WO2009093635A1 - レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置 - Google Patents

レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置 Download PDF

Info

Publication number
WO2009093635A1
WO2009093635A1 PCT/JP2009/050939 JP2009050939W WO2009093635A1 WO 2009093635 A1 WO2009093635 A1 WO 2009093635A1 JP 2009050939 W JP2009050939 W JP 2009050939W WO 2009093635 A1 WO2009093635 A1 WO 2009093635A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens barrel
lens
aberration
photographing
Prior art date
Application number
PCT/JP2009/050939
Other languages
English (en)
French (fr)
Inventor
Kazutoshi Usui
Takeshi Suzuki
Nobutaka Hirama
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008011472A external-priority patent/JP2009175241A/ja
Priority claimed from JP2008011469A external-priority patent/JP2009175240A/ja
Priority claimed from JP2008186297A external-priority patent/JP5458521B2/ja
Priority claimed from JP2008331265A external-priority patent/JP5458570B2/ja
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2009093635A1 publication Critical patent/WO2009093635A1/ja
Priority to US12/838,886 priority Critical patent/US20110032615A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a lens barrel, a lens barrel adjustment method, a lens barrel manufacturing method, and an imaging apparatus.
  • the conventional alignment is performed when the lens barrel is in the normal position (the position of the camera when the photographer takes a horizontally long image with the optical axis horizontal). For this reason, if the posture of the lens barrel is changed from the normal position and the image is taken, there is a problem that decentering occurs in components such as each lens in the lens barrel, aberration is generated, and imaging performance is deteriorated.
  • An object of the present invention is to provide a lens barrel, a lens barrel adjustment method, a lens barrel manufacturing method, and an imaging apparatus that can realize suitable imaging.
  • the present invention solves the above problems by the following means.
  • the invention according to claim 1 is a photographic optical system having a second optical system movable relative to the first optical system, and after detecting a focal length of the photographic optical system, and the photographic optical A drive unit that drives the second optical system relative to the first optical system so as to reduce aberration of the photographing optical system before taking an image by the system.
  • This is a lens barrel.
  • a photographic optical system having a second optical system that is movable relative to the first optical system, and the photographic optical system after detecting a posture at the time of photographing.
  • a drive unit that drives the second optical system relative to the first optical system so as to reduce aberrations of the photographing optical system before taking an image of It is a lens barrel.
  • a third aspect of the present invention is the lens barrel according to the first or second aspect, wherein the driving unit moves the second optical system in a direction intersecting an optical axis of the photographing optical system. It is characterized by being driven.
  • a fourth aspect of the present invention is the lens barrel according to the first or second aspect, wherein the driving unit tilts the second optical system relative to the first optical system. It is characterized by being driven.
  • a fifth aspect of the present invention is the lens barrel according to any one of the first to fourth aspects, wherein the aberration amount in the photographing optical system is suppressed.
  • a sixth aspect of the present invention is the lens barrel according to the fifth aspect, wherein the storage unit stores position information of the second optical system according to a focal length of the photographing optical system.
  • the drive unit drives the second optical system based on the focal length information and the position information stored in the storage unit.
  • the invention according to claim 7 is the lens barrel according to claim 5, wherein the storage unit stores position information of the second optical system according to a posture at the time of photographing.
  • the driving unit drives the second optical system based on information on a posture at the time of photographing and the position information stored in the storage unit.
  • the invention according to an eighth aspect is the lens barrel according to any one of the first to seventh aspects, wherein the second optical system is a decentered lens.
  • a ninth aspect of the present invention is the lens barrel according to any one of the first to eighth aspects, wherein the second optical system is a blur correction lens that corrects image blur. It is characterized by being.
  • a tenth aspect of the present invention is the lens barrel according to the ninth aspect of the present invention, wherein the driving unit is configured to prevent the blur correction lens when the blur correction lens corrects the blur of the image.
  • An eleventh aspect of the present invention is the lens barrel according to any one of the first to eighth aspects, wherein the lens barrel is provided independently of the second optical system, and blurs an image. It has a blur correction lens for correction.
  • a twelfth aspect of the present invention is the lens barrel according to any one of the ninth to eleventh aspects, wherein the lens barrel includes a shake detection unit that detects a shake of the device. The blur correction lens is driven so as to correct the shake according to the output of the shake detection unit.
  • the driving unit is configured to move the blur in a direction intersecting with an optical axis of the photographing optical system according to an output of the shake detection unit.
  • the image blur is corrected by driving a correction lens.
  • the invention according to a fourteenth aspect is the lens barrel according to the twelfth aspect, in which the driving unit attaches the blur correction lens to the first optical system in accordance with an output of the shake detection unit.
  • the image blur is corrected by driving the blur correction lens so as to be relatively inclined.
  • a fifteenth aspect of the present invention is the lens barrel according to any one of the first to fourteenth aspects, wherein the driving unit is configured to capture an image by the photographing optical system. The second optical system is driven, and the second optical system is not driven when the image is picked up.
  • a photographic optical system including a second optical system movable relative to the first optical system, and an aberration of the photographic optical system corresponding to a focal length of the photographic optical system.
  • a photographic optical system including a second optical system that is movable relative to the first optical system, and an aberration amount of the photographic optical system corresponding to a posture at the time of photographing.
  • the second optical system is configured based on the storage unit capable of storing the position information of the second optical system, the posture information at the time of shooting, and the position information stored in the storage unit.
  • the invention according to claim 18 is the lens barrel according to claim 17, wherein the storage unit corresponds to a posture around the optical axis of the photographing optical system when photographing. Position information of the second optical system capable of suppressing the amount of aberration of the system can be stored.
  • a nineteenth aspect of the present invention is the lens barrel according to any one of the sixteenth to eighteenth aspects of the present invention, wherein the drive unit is configured to perform the second optical operation with respect to the first optical system. It is characterized in that the system is driven so as to be relatively inclined.
  • a photographic optical system having a second optical system that can move relative to the first optical system, and aberrations of the photographic optical system according to the position of the first optical system.
  • a driving unit that drives the second optical system to tilt relative to the first optical system so as to reduce the lens barrel.
  • a twenty-first aspect of the present invention is the lens barrel according to the twentieth aspect, wherein a relative inclination amount of the second optical system with respect to the first optical system is determined according to a position of the first optical system. It has the memory
  • a photographic optical system having a second optical system that can move relative to the first optical system, and aberrations of the photographic optical system according to the position of the first optical system.
  • a lens barrel comprising: a drive unit that drives the second optical system in a direction intersecting with an optical axis of the photographing optical system so as to reduce.
  • the driving amount of the second optical system in a direction intersecting the optical axis of the photographing optical system is set to the position of the first optical system. It has the memory
  • a photographing optical system having a second optical system movable relative to the first optical system, and taking an image by the photographing optical system after detecting a photographing state.
  • a driving unit that drives the second optical system relative to the first optical system so that aberrations of the photographing optical system are reduced.
  • the invention described in claim 25 is the lens barrel described in claim 24, wherein the driving unit captures an image by the imaging optical system after detecting a focal length of the imaging optical system.
  • the second optical system is driven relative to the first optical system.
  • the invention described in claim 26 is the lens barrel described in claim 24, wherein the driving section captures an image by the imaging optical system after detecting a posture at the time of shooting.
  • a twenty-seventh aspect of the present invention is a photographing apparatus comprising: the lens barrel according to any one of the first to twenty-sixth aspects; and an imaging unit that captures an image by the photographing optical system. It is.
  • the second optical system is driven while measuring the aberration amount of the photographing optical system having the second optical system movable relative to the first optical system, and the photographing is performed.
  • the lens barrel adjustment method is characterized in that the position of the second optical system when the aberration amount of the optical system is suppressed is stored.
  • a twenty-ninth aspect of the invention is the lens barrel adjusting method according to the twenty-eighth aspect, wherein the second optical system is driven in a direction crossing the optical axis of the photographing optical system.
  • a thirty-third aspect of the invention is the lens barrel adjusting method according to the twenty-eighth aspect, wherein the second optical system is inclined relative to the first optical system. An optical system is driven.
  • the invention according to a thirty-first aspect is the lens barrel adjustment method according to the twenty-eighth or thirty-third aspect, wherein the position of the second optical system is stored according to the focal length of the photographing optical system.
  • a thirty-second aspect of the invention is the lens barrel adjustment method according to the thirty-eighth or thirty-third aspect, wherein the position of the second optical system is stored in accordance with the attitude of the lens barrel.
  • a thirty-third aspect of the invention is the lens barrel adjusting method according to any one of the twenty-eighth to thirty-second aspects, wherein the second optical system is stored in the memory before photographing. Drive to position.
  • a second optical system included in the photographing optical system is disposed so as to be relatively movable with respect to the first optical system included in the photographing optical system, and the second optical system is arranged according to a photographing state.
  • the lens barrel manufacturing method includes adjusting a driving unit that drives the second optical system relative to the first optical system so as to reduce aberration of the photographing optical system.
  • the invention described in claim 35 is the method of manufacturing a lens barrel described in claim 34, wherein the second aberration in which the aberration of the photographing optical system is reduced according to the focal length of the photographing optical system.
  • the position information of the optical system is stored.
  • the invention described in claim 36 is the lens barrel manufacturing method described in claim 34, wherein the aberration of the photographing optical system is reduced according to the attitude of the lens barrel. System position information is stored.
  • the present invention it is possible to provide a lens barrel, a lens barrel adjustment method, a lens barrel manufacturing method, and an imaging apparatus that can realize suitable photographing.
  • 1 is a system configuration diagram of a lens barrel and an alignment tool for aligning the lens barrel in a first embodiment. It is a figure which shows the flow at the time of the alignment in 1st Embodiment. It is the figure which showed an example of the best aberration position in T end, M position, and W end. It is a figure which shows the operation
  • FIG. 10 is a system configuration diagram of a lens barrel and an alignment tool for aligning the lens barrel in a third embodiment. It is a figure which shows the flow at the time of the alignment in 3rd Embodiment. It is the figure which showed an example of the best aberration position in T end, M position, and W end. It is a figure which shows the operation
  • FIG. 1 is a system configuration diagram of a lens barrel 100 and an alignment tool 200 for aligning the lens barrel 100 in the first embodiment.
  • the alignment tool 200 is attached to a light emitting unit 201 that projects collimated light from the front end side of the lens barrel 100 and a mount unit 101 of the lens barrel 100, and is projected from the light emitting unit 201 to be used as a lens barrel.
  • an image sensor 202 that receives light that has passed through 100 and converts the light into an electrical signal by photoelectric conversion.
  • the alignment tool 200 converts an electrical signal obtained from the image sensor 202 into image information, converts the aberration into an amount of aberration based on the image information obtained by the image processing unit 203, and displays the screen.
  • a tool PC 204 displayed above.
  • the alignment tool 200 includes a drive amount input unit 205 such as a joystick that is input by an operator by looking at the aberration values displayed on the monitor of the tool PC 204.
  • a drive amount input unit 205 such as a joystick that is input by an operator by looking at the aberration values displayed on the monitor of the tool PC 204.
  • the blur correction lens 102 is driven in the lens barrel 100 as will be described later.
  • the alignment tool 200 further includes a tool CPU 206 that transmits information on the image plane movement amount of the shake correction lens 102 to the lens CPU 103 based on a signal from the drive amount input unit 205. This transmission is performed via the mount portion 101 of the lens barrel 100.
  • the tool CPU 206 also supplies power for driving the lens CPU 103 and the shake correction lens 102.
  • the tool CPU 206 also takes in information on the zoom encoder 107 in the lens barrel 100 and information on the amount of extension of the lens group 104 when performing focusing (information on the distance encoder 108) from the lens CPU 103.
  • the zoom encoder 107 detects the zooming state (focal length) of the lens group 104.
  • the lens barrel 100 includes, as a photographing optical system, a blur correction lens 102 that corrects image blur and a lens group 104 that moves during zooming, and further communicates with the tool CPU 206 as described above.
  • a lens CPU 103 is provided.
  • the lens CPU 103 has a program for an alignment mode for aligning. When the lens barrel 100 is attached to the alignment tool 200, the lens CPU 103 recognizes that it is connected by communication with the tool CPU 206, and shifts to the alignment mode. By shifting to the alignment mode, the shake correction lens 102 can be driven and controlled based on the image plane movement information of the shake correction lens 102 sent from the tool CPU 206.
  • the lens barrel 100 further includes an angular velocity sensor 105 that detects the angular velocity.
  • the detected output of the angular velocity sensor 105 passes through an LPF + amplifier section (not shown), removes unnecessary high frequency noise, and is input to the blur information processing section 106.
  • the angular velocity sensor 105 does not function in the alignment mode.
  • the blur information processing unit 106 extracts blur information to be corrected based on information from the angular velocity sensor 105.
  • the lens barrel 100 includes a zoom encoder 107, a distance encoder 108, a target drive position calculation unit 109 that calculates a target drive position of the shake correction lens 102 based on outputs from the shake information processing unit 106, Is provided.
  • the lens barrel 100 includes a lens driving amount calculation unit 110, and the lens driving amount calculation unit 110 functions when shifting to the alignment mode.
  • the lens drive amount calculation unit 110 converts the image plane movement information of the shake correction lens 102 sent from the tool CPU 206 into movement amount information of the shake correction lens 102 based on the image stabilization correction coefficient information stored in the EEPROM 116.
  • the image stabilization correction coefficient information is information on the ratio between the movement amount of the shake correction lens 102 and the movement amount of the image due to the movement of the shake correction lens 102, and inputs to the zoom encoder 107 and the distance encoder 108 are parameters. Is held as matrix information.
  • the alignment adjustment value sent from the tool CPU 206 is converted into lens position information by the lens driving amount calculation unit 110 and stored in the EEPROM 116.
  • the lens barrel 100 follows the target drive position information or the information from the lens drive amount calculation unit 110 according to a signal from the tracking control calculation unit 111 that performs the tracking control calculation of the blur correction lens 102 and a signal from the tracking control calculation unit 111.
  • a VCM drive driver 112 for supplying current to the VCM 113 (voice coil motor).
  • the VCM 113 is an electromagnetic drive actuator, and includes a coil and a magnet.
  • the VCM 113 generates a driving force by passing a current through the coil.
  • the VCM 113 drives the blur correction lens 102 in a plane perpendicular to the optical axis.
  • the drive unit is not limited to the VCM 113, but may be a PZT (lead zirconate titanate) type actuator such as SIDM (ultra-small actuator) or an STM (stepping motor).
  • the lens barrel 100 includes a position detection unit 114 that detects the position of the shake correction lens 102.
  • the position detection is generally performed using a PSD (optical position sensor).
  • PSD optical position sensor
  • the position of the blur correction lens 102 obtained by the position detection unit 114 is fed back to the tracking control calculation unit 111.
  • the position detection unit 114 is not limited to the PSD described above, and may be a position detection unit 114 that detects a change in magnetic flux density using a magnet and a Hall element.
  • the lens barrel 100 includes a shake correction SW 115 that is a switch (switch) that enables the photographer to select whether or not shake correction is ON / OFF.
  • a shake correction SW 115 that is a switch (switch) that enables the photographer to select whether or not shake correction is ON / OFF.
  • the blur correction lens 102 moves in a plane perpendicular to the optical axis so as to cancel the blur according to the output of the angular velocity sensor 105.
  • the optical axis and the center of the blur correction lens 102 are fixed by a lock mechanism (not shown) at a position where the center matches.
  • the lens barrel 100 also includes an AF driving unit 117 that performs focusing.
  • FIG. 2 shows a flow during alignment.
  • the lens barrel 100 is attached to the alignment tool 200 (S100).
  • the alignment tool 200 confirms the mounting of the lens barrel 100 (S201), and supplies power to the lens barrel 100 side.
  • the lens CPU 103 starts communication with the tool CPU 206 (S101).
  • the lens CPU 103 has an alignment mode program for aligning as described above.
  • the lens CPU 103 detects that the lens CPU 103 is attached to the alignment tool 200, the lens CPU 103 shifts to the alignment mode (S102). ).
  • the alignment tool 200 instructs the AF group 117 in the lens barrel 100 to drive the lens group 104 to a predetermined focus position (S202).
  • the lens group 104 is moved to a predetermined position in accordance with the command (S103).
  • the predetermined position in the focus is a predetermined start position such as an infinite position.
  • the lens barrel 100 releases an electromagnetic lock (not shown) prior to driving the blur correction lens 102 (S104).
  • the electromagnetic lock is a lock mechanism for fixing the shake correction lens 102 at a predetermined position. By releasing this electromagnetic lock, the blur correction lens 102 can be driven by the driving force of the VCM 113.
  • the alignment tool 200 reads the zoom information recognized by the lens CPU 103 (S203), and determines whether it is at the T end (S204). Reading of the zoom information is performed when the tool CPU 206 receives the value of the zoom encoder 107 of the lens barrel 100 through communication from the contact point of the lens-side mount unit 101. If the lens barrel 100 is not at the T (tele) end (S204, No), for example, the operator is instructed to move the lens barrel 100 to the T (tele) end through the monitor of the tool PC 204 (S205). .
  • the lens barrel 100 starts the follow-up control with the center position of the EEPROM 116 as the target drive position of the blur correction lens 102. After shifting to the center position (S105), a signal indicating that the alignment work can be started is sent to the alignment tool 200CPU side.
  • the alignment tool 200 starts alignment when it receives a startable signal from the lens barrel 100 (S206). Alignment is performed at at least two locations according to the focal length of the lens barrel 100. In the present embodiment, alignment is performed at three positions at a T (tele) end, a W (wide) end, and an intermediate M (middle) position.
  • the alignment tool 200 is projected from the light emitting unit 201 through the monitor of the tool PC 204, passes through the lens barrel 100, observes the degree of aberration from the image of light incident on the image sensor 202, and the aberration is predetermined. It is determined whether it is within the range (S207). When the aberration is not within the predetermined range (S207, No), the operator operates the drive amount input unit 205 (S208) to drive the blur correction lens to the best aberration position where the aberration is minimized.
  • the drive amount input unit 205 outputs the drive amount ( ⁇ XI, ⁇ YI) of the driven blur correction lens 102 to the lens barrel 100 side.
  • the drive amount information ( ⁇ XI, ⁇ YI) sent from the tool CPU 206 is converted into the position of the shake correction lens 102 ( ⁇ XI / VR1, ⁇ YI / VR1), the shake correction lens 102 is driven, and the target drive is performed.
  • the position is corrected (S106).
  • the target drive position of the blur correction lens 102 is a position (XLC + ⁇ XI / VR1) obtained by adding the above-described converted values ( ⁇ XI / VR1, ⁇ YI / VR1) to the current target drive position (XLC, YLC) of the blur correction lens 102.
  • YLC + ⁇ YI / VR1 represents an image stabilization correction coefficient at a predetermined focal length, and a numerical value stored in the EEPROM 116 is read and used.
  • a signal for determining the alignment correction position is transmitted to the lens CPU 103 side (S209).
  • the lens CPU 103 stores the target position information (XLC, YLC) of the blur correction lens 102 in the RAM as the best aberration position information (XLC1, YLC1) at the T end (S107). ).
  • FIG. 3 is a diagram showing an example of the best aberration position at the T end, the M position, and the W end.
  • subscripts 1, 15, and 30 indicate the position of the zoom encoder 107.
  • T best aberration position at the end is the position of figure P T (XLC1, YLC1).
  • the best aberration position at M is the position of PM (XLC15, YLC15) in the figure.
  • the best aberration position at W end is the position of figure P W (XLC30, YLC30).
  • the best aberration position information of the shake correction lens 102 at all zoom positions is stored in the EEPROM 116 (S109). Then, the lens barrel 100 is removed from the alignment tool 200 (S110), and the alignment process is terminated.
  • FIG. 4 is a diagram showing an operation flow of aberration correction when the blur correction SW 115 is ON.
  • the electromagnetic lock that mechanically regulates the movement of the vibration reduction lens 102 is released (S302).
  • the zoom information of the current lens barrel 100 is read by the lens CPU 103 (S303).
  • the blur correction lens 102 is once driven to the best aberration position (XLC, YLC) at the current zoom position of the lens barrel 100 (S304).
  • the best aberration position differs by the value of the zoom encoder 107, at the position of the P T in FIG. 3 when the T end as described above (XLC1, YLC1), the position of P M when the M position (XLC15, YLC15 ),
  • the W end is the position of P W (XLC30, YLC30).
  • the best aberration position at the intermediate position is the position calculated and interpolated in S108 in FIG.
  • the blur correction lens 102 is driven to the best aberration position (XLC, YLC) at the zoom position of the lens barrel 100 at the time of full depression (S308). Then, after driving to the best aberration position, the blur correction is resumed (S309).
  • Blur correction is performed, exposure is performed at a predetermined shutter speed (S310), and blur correction is stopped (S311). Thereafter, the electromagnetic lock is driven (S312), and the operation flow ends. Note that when the half-press timer is in operation, driving for blur correction is performed, but when the half-press timer is expired, the electromagnetic lock is driven and the blur correction lens 102 is mechanically held.
  • the blur correction is started with the best aberration position obtained in the alignment step as the center and photographing is performed, it is possible to photograph at a position where the aberration performance is the best in terms of optical performance.
  • FIG. 5 illustrates an aberration correction operation when the blur correction SW 115 is OFF, using the best aberration position information of the blur correction lens 102 calculated in the alignment process.
  • FIG. 5 is a diagram illustrating an operation flow of aberration correction when the blur correction SW is OFF.
  • the release of the camera is half-pressed (S401), and then the release is fully pressed (S402), the quick return mirror (not shown) jumps up and electromagnetically locks. Is released (S403).
  • the current zoom information of the lens barrel 100 is read by the lens CPU 103 (S404).
  • the blur correction lens 102 is driven to the best aberration position (XLC, YLC) at the current zoom position of the lens barrel 100 (S405).
  • the best aberration position depends on the value of the zoom encoder 107, at the position of the P T in FIG. 3 when the T end, as described above, when the M of P M When the position is at the W end, the position is P W.
  • the center position at the intermediate position is a position calculated and interpolated in S108 in FIG. Then, exposure is performed at a predetermined shutter speed (S406), and then the electromagnetic lock is driven (S407), and the operation flow ends.
  • the image is taken at the best aberration position obtained in the alignment process, so that the image can be taken at the position where the aberration performance is the best in terms of optical performance.
  • the first embodiment has the following effects.
  • the position of the blur correction lens 102 at which the aberration generated on the imaging surface is minimized by the imaging optical system including the plurality of lens groups 104 included in the lens barrel 100 is set to the focal length for each lens barrel 100.
  • the corresponding best aberration position is stored in the lens CPU 103.
  • shooting is performed after moving the blur correction lens 102 to the best aberration position at the focal length. In this way, the aberrations that differ depending on the lens barrel 100 are adjusted for each lens barrel 100, so that the aberration of each lens barrel can be minimized.
  • the blur correction lens 102 is moved to the best aberration position before photoelectric conversion is performed by the image sensor 202. For this reason, the aberration of the image captured by the image sensor 202 is suppressed.
  • the best aberration position has been described, but the present invention is not limited to this.
  • any aberration can be used as long as the aberration can be reduced by moving the blur correction lens 102.
  • the best aberration position fluctuates so as to reduce the aberration according to the focal length, it is possible to photograph at the position where the aberration performance is the best in terms of optical performance at each focal length.
  • the existing blur correction lens 102 is used, it is not necessary to newly add a component for aberration correction.
  • the present invention is not limited to the first embodiment described above, and various modifications and changes as described below are possible, and these are also within the scope of the present invention.
  • other lenses can be used as long as they are movable to a plane orthogonal to the optical axis, and for example, a lens for correcting aberrations may be separately provided. Good.
  • the shake correction lens may be pulled back (centered) to a position where the aberration stored in the storage unit becomes small. This is because by taking back the blur correction lens to a position where the aberration becomes small, it is possible to photograph with good optical characteristics.
  • the drive range in which the shake correction lens can be driven can be substantially increased.
  • the pulling back of the blur correction lens may be performed before imaging by the imaging unit (before exposure), or may be performed when imaging by the imaging unit (during exposure). Further, the blur correction lens is not limited to a lens orthogonal to the optical axis.
  • the alignment tool is attached to the lens barrel, but the present invention is not limited to this.
  • the camera may have the function of an alignment tool.
  • the image pickup device of the alignment tool can be used also as the image pickup device of the camera.
  • the operator operates the drive amount input unit to drive the blur correction lens to the best aberration position where the aberration is minimized, but the present invention is limited to this.
  • the tool CPU may automatically drive the blur correction lens to the best aberration position.
  • the alignment is measured at the T end, M, and W end, but the present invention is not limited to this. By measuring at three or more locations, it is possible to correct aberrations with higher accuracy.
  • FIG. 6 is a system configuration diagram of the lens barrel 100A and the alignment tool 200A for aligning the lens barrel 100A in the second embodiment.
  • the alignment tool 200A is attached to the light emitting unit 201 that projects collimated light from the tip side of the lens barrel 100A and the mount unit 101 of the lens barrel 100A, and is projected from the light emitting unit 201 to be used as the lens barrel.
  • the image sensor 202 receives light that has passed through 100A and converts the light into an electrical signal by photoelectric conversion.
  • the alignment tool 200A converts the electrical signal obtained from the image sensor 202 into image information, and converts the aberration information based on the image information obtained by the image processing unit 203.
  • a tool PC 204 displayed above.
  • the alignment tool 200A includes a lens barrel rotating unit 207 that rotates the entire lens barrel 100A around the optical axis in accordance with a command from the tool PC 204.
  • the alignment tool 200 ⁇ / b> A further includes a drive amount input unit 205 such as a joystick that is input by an operator by looking at the aberration values displayed on the monitor of the tool PC 204.
  • the blur correction lens 102 is driven in the lens barrel 100A as described later.
  • the alignment tool 200 ⁇ / b> A includes a tool CPU 206 that transmits image plane movement amount information of the shake correction lens 102 to the lens CPU 103 based on a signal from the drive amount input unit 205. This transmission is performed via the mount 101 of the lens barrel 100A.
  • the tool CPU 206 also supplies power for driving the lens CPU 103 and the shake correction lens 102. Further, the tool CPU 206 also takes in information on the zoom encoder 107 in the lens barrel 100A, which will be described later, information on the amount of feeding of the lens group 104 when performing focusing (information on the distance encoder 108), and information on the posture detection unit 118 from the lens CPU 103. .
  • the lens barrel 100A includes, as a photographing optical system, a blur correction lens 102 that corrects image blur and a lens group 104 that moves during zooming, and further communicates with the tool CPU 206 as described above.
  • a lens CPU 103 is provided.
  • the lens CPU 103 has a program for an alignment mode for aligning.
  • the lens CPU 103 recognizes that it has been connected by communication with the tool CPU 206, and shifts to the alignment mode.
  • the shake correction lens 102 can be driven and controlled based on the image plane movement information of the shake correction lens 102 sent from the tool CPU 206.
  • the lens barrel 100A further includes an angular velocity sensor 105 that detects the angular velocity.
  • the detected output of the angular velocity sensor 105 passes through an LPF + amplifier section (not shown), removes unnecessary high frequency noise, and is input to the blur information processing section 106.
  • the angular velocity sensor 105 does not function in the alignment mode.
  • the blur information processing unit 106 extracts blur information to be corrected based on information from the angular velocity sensor 105.
  • the lens barrel 100A includes an attitude detection unit 118 including a triaxial acceleration sensor for detecting the attitude of the lens barrel 100A.
  • the posture detection unit 118 detects the angle around the optical axis of the lens barrel 100A based on the output of the triaxial acceleration sensor.
  • the lens barrel 100A includes a zoom encoder 107, a distance encoder 108, a target drive position calculation unit 109 that calculates a target drive position of the shake correction lens 102 based on outputs from the shake information processing unit 106, Is provided.
  • the lens barrel 100A includes a lens driving amount calculation unit 110 that functions when shifting to the alignment mode.
  • the lens driving amount calculation unit 110 converts the image plane movement information of the shake correction lens 102 sent from the tool CPU 206 into movement amount information of the shake correction lens 102 based on the image stabilization correction coefficient information stored in the EEPROM 116.
  • the image stabilization correction coefficient information is information on a ratio between the movement amount of the shake correction lens 102 and the movement amount of the image due to the movement of the shake correction lens 102, and parameters input to the zoom encoder 107 and the distance encoder 108 are parameters. Is held as matrix information.
  • the alignment adjustment value sent from the tool CPU 206 is converted into lens position information by the lens driving amount calculation unit 110 and stored in the EEPROM 116.
  • the lens barrel 100 ⁇ / b> A is based on the target drive position information or the information from the lens drive amount calculation unit 110, and the tracking control calculation unit 111 that performs the tracking control calculation of the shake correction lens 102 and the signal from the tracking control calculation unit 111.
  • a VCM drive driver 112 for supplying current to the VCM 113 (voice coil motor).
  • the VCM 113 is an electromagnetic drive actuator, and includes a coil and a magnet.
  • the VCM 113 generates a driving force by passing a current through the coil.
  • the VCM 113 drives the blur correction lens 102 in a plane perpendicular to the optical axis.
  • the drive unit is not limited to the VCM 113, but may be a PZT (lead zirconate titanate) type actuator such as SIDM (ultra-small actuator) or an STM (stepping motor).
  • the lens barrel 100 ⁇ / b> A includes a position detection unit 114 that detects the position of the shake correction lens 102.
  • the position detection is generally performed using a PSD (optical position sensor).
  • PSD optical position sensor
  • the position of the blur correction lens 102 obtained by the position detection unit 114 is fed back to the tracking control calculation unit 111.
  • the position detection unit 114 is not limited to the PSD described above, and may be a position detection unit 114 that detects a change in magnetic flux density using a magnet and a Hall element.
  • the lens barrel 100A includes a shake correction SW 115 that is a SW (switch) that allows the photographer to select whether or not shake correction is ON / OFF.
  • a shake correction SW 115 that is a SW (switch) that allows the photographer to select whether or not shake correction is ON / OFF.
  • the blur correction lens 102 moves in a plane perpendicular to the optical axis so as to cancel the blur according to the output of the angular velocity sensor 105.
  • the optical axis and the center of the blur correction lens 102 are fixed by a lock mechanism (not shown) at a position where the center matches.
  • the lens barrel 100A also includes an AF driving unit 117 that performs focusing.
  • FIG. 7 shows a flow during alignment.
  • the lens barrel 100A is attached to the alignment tool 200A (S100).
  • the alignment tool 200A confirms the mounting of the lens barrel 100A (S201), and supplies power to the lens barrel 100A side.
  • the lens CPU 103 starts communication with the tool CPU 206 (S101).
  • the lens CPU 103 has an alignment mode program for alignment as described above.
  • the lens CPU 103 detects that the lens CPU 103 is attached to the alignment tool 200A, the lens CPU 103 shifts to the alignment mode (S102). ).
  • the alignment tool 200A instructs the AF driving unit 117 in the lens barrel 100A to drive the lens group 104 to a predetermined focus position (S202).
  • the lens group 104 is moved to a predetermined position in accordance with the command (S103).
  • the predetermined focus position is a predetermined start position such as an infinite position.
  • the lens barrel 100A releases an electromagnetic lock (not shown) prior to driving the blur correction lens 102 (S104).
  • the electromagnetic lock is a lock mechanism for fixing the shake correction lens 102 at a predetermined position. By releasing this electromagnetic lock, the blur correction lens 102 can be driven by the driving force of the VCM 113.
  • the alignment tool 200A reads the posture information recognized by the lens CPU 103 (S203), and determines whether it is in the normal position (S204). The reading of the posture information is performed when the tool CPU 206 receives the value of the posture detecting unit 118 of the lens barrel 100A through communication from the contact point of the lens-side mount unit 101.
  • the lens barrel 100A is not in the normal position (S204, No), for example, the operator is instructed to move the lens barrel 100A to the normal position through the monitor of the tool PC 204 (S205).
  • the lens barrel 100A starts follow-up control with the center position of the EEPROM 116 as the target drive position of the shake correction lens 102. After shifting to the center position (S105), a signal indicating that the alignment work can be started is sent to the alignment tool 200A side.
  • the alignment tool 200A starts alignment when it receives a startable signal from the lens barrel 100A (S206). Alignment is performed in at least three positions including the normal position, the position rotated by +90 deg around the optical axis, and the position rotated by 90 deg according to the posture of the lens barrel 100A. In the present embodiment, it is performed at four positions: a normal position, a position rotated by +90 deg, a position rotated by +180 deg, and a position rotated by +270 deg ( ⁇ 90 deg). It should be noted that with a lens such as a microlens that may be photographed with the optical axis facing downward, alignment is performed even when the optical axis is downward.
  • the alignment tool 200A observes the degree of aberration from the image of light that is projected from the light emitting unit 201, passes through the lens barrel 100A, and enters the image sensor 202 via the monitor of the tool PC 204, and the aberration is predetermined. It is determined whether it is within the range (S207). When the aberration is not within the predetermined range (S207, No), the operator operates the drive amount input unit 205 (S208) to drive the blur correction lens to the best aberration position where the aberration is minimized.
  • the drive amount input unit 205 outputs the drive amount ( ⁇ XI, ⁇ YI) of the driven blur correction lens 102 to the lens barrel 100A side.
  • the drive amount information ( ⁇ XI, ⁇ YI) sent from the tool CPU 206 is converted into the position of the shake correction lens 102 ( ⁇ XI / VR1, ⁇ YI / VR1), the shake correction lens 102 is driven, and the target drive is performed.
  • the position is corrected (S106).
  • the target drive position of the shake correction lens 102 is a position (XLC + ⁇ XI /) obtained by adding the above converted values ( ⁇ XI / VR1, ⁇ YI / VR1) to the current target drive position (XLC, YLC) of the shake correction lens 102.
  • VR1 represents an image stabilization correction coefficient at a predetermined focal length, and a numerical value stored in the EEPROM 116 is read and used.
  • a signal for determining the alignment correction position is transmitted to the lens CPU 103 side (S209).
  • the lens CPU 103 Upon receiving the signal for determining the alignment correction position, the lens CPU 103 stores the target position information (XLC, YLC) of the blur correction lens 102 in the RAM as the best aberration position information (XLC1, YLC1) of the positive position (S107). .
  • FIG. 8 is a diagram illustrating an example of the best aberration position at +90 deg, +180 deg, and +270 deg.
  • subscripts 0, 9, 18, and 27 indicate the posture of the lens barrel 100A. 0 is the normal position, 9 is the +90 deg rotation, 18 is the +180 deg rotation, and 27 is the +270 deg rotation.
  • the best aberration position at the normal position is the position of figure P 0 (XLC0, YLC0).
  • + Best aberration position at 90deg is the position of figure P 9 (XLC9, YLC9).
  • + Best aberration position at 180deg is the position of figure P 18 (XLC18, YLC18).
  • + Best aberration position at 270deg is the position of figure P 27 (XLC27, YLC27).
  • FIG. 9 is a diagram showing an operation flow of aberration correction when the blur correction SW 115 is ON.
  • the electromagnetic lock that mechanically regulates the movement of the vibration reduction lens 102 is released (S302).
  • the posture information of the current lens barrel 100A is read by the lens CPU 103 (S303).
  • the blur correction lens 102 is once driven to the best aberration position in the current posture of the lens barrel 100A (S304).
  • the best aberration position differs by the posture detected by the posture detection unit 118, at the position of P 0 in FIG.
  • the blur correction lens 102 is driven to the best aberration position in the attitude of the lens barrel 100A at the time of full depression (S308). Then, after driving to the best aberration position, the blur correction is resumed (S309).
  • Blur correction is performed, exposure is performed at a predetermined shutter speed (S310), and blur correction is stopped (S311). Thereafter, the electromagnetic lock is driven (S312), and the operation flow ends. Note that when the half-press timer is in operation, driving for blur correction is performed, but when the half-press timer is expired, the electromagnetic lock is driven and the blur correction lens 102 is mechanically held.
  • the blur correction is started with the best aberration position obtained in the alignment step as the center and photographing is performed, it is possible to photograph at a position where the aberration performance is the best in terms of optical performance.
  • FIG. 10 illustrates an aberration correction operation when the blur correction SW 115 is OFF, using the best aberration position information of the blur correction lens 102 calculated in the alignment process.
  • FIG. 10 is a diagram showing an operation flow of aberration correction when the blur correction SW is OFF.
  • the release of the camera is half-pressed (S401), and then the release is fully pressed (S402). Is released (S403).
  • the current orientation information of the lens barrel 100A is read by the lens CPU 103 (S404). Then, the blur correction lens 102 is driven to the best aberration position in the current posture of the lens barrel 100A (S405).
  • the best aberration position as in the case of the above-described blur correction SW115ON, depends current posture detected by the posture detection unit 118, in the case of a positive location position of P 0 in FIG.
  • the image is taken at the best aberration position obtained in the alignment process, so that the image can be taken at the position where the aberration performance is the best in terms of optical performance.
  • this embodiment has the following effects.
  • the position of the blur correction lens 102 at which the aberration generated on the imaging surface is minimized by the photographing optical system including the plurality of lens groups 104 included in the lens barrel 100A corresponds to the posture of each lens barrel 100A.
  • the best CPU aberration position is stored in the lens CPU 103.
  • photographing is performed after moving the blur correction lens 102 to the best aberration position in the posture.
  • the aberration that varies depending on the lens barrel 100A is adjusted for each lens barrel 100A, so that the aberration of each lens barrel can be minimized.
  • the blur correction lens 102 is placed at the best aberration position. Move to. For this reason, the aberration of the image captured by the image sensor 202 is suppressed.
  • the best aberration position has been described, but the present invention is not limited to this. For example, any aberration can be used as long as the aberration can be reduced by moving the blur correction lens 102.
  • the best aberration position fluctuates so as to reduce the aberration according to the posture, it is possible to take an image at a position having the best aberration performance in terms of optical performance in each posture.
  • the existing blur correction lens 102 is used, it is not necessary to newly add a component for aberration correction.
  • the best aberration position is set as the center position, so that quick blur correction can be performed. (Deformation)
  • the present invention is not limited to the second embodiment described above, and various modifications and changes as described below are possible, and these are also within the scope of the present invention.
  • a mode in which aberration correction is performed using a blur correction lens is shown, but the present invention is not limited to this.
  • other lenses can be used as long as they are movable to a plane orthogonal to the optical axis, and for example, a lens for correcting aberrations may be separately provided. Good.
  • the shake correction lens may be pulled back (centered) to a position where the aberration stored in the storage unit becomes small. This is because by taking back the blur correction lens to a position where the aberration becomes small, it is possible to photograph with good optical characteristics.
  • the drive range in which the shake correction lens can be driven can be substantially increased.
  • the pulling back of the blur correction lens may be performed before imaging by the imaging unit (before exposure), or may be performed when imaging by the imaging unit (during exposure). Further, the blur correction lens is not limited to a lens orthogonal to the optical axis.
  • the alignment tool is attached to the lens barrel, but the present invention is not limited to this.
  • the camera may have the function of an alignment tool.
  • the image pickup device of the alignment tool can be used also as the image pickup device of the camera.
  • the operator operates the drive amount input unit to drive the shake correction lens to the best aberration position where the aberration is minimized, but the present invention is limited to this.
  • the tool CPU may automatically drive the blur correction lens to the best aberration position.
  • the alignment is measured by rotating the normal position, +90 deg rotation from the normal position, +180 deg rotation from the normal position, and +270 deg rotation from the normal position, but the present invention is not limited to this. For example, it is possible to correct aberrations with higher accuracy by measuring in a higher posture.
  • FIG. 11 is a block diagram of the lens barrel 100B and an alignment tool 200B for aligning the lens barrel 100B.
  • the alignment tool 200B has a light emitting unit 201 that projects collimated light from the front end side of the lens barrel 100B and a light that is attached to the mount unit 101 of the lens barrel 100B and that is projected from the light emitting unit 201.
  • An image sensor 202 that receives light through the lens barrel 100B and converts it into an electrical signal by photoelectric conversion is provided.
  • the alignment tool 200B converts the electrical signal obtained from the image sensor 202 into image information, and performs conversion to an aberration amount based on the image information obtained by the image processing unit 203.
  • a tool PC 204 displayed on a screen (not shown).
  • the alignment tool 200B includes a lens barrel rotating unit (lens barrel posture driving stage) 207 that gives a predetermined tilt to the entire lens barrel 100B in accordance with a command from the tool PC 204.
  • a lens barrel rotating unit (lens barrel posture driving stage) 207 that gives a predetermined tilt to the entire lens barrel 100B in accordance with a command from the tool PC 204.
  • the alignment tool 200B includes a tilt drive amount input unit 208 such as a joystick that is input by an operator by looking at the aberration values displayed on the monitor of the tool PC 204.
  • the blur correction lens 102 is tilt-driven in the lens barrel 100B as described later.
  • the shake correction lens 102 shares a shake correction lens (hereinafter referred to as a shake correction lens in this specification) that corrects image blur due to the shake of the lens barrel 100B, but is different from the shake correction lens. It may be placed on the body.
  • the alignment tool 200B includes a tool CPU 206 that transmits image plane movement amount information of the shake correction lens 102 to a lens CPU 103, which will be described later, based on a signal from the tilt drive amount input unit 208. This transmission is performed via an electrode (not shown) provided on the mount 101 of the lens barrel 100B.
  • the tool CPU 206 also supplies power for driving the lens CPU 103 and the shake correction lens 102 via an electrode (not shown).
  • the tool CPU 206 also receives information about the zoom encoder 107 in the lens barrel 100B, which will be described later, information about the amount of movement of the lens groups 104 and 104 when zooming (information about the distance encoder 108), and information about the posture detection unit 118. Capture more.
  • the lens barrel 100B serves as a photographing optical system, a blur correction lens 102 that corrects blurring of an image on the image sensor 202, lens groups 104 and 104 that move during zooming, a tool CPU 206, and communication as described above.
  • a lens CPU 103 is provided.
  • the lens CPU 103 has a program for an alignment mode for aligning.
  • the lens CPU 103 recognizes that it is connected by communication with the tool CPU 206, and shifts to the alignment mode.
  • the shake correction lens 102 can be driven and controlled based on the image plane movement information of the shake correction lens 102 sent from the tool CPU 206.
  • the lens barrel 100B includes an angular velocity sensor 105 that detects an angular velocity.
  • the detected output of the angular velocity sensor 105 removes unnecessary high frequency noise through a low-pass filter (LPF) + amplifier unit (not shown), and is input to the blur information processing unit 106.
  • LPF low-pass filter
  • the angular velocity sensor 105 does not function.
  • the blur information processing unit 106 extracts shake information necessary for image blur correction based on information from the angular velocity sensor 105.
  • the lens barrel 100B includes a posture detection unit 118 including a triaxial acceleration sensor or the like for detecting the posture of the lens barrel 100B.
  • the posture detection unit 118 detects a tilt composed of the pitching angle and the rolling angle of the lens barrel 100B based on the output of the triaxial acceleration sensor.
  • the tilt means a change in inclination between the vertical axis passing through the center of gravity of the lens barrel 100B and the optical axis, and changes positively and negatively with the optical axis position being zero.
  • the posture detection unit 118 may be built in a camera body, which will be described later, coupled via the mount unit 101.
  • the posture detection unit 118 may be of any type as long as it can detect a posture other than a triaxial acceleration sensor.
  • the lens barrel 100B also includes a target drive position calculation unit 109 that calculates a target drive position of the shake correction lens 102 based on outputs from the zoom encoder 107, the distance encoder 108, and the shake information processing unit 106.
  • the target drive position calculation unit 109 converts the image plane movement information of the shake correction lens 102 sent from the tool CPU 206 into movement amount information of the shake correction lens 102 based on the image stabilization correction coefficient information stored in the EEPROM 116.
  • the image stabilization correction coefficient information is information on a ratio between the movement amount of the shake correction lens 102 and the movement amount of the image due to the movement of the shake correction lens 102, and parameters input to the zoom encoder 107 and the distance encoder 108 are parameters. Is held as matrix information.
  • the alignment adjustment value sent from the tool CPU 206 is converted into lens position information by the target drive position calculation unit 109 and stored in the EEPROM 116.
  • the lens barrel 100B includes a tracking control calculation unit 111 that performs tracking control calculation of the shake correction lens 102 based on the target driving position information calculated by the target driving position calculation unit 109, and a tracking control calculation unit 111 from the tracking control calculation unit 111.
  • a VCM drive driver 112 that supplies current to the VCM 113 (voice coil motor) in accordance with the signal.
  • the VCM 113 is an electromagnetic drive actuator composed of a coil and a magnet, and generates a driving force by passing a current through the coil.
  • the VCM 113 drives the blur correction lens 102 in a plane perpendicular to the optical axis.
  • the drive unit is not limited to the VCM 113, but may be a PZT (lead zirconate titanate) type actuator such as SIDM (ultra-small actuator) or an STM (stepping motor).
  • the lens barrel 100B includes a position detection unit 114 that detects the position of the shake correction lens 102.
  • the position detection is generally performed using a PSD (optical position sensor).
  • PSD optical position sensor
  • the position of the blur correction lens 102 obtained by the position detection unit 114 is fed back to the tracking control calculation unit 111.
  • the position detection unit 114 is not limited to the PSD described above, and may be one that detects a change in magnetic flux density using a magnet and a Hall element.
  • the lens barrel 100B includes a shake correction SW 115 that is a SW (switch) for the photographer to select ON / OFF of driving of the shake correction lens 102.
  • the blur correction SW 115 is ON, the blur correction lens 102 is adapted to cancel image blur on the image plane (on the image sensor 202) due to blur (for example, blur caused by camera shake) of the lens barrel 100B according to the output of the angular velocity sensor 105.
  • the VCM 113 In a plane perpendicular to the optical axis.
  • the shake correction SW 115 is OFF, it is fixed by a lock mechanism (not shown) at a position where the optical axis and the center of the shake correction lens 102 coincide.
  • the lens barrel 100B includes an AF (autofocus) drive unit 117 that automatically performs focusing on a subject (not shown).
  • the lens barrel 100B includes a tilt driving unit 122 that tilt-drives the blur correction lens 102 with a point on the optical axis as a fulcrum, and a tilt drive calculation for tilting the blur correction lens 102 via the tilt driving unit 122.
  • a position detection unit 123 of the tilt drive unit 122 (hereinafter referred to as a tilt position detection unit 123) for detecting the position of the tilt drive unit 122.
  • the tilt driving unit 122 can also be configured to rotate the blur correction lens 102 in an in-plane direction including the optical axis of the photographing optical system.
  • the tilt drive calculation unit 121 instructs the tilt drive unit 122 to set a target value for the tilt drive unit 122 based on information from the EEPROM 116.
  • the value of the EEPROM 116 referred to above includes the posture information of the posture detection unit 118 when the lens barrel rotation unit 207 is tilted with the tool PC 204 of the alignment tool 200B, the zooming information of the zoom encoder 107 set at that time, and the imaging And position information of the tilt position detection unit 123 when the aberration on the element 202 is set to a predetermined value or less.
  • the information is acquired by the alignment tool 200B before factory shipment for each lens barrel 100B and written to the EEPROM 116 of the lens barrel 100B via the tool PC 206.
  • the tilt drive unit 122 receives position information of the posture detection unit 118 and the shake correction lens 102 and tilt-drives the shake correction lens 102 with a point on the optical axis of the lens barrel 100B as a fulcrum.
  • the tilt driver 122 uses a stacked PZT.
  • the tilt driving unit 122 and the tilt position detecting unit 123 are arranged at two opposing positions on the outer peripheral portion of the blur correction lens 102 so that the tilt driving unit 122 and the tilt position detection unit 123 can be driven in both directions with respect to the neutral axis of the blur correction lens 102.
  • the tilt driving unit 122 and the tilt position detecting unit 123 are arranged with respect to two axes orthogonal to each other in a plane orthogonal to the optical axis of the blur correction lens 102, thereby tilting the blur correction lens 102 in an arbitrary direction. Making it possible.
  • the tilt position detector 123 sequentially detects the position and the tilt driver 122 performs feedback control.
  • the tilt driving unit 122 is not limited to the stacked PZT, and VCM, STM, or the like can be used.
  • STM has the advantage that open control is possible and the tilt position detector 123 is not required.
  • the tilt position detection unit 123 that detects the position of the tilt drive unit 122 uses a PSD in this embodiment.
  • the tilt position detection unit 123 is not limited to the PSD, and detects a change in magnetic flux density using a magnet and a Hall element. There may be.
  • FIG. 12 shows an alignment operation flow using an alignment tool.
  • the operator attaches the lens barrel 100B to the alignment tool 200B (S100). After the mounting, the alignment tool 200B confirms the mounting of the lens barrel 100B (S201), and supplies power to the lens barrel 100B side.
  • the lens CPU 103 starts communication with the tool CPU 206 (S101).
  • the lens CPU 103 has an alignment mode program for aligning as described above.
  • the lens CPU 103 shifts to the alignment mode (S102).
  • the lens CPU 103 has process information and serial information of the lens barrel 100B, reads these information into the tool PC 206, and allows the tool PC 206 to manage the adjustment inspection process.
  • the alignment tool 200B drives the AF driving unit 117 in the lens barrel 100B to instruct to drive a focus lens group (not shown) to a predetermined focus position.
  • the focus lens group is moved to a predetermined position in accordance with the command.
  • the predetermined focus position is a predetermined start position such as an infinite position.
  • the lens barrel 100B releases an electromagnetic lock (not shown) prior to driving the blur correction lens 102 (S104).
  • the electromagnetic lock is a lock mechanism for fixing the shake correction lens 102 at a predetermined position. By releasing this electromagnetic lock, the blur correction lens 102 can be driven by the driving force of the VCM 113 and the tilt driving unit 122.
  • the alignment tool 200B reads information such as position information from the zoom encoder 107 and posture information from the posture detection unit 118 from the lens CPU 103 (S203), and acquires posture information of the lens barrel 100B.
  • the reading of the posture information is performed by the tool CPU 206 receiving it from the lens CPU 103 via the contact point of the lens-side mount unit 101.
  • the operator is instructed to move the lens barrel 100B to the normal position by operating the tool PC 204 and the lens barrel rotating unit 207 through the monitor of the tool PC 204.
  • the lens barrel 100B starts the follow-up control with the center position information of the EEPROM 116 as the target drive position of the shake correction lens 102. After shifting to the center position (S105), a signal indicating that the alignment work can be started is sent to the tool CPU 206 of the alignment tool 200B.
  • the alignment tool 200B starts alignment when it receives a startable signal from the lens barrel 100B (S206).
  • the alignment is performed in accordance with the attitude of the lens barrel 100B, with the optical axis as the rotation axis, positive position (0 degree), +45 degrees, +90 degrees, +135 degrees, +180 degrees, +225 degrees, +270 degrees (-90 degrees), +315 degrees (-45 degrees), respectively.
  • the vertical direction is performed at five positions, ie, the normal position, the optical axis is 45 degrees downward, 90 degrees downward, 45 degrees upward, and 90 degrees upward.
  • the zooming position is not limited to the three positions of the wide-angle end state W, the intermediate focal length state M, and the telephoto end state T, and may be increased or decreased as appropriate.
  • the operator observes the degree of aberration from the image of the light projected from the light emitting unit 201 through the lens barrel 100B and incident on the image sensor 202 via the monitor of the tool PC 204, and the aberration is within a predetermined range. Is determined (S207). When the aberration is not within the predetermined range (S207, No), the operator operates the tilt drive amount input unit 208 (S208), and tilt-drives the shake correction lens 102 to the best aberration position where the aberration is minimized (S106). ). The tilt drive amount input unit 208 outputs the tilt drive amount of the blur correction lens 102 that is tilt-driven through the tool PC 206 to the lens barrel 100B side.
  • the tilt drive amount information sent from the tool CPU 206 is converted into the position of the shake correction lens 102 by the tilt drive calculation unit 121, and the shake correction lens 102 is tilt driven via the tilt drive unit 122.
  • the tilt position is corrected (S106).
  • a signal for determining the alignment correction position is transmitted to the lens CPU 103 side (S209).
  • the lens CPU 103 Upon receiving the signal for determining the alignment correction position, the lens CPU 103 transmits the alignment position of the blur correction lens 102, the lens posture information at that time, and the zoom encoder information to the lens CPU 103 and stores them in a RAM (not shown) (S107). ).
  • the lens CPU 103 stores the tilt position information at each position in the RAM (S107).
  • the lens CPU 103 may perform tilt drive control by interpolating position information corresponding to the posture of the lens barrel 100B at each time point from the stored known information.
  • FIG. 13 is a schematic configuration diagram of a camera equipped with the lens barrel 100B according to the third embodiment.
  • FIG. 13 light from a subject (not shown) is collected by the lens barrel 100 ⁇ / b> B, reflected by the quick return mirror 12, and imaged on the focusing screen 13.
  • the subject image formed on the focusing screen 13 is reflected by the pentaprism 14 a plurality of times, and can be viewed as an erect image by the photographer via the eyepiece lens 15.
  • the release button is fully pressed, the quick return mirror 12 is flipped upward, the shutter (not shown) operates, the light from the subject is received by the image sensor 16, and a photographed image is acquired and recorded in a memory (not shown). .
  • the posture or blur of the lens barrel 100B or the camera 10 is detected by the posture detection unit 118 or the angular velocity sensor 105 built in the lens barrel 100B and transmitted to the lens CPU 103.
  • the lens CPU 103 corrects the aberration caused by the image blur or the posture change on the image sensor 16 by driving the tilt correcting lens 102 in the direction orthogonal to the optical axis and tilt driving through the VCM 113 and the tilt driving unit 122 shown in FIG.
  • FIG. 14 is a diagram showing an operation flow of aberration correction when the blur correction SW 115 is ON.
  • the lens barrel 100B is attached to the camera 10 shown in FIG. 13, when the release of the camera 10 is half-pressed (S301), power supply to the blur correction lens 102 is started and a blur correction sequence is started. .
  • the electromagnetic lock that mechanically regulates the movement of the vibration reduction lens 102 is released (S302).
  • the blur correction lens 102 is driven to the control center position (S303).
  • the center position at this time is information from the position detection unit 114 of the shake correction lens 102 and is not the position of the tilt position detection unit 123.
  • Blur correction is performed, exposure is performed at a predetermined shutter speed (S310), and blur correction is stopped (S311). After that, if the half-press timer is in operation (S312: Yes), anti-vibration and tilt drive after S304 is performed, and if the half-press timer has expired (No, S312), the electromagnetic lock is driven and the blur correction lens is driven. 102 is mechanically held (S313), and the operation flow ends.
  • FIG. 15 is a diagram showing an aberration correction operation flow when the blur correction SW is OFF.
  • the current attitude information of the lens barrel 100B is read by the lens CPU 103 (S404).
  • the blur correction lens 102 is tilt-driven to the best aberration position in the current posture of the lens barrel 100B (S405). This best aberration position differs depending on the current attitude of the lens barrel 100B detected by the attitude detector 118, the zoom encoder 107, etc., as in the case where the blur correction SW 115 is ON, and the attitude is detected by the lens CPU 103.
  • the best aberration position of the blur correction lens 102 for tilt correction is calculated. After the tilt drive and the vibration reduction lens 102 are stopped (S406), exposure is performed at a predetermined shutter speed (S407).
  • this embodiment has the following effects.
  • the position of the vibration reduction lens 102 that minimizes the aberration generated on the imaging surface by the imaging optical system including the plurality of lens groups 104 and 104 included in the lens barrel 100B is set for each lens barrel 100B.
  • photographing is performed after moving the blur correction lens 102 to the best aberration position in the posture.
  • the aberrations that differ depending on the lens barrel 100B are adjusted for each lens barrel 100B, the aberration of each lens barrel can be minimized, and high imaging performance can be achieved.
  • the present invention is not limited to the third embodiment described above, and various modifications and changes as described below are possible, and these are also within the scope of the present invention.
  • other lenses can be used as long as they are tiltable with respect to the optical axis, and for example, an aberration correction lens may be separately provided.
  • the shake correction lens may be pulled back (centered) to a position where the aberration stored in the storage unit becomes small. This is because by taking back the blur correction lens to a position where the aberration becomes small, it is possible to photograph with good optical characteristics.
  • the drive range in which the shake correction lens can be driven can be substantially increased.
  • the pulling back of the blur correction lens may be performed before imaging by the imaging unit (before exposure), or may be performed when imaging by the imaging unit (during exposure). Further, the blur correction lens is not limited to a lens orthogonal to the optical axis.
  • the lens that corrects the aberration before exposure it is also preferable to drive the lens that corrects the aberration before exposure to correct the aberration and stop the aberration that corrects the aberration during the exposure. This is because the lens that corrects aberration during exposure is stopped, so that unnecessary image blur can be suppressed.
  • the alignment tool is attached to the lens barrel, but the present invention is not limited to this.
  • the camera may have the function of an alignment tool.
  • the image pickup device of the alignment tool can be used also as the image pickup device of the camera.
  • the operator operates the tilt drive amount input unit to drive the shake correction lens to the best aberration position where the aberration is minimized, but the present invention is not limited to this.
  • the tool CPU may automatically drive the blur correction lens to the best aberration position.
  • the normal position (0 degree), +45 degrees, +90 degrees, +135 degrees, +180 degrees, +225 degrees, +270 degrees ( ⁇ 90 degrees), and +315 degrees with the optical axis as the rotation axis. ( ⁇ 45 degrees) respectively rotated
  • the vertical direction is the positive position
  • the zooming positions are the wide angle end state W, the intermediate focal length state M, the telephoto end state T
  • alignment was performed at three positions (total of 120 positions), the present invention is not limited to this. For example, it is possible to correct aberrations with higher accuracy by measuring in a higher posture.
  • FIG. 16 an XYZ orthogonal coordinate system is provided in FIG. 16 for ease of explanation and understanding.
  • the normal position the direction toward the left side as viewed from the photographer at the camera position (hereinafter referred to as the normal position) when the photographer shoots a horizontally long image with the optical axis A being horizontal is defined as the X plus direction.
  • the direction toward the upper side in the normal position is defined as the Y plus direction.
  • the direction toward the subject at the normal position is taken as the Z direction.
  • FIG. 16 shows a state in which the lens barrel 100C is attached to the alignment tool 200C, but the above coordinate system assumes that the lens barrel 100C is attached to a camera body (not shown). Indicates the direction. Further, in the lens shown in the figure, the straight arrow indicates the direction of shift driving, and the arc arrow indicates the direction of tilt driving.
  • FIG. 16 is a system configuration diagram of the lens barrel 100C and an alignment tool 200C for aligning the lens barrel 100C.
  • the alignment tool 200C is attached to the light emitting unit 201 that projects collimated light from the front end side of the lens barrel 100C, and the mount unit 101 of the lens barrel 100C, and is projected from the light emitting unit 201 to the lens barrel.
  • the image sensor 202 receives light that has passed through 100C and converts the light into an electrical signal by photoelectric conversion.
  • the image pickup element 202 is disposed in a housing simulating a camera body.
  • the alignment tool 200C converts the electrical signal obtained from the image sensor 202 into image information, and converts the aberration information based on the image information obtained by the image processing unit 203.
  • a tool PC 204 displayed above.
  • the alignment tool 200C includes a tilt drive amount input unit 208 such as a joystick, which is input by an operator by looking at the aberration value displayed on the monitor of the tool PC 204.
  • a tilt drive amount input unit 208 such as a joystick
  • the blur correction lens 102 is tilt driven in the lens barrel 100C as will be described later.
  • the alignment tool 200C further includes a tool CPU (including a communication control unit) 206 that transmits image plane movement amount information of the shake correction lens 102 to the lens CPU 103 based on a signal from the tilt drive amount input unit 208. This transmission is performed via the mount portion 101 of the lens barrel 100C.
  • the tool CPU 206 also supplies power for driving the lens CPU 103 and the shake correction lens 102. Further, the tool CPU 206 also takes in information on the zoom encoder 107 in the lens barrel 100C and information on the amount of extension of the lens group 104 (information on the distance encoder 108) when performing focusing from the lens CPU 103.
  • the lens barrel 100C includes, as an imaging optical system, a blur correction lens 102 that corrects image blur and a lens group 104 that moves during zooming, and further communicates with the tool CPU 206 as described above.
  • a lens CPU 103 is provided.
  • the lens CPU 103 has a program for an alignment mode for aligning.
  • the lens CPU 103 recognizes that it is connected by communication with the tool CPU 206, and shifts to the alignment mode.
  • the shake correction lens 102 can be driven and controlled based on the image plane movement information of the shake correction lens 102 sent from the tool CPU 206.
  • the lens barrel 100C further includes an angular velocity sensor 105 that detects the angular velocity.
  • the detected output of the angular velocity sensor 105 passes through an LPF + amplifier section (not shown), removes unnecessary high frequency noise, and is input to the blur information processing section 106.
  • the angular velocity sensor 105 does not function in the alignment mode.
  • the blur information processing unit 106 extracts blur information to be corrected based on information from the angular velocity sensor 105.
  • the lens barrel 100C includes a zoom encoder 107, a distance encoder 108, and a target drive position calculation unit 109 that calculates a target drive position of the shake correction lens 102 based on outputs from the shake information processing unit 106. Prepare.
  • the lens barrel 100C performs a tracking control calculation of the blur correction lens 102 based on the target driving position information calculated by the target driving position calculation unit 109, and outputs a driving signal corresponding to the calculation result.
  • 111 and a VCM drive driver 112 that supplies current to the VCM 113 (voice coil motor) in accordance with a drive signal from the follow-up control calculation unit 111.
  • the VCM 113 is an electromagnetic drive actuator composed of a coil and a magnet, and generates a driving force by passing a current through the coil.
  • the blur correction lens 102 is driven to shift in a plane perpendicular to the optical axis A by the driving force generated in the VCM 113.
  • the drive of the blur correction lens 102 is not limited to the VCM 113, but may be a PZT (lead zirconate titanate) type actuator such as SIDM (ultra-small actuator) or an STM (stepping motor).
  • the lens barrel 100C includes a position detection unit 114 that detects the position of the vibration reduction lens 102 in a plane perpendicular to the optical axis A. Position information of the blur correction lens 102 obtained by the position detection unit 114 is fed back to the tracking control calculation unit 111.
  • position detection is performed by a method using a PSD (optical position sensor).
  • the position detection unit 114 is not limited to the PSD described above, and may be a position detection unit 114 that detects a change in magnetic flux density using a magnet and a Hall element.
  • the lens barrel 100C includes a shake correction SW 115 that is a switch (switch) that enables the photographer to select whether or not shake correction is ON / OFF.
  • a shake correction SW 115 that is a switch (switch) that enables the photographer to select whether or not shake correction is ON / OFF.
  • the blur correction lens 102 moves in a plane perpendicular to the optical axis so as to cancel the blur according to the output of the angular velocity sensor 105.
  • the blur correction lens 102 is fixed by a lock mechanism (not shown) at a position where the center of the optical axis A and the center of the blur correction lens 102 coincide.
  • the lens barrel 100C further includes an EEPROM 116 serving as a storage unit, a RAM (not shown), and an AF driving unit 117 that performs focusing.
  • the lens barrel 100 ⁇ / b> C tilts the shake correction lens 102 around an axis substantially orthogonal to the optical axis A, and tilts the shake correction lens 102 via the tilt drive unit 122.
  • a tilt drive calculation unit 121 for detecting the position of the tilt drive unit 122 (hereinafter referred to as a tilt position detection unit 123).
  • the tilt drive calculation unit 121 calculates a target value for tilting the blur correction lens 102 based on the information stored in the EEPROM 116 and instructs the tilt drive unit 122 of the target value.
  • the information of the EEPROM 116 referred to above includes zooming information of the zoom encoder 107 at each focal length when the lens group 104 of the lens barrel 100C attached to the alignment tool 200C is zoomed, and aberrations on the image sensor 202 are predetermined. And tilt position information of the tilt position detection unit 123 when it is reduced to be equal to or less than the value. These pieces of information are information acquired by the alignment tool 200C before shipment from the factory for each lens barrel 100C and written to the EEPROM 116 of the lens barrel 100C via the tool PC 206.
  • the tilt drive unit 122 receives the target value from the tilt drive calculation unit 121 and tilt-drives the blur correction lens 102 around an axis substantially orthogonal to the optical axis A of the lens barrel 100C.
  • the tilt drive unit 122 of this embodiment uses a stacked PZT.
  • the blur correction lens 102 is moved by 14 ⁇ m about an axis substantially orthogonal to the optical axis A. Is required.
  • the laminated PZT can be easily displaced by about 14 ⁇ m. Needless to say, even if the tilt correction angle is the same 10 ', if the diameter of the blur correction lens 102 is reduced, the drive amount of the tilt drive unit 122 may be reduced.
  • the tilt driving unit 122 and the tilt position detecting unit 123 can be tilted in any direction by arranging the tilt driving unit 122 and the tilt position detecting unit 123 with respect to two axes substantially orthogonal to the optical axis A of the blur correcting lens 102. It is said.
  • the tilt direction indicates the Z direction, but tilt driving is also performed in the X direction.
  • the tilt position detector 123 sequentially detects the position and feeds back the position detection information to the tilt drive calculator 121 to control the drive at the tilt driver 122.
  • the tilt driving unit 122 is not limited to the stacked PZT, and VCM, STM, or the like can also be used. Since STM can perform open control, there is an advantage that the tilt position detector 123 is not required.
  • the tilt position detection unit 123 performs position detection by a method using PSD in this embodiment.
  • the tilt position detection unit 123 is not limited to PSD, and may detect fluctuations in magnetic flux density using a magnet and a Hall element. Good.
  • FIG. 17 is a flowchart showing a processing procedure during alignment.
  • the lens barrel 100C is attached to the alignment tool 200C (S100).
  • the alignment tool 200C confirms the mounting of the lens barrel 100C (S201), and supplies power to the lens barrel 100C side.
  • the lens CPU 103 starts communication with the tool CPU 206 (S101).
  • the lens CPU 103 has an alignment mode program for alignment as described above.
  • the lens CPU 103 detects that the lens CPU 103 is attached to the alignment tool 200C, the lens CPU 103 shifts to the alignment mode (S102). ).
  • the lens CPU 103 has process information and serial information of the lens barrel 100C.
  • the tool CPU 206 can manage the adjustment inspection process (S202).
  • the alignment tool 200C instructs the AF group 117 in the lens barrel 100C to drive the lens group 104 to a predetermined focus position.
  • the lens group 104 is moved to a predetermined position in accordance with the command (S103).
  • the predetermined position in the focus is a predetermined start position such as an infinite position.
  • the lens barrel 100C releases an electromagnetic lock (not shown) prior to driving the blur correction lens 102 (S104).
  • the electromagnetic lock is a lock mechanism for fixing the shake correction lens 102 at a predetermined position. By releasing this electromagnetic lock, the blur correction lens 102 can be driven by the driving force of the VCM 113.
  • the alignment tool 200C reads the zoom information recognized by the lens CPU 103 (S203), and determines whether it is at the T end (S204). Reading of the zoom information is performed when the tool CPU 206 receives the value of the zoom encoder 107 of the lens barrel 100C through communication from the contact point of the lens-side mount unit 101. If the lens barrel 100C is not at the T end (S204, No), for example, the operator is instructed to move the lens barrel 100C to the T end through the monitor of the tool PC 204 (S205).
  • the lens barrel 100C starts the follow-up control using the center position information of the EEPROM 116 as the target drive position of the shake correction lens 102. After shifting to the center position (S105), a signal indicating that the alignment work can be started is sent to the alignment tool 200C side.
  • the alignment tool 200C starts alignment when it receives a startable signal from the lens barrel 100C (S206). Alignment is performed at at least two locations according to the focal length of the lens barrel 100C. In the present embodiment, alignment is performed at three positions at a T (tele) end, a W (wide) end, and an intermediate M (middle) position.
  • the alignment tool 200 ⁇ / b> C observes the degree of aberration from the image of the light projected from the light emitting unit 201 through the lens barrel 100 ⁇ / b> C and incident on the image sensor 202 via the monitor of the tool PC 204. It is determined whether it is within the range (S207). If the aberration is not within the predetermined range (S207, No), the operator operates the tilt drive amount input unit 208 (S208), and the blur correction lens 102 is driven to the best aberration position where the aberration is minimized.
  • the tilt drive amount input unit 208 outputs the drive amount of the driven blur correction lens 102 to the lens barrel 100C side.
  • the tilt drive amount information sent from the tool CPU 206 is converted into the position of the shake correction lens 102 in the tilt drive calculation unit 121. Then, the shake correction lens 102 is tilt-driven via the tilt drive unit 122, and the tilt position of the shake correction lens 102 is corrected (S106).
  • a signal for determining the alignment correction position is transmitted to the lens CPU 103 side (S209).
  • the lens CPU 103 Upon receiving the signal for determining the alignment correction position, the lens CPU 103 stores the tilt position information, which is the alignment position of the blur correction lens 102, in the RAM (not shown) as the best aberration position information at the T end (S107).
  • the lens CPU 103 stores the tilt position information at each position in the RAM as the best aberration position information (S107).
  • FIG. 18 is an explanatory diagram showing the relationship between the focal length from the W end to the T end and the alignment position that is the best aberration position.
  • alignment positions black circles
  • the alignment position can be obtained by setting an interpolation prediction value (broken circle) on the line connecting the three points.
  • the tilt position information at all zoom positions is stored in the EEPROM 116 as the best aberration position information of the shake correction lens 102 (S109). Then, the lens barrel 100C is removed from the alignment tool 200C (S110), and the alignment process is terminated.
  • FIG. 19 is a schematic configuration diagram of a camera 10A equipped with the lens barrel 100C of the present embodiment.
  • the camera 10 ⁇ / b> A light from a subject (not shown) is collected by the lens barrel 100 ⁇ / b> C, reflected by the quick return mirror 12, and imaged on the focusing screen 13.
  • the subject image formed on the focusing screen 13 is reflected by the pentaprism 14 a plurality of times and can be observed as an erect image by the photographer via the eyepiece 15.
  • the release button is fully pressed, the quick return mirror 12 is flipped upward, a shutter (not shown) is operated, and light from the subject is received by the image sensor 16.
  • a captured image is acquired by the image sensor 16, subjected to predetermined image processing, and then recorded in a memory (not shown).
  • the release button when the release button is half-pressed, blurring of the lens barrel 100C or the camera 10A is detected by the angular velocity sensor 105 built in the lens barrel 100C and transmitted to the lens CPU 103. Also, zooming information of the zoom encoder 107 is transmitted to the lens CPU 103.
  • the lens CPU 103 shifts the blur correction lens 102 into a plane perpendicular to the optical axis A via the VCM 113 shown in FIG. By tilt driving about an axis substantially orthogonal to the axis A, the image blur on the image sensor 16 and the aberration due to the eccentric component of the lens barrel 100C are corrected.
  • FIG. 20 is a flowchart showing an aberration correction processing procedure when the blur correction SW 115 is ON.
  • the electromagnetic lock that mechanically regulates the movement of the blur correction lens 102 is released (S302), and then the blur correction lens 102 is driven to the control center position (S303).
  • the control center position at this time is information from the position detection unit 114 of the blur correction lens 102, and not information from the tilt position detection unit 123.
  • the shift driving and tilting of the blur correction lens 102 are performed so that the aberration on the image pickup device 16 surface is minimized and the image on the image surface is stopped.
  • Drive control is started.
  • the blur correction lens 102 is driven and controlled so as to be in the best aberration position at the current zoom position of the lens barrel 100C (S304). Then, it waits for the release of the camera to be fully pressed in this state (S305).
  • the blur correction lens 102 is tilt-driven to the best aberration position by the focal length information from the zoom encoder 107 while the quick return mirror (not shown) is flipped up. (S306). Then, after being tilt-driven to the best aberration position, blur correction is started (S307).
  • Blur correction is performed, exposure is performed at a predetermined shutter speed (S308), and blur correction is stopped (S309). Thereafter, if the half-press timer is operating (S310, Yes), shake correction and tilt drive after S304 are performed, and if the half-press timer has expired (S310, No), the electromagnetic lock is driven (S311). The operation flow ends. Note that when the half-press timer is in operation, driving for blur correction is performed, but when the half-press timer is expired, the electromagnetic lock is driven and the blur correction lens 102 is mechanically held.
  • FIG. 21 is a flowchart showing the aberration correction processing procedure when the blur correction SW is OFF.
  • the lens barrel 100C is mounted on a camera (not shown)
  • the release of the camera is half-pressed (S401, Yes)
  • the release is fully pressed (S402, Yes)
  • the quick return mirror (not shown) Jumping up and the electromagnetic lock is released (S403).
  • the zoom information of the current lens barrel 100C is read by the lens CPU 103 (S404).
  • the blur correction lens 102 is tilt-driven to the best aberration position at the current zoom position of the lens barrel 100C (S405).
  • This best aberration position differs depending on the value of the zoom encoder 107 as in the case of the above-described blur correction SW 115 being ON.
  • the intermediate position is the position calculated and interpolated in S108 in FIG.
  • exposure is performed at a predetermined shutter speed (S406), and then the electromagnetic lock is driven (S407), and the operation flow ends.
  • the fourth embodiment described above has the following effects. (1) The position of the blur correction lens 102 at which the aberration generated on the imaging surface is minimized by the photographing optical system including the plurality of lens groups 104 included in the lens barrel 100C is set to the focal length for each lens barrel 100C. The corresponding best aberration position is stored. At the time of shooting, shooting is performed after moving the blur correction lens 102 to the best aberration position at the focal length. In this way, the aberrations that differ depending on the lens barrel 100C are adjusted for each lens barrel 100C, so that the aberration of each lens barrel can be minimized.
  • the best aberration position fluctuates so as to reduce the aberration according to the focal length, it is possible to photograph at the position where the aberration performance is the best in terms of optical performance at each focal length.
  • the existing blur correction lens 102 is used, it is not necessary to newly add a component for aberration correction.
  • the blur correction lens 102 may be pulled back (centered) to an inclined position where the aberration stored in the storage unit is reduced. This is because, by pulling back the blur correction lens 102 to an inclined position where the aberration becomes small, it is possible to take a picture with good optical characteristics.
  • the shake correction lens back to the tilt position where the aberration is reduced the drive range in which the shake correction lens 102 can be substantially tilted can be increased.
  • the blur correction lens 102 may be pulled back before imaging (before exposure) by the imaging unit, or may be performed when imaging by the imaging unit (during exposure). Further, the blur correction lens 102 is not limited to a lens that is substantially orthogonal to the optical axis A. (Fifth embodiment)
  • FIG. 22 is a configuration diagram in the case where aberration is corrected by the lens 119 disposed at the subsequent stage of the blur correction lens 102.
  • the lens barrel 100D and a part of the alignment tool are illustrated, and the same reference numerals are given to the same parts as those in the fourth embodiment. Further, illustration of other configurations, electrical connection paths, and the like is omitted (the same applies to the following embodiments).
  • the shake correction lens 102 includes a VCM 113 that shift-drives the shake correction lens 102 in a plane perpendicular to the optical axis A, and a position that detects the position of the shake correction lens 102 in a plane perpendicular to the optical axis A.
  • the lens 119 disposed at the rear stage of the blur correction lens 102 includes a tilt driving unit 122 that tilts the lens 119 about an axis substantially orthogonal to the optical axis A, and a tilt for detecting the position of the tilt driving unit 122.
  • a position detection unit 123 is provided to the lens 102.
  • blur correction is performed by shift driving of the blur correction lens 102, and aberration correction is performed by tilt driving of the lens 119.
  • the lens barrel 100D uses the tilt driving unit 122 to tilt the lens 119 based on the zoom information detected by the zoom encoder 107, thereby correcting aberrations as in the first embodiment described above. Can do.
  • a configuration may be provided that includes a posture sensor (not shown) for detecting the posture of the lens barrel 100D (not shown).
  • the tilt driving unit 122 can correct the aberration by tilt driving the lens 119 based on the posture information detected by the posture sensor and the position information of the blur correction lens 102.
  • the aberration may be corrected by driving the lens 119 disposed downstream of the blur correction lens 102.
  • FIG. 23 is a configuration diagram in the case where aberration is corrected by the lens 119 disposed at the subsequent stage of the blur correction lens 102.
  • the shake correction lens 102 includes a VCM 113 that shift-drives the shake correction lens 102 in a plane perpendicular to the optical axis A, and a position that detects the position of the shake correction lens 102 in a plane perpendicular to the optical axis A.
  • the lens 119 disposed at the rear stage of the blur correction lens 102 detects the position of the lens 119 in the plane perpendicular to the optical axis A and the VCM 113A that shifts the lens 119 in the plane perpendicular to the optical axis A.
  • a position detecting unit 114A In the configuration of the sixth embodiment, the lens barrel 100E shown in FIG.
  • the lens barrel 100E uses the shift drive unit 113 to shift the lens 119 based on the zoom information detected by the zoom encoder 107, thereby correcting aberrations as in the first embodiment described above. Can do.
  • the blur correction is performed by the shift driving of the blur correction lens 102, and the aberration is corrected by the shift driving of the lens 119.
  • the lens other than the blur correction lens 102 is driven to shift to correct the aberration, the same effect as that of the first embodiment can be obtained.
  • the configuration of the sixth embodiment may be configured to include a posture sensor (not shown) for detecting the posture of the lens barrel 100E (not shown).
  • a posture sensor for detecting the posture of the lens barrel 100E (not shown).
  • VCM drive driver (not shown) that drives the VCM 113A
  • aberration correction is performed by shifting the lens 119 based on the posture information detected by the posture sensor and the position information of the shake correction lens 102. Can do.
  • the shake correction may be performed by tilt driving the shake correction lens 102 about an axis substantially orthogonal to the optical axis A.
  • FIG. 24 is a configuration diagram in the case where the blur correction lens 102 is tilt-driven to perform blur correction and shift-driven to correct aberrations.
  • the basic configuration of the lens barrel 100F shown in FIG. 24 is the same as that shown in FIG. 16, but the function of the blur correction lens 102 is different from that shown in FIG.
  • the blur correction lens 102 of the present embodiment detects a position of the blur correction lens 102 in a plane substantially perpendicular to the optical axis A of the VCM 113 that shifts the blur correction lens 102 in a plane perpendicular to the optical axis A.
  • the blur correction lens 102 includes a tilt drive unit 122 that tilts the blur correction lens 102 about an axis substantially orthogonal to the optical axis A, and a tilt position detection unit 123 that detects the position of the tilt drive unit 122. Prepare.
  • the lens barrel 100F of the seventh embodiment blur correction is performed by tilt driving of the blur correction lens 102, and aberration correction is performed by shift driving of the blur correction lens 102.
  • the lens barrel 100F shown in FIG. 24 is the same as that of the first embodiment described above, such as the zoom encoder 107 (see FIG. 2) and the EEPROM 116 (see FIG. 2) for detecting the focal length. It has the composition of.
  • the lens barrel 100F uses the shift drive unit 113 to shift the lens 102 based on the zoom information detected by the zoom encoder 107, thereby correcting aberrations as in the first embodiment. Can do.
  • a configuration may be provided that includes a posture sensor (not shown) for detecting the posture of the lens barrel 100F (not shown).
  • a VCM drive driver (not shown) that drives the VCM 113A, aberration correction is performed by driving the blur correction lens 102 based on the posture information detected by the posture sensor and the position information of the blur correction lens 102. It can be carried out.
  • the aberration may be corrected by driving the lens 119 disposed downstream of the blur correction lens 102 to shift.
  • FIG. 25 is a configuration diagram in the case where aberration is corrected by the lens 119 disposed at the subsequent stage of the blur correction lens 102.
  • the shake correction lens 102 includes a tilt drive unit 122 that tilts the shake correction lens 102 about an axis substantially orthogonal to the optical axis A, and a tilt position detection unit 123 for detecting the position of the tilt drive unit 122.
  • the lens 119 disposed at the rear stage of the blur correction lens 102 has a VCM 113 that shifts the lens 119 in a plane perpendicular to the optical axis A, and a position in a plane substantially orthogonal to the optical axis A of the lens 119.
  • the lens barrel 100G shown in FIG. 25 is the same as the first embodiment described above, such as the zoom encoder 107 (see FIG. 2) and the EEPROM 116 (see FIG. 2) for detecting the focal length. It has the composition of.
  • the lens barrel 100G uses the shift drive unit 113 to shift the lens 119 based on the zoom information detected by the zoom encoder 107, thereby correcting aberrations as in the first embodiment. Can do.
  • the blur correction is performed by the tilt driving of the blur correction lens 102, and the aberration is corrected by the shift driving of the lens 119.
  • the lens other than the blur correction lens 102 is driven to shift and correct the aberration, the same effect as the fourth embodiment can be obtained.
  • a configuration may be provided that includes a posture sensor (not shown) for detecting the posture of the lens barrel 100G (not shown).
  • a VCM drive driver (not shown) that drives the VCM 113, aberration correction is performed by shifting the lens 119 based on the posture information detected by the posture sensor and the position information of the blur correction lens 102. Can do. (Ninth embodiment)
  • blur correction and aberration correction may be performed by tilt driving the blur correction lens 102 about an axis substantially orthogonal to the optical axis A.
  • FIG. 26 is a configuration diagram in the case where blur correction and aberration correction are performed by tilt driving of the blur correction lens 102.
  • the basic configuration of the lens barrel 100H shown in FIG. 26 is the same as that in FIG. 16, but the function of the blur correction lens 102 is different from that in FIG. 16 by arrows.
  • the shake correction lens 102 includes a tilt drive unit 122 that tilts the shake correction lens 102 about an axis substantially orthogonal to the optical axis A, and a tilt position detection unit 123 for detecting the position of the tilt drive unit 122.
  • the lens barrel 100H shown in FIG. 26 is the same as that of the first embodiment described above, such as the zoom encoder 107 (see FIG. 2) and the EEPROM 116 (see FIG. 2) for detecting the focal length. It has the composition of.
  • the lens barrel 100H uses the tilt drive unit 122 to perform the tilt correction of the lens 102 based on the zoom information detected by the zoom encoder 107, thereby correcting the aberration as in the first embodiment. Can do.
  • blur correction is performed by tilt driving of the blur correction lens 102
  • aberration correction is performed by tilt driving of the blur correction lens 102.
  • a configuration (not shown) may be provided that includes a posture sensor (not shown) for detecting the posture of the lens barrel 100H.
  • the tilt driving unit 122 can correct the aberration by tilt driving the blur correction lens 102 based on the posture information detected by the posture sensor and the position information of the blur correction lens 102.
  • the aberration may be corrected by tilt driving the lens 119 disposed at the subsequent stage of the blur correction lens 102.
  • FIG. 27 is a configuration diagram in the case where aberration is corrected by the lens 119 disposed at the subsequent stage of the blur correction lens 102.
  • the shake correction lens 102 includes a tilt drive unit 122 that tilts the shake correction lens 102 about an axis substantially orthogonal to the optical axis A, and a tilt position detection unit 123 for detecting the position of the tilt drive unit 122.
  • the lens 119 disposed at the rear stage of the blur correction lens 102 includes a tilt driving unit 122A for tilting the lens 119 about an axis substantially orthogonal to the optical axis A, and a tilt for detecting the position of the tilt driving unit 122A.
  • a position detector 123A is detecting the position of the tilt driving unit 122A.
  • the lens barrel 100I shown in FIG. 27 is the same as that of the first embodiment described above, such as the zoom encoder 107 (see FIG. 2) and the EEPROM 116 (see FIG. 2) for detecting the focal length. It has the composition of.
  • the lens barrel 100I uses the tilt drive unit 122A to tilt-drive the lens 119 based on the zoom information detected by the zoom encoder 107, thereby correcting aberrations as in the first embodiment described above. Can do.
  • the shake correction is performed by the tilt drive of the shake correction lens 102, and the aberration is corrected by the tilt drive of the lens 119.
  • the same effect as the fourth embodiment can be obtained.
  • a configuration may be provided that includes an orientation sensor (not shown) for detecting the orientation of the lens barrel 100I (not shown).
  • the tilt driving unit 122A can correct the aberration by tilt driving the lens 119 based on the posture information detected by the posture sensor and the position information of the blur correction lens 102.
  • the present invention can be modified and changed as described below, and these are also within the scope of the present invention.
  • the alignment tool 200C is attached to the lens barrel 100, but the present invention is not limited to this.
  • the camera may have the function of the alignment tool 200C.
  • the image pickup device 202 of the alignment tool can also be used as the image pickup device of the camera.
  • the operator operates the tilt drive amount input unit 208 to drive the blur correction lens 102 to the best aberration position where the aberration is minimized. It is not limited to this.
  • the tool CPU 206 may automatically drive the blur correction lens 102 to the best aberration position.
  • the alignment is measured at the T end, M, and W end, but the present invention is not limited to this. By measuring at three or more locations, it is possible to correct aberrations with higher accuracy. In addition, when the aberration is almost within the allowable range over the entire zoom range and the aberration becomes remarkably large at a specific position, the alignment may be measured only at that position.
  • Embodiments of the imaging apparatus according to the present invention are not limited to the above-described fourth to tenth embodiments. For example, a lens barrel, a camera body, a still camera, a video camera, and a mobile phone with a built-in camera This includes all optical equipment equipped with a photographic optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

 好適な撮影を実現し得るレンズ鏡筒を提供する。  本発明に係わるレンズ鏡筒(100)は、第1光学系(104)に対して相対的に移動可能な第2光学系(102)を有する撮影光学系(102,104)と、撮影光学系(102,104)の収差が低減するように、第1光学系(104)に対して第2光学系(102)を相対的に駆動させる駆動部(113)とを含むことを特徴とする。

Description

レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置
 本発明は、レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置に関するものである。
 近年、カメラのレンズ鏡筒等の光学装置では、高性能化や高変倍率比への要求が高まってきている。このような要求が高度になると、レンズ鏡筒を構成するレンズ等の部品やその組み立て精度を向上させるだけでは、高度な要求を実現することが困難になりつつある。そこで、光学性能を向上させるために、レンズ鏡筒を構成するレンズ等の偏心成分を光軸に合わせ込む調芯がレンズ鏡筒組み立て時に行われている(例えば、特許文献1参照)。
特開2003-43328号公報
 しかし、従来の調芯は、レンズ鏡筒の姿勢が正位置(撮影者が光軸を水平として横長の画像を撮影する場合のカメラの位置)にあるときに行われる。このため、レンズ鏡筒の姿勢を正位置から変更して撮影すると、レンズ鏡筒内の各レンズ等の部品に偏心が生じて収差が発生し、結像性能を悪化させるという問題がある。
 また、ズームレンズの場合は焦点距離が変化すると偏心成分も変化し、焦点距離に応じて調芯が必要になるが、各ズーム位置で調芯を行うことは困難であった。このため、焦点距離に応じて収差が発生し、高い結像性能を得ることは困難なものとなっていた。
 本発明の課題は、好適な撮像を実現し得るレンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置を提供することにある。
 本発明は、以下のような解決手段により前記課題を解決する。
 請求項1に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、前記撮影光学系の焦点距離を検出した後であって前記撮影光学系による像を撮像する前に、前記撮影光学系の収差が低減するように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部と、を含むことを特徴とするレンズ鏡筒である。
 請求項2に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、撮影をするときの姿勢を検出した後であって前記撮影光学系による像を撮像する前に、前記撮影光学系の収差が低減するように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部と、を含むことを特徴とするレンズ鏡筒である。
 請求項3に記載の発明は、請求項1又は請求項2に記載されたレンズ鏡筒であって、前記駆動部は、前記撮影光学系の光軸と交差する方向に前記第2光学系を駆動することを特徴とする。
 請求項4に記載の発明は、請求項1又は請求項2に記載されたレンズ鏡筒であって、前記駆動部は、前記第1光学系に対して前記第2光学系を相対的に傾斜させるように駆動することを特徴とする。
 請求項5に記載の発明は、請求項1から請求項4までの何れか1項に記載されたレンズ鏡筒であって、前記撮影光学系における収差量が抑えられる、前記第2光学系の位置情報を記憶可能な記憶部を含み、前記駆動部は、前記記憶部に記憶された位置情報に基づき、前記第2光学系を駆動することを特徴とする。
 請求項6に記載の発明は、請求項5に記載されたレンズ鏡筒であって、前記記憶部は、前記撮影光学系の焦点距離に応じた前記第2光学系の位置情報を記憶しており、前記駆動部は、前記焦点距離の情報と、該記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動することを特徴とする。
 請求項7に記載の発明は、請求項5に記載されたレンズ鏡筒であって、前記記憶部は、撮影をするときの姿勢に応じた前記第2光学系の位置情報を記憶しており、前記駆動部は、前記撮影をするときの姿勢の情報と、該記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動することを特徴とする。
 請求項8に記載の発明は、請求項1から請求項7までの何れか1項に記載されたレンズ鏡筒であって、前記第2光学系は偏心レンズであることを特徴とする。
 請求項9に記載の発明は、請求項1から請求項8までの何れか1項に記載されたレンズ鏡筒であって、前記第2光学系は、像のブレを補正するブレ補正レンズであることを特徴とする。
 請求項10に記載の発明は、請求項9に記載されたレンズ鏡筒であって、前記駆動部は、前記ブレ補正レンズが前記像のブレを補正しているとき、前記ブレ補正レンズに対して、前記撮影光学系における収差量が抑えられる位置に引き戻す駆動力を与えることを特徴とする。
 請求項11に記載の発明は、請求項1から請求項8までの何れか1項に記載されたレンズ鏡筒であって、前記第2光学系とは独立して備えられ、像のブレを補正するブレ補正レンズを有することを特徴とする。
 請求項12に記載の発明は、請求項9から請求項11までのいずれか1項に記載のレンズ鏡筒であって、装置の振れを検出する振れ検出部を有し、前記駆動部は、前記振れ検出部の出力に応じて前記振れを補正するように前記ブレ補正レンズを駆動することを特徴とする。
 請求項13に記載の発明は、請求項12に記載のレンズ鏡筒であって、前記駆動部は、前記振れ検出部の出力に応じて前記撮影光学系の光軸と交差する方向に前記ブレ補正レンズを駆動することにより前記像のブレを補正することを特徴とする。
 請求項14に記載の発明は、請求項12に記載のレンズ鏡筒であって、前記駆動部は、前記振れ検出部の出力に応じて、前記第1光学系に対して前記ブレ補正レンズを相対的に傾斜させるように前記ブレ補正レンズを駆動することにより前記像のブレを補正することを特徴とする。
 請求項15に記載の発明は、請求項1から請求項14までの何れか1項に記載されたレンズ鏡筒であって、前記駆動部は、前記撮影光学系による像が撮像される前に前記第2光学系を駆動し、前記像が撮像されるときに前記第2光学系を駆動しないことを特徴とする。
 請求項16に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を含む撮影光学系と、前記撮影光学系の焦点距離に対応した、前記撮影光学系の収差量が抑えられる前記第2光学系の位置情報を記憶可能な記憶部と、前記焦点距離の情報と、前記記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動する駆動部とを備えることを特徴とするレンズ鏡筒である。
 請求項17に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を含む撮影光学系と、撮影をするときの姿勢に対応した、前記撮影光学系の収差量が抑えられる前記第2光学系の位置情報を記憶可能な記憶部と、前記撮影をするときの姿勢の情報と、該記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動する駆動部とを備えることを特徴とするレンズ鏡筒である。
 請求項18に記載の発明は、請求項17に記載されたレンズ鏡筒であって、前記記憶部は、撮影をするときの前記撮影光学系の光軸周りの姿勢に対応した、前記撮影光学系の収差量が抑えられる前記第2光学系の位置情報を記憶可能であることを特徴とする。
 請求項19に記載の発明は、請求項16から請求項18までの何れか1項に記載されたレンズ鏡筒であって、前記駆動部は、前記第1光学系に対して前記第2光学系を相対的に傾斜させるように駆動することを特徴とする。
 請求項20に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、前記第1光学系の位置に応じて前記撮影光学系の収差が低減するように、前記第2光学系を前記第1光学系に対して相対的に傾斜させるように駆動する駆動部と、を含むことを特徴とするレンズ鏡筒である。
 請求項21に記載の発明は、請求項20に記載のレンズ鏡筒であって、前記第1光学系に対する前記第2光学系の相対的な傾斜量を前記第1光学系の位置に応じて記憶する記憶部を有することを特徴とする。
 請求項22に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、前記第1光学系の位置に応じて前記撮影光学系の収差が低減するように、前記撮影光学系の光軸と交差する方向に前記第2光学系を駆動する駆動部と、を含むことを特徴とするレンズ鏡筒である。
 請求項23に記載の発明は、請求項22に記載のレンズ鏡筒であって、前記撮影光学系の光軸と交差する方向の前記第2光学系の駆動量を前記第1光学系の位置に応じて記憶する記憶部を有することを特徴とする。
 請求項24に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、撮影状態を検出した後であって前記撮影光学系による像を撮像する前に、前記撮影光学系の収差が低減するように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部と、を含むことを特徴とするレンズ鏡筒である。
 請求項25に記載の発明は、請求項24に記載されたレンズ鏡筒であって、前記駆動部は、前記撮影光学系の焦点距離を検出した後であって前記撮影光学系による像を撮像する前に、前記第1光学系に対して前記第2光学系を相対的に駆動させることを特徴とする。
 請求項26に記載の発明は、請求項24に記載されたレンズ鏡筒であって、前記駆動部は、撮影をするときの姿勢を検出した後であって前記撮影光学系による像を撮像する前に、前記第1光学系に対して前記第2光学系を相対的に駆動させることを特徴とする。
 請求項27に記載の発明は、請求項1から26のいずれか1項に記載されたレンズ鏡筒と、前記撮影光学系による像を撮像する撮像部と、を有することを特徴とする撮影装置である。
 請求項28に記載の発明は、第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系の収差量を測定しつつ、前記第2光学系を駆動し、前記撮影光学系の収差量が抑えられたときの前記第2光学系の位置を記憶することを特徴とするレンズ鏡筒の調整方法である。
 請求項29に記載の発明は、請求項28に記載されたレンズ鏡筒の調整方法であって、前記撮影光学系の光軸と交差する方向に前記第2光学系を駆動することを特徴とする。
 請求項30に記載の発明は、請求項28に記載されたレンズ鏡筒の調整方法であって、前記第1光学系に対して前記第2光学系を相対的に傾斜させるように前記第2光学系を駆動することを特徴とする。
 請求項31に記載の発明は、請求項28または30に記載されたレンズ鏡筒の調整方法であって、前記撮影光学系の焦点距離に応じて前記第2光学系の位置を記憶することを特徴とする。
 請求項32に記載の発明は、請求項28または30に記載されたレンズ鏡筒の調整方法であって、前記レンズ鏡筒の姿勢に応じて前記第2光学系の位置を記憶することを特徴とする。
 請求項33に記載の発明は、請求項28から請求項32までの何れか1項に記載されたレンズ鏡筒の調整方法であって、撮影前に、前記第2光学系を前記記憶された位置に駆動することを特徴とする。
 請求項34に記載の発明は、撮影光学系に含まれる第1光学系に対して相対的に移動できるように前記撮影光学系に含まれる第2光学系を配置し、撮影状態に応じて前記撮影光学系の収差を低減できるように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部を調整することを特徴とするレンズ鏡筒の製造方法である。
 請求項35に記載の発明は、請求項34に記載されたレンズ鏡筒の製造方法であって、前記撮影光学系の焦点距離に応じて、前記撮影光学系の収差が低減される前記第2光学系の位置情報を記憶させることを特徴とする。
 請求項36に記載の発明は、請求項34に記載されたレンズ鏡筒の製造方法であって、前記レンズ鏡筒の姿勢に応じて、前記撮影光学系の収差が低減される前記第2光学系の位置情報を記憶させることを特徴とする。
 本発明によれば、好適な撮影を実現し得るレンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置を提供することができる。
第1実施形態におけるレンズ鏡筒およびそのレンズ鏡筒の調芯を行う調芯工具のシステム構成図である。 第1実施形態における調芯時のフローを示す図である。 T端、M位置、W端における最良収差位置の一例を示した図である。 ブレ補正SWがONの時の収差補正の動作フローを示す図である。 ブレ補正SWがOFFの時の収差補正の動作フローを示す図である。 第2実施形態におけるレンズ鏡筒およびそのレンズ鏡筒の調芯を行う調芯工具のシステム構成図である。 第2実施形態における調芯時のフローを示す図である。 正位置、+90deg、+180deg、+270degにおける最良収差位置の一例を示した図である。 ブレ補正SWがONの時の収差補正の動作フローを示す図である。 ブレ補正SWがOFFの時の収差補正の動作フローを示す図である。 第3実施形態におけるレンズ鏡筒およびそのレンズ鏡筒の調芯を行う調芯工具のシステム構成図である。 第3実施形態における調芯時のフローを示す図である。 T端、M位置、W端における最良収差位置の一例を示した図である。 ブレ補正SWがONの時の収差補正の動作フローを示す図である。 ブレ補正SWがOFFの時の収差補正の動作フローを示す図である。 第4実施形態におけるレンズ鏡筒と調芯工具のシステム構成図である。 第4実施形態における調芯時の処理手順を示すフローチャートである。 W端からT端までの焦点距離と最良収差位置となる調芯位置との関係を示す説明図である。 第4実施形態のレンズ鏡筒を装着したカメラの概略構成図である。 第4実施形態においてブレ補正SWのON時における収差補正の処理手順を示すフローチャートである。 第4実施形態においてブレ補正SWのOFF時における収差補正の処理手順を示すフローチャートである。 第5実施形態においてブレ補正レンズの後段に配置されたレンズにより収差を補正するようにした場合の構成図である。 第6実施形態においてブレ補正レンズの後段に配置されたレンズにより収差を補正するようにした場合の構成図である。 第7実施形態においてブレ補正レンズをチルト駆動してブレ補正を行い、シフト駆動することにより収差の補正を行うようにした場合の構成図である。 第8実施形態においてブレ補正レンズの後段に配置されたレンズにより収差を補正するようにした場合の構成図である。 第9実施形態においてブレ補正レンズをチルト駆動することによりブレ補正と収差の補正を行うようにした場合の構成図である。 第10実施形態においてブレ補正レンズをチルト駆動することによりブレ補正と収差の補正を行うようにした場合の構成図である。
 以下、図面を参照して、本発明に係わる光学装置、光学装置の調整方法、光学装置の製造方法、レンズ鏡筒、レンズ鏡筒の調整方法、及び撮像装置の実施形態について説明する。以下に示す各実施形態では、光学装置として、カメラに対して着脱可能なレンズ鏡筒を例に説明するが、これに限定されず、レンズ非交換式のスチルカメラ、ビデオカメラ等他の光学装置であってもよい。また、以下に示す各実施形態は、発明の理解の容易化のためのものに過ぎず、本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加・置換等を施すことを排除することは意図していない。
(第1実施形態)
 図1は、第1実施形態におけるレンズ鏡筒100およびそのレンズ鏡筒100の調芯を行う調芯工具200のシステム構成図である。調芯工具200は、レンズ鏡筒100の先端側からコリメートされた光を投光する発光部201と、レンズ鏡筒100のマウント部101に取り付けられ、発光部201から投光されてレンズ鏡筒100を通過した光を受け、その光を光電変換により電気信号に変換する撮像素子202とを備える。さらに調芯工具200は、撮像素子202より得られた電気信号を画像情報に変換する画像処理部203と、画像処理部203により得られた画像情報を基に収差量への変換を行い、画面上に表示する工具PC204とを備える。
 また、調芯工具200は、工具PC204のモニタ上に表示された収差値を見て作業者が入力を行う、ジョイスティック等の駆動量入力部205を備える。この駆動量入力部205から入力された信号に従い、後述するようにレンズ鏡筒100においてブレ補正レンズ102が駆動される。
 調芯工具200は、さらに、駆動量入力部205の信号を基にブレ補正レンズ102の像面移動量情報をレンズCPU103に伝達する工具CPU206を備える。この伝達は、レンズ鏡筒100のマウント部101を介して行われる。また、工具CPU206は、レンズCPU103およびブレ補正レンズ102を駆動するための電力も供給する。さらに、工具CPU206は、レンズ鏡筒100におけるズームエンコーダ107の情報およびフォーカシングを行う場合のレンズ群104の繰り出し量情報(距離エンコーダ108の情報)もレンズCPU103より取り込む。ズームエンコーダ107は、レンズ群104のズーミング状態(焦点距離)を検出する。
 一方、レンズ鏡筒100は、撮影光学系として、像のブレを補正するブレ補正レンズ102と、ズーミングの際に移動するレンズ群104とを備え、さらに上述したように、工具CPU206との通信を行うレンズCPU103を備える。レンズCPU103は、内部に、調芯をするための調芯モード用のプログラムを有している。レンズ鏡筒100が調芯工具200に装着されると、レンズCPU103は工具CPU206との通信により接続された事を認識し、調芯モードに移行する。調芯モードへの移行により、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を基に、ブレ補正レンズ102の駆動および制御が可能となる。
 レンズ鏡筒100は、さらに、角速度を検出する角速度センサ105を備える。検出された角速度センサ105の出力は、不図示のLPF+アンプ部を通り、不要な高周波数ノイズを除去し、ブレ情報処理部106に入力される。調芯モードで角速度センサ105は機能しない。ブレ情報処理部106は、角速度センサ105の情報を基に、補正すべきブレ情報を抽出する。
 また、レンズ鏡筒100は、ズームエンコーダ107と、距離エンコーダ108と、これらのブレ情報処理部106の出力を基にブレ補正レンズ102の目標駆動位置の算出を行う目標駆動位置演算部109と、を備える。
 レンズ鏡筒100は、レンズ駆動量算出部110を備え、調芯モード移行の際は、レンズ駆動量算出部110が機能する。レンズ駆動量算出部110では、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を、EEPROM116に格納された防振補正係数情報を基にブレ補正レンズ102の移動量情報に変換する。ここで、防振補正係数情報とは、ブレ補正レンズ102の移動量とブレ補正レンズ102移動による像の移動量との比の情報であり、ズームエンコーダ107および距離エンコーダ108への入力をパラメータとするマトリックス情報として保有される。また、工具CPU206より送られてきた調芯調整値は、このレンズ駆動量算出部110にてレンズ位置情報に変換されEEPROM116に記憶される。
 レンズ鏡筒100は、目標駆動位置情報またはレンズ駆動量算出部110からの情報を基に、ブレ補正レンズ102の追従制御演算を行う追従制御演算部111と、追従制御演算部111からの信号に従い、VCM113(ボイスコイルモータ)への電流供給を行うVCM駆動ドライバ112と、を備える。VCM113は、電磁駆動アクチュエータであり、コイルおよびマグネットからなり、コイルに電流を流す事で駆動力を発生する。このVCM113によりブレ補正レンズ102を光軸と垂直な平面内を駆動させる。なお、駆動部はVCM113に限らず、SIDM(超小型アクチュエータ)等のPZT(チタン酸ジルコン酸鉛)型のアクチュエータやSTM(ステッピングモータ)等でもよい。
 レンズ鏡筒100は、ブレ補正レンズ102の位置を検出する位置検出部114を備える。位置検出は、PSD(光位置センサ)を用いた方法が一般的である。位置検出部114で得られたブレ補正レンズ102の位置は追従制御演算部111にフィードバックされる。位置検出部114は、上述のPSDに限らず、マグネットとホール素子を用いた、磁束密度の変動を検出する位置検出部114でもよい。
 レンズ鏡筒100は、撮影者がブレ補正ON/OFFを選択可能なSW(スイッチ)であるブレ補正SW115を備える。ブレ補正ON時は、角速度センサ105の出力に従って、ブレを打ち消すようにブレ補正レンズ102が光軸と垂直な平面内を動く。ブレ補正OFF時は、光軸とブレ補正レンズ102のセンタが一致する位置で不図示のロック機構により固定される。さらにレンズ鏡筒100は、フォーカシングを行うAF駆動部117も備える。
 次に、調芯時の動作を説明する。図2は調芯時のフローを示す。まず、調芯工具200にレンズ鏡筒100を装着する(S100)。そうすると、調芯工具200は、レンズ鏡筒100の装着を確認し(S201)、レンズ鏡筒100側へ電力を供給する。
 一方レンズ鏡筒100では、レンズCPU103が工具CPU206と通信を開始する(S101)。レンズCPU103は、上述のように調芯をするための調芯モードのプログラムを有しており、レンズCPU103は、調芯工具200に取り付けられたことを検知すると、調芯モードに移行する(S102)。
 調芯工具200は、レンズ鏡筒100内のAF駆動部117より、レンズ群104を所定のフォーカス位置に駆動させように指示する(S202)。レンズ群104は、その指令に従い、所定位置に移動される(S103)。このフォーカスにおける所定位置は、無限位置等の、所定のスタート位置である。
 レンズ鏡筒100は、ブレ補正レンズ102の駆動に先立ち、不図示の電磁ロックを解除する(S104)。電磁ロックは、ブレ補正レンズ102を所定の位置に固定するためのロック機構である。この電磁ロックを解除することによりブレ補正レンズ102はVCM113の駆動力により駆動することが可能になる。
 調芯工具200は、レンズCPU103が認識しているズーム情報を読み込み(S203)、T端にあるか判断する(S204)。このズーム情報の読み込みは、レンズ側のマウント部101の接点からの通信でレンズ鏡筒100のズームエンコーダ107の値を工具CPU206が受け取ることにより行われる。レンズ鏡筒100がT(テレ)端に無い場合には(S204,No)、例えば、工具PC204のモニタを通じて作業者にレンズ鏡筒100をT(テレ)端に移動させるよう指示する(S205)。
 レンズ鏡筒100は、EEPROM116が有するセンタ位置を、ブレ補正レンズ102の目標駆動位置として、追従制御を開始する。センタ位置に移行したら(S105)、調芯工具200CPU側に調芯作業が開始可能である信号を送る。
 調芯工具200は、レンズ鏡筒100からの開始可能の信号を受信すると調芯を開始する(S206)。調芯は、レンズ鏡筒100の焦点距離に応じ、少なくとも2箇所以上で行う。本実施形態では、T(テレ)端、W(ワイド)端、およびその中間のM(ミドル)位置での3箇所で調芯を行う。
 調芯工具200は、工具PC204のモニタを介して、発光部201から投光されてレンズ鏡筒100を通過し、撮像素子202に入射した光の像より収差の程度を観察し、収差が所定範囲内にあるかどうかを判断する(S207)。収差が所定範囲内にない場合(S207,No)には、作業者により駆動量入力部205が操作され(S208)、収差が最小になる最良収差位置にブレ補正レンズが駆動される。駆動量入力部205は、駆動されたブレ補正レンズ102の駆動量(△XI、△YI)をレンズ鏡筒100側に出力する。
 工具CPU206より送られてきた駆動量情報(△XI、△YI)が、ブレ補正レンズ102の位置に換算(△XI/VR1、△YI/VR1)され、ブレ補正レンズ102が駆動され、目標駆動位置が修正される(S106)。ブレ補正レンズ102の目標駆動位置は、現在のブレ補正レンズ102目標駆動位置(XLC、YLC)に上述の換算値(△XI/VR1、△YI/VR1)を足した位置(XLC+△XI/VR1、YLC+△YI/VR1)である。ここで、VR1は、所定焦点距離に於ける防振補正係数を示し、EEPROM116に記憶されている数値を読み込んで使用する。
 収差が所定範囲内に収まったら(S207,Yes)、調芯補正位置決定の信号をレンズCPU103側に送信する(S209)。調芯補正位置決定の信号を受けたら、レンズCPU103側は、ブレ補正レンズ102の目標位置情報(XLC,YLC)をT端での最良収差位置情報(XLC1、YLC1)としてRAMに記憶する(S107)。
 T端での調整が終了したら、M位置およびW端でも同様の調整を行う(S210)。レンズCPU103は、それぞれの位置での最良収差位置情報をRAMに記憶する(S107)。図3は、T端、M位置、W端における最良収差位置の一例を示した図である。図中、添え字の1,15,30は、ズームエンコーダ107の位置を示す。T端側が1で、ズームエンコーダ107の分割数が30の場合、W端側では30、M位置では15となる。T端での最良収差位置(収差が最小になったときのブレ補正レンズ102のセンタ位置(XLC,YLC))は、図中Pの位置(XLC1,YLC1)である。Mでの最良収差位置は、図中Pの位置(XLC15,YLC15)である。W端での最良収差位置は、図中Pの位置(XLC30,YLC30)である。
 調芯が終了したら(S211)、終了通知をレンズCPU103へ送る。レンズCPU103側では、3箇所の焦点距離の最良収差位置情報を基に、他のズーム位置での最良収差位置情報を演算して補間し、それぞれのズーム位置に応じた最良収差位置情報を算出する(S108)。
 ブレ補正レンズ102の最良収差位置情報のズーム位置に応じた補間処理が完了したら、EEPROM116に、全ズーム位置でのブレ補正レンズ102の最良収差位置情報として記憶する(S109)。そして、調芯工具200からレンズ鏡筒100を取り外し(S110)、調芯工程を終了する。
 次に、調芯工程で算出したブレ補正レンズ102の最良収差位置情報を用いた、ブレ補正SW115がONの時の収差補正の動作について説明する。図4は、ブレ補正SW115がONの時の収差補正の動作フローを示す図である。
 レンズ鏡筒100が図示しないカメラに装着された状態で、カメラのレリーズが半押しされると(S301)、ブレ補正レンズ102に電源供給が開始され、ブレ補正シーケンスが開始される。
 まず、ブレ補正レンズ102の動きをメカニカルに規制している電磁ロックが解除される(S302)。現在のレンズ鏡筒100のズーム情報がレンズCPU103によって読み込まれる(S303)。ブレ補正レンズ102が、現在のレンズ鏡筒100のズーム位置における最良収差位置(XLC,YLC)に一旦駆動される(S304)。この最良収差位置は、ズームエンコーダ107の値により異なり、上述のようにT端のときは図3におけるPの位置(XLC1,YLC1)で、M位置のときはPの位置(XLC15,YLC15)、W端のときはPの位置(XLC30,YLC30)である。また、その中間の位置での最良収差位置は、図2におけるS108において演算されて補間された位置である。
 角速度センサ105の出力を基に、像面での像が止まるように、ブレ補正レンズ102の駆動制御が開始される(S305)。カメラのレリーズが全押しされると(S306、Yes)、不図示のクイックリターンミラーが跳ね上がる最中に、上述のS303と同様に、再度ズーム情報が読み込まれる(S307)。
 さらに、上述のS304と同様にブレ補正レンズ102が、全押し時点でのレンズ鏡筒100のズーム位置における最良収差位置(XLC,YLC)に駆動される(S308)。そして最良収差位置に駆動の後、ブレ補正が再開される(S309)。
 ブレ補正が行われ、所定のシャッタ速度において露光が行われ(S310)、ブレ補正が停止される(S311)。その後、電磁ロックが駆動され(S312)、動作フローが終了する。なお、半押しタイマー中の場合は、ブレ補正のための駆動が行われるが、半押しタイマーが切れた場合は、電磁ロックが駆動され、ブレ補正レンズ102が機械的に保持される。
 このように、調芯工程で得られた最良収差位置を中心としてブレ補正を開始し、撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 図5に、調芯工程で算出したブレ補正レンズ102の最良収差位置情報を用いた、ブレ補正SW115がOFFの場合の収差補正の動作について説明する。図5は、ブレ補正SWがOFFの時の収差補正の動作フローを示す図である。
 レンズ鏡筒100が図示しないカメラに装着された状態で、カメラのレリーズが半押しされ(S401)、次いでレリーズが全押しされる(S402)と、不図示のクイックリターンミラーが跳ね上り、電磁ロックが解除される(S403)。
 そうすると、現在のレンズ鏡筒100のズーム情報がレンズCPU103によって読み込まれる(S404)。そしてブレ補正レンズ102が、現在のレンズ鏡筒100のズーム位置における最良収差位置(XLC,YLC)に駆動される(S405)。この最良収差位置は、上述のブレ補正SW115ONの場合と同様に、ズームエンコーダ107の値により異なり、上述のようにT端のときは図3におけるPの位置で、MのときはPの位置、W端のときはPの位置である。また、その中間の位置でのセンタ位置は、図2におけるS108において演算されて補間された位置である。そして、所定のシャッタ速度において露光が行われ(S406)、その後、電磁ロックが駆動され(S407)、動作フローが終了する。
 このように、ブレ補正SW115がOFFのときにも、調芯工程で得られた最良収差位置で撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 以上、第1実施形態によると、以下の効果を有する。
(1)レンズ鏡筒100に含まれる複数のレンズ群104からなる撮影光学系により撮像面上に生じる収差が最も少なくなるブレ補正レンズ102の位置を、個々のレンズ鏡筒100ごとに焦点距離に対応した最良収差位置としてレンズCPU103に記憶させておく。そして撮影時においては、その焦点距離における最良収差位置にブレ補正レンズ102を移動させてから撮影を行う。このように、レンズ鏡筒100により異なる収差を、レンズ鏡筒100ごとに調整するので、各レンズ鏡筒の収差をそれぞれ最小にすることができる。
 本実施形態では、例えば、ズームエンコーダ107により焦点距離が検出された後、撮像素子202により光電変換が行われる前にブレ補正レンズ102を最良収差位置に移動させる。このため、撮像素子202により撮像された画像は収差が抑えられる。なお、本実施形態では、最良収差位置を用いて説明したがこれに限定されるものではない。例えば、ブレ補正レンズ102を移動させることにより僅かでも収差を低減できるものであればよい。
(2)また、最良収差位置は、焦点距離に応じて収差が小さくなるように変動するので、それぞれの焦点距離において、光学性能的に最も収差性能がよい位置での撮影が可能となる。
(3)既存のブレ補正レンズ102を使用するので、新たに収差補正のための部品を追加する必要がない。
(4)ブレ補正を行う場合は、最良収差位置を中心として行われるので、迅速なブレ補正を行うことができる。
(変形形態)
 以上、説明した第1実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)上述の第1実施形態では、収差の補正をブレ補正レンズを用いて行う形態を示したが、これに限定されない。ブレ補正レンズに限らず、例えば、光軸に対して直交する面に移動可能なレンズであれば、他のレンズを用いることもでき、また例えば収差補正用のレンズを別途設ける構成であってもよい。
 例えば、収差を補正するレンズがブレ補正レンズである場合、記憶部に記憶された収差が小さくなる位置にブレ補正レンズを引き戻し(センタリング)してもよい。収差が小さくなる位置にブレ補正レンズを引き戻すことにより、光学特性の良い状態で撮影できるからである。また、収差が小さくなる位置にブレ補正レンズを引き戻すことにより、実質的にブレ補正レンズが駆動可能な駆動範囲を大きくすることができる。
 ブレ補正レンズの引き戻しは、撮像部で撮像する前(露光前)に行っても良いし、撮像部で撮像しているとき(露光中)に行ってもよい。また、ブレ補正レンズは光軸に対して直交するものに限定されない。
 例えば、ブレ補正レンズ以外のレンズを用いて収差を補正する場合、露光前に収差を補正するレンズを駆動して収差を補正し、露光中に収差を補正するレンズを停止させることも好ましい。露光中に収差を補正するレンズが停止しているので、不要な像ブレが抑えられるからである。
(2)上述の第1実施形態では、調芯工具をレンズ鏡筒に取り付ける構造としたが、本発明はこれに限定されない。例えば、調芯工具の機能を、カメラに持たせるようにしてもよく、この場合、調芯工具の撮像素子は、カメラの撮像素子と兼用することができる。
(3)上述の第1実施形態では、作業者が駆動量入力部を操作して、収差が最小になる最良収差位置にブレ補正レンズを駆動するように説明したが、本発明はこれに限定されない。例えば、工具CPUが自動的にブレ補正レンズを最良収差位置に駆動するようにしてもよい。
(4)上述の第1実施形態では、T端、MおよびW端において調芯の測定を行ったが、本発明はこれに限定されない。3箇所以上において測定することにより、さらに高精度の収差の補正が可能となる。
 なお、上述の第1実施形態および変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
(第2実施形態)
 次に、第2実施形態について説明する。第2実施形態では、第1実施形態と同等部分に同一符号を付して説明する。
 図6は、第2実施形態におけるレンズ鏡筒100Aおよびそのレンズ鏡筒100Aの調芯を行う調芯工具200Aのシステム構成図である。調芯工具200Aは、レンズ鏡筒100Aの先端側からコリメートされた光を投光する発光部201と、レンズ鏡筒100Aのマウント部101に取り付けられ、発光部201から投光されてレンズ鏡筒100Aを通過した光を受け、その光を光電変換により電気信号に変換する撮像素子202とを備える。さらに調芯工具200Aは、撮像素子202より得られた電気信号を画像情報に変換する画像処理部203と、画像処理部203により得られた画像情報を基に収差量への変換を行い、画面上に表示する工具PC204とを備える。
 また、調芯工具200Aは、工具PC204からの指令に従い、レンズ鏡筒100A全体を光軸回りに回転させる鏡筒回転部207を備える。調芯工具200Aは、さらに、工具PC204のモニタ上に表示された収差値を見て作業者が入力を行う、ジョイスティック等の駆動量入力部205を備える。この駆動量入力部205から入力された信号に従い、後述するようにレンズ鏡筒100Aにおいてブレ補正レンズ102が駆動される。
 調芯工具200Aは、駆動量入力部205の信号を基にブレ補正レンズ102の像面移動量情報をレンズCPU103に伝達する工具CPU206を備える。この伝達は、レンズ鏡筒100Aのマウント部101を介して行われる。また、工具CPU206は、レンズCPU103およびブレ補正レンズ102を駆動するための電力も供給する。さらに、工具CPU206は、後述するレンズ鏡筒100Aにおけるズームエンコーダ107の情報およびフォーカシングを行う場合のレンズ群104の繰り出し量情報(距離エンコーダ108の情報)、姿勢検知部118の情報もレンズCPU103より取り込む。
 一方、レンズ鏡筒100Aは、撮影光学系として、像のブレを補正するブレ補正レンズ102と、ズーミングの際に移動するレンズ群104とを備え、さらに上述したように、工具CPU206との通信を行うレンズCPU103を備える。レンズCPU103は、内部に、調芯をするための調芯モード用のプログラムを有している。レンズ鏡筒100Aが調芯工具200Aに装着されると、レンズCPU103は工具CPU206との通信により接続された事を認識し、調芯モードに移行する。調芯モードへの移行により、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を基に、ブレ補正レンズ102の駆動および制御が可能となる。
 レンズ鏡筒100Aは、さらに、角速度を検出する角速度センサ105を備える。検出された角速度センサ105の出力は、不図示のLPF+アンプ部を通り、不要な高周波数ノイズを除去し、ブレ情報処理部106に入力される。調芯モードで角速度センサ105は機能しない。ブレ情報処理部106は、角速度センサ105の情報を基に、補正すべきブレ情報を抽出する。また、レンズ鏡筒100Aは、レンズ鏡筒100Aの姿勢を検知するための、三軸の加速度センサからなる姿勢検知部118を備える。この姿勢検知部118は、三軸の加速度センサの出力を基に、レンズ鏡筒100Aの光軸回りの角度を検知する。
 また、レンズ鏡筒100Aは、ズームエンコーダ107と、距離エンコーダ108と、これらのブレ情報処理部106の出力を基にブレ補正レンズ102の目標駆動位置の算出を行う目標駆動位置演算部109と、を備える。
 レンズ鏡筒100Aは、調芯モード移行の際に機能するレンズ駆動量算出部110を備える。レンズ駆動量算出部110は、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を、EEPROM116に格納された防振補正係数情報を基にブレ補正レンズ102の移動量情報に変換する。ここで、防振補正係数情報とは、ブレ補正レンズ102の移動量とブレ補正レンズ102の移動による像の移動量との比の情報であり、ズームエンコーダ107および距離エンコーダ108への入力をパラメータとするマトリックス情報として保有される。また、工具CPU206より送られてきた調芯調整値は、このレンズ駆動量算出部110にてレンズ位置情報に変換されEEPROM116に記憶される。
 レンズ鏡筒100Aは、目標駆動位置情報またはレンズ駆動量算出部110からの情報を基に、ブレ補正レンズ102の追従制御演算を行う追従制御演算部111と、追従制御演算部111からの信号に従い、VCM113(ボイスコイルモータ)への電流供給を行うVCM駆動ドライバ112と、を備える。VCM113は、電磁駆動アクチュエータであり、コイルおよびマグネットからなり、コイルに電流を流す事で駆動力を発生する。このVCM113によりブレ補正レンズ102を光軸と垂直な平面内を駆動させる。なお、駆動部はVCM113に限らず、SIDM(超小型アクチュエータ)等のPZT(チタン酸ジルコン酸鉛)型のアクチュエータやSTM(ステッピングモータ)等でもよい。
 レンズ鏡筒100Aは、ブレ補正レンズ102の位置を検出する位置検出部114を備える。位置検出は、PSD(光位置センサ)を用いた方法が一般的である。位置検出部114で得られたブレ補正レンズ102の位置は追従制御演算部111にフィードバックされる。位置検出部114は、上述のPSDに限らず、マグネットとホール素子を用いた、磁束密度の変動を検出する位置検出部114でもよい。
 レンズ鏡筒100Aは、撮影者がブレ補正ON/OFFを選択可能なSW(スイッチ)であるブレ補正SW115を備える。ブレ補正ON時は、角速度センサ105の出力に従って、ブレを打ち消すようにブレ補正レンズ102が光軸と垂直な平面内を動く。ブレ補正OFF時は、光軸とブレ補正レンズ102のセンタが一致する位置で不図示のロック機構により固定される。さらにレンズ鏡筒100Aは、フォーカシングを行うAF駆動部117も備える。
 次に、調芯時の動作を説明する。図7は調芯時のフローを示す。まず、調芯工具200Aにレンズ鏡筒100Aを装着する(S100)。そうすると、調芯工具200Aは、レンズ鏡筒100Aの装着を確認し(S201)、レンズ鏡筒100A側へ電力を供給する。
 一方、レンズ鏡筒100Aでは、レンズCPU103が工具CPU206と通信を開始する(S101)。レンズCPU103は、上述のように調芯をするための調芯モードのプログラムを有しており、レンズCPU103は、調芯工具200Aに取り付けられたことを検知すると、調芯モードに移行する(S102)。
 調芯工具200Aは、レンズ鏡筒100A内のAF駆動部117より、レンズ群104を所定のフォーカス位置に駆動させように指示する(S202)。レンズ群104は、その指令に従い、所定位置に移動される(S103)。この所定のフォーカス位置は、無限位置等の、所定のスタート位置である。
 レンズ鏡筒100Aは、ブレ補正レンズ102の駆動に先立ち、不図示の電磁ロックを解除する(S104)。電磁ロックは、ブレ補正レンズ102を所定の位置に固定するためのロック機構である。この電磁ロックを解除することによりブレ補正レンズ102はVCM113の駆動力により駆動することが可能になる。
 調芯工具200Aは、レンズCPU103が認識している姿勢情報を読み込み(S203)、正位置にあるか判断する(S204)。この姿勢情報の読み込みは、レンズ側のマウント部101の接点からの通信でレンズ鏡筒100Aの姿勢検知部118の値を工具CPU206が受け取ることにより行われる。レンズ鏡筒100Aが正位置に無い場合には(S204,No)、例えば、工具PC204のモニタを通じて作業者にレンズ鏡筒100Aを正位置に移動させるよう指示する(S205)。
 レンズ鏡筒100Aは、EEPROM116が有するセンタ位置を、ブレ補正レンズ102の目標駆動位置として、追従制御を開始する。センタ位置に移行したら(S105)、調芯工具200A側に調芯作業が開始可能である信号を送る。
 調芯工具200Aは、レンズ鏡筒100Aからの開始可能の信号を受信すると調芯を開始する(S206)。調芯は、レンズ鏡筒100Aの姿勢に応じ、正位置、光軸回りに+90deg回転した位置および90deg回転した位置、の少なくとも3位置以上で行う。本実施形態では、正位置、+90deg回転した位置、+180deg回転した位置、+270deg(-90deg)回転した位置の4箇所で行う。なお、マイクロレンズ等で、光軸が下向きで撮影する可能性があるレンズでは、光軸下向き状態でも調芯を行う。
 調芯工具200Aは、工具PC204のモニタを介して、発光部201から投光されてレンズ鏡筒100Aを通過し、撮像素子202に入射した光の像より収差の程度を観察し、収差が所定範囲内にあるかどうかを判断する(S207)。収差が所定範囲内にない場合(S207,No)には、作業者により駆動量入力部205が操作され(S208)、収差が最小になる最良収差位置にブレ補正レンズが駆動される。駆動量入力部205は、駆動されたブレ補正レンズ102の駆動量(△XI、△YI〉をレンズ鏡筒100A側に出力する。
 工具CPU206より送られてきた駆動量情報(△XI、△YI)が、ブレ補正レンズ102の位置に換算(△XI/VR1、△YI/VR1)され、ブレ補正レンズ102が駆動され、目標駆動位置が修正される(S106)。ブレ補正レンズ102の目標駆動位置は、現在のブレ補正レンズ102の目標駆動位置(XLC、YLC)に上述の換算値(△XI/VR1、△YI/VR1)を足した位置(XLC+△XI/VR1、YLC+△YI/VR1)である。ここで、VR1は、所定焦点距離に於ける防振補正係数を示し、EEPROM116に記憶されている数値を読み込んで使用する。
 収差が所定範囲内に収まったら(S207,Yes)、調芯補正位置決定の信号をレンズCPU103側に送信する(S209)。調芯補正位置決定の信号を受けたら、レンズCPU103側は、ブレ補正レンズ102の目標位置情報(XLC,YLC)を正位置の最良収差位置情報(XLC1、YLC1)としてRAMに記憶する(S107)。
 正位置での調整が終了したら、+90deg、+180deg、+270degでも同様の調整を行う(S210)。レンズCPU103は、それぞれの姿勢での最良収差位置情報をRAMに記憶する(S107)。図8は、+90deg、+180deg、+270degにおける最良収差位置の一例を示した図である。図中、添え字の0,9,18,27は、レンズ鏡筒100Aの姿勢を示す。0は正位置の場合、9は+90deg回転した場合、18は+180deg回転した場合、27は+270deg回転した場合である。正位置での最良収差位置(収差が最小になったときのブレ補正レンズ102のセンタ位置(XLC,YLC))は、図中Pの位置(XLC0,YLC0)である。+90degでの最良収差位置は、図中Pの位置(XLC9,YLC9)である。+180degでの最良収差位置は、図中P18の位置(XLC18,YLC18)である。+270degでの最良収差位置は、図中P27の位置(XLC27,YLC27)である。
 調芯が終了したら(S211)、終了通知をレンズCPU103へ送る。レンズCPU103側では、4つの姿勢の最良収差位置情報を基に、他の姿勢での最良収差位置情報を演算して補間し、それぞれの姿勢に応じた最良収差位置情報を算出する(S108)。
 ブレ補正レンズ102の最良収差位置情報の姿勢に応じた補間処理が完了したら、EEPROM116に、全姿勢でのブレ補正レンズ102の最良収差位置情報として記憶する(S109)。そして、調芯工具200Aからレンズ鏡筒100Aを取り外し(S110)、調芯工程を終了する。
 次に、調芯工程で算出したブレ補正レンズ102の最良収差位置情報を用いた、ブレ補正SW115がONの時の収差補正の動作について説明する。図9は、ブレ補正SW115がONの時の収差補正の動作フローを示す図である。
 レンズ鏡筒100Aが図示しないカメラに装着された状態で、カメラのレリーズが半押しされると(S301)、ブレ補正レンズ102に電源供給が開始され、ブレ補正シーケンスが開始される。
 まず、ブレ補正レンズ102の動きをメカニカルに規制している電磁ロックが解除される(S302)。現在のレンズ鏡筒100Aの姿勢情報がレンズCPU103によって読み込まれる(S303)。ブレ補正レンズ102が、現在のレンズ鏡筒100Aの姿勢における最良収差位置に一旦駆動される(S304)。この最良収差位置は、姿勢検知部118によって検知された姿勢により異なり、上述のように正位置の場合は図8におけるPの位置(XLC0,YLC0)で、正位置から+90deg回転している場合はPの位置(XLC9,YLC9)、正位置から+180deg回転している場合はP18の位置(XLC18,YLC18)、正位置から+270deg回転している場合はP27の位置(XLC27,YLC27)である。また、その中間の位置での最良収差位置は、図7におけるS108において演算されて補間された位置である。
 角速度センサ105の出力を基に、像面での像が止まるように、ブレ補正レンズ102の駆動制御が開始される(S305)。カメラのレリーズが全押しされると(S306、Yes)、不図示のクイックリターンミラーが跳ね上がる最中に、上述のS303と同様に、再度姿勢情報が読み込まれる(S307)。
 さらに、上述のS304と同様にブレ補正レンズ102が、全押し時点でのレンズ鏡筒100Aの姿勢における最良収差位置に駆動される(S308)。そして最良収差位置に駆動の後、ブレ補正が再開される(S309)。
 ブレ補正が行われ、所定のシャッタ速度において露光が行われ(S310)、ブレ補正が停止される(S311)。その後、電磁ロックが駆動され(S312)、動作フローが終了する。なお、半押しタイマー中の場合は、ブレ補正のための駆動が行われるが、半押しタイマーが切れた場合は、電磁ロックが駆動され、ブレ補正レンズ102が機械的に保持される。
 このように、調芯工程で得られた最良収差位置を中心としてブレ補正を開始し、撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 図10に、調芯工程で算出したブレ補正レンズ102の最良収差位置情報を用いた、ブレ補正SW115がOFFの場合の収差補正の動作について説明する。図10は、ブレ補正SWがOFFの時の収差補正の動作フローを示す図である。
 レンズ鏡筒100Aが図示しないカメラに装着された状態で、カメラのレリーズが半押しされ(S401)、次いでレリーズが全押しされる(S402)と、不図示のクイックリターンミラーが跳ね上り、電磁ロックが解除される(S403)。
 現在のレンズ鏡筒100Aの姿勢情報がレンズCPU103によって読み込まれる(S404)。そしてブレ補正レンズ102が、現在のレンズ鏡筒100Aの姿勢における最良収差位置に駆動される(S405)。この最良収差位置は、上述のブレ補正SW115ONの場合と同様に、姿勢検知部118によって検知された現在の姿勢により異なり、正位置の場合は図8におけるPの位置(XLC0,YLC0)で、正位置から+90deg回転している場合はPの位置(XLC9,YLC9)、正位置から+180deg回転している場合はP18の位置(XLC18,YLC18)、正位置から+270deg回転している場合はP27の位置(XLC27,YLC27)である。また、その中間の位置での最良収差位置は、図7におけるS108において演算されて補間された位置である。そして、所定のシャッタ速度において露光が行われ(S406)、その後、電磁ロックが駆動され(S407)、動作フローが終了する。
 このように、ブレ補正SW115がOFFのときにも、調芯工程で得られた最良収差位置で撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 以上、本実施形態によると、以下の効果を有する。
(1)レンズ鏡筒100Aに含まれる複数のレンズ群104からなる撮影光学系により撮像面上に生じる収差が最も少なくなるブレ補正レンズ102の位置を、個々のレンズ鏡筒100Aごとに姿勢に対応した最良収差位置としてレンズCPU103に記憶させておく。そして撮影時においては、その姿勢における最良収差位置にブレ補正レンズ102を移動させてから撮影を行う。このように、レンズ鏡筒100Aにより異なる収差を、レンズ鏡筒100Aごとに調整するので、各レンズ鏡筒の収差をそれぞれ最小にすることができる。
 本実施形態では、例えば、姿勢検知部118によりレンズ鏡筒100Aの姿勢(光軸回りの角度)が検出された後、撮像素子202により光電変換が行われる前にブレ補正レンズ102を最良収差位置に移動させる。このため、撮像素子202により撮像された画像は収差が抑えられる。なお、本実施形態では、最良収差位置を用いて説明したがこれに限定されるものではない。例えば、ブレ補正レンズ102を移動させることにより僅かでも収差を低減できるものであればよい。
(2)また、最良収差位置は、姿勢に応じて収差が小さくなるように変動するので、それぞれの姿勢において、光学性能的に最も収差性能がよい位置での撮影が可能となる。
(3)既存のブレ補正レンズ102を使用するので、新たに収差補正のための部品を追加する必要がない。
(4)ブレ補正を行う場合は、最良収差位置をセンタ位置として行われるので、迅速なブレ補正を行うことができる。
(変形形態)
 以上、説明した第2実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)上述の第2実施形態では、収差の補正をブレ補正レンズを用いて行う形態を示したが、これに限定されない。ブレ補正レンズに限らず、例えば、光軸に対して直交する面に移動可能なレンズであれば、他のレンズを用いることもでき、また例えば収差補正用のレンズを別途設ける構成であってもよい。
 例えば、収差を補正するレンズがブレ補正レンズである場合、記憶部に記憶された収差が小さくなる位置にブレ補正レンズを引き戻し(センタリング)してもよい。収差が小さくなる位置にブレ補正レンズを引き戻すことにより、光学特性の良い状態で撮影できるからである。また、収差が小さくなる位置にブレ補正レンズを引き戻すことにより、実質的にブレ補正レンズが駆動可能な駆動範囲を大きくすることができる。
 ブレ補正レンズの引き戻しは、撮像部で撮像する前(露光前)に行っても良いし、撮像部で撮像しているとき(露光中)に行ってもよい。また、ブレ補正レンズは光軸に対して直交するものに限定されない。
 例えば、ブレ補正レンズ以外のレンズを用いて収差を補正する場合、露光前に収差を補正するレンズを駆動して収差を補正し、露光中に収差を補正するレンズを停止させることも好ましい。露光中に収差を補正するレンズが停止しているので、不要な像ブレが抑えられるからである。
(2)上述の第2実施形態では、調芯工具をレンズ鏡筒に取り付ける構造としたが、本発明はこれに限定されない。例えば、調芯工具の機能を、カメラに持たせるようにしてもよく、この場合、調芯工具の撮像素子は、カメラの撮像素子と兼用することができる。
(3)上述の第2実施形態では、作業者が駆動量入力部を操作して、収差が最小になる最良収差位置にブレ補正レンズを駆動するように説明したが、本発明はこれに限定されない。例えば、工具CPUが自動的にブレ補正レンズを最良収差位置に駆動するようにしてもよい。
(4)上述の第2実施形態では、正位置、正位置から+90deg回転、正位置から+180deg回転、正位置から+270deg回転させて調芯の測定を行ったが、本発明はこれに限定されない。例えばそれ以上の姿勢において測定することにより、さらに高精度の収差の補正が可能となる。
 なお、上述の第2実施形態および変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
(第3実施形態)
 次に、第3実施形態について説明する。第3実施形態では、第1実施形態と同等部分に同一符号を付して説明する。
 図11は、レンズ鏡筒100Bと、このレンズ鏡筒100Bの調芯を行う調芯工具200Bのブロック図である。
 調芯工具200Bは、レンズ鏡筒100Bの先端側からコリメートされた光を投光する発光部201と、レンズ鏡筒100Bのマウント部101に取り付けられて発光部201から投光された光をレンズ鏡筒100Bを介して受光し、光電変換作用により電気信号に変換する撮像素子202とを備える。
 また、調芯工具200Bは、撮像素子202より得られた電気信号を画像情報に変換する画像処理部203と、画像処理部203により得られた画像情報を基に収差量への変換を行い、不図示の画面上(モニタ上)に表示する工具PC204とを備える。
 また、調芯工具200Bは、工具PC204からの指令に従い、レンズ鏡筒100B全体に所定のチルトを与える鏡筒回転部(鏡筒姿勢駆動ステージ)207を備える。
 また、調芯工具200Bは、工具PC204のモニタ上に表示された収差値を見て作業者が入力を行う、ジョイスティック等のチルト駆動量入力部208を備える。このチルト駆動量入力部208から入力された信号に従い、後述するようにレンズ鏡筒100Bにおいてブレ補正レンズ102がチルト駆動される。なお、ブレ補正レンズ102は、レンズ鏡筒100Bのブレによる像ブレを補正するブレ補正レンズ(以後、本明細書中ではブレ補正レンズと記す)を共用しているが、ブレ補正レンズとは別体に配置しても良い。
 調芯工具200Bは、チルト駆動量入力部208の信号を基にブレ補正レンズ102の像面移動量情報を後述するレンズCPU103に伝達する工具CPU206を備える。この伝達は、レンズ鏡筒100Bのマウント部101に設けられた不図示の電極を介して行われる。また、工具CPU206は、レンズCPU103およびブレ補正レンズ102を駆動するための電力も不図示の電極を介して供給する。また、工具CPU206は、後述するレンズ鏡筒100Bにおけるズームエンコーダ107の情報およびズーミングを行う場合のレンズ群104、104の繰り出し量情報(距離エンコーダ108の情報)、姿勢検知部118の情報もレンズCPU103より取り込む。
 また、レンズ鏡筒100Bは、撮影光学系として、撮像素子202上の像のブレを補正するブレ補正レンズ102と、ズーミングの際に移動するレンズ群104、104と、工具CPU206と前述の如き通信を行うレンズCPU103を備える。
 レンズCPU103は、内部に、調芯をするための調芯モード用のプログラムを有している。レンズ鏡筒100Bが調芯工具200Bに装着されると、レンズCPU103は工具CPU206との通信により接続された事を認識し、調芯モードに移行する。調芯モードヘの移行により、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を基に、ブレ補正レンズ102の駆動および制御が可能となる。
 レンズ鏡筒100Bは、角速度を検出する角速度センサ105を備える。検出された角速度センサ105の出力は、不図示のローパスフィルタ(LPF)+アンプ部を介して不要な高周波数ノイズを除去し、ブレ情報処理部106に入力される。調芯モードでは、角速度センサ105は機能しない。ブレ情報処理部106は、角速度センサ105の情報を基に、像ブレ補正に必要な振れ情報を抽出する。
 また、レンズ鏡筒100Bは、レンズ鏡筒100Bの姿勢を検知するための、三軸の加速度センサ等からなる姿勢検知部118を備える。この姿勢検知部118は、三軸の加速度センサの出力を基に、レンズ鏡筒100Bのピッチング角度およびローリング角度からなるチルトを検知する。ここで、チルトとは、レンズ鏡筒100Bの重心を通る鉛直軸と光軸との傾きの変化を言い、光軸位置をゼロとして正負に変化する。なお、姿勢検知部118は、マウント部101を介して結合される後述するカメラ本体に内蔵されていても良い。また、姿勢検知部118は、三軸の加速度センサ以外の姿勢を検出可能なセンサであれば種類を問わない。
 また、レンズ鏡筒100Bは、ズームエンコーダ107、距離エンコーダ108、ブレ情報処理部106の出力を基にブレ補正レンズ102の目標駆動位置の算出を行う目標駆動位置演算部109を備える。
 目標駆動位置演算部109は、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を、EEPROM116に格納された防振補正係数情報を基にブレ補正レンズ102の移動量情報に変換する。ここで、防振補正係数情報とは、ブレ補正レンズ102の移動量とブレ補正レンズ102の移動による像の移動量との比の情報であり、ズームエンコーダ107および距離エンコーダ108への入力をパラメータとするマトリックス情報として保有される。また、工具CPU206より送られてきた調芯調整値は、目標駆動位置演算部109にてレンズ位置情報に変換されEEPROM116に記憶される。
 また、レンズ鏡筒100Bは、目標駆動位置演算部109で算出された目標駆動位置情報を基に、ブレ補正レンズ102の追従制御演算を行う追従制御演算部111と、追従制御演算部111からの信号に従い、VCM113(ボイスコイルモータ)への電流供給を行うVCM駆動ドライバ112と、を備える。VCM113は、コイルおよびマグネットからなる電磁駆動アクチュエータであり、コイルに電流を流す事で駆動力を発生する。このVCM113は、ブレ補正レンズ102を光軸と垂直な平面内で駆動する。なお、駆動部はVCM113に限らず、SIDM(超小型アクチュエータ)等のPZT(チタン酸ジルコン酸鉛)型のアクチュエータやSTM(ステッピングモータ)等でもよい。
 また、レンズ鏡筒100Bは、ブレ補正レンズ102の位置を検出する位置検出部114を備える。位置検出は、PSD(光位置センサ)を用いた方法が一般的である。位置検出部114で得られたブレ補正レンズ102の位置は追従制御演算部111にフィードバックされる。なお、位置検出部114は、上述のPSDに限らず、マグネットとホール素子を用いた、磁束密度の変動を検出するものでもよい。
 また、レンズ鏡筒100Bは、撮影者がブレ補正レンズ102の駆動をON/OFF選択するためのSW(スイッチ)であるブレ補正SW115を備える。ブレ補正SW115がON時は、角速度センサ105の出力に従って、レンズ鏡筒100Bのブレ(例えば、手ぶれ等で生じるブレ)による像面(撮像素子202上)における像ブレを打ち消すようにブレ補正レンズ102を光軸と垂直な平面内でVCM113により駆動する。ブレ補正SW115がOFF時は、光軸とブレ補正レンズ102のセンタが一致する位置で不図示のロック機構により固定される。また、レンズ鏡筒100Bは、不図示の被写体に自動でフォーカシングを行うAF(オートフォーカス)駆動部117を備える。
 また、レンズ鏡筒100Bは、ブレ補正レンズ102を光軸上の点を支点としてチルト駆動するチルト駆動部122と、このチルト駆動部122を介してブレ補正レンズ102をチルトさせるためのチルト駆動演算部121と、チルト駆動部122の位置を検出するためのチルト駆動部122の位置検出部123(以後、チルト位置検出部123と記す)とを備える。なお、チルト駆動部122は、ブレ補正レンズ102を撮影光学系の光軸を含む面内方向に回転させる様に構成することも可能である。
 このチルト駆動演算部121は、EEPROM116からの情報に基づきチルト駆動部122の目標値をチルト駆動部122に指令する。上記参照するEEPROM116の値は、調芯工具200Bの工具PC204で鏡筒回転部207を傾けた時の姿勢検知部118の姿勢情報と、そのとき設定されているズームエンコーダ107のズーミング情報と、撮像素子202上における収差を所定値以下にしたときのチルト位置検出部123の位置情報とから構成されている。そして、レンズ鏡筒100B毎に工場出荷前に調芯工具200Bにより取得されてレンズ鏡筒100BのEEPROM116に工具PC206を介して書き込まれている情報である。
 チルト駆動部122は、姿勢検知部118とブレ補正レンズ102の位置情報を受けてレンズ鏡筒100Bの光軸上の点を支点としてブレ補正レンズ102をチルト駆動する。本実施形態では、チルト駆動部122は積層PZTを使用している。
 例えば、10’(角度で「分」)のチルト補正をするには、ブレ補正レンズ102の直径が20mmの場合、光軸上の点を支点としてブレ補正レンズ102を14μm移動することが必要となる。積層PZTは、14μm程度の変位を容易に行うことができる。なお、チルト補正角度が同じ10’でもブレ補正レンズ102の直径が小さくなれば、チルト駆動部122の駆動量が小さくて済むことは言うまでもない。
 また、チルト駆動部122とチルト位置検出部123とは、ブレ補正レンズ102の中立軸に対して±両方向に駆動できるようにブレ補正レンズ102の外周部の対向する2箇所に配置している。
 また、チルト駆動部122とチルト位置検出部123とは、ブレ補正レンズ102の光軸に直交する面内で直交する2軸に対して配置することで、任意の向きにブレ補正レンズ102を傾けることを可能にしている。
 また、積層PZTは、ヒステリシスを有するためにチルト位置検出部123で逐次位置検出を行いチルト駆動部122でフィードバック制御を行っている。
 なお、チルト駆動部122は、積層PZTに限らず、VCMやSTMなどを使用することも可能である。STMはオープン制御が可能でありチルト位置検出部123が不要になるという利点がある。また、チルト駆動部122の位置を検出するチルト位置検出部123は、本実施形態ではPSDを使用しているが、PSDに限らずマグネットとホール素子を用いた磁束密度の変動を検出するものであっても良い。
 次に、調芯動作について図11および図12を参照しつつ説明する。図12は調芯工具を用いた調芯動作フローを示す。
 作業者は、調芯工具200Bにレンズ鏡筒100Bを装着する(S100)。装着後、調芯工具200Bは、レンズ鏡筒100Bの装着を確認し(S201)、レンズ鏡筒100B側へ電力を供給する。
 レンズ鏡筒100Bは、レンズCPU103が工具CPU206と通信を開始する(S101)。レンズCPU103は、上述のように調芯をするための調芯モードのプログラムを有しており、調芯工具200Bに取り付けられたことを検知すると、調芯モードに移行する(S102)。
 また、レンズCPU103は、レンズ鏡筒100Bの工程情報やシリアル情報を有しており、これら情報を工具PC206に読み込み、工具PC206で調整検査工程の管理を行えるようにする。
 調芯工具200Bは、レンズ鏡筒100B内のAF駆動部117駆動し、不図示のフォーカスレンズ群を所定のフォーカス位置に駆動させように指示する。フォーカスレンズ群は、その指令に従い、所定位置に移動される。この所定のフォーカス位置は、無限位置等の、所定のスタート位置である。
 レンズ鏡筒100Bは、ブレ補正レンズ102の駆動に先立ち、不図示の電磁ロックを解除する(S104)。電磁ロックは、ブレ補正レンズ102を所定の位置に固定するためのロック機構である。この電磁ロックを解除することによりブレ補正レンズ102はVCM113やチルト駆動部122の駆動力により駆動することが可能になる。
 調芯工具200Bは、ズームエンコーダ107からの位置情報および姿勢検知部118からの姿勢情報等の情報をレンズCPU103から読み込み(S203)、レンズ鏡筒100Bの姿勢情報を取得する。この姿勢情報の読み込みは、レンズ側のマウント部101の接点を介してレンズCPU103から工具CPU206が受け取ることにより行われる。レンズ鏡筒100Bが正位置に無い場合には、例えば、工具PC204のモニタを通じて作業者にレンズ鏡筒100Bを工具PC204および鏡筒回転部207を操作して正位置に移動させるよう指示する。
 レンズ鏡筒100Bは、EEPROM116が有するセンタ位置情報を、ブレ補正レンズ102の目標駆動位置として、追従制御を開始する。センタ位置に移行したら(S105)、調芯工具200Bの工具CPU206に調芯作業が開始可能である信号を送る。
 調芯工具200Bは、レンズ鏡筒100Bからの開始可能の信号を受信すると調芯を開始する(S206)。調芯は、レンズ鏡筒100Bの姿勢に応じ、光軸を回転軸として、正位置(0度)、+45度、+90度、+135度、+180度、+225度、+270度(-90度)、+315度(-45度)それぞれ回転した位置で行う。また、上下方向については、正位置、光軸が下向き45度、下向き90度、上向き45度、上向き90度の5箇所で行う。よって、調芯は、ひとつのズーミング位置において8×5=40箇所で行い、所定のズーミング位置(例えば、広角端状態W、中間焦点距離状態M、望遠端状態Tなど)全て(8×5×3=120箇所)で実行する。なお、調芯の位置は、ひとつのズーミング位置において上記8×5=40箇所に限らず適宜増減しても良い。またズーミング位置は広角端状態W、中間焦点距離状態M、望遠端状態Tの3箇所に限らず、適宜増減しても良い。
 作業者は、工具PC204のモニタを介して、発光部201から投光されてレンズ鏡筒100Bを通過し、撮像素子202に入射した光の像より収差の程度を観察し、収差が所定範囲内にあるかどうかを判断する(S207)。収差が所定範囲内にない場合(S207,No)、作業者はチルト駆動量入力部208を操作して(S208)、収差が最小になる最良収差位置にブレ補正レンズ102をチルト駆動する(S106)。チルト駆動量入力部208は、工具PC206を介してチルト駆動されたブレ補正レンズ102のチルト駆動量をレンズ鏡筒100B側に出力する。
 工具CPU206より送られてきたチルト駆動量情報が、チルト駆動演算部121でブレ補正レンズ102の位置に換算され、ブレ補正レンズ102がチルト駆動部122を介してチルト駆動され、ブレ補正レンズ102のチルト位置が修正される(S106)。
 収差が所定範囲内に収まったら(S207,Yes)、調芯補正位置決定の信号をレンズCPU103側に送信する(S209)。調芯補正位置決定の信号を受けたら、レンズCPU103側は、ブレ補正レンズ102の調芯位置とその時のレンズ姿勢情報とズームエンコーダ情報をレンズCPU103に送信し、不図示のRAMに記憶する(S107)。
 正位置での調整が終了したら、他のレンズ姿勢や他のズーミング位置などでも同様の調芯工程を行う(S210)。レンズCPU103は、それぞれの位置でのチルト位置情報をRAMに記憶する(S107)。
 調芯が終了したら(S211)、終了通知をレンズCPU103へ送る。レンズCPU103側では、各調芯工程での最良収差位置情報を基に、他の姿勢での最良収差位置情報を補間演算(例えば、最小二乗法等)し、それぞれの姿勢に応じた最良収差位置情報を算出する。これらの工程により、レンズ姿勢やズーミング位置それぞれの姿勢に応じたチルト駆動後の最良収差位置情報を決定することができる(S108)。
 ブレ補正レンズ102の最良収差位置情報の姿勢に応じた補間処理が完了したら、EEPROM116に、全姿勢でのブレ補正レンズ102の最良収差位置情報として記憶する(S109)。そして、調芯工具200Bからレンズ鏡筒100Bを取り外し(S110)、調芯工程を終了する。なお、EEPROM116に保存する補間演算による姿勢データを含めた全姿勢データ量が膨大になる場合は、EEPROM116に調芯によって得られた計測データ(補間演算データを除く)の最良収差位置情報のみを記憶しておき、レンズCPU103で各時点のレンズ鏡筒100Bの姿勢に対応する位置情報を保存されている既知の情報から補間演算してチルト駆動制御するようにしても良い。
 次に、レンズ鏡筒100Bをカメラに装着した状態でのブレ補正レンズ102の最良収差位置情報を用いた、ブレ補正SW115がON時の収差補正動作について説明する。
 図13は、第3実施形態にかかるレンズ鏡筒100Bを装着したカメラの概略構成図を示す。
 図13において、不図示の被写体からの光は、レンズ鏡筒100Bで集光され、クイックリターンミラー12で反射されて焦点板13に結像される。焦点板13に結像された被写体像は、ペンタプリズム14で複数回反射されて接眼レンズ15を介して撮影者に正立像として観察可能に構成されている。
 撮影者は、不図示のレリーズ釦を半押ししながら接眼レンズ15を介して被写体像を観察して撮影構図を決めた後、レリーズ釦を全押しする。レリーズ釦を全押しした時、クイックリターンミラー12が上方に跳ね上げられ不図示のシャッタが動作し被写体からの光は撮像素子16で受光され撮影画像が取得され、不図示のメモリに記録される。
 レリーズ釦を全押しした時、レンズ鏡筒100Bに内蔵されている姿勢検知部118や角速度センサ105でレンズ鏡筒100Bまたはカメラ10の姿勢やブレが検出されてレンズCPU103に伝達される。レンズCPU103は、ブレ補正レンズ102を図11に示すVCM113やチルト駆動部122を介して光軸に直交方向駆動およびチルト駆動して撮像素子16上における像ぶれや姿勢変化による収差を補正する。
 図14は、ブレ補正SW115がONの時の収差補正の動作フローを示す図である。
 レンズ鏡筒100Bが図13に示すカメラ10に装着された状態で、カメラ10のレリーズが半押しされると(S301)、ブレ補正レンズ102に電源供給が開始され、ブレ補正シーケンスが開始される。
 まず、ブレ補正レンズ102の動きを機械的に規制している電磁ロックが解除される(S302)。ブレ補正レンズ102を制御センタ位置へ駆動する(S303)。この時点でのセンタ位置は、ブレ補正レンズ102の位置検出部114からの情報であって、チルト位置検出部123の位置ではない。
 角速度センサ105、姿勢検知部118、ズームエンコーダ107の情報から、撮像素子16面での収差が最小になるように、ブレ補正レンズ102のシフト駆動およびチルト駆動制御を開始する。このときブレ補正レンズ102が、現在のレンズ鏡筒100Bの姿勢における最良収差位置になるように駆動制御が開始される(S304)。この状態でレリーズ全押し信号の入力を待つ(S306)。
 カメラ10のレリーズが全押しされると(S306、Yes)、不図示のクイックリターンミラーが跳ね上がる最中に、姿勢情報やズーミング情報から最良収差位置にブレ補正レンズ102をチルト駆動する(S308)。チルト駆動終了後、ブレ補正を再開する(S309)。
 ブレ補正が行われ、所定のシャッタ速度において露光が行われ(S310)、ブレ補正が停止される(S311)。その後、半押しタイマーが動作中であれば(S312、Yes)、S304以降の防振、チルト駆動を行い、半押しタイマーが切れていれば(S312、No)電磁ロックが駆動されてブレ補正レンズ102が機械的に保持され(S313)、動作フローが終了する。
 このように、調芯工程で得られた最良収差位置を中心としてブレ補正およびチルト補正を実行して撮影を行うので、光学性能的に最も収差性能がよい状態での撮影が可能となる。
 次に、調芯工程で算出したブレ補正レンズ102の最良収差位置情報を用いた、ブレ補正SW115がOFF時の収差補正動作について図15を参照しつつ説明する。図15は、ブレ補正SWがOFF時の収差補正動作フローを示す図である。
 レンズ鏡筒100Bが図13に示すカメラ10に装着された状態で、カメラのレリーズが半押しされ(S401)、次いでレリーズが全押しされる(S402)と、クイックリターンミラー12が跳ね上り、電磁ロックが解除される(S403)。
 現在のレンズ鏡筒100Bの姿勢情報がレンズCPU103によって読み込まれる(S404)。ブレ補正レンズ102が、現在のレンズ鏡筒100Bの姿勢における最良収差位置にチルト駆動される(S405)。この最良収差位置は、上述のブレ補正SW115がONの場合と同様に、姿勢検知部118やズームエンコーダ107等によって検知されたレンズ鏡筒100Bの現在姿勢により異なり、レンズCPU103で姿勢が検出されてチルト補正のためのブレ補正レンズ102の最良収差位置が算出される。チルト駆動してブレ補正レンズ102停止(S406)後、所定のシヤッタ速度において露光が行われる(S407)。その後、半押しタイマーが動作中であれば(S409、Yes)、S402以降のチルト駆動を行い、半押しタイマーが切れていれば(S409、No)電磁ロックが駆動されてブレ補正レンズ102が機械的に保持され(S410)、動作フローが終了する。
 このように、ブレ補正SW115がOFFのときにも、調芯工程で得られたチルト補正による最良収差位置で撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 以上、本実施形態によると、以下の効果を有する。
(1)レンズ鏡筒100Bに含まれる複数のレンズ群104、104からなる撮影光学系により撮像面上に生じる収差が最も少なくなるブレ補正レンズ102の位置を、個々のレンズ鏡筒100Bごとに姿勢に対応した最良収差位置としてEEPROM116に記憶させレンズCPU103で補間演算処理する。そして撮影時においては、その姿勢における最良収差位置にブレ補正レンズ102を移動させてから撮影を行う。このように、レンズ鏡筒100Bにより異なる収差を、レンズ鏡筒100Bごとに調整するので、各レンズ鏡筒の収差をそれぞれ最小にすることができ、高い結像性能を達成することができる。
(2)また、最良収差位置は、姿勢に応じて収差が小さくなるようにブレ補正レンズ102の位置が変化するので、それぞれの姿勢において、光学性能的に最も収差性能がよい状態での撮影が可能となる。
(3)既存のブレ補正レンズ102にチルト駆動、検出手段を追加することで達成できるので、少ない変更で対応することができる。
(4)ブレ補正を行う場合は、最良収差位置をセンタ位置として行われるので、迅速なブレ補正を行うことができる。
 (変形形態)
 以上、説明した第3実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)上述の第3実施形態では、収差の補正をブレ補正レンズを用いて行う形態を示したが、これに限定されない。ブレ補正レンズに限らず、例えば、光軸に対してチルト移動可能なレンズであれば、他のレンズを用いることもでき、また例えば収差補正用のレンズを別途設ける構成であってもよい。
 例えば、収差を補正するレンズがブレ補正レンズである場合、記億部に記憶された収差が小さくなる位置にブレ補正レンズを引き戻し(センタリング)してもよい。収差が小さくなる位置にブレ補正レンズを引き戻すことにより、光学特性の良い状態で撮影できるからである。また、収差が小さくなる位置にブレ補正レンズを引き戻すことにより、実質的にブレ補正レンズが駆動可能な駆動範囲を大きくすることができる。
 ブレ補正レンズの引き戻しは、撮像部で撮像する前(露光前)に行っても良いし、撮像部で撮像しているとき(露光中)に行ってもよい。また、ブレ補正レンズは光軸に対して直交するものに限定されない。
 例えば、ブレ補正レンズ以外のレンズを用いて収差を補正する場合、露光前に収差を補正するレンズを駆動して収差を補正し、露光中に収差を補正するシンズを停止させることも好ましい。露光中に収差を補正するレンズが停止しているので、不要な像ブレが抑えられるからである。
(2)上述の第3実施形態では、調芯工具をレンズ鏡筒に取り付ける構造としたが、これに限定されない。例えば、調芯工具の機能を、カメラに持たせるようにしてもよく、この場合、調芯工具の撮像素子は、カメラの撮像素子と兼用することができる。
(3)上述の第3実施形態では、作業者がチルト駆動量入力部を操作して、収差が最小になる最良収差位置にブレ補正レンズをチルト駆動するように説明したが、これに限定されない。例えば、工具CPUが自動的にブレ補正レンズを最良収差位置に駆動するようにしてもよい。
(4)上述の第3実施形態では、光軸を回転軸として、正位置(0度)、+45度、+90度、+135度、+180度、+225度、+270度(-90度)、+315度(-45度)それぞれ回転し、上下方向は、正位置、上向き45度、90度、下向き45度、90度、ズーミング位置は、広角端状態W、中間焦点距離状態M、望遠端状態Tの3箇所(計120箇所)でそれぞれ調芯を行ったが、これに限定されない。例えばそれ以上の姿勢において測定することにより、さらに高精度の収差の補正が可能となる。
 なお、上述の第3実施形態および変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
(第4実施形態)
 次に、第4実施形態について説明する。第4実施形態では、第1実施形態と同等部分に同一符号を付して説明する。
 なお、第4実施形態では、説明と理解とを容易にするために、図16にXYZの直交座標系を設けた。この座標系は、撮影者が光軸Aを水平として横長の画像を撮影する場合のカメラ位置(以下、正位置という)において撮影者から見て左側に向かう方向をXプラス方向とする。また、正位置において上側に向かう方向をYプラス方向とする。さらに、正位置において被写体に向かう方向をZ方向とする。図16では、レンズ鏡筒100Cが調芯工具200Cに装着されている状態を示しているが、上記の座標系はレンズ鏡筒100Cが不図示のカメラ本体に装着されていると見なしたときの方向を示している。さらに、図中に示すレンズにおいて、直線の矢印はシフト駆動の方向を示し、円弧の矢印はチルト駆動の方向を示している。
 図16は、レンズ鏡筒100C及びそのレンズ鏡筒100Cの調芯を行う調芯工具200Cのシステム構成図である。調芯工具200Cは、レンズ鏡筒100Cの先端側からコリメートされた光を投光する発光部201と、レンズ鏡筒100Cのマウント部101に取り付けられ、発光部201から投光されてレンズ鏡筒100Cを通過した光を受け、その光を光電変換により電気信号に変換する撮像素子202とを備える。この撮像素子202は、カメラボディを模した筺体内に配置されている。さらに調芯工具200Cは、撮像素子202より得られた電気信号を画像情報に変換する画像処理部203と、画像処理部203により得られた画像情報を基に収差量への変換を行い、画面上に表示する工具PC204とを備える。
 また、調芯工具200Cは、工具PC204のモニタ上に表示された収差値を見て作業者が入力を行う、ジョイスティック等のチルト駆動量入力部208を備える。このチルト駆動量入力部208から入力された信号に従い、後述するようにレンズ鏡筒100Cにおいてブレ補正レンズ102がチルト駆動される。
 調芯工具200Cは、さらに、チルト駆動量入力部208からの信号を基にブレ補正レンズ102の像面移動量情報をレンズCPU103に伝達する工具CPU(通信制御部を含む)206を備える。この伝達は、レンズ鏡筒100Cのマウント部101を介して行われる。また、工具CPU206は、レンズCPU103及びブレ補正レンズ102を駆動するための電力も供給する。さらに、工具CPU206は、レンズ鏡筒100Cにおけるズームエンコーダ107の情報及びフォーカシングを行う場合のレンズ群104の繰り出し量情報(距離エンコーダ108の情報)もレンズCPU103より取り込む。
 一方、レンズ鏡筒100Cは、撮影光学系として、像のブレを補正するブレ補正レンズ102と、ズーミングの際に移動するレンズ群104とを備え、さらに上述したように、工具CPU206との通信を行うレンズCPU103を備える。レンズCPU103は、内部に、調芯をするための調芯モード用のプログラムを有している。レンズ鏡筒100Cが調芯工具200Cに装着されると、レンズCPU103は工具CPU206との通信により接続された事を認識し、調芯モードに移行する。調芯モードへの移行により、工具CPU206より送られてくるブレ補正レンズ102の像面移動情報を基に、ブレ補正レンズ102の駆動及び制御が可能となる。
 レンズ鏡筒100Cは、さらに、角速度を検出する角速度センサ105を備える。検出された角速度センサ105の出力は、不図示のLPF+アンプ部を通り、不要な高周波数ノイズを除去し、ブレ情報処理部106に入力される。調芯モードで角速度センサ105は機能しない。ブレ情報処理部106は、角速度センサ105の情報を基に、補正すべきブレ情報を抽出する。
 また、レンズ鏡筒100Cは、ズームエンコーダ107と、距離エンコーダ108と、これらのブレ情報処理部106の出力を基にブレ補正レンズ102の目標駆動位置の算出を行う目標駆動位置演算部109とを備える。
 レンズ鏡筒100Cは、目標駆動位置演算部109で算出された目標駆動位置情報を基にしてブレ補正レンズ102の追従制御演算を行い、この演算結果に対応した駆動信号を出力する追従制御演算部111と、追従制御演算部111からの駆動信号に従って、VCM113(ボイスコイルモータ)への電流供給を行うVCM駆動ドライバ112とを備える。VCM113は、コイル及びマグネットからなる電磁駆動アクチュエータであり、コイルに電流を流す事で駆動力を発生する。ブレ補正レンズ102は、このVCM113に発生する駆動力により光軸Aと垂直な平面内にシフト駆動される。なお、ブレ補正レンズ102の駆動はVCM113に限らず、SIDM(超小型アクチュエータ)等のPZT(チタン酸ジルコン酸鉛)型のアクチュエータやSTM(ステッピングモータ)等でもよい。
 レンズ鏡筒100Cは、ブレ補正レンズ102の光軸Aと垂直な平面内での位置を検出する位置検出部114を備える。この位置検出部114で得られたブレ補正レンズ102の位置情報は追従制御演算部111にフィードバックされる。本実施形態ではPSD(光位置センサ)を用いた方法により位置検出を行っている。ただし、位置検出部114は、上述のPSDに限らず、マグネットとホール素子を用いた、磁束密度の変動を検出する位置検出部114でもよい。
 レンズ鏡筒100Cは、撮影者がブレ補正ON/OFFを選択可能なSW(スイッチ)であるブレ補正SW115を備える。ブレ補正ON時は、角速度センサ105の出力に従って、ブレを打ち消すようにブレ補正レンズ102が光軸と垂直な平面内を動く。ブレ補正OFF時は、光軸Aとブレ補正レンズ102のセンタが一致する位置で不図示のロック機構によりブレ補正レンズ102が固定される。さらにレンズ鏡筒100Cは、記憶部となるEEPROM116や不図示のRAM、及びフォーカシングを行うAF駆動部117を備える。
 また、レンズ鏡筒100Cは、ブレ補正レンズ102を光軸Aに略直交する軸を中心にチルト(傾斜)させるチルト駆動部122と、このチルト駆動部122を介してブレ補正レンズ102をチルトさせるためのチルト駆動演算部121と、チルト駆動部122の位置を検出するためのチルト駆動部122の位置検出部123(以下、チルト位置検出部123という)とを備える。
 チルト駆動演算部121は、EEPROM116に記憶されている情報に基づいてブレ補正レンズ102をチルトさせる際の目標値を演算し、その目標値をチルト駆動部122に指令する。上記参照するEEPROM116の情報は、調芯工具200Cに装着されたレンズ鏡筒100Cのレンズ群104をズームさせたときの各焦点距離におけるズームエンコーダ107のズーミング情報と、撮像素子202上における収差が所定値以下となるように低減させたときのチルト位置検出部123のチルト位置情報とから構成されている。これらの情報は、レンズ鏡筒100C毎に工場出荷前に調芯工具200Cにより取得され、レンズ鏡筒100CのEEPROM116に工具PC206を介して書き込まれる情報である。
 チルト駆動部122は、チルト駆動演算部121からの目標値を受けて、レンズ鏡筒100Cの光軸Aに略直交する軸を中心としてブレ補正レンズ102をチルト駆動する。本実施形態のチルト駆動部122は、積層PZTを使用している。
 例えば、10′(角度で「分」)のチルト補正をするには、ブレ補正レンズ102の直径が20mmの場合、光軸Aに略直交する軸を中心としてブレ補正レンズ102を14μm移動することが必要となる。積層PZTは、14μm程度の変位を容易に行うことができる。なお、チルト補正の角度が同じ10′でもブレ補正レンズ102の直径が小さくなれば、チルト駆動部122の駆動量が小さくて済むことは言うまでもない。
 また、チルト駆動部122とチルト位置検出部123は、ブレ補正レンズ102の光軸Aに略直交する2軸に対して配置することで、任意の向きにブレ補正レンズ102をチルトすることを可能としている。図16では、図の都合上、チルト方向はZ方向を示しているが、X方向にもチルト駆動される。
 また、積層PZTは、ヒステリシスを有するために位置フィードバックが必要となる。そのため、チルト位置検出部123で逐次位置検出を行い、その位置検出情報をチルト駆動演算部121へフィードバックすることにより、チルト駆動部122での駆動を制御している。なお、チルト駆動部122は、積層PZTに限らず、VCMやSTMなどを使用することもできる。STMはオープン制御が可能であるため、チルト位置検出部123が不要になるという利点がある。また、チルト位置検出部123は、本実施形態ではPSDを用いた方法により位置検出を行っているが、PSDに限らずマグネットとホール素子を用いた磁束密度の変動を検出するものであってもよい。
 次に、調芯時の動作を説明する。図17は調芯時の処理手順を示すフローチャートである。まず、調芯工具200Cにレンズ鏡筒100Cを装着する(S100)。そうすると、調芯工具200Cは、レンズ鏡筒100Cの装着を確認し(S201)、レンズ鏡筒100C側へ電力を供給する。
 一方、レンズ鏡筒100Cでは、レンズCPU103が工具CPU206と通信を開始する(S101)。レンズCPU103は、上述のように調芯をするための調芯モードのプログラムを有しており、レンズCPU103は、調芯工具200Cに取り付けられたことを検知すると、調芯モードに移行する(S102)。
 レンズCPU103は、レンズ鏡筒100Cの工程情報やシリアル情報を有している。これらの情報を工具CPU206が読み込むことにより、工具CPU206で調整検査工程の管理が行えるようになる(S202)。
 調芯工具200Cは、レンズ鏡筒100C内のAF駆動部117より、レンズ群104を所定のフォーカス位置に駆動させように指示する。レンズ群104は、その指令に従い、所定位置に移動される(S103)。このフォーカスにおける所定位置は、無限位置等の、所定のスタート位置である。
 レンズ鏡筒100Cは、ブレ補正レンズ102の駆動に先立ち、不図示の電磁ロックを解除する(S104)。電磁ロックは、ブレ補正レンズ102を所定の位置に固定するためのロック機構である。この電磁ロックを解除することにより、ブレ補正レンズ102はVCM113の駆動力により駆動することが可能になる。
 調芯工具200Cは、レンズCPU103が認識しているズーム情報を読み込み(S203)、T端にあるか判断する(S204)。このズーム情報の読み込みは、レンズ側のマウント部101の接点からの通信でレンズ鏡筒100Cのズームエンコーダ107の値を工具CPU206が受け取ることにより行われる。レンズ鏡筒100CがT端に無い場合には(S204,No)、例えば、工具PC204のモニタを通じて作業者にレンズ鏡筒100CをT端に移動させるよう指示する(S205)。
 レンズ鏡筒100Cは、EEPROM116が有するセンタ位置情報をブレ補正レンズ102の目標駆動位置として、追従制御を開始する。センタ位置に移行したら(S105)、調芯工具200C側に調芯作業が開始可能である信号を送る。
 調芯工具200Cは、レンズ鏡筒100Cからの開始可能の信号を受信すると調芯を開始する(S206)。調芯は、レンズ鏡筒100Cの焦点距離に応じ、少なくとも2箇所以上で行う。本実施形態では、T(テレ)端、W(ワイド)端、及びその中間のM(ミドル)位置での3箇所で調芯を行う。
 調芯工具200Cは、工具PC204のモニタを介して、発光部201から投光されてレンズ鏡筒100Cを通過し、撮像素子202に入射した光の像より収差の程度を観察し、収差が所定範囲内にあるかどうかを判断する(S207)。収差が所定範囲内にない場合(S207,No)には、作業者によりチルト駆動量入力部208が操作され(S208)、収差が最小になる最良収差位置にブレ補正レンズ102が駆動される。チルト駆動量入力部208は、駆動されたブレ補正レンズ102の駆動量をレンズ鏡筒100C側に出力する。
 レンズ鏡筒100Cでは、工具CPU206より送られてきたチルト駆動量情報が、チルト駆動演算部121においてブレ補正レンズ102の位置に換算される。そして、ブレ補正レンズ102がチルト駆動部122を介してチルト駆動され、ブレ補正レンズ102のチルト位置が修正される(S106)。
 収差が所定範囲内に収まったら(S207,Yes)、調芯補正位置決定の信号をレンズCPU103側に送信する(S209)。調芯補正位置決定の信号を受けたら、レンズCPU103側は、ブレ補正レンズ102の調芯位置であるチルト位置情報をT端での最良収差位置情報として不図示のRAMに記憶する(S107)。
 T端での調整が終了したら、M位置及びW端でも同様の調整を行う(S210)。レンズCPU103は、それぞれの位置でのチルト位置情報を最良収差位置情報としてRAMに記憶する(S107)。
 調芯が終了したら(S211)、終了通知をレンズCPU103へ送る。レンズCPU103側では、3箇所の焦点距離の最良収差位置情報を基に、他のズーム位置での最良収差位置情報を演算して補間し、それぞれのズーム位置に応じた最良収差位置情報を算出する(S108)。図18は、W端からT端までの焦点距離と最良収差位置となる調芯位置との関係を示す説明図である。図中、T(テレ)端、W(ワイド)端、及び中間のM(ミドル)位置での3箇所で調芯を行ったときの調芯位置(黒丸)が示されている。この3箇所以外の焦点距離については、前記3点を結ぶ線上に補間予測値(破線丸)を設定することにより、それぞれ調芯位置を求めることができる。
 ブレ補正レンズ102の最良収差位置情報のズーム位置に応じた補間処理が完了したら、EEPROM116に、全ズーム位置でのチルト位置情報をブレ補正レンズ102の最良収差位置情報として記憶する(S109)。そして、調芯工具200Cからレンズ鏡筒100Cを取り外し(S110)、調芯工程を終了する。
 次に、調芯工程で算出された最良収差位置情報を用いた収差補正について説明する。図19は、本実施形態のレンズ鏡筒100Cを装着したカメラ10Aの概略構成図である。図19に示すように、カメラ10Aにおいて、不図示の被写体からの光はレンズ鏡筒100Cで集光され、クイックリターンミラー12で反射されて焦点板13に結像される。焦点板13に結像された被写体像は、ペンタプリズム14で複数回反射されて接眼レンズ15を介して撮影者に正立像として観察可能となる。
 撮影者は、不図示のレリーズボタンを半押ししながら接眼レンズ15を介して被写体像を観察して撮影構図を決めた後、レリーズボタンを全押しする。レリーズボタンを全押しすると、クイックリターンミラー12が上方に跳ね上げられ、不図示のシャッタが動作して、被写体からの光は撮像素子16で受光される。これにより、撮像素子16で撮影画像が取得され、所定の画像処理が施された後、不図示のメモリに記録される。
 また、レリーズボタンが半押しされると、レンズ鏡筒100Cに内蔵されている角速度センサ105でレンズ鏡筒100C又はカメラ10Aのブレが検出されてレンズCPU103に伝達される。また、ズームエンコーダ107のズーミング情報がレンズCPU103に伝達される。そして、レリーズボタンが全押しされると、レンズCPU103は、ブレ補正レンズ102を図16に示すVCM113を介して光軸Aと垂直な平面内にシフト駆動し、またチルト駆動部122を介して光軸Aに略直交する軸を中心にチルト駆動することにより、撮像素子16上における像ブレやレンズ鏡筒100Cの偏心成分による収差を補正する。
 図20は、ブレ補正SW115のON時における収差補正の処理手順を示すフローチャートである。レンズ鏡筒100Cが不図示のカメラに装着された状態で、カメラ10Aのレリーズが半押しされると(S301、Yes)、ブレ補正レンズ102に電源供給が開始され、ブレ補正シーケンスが開始される。
 まず、ブレ補正レンズ102の動きをメカニカルに規制している電磁ロックが解除され(S302)、次に、ブレ補正レンズ102を制御センタ位置へ駆動する(S303)。このときの制御センタ位置は、ブレ補正レンズ102の位置検出部114からの情報であって、チルト位置検出部123からの情報ではない。
 角速度センサ105の出力、及びズームエンコーダ107の焦点距離情報から、撮像素子16面での収差が最小となるように、また像面での像が止まるように、ブレ補正レンズ102のシフト駆動及びチルト駆動制御が開始される。このとき、ブレ補正レンズ102が、現在のレンズ鏡筒100Cのズーム位置において最良収差位置となるように駆動制御される(S304)。そして、この状態でカメラのレリーズが全押しされるのを待つ(S305)。
 カメラ10Aのレリーズが全押しされると(S305、Yes)、不図示のクイックリターンミラーが跳ね上がる最中に、ズームエンコーダ107からの焦点距離情報によりブレ補正レンズ102が最良収差位置にチルト駆動される(S306)。そして最良収差位置にチルト駆動された後、ブレ補正が開始される(S307)。
 ブレ補正が行われ、所定のシャッタ速度において露光が行われ(S308)、ブレ補正が停止される(S309)。その後、半押しタイマーが動作中であれば(S310、Yes)、S304以降のブレ補正、チルト駆動を行い、半押しタイマーが切れていれば(S310、No)、電磁ロックが駆動され(S311)、動作フローが終了する。なお、半押しタイマー中の場合は、ブレ補正のための駆動が行われるが、半押しタイマーが切れた場合は、電磁ロックが駆動され、ブレ補正レンズ102が機械的に保持される。
 このように、調芯工程で得られた最良収差位置を中心としてブレ補正及びチルト駆動を実行して撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 図21は、ブレ補正SWのOFF時における収差補正の処理手順を示すフローチャートである。レンズ鏡筒100Cが不図示のカメラに装着された状態で、カメラのレリーズが半押しされ(S401、Yes)、次いでレリーズが全押しされる(S402、Yes)と、不図示のクイックリターンミラーが跳ね上り、電磁ロックが解除される(S403)。
 そうすると、現在のレンズ鏡筒100Cのズーム情報がレンズCPU103によって読み込まれる(S404)。そしてブレ補正レンズ102が、現在のレンズ鏡筒100Cのズーム位置における最良収差位置にチルト駆動される(S405)。この最良収差位置は、上述のブレ補正SW115のON時と同様に、ズームエンコーダ107の値により異なり、T端、M位置、W端では、図17のS204~S210において調芯により得られた位置である。その中間の位置では、図17におけるS108において演算されて補間された位置である。そして、所定のシャッタ速度において露光が行われ(S406)、その後、電磁ロックが駆動され(S407)、動作フローが終了する。
 このように、ブレ補正SW115がOFFのときにも、調芯工程で得られたチルト補正による最良収差位置において撮影を行うので、光学性能的に最も収差性能がよい位置での撮影が可能となる。
 上述の第4実施形態によると、以下の効果を有する。
(1)レンズ鏡筒100Cに含まれる複数のレンズ群104からなる撮影光学系により撮像面上に生じる収差が最も少なくなるブレ補正レンズ102の位置を、個々のレンズ鏡筒100Cごとに焦点距離に対応した最良収差位置として記憶させる。そして撮影時においては、その焦点距離における最良収差位置にブレ補正レンズ102を移動させてから撮影を行う。このように、レンズ鏡筒100Cにより異なる収差を、レンズ鏡筒100Cごとに調整するので、各レンズ鏡筒の収差をそれぞれ最小にすることができる。
(2)また、最良収差位置は、焦点距離に応じて収差が小さくなるように変動するので、それぞれの焦点距離において、光学性能的に最も収差性能がよい位置での撮影が可能となる。
(3)既存のブレ補正レンズ102を使用するので、新たに収差補正のための部品を追加する必要がない。
(4)ブレ補正を行う場合は、最良収差位置を中心として行われるので、迅速なブレ補正を行うことができる。
(5)収差を補正するレンズがブレ補正レンズ102である場合には、記憶部に記憶された収差が小さくなる傾斜位置にブレ補正レンズ102を引き戻し(センタリング)してもよい。このように、収差が小さくなる傾斜位置にブレ補正レンズ102を引き戻すことにより、光学特性の良い状態で撮影できるからである。また、収差が小さくなる傾斜位置にブレ補正レンズを引き戻すことにより、実質的にブレ補正レンズ102がチルト駆動可能な駆動範囲を大きくすることができる。
 ブレ補正レンズ102の引き戻しは、撮像部で撮像する前(露光前)に行っても良いし、撮像部で撮像しているとき(露光中)に行ってもよい。また、ブレ補正レンズ102は光軸Aに対して略直交するものに限定されない。
(第5実施形態)
 上述の第4実施形態では、収差を補正するレンズがブレ補正レンズ102である例について示したが、ブレ補正レンズ102以外のレンズを用いて収差を補正するようにしてもよい。図22は、ブレ補正レンズ102の後段に配置されたレンズ119により収差を補正するようにした場合の構成図である。なお図22では、レンズ鏡筒100Dと調芯工具の一部を図示しており、第4実施形態と同等部分に同一符号を付している。また、他の構成や電気的な接続経路等については図示を省略する(以降の実施形態において同じ)。
 本実施形態のブレ補正レンズ102は、ブレ補正レンズ102を光軸Aと垂直な平面内にシフト駆動するVCM113と、ブレ補正レンズ102の光軸Aと垂直な平面内での位置を検出する位置検出部114とを備える。また、ブレ補正レンズ102の後段に配置されたレンズ119は、レンズ119を光軸Aに略直交する軸を中心にチルトさせるチルト駆動部122と、チルト駆動部122の位置を検出するためのチルト位置検出部123とを備える。
 本実施形態のレンズ鏡筒100Dによれば、ブレ補正レンズ102のシフト駆動によりブレ補正が行われ、レンズ119のチルト駆動により収差の補正が行われる。このように、ブレ補正レンズ102以外のレンズを用いて収差を補正するように構成した場合でも、第4実施形態と同様の効果を得ることができる。なお、本実施形態の構成においては、露光前に収差を補正するレンズ119をチルト駆動して収差を補正し、露光中に収差を補正するレンズ119の駆動を停止させることも好ましい。この場合は、露光中に収差を補正するレンズ119が停止しているので、不要な像ブレが抑えられるからである。
 第5実施形態の構成において、図22に示すレンズ鏡筒100Dは、焦点距離を検知するためのズームエンコーダ107(図2参照)、EEPROM116(図2参照)等の上述した第1実施形態と同様の構成を有している。レンズ鏡筒100Dは、チルト駆動部122を用いて、ズームエンコーダ107で検知されたズーム情報に基づいてレンズ119をチルト駆動することにより、上述した第1実施形態と同様に収差の補正を行うことができる。
 また、第5実施形態の構成において、レンズ鏡筒100Dの姿勢を検知するための不図示の姿勢センサを備えた構成としてもよい(図示を省略する)。この場合、チルト駆動部122において、前記姿勢センサで検知された姿勢情報とブレ補正レンズ102の位置情報に基づいてレンズ119をチルト駆動することにより収差の補正を行うことができる。
(第6実施形態)
 上述の第5実施形態において、ブレ補正レンズ102の後段に配置されたレンズ119をシフト駆動することにより収差を補正するようにしてもよい。図23は、ブレ補正レンズ102の後段に配置されたレンズ119により収差を補正するようにした場合の構成図である。
 本実施形態のブレ補正レンズ102は、ブレ補正レンズ102を光軸Aと垂直な平面内にシフト駆動するVCM113と、ブレ補正レンズ102の光軸Aと垂直な平面内での位置を検出する位置検出部114とを備える。また、ブレ補正レンズ102の後段に配置されたレンズ119は、レンズ119を光軸Aと垂直な平面内にシフト駆動するVCM113Aと、レンズ119の光軸Aと垂直な平面内での位置を検出する位置検出部114Aとを備える。
 第6実施形態の構成において、図23に示すレンズ鏡筒100Eは、焦点距離を検知するためのズームエンコーダ107(図2参照)、EEPROM116(図2参照)等の上述した第1実施形態と同様の構成を有している。レンズ鏡筒100Eは、シフト駆動部113を用いて、ズームエンコーダ107で検知されたズーム情報に基づいてレンズ119をシフト駆動することにより、上述した第1実施形態と同様に収差の補正を行うことができる。
 本実施形態のレンズ鏡筒100Eによれば、ブレ補正レンズ102のシフト駆動によりブレ補正が行われ、レンズ119のシフト駆動により収差の補正が行われる。このように、ブレ補正レンズ102以外のレンズをシフト駆動することにより収差を補正するように構成した場合でも、第1実施形態と同様の効果を得ることができる。
 また、第6実施形態の構成において、レンズ鏡筒100Eの姿勢を検知するための不図示の姿勢センサを備えた構成としてもよい(図示を省略する)。この場合は、VCM113Aを駆動する不図示のVCM駆動ドライバにおいて、前記姿勢センサで検知された姿勢情報とブレ補正レンズ102の位置情報に基づいてレンズ119をシフト駆動することにより収差の補正を行うことができる。
(第7実施形態)
 本発明の構成において、ブレ補正レンズ102を光軸Aに略直交する軸を中心としてチルト駆動することによりブレ補正を行うようにしてもよい。図24は、ブレ補正レンズ102をチルト駆動してブレ補正を行い、またシフト駆動することにより収差の補正を行うようにした場合の構成図である。なお、図24に示すレンズ鏡筒100Fの基本的な構成は図16と同じであるが、図16とはブレ補正レンズ102の機能が異なることを矢印で示している。
 本実施形態のブレ補正レンズ102は、ブレ補正レンズ102を光軸Aと垂直な平面内にシフト駆動するVCM113と、ブレ補正レンズ102の光軸Aと略直交する平面内での位置を検出する位置検出部114とを備える。また、ブレ補正レンズ102は、ブレ補正レンズ102を光軸Aに略直交する軸を中心にチルトさせるチルト駆動部122と、チルト駆動部122の位置を検出するためのチルト位置検出部123とを備える。
 第7実施形態のレンズ鏡筒100Fによれば、ブレ補正レンズ102のチルト駆動によりブレ補正が行われ、またブレ補正レンズ102のシフト駆動により収差の補正が行われる。このように、ブレ補正レンズ102のチルト駆動によりブレ補正を行い、シフト駆動により収差を補正するように構成した場合でも、第4実施形態と同様の効果を得ることができる。
 第7実施形態の構成において、図24に示すレンズ鏡筒100Fは、焦点距離を検知するためのズームエンコーダ107(図2参照)、EEPROM116(図2参照)等の上述した第1実施形態と同様の構成を有している。レンズ鏡筒100Fは、シフト駆動部113を用いて、ズームエンコーダ107で検知されたズーム情報に基づいてレンズ102をシフト駆動することにより、上述した第1実施形態と同様に収差の補正を行うことができる。
 また、第7実施形態の構成において、レンズ鏡筒100Fの姿勢を検知するための不図示の姿勢センサを備えた構成としてもよい(図示を省略する)。この場合は、VCM113Aを駆動する不図示のVCM駆動ドライバにおいて、前記姿勢センサで検知された姿勢情報とブレ補正レンズ102の位置情報に基づいてブレ補正レンズ102をシフト駆動することにより収差の補正を行うことができる。
(第8実施形態)
 上述の第7実施形態において、ブレ補正レンズ102の後段に配置されたレンズ119をシフト駆動することにより収差を補正するようにしてもよい。図25は、ブレ補正レンズ102の後段に配置されたレンズ119により収差を補正するようにした場合の構成図である。
 本実施形態のブレ補正レンズ102は、ブレ補正レンズ102を光軸Aに略直交する軸を中心にチルトさせるチルト駆動部122と、チルト駆動部122の位置を検出するためのチルト位置検出部123とを備える。また、ブレ補正レンズ102の後段に配置されたレンズ119は、レンズ119を光軸Aと垂直な平面内にシフト駆動するVCM113と、レンズ119の光軸Aと略直交する平面内での位置を検出する位置検出部114とを備える。
 第8実施形態の構成において、図25に示すレンズ鏡筒100Gは、焦点距離を検知するためのズームエンコーダ107(図2参照)、EEPROM116(図2参照)等の上述した第1実施形態と同様の構成を有している。レンズ鏡筒100Gは、シフト駆動部113を用いて、ズームエンコーダ107で検知されたズーム情報に基づいてレンズ119をシフト駆動することにより、上述した第1実施形態と同様に収差の補正を行うことができる。
 第8実施形態のレンズ鏡筒100Gによれば、ブレ補正レンズ102のチルト駆動によりブレ補正が行われ、レンズ119のシフト駆動により収差の補正が行われる。このように、ブレ補正レンズ102以外のレンズをシフト駆動することにより収差を補正するように構成した場合でも、第4実施形態と同様の効果を得ることができる。
 また、第8実施形態の構成において、レンズ鏡筒100Gの姿勢を検知するための不図示の姿勢センサを備えた構成としてもよい(図示を省略する)。この場合は、VCM113を駆動する不図示のVCM駆動ドライバにおいて、前記姿勢センサで検知された姿勢情報とブレ補正レンズ102の位置情報に基づいてレンズ119をシフト駆動することにより収差の補正を行うことができる。
(第9実施形態)
 本発明の構成として、ブレ補正レンズ102を光軸Aに略直交する軸を中心としてチルト駆動することによりブレ補正と収差の補正を行うようにしてもよい。図26は、ブレ補正レンズ102をチルト駆動することによりブレ補正と収差の補正を行うようにした場合の構成図である。なお、図26に示すレンズ鏡筒100Hの基本的な構成は図16と同じであるが、図16とはブレ補正レンズ102の機能が異なることを矢印で示している。
 本実施形態のブレ補正レンズ102は、ブレ補正レンズ102を光軸Aに略直交する軸を中心にチルトさせるチルト駆動部122と、チルト駆動部122の位置を検出するためのチルト位置検出部123とを備える。
 第9実施形態の構成において、図26に示すレンズ鏡筒100Hは、焦点距離を検知するためのズームエンコーダ107(図2参照)、EEPROM116(図2参照)等の上述した第1実施形態と同様の構成を有している。レンズ鏡筒100Hは、チルト駆動部122を用いて、ズームエンコーダ107で検知されたズーム情報に基づいてレンズ102をチルト駆動することにより、上述した第1実施形態と同様に収差の補正を行うことができる。
 第9実施形態のレンズ鏡筒100Hによれば、ブレ補正レンズ102のチルト駆動によりブレ補正が行われ、またブレ補正レンズ102のチルト駆動により収差の補正が行われる。このように、ブレ補正レンズ102のチルト駆動によりブレ補正と収差の補正を行うように構成した場合でも、第4実施形態と同様の効果を得ることができる。
 また、第9実施形態の構成において、レンズ鏡筒100Hの姿勢を検知するための不図示の姿勢センサを備えた構成としてもよい(図示を省略する)。この場合は、チルト駆動部122において、前記姿勢センサで検知された姿勢情報とブレ補正レンズ102の位置情報に基づいてブレ補正レンズ102をチルト駆動することにより収差の補正を行うことができる。
(第10実施形態)
 上述の第9実施形態の構成において、ブレ補正レンズ102の後段に配置されたレンズ119をチルト駆動することにより収差の補正を行うようにしてもよい。図27は、ブレ補正レンズ102の後段に配置されたレンズ119により収差を補正するようにした場合の構成図である。
 本実施形態のブレ補正レンズ102は、ブレ補正レンズ102を光軸Aに略直交する軸を中心にチルトさせるチルト駆動部122と、チルト駆動部122の位置を検出するためのチルト位置検出部123とを備える。また、ブレ補正レンズ102の後段に配置されたレンズ119は、レンズ119を光軸Aに略直交する軸を中心にチルトさせるチルト駆動部122Aと、チルト駆動部122Aの位置を検出するためのチルト位置検出部123Aとを備える。
 第10実施形態の構成において、図27に示すレンズ鏡筒100Iは、焦点距離を検知するためのズームエンコーダ107(図2参照)、EEPROM116(図2参照)等の上述した第1実施形態と同様の構成を有している。レンズ鏡筒100Iは、チルト駆動部122Aを用いて、ズームエンコーダ107で検知されたズーム情報に基づいてレンズ119をチルト駆動することにより、上述した第1実施形態と同様に収差の補正を行うことができる。
 第10実施形態のレンズ鏡筒100Iによれば、ブレ補正レンズ102のチルト駆動によりブレ補正が行われ、レンズ119のチルト駆動により収差の補正が行われる。このように、ブレ補正レンズ102以外のレンズをチルト駆動することにより収差を補正するように構成した場合でも、第4実施形態と同様の効果を得ることができる。
 また、第10実施形態の構成において、レンズ鏡筒100Iの姿勢を検知するための不図示の姿勢センサを備えた構成としてもよい(図示を省略する)。この場合は、チルト駆動部122Aにおいて、前記姿勢センサで検知された姿勢情報とブレ補正レンズ102の位置情報に基づいてレンズ119をチルト駆動することにより収差の補正を行うことができる。
(変形形態)
 以上説明した第4実施形態~第10実施形態に限定されることなく、本発明は以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)上述の第4実施形態では、調芯工具200Cをレンズ鏡筒100に取り付ける構造としたが、本発明はこれに限定されない。例えば、調芯工具200Cの機能を、カメラに持たせるようにしてもよく、この場合、調芯工具の撮像素子202は、カメラの撮像素子と兼用することができる。
(2)上述の第4実施形態では、作業者がチルト駆動量入力部208を操作して、収差が最小になる最良収差位置にブレ補正レンズ102を駆動するように説明したが、本発明はこれに限定されない。例えば、工具CPU206が自動的にブレ補正レンズ102を最良収差位置に駆動するようにしてもよい。
(3)上述の第4実施形態では、T端、M及びW端において調芯の測定を行ったが、本発明はこれに限定されない。3箇所以上において測定することにより、さらに高精度の収差の補正が可能となる。また、ズーム全域で収差がほぼ許容範囲内にあり、特定の位置で収差が著しく大きくなる場合には、その位置でのみ調芯の測定を行うようにしてもよい。
(4)本発明に係わる撮像装置の実施形態は、上述した第4実施形態~第10実施形態に限定されず、例えば、レンズ鏡筒、カメラボディ、スチルカメラ、ビデオカメラ、カメラ内蔵の携帯電話などの撮影光学系を備えた光学機器全般を含むものである。
 また、上述の第4実施形態~第10実施形態及び変形形態は適宜に組み合わせて用いることができるが、各実施形態の構成は図示と説明により明らかであるため、詳細な説明を省略する。さらに、本発明は以上説明した実施形態によって限定されることはない。

Claims (36)

  1.  第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、
     前記撮影光学系の焦点距離を検出した後であって前記撮影光学系による像を撮像する前に、前記撮影光学系の収差が低減するように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部と、を含むことを特徴とするレンズ鏡筒。
  2.  第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、
     撮影をするときの姿勢を検出した後であって前記撮影光学系による像を撮像する前に、前記撮影光学系の収差が低減するように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部と、を含むことを特徴とするレンズ鏡筒。
  3.  請求項1又は請求項2に記載されたレンズ鏡筒であって、
     前記駆動部は、前記撮影光学系の光軸と交差する方向に前記第2光学系を駆動することを特徴とするレンズ鏡筒。
  4.  請求項1又は請求項2に記載されたレンズ鏡筒であって、
     前記駆動部は、前記第1光学系に対して前記第2光学系を相対的に傾斜させるように駆動することを特徴とするレンズ鏡筒。
  5.  請求項1から請求項4までの何れか1項に記載されたレンズ鏡筒であって、
     前記撮影光学系における収差量が抑えられる、前記第2光学系の位置情報を記憶可能な記憶部を含み、
     前記駆動部は、前記記憶部に記憶された位置情報に基づき、前記第2光学系を駆動することを特徴とするレンズ鏡筒。
  6.  請求項5に記載されたレンズ鏡筒であって、
     前記記憶部は、前記撮影光学系の焦点距離に応じた前記第2光学系の位置情報を記憶しており、
     前記駆動部は、前記焦点距離の情報と、該記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動することを特徴とするレンズ鏡筒。
  7.  請求項5に記載されたレンズ鏡筒であって、
     前記記憶部は、撮影をするときの姿勢に応じた前記第2光学系の位置情報を記憶しており、
     前記駆動部は、前記撮影をするときの姿勢の情報と、該記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動することを特徴とするレンズ鏡筒。
  8.  請求項1から請求項7までの何れか1項に記載されたレンズ鏡筒であって、
     前記第2光学系は偏心レンズであることを特徴とするレンズ鏡筒。
  9.  請求項1から請求項8までの何れか1項に記載されたレンズ鏡筒であって、
     前記第2光学系は、像のブレを補正するブレ補正レンズであることを特徴とするレンズ鏡筒。
  10.  請求項9に記載されたレンズ鏡筒であって、
     前記駆動部は、前記ブレ補正レンズが前記像のブレを補正しているとき、前記ブレ補正レンズに対して、前記撮影光学系における収差量が抑えられる位置に引き戻す駆動力を与えることを特徴とするレンズ鏡筒。
  11.  請求項1から請求項8までの何れか1項に記載されたレンズ鏡筒であって、
     前記第2光学系とは独立して備えられ、像のブレを補正するブレ補正レンズを有することを特徴とするレンズ鏡筒。
  12.  請求項9から請求項11までのいずれか1項に記載のレンズ鏡筒であって、
     装置の振れを検出する振れ検出部を有し、
     前記駆動部は、前記振れ検出部の出力に応じて前記振れを補正するように前記ブレ補正レンズを駆動することを特徴とするレンズ鏡筒。
  13.  請求項12に記載のレンズ鏡筒であって、
     前記駆動部は、前記振れ検出部の出力に応じて前記撮影光学系の光軸と交差する方向に前記ブレ補正レンズを駆動することにより前記像のブレを補正することを特徴とするレンズ鏡筒。
  14.  請求項12に記載のレンズ鏡筒であって、
     前記駆動部は、前記振れ検出部の出力に応じて、前記第1光学系に対して前記ブレ補正レンズを相対的に傾斜させるように前記ブレ補正レンズを駆動することにより前記像のブレを補正することを特徴とするレンズ鏡筒。
  15.  請求項1から請求項14までの何れか1項に記載されたレンズ鏡筒であって、
     前記駆動部は、前記撮影光学系による像が撮像される前に前記第2光学系を駆動し、前記像が撮像されるときに前記第2光学系を駆動しないことを特徴とするレンズ鏡筒。
  16.  第1光学系に対して相対的に移動可能な第2光学系を含む撮影光学系と、
     前記撮影光学系の焦点距離に対応した、前記撮影光学系の収差量が抑えられる前記第2光学系の位置情報を記憶可能な記憶部と、
     前記焦点距離の情報と、前記記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動する駆動部とを備えることを特徴とするレンズ鏡筒。
  17.  第1光学系に対して相対的に移動可能な第2光学系を含む撮影光学系と、
     撮影をするときの姿勢に対応した、前記撮影光学系の収差量が抑えられる前記第2光学系の位置情報を記憶可能な記憶部と、
     前記撮影をするときの姿勢の情報と、該記憶部に記憶された前記位置情報とに基づき、前記第2光学系を駆動する駆動部とを備えることを特徴とするレンズ鏡筒。
  18.  請求項17に記載されたレンズ鏡筒であって、
     前記記憶部は、撮影をするときの前記撮影光学系の光軸周りの姿勢に対応した、前記撮影光学系の収差量が抑えられる前記第2光学系の位置情報を記憶可能であることを特徴とするレンズ鏡筒。
  19.  請求項16から請求項18までの何れか1項に記載されたレンズ鏡筒であって、
     前記駆動部は、前記第1光学系に対して前記第2光学系を相対的に傾斜させるように駆動することを特徴とするレンズ鏡筒。
  20.  第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、
     前記第1光学系の位置に応じて前記撮影光学系の収差が低減するように、前記第2光学系を前記第1光学系に対して相対的に傾斜させるように駆動する駆動部と、を含むことを特徴とするレンズ鏡筒。
  21.  請求項20に記載のレンズ鏡筒であって、
     前記第1光学系に対する前記第2光学系の相対的な傾斜量を前記第1光学系の位置に応じて記憶する記憶部を有することを特徴とするレンズ鏡筒。
  22.  第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、
     前記第1光学系の位置に応じて前記撮影光学系の収差が低減するように、前記撮影光学系の光軸と交差する方向に前記第2光学系を駆動する駆動部と、を含むことを特徴とするレンズ鏡筒。
  23.  請求項22に記載のレンズ鏡筒であって、
     前記撮影光学系の光軸と交差する方向の前記第2光学系の駆動量を前記第1光学系の位置に応じて記憶する記憶部を有することを特徴とするレンズ鏡筒。
  24.  第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系と、
     撮影状態を検出した後であって前記撮影光学系による像を撮像する前に、前記撮影光学系の収差が低減するように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部と、を含むことを特徴とするレンズ鏡筒。
  25.  請求項24に記載されたレンズ鏡筒であって、
     前記駆動部は、前記撮影光学系の焦点距離を検出した後であって前記撮影光学系による像を撮像する前に、前記第1光学系に対して前記第2光学系を相対的に駆動させることを特徴とするレンズ鏡筒。
  26.  請求項24に記載されたレンズ鏡筒であって、
     前記駆動部は、撮影をするときの姿勢を検出した後であって前記撮影光学系による像を撮像する前に、前記第1光学系に対して前記第2光学系を相対的に駆動させることを特徴とするレンズ鏡筒。
  27.  請求項1から26のいずれか1項に記載されたレンズ鏡筒と、
     前記撮影光学系による像を撮像する撮像部と、を有することを特徴とする撮影装置。
  28.  第1光学系に対して相対的に移動可能な第2光学系を有する撮影光学系の収差量を測定しつつ、前記第2光学系を駆動し、
     前記撮影光学系の収差量が抑えられたときの前記第2光学系の位置を記憶することを特徴とするレンズ鏡筒の調整方法。
  29.  請求項28に記載されたレンズ鏡筒の調整方法であって、
     前記撮影光学系の光軸と交差する方向に前記第2光学系を駆動することを特徴とするレンズ鏡筒の調整方法。
  30.  請求項28に記載されたレンズ鏡筒の調整方法であって、
     前記第1光学系に対して前記第2光学系を相対的に傾斜させるように前記第2光学系を駆動することを特徴とするレンズ鏡筒の調整方法。
  31.  請求項28または30に記載されたレンズ鏡筒の調整方法であって、
     前記撮影光学系の焦点距離に応じて前記第2光学系の位置を記憶することを特徴とするレンズ鏡筒の調整方法。
  32.  請求項28または30に記載されたレンズ鏡筒の調整方法であって、
     前記レンズ鏡筒の姿勢に応じて前記第2光学系の位置を記憶することを特徴とするレンズ鏡筒の調整方法。
  33.  請求項28から請求項32までの何れか1項に記載されたレンズ鏡筒の調整方法であって、
     撮影前に、前記第2光学系を前記記憶された位置に駆動することを特徴とするレンズ鏡筒の調整方法。
  34.  撮影光学系に含まれる第1光学系に対して相対的に移動できるように前記撮影光学系に含まれる第2光学系を配置し、
     撮影状態に応じて前記撮影光学系の収差を低減できるように、前記第1光学系に対して前記第2光学系を相対的に駆動させる駆動部を調整することを特徴とするレンズ鏡筒の製造方法。
  35.  請求項34に記載されたレンズ鏡筒の製造方法であって、
     前記撮影光学系の焦点距離に応じて、前記撮影光学系の収差が低減される前記第2光学系の位置情報を記憶させることを特徴とするレンズ鏡筒の製造方法。
  36.  請求項34に記載されたレンズ鏡筒の製造方法であって、
     前記レンズ鏡筒の姿勢に応じて、前記撮影光学系の収差が低減される前記第2光学系の位置情報を記憶させることを特徴とするレンズ鏡筒の製造方法。
PCT/JP2009/050939 2008-01-22 2009-01-22 レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置 WO2009093635A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/838,886 US20110032615A1 (en) 2008-01-22 2010-07-19 Lens barrel, method of adjusting lens barrel, method of manufacturing lens barrel and imaging device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008011472A JP2009175241A (ja) 2008-01-22 2008-01-22 光学装置およびその調整方法
JP2008011469A JP2009175240A (ja) 2008-01-22 2008-01-22 光学装置およびその調整方法
JP2008-011469 2008-01-22
JP2008-011472 2008-01-22
JP2008-186297 2008-07-17
JP2008186297A JP5458521B2 (ja) 2008-07-17 2008-07-17 レンズ鏡筒、レンズ鏡筒の調整方法、光学装置、および光学装置の調整方法
JP2008-331265 2008-12-25
JP2008331265A JP5458570B2 (ja) 2008-12-25 2008-12-25 光学装置、光学装置の製造方法、光学装置の調整方法、及び撮影装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/838,886 Continuation US20110032615A1 (en) 2008-01-22 2010-07-19 Lens barrel, method of adjusting lens barrel, method of manufacturing lens barrel and imaging device

Publications (1)

Publication Number Publication Date
WO2009093635A1 true WO2009093635A1 (ja) 2009-07-30

Family

ID=40901141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050939 WO2009093635A1 (ja) 2008-01-22 2009-01-22 レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置

Country Status (2)

Country Link
US (1) US20110032615A1 (ja)
WO (1) WO2009093635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047242A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 レンズ装置及び撮像装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047241A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 レンズシステム及びカメラシステム
WO2013052014A1 (en) 2011-10-07 2013-04-11 National University Of Singapore Mems-based zoom lens system
US9726862B2 (en) * 2012-11-08 2017-08-08 DynaOptics LTD, A Public Limited CO. Lens assemblies and actuators for optical systems and methods therefor
KR102401035B1 (ko) * 2012-12-20 2022-05-24 애플 인크. 음성 코일 모터 광학 이미지 안정화를 위한 액추에이터 모듈, 카메라 모듈, 다기능 장치, 시스템들 및 방법
JP6139880B2 (ja) 2012-12-27 2017-05-31 キヤノン株式会社 光学系及びそれを有する撮影装置
JP6170395B2 (ja) * 2013-09-26 2017-07-26 キヤノン株式会社 撮像装置およびその制御方法
JP6271974B2 (ja) * 2013-12-02 2018-01-31 キヤノン株式会社 像振れ補正装置、レンズ鏡筒、および撮像装置
JP2016184102A (ja) * 2015-03-26 2016-10-20 富士フイルム株式会社 ズームレンズ装置およびその制御方法
JP6788348B2 (ja) * 2016-01-06 2020-11-25 キヤノン株式会社 光学制御装置、光学機器、コンピュータープログラムおよび制御方法
JP6584637B2 (ja) * 2016-03-16 2019-10-02 富士フイルム株式会社 変倍光学システムおよびその制御方法
JP6789734B2 (ja) * 2016-09-06 2020-11-25 キヤノン株式会社 像ブレ補正装置、レンズ装置、および、撮像装置
CN117397247A (zh) * 2021-06-29 2024-01-12 Oppo广东移动通信有限公司 相机组件和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990456A (ja) * 1995-09-25 1997-04-04 Canon Inc 光学装置及びカメラ
JP2007052235A (ja) * 2005-08-18 2007-03-01 Olympus Imaging Corp カメラシステム
JP2007121770A (ja) * 2005-10-28 2007-05-17 Fujifilm Corp レンズ装置、レンズ調整装置、及びカメラ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213901A (ja) * 1988-07-01 1990-01-18 Canon Inc 可変頂角プリズム装置
US5182671A (en) * 1988-09-19 1993-01-26 Canon Kabushiki Kaisha Variable magnification optical system having a capability of stabilizing the image
JPH0420941A (ja) * 1990-05-16 1992-01-24 Canon Inc 像ブレ補正手段を有した撮影装置
US5619293A (en) * 1994-06-16 1997-04-08 Nikon Corporation Image blur suppression device of a camera which aligns an image blur suppression lens and actuator based on anticipated sag of supporting members
JP2964915B2 (ja) * 1995-04-28 1999-10-18 日本ビクター株式会社 レンズ駆動制御装置
US5696999A (en) * 1995-09-12 1997-12-09 Nikon Corporation Image vibration reduction device
JP4844177B2 (ja) * 2006-03-07 2011-12-28 株式会社ニコン ブレ補正装置及びカメラ
SE532236C2 (sv) * 2006-07-19 2009-11-17 Scalado Ab Metod i samband med tagning av digitala bilder
JP5183135B2 (ja) * 2007-09-21 2013-04-17 キヤノン株式会社 交換レンズおよび光学機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990456A (ja) * 1995-09-25 1997-04-04 Canon Inc 光学装置及びカメラ
JP2007052235A (ja) * 2005-08-18 2007-03-01 Olympus Imaging Corp カメラシステム
JP2007121770A (ja) * 2005-10-28 2007-05-17 Fujifilm Corp レンズ装置、レンズ調整装置、及びカメラ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047242A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 レンズ装置及び撮像装置
JPWO2013047242A1 (ja) * 2011-09-29 2015-03-26 富士フイルム株式会社 レンズ装置及び撮像装置
US9313404B2 (en) 2011-09-29 2016-04-12 Fujifilm Corporation Lens apparatus and image capturing apparatus

Also Published As

Publication number Publication date
US20110032615A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
WO2009093635A1 (ja) レンズ鏡筒、レンズ鏡筒の調整方法、レンズ鏡筒の製造方法及び撮像装置
JP5458570B2 (ja) 光学装置、光学装置の製造方法、光学装置の調整方法、及び撮影装置
US8295694B2 (en) Vibration reduction device and camera
US20060133786A1 (en) Driving mechanism, driving system, anti-shake unit, and image sensing apparatus
JP2007212933A (ja) カメラシステム
JP2007114485A (ja) 手ぶれ補正機能付き撮像装置
JP2008134329A (ja) 像ぶれ補正装置、レンズ鏡筒及び撮像装置
JP5572024B2 (ja) レンズ装置
JP2003172961A (ja) ブレ補正装置及び撮影装置
JP2006337680A (ja) 駆動装置、振れ補正ユニット及び撮像装置
JP2009105784A (ja) 撮像装置
JP5458521B2 (ja) レンズ鏡筒、レンズ鏡筒の調整方法、光学装置、および光学装置の調整方法
JP2006091106A (ja) 撮像装置及びその制御方法
JP2010072625A (ja) 駆動機構及び光学機器
JP2009175240A (ja) 光学装置およびその調整方法
US8086096B2 (en) Shake correction device and imaging apparatus
JP3135379B2 (ja) 像ブレ補正装置
JP2009175241A (ja) 光学装置およびその調整方法
JP2006220834A (ja) 撮像装置
JP2009086494A (ja) 手振れ補正ユニットの初期位置設定方法及びレンズ鏡胴並びに撮像装置
JP2008070566A (ja) カメラシステム、カメラ本体、交換レンズユニットおよび像ブレ補正方法
JP2014228621A (ja) ブレ補正装置および撮影装置
JP2009217202A (ja) 光学装置および光学機器
JP2023140195A (ja) 制御装置、レンズ装置、撮像装置、カメラシステム、制御方法、及びプログラム
JP5257667B2 (ja) 撮像素子初期位置決定方法及び光学素子初期位置決定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704277

Country of ref document: EP

Kind code of ref document: A1