WO2009091057A1 - ゴム組成物及びタイヤ - Google Patents
ゴム組成物及びタイヤ Download PDFInfo
- Publication number
- WO2009091057A1 WO2009091057A1 PCT/JP2009/050612 JP2009050612W WO2009091057A1 WO 2009091057 A1 WO2009091057 A1 WO 2009091057A1 JP 2009050612 W JP2009050612 W JP 2009050612W WO 2009091057 A1 WO2009091057 A1 WO 2009091057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber composition
- silicic acid
- integer
- rubber
- hydrous silicic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/548—Silicon-containing compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
Definitions
- the present invention relates to a rubber composition suitable as a tread member of a tire, and more specifically, a rubber composition improved in low heat buildup and wear resistance using hydrous silicic acid having a specific structure as a reinforcing filler, and the rubber composition
- the present invention relates to a tire using a tire.
- carbon black has been used as a reinforcing filler for rubber. This is because carbon black can impart high wear resistance to the rubber composition.
- low heat generation of tire rubber has been required at the same time for the purpose of saving fuel consumption of automobiles.
- reinforcement, abrasion resistance, wetness It is known that it is inevitable that the grip performance on the road surface deteriorates.
- silica is known as a filler in order to improve low heat build-up (for example, Patent Documents 1 to 4), but silica tends to aggregate particles due to hydrogen bonding of silanol groups which are surface functional groups.
- the silanol group has a hydrophilic —OH group, so that the wettability with the rubber molecule is not good, and the silica is not well dispersed in the rubber. In order to improve this, it is necessary to lengthen the kneading time. Further, since the silica is not sufficiently dispersed in the rubber, the Mooney viscosity of the rubber composition is increased, and the processability such as extrusion is inferior.
- the surface of the silica particles is acidic, when the rubber composition is vulcanized, a basic substance used as a vulcanization accelerator is adsorbed, vulcanization is not sufficiently performed, and the elastic modulus does not increase. It also had the disadvantage of.
- Patent Document 6 discloses the use of hydrophobic precipitated silicic acid. However, since silicic silicic acid that has been completely hydrophobized is used, there is a surface silanol group with which the silane coupling agent reacts. As a result, there was a drawback that the rubber could not be sufficiently reinforced. Furthermore, in order to enhance low heat build-up, silica is increased in particle size. However, by increasing the particle size, the specific surface area of silica is reduced and the reinforcement is deteriorated. Patent Document 7 discloses the use of silica having a special shape, but the low heat build-up and wear resistance of the rubber composition are not sufficient. JP-A-6-248116 Japanese Patent Laid-Open No. 7-70369 JP-A-8-245838 JP-A-3-252431 JP-A-6-248116 JP-A-6-157825 JP 2006-37046 A
- the present invention provides a rubber composition suitable as a tread rubber member improved in dispersion of hydrous silicic acid in the rubber composition and improved in both wear resistance and low heat build-up, and a tire using the rubber composition. .
- the present inventors can obtain low heat buildup by giving the hydrated silicic acid a specific structure, while improving the wear resistance and reinforcement of the rubber composition.
- the present invention has been completed.
- the rubber composition of the present invention is a rubber composition obtained by compounding and kneading structural hydrous silicic acid, a silane coupling agent having a specific structure, and carbon black with natural rubber and / or diene synthetic rubber.
- the hydrous silicic acid used in the present invention is characterized by having a structure (primary aggregation) that can be expressed by the following indicators. That is, cetyl trimethyl ammonium bromide adsorption specific surface area (CTAB) (m 2 / g ) and the mode A ac and the following formula of the diameter of the primary aggregates determined by an acoustic particle size distribution analyzer (nm) (I) A ac ⁇ ⁇ 0.76 ⁇ (CTAB) +274 (I) Further, the loss on ignition (mass loss% when heated at 750 ° C. for 3 hours) and the weight loss on heating (mass loss% when heated at 105 ° C. for 2 hours) are represented by the following formula (II): (Loss on ignition)-(Lose on heating) ⁇ 3 (II)
- the rubber composition containing such hydrous silicic acid can achieve both low heat buildup and wear resistance.
- the hydrous silicic acid used in the present invention is a method for precipitating and precipitating hydrous silicic acid by neutralizing an aqueous alkali silicate salt solution such as sodium silicate with a mineral acid such as sulfuric acid, so-called precipitation method producing hydrous silicic acid. It is obtained by a method according to the method.
- a rubber composition excellent in low heat build-up is obtained, and when this is used as a tire tread member, both the low heat build-up and wear resistance, both of which are the conventional anti-twist events, are excellent, and the fuel consumption is low and the energy is saved. It can contribute greatly.
- the rubber component used in the rubber composition of the present invention is natural rubber and / or diene synthetic rubber.
- specific examples of the diene synthetic rubber include synthetic polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber and the like. These rubber components may be used alone or in combination of two or more.
- the structural hydrous silicic acid used in the present invention can be confirmed by the fact that the characteristic values measured by a method generally measured with silica or carbon black satisfy the following relationship.
- cetyltrimethylammonium bromide adsorption specific surface area (CTAB) (m 2 / g) and the diameter A ac (nm) of the mode of the number of primary aggregates determined by acoustic particle size distribution measurement are represented by the following formula (I) A ac ⁇ ⁇ 0.76 ⁇ (CTAB) +274 (I)
- the loss on ignition (mass loss% when heated at 750 ° C. for 3 hours)
- the weight loss on heating mass loss% when heated at 105 ° C. for 2 hours) are represented by the following formula (II): (Loss on ignition)-(Lose on heating) ⁇ 3 (II) Hydrous silicic acid satisfying
- Cetyltrimethylammonium bromide adsorption specific surface area is the specific surface area (m 2 / g) of hydrous silicic acid calculated from the amount of cetyltrimethylammonium bromide adsorbed on the hydrous silicic acid surface.
- CTAB can be measured according to the method described in ASTM D3765-92. Since the method described in ASTM D3765-92 is a method for measuring CTAB of carbon black, it is slightly modified.
- CE-TRAB cetyltrimethylammonium bromide
- hydrous silicate sodium di-2-ethylhexylsulfosuccinate
- the hydrous silicic acid used in the present invention desirably has a CTAB of 50 to 250 m 2 / g, preferably 100 to 200 m 2 / g.
- CTAB a CTAB of 50 to 250 m 2 / g, preferably 100 to 200 m 2 / g.
- the CTAB is less than 50 m 2 / g, the storage elastic modulus of the rubber composition is remarkably lowered, and when it is more than 250 m 2 / g, the viscosity of the rubber composition when unvulcanized may be increased.
- the diameter (acoustic particle size distribution diameter) measured by an acoustic particle size distribution measuring device is an index of the development of the structure.
- the hydrous silicic acid particles include those in which finely sized particles are primary aggregated and those that are slightly secondary aggregated.
- the measurement with an acoustic particle size distribution measuring apparatus is carried out by dispersing a hydrous silicic acid 0.01 M KCl aqueous solution with ultrasonic waves for 5 minutes to remove bubbles and destroying secondary aggregates. The distribution of the particle size and the number of particles of hydrous silicic acid primary aggregates is obtained. Of these, the most frequently occurring particle diameter is A ac (nm).
- CTAB low heat build-up and the wear resistance of the rubber composition
- Aac is preferably 1 ⁇ m or less.
- hydrous silicic acid becomes a fracture nucleus, and the mechanical properties of the rubber composition may be impaired.
- the difference between the decrease in mass when the hydrous silicic acid used in the present invention is heated (%) and the decrease in mass when heated (%) is, (Loss on ignition)-(Lose on heating) ⁇ 3 (II) It is preferable that The loss on heating and the loss on ignition are carried out in accordance with the test method of the compounding agent for JIS K6220-1 rubber. It is the% decrease in mass when ignited at 3 ° C. for 3 hours.
- the amount of hydrous silicic acid used in the present invention is preferably 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
- the hydrous silicic acid used in the present invention is produced according to the method for producing hydrous silicic acid by precipitation method.
- sodium silicate and sulfuric acid are placed in a reaction vessel in which a certain amount of warm water is previously filled while controlling pH and temperature, and a hydrous silicate slurry is obtained after a certain period of time.
- the hydrated silicate slurry is filtered and washed by a filter capable of cake washing such as a filter press to remove the by-product electrolyte, and then the obtained hydrated silicate cake is slurried, and a spray dryer or the like It is dried and manufactured using a dryer.
- silane coupling agent reacts with the silanol group remaining on the surface of the hydrous silicic acid and the rubber component polymer, and acts as a bonding bridge between the hydrous silicic acid and the rubber to form a reinforcing phase.
- the silane coupling agent used in the present invention is preferably at least one selected from the group consisting of compounds represented by the following general formula.
- A is C n H 2n + 1 O (n is an integer of 1 to 3) or a chlorine atom
- B is an alkyl group having 1 to 3 carbon atoms
- m is an integer of 1 to 3
- a is 1
- An integer of ⁇ 9 and b may be an integer of 1 or more and have a distribution.
- two B may be the same or different
- two or three A may be the same or different.
- A is C n H 2n + 1 O (n is an integer of 1 to 3) or a chlorine atom
- B is an alkyl group having 1 to 3 carbon atoms
- Y is a mercapto group, a vinyl group, an amino group, A glycidoxy group or an epoxy group
- m is an integer of 1 to 3
- c is an integer of 0 to 9.
- two B may be the same or different, and when m is 2 or 3, two or three A may be the same or different.
- A is C n H 2n + 1 O (n is an integer of 1 to 3) or a chlorine atom
- B is an alkyl group having 1 to 3 carbon atoms
- Z is a benzothiazolyl group, N, N-dimethylthio It is a carbamoyl group or a methacryloyl group
- m is an integer of 1 to 3
- a is an integer of 1 to 9
- b is an integer of 1 or more and may have a distribution.
- two B may be the same or different
- two or three A may be the same or different.
- the silane coupling agent represented by the general formula (III) includes bis- (3-triethoxysilylpropyl) tetrasulfide, bis- (3-trimethoxysilylpropyl) tetrasulfide, bis- ( 3-methyldimethoxysilylpropyl) tetrasulfide, bis- (3-triethoxysilylethyl) tetrasulfide, bis- (3-triethoxysilylpropyl) disulfide, bis- (3-trimethoxysilylpropyl) disulfide, bis- ( 3-triethoxysilylpropyl) trisulfide,
- silane coupling agent represented by the general formula (IV) examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane,
- silane coupling agent represented by the general formula (V) examples include 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-trimethoxy And silylpropylmethacryloyl monosulfide.
- the amount of the silane coupling agent used is preferably 1 to 20% by mass relative to the amount of hydrous silicic acid. If the amount used is less than 1% by mass, a sufficient coupling effect may not be obtained, and if it exceeds 20% by mass, gelation of the polymer may be caused.
- carbon black can be used as a reinforcing filler together with hydrous silicic acid.
- the amount of carbon black used is preferably 80 parts by mass or less with respect to 100 parts by mass of the rubber component, and the total amount of carbon black and hydrous silicic acid combined is preferably 120 parts by mass or less.
- the rubber composition of the present invention contains, as necessary, compounding agents usually used in the rubber industry, such as other reinforcing fillers, vulcanizing agents, vulcanization accelerators, anti-aging agents, softening agents and the like. It can mix
- compounding agents usually used in the rubber industry such as other reinforcing fillers, vulcanizing agents, vulcanization accelerators, anti-aging agents, softening agents and the like. It can mix
- the rubber composition of the present invention can be obtained by kneading using an open kneader such as a roll or a closed kneader such as a Banbury mixer, and can be vulcanized after molding and applied to various rubber products. is there.
- the tire of the present invention is characterized by applying the above rubber composition to a tread member.
- a tire using the rubber composition as a tread member has low rolling resistance and excellent wear resistance because the rubber composition has low heat generation.
- As the gas filled in the tire of the present invention normal or air having a changed oxygen partial pressure, or an inert gas such as nitrogen can be used.
- silicate OT sodium di-2-ethylhexylsulfosuccinate
- a stainless steel reaction vessel with a capacity of 180 L equipped with a stirrer is charged with 93 L of water and 0.6 L of a sodium silicate aqueous solution (SiO 2 160 g / L, SiO 2 / Na 2 O molar ratio 3.3) and heated to 96 ° C. did.
- the concentration of Na 2 O in the obtained solution was 0.005 mol / L.
- the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min.
- the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L. From the middle of the reaction, white turbidity started, and the viscosity increased at 47 minutes to form a gel solution. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 96 ° C. for 30 minutes. The silica concentration in the resulting solution was 55 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry.
- the obtained silicic acid slurry was filtered with a filter press and washed with water to obtain a wet cake.
- the wet cake was made into a slurry using an emulsifier and dried with a spray dryer to obtain a wet method hydrous silicate A.
- Production example B Using the same container and raw materials as in Production Example A, 93 L of water and 0.6 L of an aqueous sodium silicate solution were added and heated to 90 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 90 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example C Using the same container and raw material as in Production Example A, 93 L of water and 0.6 L of sodium silicate aqueous solution were added and heated to 84 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 84 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example D Using the same container and raw materials as in Production Example A, 93 L of water and 0.6 L of an aqueous sodium silicate solution were added and heated to 90 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 90 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example E Using the same container and raw material as in Production Example A, 93 L of water and 0.6 L of an aqueous sodium silicate solution were added and heated to 78 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 78 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example F Using the same container and raw material as in Production Example A, 93 L of water and 0.6 L of sodium silicate aqueous solution were added and heated to 65 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 65 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- reaction solution began to become cloudy, and the viscosity increased to a gel solution at 50 minutes. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 65 ° C. for 60 minutes. The silica concentration in the resulting solution was 55 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry. Thereafter, wet method hydrous silicic acid F was obtained in the same manner as in Production Example A.
- Production example G Using the same container and raw material as in Production Example A, 86 L of water and 0.5 L of an aqueous sodium silicate solution were added and heated to 96 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 96 ° C., the same aqueous sodium silicate solution as described above was simultaneously added dropwise at a flow rate of 615 ml / min and sulfuric acid (18 mol / L) at a flow rate of 27 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- reaction solution started to become cloudy, and the viscosity increased to a gel solution at 40 minutes. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 96 ° C. for 30 minutes. The silica concentration in the resulting solution was 62 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry. Thereafter, wet method hydrous silicic acid G was obtained in the same manner as in Production Example A.
- Examples 1-7 and Comparative Examples 1-2 In Examples 1 to 7, hydrous silicic acids A to G produced in Production Examples A to G were used, in Comparative Example 1, Nippon Sil AQ manufactured by Tosoh Silica Co., and in Comparative Example 2, ULTRASIL VN2 manufactured by Degussa were used. And the rubber composition which consists of the rubber component and compounding agent of the kind and quantity shown in Table 1 was prepared by the conventional method. Table 2 shows the physical properties of the hydrous silicic acid and the vulcanized rubber used in each example and comparative example.
- FIG. 1 is a graph showing the relationship between CTAB of hydrous silicic acid used in Examples and Comparative Examples and acoustic particle size distribution diameter Aac .
- CTAB computed tomography
- the hydrous silicic acid used in the comparative example has a small Aac .
- the hydrous silicic acid of an Example from Table 2 also satisfies the said Formula (II) in the difference of a ignition loss and a heating loss.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
Description
即ち、セチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)(m2/g)と音響式粒度分布測定によって求められる一次凝集体の直径(nm)の最頻値Aacとが下記式(I)
Aac≧-0.76×(CTAB)+274・・・(I)
を満たし、さらに灼熱減量(750℃で3時間加熱した時の質量減少%)と加熱減量(105℃で2時間加熱した時の質量減少%)とが下記式(II)
(灼熱減量)-(加熱減量)≦3・・・(II)
を満たすことが好ましく、このような含水ケイ酸を含有するゴム組成物は、低発熱性と耐摩耗性が両立できる。
Aac≧-0.76×(CTAB)+274・・・(I)
を満たし、好ましくは灼熱減量(750℃で3時間加熱した時の質量減少%)と加熱減量(105℃で2時間加熱した時の質量減少%)とが下記式(II)
(灼熱減量)-(加熱減量)≦3・・・(II)
を満たす含水ケイ酸である。
CTABの測定は、ASTM D3765-92記載の方法に準拠して行うことができる。ASTM D3765-92記載の方法は、カーボンブラックのCTABを測定する方法であるので、若干の修正を加える。即ち、カーボンブラックの標準品を使用せず、セチルトリメチルアンムニウムブロミド(以下、CE-TRABと略記する)標準液を調製し、これによって含水ケイ酸OT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)溶液の標定を行い、含水ケイ酸表面に対するCE-TRAB1分子当たりの吸着断面積を0.35nm2としてCE-TRABの吸着量から、比表面積を算出する。
音響式粒度分布測定装置による測定は、含水ケイ酸の0.01M KCl水溶液を超音波で5分間分散処理し、泡を除去して二次凝集体を破壊した後、測定する。含水ケイ酸の一次凝集体の粒径と粒子数の分布が得られ、このうち、最も頻度が多く現われた粒子の直径をAac(nm)とすると、
Aac≧-0.76×(CTAB)+274・・・(I)
を満足するとき、ゴム組成物の低発熱性と耐摩耗性が共に改善される。Aacが、この条件を満たさない時、低発熱性と耐摩耗性のどちらか又は両方が低下する。さらに、Aacは、1μm以下であることが好ましい。1μmより大きいと含水ケイ酸が破壊核となり、ゴム組成物の力学的特性が損なわれる虞がある。
(灼熱減量)-(加熱減量)≦3・・・(II)
であることが好ましい。
加熱減量及び灼熱減量は、JIS K6220-1ゴム用配合剤の試験方法に準じて行い、加熱減量は通常105±2℃で2時間加熱した時の質量の減少%、灼熱減量は通常750±25℃で3時間強熱した時の質量の減少%である。
続いて、該含水ケイ酸スラリーをフィルタープレス等のケーキ洗浄が可能なろ過機により濾別、洗浄して副生電解質を除去した後、得られた含水ケイ酸ケーキをスラリー化し、噴霧乾燥機等の乾燥機を用いて乾燥し製造される。
本発明で用いられるシランカップリング剤は、好ましくは下記一般式で表される化合物よりなる群から選ばれた少なくとも一種である。
[式中、AはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Bは炭素数1~3のアルキル基であり、mは1~3の整数、aは1~9の整数、bは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのBは同一でも異なってもよく、mが2又は3の時、2つ又は3つのAは同一でも異なってもよい。]
[式中、AはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Bは炭素数1~3のアルキル基であり、Yはメルカプト基、ビニル基、アミノ基、グリシドキシ基又はエポキシ基であり、mは1~3の整数、cは0~9の整数である。但し、mが1の時、2つのBは同一でも異なってもよく、mが2又は3の時、2つ又は3つのAは同一でも異なってもよい。]
[式中、AはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Bは炭素数1~3のアルキル基であり、Zはベンゾチアゾリル基、N,N-ジメチルチオカルバモイル基又はメタクリロイル基であり、mは1~3の整数、aは1~9の整数、bは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのBは同一でも異なってもよく、mが2又は3の時、2つ又は3つのAは同一でも異なってもよい。]
カーボンブラックの使用量は、好ましくはゴム成分100質量部に対して80質量部以下で、カーボンブラックと含水ケイ酸を合わせた総配合量が120質量部以下であることが好ましい。総配合量をゴム成分100質量部に対して120質量部以下とすることで、低発熱性及び耐摩耗性を十分に向上させることができる。
以下の実施例、比較例において、含水ケイ酸の物性及びゴム組成物の低発熱性、耐摩耗性を下記の方法により測定、評価した。
(1)音響式粒度分布径の測定
各含水ケイ酸の0.01M KCl水溶液を超音波で5分間分散処理し、泡を除去した後、超音波式粒度分布測定装置DT1200(Dispertion Technology社製)を用いて、含水ケイ酸の1次凝集体の直径の最頻値Aac(nm)を測定した。
ASTM D3765-92記載の方法に準拠して実施した。ASTM D3765-92記載の方法は、カーボンブラックのCTABを測定する方法であるので、若干の修正を加えた。すなわち、カーボンブラックの標準品であるIRB#3(83.0m2/g)を使用せず、別途セチルトリメチルアンムニウムブロミド(以下、CE-TRABと略記する)標準液を調製し、これによって含水ケイ酸OT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)溶液の標定を行い、含水ケイ酸表面に対するCE-TRAB1分子当たりの吸着断面積を0.35nm2としてCE-TRABの吸着量から、比表面積(m2/g)を算出した。これは、カーボンブラックと含水ケイ酸とでは表面が異なるので、同一表面積でもCE-TRABの吸着量に違いがあると考えられるからである。
含水ケイ酸サンプルを秤量し、加熱減量の場合は105±2℃でサンプルを2時間加熱し、灼熱減量の場合は750±25℃でサンプルを3時間加熱した後、質量を測定し、加熱前のサンプル質量との差を加熱前の質量に対して%で表した。
粘弾性スペクトロメーター(東洋精機株式会社製)を使用し、温度60℃、歪1%、周波数50Hzでtanδを測定した。比較例1の値を100として指数で表示した。この数値が大きい程、低発熱性に優れる。
ランボーン型摩耗試験機を用い、JIS K6264に従い、室温におけるスリップ率60%の摩耗量を測定し、摩耗量の逆数を比較例1を100として指数で表示した。この数値が大きい程、耐摩耗性が良好である。
製造例A
攪拌機を備えた容量180Lのジャケット付ステンレス製反応槽に、水93Lとケイ酸ナトリウム水溶液(SiO2 160g/L、SiO2/Na2Oモル比3.3)0.6Lを入れ96℃に加熱した。得られた溶液中のNa2O濃度は、0.005mol/Lであった。
この溶液の温度を96℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を96℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。得られたケイ酸スラリーをフィルタープレスで濾過、水洗を行なって湿潤ケーキを得た。次いで、湿潤ケーキを乳化装置を用いてスラリーとして、噴霧式乾燥機で乾燥して湿式法含水ケイ酸Aを得た。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、90℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を90℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を90℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Bを得た。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、84℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を84℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、48分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を84℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Cを得た。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、90℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を90℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を90℃に60分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Dを得た。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、78℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を78℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、49分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を78℃に60分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Eを得た。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、65℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を65℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から反応溶液は白濁をはじめ、50分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を65℃に60分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Fを得た。
製造例Aと同じ容器および原料を使用し、水86Lとケイ酸ナトリウム水溶液0.5Lを入れ、96℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を96℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を615ml/分、硫酸(18mol/L)を27ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から反応溶液は白濁をはじめ、40分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を96℃に30分間維持した。生じた溶液中のシリカ濃度は62g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Gを得た。
実施例1~7においては、それぞれ製造例A~Gで製造した含水ケイ酸A~Gを、比較例1においては東ソー・シリカ社製Nipsil AQを、比較例2ではDegussa社製ULTRASIL VN2を使用し、表1に示す種類と量のゴム成分及び配合剤をからなるゴム組成物を常法により調製した。
各実施例、比較例において使用した含水ケイ酸の物性及び加硫ゴムの物性は表2に示した。
1)SBR#120〔JSR社製〕ゴム成分100質量部に対して37.5質量部のアロマ油で油展
2)BR 150L〔宇部興産製〕
3)シーストKH(N339)〔東海カーボン社製〕
4)含水ケイ酸の製造例A~Gに記載
5)シランカップリング剤Si75〔Degussa社製〕
6)N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
7)ジフェニルグアニジン
8)N-t-ブチル-2-ベンゾチアジルスルフェンアミド
これらの含水ケイ酸を使用することで低発熱性と耐摩耗性がバランスよく向上したゴム組成物が得られた。
Claims (9)
- 含水ケイ酸を配合してなるゴム組成物において、含水ケイ酸のセチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)(m2/g)と音響式粒度分布測定によって求められる一次凝集体の直径の最頻値Aac(nm)とが下記式(I)
Aac≧-0.76×(CTAB)+274・・・(I)
を満たすことを特徴とするゴム組成物。 - 含水ケイ酸が、その灼熱減量(750℃で3時間加熱した時の質量減少%)と加熱減量(105℃で2時間加熱した時の質量減少%)とが下記式(II)
(灼熱減量)-(加熱減量)≦3・・・(II)
を満たすことを特徴とする請求項1に記載のゴム組成物。 - 含水ケイ酸が、音響式粒度分布測定によって求められる一次凝集体の直径の最頻値が1μm以下であることを特徴とする請求項1または2に記載のゴム組成物。
- 含水ケイ酸が、CTABが50~250m2/gであることを特徴とする請求項1~3のいずれかに記載のゴム組成物。
- ゴム成分が天然ゴム及び/又はジエン系合成ゴムから選ばれる少なくとも1つ以上のゴムであって、該ゴム成分100質量部に対して含水ケイ酸を10~150質量部を配合してなる請求項1~4のいずれかに記載のゴム組成物。
- シランカップリング剤を含水ケイ酸の配合量の1~20質量%配合したことを特徴とする請求項1~5のいずれかに記載のゴム組成物。
- シランカップリング剤が、下記一般式(III)で表される化合物:
AmB3-mSi-(CH2)a-Sb-(CH2)a-SiAmB3-m・・・(III)
[式中、AはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Bは炭素数1~3のアルキル基であり、mは1~3の整数、aは1~9の整数、bは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのBは同一でも異なってもよく、mが2又は3の時、2つ又は3つのAは同一でも異なってもよい。]、
下記一般式(IV)で表される化合物:
AmB3-mSi-(CH2)c-Y・・・(IV)
[式中、AはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Bは炭素数1~3のアルキル基であり、Yはメルカプト基、ビニル基、アミノ基、グリシドキシ基又はエポキシ基であり、mは1~3の整数、cは0~9の整数である。但し、mが1の時、2つのBは同一でも異なってもよく、mが2又は3の時、2つ又は3つのAは同一でも異なってもよい。]
および下記一般式(V)で表される化合物:
AmB3-mSi-(CH2)a-Sb-Z・・・(V)
[式中、AはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Bは炭素数1~3のアルキル基であり、Zはベンゾチアゾリル基、N,N-ジメチルチオカルバモイル基又はメタクリロイル基であり、mは1~3の整数、aは1~9の整数、bは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのBは同一でも異なってもよく、mが2又は3の時、2つ又は3つのAは同一でも異なってもよい。]
からなる群から選択される少なくとも一種であることを特徴とする請求項6に記載のゴム組成物。 - 補強用充填剤としてカーボンブラックをゴム成分100質量部に対して80質量部以下含有し、カーボンブラックと含水ケイ酸との総配合量が120質量部以下であることを特徴とする請求項1~7のいずれかに記載のゴム組成物。
- 請求項1~8のいずれかに記載のゴム組成物をタイヤのゴム部材のいずれかに適用したタイヤ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020107018217A KR101247858B1 (ko) | 2008-01-18 | 2009-01-19 | 고무 조성물 및 타이어 |
EP09702284.2A EP2233522B1 (en) | 2008-01-18 | 2009-01-19 | Rubber composition and tire |
US12/863,335 US8273820B2 (en) | 2008-01-18 | 2009-01-19 | Rubber composition and tire |
JP2009550073A JP5448849B2 (ja) | 2008-01-18 | 2009-01-19 | ゴム組成物及びタイヤ |
CN200980106494.9A CN101959952B (zh) | 2008-01-18 | 2009-01-19 | 橡胶组合物及轮胎 |
BRPI0906951-8A BRPI0906951A2 (pt) | 2008-01-18 | 2009-01-19 | Composição de borracha e pneu |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-009419 | 2008-01-18 | ||
JP2008009419 | 2008-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009091057A1 true WO2009091057A1 (ja) | 2009-07-23 |
Family
ID=40885437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050612 WO2009091057A1 (ja) | 2008-01-18 | 2009-01-19 | ゴム組成物及びタイヤ |
Country Status (8)
Country | Link |
---|---|
US (1) | US8273820B2 (ja) |
EP (1) | EP2233522B1 (ja) |
JP (1) | JP5448849B2 (ja) |
KR (1) | KR101247858B1 (ja) |
CN (1) | CN101959952B (ja) |
BR (1) | BRPI0906951A2 (ja) |
RU (1) | RU2461592C2 (ja) |
WO (1) | WO2009091057A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010241898A (ja) * | 2009-04-02 | 2010-10-28 | Bridgestone Corp | 空気入りタイヤ |
WO2010126095A1 (ja) * | 2009-04-28 | 2010-11-04 | 株式会社ブリヂストン | 空気入りタイヤ |
WO2011010665A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | 空気入りタイヤ |
WO2011010662A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | タイヤ |
JP2011026380A (ja) * | 2009-07-22 | 2011-02-10 | Bridgestone Corp | タイヤ |
JP2011026379A (ja) * | 2009-07-22 | 2011-02-10 | Bridgestone Corp | タイヤ |
JP2011026360A (ja) * | 2009-07-21 | 2011-02-10 | Bridgestone Corp | タイヤ |
JP2011026386A (ja) * | 2009-07-22 | 2011-02-10 | Bridgestone Corp | タイヤ |
EP2592110A1 (en) * | 2010-07-09 | 2013-05-15 | Bridgestone Corporation | Rubber composition and pneumatic tire using same |
WO2013168424A1 (ja) | 2012-05-08 | 2013-11-14 | 株式会社ブリヂストン | ゴム組成物、架橋ゴム組成物及びタイヤ |
JP2014214266A (ja) * | 2013-04-26 | 2014-11-17 | 株式会社ブリヂストン | ゴム組成物及びそれを用いた空気入りタイヤ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103635521B (zh) * | 2011-04-28 | 2016-01-13 | 株式会社普利司通 | 橡胶组合物 |
HUE063330T2 (hu) * | 2016-09-02 | 2024-01-28 | Kuraray Co | Gumikészítmény |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10182878A (ja) * | 1996-12-27 | 1998-07-07 | Bridgestone Corp | ゴム組成物及びそのゴム組成物を使用した空気入りタイヤ |
JPH11124474A (ja) * | 1997-05-26 | 1999-05-11 | Michelin & Cie | 転がり抵抗を改良したロードタイヤを製造するためのシリカベースのゴム組成物 |
JP2003155383A (ja) * | 2001-11-21 | 2003-05-27 | Toyo Tire & Rubber Co Ltd | タイヤトレッド用ゴム組成物 |
JP2005500238A (ja) * | 2001-08-13 | 2005-01-06 | ロディア・シミ | シリカの製造方法、特定の細孔寸法及び/又は粒度分布を有するシリカ並びにそれらの特に重合体強化のための使用 |
JP2005500420A (ja) * | 2001-08-13 | 2005-01-06 | ソシエテ ド テクノロジー ミシュラン | 補強用充填剤として特定のシリカを含むタイヤ用ジエンゴム組成物 |
JP2007138069A (ja) * | 2005-11-21 | 2007-06-07 | Bridgestone Corp | ゴム組成物および空気入りタイヤ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3021516B2 (ja) | 1990-03-02 | 2000-03-15 | 株式会社ブリヂストン | 空気入りタイヤ |
EP0447066B2 (en) | 1990-03-02 | 2000-08-16 | Bridgestone Corporation | Pneumatic tyres |
JP3190146B2 (ja) | 1992-11-25 | 2001-07-23 | 日本シリカ工業株式会社 | 耐水性が改善された新規なゴム組成物 |
JP3403747B2 (ja) | 1993-02-23 | 2003-05-06 | 株式会社ブリヂストン | タイヤ用ゴム組成物 |
CA2108772C (en) | 1993-08-09 | 2005-07-05 | David John Zanzig | Tire with silica reinforced tread |
FR2732331B1 (fr) * | 1995-03-29 | 1997-06-20 | Rhone Poulenc Chimie | Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres |
US5846506A (en) | 1994-10-07 | 1998-12-08 | Degussa Aktiengesellschaft | Precipitated silicas |
JP3454327B2 (ja) | 1995-01-13 | 2003-10-06 | 株式会社ブリヂストン | 空気入りタイヤ |
US6022923A (en) | 1995-01-13 | 2000-02-08 | Bridgestone Corporation | Pneumatic tires |
FR2732351B1 (fr) * | 1995-03-29 | 1998-08-21 | Michelin & Cie | Composition de caoutchouc pour enveloppe de pneumatique renfermant de la silice dopee aluminium a titre de charge renforcante |
RU2266929C2 (ru) * | 1999-12-30 | 2005-12-27 | Сосьете Де Текноложи Мишлен | Резиновая композиция для пневматических шин и их полупродуктов, содержащая связующий агент (белая сажа/эластомер) со сложноэфирной функцией, и способ ее получения |
JP2006037046A (ja) | 2004-07-30 | 2006-02-09 | Yokohama Rubber Co Ltd:The | 鱗片状シリカを含むタイヤ用ゴム組成物 |
DE102006024590A1 (de) * | 2006-05-26 | 2007-11-29 | Degussa Gmbh | Hydrophile Kieselsäure für Dichtungsmassen |
BRPI0912009B1 (pt) * | 2008-04-30 | 2019-07-30 | Bridgestone Corporation | Pneumático preparado com a utilização de composição de borracha que contém polímero modificado |
-
2009
- 2009-01-19 US US12/863,335 patent/US8273820B2/en active Active
- 2009-01-19 KR KR1020107018217A patent/KR101247858B1/ko active IP Right Grant
- 2009-01-19 CN CN200980106494.9A patent/CN101959952B/zh active Active
- 2009-01-19 RU RU2010134399/05A patent/RU2461592C2/ru active
- 2009-01-19 BR BRPI0906951-8A patent/BRPI0906951A2/pt not_active Application Discontinuation
- 2009-01-19 EP EP09702284.2A patent/EP2233522B1/en not_active Revoked
- 2009-01-19 JP JP2009550073A patent/JP5448849B2/ja active Active
- 2009-01-19 WO PCT/JP2009/050612 patent/WO2009091057A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10182878A (ja) * | 1996-12-27 | 1998-07-07 | Bridgestone Corp | ゴム組成物及びそのゴム組成物を使用した空気入りタイヤ |
JPH11124474A (ja) * | 1997-05-26 | 1999-05-11 | Michelin & Cie | 転がり抵抗を改良したロードタイヤを製造するためのシリカベースのゴム組成物 |
JP2005500238A (ja) * | 2001-08-13 | 2005-01-06 | ロディア・シミ | シリカの製造方法、特定の細孔寸法及び/又は粒度分布を有するシリカ並びにそれらの特に重合体強化のための使用 |
JP2005500420A (ja) * | 2001-08-13 | 2005-01-06 | ソシエテ ド テクノロジー ミシュラン | 補強用充填剤として特定のシリカを含むタイヤ用ジエンゴム組成物 |
JP2003155383A (ja) * | 2001-11-21 | 2003-05-27 | Toyo Tire & Rubber Co Ltd | タイヤトレッド用ゴム組成物 |
JP2007138069A (ja) * | 2005-11-21 | 2007-06-07 | Bridgestone Corp | ゴム組成物および空気入りタイヤ |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010241898A (ja) * | 2009-04-02 | 2010-10-28 | Bridgestone Corp | 空気入りタイヤ |
WO2010126095A1 (ja) * | 2009-04-28 | 2010-11-04 | 株式会社ブリヂストン | 空気入りタイヤ |
US8450408B2 (en) | 2009-04-28 | 2013-05-28 | Bridgestone Corporation | Pneumatic tire |
JP2011026360A (ja) * | 2009-07-21 | 2011-02-10 | Bridgestone Corp | タイヤ |
JP2011026380A (ja) * | 2009-07-22 | 2011-02-10 | Bridgestone Corp | タイヤ |
JP2011026379A (ja) * | 2009-07-22 | 2011-02-10 | Bridgestone Corp | タイヤ |
WO2011010662A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | タイヤ |
JP2011026386A (ja) * | 2009-07-22 | 2011-02-10 | Bridgestone Corp | タイヤ |
WO2011010665A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | 空気入りタイヤ |
US8754159B2 (en) | 2009-07-22 | 2014-06-17 | Bridgestone Corporation | Tire |
EP2592110A1 (en) * | 2010-07-09 | 2013-05-15 | Bridgestone Corporation | Rubber composition and pneumatic tire using same |
EP2592110A4 (en) * | 2010-07-09 | 2016-07-20 | Bridgestone Corp | RUBBER COMPOSITION AND AIR TIRES THEREWITH |
WO2013168424A1 (ja) | 2012-05-08 | 2013-11-14 | 株式会社ブリヂストン | ゴム組成物、架橋ゴム組成物及びタイヤ |
US10017625B2 (en) | 2012-05-08 | 2018-07-10 | Bridgestone Corporation | Rubber composition, crosslinked rubber composition and tire |
JP2014214266A (ja) * | 2013-04-26 | 2014-11-17 | 株式会社ブリヂストン | ゴム組成物及びそれを用いた空気入りタイヤ |
Also Published As
Publication number | Publication date |
---|---|
CN101959952B (zh) | 2013-03-20 |
EP2233522A4 (en) | 2013-02-13 |
EP2233522A1 (en) | 2010-09-29 |
RU2461592C2 (ru) | 2012-09-20 |
RU2010134399A (ru) | 2012-02-27 |
US8273820B2 (en) | 2012-09-25 |
US20110054116A1 (en) | 2011-03-03 |
BRPI0906951A2 (pt) | 2015-07-14 |
JPWO2009091057A1 (ja) | 2011-05-26 |
JP5448849B2 (ja) | 2014-03-19 |
KR20100105884A (ko) | 2010-09-30 |
KR101247858B1 (ko) | 2013-03-26 |
CN101959952A (zh) | 2011-01-26 |
EP2233522B1 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5448849B2 (ja) | ゴム組成物及びタイヤ | |
JP5006617B2 (ja) | ゴム組成物およびそれを用いたトレッドを有するタイヤ | |
JP4663687B2 (ja) | ゴム組成物ならびにそれを用いたトレッドおよび/またはサイドウォールを有するタイヤ | |
JP5570152B2 (ja) | タイヤ | |
JP2007138069A (ja) | ゴム組成物および空気入りタイヤ | |
US20040143050A1 (en) | Rubber composition comprising composite pigment | |
WO2016199744A1 (ja) | ゴム補強充填用含水ケイ酸 | |
JP4549479B2 (ja) | ゴム組成物 | |
JP6694881B2 (ja) | ゴム組成物及びタイヤ | |
JPH11240982A (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP4071343B2 (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP2008179675A (ja) | ゴム組成物及びそれを用いた空気入りタイヤ | |
JP5734187B2 (ja) | 空気入りタイヤ | |
JP5654409B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP5393315B2 (ja) | タイヤ用ゴム組成物及びそれを用いたタイヤ | |
JP5570150B2 (ja) | タイヤ | |
JP2001089598A (ja) | タイヤ用ゴム組成物 | |
JP4364982B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP3445080B2 (ja) | ゴム組成物及びそのゴム組成物を使用した空気入りタイヤ | |
WO2024085031A1 (ja) | マスターバッチ、マスターバッチの製造方法、タイヤ用ゴム組成物、タイヤ用ゴム組成物の製造方法、タイヤ用ゴム材料およびタイヤ | |
JP2002105245A (ja) | タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ | |
JP2008115326A (ja) | ゴム組成物およびそれを用いたトレッドを有するタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980106494.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09702284 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009550073 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2009702284 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009702284 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107018217 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010134399 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0906951 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100716 |