WO2009084390A1 - 耐炎化繊維と炭素繊維の製造方法 - Google Patents

耐炎化繊維と炭素繊維の製造方法 Download PDF

Info

Publication number
WO2009084390A1
WO2009084390A1 PCT/JP2008/072381 JP2008072381W WO2009084390A1 WO 2009084390 A1 WO2009084390 A1 WO 2009084390A1 JP 2008072381 W JP2008072381 W JP 2008072381W WO 2009084390 A1 WO2009084390 A1 WO 2009084390A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
precursor
precursor fiber
treatment
fibers
Prior art date
Application number
PCT/JP2008/072381
Other languages
English (en)
French (fr)
Inventor
Taro Oyama
Rie Kawahito
Hiroshi Kimura
Original Assignee
Toho Tenax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co., Ltd. filed Critical Toho Tenax Co., Ltd.
Priority to ES08868762T priority Critical patent/ES2389832T3/es
Priority to CN200880123142XA priority patent/CN101910480B/zh
Priority to JP2009547972A priority patent/JP5324472B2/ja
Priority to EP08868762A priority patent/EP2233616B1/en
Priority to US12/747,386 priority patent/US8236273B2/en
Publication of WO2009084390A1 publication Critical patent/WO2009084390A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles

Definitions

  • the present invention relates to a method for producing high-strength carbon fibers and a method for producing flame-resistant fibers useful as an intermediate raw material.
  • composite materials using carbon fibers as reinforcing fibers are light and have excellent mechanical properties such as high strength, and thus have been widely used as structural materials for aircraft and the like.
  • These composite materials are molded, for example, from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding and processing steps such as heating and pressing. Therefore, in order to obtain a desired composite material, it is necessary to employ an optimum material or molding / processing means for each.
  • the carbon fiber, which is a reinforcing fiber may be required to have higher strength. For example, when it is intended to reduce the weight of a composite material for aircraft, it is necessary to increase the elasticity while maintaining the strength of the carbon fiber. However, the carbon fiber generally becomes brittle as the elastic modulus increases. Increased and decreased elongation, it is difficult to obtain a composite material having high composite performance.
  • an oxidation treatment flame resistance treatment
  • the method of carbonizing and manufacturing in 300 degreeC or more inert gas atmosphere is known.
  • the fiber processing method in the flameproofing process greatly affects the strength development of the carbon fiber, and many studies have been conducted for a long time.
  • the fiber density is in the range of 1.30 to 1.42 g / cm 3 produced in the range of ⁇ 10 to + 10% (stretch ratio 0.9 to 1.1) in the flameproofing process.
  • High-strength carbon fibers can be obtained by carbonizing the flameproof treated yarn (see Patent Document 6), and an elongation rate of 3% or more (stretching of 1.03 or more) until the fiber density reaches 1.22 g / cm 3.
  • a high strength carbon fiber can be obtained by performing a flameproofing treatment while substantially suppressing subsequent shrinkage, followed by carbonization (see Patent Document 7), or the fiber density is After performing the flameproofing treatment at an elongation rate of 3% or more (stretching ratio of 1.03 or more) until reaching 1.22 g / cm 3 , further at an elongation ratio of 1% or more (stretching ratio of 1.01 or more).
  • the strand strength is 460k by drawing and then carbonizing.
  • the f / mm 2 or more carbon fiber is obtained (see Patent Document 8) it has been reported for a long time.
  • An object of the present invention is to provide a method for producing a high-strength and high-elasticity carbon fiber that is suitable for a composite material requiring particularly high composite performance.
  • the present inventors use a polyacrylic precursor fiber that has been conventionally known as described above.
  • the flameproofing process and / or the carbonization (including graphitization) process is improved and the present invention has been achieved from a completely new viewpoint.
  • a flame resistant fiber when producing a flame resistant fiber by subjecting a polyacrylic precursor fiber to a flame resistant treatment in an oxidizing atmosphere, (1) as a pretreatment for the flame resistant treatment,
  • the degree of cyclization of the precursor fiber (I 1620 / I 2240 ) measured with a Fourier transform infrared spectrophotometer (FT-IR) at a temperature of 220 to 260 ° C. and a load of 0.58 g / tex or less. )
  • FT-IR Fourier transform infrared spectrophotometer
  • the precursor fiber is initially stretched at a load of 2.7 to 3.5 g / tex and subsequently (3) 200 to 280 ° C., preferably 240 to 250 ° C. in an oxidizing atmosphere.
  • the draw ratio is 0.85 to 1.3 times, preferably 0.95.
  • the density until the range of 1.3 ⁇ 1.5g / cm 3 a method for producing a flame-resistant fibers, comprising treating flame the precursor fibers.
  • Another aspect of the present invention is a method for producing carbon fiber, characterized in that the polyacrylic precursor fiber obtained as described above is subsequently carbonized by a known method.
  • the carbonization treatment includes so-called graphitization treatment.
  • Still another embodiment of the present invention is a carbon fiber itself obtained by the production method described above and having a tensile strength of 5880 MPa or more and an elastic modulus of 308 GPa or more.
  • the fiber when the polyacrylic precursor fiber is subjected to flameproofing treatment, as a pretreatment, the fiber is contracted once to discharge moisture in the fiber and make the structure of the fiber voidless. As a result, it is possible to produce a flameproof fiber with reduced internal defects. And when this is used as an intermediate raw material and carbonized by a conventionally known method, a carbon fiber having high strength and high elasticity can be obtained. If the conditions are appropriately set, a carbon fiber having a tensile strength of 5880 MPa or more and an elastic modulus of 308 GPa or more and an improved elastic modulus while maintaining high strength can be obtained. And since the composite material obtained from such carbon fiber and matrix resin has excellent composite properties, it is possible to obtain a composite material with higher performance than conventional ones. In fields and the like, it can be used as a composite material that is lightweight and suitable for structural materials.
  • conventionally known polyacrylic fibers can be used without any limitation as the polyacrylic precursor fibers used in the method for producing flame-resistant fibers or carbon fibers.
  • polyacrylic fibers having an orientation degree of 90.5% or less by wide-angle X-ray diffraction (diffraction angle 17 °) are preferable.
  • a carbon fiber raw material (precursor fiber) is obtained by spinning a spinning solution obtained by singly or copolymerizing a monomer containing acrylonitrile at 90% by weight or more, preferably 95% by weight or more.
  • the spinning method either a wet or dry wet spinning method can be used, but in order to obtain a carbon fiber excellent in adhesion due to an anchor effect with a resin, a wet fiber that has a pleat on the surface is obtained.
  • a spinning method is more preferred.
  • the fiber obtained by the wet spinning method is then washed with water, dried and drawn to obtain a carbon fiber raw material.
  • the monomer to be copolymerized methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.
  • the polyacrylic precursor fiber thus obtained can be subjected to flameproofing treatment according to the method for producing flameproofed fiber of the present invention to obtain flameproofed fiber.
  • the flame-resistant fiber can be carbonized (including so-called graphitization treatment if necessary) to obtain a high-strength, high-elasticity carbon fiber.
  • the usual flameproofing treatment for the polyacrylic precursor fiber is performed in an oxidizing atmosphere such as heated air within a temperature range of 200 to 280 ° C., preferably 240 to 250 ° C. At this time, the precursor fiber is generally stretched or shrunk in a range of a stretch ratio of 0.85 to 1.3 times. However, in order to obtain a high-strength and high-elasticity carbon fiber, 0.95 times More preferably. With this flameproofing treatment, a flameproof fiber having a fiber density of 1.3 to 1.5 g / cm 3 is obtained, but the tension applied to the yarn at the time of flameproofing is not particularly limited.
  • the polyacrylic precursor fiber shrinks as the processing temperature increases unless it is stretched. Therefore, the stretching ratio can be adjusted by adjusting the stretching stress and performing a stretching treatment.
  • a draw ratio of 1.0 indicates that a drawing stress is applied to the fiber, but shrinkage and drawing are balanced and the length before drawing and after drawing are the same.
  • pre-treatment is first performed in the flameproofing treatment. That is, first, as a pretreatment of (1) flameproofing treatment, the precursor fiber is subjected to a temperature of 220 to 260 ° C., preferably 230 to 245 ° C., and a load of 0.58 g / tex or less, preferably 0.55 g.
  • the cyclization degree (I 1620 / I 2240 ) of the precursor fiber measured by a Fourier transform infrared spectrophotometer (FT-IR) is not more than 7%, preferably not more than 6.6%. Shrink under conditions.
  • the weight does not sag and is within the above range.
  • the degree of cyclization of the precursor fiber (I 1620 / I 2240 ) measured with a Fourier transform infrared spectrophotometer (FT-IR) is a value used as an indicator of the flameproofing reaction, This shows the degree of reaction in which the nitrile group appearing in I 2240 opens as the flame resistance progresses and reacts with the naphthyridine ring appearing in I 1620 .
  • the precursor fiber pretreated as described above is then subjected to (2) an oxidizing atmosphere of 230 to 260 ° C., preferably 240 to 250 ° C., and the degree of cyclization of the precursor fiber is 27 % And the density does not exceed 1.2 g / cm 3 , the precursor fiber is initially loaded with a load of 2.7 to 3.5 g / tex, preferably 2.8 to 3.0 g / tex. Stretch. At this time, if the load is outside this range, the filament may be cut in the process, which is not preferable because the process becomes unstable and the productivity deteriorates.
  • the precursor fiber pretreated in the step (1) is initially stretched under the above conditions in the step (2). Subsequently, the precursor fiber is subjected to normal flameproofing treatment. That is, (3) in an oxidizing atmosphere at 200 to 280 ° C., preferably 240 to 250 ° C., a draw ratio of 0.85 to 1.3 times, preferably 0.95 times or more, and a density of 1.3 The precursor fiber is flameproofed to obtain flameproofed fiber until it is in the range of ⁇ 1.5 g / cm 3 .
  • the flameproofing treatment of the polyacrylic precursor fiber is usually performed in an atmosphere gas circulation type heating furnace while the precursor fiber passes through the supply roller and the take-off roller a plurality of times while being stretched or contracted by applying a predetermined load. Is done by letting And since a polyacrylic precursor fiber is normally processed in a precursor fiber bundle (strand) state, it is preferable for the stability of a process that a strand is in the state converged as much as possible. In particular, in the case of a thick strand having 20,000 or more filaments, it is preferable to maintain the convergence of the strand by applying an appropriate oil agent.
  • Densification of the precursor fiber in the step (1) in the present invention is essential for the flame resistance treatment of the polyacrylic precursor fiber containing moisture.
  • the fiber which has not started the flameproofing reaction has a sparse structure, and when heated, moisture in the fiber evaporates and is discharged out of the fiber.
  • the flameproofing treatment occurs from the fiber surface, if the flameproofing reaction starts before the moisture in the fiber is completely removed, the surface structure formed by the flameproofing reaction inhibits the discharge of moisture. This insufficiently discharged water vapor forms voids in the fiber, resulting in a structural defect, resulting in a problem that the strength of the resulting flame resistant fiber is reduced.
  • the Fourier transform infrared spectrophotometer before the flameproofing treatment, the Fourier transform infrared spectrophotometer is subjected to certain conditions, that is, the precursor fiber, the temperature is in the range of 220 to 260 ° C., the load is 0.58 g / tex or less.
  • the degree of cyclization of the precursor fiber I 1620 / I 2240
  • the precursor fiber is densified to some extent, and the moisture in the fiber is sufficiently It eliminates the generation of voids that can be structural defects inside the fiber.
  • the precursor fiber when the precursor fiber is densified, its molecular structure becomes loose. After that, if the flameproofing treatment is performed under normal conditions, a high-strength, high-elasticity carbon fiber that can be finally satisfied cannot be obtained. There was another problem. Therefore, in the present invention, in the initial stage of the flameproofing treatment process, the cyclization degree of the precursor fiber does not exceed 27% and the density is 1.2 g / cm 3 in an oxidizing atmosphere of 230 to 260 ° C. There is a contrivance that the precursor fiber is initially stretched at a load of 2.7 to 3.5 g / tex within a range not exceeding. It has been found that this problem can be solved by such means.
  • the flameproofing treatment within the range of normal conditions is performed until the density is in the range of 1.3 to 1.5 g / cm 3 .
  • the method of the present invention as described above is particularly advantageously applied in terms of production cost and quality when the number of filaments is 20,000 or more and the degree of orientation measured by wide-angle X-ray diffraction is 90% or less.
  • This is a case of a polyacrylic carbon fiber precursor fiber bundle containing 20 to 50% by weight of water per unit weight.
  • the flame-resistant fiber obtained by flame-proofing under the above conditions is obtained by carbonizing this flame-resistant fiber because the processability is good and the productivity is high, and the degree of orientation is structurally improved by stretching.
  • the strength of the carbon fiber is high.
  • the flameproofing treatment is performed in a flameproofing furnace in an oxidizing atmosphere including the initial stretching step.
  • a heating furnace different from the flameproofing furnace before applying the oil agent it is convenient to perform the pretreatment process of the flameproofing treatment in a heating furnace different from the flameproofing furnace before applying the oil agent.
  • the pretreatment process and the flameproofing process of the flameproofing process can be continuously performed in the same heating furnace (flameproofing furnace).
  • a carbon fiber when a carbon fiber is produced by subjecting a polyacrylic precursor fiber to a flameproofing treatment in an oxidizing atmosphere and then a carbonization treatment in an inert atmosphere, (1) flameproofing.
  • the precursor fiber is measured with a Fourier transform infrared spectrophotometer (FT-IR) at a temperature in the range of 220 to 260 ° C. and a load of 0.58 g / tex or less.
  • FT-IR Fourier transform infrared spectrophotometer
  • the body fibers were shrunk under conditions where the degree of cyclization (I 1620 / I 2240 ) did not exceed 7%, and then (2) in an oxidizing atmosphere of 230 to 260 ° C., the degree of cyclization of the precursor fibers was 27 %, And the density of the precursor fiber does not exceed 1.2 g / cm 3.
  • the precursor fiber is initially stretched at a load of 2.7 to 3.5 g / tex, and subsequently (3) in an oxidizing atmosphere. 200 to 280 ° C., preferably 240 to 250 In draw ratio from 0.85 to 1.3 times, preferably in the range of more than 0.95 times the density until the range of 1.3 ⁇ 1.5g / cm 3, oxidization processing the precursor fibers And then carbonizing the carbon fiber.
  • the conditions and means for flameproofing the polyacrylic precursor fiber in an oxidizing atmosphere are as described above for the method for producing flameproof fiber.
  • the flame-resistant fiber is then carbonized to obtain the carbon fiber of the present invention.
  • carbonization treatment as described below is usually performed, and the carbonization treatment in the present invention also means such treatment.
  • the flame resistant fiber is subjected to a primary stretching treatment and a secondary stretching treatment in an inert atmosphere within a temperature range of 300 to 900 ° C., preferably 300 to 550 ° C. That is, first, a primary stretching process is performed at a stretching ratio of 1.03 to 1.07, and then a secondary stretching process is performed at a stretching ratio of 0.9 to 1.01 to obtain a fiber density of 1.4 to 1.7 g / cm. 3 of the first carbonized fiber is obtained.
  • the density of the fiber reaches 1.5 g / cm 3 in the range from the point when the elastic modulus of the flameproof fiber decreases to the minimum value until it increases to 9.8 GPa.
  • the stretching process is preferably performed at a stretching ratio of 0.9 to 1.01 within a range in which the density of the fiber after the primary stretching process continues to increase during the secondary stretching process.
  • the crystals are densified without growing, the formation of voids can be suppressed, and finally high-strength carbon fibers having high density can be obtained.
  • the first carbonization treatment step can be carried out continuously or separately in one furnace or two or more furnaces.
  • the first carbonization treatment fiber is divided into a primary treatment and a secondary treatment in an inert atmosphere within a temperature range of 800 to 2100 ° C., preferably 1000 to 1450 ° C.
  • a second carbonized fiber In the primary treatment, it is preferable to stretch the fiber in a range where the density of the first carbonized fiber continues to increase during the primary treatment, and in a range where the nitrogen content of the fiber is 10% by mass or more.
  • the secondary treatment it is preferable to stretch the fiber in a range where the density of the primary treated fiber does not change or decreases.
  • the elongation of the second carbonized fiber is 2.0% or more, more preferably 2.2% or more.
  • the diameter of the second carbonized fiber is preferably 5 to 6.5 ⁇ m.
  • these baking processes can be processed continuously with a single facility or with several facilities, and are not particularly limited.
  • the second carbonization-treated fiber is further carbonized or graphitized at 1500 to 2100 ° C., preferably 1550 to 1900 ° C.
  • the third carbonized fiber is subsequently subjected to a surface treatment.
  • a gas phase or a liquid phase treatment can be used, but surface treatment by electrolytic treatment is preferable from the viewpoint of easy process control and productivity.
  • the electrolyte solution used for an electrolytic treatment is not specifically limited,
  • the aqueous solution of the conventionally well-known inorganic acid, organic acid, alkali, or those salts can be used. Specific examples include nitric acid, ammonium nitrate, sulfuric acid, ammonium sulfate, sodium hydroxide, and the like.
  • the surface-treated fiber is subsequently subjected to sizing treatment.
  • the sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.
  • the carbon fiber of the present invention having a tensile strength of 5880 MPa or more and an elastic modulus of 308 GPa or more is obtained.
  • the degree of cyclization (I 1620 / I 2240 ) is measured by KBr method using Magna-IR ⁇ 550 manufactured by Thermo Fisher Scientific, and the peak intensity of nitrile group appearing in I 2240 and appearing in I 1620 It calculated
  • the density was measured by deaeration treatment in acetone by a liquid replacement method (JIS R7601).
  • the resin-impregnated strand strength and elastic modulus of carbon fiber were measured by the method defined in JIS R7601.
  • the carbon fiber sizing agent was removed by Soxhlet treatment with acetone for 3 hours, and then the fiber was air-dried.
  • Examples 1 to 3 Comparative Examples 1 to 9
  • a copolymer spinning stock solution of 95% by weight of acrylonitrile / 4% by weight of methyl acrylate / 1% by weight of itaconic acid is wet-spun by a conventional method so that the total draw ratio becomes 14 times after washing, oiling and drying. Steam drawing was performed to obtain a precursor fiber having a filament number of 24,000 having a fineness of 1733 tex. The precursor fiber thus obtained was processed in the production process described later to obtain a flame resistant fiber of the present invention.
  • Step (1) As a pretreatment for the flameproofing treatment, the precursor fiber is changed in a pretreatment furnace at a temperature in the range of 230 to 245 ° C. under a stretching condition as shown in Table 1, Pretreatment was performed.
  • the degree of cyclization (I 1620 / I 2240 ) of the precursor fiber measured with a Fourier transform infrared spectrophotometer (FT-IR) was as shown in Table 1.
  • Step (2) The precursor fiber pretreated as described above was used as shown in Table 1 until the specific gravity reached 1.20 using a hot-air circulating flameproofing furnace set at 240 to 250 ° C. Initial stretching was performed by changing the load under stretching conditions. The degree of cyclization of the obtained fiber was as shown in Table 1.
  • Step (3) The initially drawn precursor fiber was subsequently drawn in the same flameproofing furnace in an oxidizing atmosphere set at 240 to 250 ° C., as shown in Table 1, with a draw ratio of 1.0 to The flameproofing treatment was performed until the density was in the range of 1.3 to 1.5 g / cm 3 within a range of 1.01 times.
  • the various flameproof fibers obtained above were first carbonized in a nitrogen atmosphere at a furnace temperature distribution of 300 to 580 ° C. and a draw ratio of 1.01 times, and then within a temperature range of 1000 to 1450 ° C. A second carbonization was performed. Further, the obtained second carbonized fiber is subjected to third carbonization within a temperature range of 1400 to 1850 ° C., and after surface treatment and sizing treatment, carbon having physical property values (strand performance) shown in Table 2 is obtained. Fiber was obtained.
  • Comparative Examples 7 and 8 do not satisfy the condition that initial stretching is performed at a load of 2.7 to 3.5 g / tex in the step (2).
  • Comparative Example 9 does not satisfy both the condition that the initial stretching is performed at a load of 2.7 to 3.5 g / tex in the step (2) and the condition that the density does not exceed 1.2 g / cm 3 .
  • a high-strength and high-elasticity carbon fiber having a tensile strength of 5880 MPa or more and an elastic modulus of 308 GPa or more can be obtained.
  • Such high-strength and high-elasticity carbon fibers are suitable for producing a composite material having high composite performance required for aircraft and the like.
  • the flame-resistant fiber of the present invention is useful as an intermediate raw material for producing the high-strength and high-elasticity carbon fiber as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

ポリアクリル系前駆体繊維を酸化性雰囲気中で耐炎化処理して耐炎化繊維を製造するに際し、耐炎化処理の前処理として、この前駆体繊維を、温度が220~260°Cの範囲で荷重が0.58g/tex以下で、前駆体繊維の環化度(I1620/I2240)が7%を越えない条件で収縮させ、その後、230~260°Cの酸化性雰囲気中で、環化度が27%を越えず且つ密度が1.2g/cm3を超えない範囲で、荷重が2.7~3.5g/texで初期延伸し、引き続いて通常の耐炎化処理をして耐炎化繊維を製造する方法。この耐炎化繊維を引き続いて炭素化処理することによって、高いコンポジット性能を有する複合材料に適した、高強度高弾性の炭素繊維が得られる。        

Description

耐炎化繊維と炭素繊維の製造方法
本発明は、高強度炭素繊維の製造方法と、その中間原料として有用な耐炎化繊維の製造方法に関する。
近年、炭素繊維を強化繊維として用いた複合材料は、軽く、高強度等の優れた機械的特性を有するので、航空機等の構造材として多く用いられてきている。これらの複合材料は、例えば、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。従って、所望の複合材料を得るためには、それぞれに最適の材料あるいは成形・加工手段を採用する必要がある。そして、用途によっては、強化繊維である炭素繊維も、更に高い強度等が要求される場合がある。例えば、航空機用の複合材料において軽量化を目的とした場合には、炭素繊維の強度を維持したまま弾性を上げることが必要になるが、炭素繊維は一般的に、弾性率が上がるに従って脆性が増し、伸度が低下するので、高いコンポジット性能を有する複合材料を得ることが困難である。
航空機分野では、従来は、強度と弾性率が中程度の炭素繊維、例えば、強度が5680MPa、弾性率が294GPa程度のものがよく用いられていたが、最近では、機体の軽量化を主目的に、より高性能の複合材料が要求されるようになり、それに応えるために、高強度と高弾性を両立させた炭素繊維の開発が試みられてきた。しかし、弾性率と伸度はトレードオフの関係にあるので、弾性率を増加させるのに伴い炭素繊維の伸度が低下し、脆性も増加する。従って、高弾性且つ高強度でしかも脆性等の物性の低下の少ない高性能の炭素繊維を製造することは、非常に困難であった。特にこの傾向は、弾性率が294GPaを超えると顕著になり、安定した物性を確保することも含め、開発は非常に困難であった。
炭素繊維とマトリックス樹脂との複合化において、高性能化を追求するためには、前記のごとく炭素繊維そのもの自体の強度や弾性率等をも向上させることが必要不可欠である。そして、炭素繊維の強度や弾性率の向上等については、従来から色々と検討がなされているが、特にポリアクリル系前駆体繊維から炭素繊維を製造するための、耐炎化工程及び/又は炭素化(黒鉛化を含む)工程の改善・改良の検討が、比較的最近でも精力的に行われている(例えば、特許文献1~5参照)。しかしながら、現在の特に高いコンポジット性能が求められる複合材料に適した、高強度高弾性の炭素繊維の工業的に有利な製法は、未だ必ずしも確立されてはいない。
特開平5-214614号公報 特開平10-25627号公報 特開2001-131833号公報 特開2003-138434号公報 特開2003-138435号公報
一般的に、ポリアクリル系前駆体繊維を用いて炭素繊維を製造する方法としては、前駆体繊維を200~280℃の酸化性雰囲気下で延伸又は収縮を行いながら酸化処理(耐炎化処理)を行った後、300℃以上の不活性ガス雰囲気中で炭素化して製造する方法が知られている。とりわけ耐炎化処理工程における繊維の処理方法は、炭素繊維の強度発現に大きく影響を及ぼし、古くから多くの検討が行われてきた。
例えば、耐炎化工程での伸長率が-10~+10%(延伸倍率0.9~1.1)の範囲で製造された、繊維密度が1.30~1.42g/cm3の範囲にある耐炎化処理糸を炭素化することにより高強度炭素繊維が得られること(特許文献6参照)、繊維密度が1.22g/cm3に達するまで3%以上の伸長率(1.03以上の延伸倍率)を与え、以後の収縮を実質的に抑制して耐炎化処理を行い、続いて炭素化することにより高強度の炭素繊維が得られること(特許文献7参照)、あるいはまた、繊維密度が1.22g/cm3に達するまで3%以上の伸長率(1.03以上の延伸倍率)で耐炎化処理を行った後、更に1%以上の伸長率(1.01以上の延伸倍率)で延伸処理を行い、その後炭素化することによりストランド強度460kgf/mm2以上の炭素繊維が得られること(特許文献8参照)等が古くから報告されている。
特公昭63-28132号公報 特公平3-23649号公報 特公平3-23650号公報
本発明の課題は、最近、特に高いコンポジット性能が求められる複合材料に適した、高強度高弾性の炭素繊維を製造する方法を提供することにある。
本発明者らは、特に高いコンポジット性能が求められる複合材料に適した、高強度高弾性の炭素繊維を製造するために、前記のごとく従来から知られているポリアクリル系前駆体繊維を用いて炭素繊維を製造する方法において、全く新しい観点から、耐炎化工程及び/又は炭素化(黒鉛化を含む)工程を改良し、本発明に到達したものである。
本発明の態様の一つは、ポリアクリル系前駆体繊維を酸化性雰囲気中で耐炎化処理して耐炎化繊維を製造するに際し、(1)耐炎化処理の前処理として、該前駆体繊維を、温度が220~260℃の範囲で荷重が0.58g/tex以下で、フーリエ変換赤外分光光度計(FT-IR)で測定される該前駆体繊維の環化度(I1620/I2240)が7%を越えない条件で収縮させ、その後、(2)230~260℃の酸化性雰囲気中で、該前駆体繊維の環化度が27%を越えず且つ密度が1.2g/cmを超えない範囲で、該前駆体繊維を、荷重が2.7~3.5g/texで初期延伸し、引き続いて(3)酸化性雰囲気中で200~280℃、好ましくは240~250℃で、延伸倍率0.85~1.3倍、好ましくは0.95倍以上の範囲で、密度が1.3~1.5g/cmの範囲になるまで、該前駆体繊維を耐炎化処理することを特徴とする耐炎化繊維の製造方法である。
本発明の他の態様は、前記のごとくして得られたポリアクリル系前駆体繊維を、引き続いて、公知の方法で炭素化処理することを特徴とする炭素繊維の製造方法である。なお、本発明において炭素化処理というときには、いわゆる黒鉛化処理も含むものである。
本発明の更に他の態様は、前記記載の製造方法で得られた、引張り強度が5880MPa以上で、弾性率が308GPa以上の炭素繊維自体である。
本発明においては、ポリアクリル系前駆体繊維を耐炎化処理する際に、その前処理として、繊維を一度収縮させることで繊維中の水分を排出し、繊維の構造をボイドレスなものにしている。その結果、内部欠陥が減少した耐炎化繊維を製造することができる。そして、これを中間原料として、従来公知の方法で炭素化処理を行うと、高強度高弾性の炭素繊維が得られる。条件を適切に設定すれば、引張り強度が5880MPa以上で、弾性率が308GPa以上の、高強度を維持しつつ弾性率を向上させた炭素繊維が得られる。そして、かかる炭素繊維とマトリックス樹脂とから得られた複合材料は、優れたコンポジット特性を有するので、従来のものよりもより高性能な複合材料を得ることができ、これらは、航空宇宙分野や自動車分野等において、軽量で且つ構造材に適した複合材料として利用できる。
本発明において、耐炎化繊維又は炭素繊維の製造方法に用いられるポリアクリル系前駆体繊維としては、従来公知のポリアクリル系繊維が何ら制限なく使用できる。その中でも、広角X線回折(回折角17°)による配向度が90.5%以下のポリアクリル系繊維が好ましい。具体的には、アクリロニトリルを90重量%以上、好ましくは95重量%以上含有する単量体を単独又は共重合した紡糸溶液を紡糸して、炭素繊維原料(前駆体繊維)が得られる。紡糸方法としては、湿式又は乾湿式紡糸方法いずれの方法も用いることができるが、樹脂とのアンカー効果による接着性に優れた炭素繊維を得るためには、表面にひだを有する繊維が得られる湿式紡糸方法がより好ましい。また、湿式紡糸方法により得られた繊維は、その後、水洗・乾燥・延伸して炭素繊維原料とすることが好ましい。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。
このようにして得られるポリアクリル系前駆体繊維を、本発明の耐炎化繊維の製造法に従って耐炎化処理して耐炎化繊維を得ることができる。そして、この耐炎化繊維を炭素化(必要に応じて、いわゆる黒鉛化処理することも含む)することによって高強度高弾性の炭素繊維を得ることができる。
ポリアクリル系前駆体繊維の通常の耐炎化処理は、例えば、加熱空気等の酸化性雰囲気中200~280℃、好ましくは、240~250℃の温度範囲内で行われる。この際、前駆体繊維は、一般的に延伸倍率0.85~1.3倍の範囲で延伸又は収縮処理されるが、高強度・高弾性の炭素繊維を得るためには、0.95倍以上とするのがより好ましい。この耐炎化処理によって、繊維密度1.3~1.5g/cmの耐炎化繊維が得られるが、耐炎化時の糸にかかる張力は特に限定されるものではない。
耐炎化処理過程では、延伸処理しなければポリアクリル系前駆体繊維は、処理温度の上昇と共に収縮する。そこで、延伸応力を調節して延伸処理することにより延伸倍率を調節することができる。延伸倍率1.0とは、繊維に延伸応力を与えているが、収縮と延伸とのバランスがとれ延伸前と延伸後との長さが同一であることを示す。
本発明においては、前記耐炎化処理の際、先ず前処理を行うことを特徴とする。即ち、先ず、(1)耐炎化処理の前処理として、前駆体繊維を、温度が220~260℃、好ましくは230~245℃の範囲で荷重が0.58g/tex以下、好ましくは0.55g/tex以下で、フーリエ変換赤外分光光度計(FT-IR)で測定される前駆体繊維の環化度(I1620/I2240)が7%を越えない、好ましくは6.6%以下の条件で収縮させる。しかし、荷重を下げ過ぎると、走行糸が弛み炉やヒーター部に接触することにより、走行糸が切断したり、あるいは表面傷による物性の低下が起こる可能性があるので、荷重は、走行糸が弛まない重さ以上で、且つ上記範囲内にあるのが好ましい。
なお、本発明においてフーリエ変換赤外分光光度計(FT-IR)で測定される前駆体繊維の環化度(I1620/I2240)とは、耐炎化反応の指標として用いられる値であり、耐炎化が進むにつれI2240に現れるニトリル基が開環し、I1620に現れるナフチリジン環へと反応して行く反応度合いを示したものである。
本発明においては、前記のごとく前処理された前駆体繊維を、その後、(2)230~260℃、好ましくは240~250℃の酸化性雰囲気中で、この前駆体繊維の環化度が27%を越えず且つ密度が1.2g/cmを超えない範囲で、この前駆体繊維を、荷重が2.7~3.5g/tex、好ましくは2.8~3.0g/texで初期延伸する。この際、荷重がこの範囲外になると、工程でフィラメントの切断が起こる可能性があり、工程が不安定になり生産性が悪化するため、好ましくない。
前記のごとく工程(1)で前処理された前駆体繊維は、工程(2)で前記の条件下で初期延伸される。そして、引き続いて前駆体繊維は通常の耐炎化処理が行われる。即ち、(3)酸化性雰囲気中で200~280℃、好ましくは240~250℃で、延伸倍率0.85~1.3倍、好ましくは0.95倍以上の範囲で、密度が1.3~1.5g/cmの範囲になるまで、前駆体繊維を耐炎化処理して耐炎化繊維を得る。
ポリアクリル系前駆体繊維の耐炎化処理は、通常、雰囲気ガス循環式の加熱炉で、前駆体繊維を、供給ローラーと引き取りローラー間に複数回、所定の荷重をかけて延伸又は収縮させながら通過させることによって行われる。そして、通常、ポリアクリル系前駆体繊維は前駆体繊維束(ストランド)状態で処理されるので、ストランドはできるだけ収束された状態にあるのが、工程の安定性のために好ましい。特に、フィラメント数が20,000本以上の太いストランドの場合には、適当な油剤を付与してストランドの収束性を維持することが好ましい。
本発明における工程(1)での前駆体繊維の緻密化は、水分を含むポリアクリル系前駆体繊維の耐炎化処理には必須である。通常、耐炎化反応の始まっていない繊維は疎の構造であり、熱を掛けると繊維中の水分が蒸発し、繊維外に排出される。ところが、耐炎化処理は繊維表面から起こるため、繊維中の水分が抜けきる前に耐炎化反応が始まると、この耐炎化反応により形成された表面構造により水分の排出が阻害される。この排出不十分な水蒸気が繊維中にボイドを形成し、構造欠陥になるため、得られる耐炎化繊維の強度が低下するという問題があった。そこで、本発明においては、耐炎化処理前に、一定の条件、即ち、前駆体繊維を、温度が220~260℃の範囲で荷重が0.58g/tex以下で、フーリエ変換赤外分光光度計(FT-IR)で測定される前駆体繊維の環化度(I1620/I2240)が7%を越えない条件で収縮させることによって、前駆体繊維をある程度緻密化し、繊維中の水分を十分除去し、繊維内部での構造欠陥となりうるボイドの発生を抑えるものである。
しかし、前駆体繊維を緻密化するとその分子構造がルーズになり、その後、通常の条件で耐炎化処理を行ったのでは、最終的に満足すべき高強度高弾性の炭素繊維が得られないという別な問題があった。そこで、本発明では、耐炎化処理工程の初期の段階で、230~260℃の酸化性雰囲気中で、前駆体繊維の環化度が27%を越えず且つ密度が1.2g/cmを超えない範囲で、前駆体繊維を、荷重が2.7~3.5g/texで初期延伸するという工夫がなされている。かかる手段によって、前記問題が解決することが判明したのである。
その後は、引き続いて、同じ耐炎化炉で、酸化性雰囲気中で200~280℃、好ましくは240~250℃で、延伸倍率0.85~1.3倍、好ましくは0.95倍以上の範囲で、密度が1.3~1.5g/cmの範囲になるまで、通常の条件の範囲内の耐炎化処理が行われる。
前記のような本発明の方法が、生産コストや品質的に特に有利に適用されるのは、フィラメント数が20,000本以上で、広角X線回折で測定される配向度が90%以下であり、且つ、単位重量当たり20~50重量%の水分を含むポリアクリル系炭素繊維前駆体繊維束の場合である。前記条件で耐炎化処理して得られる耐炎化繊維は、工程の通過性が良いため生産性が高くなると共に、延伸により構造的に配向度が向上するため、この耐炎化繊維を炭素化して得られる炭素繊維の強度は高くなるという特徴がある。
本発明において、耐炎化処理は、初期延伸工程も含めて酸化性雰囲気の耐炎化炉中で行われる。一方、耐炎化処理の前処理工程は、油剤付与前に耐炎化炉とは別な加熱炉で行うのが便利ではあるが、油剤付与工程を加熱炉外で行うように工程的な工夫をすれば、耐炎化処理の前処理工程と耐炎化工程を同一の加熱炉(耐炎化炉)で連続的に行うこともできる。
本発明のもう一つの態様は、ポリアクリル系前駆体繊維を酸化性雰囲気中で耐炎化処理し、その後、不活性雰囲気中で炭素化処理することによって炭素繊維を製造するに際し、(1)耐炎化処理の前処理として、該前駆体繊維を、温度が220~260℃の範囲で荷重が0.58g/tex以下で、フーリエ変換赤外分光光度計(FT-IR)で測定される該前駆体繊維の環化度(I1620/I2240)が7%を越えない条件で収縮させ、その後、(2)230~260℃の酸化性雰囲気中で、該前駆体繊維の環化度が27%を越えず且つ密度が1.2g/cmを超えない範囲で、該前駆体繊維を、荷重が2.7~3.5g/texで初期延伸し、引き続いて(3)酸化性雰囲気中で200~280℃、好ましくは240~250℃で、延伸倍率0.85~1.3倍、好ましくは0.95倍以上の範囲で、密度が1.3~1.5g/cmの範囲になるまで、該前駆体繊維を耐炎化処理し、その後、炭素化処理することを特徴とする炭素繊維の製造方法である。
上記発明において、ポリアクリル系前駆体繊維を酸化性雰囲気中で耐炎化処理する条件・手段は、前述した耐炎化繊維の製造方法の通りである。かかる耐炎化繊維を、その後、炭素化処理することによって、本発明の炭素繊維が得られるものである。
耐炎化繊維を炭素化して炭素繊維を得る場合、通常、以下に説明するような炭素化処理が行われるが、本発明における炭素化処理もかかる処理を意味するものである。
[第一炭素化処理]
第一炭素化処理工程においては、耐炎化繊維を、不活性雰囲気中で、300~900℃、好ましくは300~550℃の温度範囲内で、一次延伸処理と二次延伸処理を行う。即ち、先ず、1.03~1.07の延伸倍率で一次延伸処理し、次いで0.9~1.01の延伸倍率で二次延伸処理して、繊維密度1.4~1.7g/cmの第一炭素化処理繊維を得る。第一炭素化処理工程において、一次延伸処理では、耐炎化繊維の弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲、同繊維の密度が1.5g/cmに達するまでの範囲で、1.03~1.07の延伸倍率で延伸処理を行うのが好ましい。二次延伸処理においては、一次延伸処理後の繊維の密度が二次延伸処理中に上昇し続ける範囲で、0.9~1.01倍の延伸倍率で延伸処理を行うのが好ましい。かかる条件を採用すると、結晶が成長することなく、緻密化され、ボイドの生成も抑制でき、最終的に高い緻密性を有した高強度炭素繊維を得ることができる。上記第一炭素化処理工程は、一つの炉若しくは二つ以上の炉で、連続的若しくは別々に処理することができる。
[第二炭素化処理]
第二炭素化処理工程においては、上記第一炭素化処理繊維を、不活性雰囲気中で、800~2100℃、好ましくは1000~1450℃の温度範囲内で、一次処理と二次処理とに分けて延伸処理して、第二炭素化処理繊維を得る。一次処理では、第一炭素化処理繊維の密度が一次処理中上昇し続ける範囲、同繊維の窒素含有量が10質量%以上の範囲で、同繊維を延伸処理するのが好ましい。二次処理においては、一次処理繊維の密度が変化しない又は低下する範囲で、同繊維を延伸処理するのが好ましい。第二炭素化処理繊維の伸度は2.0%以上、より好ましくは2.2%以上である。また、第二炭素化処理繊維の直径は、5~6.5μmであるのが好ましい。また、これら焼成工程は、単一設備で連続して処理することも、数個の設備で連続して処理することも可能であり、特に限定されるものではない。
[第三炭素化処理]
第三炭素化処理工程においては、上記第二炭素化処理繊維を1500~2100℃、好ましくは、1550~1900℃で更に炭素化又は黒鉛化処理する。
[表面処理]
上記第三炭素化処理繊維は、引き続いて表面処理を施こされる。表面処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、電解処理による表面処理が好ましい。また電解処理に使用される電解液は、特に限定されるものではなく、従来の公知の無機酸、有機酸、アルカリ又はそれらの塩の水溶液を使用することができる。具体的には、例えば、硝酸、硝酸アンモニウム、硫酸、硫酸アンモニウム、水酸化ナトリウム等が挙げられる。
[サイジング処理]
上記表面処理繊維は、引き続いてサイジング処理を施こされる。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
上記のごとき方法で炭素繊維を製造すると、引張り強度が5880MPa以上で、弾性率が308GPa以上の本発明の炭素繊維が得られる。
本発明を以下の実施例及び比較例により具体的に説明する。実施例及び比較例において得られた耐炎化繊維及び炭素繊維の諸物性値は、以下の方法により測定した。
環化度(I1620/I2240)は、サーモフィッシャーサイエンティフィック社製Magna-IR・550を使用し、KBr法にて測定を行い、I2240に現れるニトリル基のピーク強度とI1620に現れるナフチリジン環のピーク強度の比から求めた。密度は、液置換法(JIS・R・7601)によりアセトン中にて脱気処理し測定した。
炭素繊維の樹脂含浸ストランド強度と弾性率は、JIS・R・7601に規定された方法により測定した。炭素繊維のサイジング剤の除去は、アセトンを用い3時間のソックスレー処理によって行い、そののち繊維を風乾した。
[実施例1~3、比較例1~9]
アクリロニトリル95重量%/アクリル酸メチル4重量%/イタコン酸1重量%よりなる共重合体紡糸原液を、常法により湿式紡糸し、水洗・オイリング・乾燥後、トータル延伸倍率が14倍になるようにスチーム延伸を行い、1733texの繊度を有するフィラメント数24,000の前駆体繊維を得た。かくして得られた前駆体繊維を後述する製造工程で処理し、本発明の耐炎化繊維を得た。
工程(1):耐炎化処理の前処理として、前処理炉で前記前駆体繊維を、温度が230~245℃の範囲で、表1に示したような延伸条件下で荷重を変化させて、前処理を行った。フーリエ変換赤外分光光度計(FT-IR)で測定される該前駆体繊維の環化度(I1620/I2240)は表1に示したとおりであった。
工程(2):前記のごとく前処理された前駆体繊維を、240~250℃に設定された熱風循環式耐炎化炉を用い、比重が1.20に至るまで、表1に示したような延伸条件下で荷重を変化させて初期延伸した。得られた繊維の環化度は表1に示したとおりであった。
工程(3):初期延伸された前駆体繊維は、引き続いて、同じ耐炎化炉にて240~250℃に設定された酸化性雰囲気中で、表1に示したように延伸倍率1.0~1.01倍の範囲で、密度が1.3~1.5g/cmの範囲になるまで、耐炎化処理した。
前記で得られた各種の耐炎化繊維を、窒素雰囲気中、炉内温度分布300~580℃、延伸倍率1.01倍で第一炭素化を行った後、1000~1450℃の温度範囲内で第二炭素化を行った。更に得られた第二炭素化繊維を、1400~1850℃の温度範囲内で第三炭素化を行い、表面処理、サイジング処理を経た後、表2に示した物性値(ストランド性能)を有する炭素繊維を得た。
表1より、本発明において規定された製造条件の範囲内で得られた炭素繊維である実施例1~3のものは、条件の全ては満足していない比較例1~9のものに比較して、より優れた強度と弾性率を有していることが分かる。なお、比較例1~4と比較例6は、工程(1)の荷重(テンション)が0.58g/tex以下という本発明の条件を満足していない。比較例5は、工程(1)の荷重が0.58g/tex以下という条件と、工程(2)の荷重が2.7~3.5g/texで初期延伸するという条件を共に満足していない。比較例7と8は、工程(2)の荷重が2.7~3.5g/texで初期延伸するという条件を満足していない。比較例9は、工程(2)の荷重が2.7~3.5g/texで初期延伸するという条件と、密度が1.2g/cmを超えないという条件を共に満足していない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
本発明の製造方法によると、例えば、引張り強度が5880MPa以上で、弾性率が308GPa以上の高強度・高弾性炭素繊維が得られる。そして、かかる高強度・高弾性炭素繊維は、航空機用等に要求される高いコンポジット性能を有する複合材料を製造するのに適している。また、本発明の耐炎化繊維は、前記のような高強度・高弾性炭素繊維の製造のための中間原料として有用である。
 
 

Claims (5)

  1. ポリアクリル系前駆体繊維を酸化性雰囲気中で耐炎化処理して耐炎化繊維を製造するに際し、(1)耐炎化処理の前処理として、該前駆体繊維を、温度が220~260℃の範囲で荷重が0.58g/tex以下で、フーリエ変換赤外分光光度計(FT-IR)で測定される該前駆体繊維の環化度(I1620/I2240)が7%を越えない条件で収縮させ、その後、(2)230~260℃の酸化性雰囲気中で、該前駆体繊維の環化度が27%を越えず且つ密度が1.2g/cmを超えない範囲で、該前駆体繊維を、荷重が2.7~3.5g/texで初期延伸し、引き続いて(3)酸化性雰囲気中で200~280℃で、延伸倍率0.85~1.3倍の範囲で、密度が1.3~1.5g/cmの範囲になるまで、該前駆体繊維を耐炎化処理することを特徴とする耐炎化繊維の製造方法。
  2. ポリアクリル系前駆体繊維が、フィラメント数が20,000本以上で、広角X線回折で測定される配向度が90%以下であり、且つ、単位重量当たり20~50重量%の水分を含むポリアクリル系炭素繊維前駆体繊維束であることを特徴とする請求項1記載の耐炎化繊維の製造方法。
  3. ポリアクリル系前駆体繊維を酸化性雰囲気中で耐炎化処理し、その後、不活性雰囲気中で炭素化処理することによって炭素繊維を製造するに際し、(1)耐炎化処理の前処理として、該前駆体繊維を、温度が220~260℃の範囲で荷重が0.58g/tex以下で、フーリエ変換赤外分光光度計(FT-IR)で測定される該前駆体繊維の環化度(I1620/I2240)が7%を越えない条件で収縮させ、その後、(2)230~260℃の酸化性雰囲気中で、該前駆体繊維の環化度が27%を越えず且つ密度が1.2g/cmを超えない範囲で、該前駆体繊維を、荷重が2.7~3.5g/texで初期延伸し、引き続いて(3)酸化性雰囲気中で200~280℃で、延伸倍率0.85~1.3倍の範囲で、密度が1.3~1.5g/cmの範囲になるまで、該前駆体繊維を耐炎化処理し、その後、炭素化処理することを特徴とする炭素繊維の製造方法。
  4. ポリアクリル系前駆体繊維が、フィラメント数が20,000本以上で、広角X線回折で測定される配向度が90%以下であり、且つ、単位重量当たり20~50重量%の水分を含むポリアクリル系炭素繊維前駆体繊維束であることを特徴とする請求項3記載の炭素繊維の製造方法。
  5. 請求項3又は4記載の製造方法で得られた、引張り強度が5880MPa以上で、弾性率が308GPa以上の炭素繊維。
     
     
PCT/JP2008/072381 2007-12-30 2008-12-10 耐炎化繊維と炭素繊維の製造方法 WO2009084390A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES08868762T ES2389832T3 (es) 2007-12-30 2008-12-10 Procedimiento de producción de fibras ignífugas y fibra de carbono
CN200880123142XA CN101910480B (zh) 2007-12-30 2008-12-10 耐燃纤维和碳纤维的制造方法
JP2009547972A JP5324472B2 (ja) 2007-12-30 2008-12-10 耐炎化繊維と炭素繊維の製造方法
EP08868762A EP2233616B1 (en) 2007-12-30 2008-12-10 Processes for producing flameproof fiber and carbon fiber
US12/747,386 US8236273B2 (en) 2007-12-30 2008-12-10 Method of producing pre-oxidation fiber and carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007341567 2007-12-30
JP2007-341567 2007-12-30

Publications (1)

Publication Number Publication Date
WO2009084390A1 true WO2009084390A1 (ja) 2009-07-09

Family

ID=40824111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072381 WO2009084390A1 (ja) 2007-12-30 2008-12-10 耐炎化繊維と炭素繊維の製造方法

Country Status (7)

Country Link
US (1) US8236273B2 (ja)
EP (1) EP2233616B1 (ja)
JP (1) JP5324472B2 (ja)
CN (1) CN101910480B (ja)
ES (1) ES2389832T3 (ja)
PT (1) PT2233616E (ja)
WO (1) WO2009084390A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129488A1 (ja) * 2014-02-26 2015-09-03 東レ株式会社 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法
JP2018178344A (ja) * 2017-04-05 2018-11-15 東レ株式会社 ポリアクリロニトリル系耐炎化繊維束およびその製造方法、ならびに炭素繊維束の製造方法
KR20190078069A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 폴리아크릴로니트릴계 내염화 섬유
JP2019203232A (ja) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 炭素材料前駆体の耐炎化処理装置及びそれを用いた炭素材料前駆体の耐炎化処理方法
JP2020507016A (ja) * 2017-01-10 2020-03-05 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 熱安定化されたマルチフィラメント糸の連続製造方法、マルチフィラメント糸および繊維
JP2021500481A (ja) * 2017-10-10 2021-01-07 ディーキン ユニバーシティ 前駆体安定化方法
JP2022058773A (ja) * 2017-01-10 2022-04-12 フラウンホーファー-ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 熱安定化されたマルチフィラメント糸の連続製造方法、マルチフィラメント糸および繊維

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146595B (zh) * 2011-04-21 2012-12-12 金发科技股份有限公司 一种干湿法制备聚丙烯腈碳纤维原丝的方法
CN103726132B (zh) * 2013-12-31 2016-02-10 湖南顶立科技有限公司 一种热风循环式预氧化炉
CN104389068A (zh) * 2014-09-15 2015-03-04 荣成炭谷有限公司 一种新型装饰材料的制备方法
CN104328560A (zh) * 2014-09-15 2015-02-04 荣成炭谷有限公司 一种可用于机动车内的新材料的制备方法及应用
US10344403B2 (en) 2014-12-29 2019-07-09 Cytec Industries Inc. Densification of polyacrylonitrile fiber
BR112017019080B1 (pt) 2015-03-12 2022-03-29 Cytec Industries Inc Processo para produzir fibras de carbono
CN112760984B (zh) * 2019-10-21 2024-01-23 中国石油化工股份有限公司 制备复合材料用碳纤维的方法
CN110983493A (zh) * 2019-12-28 2020-04-10 西安康本材料有限公司 一种提高pan基碳纤维碳化效率的工艺
CN115369521B (zh) * 2021-05-19 2024-01-05 吉林碳谷碳纤维股份有限公司 一种碳纤维原丝的预氧化工艺及聚丙烯腈碳纤维预氧丝

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328132B2 (ja) 1978-05-08 1988-06-07 Mitsubishi Rayon Co
JPH0323650B2 (ja) 1983-10-13 1991-03-29 Mitsubishi Rayon Co
JPH0323649B2 (ja) 1983-10-13 1991-03-29 Mitsubishi Rayon Co
JPH05214614A (ja) 1992-02-04 1993-08-24 Toray Ind Inc アクリル系炭素繊維およびその製造方法
JPH1025627A (ja) 1997-04-04 1998-01-27 Mitsubishi Rayon Co Ltd アクリル系炭素繊維
JP2001131833A (ja) 1999-10-25 2001-05-15 Toray Ind Inc 炭素繊維及びその製造方法
JP2003138434A (ja) 2001-10-31 2003-05-14 Toho Tenax Co Ltd 耐炎化繊維の製造方法
JP2003138435A (ja) 2001-11-01 2003-05-14 Toho Tenax Co Ltd 耐炎化繊維の製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098688A (en) 1983-08-05 1992-03-24 Hercules Incorporated Carbon fibres
DE3685480D1 (de) 1985-11-18 1992-07-02 Toray Industries Verfahren zur herstellung von kohlenstoffasern mit hoher festigkeit und hohem elastizitaetsmodul.
JP2005113305A (ja) * 2003-10-07 2005-04-28 Toray Ind Inc 耐炎化繊維、炭素繊維およびそれらの製造方法
JP2006307407A (ja) * 2005-03-29 2006-11-09 Toray Ind Inc 炭素繊維および、炭素繊維の製造方法
JP4662450B2 (ja) * 2005-03-31 2011-03-30 東邦テナックス株式会社 炭素繊維の製造方法
JP5036182B2 (ja) 2005-12-01 2012-09-26 東邦テナックス株式会社 炭素繊維並びにプリカーサー及び炭素繊維の製造方法
US7749479B2 (en) * 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328132B2 (ja) 1978-05-08 1988-06-07 Mitsubishi Rayon Co
JPH0323650B2 (ja) 1983-10-13 1991-03-29 Mitsubishi Rayon Co
JPH0323649B2 (ja) 1983-10-13 1991-03-29 Mitsubishi Rayon Co
JPH05214614A (ja) 1992-02-04 1993-08-24 Toray Ind Inc アクリル系炭素繊維およびその製造方法
JPH1025627A (ja) 1997-04-04 1998-01-27 Mitsubishi Rayon Co Ltd アクリル系炭素繊維
JP2001131833A (ja) 1999-10-25 2001-05-15 Toray Ind Inc 炭素繊維及びその製造方法
JP2003138434A (ja) 2001-10-31 2003-05-14 Toho Tenax Co Ltd 耐炎化繊維の製造方法
JP2003138435A (ja) 2001-11-01 2003-05-14 Toho Tenax Co Ltd 耐炎化繊維の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233616A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA034212B1 (ru) * 2014-02-26 2020-01-17 Торэй Индастриз, Инк. Пористый углеродистый материал, композитный материал, армированный углеродистым материалом, предшественник пористого углеродистого материала, способ получения предшественника пористого углеродистого материала и способ получения пористого углеродистого материала
WO2015129488A1 (ja) * 2014-02-26 2015-09-03 東レ株式会社 多孔質炭素材料、炭素材料強化複合材料、多孔質炭素材料プリカーサ、多孔質炭素材料プリカーサの製造方法、及び多孔質炭素材料の製造方法
US10131770B2 (en) 2014-02-26 2018-11-20 Toray Industries, Inc. Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
US11242623B2 (en) 2017-01-10 2022-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous method for producing a thermally stabilized multifilament thread, multifilament thread, and fiber
JP2020507016A (ja) * 2017-01-10 2020-03-05 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 熱安定化されたマルチフィラメント糸の連続製造方法、マルチフィラメント糸および繊維
JP2022058773A (ja) * 2017-01-10 2022-04-12 フラウンホーファー-ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 熱安定化されたマルチフィラメント糸の連続製造方法、マルチフィラメント糸および繊維
JP7311649B2 (ja) 2017-01-10 2023-07-19 フラウンホーファー-ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 熱安定化されたマルチフィラメント糸の連続製造方法、マルチフィラメント糸および繊維
JP2018178344A (ja) * 2017-04-05 2018-11-15 東レ株式会社 ポリアクリロニトリル系耐炎化繊維束およびその製造方法、ならびに炭素繊維束の製造方法
JP2021500481A (ja) * 2017-10-10 2021-01-07 ディーキン ユニバーシティ 前駆体安定化方法
JP7059496B2 (ja) 2017-10-10 2022-04-26 ディーキン ユニバーシティ 前駆体安定化方法
KR20190078069A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 폴리아크릴로니트릴계 내염화 섬유
KR102351984B1 (ko) 2017-12-26 2022-01-18 주식회사 엘지화학 폴리아크릴로니트릴계 내염화 섬유
JP2019203232A (ja) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 炭素材料前駆体の耐炎化処理装置及びそれを用いた炭素材料前駆体の耐炎化処理方法
JP7112668B2 (ja) 2018-05-25 2022-08-04 株式会社豊田中央研究所 炭素材料前駆体の耐炎化処理装置及びそれを用いた炭素材料前駆体の耐炎化処理方法

Also Published As

Publication number Publication date
US8236273B2 (en) 2012-08-07
JP5324472B2 (ja) 2013-10-23
JPWO2009084390A1 (ja) 2011-05-19
EP2233616B1 (en) 2012-06-20
CN101910480A (zh) 2010-12-08
ES2389832T3 (es) 2012-11-02
CN101910480B (zh) 2012-02-15
EP2233616A1 (en) 2010-09-29
PT2233616E (pt) 2012-09-21
EP2233616A4 (en) 2011-04-20
US20100260658A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5324472B2 (ja) 耐炎化繊維と炭素繊維の製造方法
JP5765420B2 (ja) 炭素繊維束および炭素繊維の製造方法
JP2018145541A (ja) 炭素繊維束及びその製造方法
JP5720783B2 (ja) 炭素繊維束および炭素繊維束の製造方法
JP5722991B2 (ja) 炭素繊維の製造方法及び炭素繊維用前駆体繊維
JP2010242249A (ja) 高強度炭素繊維用耐炎化繊維及びその製造方法
JP2008163537A (ja) 炭素繊維の製造方法
JP4662450B2 (ja) 炭素繊維の製造方法
JP5873358B2 (ja) 耐炎化繊維ストランド、その製造方法、及び炭素繊維ストランドの製造方法
JP4088500B2 (ja) 炭素繊維の製造方法
JP4271019B2 (ja) 炭素繊維の製造方法
JP2007186802A (ja) 耐炎化繊維および炭素繊維の製造方法
JP4565978B2 (ja) 炭素繊維の製造方法
JP2005314830A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
JP2021139062A (ja) 炭素繊維束の製造方法
JP2004156161A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
JPS61119719A (ja) 高強度を有する炭素質繊維の製造法
JP6304046B2 (ja) 炭素繊維束およびその製造方法
JP2004060126A (ja) 炭素繊維及びその製造方法
JP5842343B2 (ja) 炭素繊維前駆体アクリル繊維束の製造方法
JP2012117161A (ja) 炭素繊維束の製造方法
JP2004107836A (ja) 炭素繊維の製造法
JP2023146345A (ja) 炭素繊維束及び炭素繊維束の製造方法
JPH1181039A (ja) 炭素繊維用アクリロニトリル系前駆体繊維およびその製造方法
JPH02259118A (ja) 高強度黒鉛繊維

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123142.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547972

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12747386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008868762

Country of ref document: EP