarboxylic acid and / or 2,3,3 ′, 4′-biphenyltetracarboxylic acid is used as a tetracarboxylic acid component.
- An aromatic polyimide containing a derived aromatic diamine skeleton is disclosed.
- the polyimide hollow fiber membrane made of the aromatic polyimide shown here has the highest water vapor transmission rate (P ′ H2O ) of 1.47 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
- the polyimide hollow fiber membrane made of an aromatic polyimide containing a diamine skeleton had a water vapor transmission rate (P ′ H2O ) of 1.24 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
- Patent Document 2 discloses an aromatic diamine containing 25 to 100 mol% of a tetracarboxylic acid component mainly composed of biphenyltetracarboxylic acids and 2,2-bis [(aminophenoxy) phenyl] propane (BAPP).
- BAPP 2,2-bis [(aminophenoxy) phenyl] propane
- Patent Document 3 has high levels of heat resistance, water resistance, gas separation (water vapor permeability, water-organic matter selective permeability), and particularly high temperature durability against a mixture of water and organic matter.
- gas separation water vapor permeability, water-organic matter selective permeability
- An aromatic polyimide obtained by copolymerizing a diamine component as a component, a tetracarboxylic acid component mainly composed of biphenyltetracarboxylic acid, and 1,4-bis (4-aminophenoxy) benzene (TPEQ) And a diamine component mainly composed of 1,3-bis (aminophenoxy) benzene (TPER) was gas separation membrane consisting essentially of an aromatic polyimide is disclosed.
- JP-A 63-267415 Japanese Patent Laid-Open No. 02-222716 Japanese Patent Laid-Open No. 02-222717
- the polyimide hollow fiber membranes made of aromatic polyimides shown in Patent Documents 2 and 3 do not necessarily have sufficient gas separation performance (water vapor permeability, water-organic selective permeability), and further improvements are required. It was.
- a polyimide hollow fiber membrane made of an aromatic polyimide containing a diamine skeleton derived from 70 mol% is water vapor permeable and selective, although it has satisfactory hot water resistance.
- Patent Document 3 examples include a tetracarboxylic acid skeleton derived from 3,3 ′, 4,4′-biphenyltetracarboxylic acid, and 50 mol% of 1,4-bis (4-aminophenoxy) benzene.
- Polyimide hollow fiber membranes made of aromatic polyimide containing a diamine skeleton derived from 50% by mole of 3,4'-diaminodiphenyl ether have satisfactory performance in hot water resistance, but have sufficient water vapor permeability and selective permeability.
- the selective permeability of water vapor and ethanol vapor exhibits a relatively low value as compared with the polyimide hollow fiber membranes of other examples.
- the supply pressure of the organic vapor mixture is usually increased in order to perform separation efficiently. That is, the gas separation membrane is constantly in contact with high-temperature and high-pressure organic vapor, and in contact with water vapor when separating a liquid containing moisture. Therefore, it is necessary that the gas separation membrane does not change even in contact with high-temperature and high-pressure organic vapor or water vapor, that is, high-temperature durability against water vapor and organic vapor.
- the present invention is suitable as a gas separation membrane for separating an organic vapor mixture containing vapor of an organic compound such as ethanol by a vapor permeation method, in particular, water vapor permeability, separation degree of water vapor and organic vapor, water vapor and organic vapor.
- the object is to provide a gas separation membrane with improved high-temperature durability against the gas separation method, and a gas separation method in which an organic vapor mixture is brought into contact with the gas separation membrane to separate and recover the organic vapor. is there.
- the present invention relates to a gas separation membrane (hereinafter also referred to as a first gas separation membrane) formed of an aromatic polyimide composed of repeating units represented by the following general formula (1).
- A is a tetravalent group containing an aromatic ring
- B is a divalent group based on a 3,4′-diphenyl ether structure of which 90 to 10 mol% is represented by the following chemical formula (B1) B1 and a divalent group B2 based on a 4,4′-diphenyl ether structure represented by the following chemical formula (B2), 10 to 90 mol% of which is a divalent group B3 containing an aromatic ring
- the molar ratio (B1 / B2) of the group B1 to the divalent group B2 is 10/1 to 1/10.
- the divalent group B3 is a divalent group different from the divalent group B1 and the divalent group B2.
- the present invention also relates to the first gas separation membrane, wherein the divalent group B3 in the general formula (1) is one or more divalent groups represented by the following chemical formula (B3).
- Ar is a divalent group represented by the following chemical formula (Ar1), (Ar2), (Ar3) or (Ar4).
- the present invention also relates to a gas separation membrane (hereinafter also referred to as a second gas separation membrane) formed of an aromatic polyimide composed of repeating units represented by the following general formula (1).
- A is a tetravalent group containing an aromatic ring
- B is a divalent group based on a bis (phenoxy) naphthalene structure, 10 to 100 mol% of which is represented by the following chemical formula (2).
- the tetravalent group containing an aromatic ring represented by A in the general formula (1) is a tetravalent group based on a biphenyl structure represented by the following chemical formula (A). It relates to the first or second gas separation membrane.
- the present invention also relates to the first or second gas separation membrane having an asymmetric structure having a dense layer and a porous layer.
- the present invention also relates to the first or second gas separation membrane having a hollow fiber membrane shape.
- the present invention also relates to the first or second gas separation membrane having a solvent resistance index of 50% or more.
- the water vapor transmission rate P ′ H2O is 1.0 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg to 10.0 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2.
- the first or second gas which is sec ⁇ cmHg and has a ratio (P ′ H2O / P ′ EtOH ) of water vapor transmission rate P ′ H2O to ethanol vapor transmission rate P ′ EtOH of 100 or more It relates to a separation membrane.
- the present invention provides a gas separation membrane that selectively permeates a high-permeability component in a state where an organic vapor mixture generated by heating and evaporating a liquid mixture containing an organic compound is in contact with the supply side of the gas separation membrane.
- the first or second gas The present invention relates to a gas separation method using a separation membrane.
- the organic compound has a boiling point of 0 ° C. or more and 200 ° C. or less, preferably the organic compound is a lower aliphatic alcohol having 1 to 6 carbon atoms, a ketone having 3 to 6 carbon atoms, or carbon
- the present invention relates to the gas separation method, which is an ester of formula 2-7.
- the present invention relates to the gas separation method, wherein the highly permeable component is water vapor.
- the aromatic polyimide comprising the repeating unit represented by the general formula (1) forming the first gas separation membrane of the present invention includes a tetracarboxylic acid component containing an aromatic tetracarboxylic acid, and 3,4'-diaminodiphenyl ether. (34DADE), 4,4′-diaminodiphenyl ether (44DADE), and other aromatic diamine components and aromatic polyimides that can be produced by polymerization and imidization in an organic solvent such as a phenolic compound. is there.
- the other aromatic diamine is an aromatic diamine different from 3,4′-diaminodiphenyl ether and 4,4′-diaminodiphenyl ether.
- 90 to 10 mol%, preferably 80 to 20 mol%, more preferably 70 to 30 mol%, particularly preferably 60 to 40 mol% of the diamine residue represented by B is 3 to 3 mol%.
- Group B3 If the total amount of the divalent group B1 and the divalent group B2 exceeds 90 mol%, the water resistance tends to be insufficient, which is not preferable. If it is less than 10 mol%, the permeation separation performance is lowered. Since it tends to be, it is not preferable.
- the molar ratio of the divalent group B1 introduced by 3,4'-diaminodiphenyl ether and the divalent group B2 introduced by 4,4'-diaminodiphenyl ether (B1 / B2) is from 10/1 to 1/10, preferably from 8/1 to 1/8, more preferably from 6/1 to 1/6, particularly preferably from 5/1 to 1/5. If B1 / B2 is larger than 10/1 or smaller than 1/10, the permeation separation performance tends to be low, which is not preferable.
- the divalent group B3 is preferably one or more divalent groups represented by the following chemical formula (B3).
- Ar is a divalent group represented by the following chemical formula (Ar1), (Ar2), (Ar3) or (Ar4).
- aromatic diamines for introducing the divalent group B3 into the aromatic polyimide include bis (aminophenoxy) benzene (TPEQ) s, bis (aminophenoxy) naphthalene (APN) s, bis [(aminophenoxy) Phenyl] propane (BAPP), bis [(aminophenoxy) phenyl] hexafluoropropane (HFBAPP), bis [(aminophenoxy) phenyl] sulfone (BAPS), bis [(aminophenoxy) phenyl] biphenyl (BAPB) , Diaminodiphenylmethane (DADM), and the like can be used.
- TPEQ bis (aminophenoxy) benzene
- API aromatic polyimide
- BAPP bis [(aminophenoxy) Phenyl] propane
- HFBAPP bis [(aminophenoxy) phenyl] hexafluoropropane
- BAPS bis
- 1,4-bis (4-aminophenoxy) benzene 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [(4-aminophenoxy) phenyl, in which the divalent group represented by the chemical formula (B3) is introduced into the aromatic polyimide, Propane, 2,2-bis [(4-aminophenoxy) phenyl] hexafluoropropane, and 1,4-bis (4-aminophenoxy) naphthalene are preferred.
- the tetravalent group containing an aromatic ring represented by A is preferably a tetravalent group based on a biphenyl structure represented by the following chemical formula (A).
- aromatic tetracarboxylic acids for introducing a tetravalent group A containing an aromatic ring into an aromatic polyimide 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4 '-Biphenyltetracarboxylic acid, 2,2', 3,3'-biphenyltetracarboxylic acid, and biphenyltetracarboxylic acids such as acid dihydrates and acid esterified products thereof are preferable, and 3,3 ', 4 is particularly preferable. 4,4′-biphenyltetracarboxylic acid dihydrate is preferred.
- the tetracarboxylic acid component used for the production of the aromatic polyimide includes, in addition to the above-mentioned biphenyltetracarboxylic acids, pyromellitic acids, benzophenone tetracarboxylic acids, diphenyl ether tetracarboxylic acids, diphenylsulfone tetracarboxylic acids, 2,2-bis (Dicarboxyphenyl) propanes, 2,2-bis (dicarboxyphenyl) hexafluoropropanes, 2,2-bis [(dicarboxyphenoxy) phenyl] propanes, 2,2-bis [(dicarboxyphenoxy) [Phenyl] hexafluoropropanes and their acid dihydrates and acid esterified products are used in a small proportion (preferably a proportion of 20 mol% or less, particularly 10 mol% or less in the tetracarboxylic acid component). Can do.
- the aromatic polyimide comprising the repeating unit represented by the general formula (1) forming the second gas separation membrane of the present invention includes a tetracarboxylic acid component containing an aromatic tetracarboxylic acid, bis (aminophenoxy) naphthalene ( It is an aromatic polyimide that can be produced by polymerizing and imidizing APN) and a diamine component composed of other diamines in an organic solvent such as a phenol compound.
- the ratio of bis (aminophenoxy) naphthalene (APN) is 10 to 100 mol%, and the lower limit is preferably 20 mol% or more, more preferably 30 mol% or more, and still more preferably 40 mol. %, And the upper limit is preferably 95 mol% or less, more preferably 90 mol% or less.
- Examples of the bis (aminophenoxy) naphthalene include 1,4-bis (4-aminophenoxy) naphthalene, 1,4-bis (3-aminophenoxy) naphthalene, 1,3-bis (4-aminophenoxy). ) Naphthalene, and 1,4-bis (4-aminophenoxy) naphthalene is particularly preferred.
- diamines that can be used in combination with the bis (aminophenoxy) naphthalene (APN) are preferably those containing 3,4'-diaminodiphenyl ether (34DADE) and / or 4,4'-diaminodiphenyl ether (44DADE).
- tetracarboxylic acid component examples include those similar to those exemplified above as the aromatic tetracarboxylic acids for introducing the tetravalent group A containing an aromatic ring into the aromatic polyimide in the first gas separation membrane. Can be mentioned.
- the first and second gas separation membranes of the present invention preferably have a water vapor transmission rate P ′ H2O of 1.0 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg or more. More preferably, it is 2 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg or more, and it is 1.5 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg or more. More preferably, it is 2.0 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg or more.
- the upper limit of the water vapor transmission rate is about 10.0 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg, and usually 6.0 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec. -It is below cmHg.
- STP ⁇ 10 ⁇ 3 cm 3
- -It 6.0 ⁇ 10 ⁇ 3 cm 3
- the water vapor transmission rate is high.
- the water vapor transmission rate is lower than the above value, it is necessary to lengthen the time required for water vapor removal or increase the membrane area used for water vapor removal, which is extremely disadvantageous for industrial implementation.
- the first and second gas separation membranes of the present invention have a ratio (P ′ H2O / P ′ EtOH ) of water vapor transmission rate P ′ H2O and ethanol vapor transmission rate P ′ EtOH (water vapor and ethanol vapor). Is preferably 100 to 10,000, more preferably 150 or more, further preferably 200 or more, and particularly preferably 250 or more. When the degree of separation between water vapor and ethanol vapor is lower than the above value, the organic vapor transmission loss increases, which is industrially disadvantageous.
- the first and second gas separation membranes of the present invention are, for example, separation membranes having an asymmetric structure having a dense layer having a thickness of 0.01 to 5 ⁇ m and a porous layer having a thickness of 10 to 200 ⁇ m. Preferably there is. Among these, it is preferable to have a dense layer and a porous layer continuously. Further, the shape of the separation membrane is not particularly limited, but a hollow fiber membrane is preferable because it has an advantage of a wide effective surface area and high pressure resistance.
- the first and second gas separation membranes of the present invention preferably have a solvent resistance index of 50% or more.
- the solvent resistance index means that the hollow fiber membrane is immersed in a 60% by weight ethanol aqueous solution at 150 ° C. for 20 hours, and the change in the elongation at break of the hollow fiber membrane before and after the treatment is examined. It is the ratio of the elongation to the breaking elongation before processing.
- stability against high-temperature organic vapor and water vapor is required.
- a high solvent resistance index indicates that the gas separation membrane does not change even in an environment where high-temperature organic vapor and water vapor exist.
- the first and second gas separation membranes of the present invention are conventional aromatic polyimide gas separation membranes, except that the aromatic polyimide is composed of a repeating unit represented by the general formula (1). It can manufacture according to the manufacturing method.
- a gas separation membrane of a hollow fiber membrane can be manufactured as follows.
- the aromatic polyimide forming the gas separation membrane can be obtained as a polyimide solution by polymerizing and imidizing a substantially equimolar amount of the tetracarboxylic acid component and the diamine component in an organic solvent.
- a tetracarboxylic acid component and a diamine component are added in a predetermined composition ratio in an organic solvent, and a polymerization reaction is performed at a low temperature of about room temperature to form a polyamic acid, and then 100 to 250 ° C., preferably Heat imidization by heating to about 130 to 200 ° C, or chemical imidization by adding pyridine or acetic anhydride, or a predetermined composition ratio of a tetracarboxylic acid component and a diamine component in an organic solvent
- it is suitably carried out by a one-stage method in which polymerization and imidization reaction are performed at a high temperature of about 100 to 250 ° C., preferably about 130 to 200 ° C.
- the amount of the tetracarboxylic acid component and the diamine component used in the organic solvent is preferably such that the polyimide concentration in the solvent is about 5 to 50% by weight, preferably 5 to 40% by weight.
- the polyimide solution obtained by the polymerization / imidization reaction can be used as it is.
- the obtained polyimide solution is put into a solvent insoluble in polyimide, and the polyimide is precipitated and isolated, and then dissolved again in an organic solvent to a predetermined concentration to prepare a polyimide solution. It can also be used.
- the organic solvent for dissolving the polyimide is not limited as long as the aromatic polyimide obtained can be suitably dissolved.
- phenols such as phenol, cresol, and xylenol, and two hydroxyl groups as benzene Catechol directly in the ring
- catechols such as resorcin, 3-chlorophenol, 4-chlorophenol (same as parachlorophenol described later), 3-bromophenol, 4-bromophenol, 2-chloro-5-hydroxytoluene
- Phenolic solvents consisting of halogenated phenols such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, etc.
- Amide series consisting of amides , Or it can be cited such as suitably mixed solvent thereof.
- the asymmetric membrane of the present invention (gas separation membrane having an asymmetric structure having a dense layer and a porous layer) can be obtained by a phase conversion method using a polyimide solution.
- the phase change method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase change.
- a so-called dry-wet method is preferably employed.
- the solvent on the surface of the polymer solution in the form of a film is evaporated to form a thin dense layer, and then immersed in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble),
- a coagulation liquid solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble
- This is a phase change method in which micropores are formed by utilizing the phase separation phenomenon that occurs at that time to form a porous layer, and is proposed by Loeb et al. (See, for example, US Pat. No. 3,133,132).
- the asymmetric membrane of the present invention can be suitably obtained as a hollow fiber membrane by employing a dry and wet spinning method.
- the dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle to have a hollow fiber-like target shape. More specifically, after the polymer solution is discharged from the nozzle into a hollow fiber-shaped target shape and passed through an air or nitrogen gas atmosphere immediately after the discharge, the polymer component is not substantially dissolved and is compatible with the solvent of the polymer solution. In this method, an asymmetric structure is formed by dipping in a soluble coagulating liquid, followed by drying, and heat treatment as necessary to produce a separation membrane.
- the spinning nozzle only needs to extrude the polyimide solution as a hollow fiber-like body, and a tube-in-orifice nozzle or the like is suitable.
- the temperature range of the polyimide solution during extrusion is preferably about 20 ° C. to 150 ° C., particularly 30 ° C. to 120 ° C.
- spinning is performed while supplying a gas or liquid into the hollow fiber-like body extruded from the nozzle.
- the polyimide solution discharged from the nozzle preferably has a polyimide concentration of 5 to 40% by weight, more preferably 8 to 25% by weight, and the solution viscosity (rotational viscosity) at 100 ° C. Is preferably 300 to 20000 poise, more preferably 500 to 15000 poise, and particularly preferably 1000 to 10,000 poise.
- the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the membrane such as a hollow fiber can be maintained, wound on a guide roll, and then immersed in the secondary coagulation liquid to fully saturate the entire film. It is preferable to solidify.
- the coagulation liquid is not particularly limited, but water, lower alcohols such as methanol, ethanol and propyl alcohol, ketones having a lower alkyl group such as acetone, methyl ethyl ketone and diethyl ketone, or a mixture thereof. Are preferably used.
- lower alcohols such as methanol, ethanol and propyl alcohol
- ketones having a lower alkyl group such as acetone, methyl ethyl ketone and diethyl ketone, or a mixture thereof.
- a method of drying after replacing the coagulating liquid with a solvent such as hydrocarbon is effective.
- the heat treatment is preferably carried out at a temperature lower than the softening point or secondary transition point of each component polymer of the multicomponent polyimide used.
- an organic vapor mixture produced by heating and evaporating a liquid mixture containing an organic compound is preferably 70 ° C. or higher. It is preferably contacted at a temperature of 80 to 200 ° C., particularly preferably 100 to 160 ° C. to selectively permeate the high-permeability component to obtain “organic vapor rich in high-permeability component” from the permeation side of the gas separation membrane.
- organic vapor from which the highly permeable component is substantially removed is obtained from the non-permeation side (source gas supply side) of the gas separation membrane, and the organic vapor mixture is subjected to gas separation.
- the permeation side of the gas separation membrane in order to secure a partial pressure difference between the high permeability component between the supply side and the permeation side of the gas separation membrane, for example, it is preferable to maintain the permeation side of the gas separation membrane at a reduced pressure. More preferably, the pressure on the permeate side is controlled under a reduced pressure of 1 to 500 mmHg.
- the high permeation component is selectively permeated as quickly as possible, and the high permeation component is selectively selected from the organic vapor mixture of the source gas supplied to the gas separation membrane supply side. Easy to remove. In that case, the higher the degree of decompression, the greater the vapor transmission rate.
- a dry gas that maintains the pressure on the supply side at a high pressure.
- a carrier gas in addition to means for maintaining the permeation side at a reduced pressure, a dry gas that maintains the pressure on the supply side at a high pressure.
- the means is not particularly limited, and two or more means may be used simultaneously.
- the pressure of the organic vapor mixture supplied to the gas separation membrane can be performed at normal pressure or under pressure.
- the organic vapor mixture is pressurized under a pressure of 0.1 to 2 MPaG, more preferably 0.15 to 1 MPaG.
- the pressure on the permeation side of the gas separation membrane can be increased, normal or reduced, but is particularly preferably reduced.
- the carrier gas is not particularly limited as long as it does not contain a high-permeability component, or at least has a partial pressure of the high-permeability component that is lower than that of the non-permeation gas.
- Nitrogen is a carrier gas that is preferable in terms of disaster prevention because it is difficult to reverse osmosis from the permeation side space of the gas separation membrane to the supply side space and is inert.
- the organic vapor mixture of the source gas may be produced by any method, but in general, an aqueous solution of an organic compound is heated to a temperature higher than the boiling point or azeotropic temperature of the organic compound. And can be obtained by evaporation.
- the organic vapor mixture is obtained by heating and evaporating a “liquid mixture containing an organic compound” such as an aqueous solution of the organic compound with an evaporation (distillation) device or the like, so that the organic vapor is in an atmospheric pressure state or a pressure state of about 0.1 to 2 MPaG.
- the vapor mixture is supplied to a gas separation membrane module for organic vapor separation using the gas separation membrane of the present invention.
- the pressurized organic vapor mixture may be obtained directly by a pressurized evaporator, or the pressurized organic vapor mixture may be pressurized by a vapor compressor. You can get it.
- the organic vapor mixture is supplied to the gas separation membrane module for organic vapor separation, and the organic vapor is heated to a temperature sufficiently high so that it does not condense until it passes through the hollow fiber and is discharged from the non-permeate gas discharge port. It is preferably supplied as a vapor mixture.
- the organic vapor mixture supplied to the gas separation membrane module for organic vapor separation using the gas separation membrane of the present invention is preferably heated to a temperature of 80 ° C. or higher, more preferably 90 ° C. or higher, more preferably 100 ° C. or higher. It is a thing.
- the concentration of the organic vapor in the organic vapor mixture is not particularly limited, but in the present invention, the concentration of the organic vapor is preferably 50% by weight or more, particularly about 70 to 99.8% by weight. .
- the organic compound that becomes the organic vapor is an organic compound having a boiling point of 0 ° C. or higher and 200 ° C. or lower, preferably liquid at normal temperature (25 ° C.) and a boiling point of 150 ° C. or lower.
- the boiling point of the organic compound is 0 ° C. or higher and 200 ° C. or lower because of the operating temperature range of the hollow fiber membrane, equipment for superheating the organic vapor mixture, equipment for handling and collecting the purified separation components and handling This is because it is practical when considering ease of use.
- organic compounds include lower fats having 1 to 6 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, pentanol, hexanol, and ethylene glycol.
- Aromatic alcohols such as cyclopentanol, cyclohexanol, aromatic alcohols such as benzyl alcohol, organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, methyl formate, ethyl formate, propyl formate, butyl formate, Esters having 2 to 7 carbon atoms such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, acetone, methyl ethyl ketone, diethyl ketone, 2-pentanone, methyl ester C3-C7 aliphatic ketones such as propyl ketone, 3-hexanone, 2-hexanone, methyl isobutyl ketone and pinacholine, cyclic ethers such as tetrahydrofuran and
- the gas separation method of the present invention dehydrates an “organic vapor mixture comprising water vapor and alcohol vapor” obtained by evaporating a lower aliphatic alcohol aqueous solution having 1 to 6 carbon atoms such as methanol, ethanol, and isopropanol.
- a lower aliphatic alcohol aqueous solution having 1 to 6 carbon atoms such as methanol, ethanol, and isopropanol.
- Example 1 Preparation of aromatic polyimide solution 28.9 g of tetracarboxylic acid component consisting of 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 20 mol% of 3,4′-diaminodiphenyl ether (34DADE), 25.5 g of a diamine component consisting of 20 mol% of 4,4′-diaminodiphenyl ether (44DADE) and 60 mol% of 1,4-bis (4-aminophenoxy) benzene (TPEQ) together with 248 g of parachlorophenol (PCP)
- PCP parachlorophenol
- the polyimide in the PCP A PCP solution of aromatic polyimide having a solid content concentration (dope concentration) of 17% by weight was prepared.
- the viscosity at 100 ° C. of this aromatic polyimide solution was 2000 poise.
- the solution viscosity is a value measured at a temperature of 100 ° C. using a rotational viscometer (rotor shear rate: 1.75 sec ⁇ 1 ).
- the PCP solution of the aromatic polyimide was filtered through a 400 mesh stainless steel wire mesh to obtain a dope for spinning.
- This dope was charged into a spinning device equipped with a hollow fiber spinning nozzle, discharged from the hollow fiber spinning nozzle into a hollow fiber shape in a nitrogen atmosphere, and then the hollow fiber shaped product was immersed in a primary coagulation bath composed of a 75 wt% aqueous ethanol solution, Further, the solidification is completed by reciprocating between the guide rolls in a secondary coagulation bath (coagulation liquid: 75 wt% ethanol aqueous solution) equipped with a pair of guide rolls, and a hollow fiber membrane having a wet asymmetric structure is wound around the bobbin.
- coagulation liquid 75 wt% ethanol aqueous solution
- the “permeate gas with high water vapor concentration” obtained from the permeate gas outlet is condensed with a cooling trap at about ⁇ 50 ° C. to collect the condensate, while the hollow fiber membrane
- the non-permeate gas (dry gas from which water vapor was removed) obtained from the non-permeate gas discharge port (supply side) was returned to the evaporator and circulated and used to perform gas separation of the organic vapor mixture. .
- a large excess amount of ethanol aqueous solution was used as compared with the amount of organic vapor that permeated through the hollow fiber membrane of the sample.
- the weight of the condensate collected by the trap was measured, and the amounts of water vapor and ethanol vapor permeated were determined by analyzing the concentration of water and ethanol by gas chromatography analysis.
- Gas permeation performance is calculated from the permeation amount of each component vapor obtained as described above, and the water vapor permeation rate P ′ H2O and the water vapor separation rate with respect to ethanol vapor ( ⁇ : P ′ H2O / P ′ EtOH ). Evaluated. The results are shown in Table 1 below.
- the unit of the transmission rate (P ′) is 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
- Examples 2 to 14 and Comparative Examples 1 to 7 Using a diamine component and a tetracarboxylic acid component having the types and compositions shown in Table 1 below, an aromatic polyimide PCP solution was prepared in the same manner as in Example 1. The solid content concentration (dope concentration) and the viscosity at 100 ° C. of each aromatic polyimide solution are shown in Table 1 below. Using each of these aromatic polyimide solutions, an asymmetric hollow fiber membrane was produced in the same manner as in Example 1, and a gas separation membrane module was produced from the hollow fiber membrane.
- Example 15 Using the hollow fiber membrane produced in Example 1, the separation and permeation performance of methanol and water was evaluated. The separation and permeation performance of the hollow fiber membrane was examined in the same manner as in Example 1 except that the separation target was a mixed vapor containing methanol and water vapor.
- the water vapor transmission rate P ′ H2O was 1.38 ⁇ 10 ⁇ .
- the separation degree of water vapor with respect to 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg and methanol vapor was 24.
- Example 16 Using the hollow fiber membrane produced in Example 1, the separation and permeation performance of isopropyl alcohol and water was evaluated. Except that the separation target was a mixed vapor containing isopropyl alcohol and water vapor, the separation and permeation performance of the hollow fiber membrane was examined in the same manner as in Example 1. As a result, the water vapor transmission rate P ′ H2O was 2.45 ⁇ 10. ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg, and the degree of separation of water vapor with respect to isopropyl alcohol vapor was 2000 or more.
- STP ⁇ 3 cm 3
- Example 17 Using the hollow fiber membrane produced in Example 1, the separation and permeation performance of ethyl acetate and water was evaluated. Except that the separation target was a mixed vapor containing ethyl acetate and water vapor, the separation and permeation performance of the hollow fiber membrane was examined in the same manner as in Example 1. As a result, the water vapor transmission rate P ′ H2O was 3.35 ⁇ 10. ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg, the separation degree of water vapor with respect to ethyl acetate vapor was 2000 or more.
- Example 18 26.06 g of a tetracarboxylic acid component consisting of 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and 1,4-bis (4-aminophenoxy) naphthalene (APN) )
- An aromatic diamine component 23.14 g composed of 40 mol% and 4,4-diaminodiphenyl ether (44 DADE) 60 mol%, together with 220 g of parachlorophenol (PCP), a heating device, a stirrer, a nitrogen gas introduction pipe and a discharge pipe Is agglomerated in a separable flask attached with and polymerized at a temperature of 190 ° C.
- PCP parachlorophenol
- a PCP solution of a group polyimide was prepared. The viscosity of this solution at 100 ° C. was 2700 poise.
- a gas separation membrane module was prepared from the hollow fiber, and the water vapor transmission rate (P ′ H2O ) and the water vapor separation degree with respect to ethanol ( ⁇ : P ′ H2O / P ′ EtOH ) were measured.
- the water vapor transmission rate (P ′ H2O ) was 2.17 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg, and the degree of separation ( ⁇ ) was 243.
- Example 19 23.16 g of a tetracarboxylic acid component consisting of 100 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and 1,4-bis (4-aminophenoxy) naphthalene (APN) 40 mol%, 4,4-diaminodiphenyl ether (44DADE) 50 mol% and 3,4-diaminodiphenyl ether (34DADE) 10 mol% 25.72 g of aromatic diamine component together with 200 g of parachlorophenol (PCP) Weighing and putting into a separable flask equipped with a heating device, a stirrer, a nitrogen gas introduction tube and a discharge tube and polymerizing at 190 ° C.
- PCP parachlorophenol
- a PCP solution of aromatic polyimide having a polyimide solid content concentration of 17% by weight was prepared.
- the viscosity of this solution at 100 ° C. was 1300 poise.
- a continuous long hollow fiber having an outer diameter of about 500 ⁇ m and an inner diameter of about 300 ⁇ m was produced by spinning the PCP solution of the aromatic polyimide.
- a gas separation membrane module was prepared from the hollow fiber, and a water vapor transmission rate (P ′ H2O ) and a water vapor separation degree with respect to ethanol ( ⁇ : P ′ H2O / P ′ EtOH ) were measured.
- the water vapor transmission rate (P ′ H2O ) was 2.35 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg, and the degree of separation ( ⁇ ) was 224.
- the gas separation membrane of the present invention is a gas separation membrane having an improved specific water vapor transmission rate, water vapor and organic vapor separation, high temperature durability against water vapor and organic vapor, etc., by having a specific chemical composition. .
- the gas separation method of the present invention uses the excellent gas separation membrane of the present invention, organic vapor separation can be performed easily and efficiently for a long period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
しかしながら、ここで示された芳香族ポリイミドからなるポリイミド中空糸膜は、最高の水蒸気透過速度(P’H2O )が、1.47×10-3cm3 (STP)/cm2 ・sec・cmHgであり、そのエタノール蒸気に対する水蒸気の分離度(透過速度:P’H2O /P’EtOH)は22に過ぎなかった。また、3,3’,4,4’-ビフェニルテトラカルボン酸から誘導されるテトラカルボン酸骨格、および3,4’-ジアミノジフェニルエーテル60モル%および4,4’-ジアミノジフェニルエーテル40モル%から誘導されるジアミン骨格を含む芳香族ポリイミドからなるポリイミド中空糸膜は、水蒸気透過速度(P’H2O )が、1.24×10-3cm3 (STP)/cm2 ・sec・cmHgであった。
本発明の第1のガス分離膜を形成する前記一般式(1)で示される反復単位からなる芳香族ポリイミドは、芳香族テトラカルボン酸類を含むテトラカルボン酸成分と、3,4’-ジアミノジフェニルエーテル(34DADE)、4,4’-ジアミノジフェニルエーテル(44DADE)およびその他の芳香族ジアミンからなるジアミン成分とを、フェノール系化合物などの有機溶媒中、重合、イミド化して製造することができる芳香族ポリイミドである。なお、その他の芳香族ジアミンは、3,4’-ジアミノジフェニルエーテルおよび4,4’-ジアミノジフェニルエーテルとは異なる芳香族ジアミンである。
2価の基B1および2価の基B2が合計で90モル%を超えると、耐水性が不十分になりがちであるため好ましくなく、また10モル%未満であると、透過分離性能が低くなりがちであるため好ましくない。
B1/B2が10/1より大きい、もしくは、1/10より小さいと、透過分離性能が低くなりがちであるため好ましくない。
芳香族ポリイミドの製造に用いられるテトラカルボン酸成分としては、前記のビフェニルテトラカルボン酸類のほかに、ピロメリット酸類、ベンゾフェノンテトラカルボン酸類、ジフェニルエーテルテトラカルボン酸類、ジフェニルスルホンテトラカルボン酸類、2,2-ビス(ジカルボキシフェニル)プロパン類、2,2-ビス(ジカルボキシフェニル)ヘキサフルオロプロパン類、2,2-ビス〔(ジカルボキシフェノキシ)フェニル〕プロパン類、2,2-ビス〔(ジカルボキシフェノキシ)フェニル〕ヘキサフルオロプロパン類、および、それらの酸二水物や酸エステル化物などを、少ない割合(好ましくは、テトラカルボン酸成分中20モル%以下、特に10モル%以下の割合)で使用することができる。
本発明の第2のガス分離膜を形成する前記一般式(1)で示される反復単位からなる芳香族ポリイミドは、芳香族テトラカルボン酸類を含むテトラカルボン酸成分と、ビス(アミノフェノキシ)ナフタリン(APN)類およびその他のジアミンからなるジアミン成分とを、フェノール系化合物などの有機溶媒中、重合、イミド化して製造することができる芳香族ポリイミドである。
有機物水溶液から連続的に水蒸気を除去するには、水蒸気の透過速度が大きいことが望ましい。水蒸気の透過速度が前記の値を下回る場合には、水蒸気除去に要する時間を長くしたり、水蒸気除去に用いる膜面積を大きくする必要があるため、工業的な実施に著しく不利となる。
耐溶剤指標が高いことは、高温の有機蒸気および水蒸気が存在する環境においても、ガス分離膜が変化しないことを示している。
ガス分離膜を形成する芳香族ポリイミドは、テトラカルボン酸成分とジアミン成分との略等モルを、有機溶媒中で重合・イミド化反応させて、ポリイミド溶液として得ることができる。
本発明の非対称膜(緻密層と多孔質層とを有する非対称性構造をもつガス分離膜)は、ポリイミド溶液を用いて、相転換法によって得ることができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法である。本発明ではいわゆる乾湿式法が好適に採用される。乾湿式法は、膜形状にしたポリマー溶液の表面の溶媒を蒸発させて薄い緻密層を形成し、次いで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる相転換法であり、Loebらが提案(例えば、米国特許第3133132号明細書を参照)したものである。
本発明の非対称膜は、乾湿式紡糸法を採用することによって、中空糸膜として好適に得ることができる。乾湿式紡糸法は、紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に乾湿式法を適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気または窒素ガス雰囲気中を通した後、ポリマー成分を実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理して分離膜を製造する方法である。紡糸ノズルは、ポリイミド溶液を中空糸状体として押し出すものであればよく、チューブ・イン・オリフィス型ノズルなどが好適である。通常、押し出す際のポリイミド溶液の温度範囲は約20℃~150℃、特に30℃~120℃が好適である。また、ノズルから押し出される中空糸状体の内部へ気体または液体を供給しながら紡糸が行われる。
本発明のガス分離方法においては、本発明のガス分離膜の一方の側に、有機化合物を含む液体混合物を加熱蒸発させて生成した有機蒸気混合物(原料ガス)を、好ましくは70℃以上、より好ましくは80~200℃、特に好ましくは100~160℃の温度で接触させて、高透過成分を選択的に透過させ、ガス分離膜の透過側から『高透過成分に富んだ有機蒸気』を得、一方ガス分離膜の非透過側(原料ガスの供給側)から『高透過成分が実質的に除去された有機蒸気』を得て、前記有機蒸気混合物のガス分離を行うものである。
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
6FDA:2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
DSDA:3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物
34DADE:3,4’-ジアミノジフェニルエーテル
44DADE:4,4’-ジアミノジフェニルエーテル
TPEQ:1,4-ビス(4-アミノフェノキシ)ベンゼン
HFBAPP:2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン
BAPP:2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン
APN:1,4-ビス(4-アミノフェノキシ)ナフタリン
(芳香族ポリイミド溶液の調製)
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)100モル%からなるテトラカルボン酸成分28.9gと、3,4’-ジアミノジフェニルエーテル(34DADE)20モル%、4,4’-ジアミノジフェニルエーテル(44DADE)20モル%および1,4-ビス(4-アミノフェノキシ)ベンゼン(TPEQ)60モル%からなるジアミン成分25.5gとを、パラクロロフェノール(PCP)248gとともに、加熱装置と攪拌機と窒素ガス導入管および排出管とが付設されたセパラブルフラスコに入れ、窒素ガス雰囲気中で攪拌しながら、190℃の温度で10時間重合することにより、PCP中のポリイミドの固形分濃度(ドープ濃度)が17重量%である芳香族ポリイミドのPCP溶液を調製した。この芳香族ポリイミド溶液の100℃での粘度は2000poiseであった。なお、この溶液粘度は、回転粘度計(ローターのずり速度1.75sec-1)を用いて温度100℃で測定した値である。
前記芳香族ポリイミドのPCP溶液を400メッシュのステンレス製金網でろ過して、紡糸用ドープとした。このドープを中空糸紡糸ノズルを備えた紡糸装置に仕込み、中空糸紡糸ノズルから窒素雰囲気中に中空糸状に吐出させ、次いで中空糸状成形物を75重量%エタノール水溶液からなる一次凝固浴に浸漬し、更に一対の案内ロールを備えた二次凝固浴(凝固液:75重量%エタノール水溶液)中の案内ロール間を往復させて凝固を完了させ、湿潤状態の非対称構造をもつ中空糸膜をボビンに巻き取った。この非対称中空糸膜をエタノール中で十分洗浄し、次いでイソオクタンでエタノールを置換した後、100℃でイソオクタンを蒸発乾燥した。さらに220℃~270℃で加熱処理を行い、芳香族ポリイミドによって構成された非対称中空糸膜(外径:約500μm、内径:約300μm)を得た。
引張試験機を用いて中空糸の破断伸度を調べた。有効長20mm、引張速度10mm/分で測定した。測定は23℃で行った。
中空糸膜を、密閉容器を用い、150℃の60重量%のエタノール水溶液中に20時間浸漬処理し、その処理前後の中空糸膜の破断伸度の変化を調べ、処理後の破断伸度の処理前の破断伸度に対する割合を、中空糸膜の耐溶剤指標とした。その結果を下記表1に示す。
前述のようにして製造した中空糸膜6本を束ね裁断して中空糸膜の糸束を形成し、その糸束の一方の端を中空糸端部が開口するようにエポキシ樹脂で固着し、他方の端を中空糸端部が閉塞されるようにエポキシ樹脂で固着して中空糸膜エレメントを製造した。次いで、『原料の混合ガス供給口、透過ガス排出口、および非透過ガス排出口を有する容器』に前記糸束エレメントを内設して、『中空糸膜の有効長さ:約8.0cm、および、有効面積約7.5cm2 である糸束エレメント』を内蔵するガス分離膜モジュールを製造した。
60重量%濃度のエタノール水溶液を大気圧下において蒸発器で気化させて『エタノール蒸気と水蒸気とを含む有機蒸気混合物』を製造し、さらに、ヒーターで加熱することにより100℃とした前記有機蒸気混合物を、前記のガス分離膜モジュールに供給し、前記糸束エレメントを構成している中空糸膜の外側の表面(中空糸膜の供給側)に接触させ、中空糸膜の内側(中空糸膜の透過側)を3mmHgの減圧に維持して、有機蒸気分離を行った。
下記表1に示す種類と組成とを有するジアミン成分およびテトラカルボン酸成分を使用し、実施例1と同様にして、芳香族ポリイミドのPCP溶液をそれぞれ調製した。これらの各芳香族ポリイミド溶液の固形分濃度(ドープ濃度)および100℃での粘度を下記表1に示す。
これらの各芳香族ポリイミド溶液を使用し、実施例1と同様にして、非対称中空糸膜を作製し、該中空糸膜からガス分離膜モジュールをそれぞれ製造した。
これらの各ガス分離膜モジュールについて、実施例1と同様にして、蒸気透過性能〔水蒸気の透過速度P’H2O と、エタノール蒸気に対する水蒸気の分離度(α:P’H2O /P’EtOH〕を評価した。さらに、中空糸の破断伸度および耐溶剤指標を評価した。その結果を下記表1に示す。
s-BPDA 100モル%からなるテトラカルボン酸成分28.95gと、TPEQ100モル%からなるジアミン成分29.23gとを、PCP 210gとともに、加熱装置と攪拌機と窒素ガス導入管および排出管とが付設されたセパラブルフラスコに入れ、窒素ガス雰囲気中で攪拌しながら、190℃の温度で10時間重合したが、固形分が析出し、均一な芳香族ポリイミド溶液を得ることができなかったため、中空糸を紡糸することができなかった。
s-BPDA 100モル%からなるテトラカルボン酸成分28.95gと、34DADE 100モル%からなるジアミン成分20.02gとを、PCP 210gとともに、加熱装置と攪拌機と窒素ガス導入管および排出管とが付設されたセパラブルフラスコに入れ、窒素ガス雰囲気中で攪拌しながら、190℃の温度で10時間重合したが、重合が十分に進行せず、芳香族ポリイミド溶液の粘度が十分に上がらなかったため、中空糸を紡糸することができなかった。
s-BPDA 100モル%からなるテトラカルボン酸成分28.95gと、44DADE 100モル%からなるジアミン成分20.02gとを、PCP 210gとともに、加熱装置と攪拌機と窒素ガス導入管および排出管とが付設されたセパラブルフラスコに入れ、窒素ガス雰囲気中で攪拌しながら、190℃の温度で10時間重合することにより、PCP中のポリイミドの固形分濃度が17重量%である芳香族ポリイミドのPCP溶液を調製した。この芳香族ポリイミド溶液の100℃での粘度は1800poiseであった。この芳香族ポリイミド溶液を紡糸したが、乾燥処理時に中空糸が著しく収縮した。この中空糸を使用し、実施例1と同様にして、ガス分離膜モジュールを製造し、水蒸気の透過速度P’H2O の測定を行ったところ、水蒸気は殆ど透過しなかった。
実施例1で作製した中空糸膜を用い、メタノールと水の分離透過性能を評価した。分離ターゲットをメタノールと水蒸気とを含む混合蒸気とした以外は、実施例1と同様の方法で中空糸膜の分離透過性能を調べたところ、水蒸気の透過速度P’H2O は1.38×10-3cm3 (STP)/cm2 ・sec・cmHg、メタノール蒸気に対する水蒸気の分離度は24であった。
実施例1で作製した中空糸膜を用い、イソプロピルアルコールと水の分離透過性能を評価した。分離ターゲットをイソプロピルアルコールと水蒸気とを含む混合蒸気とした以外は、実施例1と同様の方法で中空糸膜の分離透過性能を調べたところ、水蒸気の透過速度P’H2O は2.45×10-3cm3 (STP)/cm2 ・sec・cmHg、イソプロピルアルコール蒸気に対する水蒸気の分離度は2000以上であった。
実施例1で作製した中空糸膜を用い、酢酸エチルと水の分離透過性能を評価した。分離ターゲットを酢酸エチルと水蒸気とを含む混合蒸気とした以外は、実施例1と同様の方法で中空糸膜の分離透過性能を調べたところ、水蒸気の透過速度P’H2O は3.35×10-3cm3 (STP)/cm2 ・sec・cmHg、酢酸エチル蒸気に対する水蒸気の分離度は2000以上であった。
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)100モル%からなるテトラカルボン酸成分26.06gと、1,4-ビス(4-アミノフェノキシ)ナフタレン(APN)40モル%と4,4-ジアミノジフェニルエーテル(44DADE)60モル%とからなる芳香族ジアミン成分23.14gとを、パラクロロフェノール(PCP)220gとともに加熱装置と攪拌機と窒素ガス導入管および排出管とが付設されたセパラブルフラスコに秤取って入れ、窒素ガス雰囲気中で攪拌しながら、190℃の温度で10時間重合することにより、PCP中のポリイミドの固形分濃度が17重量%である芳香族ポリイミドのPCP溶液を調製した。この溶液の100℃での粘度は2700poiseであった。
前記芳香族ポリイミドのPCP溶液を紡糸することにより、外径が約500μmであって、内径が約300μmである連続した長尺の中空糸を作成した。前記中空糸によりガス分離膜モジュールを作製し、水蒸気の透過速度(P’H2O)および、エタノールに対する水蒸気の分離度(α:P’H2O/P’EtOH)とを測定した。
水蒸気の透過速度(P’H2O)は、2.17×10-3cm3 (STP)/cm2・sec・cmHgであり、分離度(α)は、243であった。
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)100モル%からなるテトラカルボン酸成分23.16gと、1,4-ビス(4-アミノフェノキシ)ナフタレン(APN)40モル%と4,4-ジアミノジフェニルエーテル(44DADE)50モル%と3,4-ジアミノジフェニルエーテル(34DADE)10モル%からなる芳香族ジアミン成分25.72gとを、パラクロロフェノール(PCP)200gとともに加熱装置と攪拌機と窒素ガス導入管および排出管とが付設されたセパラブルフラスコに秤取って入れ、窒素ガス雰囲気中で攪拌しながら、190℃の温度で10時間重合することにより、PCP中のポリイミドの固形分濃度が17重量%である芳香族ポリイミドのPCP溶液を調製した。この溶液の100℃での粘度は1300poiseであった。
前記芳香族ポリイミドのPCP溶液を紡糸することにより、外径が約500μmであって、内径が約300μmである連続した長尺の中空糸を作製した。前記中空糸によりガス分離膜モジュールを作成し、水蒸気の透過速度(P’H2O)および、エタノールに対する水蒸気の分離度(α:P’H2O/P’EtOH)とを測定した。
水蒸気の透過速度(P’H2O)は、2.35×10-3cm3 (STP)/cm2・sec・cmHgであり、分離度(α)は、224であった。
また、本発明のガス分離方法は、上記の優れた本発明のガス分離膜を使用しているので、有機蒸気分離を、容易に、効率的に長期間行うことが可能である。
Claims (12)
- 緻密層と多孔質層とを有する非対称性構造をもつ分離膜である、請求の範囲第1~4項のいずれかに記載のガス分離膜。
- 形状が中空糸膜である、請求の範囲第1~5項のいずれかに記載のガス分離膜。
- 水蒸気の透過速度P’H2O が、1.0×10-3cm3 (STP)/cm2 ・sec・cmHg~10.0×10-3cm3 (STP)/cm2 ・sec・cmHgであり、かつ水蒸気の透過速度P’H2O とエタノール蒸気の透過速度P’EtOHとの比(P’H2O /P’EtOH)が100以上である、請求の範囲第1~6項のいずれかに記載のガス分離膜。
- 耐溶剤性指標が50%以上である、請求の範囲第1~7項のいずれかに記載のガス分離膜。
- 有機化合物を含む液体混合物を加熱蒸発させて生成した有機蒸気混合物を、ガス分離膜の供給側に接触させた状態で、高透過成分を選択的に透過させ、ガス分離膜の透過側から高透過成分に富んだ透過蒸気を得、ガス分離膜の供給側から高透過成分が実質的に除去された非透過蒸気を得るガス分離方法において、請求の範囲第1~8項のいずれかに記載のガス分離膜を用いることを特徴とするガス分離方法。
- 前記有機化合物が、沸点が0℃以上200℃以下である、請求の範囲第9項記載のガス分離方法。
- 前記有機化合物が、炭素数1~6の低級脂肪族アルコール、炭素数3~6の脂肪族ケトン類または、炭素数2~7のエステル類である、請求の範囲第9項または第10項記載のガス分離方法。
- 前記高透過成分が水蒸気である、請求の範囲第9~11項のいずれかに記載のガス分離方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2712691A CA2712691A1 (en) | 2008-02-05 | 2009-02-04 | Polyimide gas separation membrane and gas separation method |
DE112009000188T DE112009000188T5 (de) | 2008-02-05 | 2009-02-04 | Polyimid-Gastrennungs-Membran und Gastrennungs-Verfahren |
CN200980102661.2A CN101925398B (zh) | 2008-02-05 | 2009-02-04 | 聚酰亚胺气体分离膜和气体分离方法 |
US12/866,110 US8394176B2 (en) | 2008-02-05 | 2009-02-04 | Polyimide gas separation membrane and gas separation method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-024847 | 2008-02-05 | ||
JP2008024847 | 2008-02-05 | ||
JP2008165642 | 2008-06-25 | ||
JP2008165641 | 2008-06-25 | ||
JP2008-165641 | 2008-06-25 | ||
JP2008-165642 | 2008-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009099109A1 true WO2009099109A1 (ja) | 2009-08-13 |
Family
ID=40952183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051900 WO2009099109A1 (ja) | 2008-02-05 | 2009-02-04 | ポリイミドガス分離膜およびガス分離方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8394176B2 (ja) |
CN (1) | CN101925398B (ja) |
CA (1) | CA2712691A1 (ja) |
DE (1) | DE112009000188T5 (ja) |
WO (1) | WO2009099109A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011132651A (ja) * | 2009-11-25 | 2011-07-07 | Ube Industries Ltd | 高耐熱性ポリイミド微細繊維の製造方法、高耐熱性ポリイミド微細繊維及び該ポリイミド微細繊維からなる不織布 |
US20130319229A1 (en) * | 2010-12-09 | 2013-12-05 | Ube Industries, Ltd. | Asymmetric gas separation membrane and method for separating methanol from mixed organic vapor using the same |
US8772417B2 (en) | 2010-04-12 | 2014-07-08 | National University Of Singapore | Polyimide membranes and their preparation |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102716680B (zh) * | 2012-06-05 | 2014-05-07 | 中国科学院化学研究所 | 一种聚酰亚胺微孔膜及其制备方法 |
KR101441344B1 (ko) * | 2013-01-15 | 2014-09-18 | 애경유화주식회사 | 고투과 고선택성 공중합체 폴리이미드 소재 및 그의 합성 방법 |
US9000122B1 (en) * | 2013-12-16 | 2015-04-07 | Uop Llc | Aromatic poly (ether sulfone imide) membranes for gas separations |
SG11201708502PA (en) | 2015-04-20 | 2017-11-29 | Ngee Ann Polytechnic | Graphene-based membrane and method of producing the same |
CN105921037B (zh) * | 2016-06-22 | 2018-03-30 | 辽宁科技大学 | 一种具有热致刚性结构的多孔气体分离膜材料的制备方法 |
CN106567191A (zh) * | 2016-10-09 | 2017-04-19 | 华中科技大学 | 含氟聚酰亚胺静电纺丝纤维膜的制备及在油水分离中的应用 |
EP3788304B1 (en) * | 2018-05-04 | 2023-08-09 | Donaldson Company, Inc. | Systems and methods for removing organic compounds from steam |
WO2020084996A1 (ja) * | 2018-10-22 | 2020-04-30 | 日東電工株式会社 | 分離膜及び膜分離方法 |
US11649178B2 (en) | 2019-10-15 | 2023-05-16 | Donaldson Company, Inc. | Systems and methods for removing organic compounds from water used to generate steam |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63267415A (ja) * | 1986-12-06 | 1988-11-04 | Ube Ind Ltd | 有機物水溶液の脱水濃縮方法 |
JPH02222717A (ja) * | 1989-02-23 | 1990-09-05 | Ube Ind Ltd | ガス分離膜およびガス分離法 |
JPH02222716A (ja) * | 1989-02-23 | 1990-09-05 | Ube Ind Ltd | ガス分離膜およびガス分離方法 |
JPH02268820A (ja) * | 1989-04-07 | 1990-11-02 | Ube Ind Ltd | 有機物水溶液の浸透気化分離法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL271831A (ja) | 1960-11-29 | |||
GB2101137B (en) * | 1981-04-14 | 1984-09-26 | Ube Industries | Producing porous aromatic imide polymer membranes |
US4978430A (en) * | 1986-12-06 | 1990-12-18 | Ube Industries, Ltd. | Method for dehydration and concentration of aqueous solution containing organic compound |
US4838900A (en) * | 1988-04-13 | 1989-06-13 | E. I. Du Pont De Nemours And Company | Polyimide gas separation membranes |
CN1012900B (zh) * | 1988-09-29 | 1991-06-19 | 中国科学院长春应用化学研究所 | 聚酰亚胺气体分离膜材料的制备方法 |
EP0391699B1 (en) * | 1989-04-07 | 1994-12-14 | Ube Industries, Ltd. | Pervaporation method of selectively separating water from an organic material aqueous solution through aromatic imide polymer asymmetric membrane |
JP2855668B2 (ja) * | 1989-07-05 | 1999-02-10 | 三菱化学株式会社 | ポリイミド分離膜 |
US5178650A (en) * | 1990-11-30 | 1993-01-12 | E. I. Du Pont De Nemours And Company | Polyimide gas separation membranes and process of using same |
CN1068974A (zh) * | 1991-07-31 | 1993-02-17 | 中国科学院长春应用化学研究所 | 不对称聚酰亚胺气体分离膜的制备 |
US5340904A (en) * | 1992-12-29 | 1994-08-23 | National Science Council | Bis(4-aminophenoxy)naphthalene and its polymers |
JPH08332363A (ja) * | 1995-06-01 | 1996-12-17 | Air Prod And Chem Inc | 反復単位を有する重合体形成の半透過性膜 |
CN1278763C (zh) * | 1999-09-24 | 2006-10-11 | 液态空气-乔治克罗德方法研究监督及咨询股份有限公司 | 聚酰亚胺气体分离膜 |
US7025804B2 (en) * | 2002-12-02 | 2006-04-11 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for separating hydrocarbon-containing gas mixtures using hydrocarbon-resistant membranes |
-
2009
- 2009-02-04 CN CN200980102661.2A patent/CN101925398B/zh not_active Expired - Fee Related
- 2009-02-04 US US12/866,110 patent/US8394176B2/en not_active Expired - Fee Related
- 2009-02-04 WO PCT/JP2009/051900 patent/WO2009099109A1/ja active Application Filing
- 2009-02-04 CA CA2712691A patent/CA2712691A1/en not_active Abandoned
- 2009-02-04 DE DE112009000188T patent/DE112009000188T5/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63267415A (ja) * | 1986-12-06 | 1988-11-04 | Ube Ind Ltd | 有機物水溶液の脱水濃縮方法 |
JPH02222717A (ja) * | 1989-02-23 | 1990-09-05 | Ube Ind Ltd | ガス分離膜およびガス分離法 |
JPH02222716A (ja) * | 1989-02-23 | 1990-09-05 | Ube Ind Ltd | ガス分離膜およびガス分離方法 |
JPH02268820A (ja) * | 1989-04-07 | 1990-11-02 | Ube Ind Ltd | 有機物水溶液の浸透気化分離法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011132651A (ja) * | 2009-11-25 | 2011-07-07 | Ube Industries Ltd | 高耐熱性ポリイミド微細繊維の製造方法、高耐熱性ポリイミド微細繊維及び該ポリイミド微細繊維からなる不織布 |
US8772417B2 (en) | 2010-04-12 | 2014-07-08 | National University Of Singapore | Polyimide membranes and their preparation |
US20130319229A1 (en) * | 2010-12-09 | 2013-12-05 | Ube Industries, Ltd. | Asymmetric gas separation membrane and method for separating methanol from mixed organic vapor using the same |
US9211497B2 (en) * | 2010-12-09 | 2015-12-15 | Ube Industries, Ltd. | Asymmetric gas separation membrane and method for separating methanol from mixed organic vapor using the same |
Also Published As
Publication number | Publication date |
---|---|
DE112009000188T5 (de) | 2011-01-27 |
CA2712691A1 (en) | 2009-08-13 |
CN101925398A (zh) | 2010-12-22 |
US20110000367A1 (en) | 2011-01-06 |
CN101925398B (zh) | 2013-06-26 |
US8394176B2 (en) | 2013-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009099109A1 (ja) | ポリイミドガス分離膜およびガス分離方法 | |
US7556677B2 (en) | Solvent resistant asymmetric integrally skinned membranes | |
JP4507894B2 (ja) | 非対称中空糸ガス分離膜、及びガス分離方法 | |
JP5359957B2 (ja) | ポリイミドガス分離膜、及びガス分離方法 | |
JP5359914B2 (ja) | ポリイミドガス分離膜、及びガス分離方法 | |
JP5348026B2 (ja) | 非対称中空糸ガス分離膜を製造する方法 | |
JPH02222717A (ja) | ガス分離膜およびガス分離法 | |
JP6623600B2 (ja) | 非対称ガス分離膜、及びガスを分離回収する方法 | |
JP5077257B2 (ja) | ポリイミドガス分離膜およびガス分離方法 | |
JP2010202864A (ja) | 新規なポリイミド | |
US20170095768A1 (en) | Asymmetric gas separation membrane, and methods for separating and recovering gases | |
JP4835020B2 (ja) | 非対称中空糸ガス分離膜、及びガス分離方法 | |
JP5120345B2 (ja) | ポリイミドガス分離膜およびガス分離方法 | |
JP5120344B2 (ja) | ポリイミドガス分離膜およびガス分離方法 | |
JP5359908B2 (ja) | ポリイミドガス分離膜およびガス分離方法 | |
JP5136667B2 (ja) | 非対称中空糸ガス分離膜、及びガス分離方法 | |
JPH02222716A (ja) | ガス分離膜およびガス分離方法 | |
JP7120375B2 (ja) | ガス分離膜 | |
JP5240152B2 (ja) | ポリイミドガス分離膜、及びガス分離方法 | |
US9211497B2 (en) | Asymmetric gas separation membrane and method for separating methanol from mixed organic vapor using the same | |
JP5348085B2 (ja) | 非対称中空糸ガス分離膜を製造する方法 | |
JP4857588B2 (ja) | 非対称中空糸ガス分離膜、及びガス分離方法 | |
JP2021154279A (ja) | ガス分離膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980102661.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09708752 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2712691 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12866110 Country of ref document: US |
|
RET | De translation (de og part 6b) |
Ref document number: 112009000188 Country of ref document: DE Date of ref document: 20110127 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09708752 Country of ref document: EP Kind code of ref document: A1 |