WO2009093750A1 - 給水装置 - Google Patents

給水装置 Download PDF

Info

Publication number
WO2009093750A1
WO2009093750A1 PCT/JP2009/051389 JP2009051389W WO2009093750A1 WO 2009093750 A1 WO2009093750 A1 WO 2009093750A1 JP 2009051389 W JP2009051389 W JP 2009051389W WO 2009093750 A1 WO2009093750 A1 WO 2009093750A1
Authority
WO
WIPO (PCT)
Prior art keywords
control board
water supply
supply device
control
pressure
Prior art date
Application number
PCT/JP2009/051389
Other languages
English (en)
French (fr)
Inventor
Takahide Komatsu
Kazuhiro Kaneda
Tomoharu Tejima
Nobuhiro Higaki
Sachiko Miyauchi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to US12/864,257 priority Critical patent/US8714933B2/en
Priority to EP09704247.7A priority patent/EP2248954A4/en
Priority to CN200980102949.XA priority patent/CN101925706B/zh
Publication of WO2009093750A1 publication Critical patent/WO2009093750A1/ja
Priority to US14/222,879 priority patent/US9249562B2/en
Priority to US14/222,866 priority patent/US9206590B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/025Water supply lines as such, e.g. shower hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/029Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural
    • Y10T137/86163Parallel

Definitions

  • the present invention relates to a water supply apparatus, and more particularly to a water supply apparatus that includes a plurality of pumps and inverters and operates a pump at a variable speed to supply water to an apartment house or the like.
  • a water supply device is installed in apartment buildings and buildings and supplies water at each end of the water supply.
  • it is widely practiced to make the pump variable speed by using an inverter that converts the frequency and voltage of a commercial AC power source into an arbitrary frequency and voltage. Since the inverter can freely change the rotation speed of the motor that drives the pump, it is possible to operate the pump at the optimum rotational speed corresponding to the load, saving energy compared to operating at the rated speed. Can be achieved.
  • a plurality of pumps may be controlled using a plurality of inverters, and in this case, a control unit for controlling these pumps and inverters is provided.
  • a pump / motor fails (leakage, overcurrent, open phase, etc.), it automatically switches to another pump to avoid water breakage. I am able to do it.
  • Japanese Patent Application Laid-Open No. 2 0 0 5-3 5 1 2 6 7 discloses that a control unit (control board) that controls a pump and an inverter is normally operated due to some malfunction. There is disclosed a water supply device that does not stop water supply by switching from a failed control board to a standby control board and backing up when it stops operating. Disclosure of the invention
  • control boards are vulnerable to the occurrence of lightning surges and noise, and as a result, they often fail, and the life of the sensors is reduced due to the consumption of various sensors, and the control board often fails. For this reason, even if one control board fails and the other standby control board is moved, it may fail and cannot be backed up. Even if it has a backup function, In function Sometimes it does n’t work.
  • the present invention has been made in view of such problems of the prior art, and even if one control board fails to function due to the occurrence of surge, noise, etc. due to lightning or the life of various sensors, Providing a water supply system that can back up the control board without deteriorating the water supply capacity with the other control board, and that can be backed up reliably by devising the control board not to fail at the same time. It is aimed at.
  • a plurality of pumps a plurality of inverters that variably control the rotational frequency of the corresponding pumps, and a plurality of inverters that control the plurality of inverters.
  • a control board and when a malfunction occurs in one of the control boards, the other control board can continue the operation by backing up the one control board.
  • Between the control board and the plurality of inverters to the other control board is connected in series by a communication line, and a switch for ONZO FF communication is provided on the communication line. is there.
  • the occurrence of an abnormality in the control board is not limited to an abnormality in the control board itself (for example, an abnormality in the CPU in the control board), and any device (or any one of the systems connected to the control board).
  • This also includes the situation where the control board cannot operate normally due to an abnormality at the location.
  • This situation includes an abnormality in the power supply, an abnormality in the power supply system that supplies power to the control board, and a failure of the pressure sensor connected to the control board.
  • this Akira when an abnormality occurs in one control board, when the other control board in standby is backed up, the abnormality occurred by turning off the switch that turns on communication. The communication line between the control board and the inverter is physically cut off. As a result, the plurality of inverters are controlled only by the other control board.
  • the one control board or the other control board is provided with output means for outputting a signal for turning on the switch.
  • the switch is provided on a communication line connected to the first inverter from the one control board and / or the other control board. According to the present invention, since communication can be interrupted between the control board in which an abnormality has occurred and the first inverter, an erroneous command is not sent to any inverter from the control board in which an abnormality has occurred. .
  • control board in order to restart the control board after switching the switch due to an abnormality in the one control board or the other control board, communication of the currently operating control board is performed.
  • the control board is provided with a reset function for stopping and resetting the switch.
  • the switch that turns on and off the communication is turned OFF, and this control is performed while the control board is switched and the inverter is controlled by another control board. Stop communication with the board, reset the switch in the OFF state, and turn it ON. Then, the control board can be restored by restarting the control board in which the abnormality occurred first.
  • a power supply switch is provided in a power supply system that supplies power to each of the one control board and the other control board.
  • the power switch when repairing or exchanging one control board or a signal system related thereto, the power switch is turned off and one control board is disconnected, so that the operation is performed by the other control board. Can continue.
  • the power switch is provided in the control board.
  • the one control board and the other control board are always powered on.
  • the power switch is always turned on, and the power circuit in the control board is always turned on. Therefore, when an abnormality occurs in any one of the control boards, the other control board immediately backs up the one control board, so that the water supply device can be continuously operated. In addition, when returning a control board where an error has occurred, it can be restored in a short time.
  • monitoring means for connecting the one control board and the other control board with a communication line and monitoring whether the control board is normal or not.
  • the present invention it is possible to monitor whether or not a control board is normal by using a communication line connecting one control board and the other control board. Therefore, the decision to backup operation or the return after backup operation can be performed after checking whether or not the operation is possible. It is possible to return after 1 3 ⁇ 4 of the cup.
  • the monitoring means is located at a place other than one control board and the other control board.
  • the one control board and the other control board are connected by a communication line, and it is monitored whether the control board and the inverter are normally communicating. It is characterized in that a monitoring means is provided.
  • the present invention it is possible to monitor whether or not the power is normally communicated between the control board and the inverter by using the communication line connecting the one control board and the other control board. . Therefore, the judgment to backup operation or the return after knock-up operation can be performed after checking whether the operation is possible or the return after knock-up operation. Can do.
  • the monitoring means is located at a place other than one control board and the other control board.
  • the at least one control board and the plurality of inverters are connected by a signal line for sending an analog signal or a contact signal.
  • the inverter can be controlled by the analog signal or the contact signal via the signal line connecting the control board and the inverter even if all the communication malfunctions.
  • the operation of the water supply device can be continued by backing up external factors such as surge and noise with a strong signal, analog signal or contact signal.
  • a pressure sensor is provided on one of the pressure detection parts of the one control board and the other control board, and a pressure switch is provided on the other.
  • the pressure switch is more resistant to external factors such as noise than the pressure sensor. Because it is high, the influence of external factors can be reduced. Therefore, when the backup is required, the system on the backup side including the control board connected to the pressure switch can be reliably operated.
  • the one control board and the other control board are each provided with one or more pressure detection means.
  • a determination means for determining an abnormality is provided.
  • the failure or abnormality when a failure or abnormality occurs in the pressure detection means, the failure or abnormality can be detected immediately.
  • each of the one control board and the other control board is provided with a power input part, and each power supply part is connected to a corresponding power supply part and the other control board is connected to the other control board.
  • the power supply unit can be connected.
  • the power supply unit fails while power is supplied from one power supply unit to the power supply input unit of the one control board, the other power supply unit backs up, and the one control board It is possible to supply power to the power input section.
  • the power supply unit is incorporated in each of the one control board and the other control board.
  • the apparatus further includes a plurality of operation display units that are respectively connected to the plurality of control boards and perform various settings for operation and control of the water supply device. It has a display unit that displays the operation status of the water supply system.
  • the apparatus includes a plurality of pumps, a plurality of inverters that variably control the rotation frequency of the corresponding pumps, and a plurality of control boards that control the plurality of inverters.
  • the other control board can continue the operation by backing up the one control board, and each of the plurality of inverters has two or more different water supply devices.
  • a communication port is provided, and the plurality of inverters are connected in series from the one control board and the other control board through different communication lines.
  • the occurrence of an abnormality in the control board is not limited to an abnormality in the control board itself (for example, an abnormality in the CPU in the control board), but any one (or any one of the systems connected to the control board).
  • This also includes the situation where the control board cannot operate normally due to an abnormality at the location. This situation includes power supply problems, power supply system power supply to the control board, and failure of the pressure sensor connected to the control board.
  • each of the plurality of control boards is provided with two or more different communication ports, and the one control board, the plurality of inverters, and the other control board are connected by a plurality of communication lines. Each is connected in series.
  • different communication lines extend in series from the one control board and the other control board to the last inverter.
  • the at least one control board and the plurality of inverters are connected by a signal line for sending an analog signal or a contact signal.
  • the inverter can be controlled by the analog signal or the contact signal via the signal line connecting the control board and the inverter even if all the communication malfunctions.
  • the operation of the water supply device can be continued by backing up external factors such as surge and noise with a strong signal, analog signal or contact signal.
  • a switch for ONZOFF is provided on a communication line connecting the one control board or the other control board and the plurality of inverters.
  • the switch OFF signal is output from the other control board to turn off the switch.
  • the communication line between the control board where the abnormality occurred and the inverter is physically cut off.
  • the inverter is controlled only by the other control board. Therefore, an incorrect command is not sent to the inverter from the control board where the abnormality occurred.
  • the switch is provided on a communication line connected to the first inverter from the one control board and Z or the other control board.
  • a pressure sensor is provided on one of the pressure detection parts of the one control board and the other control board, and a pressure switch is provided on the other.
  • the pressure switch is more resistant to external factors such as noise than the pressure sensor. Therefore, the influence of external factors can be reduced. Therefore, when the backup is required, the system on the backup side including the control board connected to the pressure switch can be reliably operated.
  • the one control board and the other control board are each provided with one or more pressure detection means.
  • the other pressure detection means can back up.
  • the detected values input from the pressure detecting means are compared with each of the one control board and the other control board, and if they are different from each other, It is characterized by providing a judgment means for cutting off fij.
  • the failure or abnormality when a failure or abnormality occurs in the pressure detection means, the failure or abnormality can be detected immediately.
  • each of the one control board and the other control board has a power input part, and the corresponding power supply part is connected to each power input part.
  • the other power supply unit can be connected.
  • the other power supply unit when the power supply unit fails while power is being supplied from one power supply unit to the input unit of the one control board, the other power supply unit backs up and It is possible to supply power to the power input section.
  • the lower part is incorporated into each of the one control board and the other control board.
  • the apparatus further includes a plurality of operation display units that are respectively connected to the plurality of control boards and perform various settings for operation and control of the water supply device. It has a display unit that displays the operation status of the water supply system.
  • the apparatus includes a plurality of pumps, a plurality of inverters that variably control the rotation frequency of the corresponding pumps, and a plurality of control boards that control the plurality of inverters.
  • a water supply device capable of continuing the operation by backing up one of the control boards when an abnormality occurs in the board, wherein the one control board and the other control board In at least one of the power system, signal system, and control system connected to each, the level of resistance to external factors in one system is different from the level of resistance to external factors in the other system.
  • the occurrence of an abnormality in the control board is not limited to an abnormality in the control board itself (for example, an abnormality in the CPU in the control board), but any device (or any one of the systems) connected to the control board.
  • This situation includes power supply abnormalities, power supply system power supply to the control board, and pressure sensor failure connected to the control board.
  • the level of resistance to external factors such as surge noise resistance level and water pressure resistance level in the system connected to the control board on the backup side can be increased.
  • the system on the backup side including the control board can be operated reliably.
  • the resistance level against the external factor is at least one tolerance level of surge and noise.
  • the surge and Z or noise tolerance levels for the system connected to the one control board, and the surge and Z or noise tolerance levels for the system connected to the other control board, The withstand level of the other control board is higher than that of the one control board.
  • the level of resistance to the external factor is the water pressure resistance of the pressure detection unit, and the water pressure resistance of the pressure detection unit extending over the one control board is set to the other control board. It is characterized by being different from the water pressure resistance of the connected pressure detector.
  • the present invention it is possible to reduce the risk of failure of the pressure detection unit even when a high water pressure such as a water hammer is applied to the pressure detection unit by making the water pressure resistance of the pressure detection unit different.
  • a plurality of pressure detection units connected to each of the one control board and the other control board are provided, and the plurality of pressure detection units in the same control board, It is characterized by different water pressure resistance.
  • a pressure sensor is provided on one of the pressure detection parts of the one control board and the other control board, and a pressure switch is provided on the other.
  • the pressure switch by connecting a pressure sensor to one control board and connecting a pressure switch to the other control board, the pressure switch has a higher level of resistance to external factors such as noise than the pressure sensor. Therefore, the impact of external factors can be reduced. Therefore, when a backup is required, it leads to a pressure switch The system on the backup side including the control board can be reliably operated.
  • the one control board and the other control board are each provided with one or more pressure detection means.
  • the other pressure detection means can back up.
  • the detected values input from the pressure detecting means are compared with each of the one control board and the other control board, and if they are different from each other, A judging means for judging is provided.
  • the failure or abnormality when a failure or abnormality occurs in the pressure detection means, the failure or abnormality can be detected immediately.
  • each of the one control board and the other control board is provided with a power input part, and each power supply part is connected to a corresponding power supply part and the other control board is connected to the other control board.
  • the power supply unit can be connected.
  • the power supply unit fails while power is supplied from one power supply unit to the power supply input unit of the one control board, the other power supply unit backs up, and the one control board It is possible to supply power to the power input section.
  • the power supply unit is incorporated in each of the one control board and the other control board.
  • the present invention has the following effects.
  • FIG. 1 is a schematic diagram showing the overall configuration of the water supply apparatus of the present invention.
  • FIG. 2 is a diagram showing an embodiment of the water supply apparatus of the present invention, and is a schematic diagram showing the configuration of the communication line of the water supply apparatus shown in FIG. 1 in more detail.
  • FIG. 3 is a schematic view showing an embodiment in which another switch is added to the water supply apparatus shown in FIGS.
  • FIG. 4 is a schematic diagram showing an embodiment in which a function for stopping communication of a control board during operation and a function for resetting a switch for ON / OFF of communication are added to the water supply apparatus shown in FIG.
  • FIG. 5 is a flowchart for resetting a switch for turning on / off communication in the configuration of the water supply apparatus shown in FIG.
  • FIG. 6 is a schematic diagram showing the configuration of the power supply system of the water supply apparatus shown in FIGS. 1 and 2 in more detail.
  • Fig. 7A is a flowchart of the monitoring system that monitors the counterpart control board using the communication line connecting one control board and the other control board, and
  • Fig. 7B shows the layout of the monitoring board It is a figure which shows a structure.
  • Figure 8 shows a monitoring system that monitors whether or not communication between the counterpart control board and the inverter is normally performed using a communication line connecting one control board and the other control board. This is a flowchart.
  • FIG. 9A is a view showing an embodiment of the water supply apparatus of the present invention
  • FIG. 9B is a view showing an embodiment of the water supply apparatus of the present invention.
  • FIG. 10 is a diagram showing an embodiment of a water supply apparatus of the present invention.
  • FIG. 11 is a schematic view showing an embodiment in which the water supply device shown in FIG. 10 is provided with a switch for ON / OFF communication.
  • FIG. 12 is a diagram showing an embodiment of the water supply apparatus of the present invention, and is a schematic diagram showing the device configuration of the water supply apparatus shown in FIG. 1 in more detail.
  • FIG. 13 is a schematic view showing an embodiment of the pressure detection unit of the water supply apparatus.
  • FIG. 14 is a schematic view showing another embodiment of the pressure detection unit of the water supply apparatus.
  • FIG. 15 is a schematic view showing an embodiment in which a power input unit is provided on a control board of a water supply apparatus.
  • FIG. 16 is a diagram showing an embodiment of the water supply apparatus of the present invention.
  • FIG. 17 is a front view showing a control panel of the water supply apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 to FIG. 17 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1 is a schematic diagram showing the overall configuration of a water supply apparatus 1 of the present invention.
  • the solid line (thick line) indicates the power system
  • the broken line indicates the control system (communication line)
  • the arrow indicates the signal system (signal line).
  • the water supply apparatus includes a plurality of pumps and inverters. In this embodiment, a water supply apparatus including three pumps and inverters will be described.
  • the water supply device 1 includes a water receiving tank 2, three pumps 3 connected to the water receiving tank 2 through a pipe 10, and three motors 4 respectively driving the three pumps. Controls the three inverters I NV 1, I NV 2, I NV3 that control the rotational frequency of each of the three motors 4 and various devices including these three inverters I NV 1 to I NV3 2 Two control boards (control board 1, control board 2) CN1 and CN2 are provided.
  • Inverters I NV1, I NV 2 and I NV 3 are respectively connected to the circuit breakers ELB 1, ELB 2 and ELB 3 from 3 ⁇ 4 5! ⁇ Is now supplied.
  • Each inverter I NV 1, I NV 2, I NV 3 is supplied with a frequency-controlled example to each motor 4.
  • power is supplied to the two control boards (control board 1 and control board 2) CN 1 and CN2 from the power source 5 via the noise filters NF 1 and NF 2 and surge absorbers AL 1 and AL 2, respectively. It has come to be.
  • the earth leakage breakers ELB 1, ELB 2 and ELB 3 are connected to the control board CN 1 and the control board CN 2 via signal lines, respectively.
  • Control board (Control board 1) CN 1, Inverter INV 1, Inverter I VN 2, Inverter I NV3, Control board Control board 2) CN2 is connected in series with a communication line. That is, the communication port 1 of the control board CN1 is connected to the port of the inverter I NV 1, the port of the inverter I NV 2, the port of the inverter I NV 3, and the communication port 1 of the control board CN 2 via RS 485 in order. Therefore, when a certain command (information) is sent from the control board CN1, the same command (information) is sent to the inverters INV1, INV2, INV3 and the control board CN2.
  • control board CN2 When a command (information) is sent from control board CN2, inverter I NV 3, I NV2, INV1, and the same command (information) are sent to control board CN1.
  • the control board CN 1 and the control board CN 2 are connected to each other by RS 485 via the communication port 3.
  • the occurrence of an abnormality in the control board CN1 is not limited to the abnormality in the control board CN1 (or CN2) itself (for example, an abnormality in the CPU in the control board), but in the control board CN1 (or CN2).
  • This situation includes power supply problems, power supply system power supply to the control board, and pressure sensors connected to the control board (such as pressure sensors PS 1 and PS 2 described later).
  • the water receiving tank 2 is provided with two sets of water level detectors WL 1 and WL 2 for detecting the water level of the water receiving tank 2 by the electrode rod 12a.
  • Each of the water level detectors WL 1 and WL 2 in the present embodiment detects four liquid level levels (full water, low water, return, flooding).
  • the water level detector WL 1 is connected to the control board CN 1 via a signal line
  • the water level detector WL 2 is connected to the control board CN 2 via a signal line.
  • Tap water is introduced into the water receiving tank 2 through a solenoid valve 16 from a water supply pipe 14 connected to a water main (not shown).
  • Water level detectors WL 1 and WL2 detect the water level in receiving tank 2, and solenoid valve 16 is opened and closed by control board CN 1 (or CN2) as the water level increases or decreases. With such a configuration, tap water is constantly stored in the receiving tank 2, and the stored water is supplied to a terminal supply destination such as a house by the pump 3.
  • a pipe 18 is connected to the discharge side of each pump 3, and the three pipes 18 join the discharge pipe 20.
  • the tap water in the water receiving tank 2 is supplied to the terminal supply destination such as a house through the pipe 18 and the discharge pipe 20 by the pump 3.
  • Each pipe 18 is provided with a check valve 22 and a flow switch 24, and the output of the flow switch 24 is input to the control boards CN1 and CN2. That is, each flow switch 24 is connected to the control board CN 1 and the control board CN 2 via a signal line.
  • Check valve 22 is pump 3 This is a check valve that prevents the water from flowing back from the discharge side to the suction side when the flow stops, and the flow switch 24 is used to detect when the amount of water flowing in the pipe 18 has decreased. It is a small amount of water detection means.
  • the discharge pipe 20 is provided with two pressure sensors (pressure sensor 1, pressure sensor 2) PS 1 and PS 2 that detect the discharge pressure of the pump 3, and the outputs of these pressure sensors PS 1 and PS 2
  • the signal is input to control boards CN 1 and CN 2. That is, the pressure sensor PS 1 is connected to the control board CN1 via a signal line, and the pressure sensor PS 2 is connected to the control board CN 2 via a signal line.
  • a pressure tank 28 is connected to the discharge pipe 20. When the flow switch 24 detects that the amount of water has decreased, the pressure tank 28 is accumulated to prevent the pump 3 from shutting down. After that, the operation of pump 3 can be stopped.
  • the rotational speed (rotational frequency) of the pump 3 is converted to an inverter I NV 1, based on output signals from the flow switch 24 and pressure sensors (pressure sensor 1 and pressure sensor 2) PS 1 and PS 2.
  • Variable speed control is performed using INV 2 and I NV3.
  • the rotational speed of pump 3 is controlled so that the pressure signal detected by pressure sensors PS 1 and PS 2 matches the set target pressure so that the discharge pressure of pump 3 becomes constant.
  • constant discharge pressure control is performed, and the estimated terminal pressure constant control is performed to control the supply water pressure at the terminal supply destination by changing the target value of the pump 3 discharge pressure appropriately.
  • the pump 3 is driven at a rotational speed commensurate with the amount of water demand at that time, so energy saving can be achieved.
  • the flow switch 24 When the flow switch 24 is turned on, it is determined that the water is not used and the amount of water is low, and the operation of the pump 3 is stopped (the low water amount stop operation is performed). The pump is restarted when water usage is detected due to a decrease in the discharge pressure.
  • the pressure accumulation operation may be performed in which the pump 3 is once accelerated and accumulated in the pressure tank 28 and then the pump 3 is stopped.
  • FIG. 2 is a diagram showing an embodiment of the water supply apparatus of the present invention, and is a schematic diagram showing the configuration of the communication line of the water supply apparatus shown in FIG. 1 in more detail. As shown in Fig.
  • one control board CN1 is connected in series to the other control board CN2 via communication lines via three inverters I NV1, I NV2, and INV3.
  • a switch SW1 for turning communication ON / OFF is provided on a communication line connecting the control board CN1 and the first inverter I NV1. That is, a switch SW1 for turning communication ON / OFF is provided on the first communication line among the communication lines connecting the control board CN1 and the inverters INV1 to INV3.
  • This switch SW1 has a contact and is a means for physically interrupting the communication line.
  • the ONZOFF control of the switch SW1 is performed by the ONZOFF signal output from the control board CN2.
  • FIG. 3 is a schematic view showing an embodiment in which a switch SW2 is added to the water supply device shown in FIGS. That is, a switch SW2 for turning communication ON / OFF is provided on a communication line connecting the control board CN2 and the inverter I NV3. The switch SW2 is provided on the communication line connecting the control board CN2 and the first inverter I NV3. The ONZOFF control of switch SW2 is performed by the ONZOFF signal output from control board CN1.
  • the three inverters I NV 1, I NV 2, and I NV3 are connected to the control board CN It is controlled only by 1. Therefore, an incorrect command is not sent to the inverters I NV1, I NV2, I NV 3 from the control board CN 2 where the abnormality occurred.
  • FIG. 4 is a schematic diagram showing an embodiment in which a function for stopping communication of a control board during operation and a function for resetting a switch for ONZOFF communication are added to the water supply apparatus shown in FIG. That is, the control board CN 2 has a reset function for stopping the communication of the control board CN 2 and resetting the switch SW 1 in the OFF state to ON during the operation of the control board CN 2.
  • the control board CN 1 also has a reset function that stops the communication of the control board CN 1 during operation of the control board CN 1, and resets the switch SW2 in the OFF state to turn it on.
  • control board CN 1 stops communication while the control board CN 1 is controlling the inverters I NV 1, I NV2, and I NV 3. Then, switch SW2 in the OFF state is reset to ON. Then, the control board CN 2 is restarted. As a result, the inverters I NV 1, I NV2 and I NV 3 can be controlled by the control board CN2. Note that while the communication of the control board CN 1 is stopped, the inverters I NV1, I NV2, and I NV3 are controlled based on the instructions before the control board CN 1 stops the communication.
  • FIG. 5 is a flowchart in the case of resetting the switch for turning ON / OFF the communication in the configuration of the water supply apparatus shown in FIG. As shown in Fig. 5, the return process of the counterpart control board is performed in the following procedure.
  • the case where the backup operation is performed with the control board CN 2 will be described.
  • the case of backup operation with control board CN 1 is shown in parentheses.
  • step S1 it is determined whether or not the communication 3 between the control board CN 1 and the control board CN 2 is abnormal force, and if it is abnormal, the control board CN1 (or CN2) is not restored and the backup is performed. Continue driving. If communication 3 is not abnormal, the control during operation is performed in step S2.
  • step S3 the switch SW1 (or SW2) in the OFF signal state is reset to ON.
  • step S 4 it is determined whether or not “All inverter communication error during automatic operation” is received from the counterpart control board in communication 3. If the above signal is not received, the control board CN1 (or CN2) system is normal, so backup by the control board CN2 is terminated. On the other hand, when the above signal is received, an OFF signal of the switch SW1 (or SW2) is output in step S5.
  • FIG. 6 is a schematic diagram showing the configuration of the power supply system of the water supply apparatus shown in FIGS. 1 and 2 in more detail.
  • power switches PSW1 and PSW2 are provided in the power supply systems that supply power to the control boards CN1 and CN2, respectively.
  • the source switch PSW1 is provided between the noise filter NF1 and the control board CN1
  • the source switch PSW2 is provided between the noise filter NF2 and the control board CN2.
  • These power switches P SW1 and P SW2 may be provided in the control boards CN 1 and CN 2.
  • FIG. 7A is a flowchart of a monitoring system that monitors a counterpart control board using a communication line connecting the control board C N 1 and the control board CN 2.
  • the monitoring process of the counterpart control board is performed in the following procedure.
  • the case of operating with the control board C N 1 and backing up with the control board C N 2 will be described.
  • Note that the case of operating with the control board CN 2 and the backup operation with the control board CN 1 is shown in parentheses.
  • control board CN1 (or CN2 ) Is judged to be abnormal force.
  • control board CN1 or CN2
  • the switch SW1 or SW2 disconnect signal (OFF signal) is output, and the control board CN 2 (or CN1) shifts to backup operation. If the control board CN1 (or C N2) is not abnormal, the switch SW1 (or SW2) disconnect signal (OFF signal) is not output.
  • the monitoring board 30 can be provided in the middle of the communication line connecting the control board CN 1 and the control board CN 2.
  • the monitoring board 30 includes a communication port (not shown) that can be connected to the control board C N 1 and the control board C N 2, and is connected to the control board C N 1 and the control board C N 2 through communication lines.
  • the monitoring board 30 monitors whether the control board CN 1 and control board CN 2 are operating normally via this communication line, and if one of the control boards CN1 (or CN2) is abnormal, The other control board CN 2 (or CN1) is notified through the communication line that one control board CN 1 (or CN2) has an abnormality.
  • control board CN2 (or CN1) is not given the function of judging the abnormality of the other control board CN1 (or CN2), but the abnormality of both control boards CN1 and CN2
  • the control board C Nl, CN2 does not judge itself abnormally, but differs only in that the abnormality is communicated. Makes no difference.
  • FIG. 8 shows a monitoring system that monitors whether communication between the counterpart control board and the inverter is normal or not using the communication line connecting control board CN1 and control board CN2. It is a flowchart. As shown in Fig. 8, the monitoring process between the inverter and the control board is performed according to the following procedure. In the following, the case where the control board CN1 is operated and the control board CN2 is used for backup operation will be described. In addition, when operating with the control board CN2 and performing the backup operation with the control board C N 1, it is shown in the bracket.
  • FIG. 9A is a diagram showing an embodiment of the water supply apparatus of the present invention.
  • the water supply device shown in Fig. 1 has a single communication line between the control boards CN1 and CN2 and the inverters I NV 1, I NV 2 and I NV3, whereas the water supply device shown in Fig. 9A Shows two communication lines between control boards CN1, CN2 and inverters I NV1, I NV2, I NV3.
  • RS 485 is used for the communication lines L 1 and L 2.
  • one communication line L 1 is indicated by a solid line
  • the other communication line L 2 is indicated by a broken line.
  • the control board CN 1 and the control board CN 2 are connected by a communication line L 3 via the communication port 3 so that the communication 3 can be performed between the control board CN 1 and the control board CN 2.
  • RS 485 is also used for communication line L3.
  • control board CN 1 and control board CN 2 only one communication port is provided for each of control board CN 1 and control board CN 2, and control board CN1 and inverters I NV1 to I NV3, control board CN 2 and inverter I NV 1 to INV 3 can be connected in series with different communication lines.
  • FIG. 10 is a diagram showing an embodiment of the water supply apparatus of the present invention.
  • the water supply system shown in Fig. 10 has two communication lines between the control boards CN1, CN2 and the inverters I NV1, I NV2, I NV 3, and the control board and the inverters I NV 1, I NV2, I NV It can be configured to send analog signals or contact signals to / from 3. It is.
  • control board CN 1 and inverters I NV1, I NV2, I NV3 are connected in series with communication line L 1
  • control board CN 2 and inverters I NV3, I NV2, I NV1 are connected to communication line L. 2 are connected in series
  • signal lines SL1, SL2, and SL3 are provided that can send analog signals or contact signals between control board CN2 and inverters INV1, I NV2, and I NV 3. is there.
  • the communication line L 1 extends from the control board CN 1 to the last inverter I N V 3
  • the communication line L 2 extends from the control board CN 2 to the last I NV 1.
  • the control board is configured with signal lines SL 1, SL 2, and SL3 that can send analog signals or contact signals between the control board CN2 and the inverters I NV1, I NV2, and I NV 3.
  • CN 2 outputs an analog signal
  • the inverters I NV 1, I NV 2 and INV 3 can be controlled to output a variable rotation frequency, and the control board CN 2 outputs a contact signal.
  • the inverters I NV 1, I NV2, and I NV3 can be controlled to output a plurality of predetermined fixed rotational frequencies.
  • the inverters I NV 1, IN V 2 and I NV 3 can be controlled by analog signals or contact signals via. In other words, even if communication becomes abnormal, the operation of the water supply device can be continued by backing up with an analog signal or contact signal that is strong against external factors such as noise.
  • control board and the inverters INV1, I NV2, and I NV are connected to the water supply device having two communication lines between the control boards CN 1 and CN2 and the inverters IN VI, I NV2, and I NV3.
  • the communication line between the control board CN1, CN2 and the inverters IN VI, I NV2, I NV3 is controlled by a single water supply device Board and in You may make it provide the structure which can send an analog signal or a contact signal between barters I NV1, I NV2, I NV3. In this case, even if communication becomes abnormal, the operation of the water supply device can be continued by backing up with an analog signal or contact signal.
  • FIG. 11 is a schematic diagram showing an embodiment in which switches SW1 and SW2 for ONZOFF communication are provided in the water supply apparatus shown in FIG.
  • two communication ports ie, communication port 1 and communication port 2 are provided on the control boards CN 1 and CN 2
  • each inverter I NV1, I NV2, I NV3 has two ports ( In other words, port 1 and port 2) are provided, and by connecting control board CN1, inverters I NV1 to I NV3, and control board CN 2 in series with different communication lines L 1 and L 2, communication 1 and communication 2 are connected. It has two possible configurations.
  • switch SW1 that turns ON / OFF the communication is provided on the communication line connecting control board CN1 and first inverter I NV 1, and communication is turned on on the communication line connecting control board CN 2 and first inverter I NV 3.
  • a switch SW2 for / OF is provided.
  • the ONZOF F control of switch SW1 is performed by the ONZOFF signal output from control board CN2, and the ON / OF F control of switch SW2 is performed by the ONZOFF signal output from control board CN1. .
  • contact signals are output from control board CN 1 and control board CN 2 to switches SW1 and SW2 that turn communication ON and OFF.
  • the device can be made compact.
  • the switch SW1 (or SW2) that turns communication ON / OFF is provided on the communication line that connects the control board CN1 (or CN2) and the first inverter I NV1 (or I NV3).
  • the communication line can be completely disconnected from the base.
  • FIG. 12 is a diagram showing an embodiment of the water supply apparatus of the present invention, and is a schematic diagram showing the device configuration of the water supply apparatus shown in FIG. 1 in more detail.
  • the surge discharge withstand capability of the surge absorbing element A L 1 and the surge absorbing element A L 2 provided in the power supply system is set so that one is high and the other is low.
  • the surge absorbers AL 1 and AL 2 absorb both surges between lines and ground, respectively, and have a large discharge resistance, but the surge resistance of one surge absorber AL 2 absorbs the surge of the other. It is larger than the discharge tolerance of element AL1.
  • the discharge capacity of the surge absorber A L 1 is 10 kA
  • the discharge capacity of the surge absorber A L 2 is 20 kA.
  • the noise attenuation amount of the noise filter NF 1 and the noise filter NF 2 provided in the second system is set to be high on the one side and low on the other side.
  • the noise attenuation level of one noise filter NF 2 is set higher than the level of noise attenuation of the other noise filter NF 1.
  • the withstand voltage and the allowable maximum pressure (water pressure resistance) of the pressure sensor PS 1 and the pressure sensor PS 2 provided in the discharge pipe 20 are set to be high on the one side and low on the other side. That is, the withstand voltage level of one pressure sensor PS2 is set higher than the withstand voltage level of the other pressure sensor PS1. Then, the allowable maximum pressure (water pressure resistance) of one pressure sensor P S 2 is set larger than the allowable maximum pressure (water pressure resistance) of the other pressure sensor P S 1.
  • the withstand voltage of the pressure sensor PS2 is set to 250V
  • the withstand voltage of the pressure sensor PS1 is set to 100V.
  • the allowable maximum pressure (water pressure resistance) of the pressure sensor PS 2 is double the pressure range, and the allowable maximum pressure (water pressure resistance) of the pressure sensor PS 1 is 1.5 times the pressure range.
  • the power supply system including the surge absorbing elements AL 1 and AL 2 and the noise filters NF 1 and NF 2 connected to the control boards C 1 and CN 2,
  • each system consists of two systems. These two systems have different levels of resistance to external factors such as surge, noise, and water pressure resistance.
  • the power supply system is composed of a system that includes the surge absorbing element AL 1 and the noise filter NF 1 and is connected to the control board CN 1, and a system that includes the surge absorbing element AL 2 and the noise filter NF 2 and is connected to the control board CN 2.
  • the level of resistance to external factors in one line is different from the level of resistance to external factors in the other line.
  • the level of resistance to external factors of the power supply system connected to the control board CN2 is set higher than the level of resistance to external factors of the power supply system connected to the control board CN1.
  • the signal system consists of a system that includes the pressure sensor PS 1 etc. and is connected to the control board CN 1, and a system that includes the pressure sensor PS 2 and so on and is connected to the control board CN 2.
  • the tolerance level against the external system is different from that of the other system.
  • the level of resistance to the external factor of the signal system connected to the control board CN2 is set higher than the level of resistance to the external factor of the signal system connected to the control board CN1.
  • the control system is composed of a system that includes the communication line L 1 and the like and is connected to the control board CN 1 and a system that includes the communication line L 2 and the like and is connected to the control board CN 2 and is resistant to external factors of one of the systems. This level differs from the level of resistance to external factors in the other lineage.
  • the level of resistance to the external factor of the control system extending on the control board CN 2 is set higher than the level of resistance to the external factor of the control system connected to the control board C 1.
  • the level of resistance to external factors such as surge and noise resistance levels and water pressure resistance levels in the system connected to the control board CN 2 that is normally used as the control board on the backup side is increased. Therefore, when backup is required, the backup side system including the control board CN 2 can be operated reliably.
  • FIG. 13 is a schematic diagram illustrating an embodiment of a pressure detection unit of a water supply device.
  • two sets of pressure sensors connected to each of control boards CN1 and CN2 are provided. That is, the pressure sensors PS 1-1 and PS 1-2 are connected to the control board CN 1, and the pressure sensors PS 2-1. PS 2-2 are connected to the control board CN 2.
  • the water pressure level (water pressure resistance) of the pressure sensors in the same control board is different, and the water pressure level of pressure sensor PS 1 _ 2 is higher than the water pressure level of pressure sensor PS 1-1.
  • Pressure sensor PS 2 _ 2 water pressure resistance level of pressure sensor PS The water pressure level is higher than 2_1.
  • the pressure sensors PS 1-2 and PS 2-2 with the higher withstand voltage level are used as pressure sensors for backup. In this way, by differentiating the water pressure level (water pressure resistance) of multiple pressure sensors within the same control board, even if one of the pressure sensors fails, pressure detection can be performed with the other pressure sensor. This improves the reliability of the water supply system.
  • the four pressure sensors PS 1 _1, PS 1-2, PS 2-1 and PS 2_ 2 use the same type of sensor and have the same pressure range.
  • the detection values of multiple pressure sensors for example, four pressure sensors, may be compared so that sensor failures or abnormalities can be found.
  • FIG. 14 is a schematic diagram illustrating another embodiment of the pressure detection unit of the water supply apparatus.
  • the pressure sensor PS is provided in one system among the pressure detection part of the system of one control board and the pressure detection part of the system of the other control board, and the pressure switch PW is provided in the other system. Is provided.
  • the pressure sensor PS is connected to the control board CN1, and the pressure switch PW is connected to the control board CN2.
  • the pressure sensor PS detects the pressure and outputs an analog signal or a digital signal corresponding to the detected pressure value.
  • the pressure switch is turned on in response to a predetermined pressure set in advance. / OFF signal is output.
  • FIG. 15 is a schematic diagram showing an embodiment in which a power supply input unit is provided on the control board of the water supply apparatus.
  • the power supply units PIN1 and PIN2 are provided on the control boards CN1 and CN2, respectively, and the power supply units PWS1 and PWS2 are provided so as to correspond to the power supply inputs PIN1 and PIN2. Yes.
  • the power supply unit PWS 1 of the control board CN 1 and the power input part PIN 1 can be connected, and the power supply part PWS 1 of the control board CN 1 and the power input part PIN 2 of the control board CN 2 can be connected. Further, the power supply part PWS 2 of the control board CN 2 and the power input part PIN 2 can be connected, and the power supply part PWS 2 of the control board CN 2 and the source input part PIN 1 of the control board CN 1 can be connected.
  • control is performed when the power supply PWS 1 of the control board CN 1 fails while power is supplied from the power supply PWS 1 of the control board CN 1 to the power input PIN PIN 1.
  • the power supply unit PWS 2 of the substrate CN 2 can back up and power can be supplied from the power supply unit PWS 2 of the control substrate CN 2 to the power input unit PI 1 of the control substrate CN 1. Also, if power supply PWS 2 on control board CN2 fails while power is supplied from power supply PWS 2 on control board CN2 to power supply input PIN 2, power supply PWS 1 on control board CN1 is backed up. Thus, power can be supplied from the power supply unit PWS 1 of the control board CN 1 to the power input part PIN 2 of the control board CN 2. In this case, the power supply unit of the control board on the failed side can grasp and hold the status of the failure.
  • the power supply unit may be configured as a power supply board separately from the control board.
  • FIG. 16 is a diagram showing an embodiment of the water supply apparatus of the present invention.
  • the configuration not particularly described in the present embodiment is the same as the configuration of the water supply apparatus shown in FIG.
  • the control board CN1 functions as a main control board
  • the control board CN2 functions as a preliminary control board. That is, in normal operation, the operation of the pump is controlled by the control board CN1, and when an abnormality occurs in the control board CN1, the backup operation by the control board CN2 is performed.
  • control boards C N 1 and C N 2 are connected to power supply boards (power supply units) PWS 1 and PWS 2, respectively.
  • the power supply boards PWS 1 and PWS 2 are provided separately from the control boards CN1 and CN2.
  • These power supply boards PWS 1 and PWS 2 are connected to the power source 5 via the noise filters NF 1 and NF 2 and surge absorbing elements A L 1 and AL 2 shown in FIG.
  • operation indicators O D 1 and O D 2 are connected to the control boards C N 1 and C N 2, respectively.
  • the operation indicators ODl and OD2 are equipped with a number of buttons and a display unit, and are exposed on the front panel of the control panel 40, enabling button operation from the outside. Yes.
  • the control boards CN1 and CN2 and the power supply boards PWS 1 and PWS 2 described above are accommodated.
  • the operation indicators OD 1 and OD 2 are connected to the control boards CN1 and CN 2 by electrical signals different from those of the communication ports 1 and 3. Power is supplied to operation indicators OD1 and OD2 via control boards CN1 and CN2.
  • the operation indicators OD 1 and OD 2 function as input devices for various settings of the water supply device. That is, the operation of the water supply device is started and stopped by operating the buttons on the operation indicators OD1 and OD2.
  • various settings of the water supply device for example, the setting of the target value of the discharge pressure, the setting of whether to control the electromagnetic valve 16 (see FIG. 1) of the water receiving tank 2 are performed.
  • These settings are stored in a memory (not shown) of the control boards CN1 and CN2.
  • the same settings are saved on both control boards CN1 and CN2, except for the settings specific to each control board CN1 and CN2 (for example, settings that specify whether it is a main control board or a standby control board) It is desirable to be able to do so. Therefore, when the setting is stored in one of the control boards CN1 and CN2 via the corresponding operation indicator, the setting information is sent to the other control board by communication, and both control boards CN1, CN2 It is desirable to store the same settings in
  • the display section of the operation indicators OD l and OD 2 displays the operation status of the water supply device, such as the water supply pressure detected by the pressure sensors PS 1 and PS 2 and the current value for driving the motor 4. It is configured. Further, as shown in FIG. 17, a backup lamp 45 indicating backup operation is provided on the front panel of the control panel 40.
  • control board CN 1 or the corresponding pressure sensor P S 1 fails, the operation of the water supply device is switched to the backup operation by the control board C N 2.
  • the flow of operation for switching from the control board C N 1 to the control board C N 2 is as follows.
  • Control board C N 1 or pressure sensor P S 1 fails (the condition for switching to control board C N 2 is met)
  • a code notifying backup 3 ⁇ 4fe is displayed on both operation indicators OD l and OD 2, and the backup lamp 45 of the control panel 40 lights up.
  • Switching to control board CN 2 (ie backup operation) is automatically performed when any of the following is detected.
  • control board CN 1 (iv) Abnormal communication between control board CN 1 and control board CN 2 (includes abnormality of board PWS 1 connected to control board CN 1)
  • control board CN2 When various settings are changed on the control board CN2 during the backup operation, the setting change information is shared by communication with the control board CN1. However, if communication between control board CN 1 and control board CN 2 is interrupted, There is a possibility that water supply control with different settings will be performed by the control board CN 1 at the end of the cap operation. Therefore, for settings that should be shared between control board CN 1 and control board CN 2, control board CN 2 is set according to the settings of control board C 2 by communication between control board CN 1 and control board CN 2 when returning from backup operation. It is desirable to overwrite the setting of 1.
  • the operation indicator in this embodiment can also be adopted in the other embodiments described above.
  • the operation indicator is provided separately from the control board.
  • the operation indicator may be integrated with the control board.
  • the water supply apparatus of the present invention is suitably used for a water supply apparatus that includes a plurality of pumps and inverters and operates the pumps at a variable speed to supply water to an apartment house or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一方の制御基板が機能しなくなった場合でも、他方の制御基板により確実にバックアップができる給水装置を提供する。 複数のポンプ(3)と、対応するポンプの回転周波数を可変制御する複数のインバータ(INV)と、複数のインバータを制御する複数の制御基板(CN)とを備え、一方の制御基板に異常が発生した場合に、他方の制御基板が一方の制御基板をバックアップすることで運転を継続することができる給水装置(1)であって、一方の制御基板から複数のインバータを経て他方の制御基板までの間を、通信線により直列に接続し、通信線上に、通信をON/OFFするスイッチ(SW1)を設けた。又は、各制御基板から、それぞれ異なる通信線により直列に複数のインバータを接続した。又は、各制御基板に繋がる系統の外的要因に対する耐性のレベルを異ならせた。

Description

明細書 給水装置
技術分野
本発明は、 給水装置に係り、 特に複数のポンプおよびインバータを備え、 ボン プを可変速運転して集合住宅などに給水する給水装置に関するものである。 背景技術
集合住宅やビルなどに設置され、 各給水端 水を供給する装置として給水装置 がある。 給水装置においては、 商用交流電源の周波数および電圧を任意の周波数 および電圧に変換するィンバータを用いることにより、 ポンプを可変速 する ことが広く行われている。 インバータは、 ポンプを駆動するモータの回^ i度を 任意に変えられるため、 ポンプを負荷に対応した最適な回転速度で運転すること が可能となり、 定格速度で運転する場合に比較して省エネルギー化を図ることが できる。
このような給水装置においては、 複数のポンプを複数のィンバータを用いて制 御する場合があり、 この場合には、 これらのポンプおよびインバータを制御する 制御部が設けられる。 このような複数のポンプおよびインバータを用いた給水装 置においては、 あるポンプ ·モータが故障 (漏電、 過電流、 欠相など) した場合 には、 自動的に他のポンプに切り替え、 断水を回避することができるようになつ ている。
また、 日本国特開 2 0 0 5 - 3 5 1 2 6 7号公報には、 ポンプおよびインバー タを制御する制御部 (制御基板) についても、 運転中の制御基板が何らかの不具 合によって正常に動作しなくなった場合に、 故障した制御基板から待機中の制御 基板へ切り替えてバックアップすることにより、 給水を止めることのない給水装 置が開示されている。 発明の開示
ところが、 制御基板は、 雷によるサージや、 ノイズ等の発生に弱く、 そのため に故障することが多く、 また、 各種センサの消耗による寿命低下を来し、 制御基 板が機能しなくなることも多い。 そのため、 一方の制御基板が故障し、 いざ他方 の待機中の制御基板を動かそうとしても、 故障してしまって、 バックアップが行 えない場合があり、 折角、 バックアップ機能が付いていても、 その機能が発揮で きないこともある。
本発明は、 このような従来技術の問題点に鑑みてなされたもので、 雷によるサ ージ、 ノイズ等の発生や、 各種センサの寿命によって、 一方の制御基板が機能し なくなった場合でも、 他方の制御基板により、 給水能力を低下させずに、 制御基 板のバックアップができ、 また、 同時に制御基板が故障しないように工夫したこ とで、 確実にバックアツプができる給水装置を提供することを目的とするもので ある。
上記目的を達成するため、 本発明の第 1の態様によれば、 複数のポンプと、 対 応するポンプの回転周波数を可変制御する複数のィンバータと、 前記複数のィン バータを制御する複数の制御基板とを備え、 一方の制御基板に異常が発生した場 合に、 他方の制御基板が前記一方の制御基板をバックアップすることで を継 続することができる給水装置であって、 前記一方の制御基板から前記複数のィン バータを経て前記他方の制御基板までの間を、 通信線により直列に接続し、 前記 通信線上に、 通信を ONZO F Fするスィッチを設けたことを特徴とするもので ある。 ここで、 制御基板に異常が発生とは、 制御基板そのものの異常 (例えば、 制御基板内の C P Uの異常) に限らず、 制御基板に接続された各系統のいずれか の機器 (又はいずれかの箇所) において異常が発生して当該制御基板が正常に動 作できなくなる状況をも含むものである。 この状況には、 電源の異常、 制御基板 に給電する電源系統の異常、制御基板に繋がる圧力センサの故障等があげられる。 本宪明によれば、 一方の制御基板に異常が発生した場合に、 待機中の他方の制 御基板がバックアツプする際に、 通信を O NZO F Fするスィッチを O F Fする ことにより異常が発生した制御基板とィンバータとの間の通信線を物理的に遮断 する。 これにより、 複数のインバータは、 他方の制御基板のみにより制御される ようになる。
本宪明の好ましい態様によれば、 前記一方の制御基板または前記他方の制御基 板に、 前記スィツチを ONZO F Fするための信号を出力する出力手段を設けた ことを特徴とする。
本発明によれば、 異常が発生した制御基板を通信線上から切り離すためのスィ ツチを、 正常な制御基板側から ONZO F F信号を出力して動作させることがで さる。
本発明の好ましい態様によれば、 前記一方の制御基板及び/または前記他方の 制御基板から最初のインバータに接続される通信線上に前記スィッチを設けたこ とを特徴とする。 本発明によれば、 異常が発生した制御基板と最初のィンバータとの間で通信を 遮断することができるため、 異常が発生した制御基板から誤った指令がいずれの インバータにも送られることはない。
本発明の好ましい態様によれば、 前記一方の制御基板または前記他方の制御基 板の異常により前記スィッチを切り替えた後、 前記制御基板を再起動させるため に、 現在運転中の制御基板の通信を止めて、 前記スィツチをリセットするリセッ ト機能を制御基板に持たせたことを特徴とする。
本発明によれば、 稼働中の制御基板に異常が発生して通信を ONZO F Fする スィッチが O F Fとなり、 制御基板を切り替えてもう一つの制御基板によりイン バータを制御している間に、 この制御基板の通信を止めて、 O F F状態の前記ス イッチをリセットして O Nとする。 そして、 先に異常が発生した制御基板を再起 動することにより、 制御基板を復帰させることができる。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに電源を供給する電源系統に電源スィツチを設けたことを特徴とする。 本発明によれば、 一方の制御基板、 もしくは、 それにかかわる信号系統の修理 又は交換などを行う際に、 電源スィツチを O F Fとして一方の制御基板を切り離 すことにより、 他方の制御基板により運転が継続できる。
本発明の好ましレ、態様によれば、 前記電源スィッチは前記制御基板内に設けら れていることを特徴とする。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板に は、 常に電源が投入されていることを特徴とする。
本発明によれば、 電源スィッチは、 常時投入されており、 また制御基板内にあ る電源回路も常時投入されている。 したがって、 いずれか一方の制御基板に異常 が発生した場合に、 直ちに他方の制御基板が前記一方の制御基板をバックアップ することで、 給水装置の を,継続することができる。 また異常が発生した制御 基板を復帰する場合も、 短時間で復帰を行うことができる。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板と の間を通信線で接続し、 制御基板が正常力否かを監視する監視手段を設けたこと を特徴とする。
本発明によれば、 一方の制御基板と他方の制御基板とを接続している通信線を 利用して制御基板が正常か否かを監視することができる。 したがって、 バックァ ップ運転への判断、 もしくは、 バックアップ運転後の復帰は、 その動作が可能か 否かをチェックした上で、 バックアップ運転をすることができ、 もしくは、 バッ クァップ1¾後の復帰をすることができる。
なお、 監視手段が、 一方の制御基板と他方の制御基板以外のところに有る場合 もある。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板と の間を通信線で接続し、 制御基板と前記ィンバータとの間が正常に通信されてい るか否かを監視する監視手段を設けたことを特徴とする。
本発明によれば、 一方の制御基板と他方の制御基板とを接続している通信線を 利用して制御基板とインバータとの間が正常に通信されている力否かを監視する ことができる。 したがって、 バックアップ運転への判断、 もしくは、 ノくックアツ プ運転後の復帰は、 その動作が可能か否かをチェックした上で、 バックァップ運 転をすることができ、もしくはノくックァップ運転後の復帰をすることができる。 なお、 監視手段が、 一方の制御基板と他方の制御基板以外のところに有る場合 もある。
本発明の好ましい態様によれば、 前記少なくとも 1つの制御基板と前記複数の ィンバータとの間をアナログ信号または接点信号を送る信号線で接続したことを 特徴とする。
本発明によれば、 全ての通信が機能不全になっても、 制御基板とインバータと を繋ぐ信号線を介してアナ口グ信号又は接点信号によりィンバータを制御するこ とができる。 すなわち、 通信が異常になっても、 サージやノイズ等の外的要因に 対して強レ、アナ口グ信号又は接点信号でバックアップすることで、 給水装置の運 転を継続することができる。
本発明の好ましレ、態様によれば、 前記一方の制御基板と前記他方の制御基板の 前記圧力検知部のうち、 いずれか一方に圧力センサを設け、 他方に圧力スィッチ を設けたことを特徴とする。
本発明によれば、 一方の制御基板に圧力センサを接続し、 他方の制御基板に圧 カスイツチを接続することにより、 圧力スィツチの方が圧力センサよりもノイズ 等の外的要因に対する耐性のレベルが高いため、 外的要因の影響を低くすること ができる。 したがって、 バックアップを必要とする際に、 圧力スィッチに繋がる 制御基板を含むバックァップ側の系統を確実に動作させることができる。
本発明の好ましレ、態様によれば、前記一方の制御基板と前記他方の制御基板に、 それぞれ 1系統以上の圧力検知手段を設けたことを特徴とする。
本発明によれば、 1系統以上の圧力検知手段を設けたため、 一方の制御基板の 圧力検知手段に異常が発生しても、 他方の制御基板の圧力検知手段でバックアツ プすることができる。
本発明の好まし 、態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに前記圧力検知手段から入力した検出値を比較をして、 異なった場合に は、 前記入力信号の異常と判断する判断手段を設けたことを特徴とする。
本発明によれば、 圧力検知手段に故障や異常が発生した場合に、 直ちに故障や 異常を検知 きる。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに電源入力部を持たせ、 前記各電源入力部には、 対応する各電源部を接 続するとともに他方の電源部を接続可能とすることを特徴とする。
本発明によれば、 一方の電源部から一方の制御基板の電源入力部に給電してい る間に、 この電源部が故障した場合に、 他方の電源部がバックアップして、 前記 一方の制御基板の電源入力部に給電することができる。
本発明の好ましレ、態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに前記電源部を取り込んだことを特徴とする。
本発明の好ましい態様によれば、 前記複数の制御基板にそれぞれ接続され、 前 記給水装置の操作および制御のための各種設定を行う複数の操作表示部をさらに 備え、 前記操作表示部は、 前記給水装置の運転状況を表示する表示部を有してい ることを特徴とする。
本発明の第 2の態様によれば、 複数のポンプと、 対応するポンプの回転周波数 を可変制御する複数のィンバータと、 前記複数のィンバータを制御する複数の制 御基板とを備え、 一方の制御基板に異常が発生した場合に、 他方の制御基板が前 記一方の制御基板をバックアップすることで を継続することができる給水装 置であって、 前記複数のインバータに、 それぞれ 2つ以上の異なる通信ポートを 設け、 前記一方の制御基板と前記他方の制御基板から、 それぞれ異なる通信線に より直列に前記複数のインバータを接続したことを特徴とするものである。 ここ で、 制御基板に異常が発生とは、 制御基板そのものの異常 (例えば、 制御基板内 の C P Uの異常) に限らず、 制御基板に接続された各系統のいずれかの (又 はいずれかの箇所) において異常が発生して当該制御基板が正常に動作できなく なる状況をも含むものである。 この状況には、 電源の異常、 制御基板に給電する 電源系統の異常、 制御基板に繋がる圧力センサの故障等があげられる。
本宪明によれば、 一方の制御基板と他方の制御基板から、 それぞれ異なる通信 線により直列に複数のィンバータを接続したため、 一方の通信線に異常が発生し た場合に、 他方の通信線により通信を確保することができるため、 ノイズ等によ る通信線の不良が原因でインバータの制御が不能になる事態が防止できる。 本発明の好ましい態様によれば、 前記複数の制御基板にそれぞれ 2つ以上の異 なる通信ポートを設け、 前記一方の制御基板、 前記複数のインバータ及び前記他 方の制御基板を複数の通信線によりそれぞれ直列に接続したことを特徴とする。 本発明の好まし V、態様によれば、 前記一方の制御基板と前記他方の制御基板か ら、 それぞれ異なる通信線が直列に最後のインバータまで延びていることを特徴 とする。
本発明の好ましい態様によれば、 前記少なくとも 1つの制御基板と前記複数の ィンバータとの間をアナログ信号または接点信号を送る信号線で接続したことを 特徴とする。
本発明によれば、 全ての通信が機能不全になっても、 制御基板とインバータと を繋ぐ信号線を介してアナ口グ信号又は接点信号によりィンバータを制御するこ とができる。 すなわち、 通信が異常になっても、 サージやノイズ等の外的要因に 対して強レ、アナ口グ信号又は接点信号でバックアップすることで、 給水装置の運 転を継続することができる。
本発明の好ましい態様によれば、 前記一方の制御基板または前記他方の制御基 板と前記複数のインバータを接続する通信線上に、 通信を O NZO F Fするスィ ツチを設けたことを特徴とする。
本発明によれば、 運転中の制御基板に異常が発生した場合に、 待機中の他方の 制御基板がバックアップする際に、 他方の制御基板からスィツチの O F F信号を 出力してスィッチを O F Fすることにより、 異常が発生した制御基板とィンバー タとの間の通信線を物理的に遮断する。 これにより、 インバータは、 他方の制御 基板のみにより制御されるようになる。 したがって、 異常が発生した制御基板か ら誤った指令がィンバータに送られることはない。
本発明の好ましい態様によれば、 前記一方の制御基板及び Zまたは前記他方の 制御基板から最初のィンバータに接続される通信線上に前記スィツチを設けたこ とを特徴とする。
本発明によれば、 異常が発生した制御基板と最初のインバータとの間で、 通信 を遮断す.ることができるため、 異常が発生した制御基板から誤った指令がいずれ のインバータにも送られることはなレ、。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の 圧力検知部のうち、 いずれか一方に圧力センサを設け、 他方に圧力スィッチを設 けたことを特徴とする。 本発明によれば、 一方の制御基板に圧力センサを接続し、 他方の制御基板に圧 カスイッチを接続することにより、 圧力スィツチの方が圧力センサよりもノイズ 等の外的要因に対する耐性のレベルが高いため、 外的要因の影響を低くすること ができる。 したがって、 バックアップを必要とする際に、 圧力スィッチに繋がる 制御基板を含むバックアップ側の系統を確実に動作させることができる。
本発明の好ましレ、態様によれば、前記一方の制御基板と前記他方の制御基板に、 それぞれ 1系統以上の圧力検知手段を設けたことを特徴とする。
本発明によれば、 1系統以上の圧力検知手段を設けたため、 一方の圧力検知手 段に異常が発生しても、 他方の圧力検知手段でバックアップすることができる。 本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに前記圧力検知手段から入力した検出値を比較をして、 異なった場合に は、 前記入力信号の異常と fij断する判断手段を設けたことを特徴とする。
本発明によれば、 圧力検知手段に故障や異常が発生した場合に、 直ちに故障や 異常を検知できる。
本発明の好ましレ、態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに電源入力部を持たせ、 前記各電源入力部には、 対応する各電源部を接 続するとともに他方の電源部も接続可能とすることを特徴とする。
本発明によれば、 一方の電源部から一方の制御基板の 入力部に給電してい る間に、 この電源部が故障した場合に、 他方の電源部がバックアップして、 前記 —方の制御基板の電源入力部に給電することができる。
本発明の好ましレ、態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに前記 ¾ 部を取り込んだことを特徴とする。
本発明の好ましい態様によれば、 前記複数の制御基板にそれぞれ接続され、 前 記給水装置の操作および制御のための各種設定を行う複数の操作表示部をさらに 備え、 前記操作表示部は、 前記給水装置の運転状況を表示する表示部を有してい ることを特徴とする。
本発明の第 3の態様によれば、 複数のポンプと、 対応するポンプの回転周波数 を可変制御する複数のィンバータと、 前記複数のィンバータを制御する複数の制 御基板とを備え、 一方の制御基板に異常が発生した場合に、 他方の制御基板が前 記一方の制御基板をバックアップすることで を継続することができる給水装 置であつて、 前記一方の制御基板と前記他方の制御基板のそれぞれに繋がる電源 系統、 信号系統、 制御系統のうちの少なくとも一つにおいて、 一方の系統の外的 要因に対する耐性のレベルを他方の系統の外的要因に対する耐性のレベルと異な らせることを特徴とするものである。 ここで、 制御基板に異常が発生とは、 制御 基板そのものの異常 (例えば、 制御基板内の C P Uの異常) に限らず、 制御基板 に接続された各系統のいずれかの機器 (又はいずれかの箇所) において異常が発 生して当該制御基板が正常に動作できなくなる状況をも含むものである。 この状 況には、 電源の異常、 制御基板に給電する電源系統の異常、 制御基板に繋がる圧 力センサの故障等があげられる。
本発明によれば、 バックァップ側の制御基板に繋がる系統におけるサージゃノ ィズの耐量レベル、 耐水圧性のレベル等の外的要因に対する耐性のレベルを高く できるので、 バックアップを必要とする際に、 制御基板を含むバックアップ側の 系統を確実に動作させることができる。
本発明の好ましい態様によれば、 前記外的要因に対する耐性のレべノレは、 サー ジ及びノイズのうち少なくとも一つの耐量レベルであることを特徴とする。 本発明の好ましい態様によれば、 前記一方の制御基板に繋がる系統に対するサ ージ及び Zまたはノィズの耐量レベルと、 前記他方の制御基板に繋がる系統に対 するサージ及び Zまたはノィズの耐量レベルとの間で、 前記一方の制御基板側よ りも前記他方の制御基板側の耐量レベルを上げることを特徴とする。
本発明の好ましい態様によれば、 前記外的要因に対する耐性のレベルは、 圧力 検知部の耐水圧性であり、 前記一方の制御基板に繫がる圧力検知部の耐水圧性を 前記他方の制御基板に繋がる圧力検知部の耐水圧性と異ならせることを特徴とす る。
本発明によれば、 圧力検知部の耐水圧性を異ならせることで、 圧力検知部にゥ ォータハンマ等の高水圧がかかった場合でも、 圧力検知部の故障リスクを低減す ることができる。
本発明の好ましレ、態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに繋がる複数の圧力検知部を設け、 同一の制御基板内の前記複数の圧力 検知部同士で、 耐水圧性を異ならせることを特徴とする。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の 圧力検知部のうち、 いずれか一方に圧力センサを設け、 他方に圧力スィッチを設 けたことを特徴とする。
本発明によれば、 一方の制御基板に圧力センサを接続し、 他方の制御基板に圧 カスイツチを接続することにより、 圧カスイツチの方が圧力センサよりもノイズ 等の外的要因に対する耐性のレベルが高レ、ため、 外的要因の影響を低くすること ができる。 したがって、 バックアップを必要とする際に、 圧力スィッチに繋がる 制御基板を含むバックァップ側の系統を確実に動作させることができる。
本発明の好ましレ、態様によれば、前記一方の制御基板と前記他方の制御基板に、 それぞれ 1系統以上の圧力検知手段を設けたことを特徴とする。
本発明によれば、 1系統以上の圧力検知手段を設けたため、 一方の圧力検知手 段に異常が発生しても、 他方の圧力検知手段でバックアップすることができる。 本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに前記圧力検知手段から入力した検出値を比較をして、 異なった場合に は、 前記入力信号の異常と判断する判断手段を設けたことを特徴とする。
本発明によれば、 圧力検知手段に故障や異常が発生した場合に、 直ちに故障や 異常を検知できる。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに電源入力部を持たせ、 前記各電源入力部には、 対応する各電源部を接 続するとともに他方の電源部を接続可能とすることを特徴とする。
本発明によれば、 一方の電源部から一方の制御基板の電源入力部に給電してい る間に、 この電源部が故障した場合に、 他方の電源部がバックアップして、 前記 一方の制御基板の電源入力部に給電することができる。
本発明の好ましい態様によれば、 前記一方の制御基板と前記他方の制御基板の それぞれに前記電源部を取り込んだことを特徴とする。
本発明によれば、 以下に列挙する効果を奏する。
( 1 ) 雷によるサージ、 ノイズ等の発生や、 各種センサの寿命によって、 一方の 制御基板が機能しなくなつた場合でも、 他方の制御基板により、 給水能力を低下 させずに、 給水装置の運転を継続することができる。
( 2 ) 一方の制御基板と他方の制御基板から、 それぞれ異なる通信線により直列 に複数のインバータを接続したため、 一方の通信線に異常が発生した場合に、 他 方の通信線により通信を確保することができるため、 ノイズ等による通信線の不 良が原因でィンバータの制御が不能になる事態が防止できる。
( 3 ) ノくックアツプ側の制御基板に繋がる系統におけるサージゃノィズの耐量レ ベル、 耐水圧性のレベル等の外的要因に対する耐性のレべノレを高くできるので、 バックァップを必要とする際に、 制御基板を含むバックァップ側の系統を確実に 動作させることができる。
( 4 ) 制御基板が同時に故障する原因として、 圧力検知部にウォータハンマ等の 高水圧がかかった場合に、 圧力検知部の耐水圧をオーバーして破損にいたる場合 もあったが、 本発明によれば、 圧力検知部の耐水圧性を異ならせることで、 圧力 検知部の故障リスクを低減することができる。 図面の簡単な説明
図 1は、 本発明の給水装置の全体構成を示す概略図である。
図 2は、 本発明の給水装置の一実施例を示す図であり、 図 1に示す給水装置の 通信線の構成を更に詳細に示す概略図である。
図 3は、 図 1および図 2に示す給水装置に他のスィツチを追加した実施形態を 示す概略図である。
図 4は、 図 3に示す給水装置に、 運転中の制御基板の通信を止める機能と、 通 信を O N/O F Fするスィッチをリセットする機能とを追加した実施形態を示す 概略図である。
図 5は、 図 4に示す給水装置の構成において、 通信を ON/O F Fするスイツ チをリセットする場合のフローチヤ一トである。
図 6は、 図 1および図 2に示す給水装置の電源系統の構成を更に詳細に示す概 略図である。 、 図 7 Aは、 一方の制御基板と他方の制御基板とを接続している通信線を利用し て相手側制御基板を監視する監視システムのフローチャートであり、 図 7 Bは、 監視基板の配置構成を示す図である。
図 8は、 一方の制御基板と他方の制御基板とを接続してレヽる通信線を利用して 相手側制御基板とインバータとの間が正常に通信されているか否かを監視する監 視システムのフローチヤ一トである。
図 9 Aは、 本発明の給水装置の一実施形態を示す図であり、 図 9 Bは、 本発明 の給水装置の一実施形態を示す図である。
図 1 0は、 本発明の給水装置の一実施形態を示す図である。
図 1 1は、 図 1 0に示す給水装置に、 通信を O N/O F Fするスィッチを設け た実施形態を示す概略図である。
図 1 2は、 本発明の給水装置の一実施形態を示す図であり、 図 1に示す給水装 置の機器構成を更に詳細に示す概略図である。
図 1 3は、 給水装置の圧力検知部の一実施形態を示す概略図である。
図 1 4は、 給水装置の圧力検知部の他の実施形態を示す概略図である。
図 1 5は、 給水装置の制御基板に電源入力部を設けた実施形態を示す概略図で ある。
図 1 6は、 本発明の給水装置の一実施形態を示す図である。 図 17は、 給水装置の制御盤を示す前面図である。 発明を実施するための最良の形態
以下、 本発明に係る給水装置の実施形態について図 1から図 17を参照して詳 細に説明する。 また、 図 1から図 17において、 同一または相当する構成要素に は、 同一の符号を付して重複した説明を省略する。
図 1は、 本発明の給水装置 1の全体構成を示す概略図である。 図 1において、 実線 (太線) は電源系統を示し、 破線は制御系統 (通信線) を示し、 矢印は信号 系統 (信号線) を示す。 給水装置は、 複数台のポンプおよびインバータを備える 1S 本実施形態においては、 3台のポンプおよびインバータを備えた給水装置に ついて説明する。
図 1に示すように、 給水装置 1は、 受水槽 2と、 配管 10を介して受水槽 2に 接続される 3台のポンプ 3と、 3台のポンプをそれぞれ駆動する 3台のモータ 4 と、 3台のモータ 4の回転周波数をそれぞれ制御する 3台のインバータ I NV 1, I NV 2, I NV3と、 これら 3台のインバータ I NV 1〜 I NV3をはじめと する各種機器を制御する 2つの制御基板 (制御基板 1, 制御基板 2) CN1, C N 2とを備えている。
インバータ I NV1, I NV 2, I NV 3には、 それぞれ、 ¾ 5から漏電遮 断器 ELB 1, ELB 2, ELB 3を介して! ^が供給されるようになっている。 そして、 各インバータ I NV 1 , I NV 2, I NV 3からは、 各モータ 4に、 周 波数制御された ¾ が供給されるようになっている。 また、 2つの制御基板 (制 御基板 1, 制御基板 2) CN 1, CN2には、 それぞれ、 電源 5からノイズフィ ルタ N F 1, N F 2およびサージ吸収素子 A L 1 , A L 2を介して電源が供給さ れるようになっている。 また漏電遮断器 ELB 1, ELB 2, E L B 3は、 それ ぞれ、 信号線を介して制御基板 CN 1および制御基板 C N 2に接続されている。 制御基板 (制御基板 1 ) C N 1、 ィンバータ I N V 1、 ィンバータ I VN 2、 インバータ I NV3、 制御基板 淛御基板 2) CN2は、 通信線によって直列に 数珠つなぎされた接続になっている。 すなわち、 制御基板 CN1の通信ポート 1 からインバータ I NV 1のポート、 インバータ I NV 2のポート、 インバータ I NV 3のポート、 制御基板 C N 2の通信ポート 1に順番に R S 485により接続 されている。 したがって、 制御基板 CN 1からある指令 (情報) を送ると、 イン バ一タ I N V 1 , I NV2, I N V 3、 制御基板 C N 2に同じ指令 (情報) が送 られる。 また制御基板 CN2からある指令 (情報) を送ると、 インバータ I NV 3, I NV2, INV1、 制御基板 CN1に同じ指令 (情報) が送られる。 そし て、 制御基板 CN 1と制御基板 CN 2とは、 通信ポート 3を介して R S 485に よって相互に接続されている。
上述の構成において、 給水装置 1の運転中に、 一方の制御基板 CN1 (又は C N2) に異常が発生した場合に、 待機中の他方の制御基板 CN 2 (又は CN1) が前記一方の制御基板 CN 1 (又は CN2) をバックアップすることで、 インバ ータ INV1, INV2, I NV 3を制御してポンプ 3の運転を継続することが できるようになっている。
ここで、 制御基板 CN1 (又は CN2) に異常が発生とは、 制御基板 CN1 ( 又は CN2) そのものの異常 (例えば、 制御基板内の CPUの異常) に限らず、 制御基板 CN1 (又は CN2) に接続された各系統のいずれかの機器 (又はいず れかの箇所) において異常が発生して当該制御基板 CN 1 (又は CN2) が正常 に動作できなくなる状況をも含むものである。 この状況には、 電源の異常、 制御 基板に給電する電源系統の異常、 制御基板に繋がる圧力センサ (後述する圧力セ ンサ PS 1, PS 2等) の故障等があげられる。
受水槽 2には、 電極棒 12 aにより受水槽 2の水位を検知する 2セットの水位 検知器 WL 1, WL 2が設けられている。 本実施形態における各水位検知器 WL 1, WL 2は、 4つの液面レベル (満水、 減水、 復帰、 渴水) を検知する。 本実 施形態においては、 水位検知器 WL 1は信号線を介して制御基板 CN 1に接続さ れており、水位検知器 WL 2は信号線を介して制御基板 CN 2に接続されている。 受水槽 2には、 水道本管 (図示せず) に接続された給水管 14から電磁弁 16を 介して水道水が導入されるようになっている。 水位検知器 WL 1, WL2により 受水槽 2の水位が検知され、 水位の増減に応じて制御基板 CN 1 (又は CN2) により電磁弁 16が開閉される。 このような構成により、 受水槽 2に水道水がい つたん貯水され、 この貯水された水がポンプ 3により住宅等の末端の供給先に供 給されるようになっている。
各ポンプ 3の吐出側には、 配管 18が接続されており、 3本の配管 18は吐出 管 20に合流するようになっている。 これにより、 受水槽 2内の水道水は、 ボン プ 3により配管 18および吐出管 20を介して住宅等の末端の供給先に供給され るようになっている。 各配管 18にはチェッキ弁 22およびフロースィッチ 24 がそれぞれ設けられており、 フロースィッチ 24の出力は制御基板 CN 1, CN 2に入力される。 すなわち、 各フロースィッチ 24は信号線を介して制御基板 C N 1および制御基板 CN 2に接続されている。 なお、 チェッキ弁 22はポンプ 3 が停止した場合に吐出側から吸込側に水が逆流することを防止するための逆流防 止弁であり、 フロースィッチ 24は配管 18内を流れる水の水量が少なくなつた ことを検知するための少水量検知手段である。
吐出管 20には、 ポンプ 3の吐出圧力を検出する 2つの圧力センサ (圧力セン サ 1, 圧力センサ 2) PS 1, PS 2が設置されており、 これらの圧力センサ P S 1, P S 2の出力信号は制御基板 CN 1, CN 2に入力されている。すなわち、 圧力センサ PS 1は信号線を介して制御基板 CN1に接続されており、 圧力セン サ PS 2は信号線を介して制御基板 CN 2に接続されている。 また、 吐出管 20 には圧力タンク 28が接続されており、 フロースィツチ 24により水量が少なく なったことが検知された場合には、 ポンプ 3の締切運転を防止するために、 圧力 タンク 28に蓄圧してからポンプ 3の運転を停止することができるようになって いる。
この給水装置 1においては、フロースィッチ 24や圧力センサ (圧力センサ 1, 圧力センサ 2) PS 1, P S 2などの出力信号に基づいて、 ポンプ 3の回転速度 (回転周波数) がィンバータ I NV 1 , I N V 2, I NV3を用いて可変速制御 される。 一般的には、 圧力センサ PS 1, PS 2により検出された圧力信号が設 定された目標圧力と一致するようにポンプ 3の回転速度を制御してポンプ 3の吐 出圧力が一定になるように制御する吐出圧力一定制御や、 ポンプ 3の吐出圧力の 目標値を適切に変化させることにより末端の供給先における供給水圧を一定に制 御する推定末端圧力一定制御などが行われる。 これらの制御によれば、 その時々 の需要水量に見合つた回転速度でポンプ 3が駆動されるので、 省エネルギーを達 成することができる。
また、 フロースィッチ 24が ONになると、 水の使用のない、 水量が少ない状 態と判断され、 ポンプ 3の運転が停止される (少水量停止動作が行われる)。吐出 圧力の低下などにより水の使用が検知されると、 ポンプが再起動される。 水量の 少ないときにポンプ 3を停止する場合には、 一度ポンプ 3を加速して、 圧力タン ク 28に蓄圧してからポンプ 3を停止する蓄圧運転を行ってもよい。
本実施形態の給水装置 1は、 複数のポンプ 3を備えているので、 追加解列を伴 う複数台 を行ったり、 運転中に特定のポンプ 3やインバータ I NV 1, I N V2, I NV 3の異常が検知された場合に、 他の正常なポンプ 3やインバータ I NV 1, I NV2, I NV 3に を切り替えて給水を継続することができる。 なお、 受水槽 2を設置しないで、 配管 10を水道本管に直結して直結給水装置を 構成してもよい。 図 2は、 本発明の給水装置の一実施形態を示す図であり、 図 1に示す給水装置 の通信線の構成を更に詳細に示す概略図である。 図 2に示すように、 一方の制御 基板 CN 1から 3台のインバータ I NV 1, I NV 2, INV3を経て他方の制 御基板 CN 2に通信線により直列に接続されている。 そして、 制御基板 CN 1と 最初のインバータ I NV 1とを結ぶ通信線上に、 通信を ON/OFFするスイツ チ SW1を設けている。 すなわち、 制御基板 CN 1とインバータ I NV 1〜 I N V 3とを接続する通信線のうち最初の通信線に、 通信を ON/OFFするスィッ チ SW1を設けている。 このスィッチ SW1は、 接点を有し、 物理的に通信線を 遮断する手段であり、 スィッチ SW1の ONZOFF制御は、 制御基板 CN 2か ら出力される ONZOFF信号により行われるようになつている。
上述の構成において、 制御基板 CN1に異常が発生した場合に、 待機中の他方 の制御基板 C N 2がバックアツプする際に、 制御基板 C N 2力 らスイツチの O F F信号を出力してスィッチ SW1を OFFすることにより、 制御基板 CN1とィ ンバータ I NV 1との間の通信線を物理的に遮断する。 これにより、 3台のイン バータ I NV1, I NV2, I NV 3は、 制御基板 C N 2のみにより制御される ようになる。 したがって、 異常が発生した制御基板 CN 1から誤った指令がィン バータ I NV1, I NV 2, I NV 3に送られることはない。
図 3は、 図 1および図 2に示す給水装置にスィツチ S W2を追カ卩した実施形態 を示す概略図である。 すなわち、 制御基板 CN 2とインバータ I NV3とを結ぶ 通信線上に、 通信を ON/OFFするスィッチ SW2を設けている。 スィッチ S W2は制御基板 CN 2と最初のィンバータ I NV 3とを接続する通信線上に設け られている。 そして、 スィッチ SW2の ONZOF F制御は、 制御基板 CN1か ら出力される ONZOFF信号により行われるようになつている。
上述の構成において、 制御基板 CN1に異常が発生した場合に、 待機中の他方 の制御基板 CN 2がバックアップする際に、 制御基板 CN 2からスィッチの OF F信号を出力してスィッチ SWlを OFFすることにより、 制御基板 CN1とィ ンバータ I NV 1との間の通信線を物理的に遮断する。 これにより、 3台のイン バータ I NV1, I NV2, I NV 3は、 制御基板 CN2のみにより制御される ようになる。 そして、 制御基板 CN 2が稼働中に、 制御基板 CN 2に異常が発生 した場合に、 待機中の他方の制御基板 CN1がバックアップする際に、 制御基板 CN 1からスィツチの OFF信号を出力してスィツチ SW2を OFFすることに より、制御基板 CN 2とインバータ I NV 3との間の通信線を物理的に遮断する。 これにより、 3台のインバータ I NV 1 , I NV 2, I NV3は、 制御基板 CN 1のみにより制御されるようになる。 したがって、 異常が発生した制御基板 CN 2から誤った指令がインバータ I NV1, I NV2, I NV 3に送られることは ない。
図 4は、 図 3に示す給水装置に、 運転中の制御基板の通信を止める機能と、 通 信を ONZOFFするスィッチをリセットする機能とを追加した実施形態を示す 概略図である。 すなわち、 制御基板 CN 2は、 制御基板 CN 2の運転中に、 制御 基板 CN 2の通信を止めて、 OFF状態のスィツチ SW1をリセットして ONに するリセット機能を有している。 また制御基板 CN 1は、 制御基板 CN 1の運転 中に、 制御基板 CN 1の通信を止めて、 OFF状態のスィッチ SW2をリセット して ONにするリセット機能を有している。
上述の構成において、 制御基板 CN 1に異常が発生してスィツチ SW1が OF Fとなり、 制御基板 CN 2によりインバータ I NV 1 , I NV 2, I NV3を制 御している間 (図 4はこの状態を示している) に、 制御基板 CN 2の通信を止め て、 OF F状態のスィッチ SW1をリセットして ONとする。 そして、 制御基板 CN1を再起動する。 これにより、 制御基板 CN1によりインバータ I NV1, I NV2, I NV3を制御することができる。 なお、 制御基板 C N 2の通信を止 めている間は、 制御基板 CN 2が通信を止める前の指令に基づいてインバータ I NV 1 , I NV 2, I NV3は制御される。
また、 制御基板 CN 2に異常が発生してスィッチ SW2が OFFとなり、 制御 基板 CN 1によりインバータ I NV 1, I NV2, I NV 3を制御している間に、 制御基板 CN 1の通信を止めて、 OFF状態のスィッチ SW2をリセットして O Nとする。 そして、 制御基板 CN 2を再起動する。 これにより、 制御基板 CN2 によりインバータ I NV 1, I NV2, I NV 3を制御することができる。なお、 制御基板 CN 1の通信を止めている間は、 制御基板 CN 1が通信を止める前の指 令に基づいてインバータ I NV 1, I NV2, I NV3は制御される。
図 5は、 図 4に示す給水装置の構成において、 通信を ON/OFFするスイツ チをリセットする場合のフローチャートである。 図 5に示すように、 相手側制御 基板の復帰処理は、 次の手順で行われる。 以下においては、 制御基板 CN 2でバ ックァップ運転している場合を説明する。 なお、 制御基板 C N 1でバックアップ 運転している場合については括弧内に示す。 ステップ S 1において、 制御基板 C N 1と制御基板 CN 2との間の通信 3が異常力、否かを判断し、 異常の場合には、 制御基板 CN1 (又は CN2) を復帰することなく、 バックアップ運転を継続す る。 そして、 通信 3が異常でない場合には、 ステップ S 2において、 運転中の制 御基板 CN2 (又は CN 1) からインバータ I NV 1, I NV 2, I NV3への 通信を停止する。 次に、 ステップ S 3において、 OFF信号状態にあるスィッチ SW1 (又は SW2) をリセットして ONとする。 そして、 ステップ S 4におい て、 通信 3で相手側制御基板から 「自動運転中、 全インバータ通信異常」 を受信 したか否かを判断する。 上記信号を受信しない場合には、 制御基板 CN1 (又は CN2) の系統が正常であるため、 制御基板 CN 2によるバックアップ を終 了する。 一方、 上記信号を受信した場合には、 ステップ S 5において、 スィッチ SW1 (又は SW2) の OFF信号を出力する。
図 6は、 図 1および図 2に示す給水装置の電源系統の構成を更に詳細に示す概 略図である。 図 6に示すように、 制御基板 CN1, CN 2に電源を供給する電源 '系統に、 それぞれ電源スィッチ P SW1, PSW2を設けている。 実施形態にお いては、 源スィツチ P SW1をノイズフィルタ NF 1と制御基板 CN 1との間 に設け、 源スィッチ P SW2をノイズフィルタ NF 2と制御基板 CN 2との間 に設けているが、 これら電源スィッチ P SW1, P SW2を制御基板 CN 1, C N 2内に設けてもよい。
上述の構成において、 一方の制御基板、 もしくは、 それにかかわる信号系統の 修理又は交換などを行う際に、 他方の制御基板により運転が継続できる。 通常の 状態においては、 電源スィッチ PSW1, PSW2は、 常時投入されており、 ま た制御基板 CN 1 , CN 2内にある電源回路(図示せず)も常時投入されている。 したがって、 いずれか一方の制御基板 CN 1 (又は CN2) に異常が発生した場 合に、 直ちに他方の制御基板 CN 2 (又は CN1) が前記一方の制御基板 CN 1 (又は CN2) をバックアップすることで、 給水装置の を継続することがで きる。 また異常が発生した制御基板 CN 1 (又は CN2) を復帰する場合も、 短 時間で復帰を行うことができる。
次に、図 1および図 2に示す給水装置における監視システムについて説明する。 図 7 Aは、 制御基板 C N 1と制御基板 CN 2とを接続している通信線を利用し て相手側制御基板を監視する監視システムのフローチャートである。 図 7 Aに示 すように、相手側制御基板の監視処理は、次の手順で行われる。以下においては、 制御基板 C N 1で運転していて制御基板 C N 2でバックアツプ する場合を説 明する。 なお、 制御基板 CN 2で運転していて制御基板 CN 1でバックアップ運 転する場合については括弧内に示す。
図 7 Aに示すように、 制御基板 CN 1と制御基板 CN 2とを接続している通信 線を介して行われる通信 3が異常か否かを判断し、 制御基板 CN1 (又は CN2 ) が異常力、否かを判断する。 制御基板 CN1 (又は CN2) が異常の場合にはス イッチ SW1 (又は SW2) の切断信号 (OFF信号) を出力し、 制御基板 CN 2 (又は CN1) によるバックアップ運転に移行する。 制御基板 CN1 (又は C N2) が異常でない場合にはスィッチ SW1 (又は SW2) の切断信号 (OFF 信号) を出力しない。
なお、 図 7 Bに示すように、 制御基板 CN 1と制御基板 CN 2とを接続してい る通信線の途中に監視基板 30を設けることもできる。 監視基板 30は、 制御基 板 C N 1、制御基板 C N 2と接続可能な通信ポートを備えており (図示せず)、通 信線により制御基板 C N 1、 制御基板 C N 2に接続されている。 監視基板 30は この通信線を介して制御基板 C N 1、 制御基板 C N 2がそれぞれ正常に動作して いるかどうかを監視し、 一方の制御基板 CN1 (又は CN2) に異常があった場 合には、 他方の制御基板 CN 2 (又は CN1) に通信線を介して一方の制御基板 CN 1 (又は CN2) に異常があったことを通達するように構成されている。 こ のように、 制御基板 CN2 (又は CN1) にもう一方の制御基板 CN 1 (又は C N2) の異常を判断する機能を持たせるのではなく、 両方の制御基板 CN1, C N 2の異常を一括して判断する機構を設けることもでき、 それぞれの制御基板 C Nl, CN2は自ら異常の判断を行うのではなく、 異常を通達されるという点で 異なるのみで、 図 7 Aに示した動作には違いが生じない。
上記構成により、 バックアップ運転への判断、 もしくは、 バックアップ運転後 の復帰は、 その動作が可能か否かをチェックした上で、 バックアップ運転をする ことができ、 もしくは、 バックアップ運転後の復帰をすることができる。
図 8は、 制御基板 C N 1と制御基板 C N 2とを接続している通信線を利用して 相手側制御基板とインバータとの間が正常に通信されているか否かを監視する監 視システムのフローチャートである。 図 8に示すように、 インバータと制御基板 間の監視処理は次の手順で行われる。 以下においては、 制御基板 CN1で運転し ていて制御基板 CN 2でバックアップ運転する場合を説明する。 なお、 制御基板 CN2で運転していて制御基板 C N 1でバックアツプ運転する場合にっレ、ては括 弧内に示す。
図 8に示すように、 制御基板 CN 1と制御基板 CN 2とを接続している通信線 を介して行われる通信 3で相手側制御基板から 「自動運転中、 全インバータ通信 異常」 を受信したか否かを判断して制御基板 CN 1 (又は CN2) とインバータ I NV 1, I NV2, I NV 3との間の通信異常がある力否かを判断する。 通信 異常の場合にはスィッチ SW1 (又は SW2) の切断信号 (OFF信号) を出力 し、 制御基板 CN2 (又は C N 1 ) によるバックアツプ に移行する。 通信異 常でない場合にはスィッチ SW1 (又は SW2) の切断信号 (OFF信号) を出 力しない。
上記構成により、 バックアップ運転への判断、 もしくは、 バックアップ運転後 の復帰は、 その動作が可能か否かをチェックした上で、 バックァップ運転をする ことができ、 もしくは、 バックアップ運転後の復帰をすることができる。
図 9 Aは、 本発明の給水装置の一実施形態を示す図である。 図 1に示す給水装 置は、 制御基板 CN1, CN 2とインバータ I NV 1, I NV 2, I NV3との 間の通信線が一系統であつたのに対し、 図 9 Aに示す給水装置は、 制御基板 C N 1, CN2とインバータ I NV 1, I NV2, I NV 3との間の通信線を二系統 にしたものである。
すなわち、 制御基板 CN1, CN 2に 2つの通信ポート (すなわち、 通信ポー ト 1と通信ポート 2) を設け、 各インバータ I NV 1, I NV 2, INV3に 2 つのポート (すなわちポート 1とポート 2) を設け、 制御基板 CN 1、 ィンバー タ I NV1~I NV3、 制御基板 C N 2を異なる通信線 L 1, L2で直列に接続 する。 これにより、 通信線を通信 1と通信 2が可能な二系統にしている。 実施形 態では、 通信線 L l, L 2には RS 485を用いている。 図 9 Aにおいては、 一 方の通信線 L 1を実線で示し、 他方の通信線 L 2を破線で示している。 そして、 制御基板 CN 1と制御基板 CN 2とは、 通信ポート 3を介して通信線 L 3で接続 し、 制御基板 CN 1と制御基板 CN 2との間で通信 3が可能な構成としている。 通信線 L 3にも RS 485を用いている。
図 9 Aに示す給水装置によれば、 一方の通信線 L 1 (又は L 2) に異常が発生 した場合に、 他方の通信線 L 2 (又は L 1 ) により通信を確保することができる ため、 ノイズによる通信線等の不良が原因でインバータ I NV 1, I NV2, I NV 3の制御が不能になる事態が防止できる。
なお、 図 9 Bに示すように、 制御基板 C N 1と制御基板 C N 2のそれぞれに、 通信ポートを 1つだけ設け、 制御基板 CN1とインバータ I NV1〜I NV3、 制御基板 CN 2とインバータ I NV 1〜 I N V 3を異なる通信線で直列に接続す ることも出来る。
図 10は、 本発明の給水装置の一実施形態を示す図である。 図 10に示す給水 装置は、 制御基板 CN1, CN2とインバータ I NV 1, I NV2, I NV 3と の間の通信線を二系統にし、 かつ制御基板とインバータ I NV 1, I NV2, I NV 3との間でアナログ信号もしくは接点信号を送ることができる構成としたも のである。
すなわち、 制御基板 CN1, CN 2に 2つの通信ポート (すなわち、 通信ポー ト 1と通信ポート 2) を設け、 各インバータ I NV 1, I NV 2, I NV3に 2 つのポート (すなわちポート 1とポート 2) を設け、 制御基板 CN 1とインバー タ I NV1, I NV2, I NV3を通信線 L 1で直列に接続し、 制御基板 C N 2 とインバータ I NV3, I NV2, I NV 1を通信線 L 2で直列に接続し、 さら に制御基板 CN2とインバータ INV1, I NV2, I NV 3との間でアナログ 信号もしくは接点信号を送ることができる信号線 SL 1, S L 2, SL3を設け たものである。 なお、 通信線 L 1は、 制御基板 CN 1から最後のィンバータ I N V 3まで延びており、 通信線 L 2は、 制御基板 CN2から最後の I NV 1まで延 びている。
図 10に示す給水装置によれば、 一方の通信線 L 1 (又は L2) に異常が発生 した場合に、 他方の通信線 L 2 (又は L 1 ) により通信を確保することができる ため、 ノイズ等による通信線の不良が原因でインバータ I NV 1, I NV2, I NV 3の制御が不能になる事態が防止できる。 そして、 制御基板 CN2とインバ ータ I NV1, I NV2, I NV 3との間でアナログ信号もしくは接点信号を送 ることができる信号線 S L 1, SL 2, SL3を設けた構成により、 制御基板 C N 2がアナログ信号を出力した場合には、 インバータ I NV 1, I NV 2, I N V 3が可変の回転周波数を出力するように制御することができ、 また制御基板 C N 2が接点信号を出力した場合には、 インバータ I NV 1, I NV2, I NV3 が予め定められた複数の段階的な固定の回転周波数を出力するように制御するこ とができる。
図 10に示す実施形態によれば、 全ての通信が機能不全になっても、 制御基板 CN 2とインバータ I NV 1 , I NV 2, I N V 3とを繋ぐ信号線 S L 1, SL 2, S L 3を介してアナログ信号又は接点信号によりインバータ I NV 1, I N V2, I NV 3を制御することができる。 すなわち、 通信が異常になっても、 サ 一ジゃノィズ等の外的要因に対して強いアナログ信号又は接点信号でバックアツ プすることで、 給水装置の運転を継続することができる。
図 10に示す実施形態においては、 制御基板 CN 1 , CN2とインバータ I N VI, I NV2, I NV3との間の通信線が二系統ある給水装置に制御基板とィ ンバータ INV1, I NV2, I NV 3との間でアナログ信号もしくは接点信号 を送ることができる構成を設けたが、 制御基板 CN1, CN2とインバータ I N VI, I NV2, I NV3との間の通信線が一系統の給水装置に制御基板とィン バータ I NV1, I NV2, I NV 3との間でアナログ信号もしくは接点信号を 送ることができる構成を設けるようにしてもよい。 この場合にも、 通信が異常に なっても、 アナ口グ信号又は接点信号でバックアップすることで、 給水装置の運 転を継続することができる。
図 1 1は、図 10に示す給水装置に、通信を ONZOFFするスィッチ SW1, SW2を設けた実施形態を示す概略図である。 図 1 1に示すように、 制御基板 C N 1 , C N 2に 2つの通信ポート (すなわち、 通信ポート 1と通信ポート 2 ) を 設け、 各インバータ I NV1, I NV 2, I NV3に 2つのポート (すなわちポ ート 1とポート 2) を設け、 制御基板 CN1、 インバータ I NV1〜 I NV3、 制御基板 C N 2を異なる通信線 L 1, L 2で直列に接続することにより、 通信 1 と通信 2が可能な二系統の構成にしている。 そして、 制御基板 CN1と最初のィ ンバータ I NV 1とを結ぶ通信線上に、 通信を ONZOFFするスィツチ SW1 を設け、 制御基板 CN 2と最初のィンバータ I NV 3とを結ぶ通信線上に、 通信 を ON/OF Fするスィツチ SW2を設けている。 スィツチ SW1の ONZOF F制御は、 制御基板 CN2から出力される ONZOFF信号により行われ、 スィ ツチ SW2の ON/OF F制御は、 制御基板 CN 1から出力される ONZOFF 信号により行われるようになつている。
上述の構成において、 運転中の制御基板 CN1に異常が発生した場合に、 待機 中の他方の制御基板 C N 2がバックアップする際に、 制御基板 C N 2からスイツ チの OFF信号を出力してスィッチ SW1を OFFすることにより、 制御基板 C N 1とインバータ I NV 1との間の通信線を物理的に遮断する。 これにより、 3 台のインバータ INV1, I NV2, I NV3は、 制御基板 CN2のみにより制 御されるようになる。 したがって、 異常が発生した制御基板 CN 1から誤った指 令がインバータ INV1, I NV2, I NV 3に送られることはなレヽ。
また、 運転中の制御基板 CN 2に異常が発生した場合に、 待機中の他方の制御 基板 CN 1がバックアップする際に、 制御基板 CN 1からスィツチの OFF信号 を出力してスィツチ SW2を OFFすることにより、 制御基板 CN2とインバー タ I NV 3との間の通信線を物理的に遮断する。 これにより、 3台のインバータ I NV1, I NV2, I NV 3は、 制御基板 CN 1のみにより制御されるように なる。 したがって、 異常が発生した制御基板 CN 2から誤った指令がインバータ I NV 1 , I NV2, I NV 3に送られることはなレヽ。
図 1 1に示すように、 制御基板 C N 1および制御基板 C N 2から、 通信を O N ZOFFするスィッチ SW1, SW2に接点信号を出力するようにしたため、 装 置のコンパクト化を図ることができる。 また、 制御基板 CN1 (又は CN2) と 最初のインバータ I NV1 (又は I NV3) とを結ぶ通信線上に、 通信を ON, OFFするスィッチ SW1 (又は SW2) を設けているため、 故障した制御基板 の通信線をおおもとから完全に切断することができる。
図 12は、 本発明の給水装置の一実施形態を示す図であり、 図 1に示す給水装 置の機器構成を更に詳細に示す概略図である。 図 12において、 電源系統に設け られたサージ吸収素子 A L 1とサージ吸収素子 A L 2のサージ放電耐量は、 一方 が高く、 他方が低く設定されている。 すなわち、 サージ吸収素子 AL 1, AL 2 は、 それぞれ線間および対地間両方のサージを吸収し、 大きな放電耐量を有して いるが、 一方のサージ吸収素子 A L 2の放電耐量を他方のサージ吸収素子 A L 1 の放電耐量より大きくしている。 たとえば、 サージ吸収素子 A L 1の放電耐量を 10 k Aとし、サージ吸収素子 A L 2の放電耐量を 20 k Aとする。これにより、 雷によるサージで、 一方のサージ吸収素子が故障しても、 他方のサージ吸収素子 は正常に動作できるようにしている。
また図 12において、 ¾ 系統に設けられたノイズフィルタ NF 1とノイズフ ィルタ NF 2のノイズ減衰量は、 一方が高く、 他方が低く設定されている。 すな わち、 一方のノイズフィルタ NF 2のノイズ減衰量のレベルを他方のノイズフィ ルタ NF 1のノイズ減衰量のレべノレより大きくしている。 これにより、 雷などに より高いレベルのノイズが発生して、 一方のノイズフィルタが故障しても、 他方 のノイズフィルタは正常に動作できるようにしている。
さらに図 12において、 吐出管 20に設けられた圧力センサ PS 1と圧力セン サ PS 2の耐電圧および許容最大圧力 (耐水圧性) は、 一方が高く、 他方が低く 設定されている。 すなわち、 一方の圧力センサ P S 2の耐電圧のレベルを他方の 圧力センサ PS 1の耐電圧のレベルより大きくしている。 そして、 一方の圧力セ ンサ P S 2の許容最大圧力 (耐水圧性) を他方の圧力センサ P S 1の許容最大圧 力 (耐水圧性) より大きくしている。 たとえば、 圧力センサ P S 2の耐電圧を 2 50Vとし、 圧力センサ PS 1の耐電圧を 100 Vとしている。 また圧力センサ PS 2の許容最大圧力 (耐水圧性) を圧力レンジの 2倍とし、 圧力センサ PS 1 の許容最大圧力 (耐水圧性) を圧力レンジの 1. 5倍としている。
以上説明したように、 図 12に示す本発明の実施形態においては、 制御基板 C 1, CN 2のそれぞれに繋がるサージ吸収素子 AL 1, A L 2およびノイズフ ィルタ NF 1, NF 2を含む電源系統、 圧力センサ PS 1, P S 2を含む信号系 統、 通信線 L I, L 2を含む制御系統において、 各系統は二つの系統から構成さ れ、 この二つの系統におけるサージ、 ノイズ、 耐水圧性等の外的要因に対する耐 性のレベルを異ならせている。
すなわち、 電源系統は、 サージ吸収素子 A L 1とノイズフィルタ NF 1を含み 制御基板 CN 1に繋がる系統と、 サージ吸収素子 A L 2とノイズフィノレタ NF 2 を含み制御基板 CN 2に繋がる系統とから構成されており、 一方の系統の外的要 因に対する耐性のレべノレを他方の系統の外的要因に対する耐性のレベルと異なら せている。 本実施形態では、 制御基板 CN 2に繋がる電源系統の外的要因に対す る耐性のレベルを制御基板 CN 1に繋がる電源系統の外的要因に対する耐性のレ ベルよりも高くしている。
また、信号系統は、圧力センサ P S 1等を含み制御基板 CN 1に繋がる系統と、 圧力センサ P S 2等を含み制御基板 CN 2に繋がる系統とから構成されており、 一方の系統の外的要因に対する耐性のレベルを他方の系統の外的要因に対する耐 性のレベルと異ならせている。 本実施形態では、 制御基板 CN 2に繫がる信号系 統の外的要因に対する耐性のレベルを制御基板 CN 1に繋がる信号系統の外的要 因に対する耐性のレべ よりも高くしている。
制御系統は、 通信線 L 1等を含み制御基板 CN 1に繋がる系統と、 通信線 L 2 等を含み制御基板 CN 2に繋がる系統とから構成されており、 一方の系統の外的 要因に対する耐性のレベルを他方の系統の外的要因に対する耐性のレベルと異な らせている。 本実施形態では、 制御基板 CN 2に繫がる制御系統の外的要因に対 する耐性のレベルを制御基板 C Ν 1に繋がる制御系統の外的要因に対する耐性の レベルよりも高くしている。
以上説明したように、 通常、 バックァップ側の制御基板として用いられる制御 基板 CN 2に繋がる系統におけるサージやノイズの耐量レベル、 耐水圧性のレべ ル等の外的要因に対する耐性のレベルを高くしているので、 バックアップを必要 とする際に、 制御基板 CN 2を含むバックアップ側の系統を確実に動作させるこ とができる。
図 13は、 給水装置の圧力検知部の一実施形態を示す概略図である。 図 13に 示すように、 制御基板 CN1, CN 2のそれぞれに繋がる圧力センサを 2セット ずつ設けている。 すなわち、 制御基板 CN 1には圧力センサ P S 1-1, P S 1 — 2を接続し、制御基板 CN 2に圧力センサ P S 2-1. PS 2-2を接続する。 この場合、 同一の制御基板内の圧力センサの耐水圧レベル (耐水圧性) を異なら せており、 圧力センサ P S 1 _ 2の耐水圧レベルを圧力センサ P S 1-1の而 ί水 圧レベルより大きくし、 圧力センサ P S 2 _ 2の耐水圧レベルを圧力センサ P S 2_ 1の耐水圧レベルより大きくしている。 そして、 耐圧レベルが高い方の圧力 センサ PS 1-2, PS 2— 2をバックアップ用の圧力センサとして用いる。 このように、 同一制御基板内において、 複数の圧力センサの耐水圧レベル (耐 水圧性) を異ならせることにより、 一方の圧力センサが故障しても他方の圧力セ ンサで圧力検出を行うことができるようにして、 給水装置の信頼性を向上させて いる。 なお、 図 13では図示していないが、 4個の圧力センサ P S 1 _ 1, PS 1— 2, P S 2- 1, P S 2_ 2は同種のセンサを用い、 圧力レンジを同一とす ることにより、 複数の圧力センサ、 例えば 4個の圧力センサの検出値を比較して センサの故障や異常を発見できるようにしてもよい。
なお、 各制御基板に繋がる圧力センサの数は、 適宜決めることができる。 図 14は、 給水装置の圧力検知部の他の実施形態を示す概略図である。 図 14 に示すように、 一方の制御基板の系統の圧力検知部と他方の制御基板の系統の圧 カ検知部のうち、 一方の系統に圧力センサ P Sを設け、 他方の系統に圧カスイツ チ PWを設けている。 図 14に示す実施形態では、 制御基板 CN 1に圧力センサ PSを接続し、 制御基板 CN 2に圧力スィッチ PWを接続している。 ここで、 圧 力センサ PSは、 圧力を検出し、 検出圧力値に対応したアナログ信号又はデジタ ノレ信号を出力するものであり、 圧力スィッチは、 予め設定された所定の圧力に対 応して ON/OFF信号を出力するものである。
図 14に示すように、 制御基板 C N 1に圧力センサ P Sを接続し、 制御基板 C N 2に圧力スィッチ PWを接続することにより、 圧力スィッチ PWの方が圧力セ ンサ PSよりもノィズ等の外的要因に対する耐久性のレべノレが高いため、 外的要 因の影響を低くすることができる。したがって、バックアップを必要とする際に、 制御基板 C N 2を含むバックァップ側の系統を確実に動作させることができる。 図 15は、 給水装置の制御基板に電源入力部を設けた実施形態を示す概略図で ある。 図 15に示すように、 制御基板 CN1, CN 2のそれぞれに電源入力部 P I N 1, P I N 2を設け、 電源入力部 P I N 1 , P I N2に対応するように電源 部 PWS 1, PWS 2を設けている。 そして、 制御基板 CN 1の電源部 PWS 1 と電源入力部 P I N 1とを接続し、 かつ制御基板 CN 1の電源部 PWS 1と制御 基板 CN 2の電源入力部 P I N 2とを接続可能としている。 また制御基板 CN 2 の電源部 P W S 2と電源入力部 P I N 2とを接続し、 かつ制御基板 C N 2の電源 部 PWS 2と制御基板 CN 1の 源入力部 P I N 1とを接続可能としている。 上述の構成により、 制御基板 CN 1の 源部 PWS 1から電源入力部 P I N 1 に給電している間に、 制御基板 CN 1の電源部 PWS 1が故障した場合に、 制御 基板 C N 2の電源部 P W S 2がバックアップして、 制御基板 CN2の電源部 P W S 2から制御基板 CN 1の電源入力部 P I 1に給電することができる。 また制 御基板 CN2の電源部 PWS 2から電源入力部 P I N 2に給電している間に、 制 御基板 CN2の電源部 PWS 2が故障した場合に、 制御基板 CN1の電源部 PW S 1がバックアップして、 制御基板 C N 1の電源部 P W S 1から制御基板 C N 2 の電源入力部 P I N 2に給電することができる。 この場合、 故障した側の制御基 板の電源部は、 その故障の状況を把握保持できるようになっている。
なお、 図 15においては、 制御基板内に電源部を設けた例を説明したが、 電源 部を制御基板と別体にして電源基板として構成してもよレ、。
図 16は、 本発明の給水装置の一実施形態を示す図である。 本実施形態の特に 説明しない構成は、 図 1に示す給水装置の構成と同様である。 本実施形態におい ても、 制御基板 CN 1は主制御基板として機能し、 制御基板 CN 2は予備制御基 板として機能する。 すなわち、 通常の運転では、 制御基板 CN1によってポンプ の運転が制御され、 そして、 制御基板 CN1に異常が発生したときに、 制御基板 CN 2によるバックアップ運転が行われる。
図 16に示すように、 制御基板 C N 1, C N 2には、 それぞれ電源基板 (電源 部) PWS 1, PWS 2が接続されている。 電源基板 PWS 1, PWS 2は、 制 御基板 CN1, CN 2とは別体として設けられている。 これらの電源基板 PWS 1, PWS 2は、 図 1に示すノイズフィルタ NF 1, NF2およびサ ジ吸収素 子 A L 1, AL 2を介して電、源 5に接続されている。
また、 制御基板 C N 1, C N 2には、 それぞれ操作表示器 O D 1 , O D 2が接 続されている。 図 17に示すように、 操作表示器 OD l, OD2は、 複数のボタ ンと、 表示部を備えており、 制御盤 40のフロントパネルに露出していて、 外部 からボタン操作が可能になっている。 制御盤 40の内部には、 上述した制御基板 CN1, CN2や、 電源基板 PWS 1, PWS 2などが収容されている。
操作表示器 O D 1 , O D 2は、 通信ポート 1, 3とは別の電気信号により制御 基板 CN1, CN 2と接続されている。 操作表示器 OD 1, OD 2への電力の供 給は、制御基板 CN 1, CN 2を介して行われる。操作表示器 OD 1, OD 2は、 給水装置の各種設定の入力装置として機能する。 すなわち、 操作表示器 OD 1, OD 2のボタン操作により、給水装置の運転の開始および停止が行われる。また、 操作表示器 O D 1 , OD 2では、 給水装置の各種設定、 例えば吐き出し圧力の目 標値の設定ゃ受水槽 2の電磁弁 16 (図 1参照)の制御の有無の設定が行われる。 これら設定は、 制御基板 CN1, CN2の図示しないメモリーに記憶される。 各制御基板 CN1, CN 2での固有の設定 (例えば、 主制御基板なのか予備制 御基板なのかを指定する設定等) を除いて、 両方の制御基板 CN1, CN2で同 じ設定が保存されるようになっていることが望ましい。 したがって、 対応する操 作表示器を介して制御基板 C N 1, CN2の一方に設定が記憶されると、 その設 定情報が他方の制御基板に通信により送られて、 両方の制御基板 CN1, CN2 に同じ設定が保存されることが望ましい。
また、 操作表示器 OD l, OD 2の表示部は、 給水装置の運転の状況、 例えば 圧力センサ PS 1, PS 2により検知された給水圧力やモータ 4を駆動する電流 値等を表示するように構成されている。 また、 図 17に示すように、 制御盤 40 のフロントパネルには、 バックアップ運転を示すバックアップランプ 45が設け られている。
制御基板 CN 1または対応する圧力センサ P S 1が故障すると、 給水装置の運 転は、 制御基板 C N 2によるバックアツプ運転に切り替わる。 制御基板 C N 1か ら制御基板 C N 2に切り替わる動作の流れは、 次のようになる。
( 1 ) 制御基板 C N 1または圧力センサ P S 1の故障が発生し (制御基板 C N 2 への切り替え条件が成立)、
(2) 制御基板 CN 1に連結された操作表示器 OD 1が故障の発生を知らせる警 報を発し、
( 3 ) 給水装置の運転制御が制御基板 C N 1から制御基板 C N 2に切り替わり、 制御基板 CN 2によるポンプ 3の運転を開始し、 そして、
(4) 両方の操作表示器 OD l, OD 2にバックアップ ¾feを知らせるコードを 表示し、 制御盤 40のバックァップランプ 45が点灯する。
制御基板 CN 2への切り替え (すなわちバックアップ運転) は、 次のいずれか が検知されたときに自動的に行なわれる。
( i ) 制御基板 CN1の異常
(ϋ) 圧力センサ PS 1の異常
(iii) 制御基板 CN 1と全てのィンバータ I NV 1〜 I NV 3との間の通信異常
(iv) 制御基板 CN 1と制御基板 CN 2との間の通信異常 (制御基板 CN 1に接 続される ¾ 基板 PWS 1の異常もこれに含む)
警報および表示以外のバックアップ運転の詳細は、 既に述べた実施形態と同様 である。 なお、 バックアップ運転中に制御基板 CN 2において各種設定を変更し た場合、 制御基板 CN1との通信により設定変更の情報が共有される。 しかしな がら、 制御基板 CN 1と制御基板 CN 2との通信が断絶している場合は、 バック ァップ運転終了に伴って設定の異なる給水制御が制御基板 C N 1によつて行われ るおそれがある。 そこで、 制御基板 C N 1と制御基板 C N 2とで共有すべき設定 については、 バックアップ運転からの復帰時に制御基板 C N 1と制御基板 C N 2 との通信により、 制御基板 C 2の設定で制御基板 C N 1の設定を上書きするこ とが望ましい。
なお、 本実施形態における操作表示器は、 上述した他の実施形態にも採用する ことができる。また、本実施形態では、操作表示器を制御基板とは別に設けたが、 操作表示器を制御基板と一体に構成してもよレ、。
これまで本発明のいくつかの実施形態について説明したが、 本発明は上述の実 施形態に限定されず、 その技術的思想の範囲内において種々異なる形態にて実施 されてよいことは言うまでもなレ、。 例えば、 図 1や図 1 6に示した本実施形態で は、 水位検知器を各制御基板に対応して 2セット設けているが、 水位検知器は 1 セットのみ設置して、 水位検知器からの信号線を分岐して、 各制御基板に接続す るように構成してもよい。ただし、水位検知器を 1セットのみ設置する場合には、 分岐した信号線を介して各制御基板へ相互に侵入するサージゃノィズに対する対 策を各制御基板に対して施すのが望ましい。 産業上の利用可能性
本発明の給水装置は、 複数のポンプおよびインバータを備え、 ポンプを可変速 運転して集合住宅などに給水する給水装置に好適に用いられる。

Claims

請求の範囲
1 . 複数のポンプと、
対応するポンプの回転周波数を可変制御する複数のィンバータと、
前記複数のィンバータを制御する複数の制御基板とを備え、
一方の制御基板に異常が発生した場合に、 他方の制御基板が前記一方の制御基 板をバックアップすることで運転を継続することができる給水装置であって、 前記一方の制御基板から前記複数のィンバータを経て前記他方の制御基板まで の間を、 通信線により直列に接続し、
前記通信線上に、 通信を O NZO F Fするスィッチを設けたことを特徴とする 給水装置。
2 - 前記一方の制御基板または前記他方の制御基板に、 前記スイッチを O N /O F Fするための信号を出力する出力手段を設けたことを特徴とする請求項 1 記載の給水装置。
3 . 前記一方の制御基板及び/または前記他方の制御基板から最初のィンバ ータに接続される通信線上に前記スィツチを設けたことを特徴とする請求項 1記 載の給水装置。
4 . 前記一方の制御基板または前記他方の制御基板の異常により前記スィッ チを切り替えた後、 前記制御基板を再起動させるために、 現在運転中の制御基板 の通信を止めて、 前記スィツチをリセットするリセット機能を制御基板に持たせ たことを特徴とする請求項 2または 3記載の給水装置。
5 . 前記一方の制御基板と前記他方の制御基板のそれぞれに電源を供給する 電源系統に電源スィツチを設けたことを特徴とする請求項 1記載の給水装置。
6 . 前記電源スィツチは前記制御基板内に設けられていることを特徴とする 請求項 5記載の給水装置。
7 . 前記一方の制御基板と前記他方の制御基板には、 常に電源が投入されて いることを特徴とする請求項 1記載の給水装置。
8 . 前記一方の制御基板と前記他方の制御基板との間を通信線で接続し、 制 御基板が正常力否かを監視する監視手段を設けたことを特徴とする請求項 1記載 の給水装置。
9 . 前記一方の制御基板と前記他方の制御基板との間を通信線で接続し、 制 御基板と前記ィンバータとの間が正常に通信されている力否かを監視する監視手 段を設けたことを特徴とする請求項 1記載の給水装置。
1 0 . 前記少なくとも 1つの制御基板と前記複数のィンバータとの間をアナ口 グ信号または接点信号を送る信号線で接続したことを特徴とする請求項 1記載の 給水装置。
1 1 . 前記一方の制御基板と前記他方の制御基板の前記圧力検知部のうち、 い ずれか一方に圧力センサを設け、 他方に圧力スィッチを設けたことを特徴とする 請求項 1記載の給水装置。
1 2 . 前記一方の制御基板と前記他方の制御基板に、 それぞれ 1系統以上の圧 カ検知手段を設けたことを特徴とする請求項 1記載の給水装置。
1 3 . 前記一方の制御基板と前記他方の制御基板のそれぞれに前記圧力検知手 段から入力した検出値を比較をして、 異なった場合には、 前記入力信号の異常と 判断する判断手段を設けたことを特徴とする請求項 1 2記載の給水装置。
1 4 . 前記一方の制御基板と前記他方の制御基板のそれぞれに電源入力部を持 たせ、 前記各電源入力部には、 対応する各電源部を接続するとともに他方の電源 部を接続可能とすることを特徴とする請求項 1記載の給水装置。
1 5 . 前記一方の制御基板と前記他方の制御基板のそれぞれに前記電源部を取 り込んだことを特徴とする請求項 1 4記載の給水装置。
1 6 . 前記複数の制御基板にそれぞれ接続され、 前記給水装置の操作および制 御のための各種設定を行う複数の操作表示部をさらに備え、
前記操作表示部は、 前記給水装置の運転状況を表示する表示部を有しているこ とを特徴とする請求項 1記載の給水装置。
1 7 . 複数のポンプと、
対応するポンプの回転周波数を可変制御する複数のィンバータと、
前記複数のィンバータを制御する複数の制御基板とを備え、
一方の制御基板に異常が発生した場合に、 他方の制御基板が前記一方の制御基 板をバックアップすることで運転を継続することができる給水装置であって、 前記複数のィンバータに、 それぞれ 2つ以上の異なる通信ポートを設け、 前記一方の制御基板と前記他方の制御基板から、 それぞれ異なる通信線により 直列に前記複数のィンバータを接続したことを特徴とする給水装置。
1 8 . 前記複数の制御基板にそれぞれ 2つ以上の異なる通信ポートを設け、 前 記一方の制御基板、 前記複数のィンバータ及び前記他方の制御基板を複数の通信 線によりそれぞれ直列に接続したことを特徴とする請求項 1 7記載の給水装置。
1 9 . 前記一方の制御基板と前記他方の制御基板から、 それぞれ異なる通信線 が直列に最後のインバータまで延びていることを特徴とする請求項 1 7記載の給 水装置。
2 0 . 前記少なくとも 1つの制御基板と前記複数のィンバータとの間をアナ口 グ信号または接点信号を送る信号線で接続したことを特徴とする請求項 1 7記載 の給水装置。
2 1 . 前記一方の制御基板または前記他方の制御基板と前記複数のィンバーク を接続する通信線上に、 通信を O NZO F Fするスィツチを設けたことを特徴と する請求項 1 7記載の給水装置。
2 2 . 前記一方の制御基板及び/または前記他方の制御基板から最初のィンバ ータに接続される通信線上に前記スィツチを設けたことを特徴とする請求項 2 1 記載の給水装置。
2 3 . 前記一方の制御基板と前記他方の制御基板の圧力検知部のうち、 レ、ずれ 力—方に圧力センサを設け、 他方に圧力スィツチを設けたことを特徴とする請求 項 1 7記載の給水装置。
2 4 . 前記一方の制御基板と前記他方の制御基板に、 それぞれ 1系統以上の圧 カ検知手段を設けたことを特徴とする請求項 1 7記載の給水装置。
2 5 . 前記一方の制御基板と前記他方の制御基板のそれぞれに前記圧力検知手 段から入力した検出値を比較をして、 異なった場合には、 前記入力信号の異常と 判断する判断手段を設けたことを特徴とする請求項 2 4記載の給水装置。
2 6 . 前記一方の制御基板と前記他方の制御基板のそれぞれに電源入力部を持 たせ、 前記各電源入力部には、 対応する各電源部を接続するとともに他方の電源 部も接続可能とすることを特徴とする請求項 1 7記載の給水装置。
2 7 . 前記一方の制御基板と前記他方の制御基板のそれぞれに前記電源部を取 り込んだことを特徴とする請求項 2 6記載の給水装置。
2 8 . 前記複数の制御基板にそれぞれ接続され、 前記給水装置の操作および制 御のための各種設定を行う複数の操作表示部をさらに備え、
前記操作表示部は、 前記給水装置の運転状況を表示する表示部を有しているこ とを特徴とする請求項 1 7記載の給水装置。
2 9 . 複数のポンプと、
対応するポンプの回転周波数を可変制御する複数のィンバータと、
前記複数のィンバータを制御する複数の制御基板とを備え、
一方の制御基板に異常が発生した場合に、 他方の制御基板が前記一方の制御基 板をバックアップすることで運転を継繞することができる給水装置であって、 前記一方の制御基板と前記他方の制御基板のそれぞれに繋がる電源系統、 信号 系統、 制御系統のうちの少なくとも一つにおいて、 一方の系統の外的要因に対す る耐性のレベルを他方の系統の外的要因に対する耐性のレベルと異ならせること を特徴とする給水装置。 3 0 · 前記外的要因に対する耐性のレベルは、 サージ及びノィズのうち少なく とも一つの耐量レベルであることを特徴とする請求項 2 9記載の給水装置。 3 1 . 前記一方の制御基板に繋がる系統に対するサージ及び Zまたはノイズの 耐量レベルと、 前記他方の制御基板に繋がる系統に対するサージ及び zまたはノ ィズの耐量レベルとの間で、 前記一方の制御基板側よりも前記他方の制御基板側 の耐量レべ を上げることを特徴とする請求項 3 0記載の給水装置。 3 2 . 前記外的要因に対する耐性のレベルは、 圧力検知部の耐水圧性であり、 前記一方の制御基板に繫がる圧力検知部の耐水圧性を前記他方の制御基板に繋 がる圧力検知部の耐水圧性と異ならせることを特徴とする請求項 2 9記載の給水 装置。 3 3 . 前記一方の制御基板と前記他方の制御基板のそれぞれに繫がる複数の圧 力検知部を設け、 同一の制御基板内の前記複数の圧力検知部同士で、 耐水圧性を 異ならせることを特徴とする請求項 3 2記載の給水装置。
3 4 . 前記一方の制御基板と前記他方の制御基板の圧力検知部のうち、 レ、ずれ か一方に圧力センサを設け、 他方に圧力スィッチを設けたことを特徴とする請求 項 2 9記載の給水装置。
3 5 . 前記一方の制御基板と前記他方の制御基板に、 それぞれ 1系統以上の圧 カ検知手段を設けたことを特徴とする請求項 2 9記載の給水装置。
3 6 . 前記一方の制御基板と前記他方の制御基板のそれぞれに前記圧力検知手 段から入力した検出値を比較をして、 異なった場合には、 前記入力信号の異常と 判断する判断手段を設けたことを特徴とする請求項 3 5記載の給水装置。 3 7 . 前記一方の制御基板と前記他方の制御基板のそれぞれに電源入力部を持 たせ、 前記各電源入力部には、 対応する各電源部を接続するとともに他方の電源 部を接続可能とすることを特徴とする請求項 2 9記載の給水装置。
3 8 . 前記一方の制御基板と前記他方の制御基板のそれぞれに前記電源部を取 り込んだことを特徴とする請求項 3 7記載の給水装置。
PCT/JP2009/051389 2008-01-24 2009-01-22 給水装置 WO2009093750A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/864,257 US8714933B2 (en) 2008-01-24 2009-01-22 Water supply apparatus
EP09704247.7A EP2248954A4 (en) 2008-01-24 2009-01-22 WATER SUPPLY
CN200980102949.XA CN101925706B (zh) 2008-01-24 2009-01-22 供水装置
US14/222,879 US9249562B2 (en) 2008-01-24 2014-03-24 Water supply apparatus
US14/222,866 US9206590B2 (en) 2008-01-24 2014-03-24 Water supply apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-013966 2008-01-24
JP2008013966 2008-01-24
JP2008-330080 2008-12-25
JP2008330080A JP5210147B2 (ja) 2008-01-24 2008-12-25 給水装置

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/864,257 A-371-Of-International US8714933B2 (en) 2008-01-24 2009-01-22 Water supply apparatus
US14/222,879 Division US9249562B2 (en) 2008-01-24 2014-03-24 Water supply apparatus
US14/222,866 Division US9206590B2 (en) 2008-01-24 2014-03-24 Water supply apparatus

Publications (1)

Publication Number Publication Date
WO2009093750A1 true WO2009093750A1 (ja) 2009-07-30

Family

ID=40901244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051389 WO2009093750A1 (ja) 2008-01-24 2009-01-22 給水装置

Country Status (7)

Country Link
US (3) US8714933B2 (ja)
EP (3) EP2824245A3 (ja)
JP (1) JP5210147B2 (ja)
CN (3) CN103628523B (ja)
HK (2) HK1190766A1 (ja)
MY (1) MY163804A (ja)
WO (1) WO2009093750A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493782B2 (ja) 2020-09-16 2024-06-03 株式会社川本製作所 給水装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276734B2 (ja) * 2008-01-24 2013-08-28 株式会社荏原製作所 給水装置
IT1403038B1 (it) * 2010-12-06 2013-09-27 Cps Color Equipment Spa Valvola di dosaggio e procedimento connesso
WO2012130241A1 (en) * 2011-03-30 2012-10-04 Vestas Wind Systems A/S Wind power plant with highly reliable real-time power control
WO2013099843A1 (ja) * 2011-12-27 2013-07-04 株式会社 荏原製作所 給水装置及び給水方法
JP2013143032A (ja) * 2012-01-11 2013-07-22 Sony Corp 電力制御装置
JP6030384B2 (ja) * 2012-08-27 2016-11-24 株式会社荏原製作所 ポンプ制御装置
JP6071488B2 (ja) * 2012-11-30 2017-02-01 株式会社荏原製作所 給水装置および給水方法
US9560805B2 (en) 2013-03-15 2017-02-07 Oatey Co. Backwater valve assembly and method
CN103225333A (zh) * 2013-04-18 2013-07-31 南京宁水机械设备工程有限责任公司 一种带缺水保护装置的无负压供水设备
KR101558288B1 (ko) * 2013-07-10 2015-10-12 (주)케이엔알시스템 모바일 유압발생장치 및 이의 제어방법
NO20150759A1 (en) * 2015-06-11 2016-10-24 Fmc Kongsberg Subsea As Load-sharing in parallel fluid pumps
US10753815B2 (en) 2015-10-28 2020-08-25 Hewlett-Packard Development Company, L.P. Relative pressure sensor
CN106523339A (zh) * 2016-12-22 2017-03-22 杭州杭开新能源科技股份有限公司 直连式加压供水机组以及加泵同频率运转控制方法
WO2018140905A1 (en) 2017-01-27 2018-08-02 Franklin Electric Co., Inc. Motor drive system and method
JP6787239B2 (ja) * 2017-04-25 2020-11-18 横河電機株式会社 制御装置、制御方法、及び制御プログラム
US10982416B2 (en) * 2017-12-28 2021-04-20 Jin Fu Xiang Local multiple pressure zone fresh water storage and supply system
DE102018112362A1 (de) * 2018-05-23 2019-11-28 Grohe Ag Vorrichtung und Verfahren zur Reinigung einer Trinkwasseraufbereitungsanlage
CN108915035A (zh) * 2018-07-25 2018-11-30 上海市能水电集成有限公司 一体化箱式供水系统
CN109653305B (zh) * 2018-11-26 2020-12-18 安徽舜禹水务股份有限公司 一种二次供水辅泵优化延时控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137401A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Feed water controller
JPH0925874A (ja) * 1995-07-10 1997-01-28 Kawamoto Seisakusho:Kk 可変速ポンプ装置
JP2005351267A (ja) 2004-05-10 2005-12-22 Ebara Corp 給水装置
JP2006009805A (ja) * 1996-01-31 2006-01-12 Hitachi Industrial Equipment Systems Co Ltd ターボ機械駆動装置及びその制御方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875390A (en) * 1970-07-09 1975-04-01 Secr Defence Brit On-line computer control system
GB1382083A (en) * 1971-03-22 1975-01-29 Tokyo Heat Treating Fluid control apparatus
US3964056A (en) * 1974-04-08 1976-06-15 International Standard Electric Corporation System for transferring data between central units and controlled units
US4804515A (en) * 1984-10-31 1989-02-14 Westinghouse Electric Corp. Distributed microprocessor based sensor signal processing system for a complex process
US4697093A (en) * 1985-01-23 1987-09-29 Westinghouse Electric Corp. Testable, fault-tolerant power interface circuit for controlling plant process equipment
JP2548973B2 (ja) * 1988-09-22 1996-10-30 二國機械工業株式会社 自動交互並列運転システム
JPH0295786A (ja) 1988-10-03 1990-04-06 Hitachi Ltd 給水装置の信号転送装置
US5206810A (en) * 1991-02-07 1993-04-27 General Electric Company Redundant actuator control
US5259731A (en) * 1991-04-23 1993-11-09 Dhindsa Jasbir S Multiple reciprocating pump system
JP2872475B2 (ja) 1992-02-20 1999-03-17 株式会社日立製作所 水道用給液装置
US5253981A (en) * 1992-03-05 1993-10-19 Frank Ji-Ann Fu Yang Multichannel pump apparatus with microflow rate capability
US5583757A (en) * 1992-08-04 1996-12-10 The Dow Chemical Company Method of input signal resolution for actively redundant process control computers
JPH07224765A (ja) 1994-02-14 1995-08-22 Kawamoto Seisakusho:Kk 給水機
JPH07279885A (ja) 1994-04-02 1995-10-27 Bridgestone Corp インバ−タ−切り替え式加圧給水システム
JP3191576B2 (ja) 1994-09-20 2001-07-23 株式会社日立製作所 ポンプ制御装置
JPH08100772A (ja) 1994-09-30 1996-04-16 Hitachi Ltd ポンプ装置
US5522707A (en) * 1994-11-16 1996-06-04 Metropolitan Industries, Inc. Variable frequency drive system for fluid delivery system
JP3807763B2 (ja) * 1995-11-08 2006-08-09 株式会社荏原製作所 可変速給水装置
CN1168899C (zh) * 1996-01-31 2004-09-29 株式会社日立制作所 涡轮机驱动装置及其控制方法
US5743714A (en) * 1996-04-03 1998-04-28 Dmitry Drob Method and apparatus for minimum work control optimization of multicompressor stations
US5971711A (en) * 1996-05-21 1999-10-26 Ebara Corporation Vacuum pump control system
JP3225205B2 (ja) * 1997-03-17 2001-11-05 株式会社日立製作所 水道用給液装置
JPH10289001A (ja) 1997-04-11 1998-10-27 Toshiba Corp 制御システム
JPH11201055A (ja) 1998-01-13 1999-07-27 Kobe Steel Ltd 空気圧縮機制御装置のバックアップ装置
JP3005516B2 (ja) 1998-03-12 2000-01-31 株式会社日立製作所 水道用給液装置
JP3367598B2 (ja) 1998-03-12 2003-01-14 株式会社日立製作所 デュアルインバータ
JP3614665B2 (ja) 1998-06-29 2005-01-26 株式会社川本製作所 可変速ポンプの運転方法
US6045331A (en) * 1998-08-10 2000-04-04 Gehm; William Fluid pump speed controller
JP4372866B2 (ja) * 1998-10-16 2009-11-25 株式会社日立産機システム 多重系給水装置とその制御方法
JP3763704B2 (ja) 1999-06-09 2006-04-05 株式会社荏原製作所 コントローラ
US6257833B1 (en) * 2000-01-04 2001-07-10 Metropolitan Industries, Inc. Redundant, dedicated variable speed drive system
JP2001355577A (ja) * 2000-06-13 2001-12-26 Ebara Corp 流体機械の省エネルギー化促進方法、診断方法及び取引方法
US6368064B1 (en) * 2000-12-01 2002-04-09 3Com Corporation Apparatus and method of providing redundant power and redundant fan speed control to a plurality of fans
KR100408493B1 (ko) * 2001-05-07 2003-12-06 한국전력기술 주식회사 소프트웨어 공통유형고장을 자체 배제한 디지털원자로 보호시스템 및 그 제어방법
JP3917835B2 (ja) * 2001-09-28 2007-05-23 横河電機株式会社 加圧送水ポンプシステム
US6659726B2 (en) * 2001-12-31 2003-12-09 Carrier Corporation Variable speed control of multiple motors
TW200308140A (en) * 2002-01-31 2003-12-16 Daikin Ind Ltd Rotation speed control system, rotation drive system, ventilation system, clean bench, outdoor device of air conditioner
BE1015460A3 (nl) * 2003-04-04 2005-04-05 Atlas Copco Airpower Nv Werkwijze voor het sturen van een persluchtinstallatie met meerdere compressoren, stuurdoos daarbij toegepast, en persluchtinstallatie die deze werkwijze toepast.
FR2858863B1 (fr) 2003-08-12 2007-02-23 Airbus France Systeme de commande d'equipements d'aeronef.
DE112004001836D2 (de) 2003-10-08 2006-08-24 Continental Teves Ag & Co Ohg Integriertes Mikroprozessorsystem für sicherheitskritische Regelungen
CN2695493Y (zh) * 2004-05-08 2005-04-27 衡鸣声 微机控制变频调速供水设备
US7874808B2 (en) * 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US7218068B2 (en) * 2004-08-31 2007-05-15 Kabushiki Kaisha Toshiba Power source for re-circulation pump and method of controlling the same
JP4812275B2 (ja) * 2004-09-22 2011-11-09 株式会社荏原製作所 給水装置
CN1940294B (zh) * 2005-09-30 2011-06-01 株式会社日立制作所 空气压缩装置的控制装置
US7878765B2 (en) * 2005-12-02 2011-02-01 Entegris, Inc. System and method for monitoring operation of a pump
KR20090048488A (ko) 2006-09-05 2009-05-13 로베르트 보쉬 게엠베하 드라이브 시스템 및 정역학 드라이브를 모니터하기 위한 방법
CN200971520Y (zh) * 2006-11-21 2007-11-07 张天用 水压失控自停机装置
UA26658U (en) * 2007-08-27 2007-09-25 Sergii Volodymyrovych Grytsak Automated system for control of pump station of municipal water supply system
JP5404101B2 (ja) 2009-02-27 2014-01-29 三菱重工業株式会社 多重冗長系制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137401A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Feed water controller
JPH0925874A (ja) * 1995-07-10 1997-01-28 Kawamoto Seisakusho:Kk 可変速ポンプ装置
JP2006009805A (ja) * 1996-01-31 2006-01-12 Hitachi Industrial Equipment Systems Co Ltd ターボ機械駆動装置及びその制御方法
JP2005351267A (ja) 2004-05-10 2005-12-22 Ebara Corp 給水装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2248954A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493782B2 (ja) 2020-09-16 2024-06-03 株式会社川本製作所 給水装置

Also Published As

Publication number Publication date
CN103590452B (zh) 2015-07-22
EP2824245A2 (en) 2015-01-14
HK1190766A1 (zh) 2014-07-11
CN101925706B (zh) 2014-04-09
JP5210147B2 (ja) 2013-06-12
MY163804A (en) 2017-10-31
CN101925706A (zh) 2010-12-22
US20100307619A1 (en) 2010-12-09
EP2824245A3 (en) 2015-05-06
US9249562B2 (en) 2016-02-02
CN103628523A (zh) 2014-03-12
US8714933B2 (en) 2014-05-06
EP2248954A1 (en) 2010-11-10
EP2248954A4 (en) 2014-05-14
HK1195797A1 (en) 2014-11-21
US20140203041A1 (en) 2014-07-24
CN103628523B (zh) 2015-07-01
EP2871293A1 (en) 2015-05-13
JP2009197792A (ja) 2009-09-03
US9206590B2 (en) 2015-12-08
CN103590452A (zh) 2014-02-19
US20140202567A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5210147B2 (ja) 給水装置
JP2009197792A5 (ja)
JP5499195B2 (ja) 給水装置
JP6071488B2 (ja) 給水装置および給水方法
JP5140237B2 (ja) 給水装置
JP6760723B2 (ja) 給水装置
JP5094156B2 (ja) 給水装置
JP2000312727A (ja) スプリンクラー消火設備
JP3711302B2 (ja) スプリンクラー消火設備
JP7475036B2 (ja) 給水装置
JP4664019B2 (ja) 給水装置
JP2003339116A (ja) 過電圧保護回路及び方法
JP3852450B2 (ja) 診断機能付き無停電電源装置
JP2023134982A (ja) 給水装置、および給水装置の運転方法
JP2021099045A (ja) 給水装置
JP2000279542A (ja) スプリンクラー消火設備
JP2006029234A (ja) 自動給水装置
JP2024123557A (ja) 給水装置、および、管理ユニット
JP2003082716A (ja) 給水装置
JP4693502B2 (ja) 冷凍装置の運転制御システム
KR20070000623U (ko) 전동기용 자동제어기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102949.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010003474

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 2009704247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12864257

Country of ref document: US