WO2009081850A1 - 印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法 - Google Patents

印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法 Download PDF

Info

Publication number
WO2009081850A1
WO2009081850A1 PCT/JP2008/073157 JP2008073157W WO2009081850A1 WO 2009081850 A1 WO2009081850 A1 WO 2009081850A1 JP 2008073157 W JP2008073157 W JP 2008073157W WO 2009081850 A1 WO2009081850 A1 WO 2009081850A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing ink
copper phthalocyanine
pigment composition
resin
calcium carbonate
Prior art date
Application number
PCT/JP2008/073157
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Ootoshi
Masayoshi Takahashi
Yuuichi Ayuta
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to JP2009547071A priority Critical patent/JP4535207B2/ja
Priority to EP08864734.2A priority patent/EP2253675B1/en
Priority to CN2008801215588A priority patent/CN101903470A/zh
Priority to US12/809,296 priority patent/US8754148B2/en
Publication of WO2009081850A1 publication Critical patent/WO2009081850A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/003Pigment pastes, e.g. for mixing in paints containing an organic pigment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0002Grinding; Milling with solid grinding or milling assistants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0034Mixtures of two or more pigments or dyes of the same type
    • C09B67/0035Mixtures of phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • C09B67/0069Non aqueous dispersions of pigments containing only a solvent and a dispersing agent
    • C09B67/007Non aqueous dispersions of phthalocyanines containing only a solvent and a dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Definitions

  • the present invention relates to a method for producing a printing ink pigment composition containing a specific extender pigment, a printing ink pigment composition obtained by the production method, and a method for producing printing ink using the same.
  • printing ink composition is composed of a synthetic copper phthalocyanine, which is a large needle-shaped stable ( ⁇ -type) crystal particle of several to several hundred microns, which is finely pigmented to an average particle size of about 20 to 300 nm. It is manufactured by uniformly dispersing the product in a varnish for printing ink and a solvent by a kneading and dispersing machine such as a kneader, a roll mill, or a bead mill.
  • a solvent salt milling method is widely used in which crude copper phthalocyanine is added with a grinding aid (such as salt) and an organic solvent that promotes crystal transition to a stable type ( ⁇ type) and ground.
  • this method requires separation and purification operations of pigmented copper phthalocyanine, a grinding aid, and an organic solvent, and a large amount of wastewater is generated, requiring a great deal of time and labor.
  • a method for solving this problem a method has been proposed in which a dry pulverized product of crude copper phthalocyanine is used as a pigment precursor (hereinafter referred to as a pre-pigment) of a raw material for printing ink.
  • Patent Document 1 is characterized in that when crude copper phthalocyanine is pulverized by a ball mill, 0.5 to 10% of the resin to be contained in the finished printing ink is added to the pigment amount.
  • a method for producing copper phthalocyanine suitable for paste-like printing inks is described, and the use of alkyd resin, hydrocarbon resin, rosin resin modified with maleimide or rosin resin modified with phenol is described as the resin. Has been.
  • Patent Document 2 describes that a printing ink resin is added to crude copper phthalocyanine in an amount of 20 to 80% by mass with respect to the copper phthalocyanine and dry pulverized at 80 to 170 ° C., and the resulting pulverized product is used for printing ink.
  • a method for producing a printing ink containing stable ( ⁇ -type) crystalline copper phthalocyanine particles having an aspect ratio of 1 to 2 characterized by heating in a solvent or varnish is described.
  • Patent Document 3 describes that the resin is contained in an amount of 1 to 200% by mass with respect to crude copper phthalocyanine for the purpose of suppressing acicularization of pigment primary particles and improving the reddish hue and fluidity of the ink.
  • a method for producing a printing ink comprising adding a solvent in an amount of 0.5 to 20% by mass to the resin, dry-grinding at 70 to 90 ° C. in a solvent or varnish for printing ink, and processing. has been.
  • Patent Document 4 describes a method of using a pre-pigment obtained by adding a resin, a solvent and a specific pigment derivative to crude copper phthalocyanine and dry-grinding at 60 to 180 ° C.
  • Patent Document 5 uses a material obtained by dry pulverizing crude copper phthalocyanine and extender pigment and / or printing ink resin that have been surface-treated with a rosin compound in advance. A method for producing a printing ink is described. The treatment amount of the rosin compound is 1 to 50% by mass with respect to the crude copper phthalocyanine, and the use amount of the extender pigment and / or printing ink resin is 1 to 50% by mass with respect to the crude copper phthalocyanine. Has been.
  • Patent Document 6 a composition prepared from at least crude copper phthalocyanine, 1 to 100% by mass of extender pigment and 1 to 100% by mass of printing ink resin based on the crude copper phthalocyanine, respectively. A method for producing a printing ink is described.
  • a rosin compound which is a raw material for printing ink resins and printing ink resins, is an essential additive substance, and production efficiency due to fixation inside the dry pulverizer and heat storage is increased.
  • the problem of quality deterioration of printing ink accompanying reduction, ignition of pulverized material, and deterioration of resin quality remains.
  • JP-A-2-294365 Japanese Patent No. 3139396 Japanese Patent No. 3159049 JP 2006-206804 A Japanese Patent No. 3872356 JP 2003-41173 A
  • the present invention has been made in view of such circumstances, and is intended to improve the efficiency of the manufacturing process, and at the same time, to provide a printing ink having a high coloring power and a method for manufacturing the same. It is another object of the present invention to provide a printing ink manufacturing method.
  • an object of the present invention is to provide a printing ink pigment and a printing ink pigment composition, which do not require the prior surface treatment of crude copper phthalocyanine and do not require the use of a resin, a pigment derivative and a solvent during dry grinding.
  • Manufacturing method of printing ink and manufacturing method of printing ink using the pigment composition, and manufacturing of pigment composition for printing ink by dry pulverization of crude copper phthalocyanine using specific calcium carbonate for solving this problem Provided are a printing ink pigment composition for providing a printing ink excellent in various optical properties (coloring power, transparency, gloss, etc.), and a printing ink manufacturing method using the printing ink pigment composition. It is to be.
  • the present inventors have prepared a method for producing a pigment composition that can be suitably used for printing ink, a pigment composition obtained by the production method, and a method for producing printing ink using the same.
  • a method for producing a pigment composition that can be suitably used for printing ink
  • a pigment composition obtained by the production method and a method for producing printing ink using the same.
  • a method for producing a pigment composition and further a method for producing a printing ink comprising a step of heating a mixture containing the pigment composition for printing ink, a resin for printing ink and a solvent for printing ink, and a step of dispersing wet kneaded meat
  • a method for producing a pigment composition comprising a step of heating a mixture containing the pigment composition for printing ink, a resin for printing ink and a solvent for printing ink, and a step of dispersing wet kneaded meat
  • the present invention provides a printing ink pigment composition characterized by dry pulverizing crude copper phthalocyanine and calcium carbonate having an average particle diameter of 20 to 1500 nm in the substantial absence of a printing ink resin.
  • a method for manufacturing a product is provided.
  • the present invention also provides an aggregate of copper phthalocyanine particles, wherein the copper phthalocyanine particles include two or more crystal forms, the calcium carbonate particles are included inside the aggregate, and substantially the aggregates.
  • a printing ink pigment composition in which a printing ink resin is not present inside the assembly.
  • the present invention is a method for producing a printing ink using the printing ink pigment composition, the printing ink pigment composition obtained by the method for producing a printing ink pigment composition described above, and a printing ink resin.
  • the manufacturing method of printing ink including the process of heating the mixture containing the solvent for printing ink, and the process of carrying out wet kneading dispersion
  • the manufacturing method of the pigment composition for printing inks which can provide printing power with high coloring power, glossiness, and transparency, and this pigment composition for printing inks
  • the manufacturing method of the printing ink which used the thing can be provided. More specifically, the present invention relates to a printing ink resin and its resin by dry pulverizing crude copper phthalocyanine and calcium carbonate having an average particle diameter of 20 to 1500 nm substantially in the absence of the printing ink resin.
  • Copper phthalocyanine is, for example, a method of heating phthalic anhydride or a derivative thereof and a copper compound in urea in the presence of a catalyst such as ammonium molybdate, a method of reacting phthalodinitrile with a copper compound, an o-cyanobenzamide derivative and copper It is a cyclic compound in which four isoindoles obtained by a method of heating a compound, a method of reacting a 1,3-diiminoisoindoline compound and a copper compound in a hydrophilic solvent, and the like bonded with a nitrogen atom.
  • crude copper phthalocyanine refers to the above-mentioned crude copper phthalocyanine, preferably phthalic anhydride or a derivative thereof, urea or a derivative thereof, and a metal compound such as a copper compound, or phthalodinitrile.
  • a stable ( ⁇ -type) crude copper phthalocyanine obtained by reacting copper compound with a metal compound such as copper compound, and the content of organic impurities other than copper phthalocyanine is reduced to 5% by mass or less, more preferably 3% by mass or less. It points to what was done.
  • examples of the phthalic acid derivative include phthalic acid salt, phthalic anhydride, phthalimide, phthalamic acid and salts thereof or esters thereof.
  • examples of the metal source include metal copper, cuprous or cupric halides, copper oxide, copper sulfate, copper sulfide, copper hydroxide and the like.
  • organic solvents include aromatic hydrocarbons such as alkylbenzene and alkylnaphthalene, alicyclic hydrocarbons such as alkylcyclohexane and decalin, aliphatic hydrocarbons such as decane and dodecane, aromatic nitro compounds such as nitrobenzene and nitrotoluene, and trichlorobenzene. And aromatic halogenated hydrocarbons such as chloronaphthalene.
  • the unpurified copper phthalocyanine obtained immediately after the synthesis obtained by the above reaction is a stable ( ⁇ -type) crystal particle having an average particle size of about 5 to 15 ⁇ m.
  • this unpurified product is usually reacted as an impurity.
  • About 5 to 20% by mass of a low molecular weight organic compound sometimes produced as a by-product, an unreacted copper compound, an inorganic compound derived from a catalyst such as a molybdenum compound used during the reaction, or the like is contained.
  • the organic compound includes a phthalimide derivative.
  • the obtained copper phthalocyanine unpurified product can be purified by washing with an inorganic acid solution or an inorganic base solution. Washing with an inorganic acid solution or an inorganic base solution can be carried out using an inorganic acid solution or an inorganic base solution alone, but after washing with one washing liquid, washing with the other washing liquid may be carried out sequentially. Good. In the case of sequentially cleaning with two types of cleaning liquids, the order of cleaning liquids to be used is not particularly limited, but it is preferable to perform cleaning with an inorganic base solution after cleaning with an inorganic acid solution. In the washing with the inorganic acid solution, in addition to the unreacted copper compound, impurities such as organic impurities and inorganic impurities derived from a catalyst such as a molybdenum compound used during the reaction can be removed.
  • impurities such as organic impurities and inorganic impurities derived from a catalyst such as a molybdenum compound used during the reaction can be removed.
  • an inorganic base solution impurities such as phthalimide derivatives are removed, and a crude copper phthalocyanine having a content of organic compounds other than copper phthalocyanine of 5% by mass or less, preferably 3% by mass or less can be obtained.
  • the inorganic base used here include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and they are usually used as an aqueous solution of about 1 to 5% by mass.
  • an unpurified copper phthalocyanine is added to these inorganic base solutions and stirred at 30 to 90 ° C. for about 0.5 to 5 hours, and then after separation operations such as filtration and centrifugation. The obtained solid is washed with water and dried.
  • organic impurities such as phthalimide derivatives contained in copper phthalocyanine unpurified products are alkali-soluble compounds, so when washed by this method, most of the organic impurities are dissolved in the liquid phase.
  • the crude copper phthalocyanine in which the content of organic compounds other than copper phthalocyanine is reduced to 5% by mass or less, preferably 3% by mass or less can be obtained.
  • unpurified copper phthalocyanine may be washed while introducing water vapor into the inorganic base solution.
  • the mixture was stirred at 70 to 100 ° C. for about 0.5 to 5 hours while introducing water vapor into the slurry solution, and then filtered, After the solid-liquid separation operation, the obtained solid is washed with water and dried to obtain crude copper phthalocyanine. Washing with an inorganic base solution while introducing water vapor in this way promotes hydrolysis of organic impurities, so that the organic impurities can be more efficiently dissolved in the liquid phase. Can be reduced.
  • alcohol cleaning with alcohol such as methanol, acetone cleaning, or the like may be performed.
  • alcohol cleaning or acetone cleaning is performed, organic impurities soluble in alcohol and acetone can be reduced.
  • organic impurities and inorganic impurities can be reduced by appropriately combining washing with an inorganic acid solution, alcohol washing, acetone washing, and the like.
  • Calcium carbonate used for dry pulverization with the crude copper phthalocyanine of the present invention is characterized by an average particle diameter of 20 to 1500 nm.
  • average particle size In order to produce calcium carbonate having an average particle size of less than 20 nm, it is difficult to obtain it by a generally known synthesis or pulverization method.
  • the average particle size is larger than 1500 nm, the optical properties (coloring) of the resulting printing ink are obtained. Strength, transparency, gloss, etc.), printing suitability (emulsification, printing durability, etc.) and dry grinding efficiency are reduced.
  • the average particle diameter referred to in the present invention is an average primary particle diameter having a long side measured by a transmission electron microscope, and can be measured by a generally known method such as a transmission electron microscope.
  • the amount of calcium carbonate added is not particularly limited, but is preferably 3 to 70 parts by mass with respect to 100 parts by mass of crude copper phthalocyanine. If the content of calcium carbonate is less than this range, the obtained printing ink will not be able to develop sufficient aggregation suppression and coloring power of pulverized copper phthalocyanine, and if it is more than this range, the optical properties and printability will deteriorate. Or the freedom of blending the printing ink is lost, which is not preferable.
  • the crystal form of calcium carbonate is not particularly limited, but is preferably a calcite type or an aragonite type, and may be an aggregate of these.
  • the calcium carbonate used in the present invention can be either synthetic calcium carbonate or heavy calcium carbonate. However, since the aggregation state is low and less energy is required for dry grinding, synthetic calcium carbonate is more preferably used. be able to.
  • the form of calcium carbonate is preferably in a dry state with a moisture content of 1.5% or less from the viewpoint of workability, adhesion to the inside of a dry pulverizer, etc., but the powder of crude copper phthalocyanine in mixing with crude copper phthalocyanine As long as the above properties are not impaired, it can be used in the form of water-containing slurry or wet cake.
  • Synthetic calcium carbonate is obtained by calcining limestone and chemically synthesized by a carbon dioxide compounding method, a soluble salt reaction method, or the like, and is sometimes called precipitated calcium carbonate or light calcium carbonate.
  • colloidal or semi-colloidal calcium carbonate having a fine and uniform cubic shape, spindle shape, needle shape or the like of about 20 nm to 1500 nm can be produced.
  • calcium carbonate particles are produced. It is also possible to perform a surface treatment for the purpose of improving the dispersibility of the resin and suppressing aggregation.
  • heavy calcium carbonate is generally obtained by dry or wet pulverization and classification of limestone, and the particle shape is indefinite.
  • the surface of calcium carbonate is treated with at least one surface treatment agent selected from the group consisting of resin acids, saturated fatty acids, unsaturated fatty acids, alicyclic carboxylic acids, silane coupling agents, and salts thereof. Although it may or may not be, finely and easily dispersed calcium carbonate particles are easily obtained, and the dry grinding efficiency with crude copper phthalocyanine is improved.
  • the surface treatment agent examples include at least one surface treatment agent selected from the group consisting of resin acids, saturated fatty acids, unsaturated fatty acids, alicyclic carboxylic acids, silane coupling agents, and salts thereof.
  • Examples of the resin acid include abietic acid, neoabietic acid, parastrinic acid, levopimaric acid, dehydroabietic acid, pimaric acid, isopimaric acid, sandaracopimaric acid, comnic acid, anticopal acid, lambertian acid, dihydroagatoic acid and the like. .
  • abietic acid, neoabietic acid, dehydroabietic acid, or parastronic acid is preferable.
  • abietic acid is preferable, but is not limited thereto.
  • the resin acid salt examples include alkali metal salts such as sodium salt and potassium salt of the resin acid exemplified above, and alkaline earth metal salts such as magnesium salt and calcium salt.
  • alkali metal salts such as sodium salt and potassium salt of the resin acid exemplified above
  • alkaline earth metal salts such as magnesium salt and calcium salt.
  • potassium abietate, potassium neoabietic acid, potassium dehydroabietic acid or potassium parastrinate is preferable, and potassium abietic acid is particularly preferable.
  • resin acid derivative examples include disproportionated rosin, maleated rosin, polymerized rosin, and rosin ester.
  • disproportionated rosin or rosin ester is preferable, but not limited thereto.
  • fatty acids include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, etc. However, it is not limited to these. Among these, palmitic acid, stearic acid, lauric acid or oleic acid is preferable.
  • saturated fatty acid salt examples include alkali metal salts such as sodium salts and potassium salts of the saturated fatty acids exemplified above, and alkaline earth metal salts such as magnesium salts and calcium salts.
  • alkali metal salts such as sodium salts and potassium salts of the saturated fatty acids exemplified above
  • alkaline earth metal salts such as magnesium salts and calcium salts.
  • the saturated fatty acid salt sodium palmitate, sodium stearate or sodium laurate is preferred.
  • unsaturated fatty acids include unsaturated fatty acids having two double bonds such as oleic acid, palmitoleic acid, erucic acid, caproleic acid, Linderic acid, eicosenoic acid, and two double bonds such as linoleic acid.
  • unsaturated fatty acids having 3 double bonds such as fatty acid, hiragonic acid and linolenic acid
  • unsaturated fatty acids having 4 double bonds such as arachidonic acid
  • unsaturated fatty acids having triple bonds such as talylic acid.
  • oleic acid or erucic acid is preferred.
  • Examples of the salt of unsaturated fatty acid include alkali metal salts such as sodium salt and potassium salt of unsaturated fatty acid exemplified above, and alkaline earth metal salts such as magnesium salt and calcium salt.
  • alkali metal salts such as sodium salt and potassium salt of unsaturated fatty acid exemplified above
  • alkaline earth metal salts such as magnesium salt and calcium salt.
  • the salt of the unsaturated fatty acid sodium oleate or sodium erucate is preferable.
  • Examples of the alicyclic carboxylic acid include naphthenic acid.
  • the silane coupling agent is not particularly limited, but a silane coupling agent that has been conventionally blended in inks, paints, rubbers, plastics, and the like can be used.
  • vinyltrimethoxysilane vinyl Triethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyl Methyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -methacryloxyxypropyl trimethoxysilane, ⁇ -methacryloxyxypropylmethyldimethoxysilane, ⁇ -mercaptoprop
  • These surface treatment agents can be used alone or in combination of two or more.
  • resin acid compounds such as abietic acid, neoabietic acid, disproportionated rosin or rosin ester, fatty acid compounds such as palmitic acid, stearic acid, lauric acid or oleic acid, or any combination thereof.
  • abietic acid, disproportionated rosin, stearic acid or oleic acid, or any combination thereof is preferred.
  • the surface treatment method can be performed by a generally known method.
  • the surface-treated calcium carbonate include, but are not limited to, white glaze (product name: manufactured by Shiraishi Kogyo Co., Ltd.), NEOLITE (product name: manufactured by Takehara Chemical Co., Ltd.), and the like.
  • crude copper phthalocyanine and the calcium carbonate are pulverized in a dry pulverizer.
  • Crude copper phthalocyanine and calcium carbonate may be separately added to the pulverizer and pulverized, or crude copper phthalocyanine and calcium carbonate may be mixed in advance and this mixture may be added to the dry pulverizer and pulverized.
  • Dry pulverization can be performed using, for example, impact force, shearing force, collision between pulverized particles, or the like caused by collision between the pulverization media or between the pulverization media and the inner wall of the pulverization apparatus. It may be performed in the absence.
  • media various kinds of commonly known materials can be used, and beads and rods of various sizes can be used.
  • dry pulverizing apparatus known and commonly used apparatuses such as an attritor, a ball mill, a vibration mill, a hammer mill, a single-axis or multi-axis extruder, and a kneader can be used.
  • grinding media such as a Henschel mixer and a jet mill, can also be used.
  • the dry pulverization can be performed in the air, but an inert gas such as nitrogen gas or helium gas may be circulated in the dry pulverizer as necessary, and the interior of the apparatus may be performed in a deoxygenated atmosphere.
  • an inert gas such as nitrogen gas or helium gas may be circulated in the dry pulverizer as necessary, and the interior of the apparatus may be performed in a deoxygenated atmosphere.
  • the method is also effective in terms of safety.
  • Crude copper phthalocyanine becomes a mixed crystal type having two or more crystal forms by pulverization. Therefore, in the pulverization of crude copper phthalocyanine, it is preferable to control the unstable ( ⁇ -type) crystal content of the pulverized product.
  • the unstable ( ⁇ -type) crystal content is high, the transition efficiency of copper phthalocyanine to a stable ( ⁇ -type) crystal decreases in the subsequent heating step, and the copper phthalocyanine particles grow into needles. This is because problems such as a decrease in physical property values (viscosity, hue, coloring power, etc.) of the printing ink due to facilitation may occur.
  • This unstable ( ⁇ -type) crystal content increases with an increase in the pulverization force of dry pulverization, and has a feature that it decreases as the processing temperature increases.
  • the unstable ( ⁇ -type) crystal content is in the range of 35 to 70%.
  • dry pulverization is usually preferably performed in the range of 65 to 150 ° C.
  • the unstable type ( ⁇ -type) crystal content of the pulverized product was sampled at an appropriate amount every pulverization time after the pulverized product passed, and the specific black angle (2 ⁇ ) of the X-ray diffraction pattern of the sample was 6.8 ° ⁇ 0.00. It can be determined by focusing on the ratio (L ⁇ / L ⁇ ) of the peak height (L ⁇ ) of 2 ° and the peak height (L ⁇ ) of 9.2 ° ⁇ 0.2 °.
  • Dry pulverization is preferably performed in the presence of crude copper phthalocyanine and calcium carbonate so that the average particle size of the pulverized product is 20 to 300 nm.
  • the calcium carbonate particles improve the fine pulverization efficiency of the crude copper phthalocyanine and suppress the strong aggregation of the pulverized pulverized copper phthalocyanine particles.
  • a ground product of phthalocyanine can be obtained.
  • the calcium carbonate used here is pulverized simultaneously with the crude copper phthalocyanine, it has a high refractive index and a high hiding power, so it can be used even with inexpensive calcium carbonate that directly affects the transparency of the printing ink. There is also an advantage.
  • the pulverization time during dry pulverization depends on the pulverization temperature, the equipment used, the particle size of the desired pulverized product, or the target ink characteristics of the final printing ink using the pigment composition comprising the pulverized product after dry pulverization or the pigment composition. It is adjusted accordingly.
  • This grinding time is usually about 30 minutes to 12 hours at the above grinding temperature.
  • the pulverization time varies depending on the type of pulverizer used. For example, when an attritor is used, a preferable pulverization time is about 45 minutes, and when a ball mill is used, a time of about 12 hours can be mentioned. In general, it is preferable to use an attritor because the pulverization efficiency is high and the pulverization is completed in a short time.
  • copper pulverization is performed for the purpose of facilitating the control of the dry pulverization efficiency and the transition from the unstable ( ⁇ -type) crystal to the stable ( ⁇ -type) crystal ( ⁇ / ⁇ -type transition).
  • a phthalocyanine pigment derivative and a solvent for printing ink can be used in combination.
  • a copper phthalocyanine pigment derivative for example, it has a substituent on one or more of the benzene nuclei of copper phthalocyanine, and examples of the substituent include a halogen atom, a sulfonic acid group, a carboxylic acid group or a metal salt thereof, an ammonium salt, and the like. Examples thereof include salts with cationic surfactants, and various derivatives via a methylene group, a carbonyl group, a sulfonyl group, an imino group, and the like are also used.
  • the amount of copper phthalocyanine pigment derivative used is not particularly limited, but is 0.1 to 20 parts per 100 parts by mass of crude copper phthalocyanine.
  • This pulverization is carried out by adding a liquid substance that does not substantially impair the liquid substance or that does not impair the characteristics of the powder, usually 0.5 to 20% by mass relative to the crude copper phthalocyanine. It can be carried out.
  • dry pulverization substantially in the absence of printing ink resin means that there is no printing ink resin in the system at the time of dry pulverization or an amount that affects the effect of the present invention. It means that the resin for printing ink may be contained up to the point not containing the resin for printing ink, that is, the amount of the resin for printing ink in a range not impairing the effect of the present invention.
  • the type of resin for printing ink for example, it is less than 1% by mass, more preferably less than 0.5% by mass, further preferably less than 0.1% by mass, based on copper phthalocyanine. Most preferably, it refers to 0% by mass.
  • the pigment composition for printing ink of the present invention obtained by the dry pulverization is an aggregate of copper phthalocyanine particles, (1)
  • the copper phthalocyanine particles include two or more crystal forms, (2) containing the calcium carbonate particles inside the aggregate, and (3)
  • the printing ink resin is substantially absent inside the aggregate.
  • the appearance exists as an aggregate of about several mm in which fine copper phthalocyanine particles (primary particles) are aggregated.
  • the aggregate of the copper phthalocyanine particles of the present invention contains the calcium carbonate inside the aggregate, and more specifically, the calcium carbonate particles exist in the gap between the particles of the copper phthalocyanine constituting the aggregate. (FIG. 1). Further, since the dry pulverization is carried out substantially in the absence of the printing ink resin, the printing ink resin is not substantially present inside the aggregate.
  • the fact that there is substantially no printing ink resin inside the aggregate means that there is no printing ink resin inside the aggregate, or an amount of the printing ink resin that affects the effect of the present invention. It means that the resin for printing inks may be contained up to the point where it does not contain, that is, the amount of the resin that does not impair the effects of the present invention. More specifically, although it varies depending on the type of resin for printing ink, for example, it is less than 1% by weight, more preferably less than 0.5% by weight, further preferably less than 0.1% by weight, based on copper phthalocyanine. Most preferably, it refers to 0% by mass.
  • Calcium carbonate is refined into particles having an average particle size of 15 to 200 nm, preferably 20 to 80 nm by the dry pulverization.
  • crude copper phthalocyanine is refined into copper phthalocyanine particles (primary particles) having an average particle size of 15 to 200 nm, preferably 17 to 100 nm, more preferably 20 to 80 nm.
  • the copper phthalocyanine particles are composed of, for example, the same or a plurality of crystallites, and the average crystallite diameter is about 15 to 100 nm. In some cases, the particles are formed in an amorphous state.
  • the purpose of the main heating step is to transfer the crystal form of the dry pulverized copper phthalocyanine from the ⁇ / ⁇ mixed crystal type to the ⁇ type, which is chemically stable and suitable for printing ink.
  • it is preferably carried out at a temperature of 70 to 180 ° C.
  • stirring with a disperser or the like is not particularly required, and it can be performed under static heating.
  • stirring treatment with a single-axis or multi-axis dispersion stirrer or kneader is preferable.
  • these dispersers and kneaders any known and commonly used ones can be used. Examples thereof include single-shaft or multi-shaft stirrers such as dispersers and homomixers, kneaders, single-shaft or multi-screw extruders, and the like. These can also be used in combination.
  • the transition time varies depending on the printing ink solvent used, the heating temperature, and the stirring state, the heating process can be completed in about several minutes to 3 hours.
  • Copper phthalocyanine is mostly transferred to stable crystals ( ⁇ -type) by the main heating step or a wet kneading dispersion step that can be performed thereafter or simultaneously, but a trace amount of unstable crystals of 1% or less. ( ⁇ type) may exist.
  • a printing ink varnish prepared in advance from a printing ink resin and a printing ink solvent, and in some cases a gelling agent, etc. can be used, or a commercially available printing ink varnish can be used. You can also.
  • the resin for printing ink contains at least one kind generally used for printing ink, such as rosin modified phenolic resin, rosin modified maleic resin, alkyd resin, petroleum resin modified rosin modified phenolic resin, petroleum resin, preferably rosin It is a modified phenolic resin.
  • the rosin-modified phenol resin is mainly composed of a product obtained by reacting a phenol resin obtained by condensation reaction of alkylphenol and formaldehyde and rosin, and further comprising a polyhydric alcohol as a constituent component of the resin. It may be what.
  • the printing ink solvent is a high-boiling petroleum solvent, an aliphatic hydrocarbon solvent, a higher alcohol solvent, or a vegetable oil, and has an aromatic component of less than 1% by mass, alone or in combination of two or more. A combined composition may be used.
  • Any vegetable oil can be used as long as it is usually used as an ink raw material.
  • oils such as soybean oil, linseed oil, tung oil, castor oil, dehydrated castor oil, corn oil, safflower oil, canol oil, synthetic oil (and regenerated oil), and the like. These vegetable oils may be used alone or in combination of two or more.
  • Preferred printing ink solvents are naphthenic, paraffinic solvents and soybean oil having an aniline point of 65 ° C. to 100 ° C.
  • Solvents for such printing ink include, for example, Nippon Oil Corporation AF Solvent No. 4 (aromatic component content 0.1% by mass), AF Solvent No. 5 (0.2% by mass), AF Solvent No. 6 (0.3% by mass), AF Solvent No. 7 (0.2% by mass), soybean oil (Nisshin Oillio Group, Inc .: soybean salad oil) and the like.
  • the mixing ratio of the printing ink resin and the printing ink solvent when preparing the printing ink varnish is appropriately adjusted within the range of 20 to 75% by mass of the resin and 25 to 80% by mass of the solvent. be able to.
  • the heating step can be performed in the presence of the above-described pigment derivative or additive.
  • additives include gelling agents, pigment dispersants, metal dryers, drying inhibitors, antioxidants, antifriction agents, anti-set-off agents, nonionic surfactants, polyhydric alcohols, and the like. Can do.
  • the crude copper phthalocyanine in the paste-like mixture that has been subjected to a transition from a mixed crystal type to a stable type ( ⁇ -type) crystal suitable for printing ink and a wet process with the printing ink varnish in the heating process has an individual particle size. Is adjusted to about 15 to 350 nm, but the particles are in an aggregated and agglomerated state, which is not yet a pigment dispersion state suitable for printing ink.
  • This paste-like mixture is wet-kneaded with a three-roll mill, bead mill, single-screw or multi-screw extruder generally used in the production of printing inks so that the kneading degree of dispersion is 5 microns or less. This completes the printing ink.
  • This wet kneaded dispersion treatment is preferably treated with a bead mill because the copper phthalocyanine mass concentration in the paste-like mixture can be set high, and a high dispersion force can be obtained by selecting the type and particle size of the media. .
  • a kneading and dispersing device such as a short-axis or multi-axis extruder that can be charged with crude copper phthalocyanine, a resin for printing ink, a solvent, a printing ink varnish, an additive, etc. and can be heated and cooled, is used. It is also possible to perform the heat treatment step and the wet kneading dispersion step at the same time, which is an effective means although the cost of the apparatus is increased.
  • the printing ink is used so that the pigment concentration required for the printing ink finally used (referred to as final printing ink) is obtained.
  • the final printing ink may be prepared in one step using a varnish, a printing ink solvent, a constitution base ink, an additive, and the like.
  • the final printing ink varnish, solvent, and additives are used in advance.
  • printing ink base ink a mixture having a higher pigment concentration than printing ink
  • printing ink varnish a mixture having a higher pigment concentration than printing ink
  • printing ink solvent a mixture having a higher pigment concentration than printing ink
  • constitution base ink a mixture having a higher pigment concentration than printing ink
  • additives etc. It is preferable to prepare a final printing ink.
  • the mass ratio of copper phthalocyanine in the base ink for printing ink is preferably 15 to 40% in view of the production efficiency of the heat treatment step and the wet kneading dispersion treatment step.
  • the copper phthalocyanine contained in the base ink for printing ink or the final printing ink suppresses the crystal growth of primary particles during crystal change, and forms fine particles with a narrow particle size distribution and a small particle size.
  • the reason for this is not clear, but it seems that the calcium carbonate added in the dry pulverization not only acted as a pulverizing aid but also exhibited an effect of suppressing crystal growth.
  • the average particle size of copper phthalocyanine (primary particles) contained in the base ink for printing ink or the final printing ink is 15 to 350 nm, and more preferably 20 to 200 nm.
  • the presence of giant particles having a particle diameter exceeding 400 nm is suppressed, and for example, a giant particle having a particle diameter exceeding 400 nm can be obtained.
  • the copper phthalocyanine is not a needle-like crystal having a large ratio (aspect ratio) of a long side length and a short side length having a crystal form size, but a cubic crystal having a small aspect ratio. Due to these characteristics, a printing ink using the pigment composition for printing ink of the present invention is excellent in various optical properties (coloring power, transparency, gloss, etc.) and printability (emulsification, printing durability, etc.).
  • the pigment composition for printing ink of the present invention is applied to various printing inks such as offset printing ink (heat set-off wheel ink, sheet-fed ink, newspaper ink, UV ink, etc.), flexographic printing ink, gravure printing ink, special function ink, etc. However, it can be suitably applied to offset printing inks.
  • offset printing ink heat set-off wheel ink, sheet-fed ink, newspaper ink, UV ink, etc.
  • flexographic printing ink flexographic printing ink
  • gravure printing ink gravure printing ink
  • special function ink special function ink
  • Example 1 Production of Pigment Composition for Printing Ink-1
  • the crude copper phthalocyanine of Production Example 1 and calcium carbonate were blended in the ratio shown in Table 1 so that the target pigment composition for printing ink was 500 g, and an attritor (diameter 3/8 diameter) having an internal volume of 25 liters.
  • FIG. 1 is a cross-sectional view of a printing ink pigment composition (aggregate) obtained by dry pulverization, processed with a microtome into thin film sections, and photographed with a transmission electron microscope (TEM). Aggregates of copper phthalocyanine particles It was revealed that calcium carbonate particles (black spots) were present in the (grayish portion of the background).
  • Examples 2 to 10 were carried out in the same manner as in Example 1 under the conditions shown in Table 1 to obtain a pigment composition for printing ink.
  • Comparative Example 1 Preparation of Pigment Composition for Printing Ink-2 The same as in Example 1 with the combination of the crude copper phthalocyanine obtained in Production Example 1, the rosin-modified resin shown in Table 1 (Beccasite F7310, DIC (former Dainippon Ink and Chemicals)) and calcium carbonate Comparative Examples 1 to 4 were carried out by the operations described above to obtain printing ink pigment compositions shown in Table 1.
  • Example 11 Preparation of base ink for printing ink Printing ink pigment composition obtained in Example 1 and printing ink varnish obtained in Production Example 2, AF Solvent No. 7 (manufactured by Nippon Oil Corporation) Soybean oil (Nisshin Oilio Group Co., Ltd.) was uniformly mixed at a blending ratio shown in Table 2 so that the content of copper phthalocyanine was 30% by mass, and then heat-treated at 90 to 120 ° C. for 2 hours.
  • bead milling (Buhler K8 type lab bead mill, ⁇ 2 mm zirconia beads, filling rate 90%, rotor rotation speed 950 rpm) is performed at 90 ° C. to 110 ° C.
  • a base ink for printing ink was prepared at a temperature.
  • Table 3 shows the average particle size, particle size distribution, aspect ratio, and crystal form of copper phthalocyanine (primary particles) contained in the printing ink base inks obtained in Examples 11 to 20 and Comparative Examples 5 to 8.
  • Example 7 (manufactured by Nippon Oil Corporation), production
  • the constitution base ink obtained in Example 3 was combined as shown in Table 4, and the viscosity at 25 ° C. of the Raleigh viscometer was adjusted to 20 to 25 Pa ⁇ S to prepare a printing ink.
  • coloring power (D ratio 12 ) of the printing ink (Comparative Example 12) is taken as a standard and the value is set to 100.
  • D actual 21 the coloring power of printing ink
  • both mass concentration is 30%.
  • White ink Xg is further added to the dark-color printing ink (Example 21) to make the density coincide with that of the printing ink (Comparative Example 12). At this time, the following equation holds.
  • the D actual 21 is obtained by the following equation.
  • Example 21 In the case of the printing ink (Example 21), 9.5 g of white ink was added to the printing ink (Example 21) and the concentrations were matched, so the coloring power of the printing ink (Example 21) was expressed by the formula (2 ) To 110.
  • the printing ink pigment composition containing the specific extender pigment according to the production method of the present invention, and the printing ink using the printing ink pigment composition are the same as the printing ink according to the conventional method. It was confirmed that the product had high coloring power quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

特定の性質を有する炭酸カルシウムを用いて粗製銅フタロシアニンの乾式粉砕を行う印刷インキ用顔料組成物の製造方法、印刷インキ用顔料組成物及び該顔料組成物を用いた印刷インキの製造方法を提供することにある。従って、本発明は、印刷インキ用顔料組成物の製造方法において、印刷インキ用樹脂の不存在下で、粗製銅フタロシアニンと、一次粒子径が20~1500nmである炭酸カルシウムとを乾式粉砕する印刷インキ用顔料組成物の製造方法、製造方法で得られる該印刷インキ用顔料組成物並びに印刷インキ用顔料組成物、印刷インキ用樹脂及び印刷インキ用溶剤を含む混合物を加熱する工程と湿式練肉分散する工程とを含む印刷インキの製造方法を提供する。

Description

印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法
 本発明は、ある特定の体質顔料を含有する印刷インキ用顔料組成物の製造方法、及びその製造方法により得られる印刷インキ用顔料組成物、並びにそれを用いた印刷インキの製造方法に関する。
 従来、印刷インキは、数~数百ミクロンの巨大針状安定型(β型)結晶粒子である合成銅フタロシアニンの平均粒子径を20~300nm程度まで微細、顔料化処理したものから成る印刷インキ組成物をニーダー、ロールミル、ビーズミルなどの混練分散機により印刷インキ用ワニス及び溶剤中に均一分散することで製造されている。この顔料化処理には、粗製銅フタロシアニンに粉砕助剤(食塩等)と安定型(β型)への結晶転移を促す有機溶剤を加え粉砕するソルベントソルトミリング法が広く行われている。しかし、本方法では顔料化された銅フタロシアニンと粉砕助剤、有機溶剤との分離精製操作が必要であり、大量の排水も発生し、多大な時間と労力が必要であった。この問題を解決する方法として、粗製銅フタロシアニンの乾式粉砕物を、印刷インキ用原料の顔料前駆体(以下プレ顔料という)として使用する方法が提案されている。
 例えば、(特許文献1)には、粗製銅フタロシアニンをボールミルにより粉砕する際に、完成した印刷インキ中に含まれる予定の樹脂を、顔料量に対して0.5~10%添加することを特徴とするペースト状印刷インキに適した銅フタロシアニンの製造方法が記載されており、樹脂として、アルキッド樹脂、炭化水素樹脂、マレインイミドにより改質したロジン樹脂またはフェノールにより改質したロジン樹脂の使用が記載されている。
 さらに(特許文献2)には、粗製銅フタロシアニンに印刷インキ用樹脂を該銅フタロシアニンに対して20~80質量%加えて80~170℃で乾式粉砕した後、得られた粉砕物を印刷インキ用溶剤又はワニス中で加熱することを特徴とする、アスペクト比が1~2である安定型(β型)結晶の銅フタロシアニン粒子を含有する印刷インキの製造方法が記載されている。
 これらの方法は、添加した樹脂により乾式粉砕された銅フタロシアニン粒子の凝集抑制効果が得られる点、添加した樹脂が印刷インキ用樹脂と同成分のものを使用している点で有利な方法である。
 さらに、(特許文献3)には、顔料一次粒子の針状化抑制と、インキの赤み色相や流動性改善を図ることを目的として、粗製銅フタロシアニンに対して、樹脂を1~200質量%、及び溶剤を該樹脂に対して0.5~20質量%添加し、70~90℃で乾式粉砕したものを印刷インキ用溶剤又はワニス中に添加し、処理してなる印刷インキの製造方法が記載されている。
 (特許文献4)には、粗製銅フタロシアニンに対して樹脂、溶剤、特定の顔料誘導体を添加し、60~180℃で乾式粉砕したプレ顔料を使用する方法が記載されている。
 しかし、上記のような樹脂を使用する方法において、十分な効果を得るためには多量の樹脂を添加する必要があり、乾式粉砕時の発熱による粉砕機内部への粉砕物の固着や蓄熱による発火の危険性があると共に、熱、酸化などによる樹脂の性能劣化による印刷インキの色相、粘弾性、乳化適性の低下も問題となる。
 この様な問題を解決する為、(特許文献5)では、予め、ロジン系化合物で表面処理された粗製銅フタロシアニンと体質顔料及び/または印刷インキ用樹脂を乾式粉砕してなるものを使用することを特徴とする印刷インキの製造方法が記載されている。ロジン系化合物の処理量は粗製銅フタロシアニンに対して1~50質量%であり、体質顔料及び/または印刷インキ用樹脂の使用量は、粗製銅フタロシアニンに対して1~50質量%であると記載されている。
 また、(特許文献6)では、少なくとも粗製銅フタロシアニンと、粗製銅フタロシアニンに対してそれぞれ1~100質量%の体質顔料と1~100質量%の印刷インキ用樹脂とから調製された組成物を使用することを特徴とする印刷インキの製造方法が記載されている。
 しかしながら、これらの製造方法では、印刷インキ用樹脂や印刷インキ用樹脂の素原料であるロジン系化合物が必須の添加物質となっており、上記の乾式粉砕機内部への固着や蓄熱による生産効率の低下、粉砕物発火、樹脂品質劣化に伴う印刷インキの品質低下の問題が残されたままである。
 また、樹脂とともに溶剤、体質顔料、顔料誘導体などの複数の物質を添加することは、印刷インキの配合設計の自由度を制限すると共に、原料コストの高騰に繋がることとなっており、これらの問題点の解決が待たれていた。
特開平2-294365号 特許3139396号 特許3159049号 特開2006-206804号 特許3872356号 特開2003-41173号
 本発明は、このような状況に鑑みてなされたものであり、製造工程上の効率化を図るとともに、併せて着色力の高い印刷インキを提供するための印刷インキ用顔料組成物及びその製造方法、並びに印刷インキの製造方法を提供することを課題とする。
 即ち、本発明の課題は、粗製銅フタロシアニンの事前表面処理が不要であって、乾式粉砕時の樹脂、顔料誘導体及び溶剤の使用を必要としない印刷インキ用顔料及び印刷インキ用顔料組成物、組成物の製造方法及び該顔料組成物を用いた印刷インキの製造方法の提供であり、本課題解決のための特定の炭酸カルシウムを用いた粗製銅フタロシアニンの乾式粉砕による印刷インキ用顔料組成物の製造方法、及び各種光学特性(着色力、透明性、光沢等)の優れた印刷インキを提供する為の印刷インキ用顔料組成物、該印刷インキ用顔料組成物を用いた印刷インキの製造方法を提供することである。
 本発明者らは、上記課題を解決するために、印刷インキに好適に用いることのできる顔料組成物の製造方法、及びその製造方法により得られる顔料組成物、それを用いた印刷インキの製造方法について鋭意検討を行ったところ、実質的に印刷インキ用樹脂の不存在下で、粗製銅フタロシアニンと、平均粒子径が20~1500nmである炭酸カルシウムとを乾式粉砕することを特徴とする印刷インキ用顔料組成物の製造方法、更には、当該印刷インキ用顔料組成物、印刷インキ用樹脂及び印刷インキ用溶剤を含む混合物を加熱する工程と湿式練肉分散する工程とを含む印刷インキの製造方法を見出すに至り、本発明を完成させた。
 即ち、本発明は、実質的に印刷インキ用樹脂の不存在下で、粗製銅フタロシアニンと、平均粒子径が20~1500nmである炭酸カルシウムとを乾式粉砕することを特徴とする印刷インキ用顔料組成物の製造方法を提供する。
 また、本発明は、銅フタロシアニン粒子の凝集体であって、前記銅フタロシアニン粒子が2種以上の結晶形を含み、前記凝集体内部に前記炭酸カルシウム粒子を含み、かつ、実質的に、前記凝集体内部に印刷インキ用樹脂が存在しない、印刷インキ用顔料組成物を提供する。
 さらに本発明は該印刷インキ用顔料組成物を用いた印刷インキの製造方法であって、上記に記載の印刷インキ用顔料組成物の製造方法により得られる印刷インキ用顔料組成物、印刷インキ用樹脂及び印刷インキ用溶剤を含む混合物を加熱する工程と、湿式練肉分散する工程とを含む印刷インキの製造方法を提供するものである。
 本発明によれば、製造工程上の効率化を図るとともに、着色力、光沢及び透明性の高い印刷インキを提供することができる印刷インキ用顔料組成物の製造方法、及び該印刷インキ用顔料組成物を用いた印刷インキの製造方法を提供することができる。さらに詳しくは、本発明は粗製銅フタロシアニンと、平均粒子径が20~1500nmである炭酸カルシウムとを、実質的に印刷インキ用樹脂の不存在下で乾式粉砕することによって、印刷インキ用樹脂やその素原料であるロジン系化合物の乾式粉砕機内部への固着や蓄熱による生産効率の低下を防ぎ、また、粉砕物発火の防止、樹脂品質劣化に伴う印刷インキの品質低下を抑制することが可能となるばかりでなく、印刷インキの配合設計の自由度を確保すると共に、原料コストの高騰の抑制も可能となった。さらに、平均粒子径20~1500nmの炭酸カルシウムを用いて粗製銅フタロシアニンを乾式粉砕することによって、結晶変化時の銅フタロシアニン粒子(1次粒子)の結晶成長を抑制でき、粒径分布が狭く、かつ粒子径の小さい微粒子を形成することが可能となり、その結果、各種光学特性(着色力、透明性、光沢等)、印刷適性(乳化、耐刷性等)に優れる印刷インキを提供することができる。
 以下、本発明について詳細に説明する。
 銅フタロシアニンは、例えば無水フタル酸またはその誘導体と銅化合物とをモリブデン酸アンモニウム等の触媒存在下に尿素中で加熱する方法、フタロジニトリルと銅化合物を反応させる方法、o-シアノベンズアミド誘導体と銅化合物とを加熱する方法、1,3-ジイミノイソインドリン化合物と銅化合物とを親水性溶媒中で反応させる方法などで得られる4つのイソインドールが窒素原子で結合した環状化合物である。通常、当該銅フタロシアニン未精製物を洗浄することによって銅フタロシアニン以外の有機化合物(以下有機不純物という)の含有率を低減した後、適宜、乾燥、粉砕して粗製銅フタロシアニンを得る。
 本発明において粗製銅フタロシアニンとは、上述した粗製銅フタロシアニンを指すものとし、好ましくは無水フタル酸またはその誘導体と、尿素またはその誘導体と、銅化合物等の金属化合物とを反応させるか、フタロジニトリルと銅化合物等の金属化合物を反応させることにより得られる安定型(β型)の粗製銅フタロシアニンであり、銅フタロシアニン以外の有機不純物含有率が5質量%以下、より好ましくは3質量%以下に低減されたものを指す。
 ここでフタル酸誘導体としては、例えばフタル酸塩、無水フタル酸、フタルイミド、フタルアミド酸及びその塩またはそのエステル等が挙げられる。金属源としては、例えば金属銅、第一銅または第二銅のハロゲン化物、酸化銅、硫酸銅、硫化銅、水酸化銅等が挙げられる。
 これらを反応させる場合には、必要に応じてモリブデン酸アンモニウム等の触媒を用いて、有機溶媒存在下または不存在下で180~300℃、1~5時間加熱して反応させる。有機溶媒としては、アルキルベンゼン、アルキルナフタレン等の芳香族炭化水素、アルキルシクロヘキサン、デカリン等の脂環式炭化水素、デカン、ドデカン等の脂肪族炭化水素、ニトロベンゼン、ニトロトルエン等の芳香族ニトロ化合物、トリクロロベンゼン、クロロナフタレン等の芳香族ハロゲン化炭化水素等が挙げられる。
 上記の反応で得られた合成直後の銅フタロシアニン未精製物は、平均粒子径が5~15μm程度の安定型(β型)結晶粒子であるが、この未精製物には、通常、不純物として反応時に副生した低分子量の有機化合物や、未反応の銅化合物、反応時に使用したモリブデン化合物等の触媒に由来する無機化合物等が、約5~20質量%程度含まれている。銅フタロシアニン未精製物に含まれる不純物のうち有機化合物としては、フタルイミド誘導体が挙げられる。
 得られた銅フタロシアニン未精製物は、無機酸溶液または無機塩基溶液で洗浄することにより精製することができる。無機酸溶液または無機塩基溶液での洗浄は、無機酸溶液または無機塩基溶液を単独で用いて行うこともできるが、一方の洗浄液で洗浄を行った後に、他方の洗浄液で順次洗浄を行ってもよい。2種類の洗浄液で順次洗浄を行う場合には、使用する洗浄液の順序に特に制限はないが、無機酸溶液で洗浄を行った後に、無機塩基溶液で洗浄を行うことが好ましい。無機酸溶液での洗浄においては、未反応の銅化合物の他に、有機不純物、反応時に使用したモリブデン化合物等の触媒に由来する無機不純物等の不純物を除去することができる。
 さらに、無機塩基溶液で洗浄することによって、フタルイミド誘導体等の不純物が除去され、銅フタロシアニン以外の有機化合物の含有率が5質量%以下、好ましくは3質量%以下の粗製銅フタロシアニンを得ることができる。ここで使用される無機塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が挙げられ、通常、1~5質量%程度の水溶液として使用される。洗浄方法としては、例えば、これらの無機塩基溶液中に銅フタロシアニン未精製物を添加して30~90℃で、0.5~5時間程度攪拌し、ついで、濾過、遠心分離等の分離操作後、得られた固体を水洗、乾燥する方法が挙げられる。
 銅フタロシアニン未精製物に含まれるフタルイミド誘導体等の有機不純物は、その大部分がアルカリ可溶化合物であるため、このような方法で洗浄すると有機不純物の大部分は液相中に溶解し、その結果、銅フタロシアニン以外の有機化合物の含有率が5質量%以下、好ましくは3質量%以下に低減された粗製銅フタロシアニンを得ることができる。
 無機塩基溶液で洗浄する際には、この無機塩基溶液中に水蒸気を導入しながら銅フタロシアニン未精製物を洗浄してもよい。具体的には、無機塩基溶液中に銅フタロシアニン未精製物を添加した後、このスラリー溶液中に水蒸気を導入しながら70~100℃で、0.5~5時間程度攪拌し、ついで、濾過、固液分離操作後、得られた固体を水洗、乾燥して粗製銅フタロシアニンを得る。このように水蒸気を導入しながら無機塩基溶液で洗浄すると、有機不純物の加水分解が促進されるため、より効率よく有機不純物を液相中へと溶解させることができ、その結果、有機不純物をさらに低減することができる。
 さらに、メタノール等のアルコールによるアルコール洗浄や、アセトン洗浄等を行ってもよい。アルコール洗浄やアセトン洗浄を行うと、アルコール、アセトンに可溶な有機不純物を低減できる。このように無機塩基溶液による洗浄に加えて、無機酸溶液での洗浄、アルコール洗浄、アセトン洗浄等を適宜組み合わせて行うことによって、有機不純物および無機不純物を低減することができる。
 本発明の粗製銅フタロシアニンとの乾式粉砕に用いられる炭酸カルシウムは、平均粒子径が20~1500nmであることに特徴を有する。平均粒子径が20nmより小さい炭酸カルシウムを製造するには、通常公知の合成または粉砕方法によって得ることが困難であり、また、1500nmより平均粒子径が大きいと、得られる印刷インキの光学特性(着色力、透明性、光沢等)、印刷適性(乳化、耐刷性等)及び乾式粉砕効率を低下させることから好ましくない。
 本発明にいう平均粒子径は透過型電子顕微鏡による長辺長の平均一次粒子径であり、通常公知の方法、例えば、透過型電子顕微鏡により測定することができる。
 炭酸カルシウムの添加量は、特に制限はないが、粗製銅フタロシアニン100質量部に対して、3~70質量部であることが好ましい。この範囲より炭酸カルシウムの含有量が少ないと得られた印刷インキは十分な粉砕銅フタロシアニンの凝集抑制や着色力を発現することができなくなり、これより含有量が多いと光学特性や印刷適正の低下を生じたり、印刷インキの配合の自由度がなくなり、好ましくない。
 炭酸カルシウムの結晶形は特に制限がないが、カルサイト型またはアラゴナイト型が好ましく、これらの集合体であってもよい。
 本発明で使用される炭酸カルシウムは、合成炭酸カルシウムでも、重質炭酸カルシウムでも用いることができるが、凝集状態が低く、乾式粉砕に要するエネルギーが少なくて済むことから、合成炭酸カルシウムをより好ましく用いることができる。
 炭酸カルシウムの形態は、作業性、乾式粉砕機内部への付着などの観点から含水率が1.5%以下の乾燥状態のものが好ましいが、粗製銅フタロシアニンとの混合において粗製銅フタロシアニンの粉体の特性を損なわなければ、含水のスラリー状であってもウェットケーキ状の形態のものであっても使用することができる。
 合成炭酸カルシウムは、石灰石を焼成し、炭酸ガス化合法、可溶性塩反応法などで化学的に合成されたものであり、沈降性炭酸カルシウムまたは軽質炭酸カルシウムと呼ばれることもある。一般的に、合成法では、20nm~1500nm程度の微細且つ均一な立方形、紡錘形、針状形などの形状をした膠質または半膠質炭酸カルシウムを製造することができ、その製造工程において炭酸カルシウム粒子の分散性向上、凝集抑制などを目的とした表面処理を行うことも可能である。
 一方、重質炭酸カルシウムは、一般的に石灰石を乾式または湿式粉砕、分級したものであり、粒子形状が不定形である。
 また、炭酸カルシウムは、その表面が樹脂酸、飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸、シランカップリング剤、及びそれらの塩からなる群から選ばれる少なくとも1種の表面処理剤により処理されていてもされていなくても良いが、微細且つ易分散な炭酸カルシウム粒子が得られやすく、粗製銅フタロシアニンとの乾式粉砕効率が向上する為、表面処理されたものの方が好ましい。
 表面処理剤としては、樹脂酸、飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸、シランカップリング剤、及びそれらの塩からなる群から選ばれる少なくとも1種の表面処理剤を挙げることができる。
 樹脂酸としては、例えばアビエチン酸、ネオアビエチン酸、パラストリン酸、レボピマール酸、デヒドロアビエチン酸、ピマール酸、イソピマール酸、サンダラコピマール酸、コムン酸、アンチコパル酸、ランベルチアン酸、ジヒドロアガト酸等が挙げられる。これらの中では、アビエチン酸、ネオアビエチン酸、デヒドロアビエチン酸又はパラストリン酸が好ましい。特に、アビエチン酸が好ましいが、これらに限定されるものではない。
 樹脂酸の塩としては、前記例示した樹脂酸のナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩等が挙げられる。樹脂酸の塩としては、アビエチン酸カリウム、ネオアビエチン酸カリウム、デヒドロアビエチン酸カリウム又はパラストリン酸カリウムが好ましく、特に、アビエチン酸カリウムが好ましい。
 樹脂酸誘導体としては、例えば不均化ロジン、マレイン化ロジン、重合ロジン、ロジンエステル等が挙げられる。特に、不均化ロジン又はロジンエステルが好ましいが、これらに限定されるものではない。
 脂肪酸としては、具体的には、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等を例示できるが、これらに限定されるものではない。これらの中では、パルミチン酸、ステアリン酸、ラウリン酸又はオレイン酸が好ましい。
 飽和脂肪酸の塩としては、例えば前記例示した飽和脂肪酸のナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩等が挙げられる。飽和脂肪酸の塩としては、パルミチン酸ナトリウム、ステアリン酸ナトリウム又はラウリン酸ナトリウムが好ましい。
 不飽和脂肪酸としては、例えばオレイン酸、パルミトレイン酸、エルカ酸、カプロレイン酸、リンデル酸、エイコセン酸等の二重結合を1個有する不飽和脂肪酸、リノール酸等の二重結合を2個有する不飽和脂肪酸、ヒラゴン酸、リノレン酸等の二重結合を3個有する不飽和脂肪酸、アラキドン酸等の二重結合を4個有する不飽和脂肪酸、タリリン酸等の三重結合を有する不飽和脂肪酸等が挙げられるが、これらに限定されるものではない。これらの中では、オレイン酸又はエルカ酸が好ましい。
 不飽和脂肪酸の塩としては、例えば前記例示した不飽和脂肪酸のナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩等が挙げられる。不飽和脂肪酸の塩としては、オレイン酸ナトリウム又はエルカ酸ナトリウムが好ましい。
 脂環族カルボン酸としては、例えばナフテン酸を挙げることができる。
 また、シランカップリング剤としては、特に限定されるものではないが、従来からインキ、塗料、ゴムやプラスチックなどに配合されるシランカップリング剤を用いることができ、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシキシプロピル トリメトキシシラン、γ-メタクリロキシキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシランなどを挙げることができる。
 これらの表面処理剤は、単独で又は2種以上組み合わせて使用できる。中でも、アビエチン酸、ネオアビエチン酸、不均化ロジン若しくはロジンエステルのような樹脂酸系化合物、パルミチン酸、ステアリン酸、ラウリン酸若しくはオレイン酸のような脂肪酸系化合物、又はこれらの任意の組み合わせが好ましい。特に、アビエチン酸、不均化ロジン、ステアリン酸若しくはオレイン酸、又はこれらの任意の組み合わせが好ましい。
 表面処理方法は、通常公知の方法によって行うことができる。表面処理した炭酸カルシウムとしては、例えば、白艶華(製品名:白石工業製)、NEOLITE(製品名:竹原化学工業製)等を挙げることができるが、これらに限られない。
 次に、本発明における乾式粉砕の方法について説明する。
 本発明の乾式粉砕は、乾式粉砕装置中、粗製銅フタロシアニンと前記炭酸カルシウムとを粉砕するものである。粗製銅フタロシアニンと炭酸カルシウムとは、それぞれを別個に粉砕装置に加えて粉砕しても、予め粗製銅フタロシアニンと炭酸カルシウムとを混合してこの混合物を乾式粉砕装置に加えて粉砕してもよい。
 乾式粉砕は、例えば粉砕メディア同士、あるいは粉砕メディアと粉砕装置内壁との衝突による衝撃力、せん断力、粉砕粒子同士の衝突等を利用して行うことができ、粉砕メディアの存在下に行っても、不存在下に行ってもよい。メディアとしては、通常公知の各種の素材で、種々の大きさのビーズやロッドが使用できる。
 乾式粉砕装置としては、例えばアトライター、ボールミル、振動ミル、ハンマーミル、単軸または多軸の押出機、ニーダー等の公知慣用の装置を用いることができる。また、ヘンシェルミキサー、ジェットミルなどの粉砕メディアを使用しないものも用いることができる。
 乾式粉砕は、空気中で行うことができるが、乾式粉砕装置内に必要に応じて窒素ガスやヘリウムガス等の不活性ガスを流通させ、装置内部を脱酸素雰囲気下として行ってもよく、この方法は安全性の面からも有効である。
 粗製銅フタロシアニンは粉砕により、2種以上の結晶形を有する混晶型となる。そこで、粗製銅フタロシアニンの粉砕においては、粉砕物の不安定型(α型)結晶含有率を制御することが好ましい。不安定型(α型)結晶含有率が高いと、引き続いて行われる加熱する工程での銅フタロシアニンの安定型(β型)結晶への転移効率の低下や、銅フタロシアニン粒子が針状に結晶成長し易くなることによる印刷インキの物性値(粘度、色相、着色力等)の低下等の問題が生じる場合があるからである。
 この不安定型(α型)結晶含有率は、乾式粉砕の粉砕力の増大と共に高くなり、処理温度が高くなるに連れ、低くなる特徴があることから、粉砕力と処理温度を調整することにより、不安定型(α型)結晶含有率を35~70%の範囲内となる様処理することが好ましい。このためには、乾式粉砕は、通常65~150℃の範囲で行うことが望ましい。
 粉砕物の不安定型(α型)結晶含有率は、粉砕物を経過した粉砕時間毎に適量サンプリングし、その試料についてのX線回折図の特異ブラック角(2θ)が6.8°±0.2°のピーク高さ(Lα)と9.2°±0.2°のピーク高さ(Lβ)の比(Lα/Lβ)に着眼して求めることができる。
 乾式粉砕は、粗製銅フタロシアニン、炭酸カルシウムの存在下で行われ、粉砕物の平均粒子径が20~300nmとなるように行うのが好ましい。
 この乾式粉砕処理において、炭酸カルシウム粒子は、粗製銅フタロシアニンの微細粉砕効率を向上させ、且つ微細化された粉砕銅フタロシアニン粒子同士の強凝集を抑制する働きがあり、高い着色力特性を有する粗製銅フタロシアニンの粉砕物を得ることができる。また、ここで使用される炭酸カルシウムは、粗製銅フタロシアニンと同時に粉砕処理されるため、屈折率、隠蔽力が高いためそのままでは印刷インキの透明性に影響を及ぼすような安価な炭酸カルシウムでも利用できるという利点もある。
 乾式粉砕時における粉砕時間は、粉砕温度や用いる装置、希望する粉砕物の粒子径、または乾式粉砕後の粉砕物からなる顔料組成物或いはその顔料組成物を用いた最終印刷インキの目標インキ特性に応じて適宜調整される。この粉砕時間は、上記した粉砕温度において、通常、約30分~12時間である。
 粉砕時間は、使用される粉砕機の種類によって異なり、例えばアトライターを用いた場合には、好ましい粉砕時間として45分前後、ボールミルを用いた場合には、12時間前後の時間を挙げることができ、一般的にはアトライターを用いる方が粉砕効率が高く、短時間で粉砕が終了することから好適である。
 なお、乾式粉砕時には、乾式粉砕効率、不安定型(α型)結晶から安定型(β型)結晶への転移(α/β型転移)の制御を容易とする目的で、必要に応じて、銅フタロシアニン顔料誘導体、印刷用インキ用溶剤を併用することもできる。
 この様な銅フタロシアニン顔料誘導体としては、例えば銅フタロシアニンのベンゼン核の1個以上に置換基を有し、置換基としては例えばハロゲン原子、スルホン酸基、カルボン酸基又はその金属塩、アンモニウム塩及びカチオン性界面活性剤との塩類が挙げられ、また、メチレン基、カルボニル基、スルホニル基、イミノ基等を介した各種誘導体も用いられる。銅フタロシアニン顔料誘導体の使用量は、特に制限されないが粗製銅フタロシアニンの質量換算100部当たり、0.1~20部である。
 この粉砕は、実質的に液状物質を介在させないか、或いは、粗製銅フタロシアニンに対して通常0.5~20質量%の粉体の特性を損なわない程度の液状物質の添加をして、粉砕を行うことができる。
 なお、本発明において実質的に印刷インキ用樹脂の不存在下で、乾式粉砕するとは、乾式粉砕時の系内に印刷インキ用樹脂が全く存在しないか、本発明の効果に影響を与える量の印刷インキ用樹脂を含有しないところまで、すなわち、本発明の効果を損ねない範囲の量の印刷インキ用樹脂を含有していても良いことを意味するものとする。より具体的には、印刷インキ用樹脂の種類にもより異なるが、例えば、銅フタロシアニンに対して1質量%未満、より好ましくは0.5質量%未満、さらに好ましくは0.1質量%未満、最も好ましくは0質量%を指す。
 上記乾式粉砕により得られた本発明の印刷インキ用顔料組成物は銅フタロシアニン粒子の凝集体であって、
(1)前記銅フタロシアニン粒子が2種以上の結晶形を含み、
(2)前記凝集体内部に前記炭酸カルシウム粒子を含み、かつ、
(3)実質的に、前記凝集体内部に印刷インキ用樹脂が存在しない、ことを特徴とする。
 微細化された粉砕物は、粒子の表面活性が高いため、外観は微細な銅フタロシアニン粒子(一次粒子)が集合した数mm程度の凝集体として存在する。その際、本発明の銅フタロシアニン粒子の凝集体は、当該凝集体内部に前記炭酸カルシウムを含み、より詳細には、該凝集体を構成する銅フタロシアニンの粒子と粒子の間隙に炭酸カルシウム粒子が存在している(図1)。また、乾式粉砕の際に、実質的に印刷インキ用樹脂の不存在下で行うため、凝集体内部に該印刷インキ用樹脂は実質的に存在しない。なお、本発明において実質的に凝集体内部に印刷インキ用樹脂が存在しないとは、凝集体内部に印刷インキ用樹脂が全く存在しないか、本発明の効果に影響を与える量の印刷インキ用樹脂を含有しないところまで、すなわち本発明の効果を損ねない範囲の量の印刷インキ用樹脂を含有していても良いことを意味するものとする。より具体的には、印刷インキ用樹脂の種類にもより異なるが、例えば、銅フタロシアニンに対して1質量%未満、より好ましくは0.5質量%未満、さらに好ましくは0.1質量%未満、最も好ましくは0質量%を指す。
 上記乾式粉砕により炭酸カルシウムは平均粒子径15~200nm、好ましくは20~80nmの粒子に微細化される。同様に粗製銅フタロシアニンは、平均粒子径15~200nm、好ましくは17~100nm、より好ましくは20~80nmの銅フタロシアニン粒子(一次粒子)に微細化される。前記銅フタロシアニン粒子は、例えば、同一又は複数の結晶子から構成され、その平均結晶子径は15~100nm程度である。また、アモルファス状態で粒子を構成する場合もある。なお、該結晶子径は広角X線回折チャートのブラッグ角度2θ=9.3°の半値幅をScherrerの式に代入し算出した安定型(β型)粗製銅フタロシアニンの結晶子径サイズである。
 次に、粗製銅フタロシアニンと炭酸カルシウムとを乾式粉砕することにより得られる印刷インキ用顔料組成物と、印刷インキ用樹脂及び溶剤を含む混合物(以下印刷インキワニスという)を加熱する工程、及び湿式練肉分散する工程について説明する。
 本加熱する工程の目的は、粗製銅フタロシアニン乾式粉砕物の結晶形をα/β混晶型から化学構造的に安定且つ、印刷インキに適した安定型結晶形であるβ型へ転移させることと、その後或いは同時に行うことのできる湿式練肉分散する工程の処理を容易にすることであって、70~180℃の加温下で行うことが好ましい。
 本工程では、分散機などによる撹拌は特に必要とせず、静置加熱下においても行うことが可能である。但し、印刷インキワニス均一混合やα/β混晶型から安定型(β型)への転移効率を向上させる為、単軸、多軸の分散攪拌機や混練機による撹拌処理が好ましい。これらの分散機、混練機は、公知慣用のものがいずれも使用できるが、例えばディスパー、ホモミキサー等の単軸または多軸の攪拌機、ニーダー、単軸または多軸の押出し機等の装置が挙げられ、これらを組み合わせて使用することもできる。
 使用する印刷インキ用溶剤、加熱温度、撹拌状態により転移の時間は異なるが、数分~3時間程度で加熱する工程を完了することができる。なお、銅フタロシアニンは、本加熱する工程やこの後或いは同時に行うことのできる湿式練肉分散工程により、大部分が安定型結晶(β型)に転移するが、1%以下の微量の不安定型結晶(α型)が存在する場合もある。
 本工程で使用される印刷インキ用樹脂及び溶剤は、予め印刷インキ用樹脂と印刷インキ用溶剤、場合によりゲル化剤等から調整した印刷インキワニスを用いることもできるし、市販の印刷インキワニスを用いることもできる。
 印刷インキ用樹脂は、ロジン変性フェノール樹脂、ロジン変性マレイン酸樹脂、アルキッド樹脂、石油樹脂変性ロジン変性フェノール樹脂、石油樹脂など一般に印刷インキに使用されるものを少なくとも1種類以上含有し、好ましくはロジン変性フェノール樹脂である。ここで、ロジン変性フェノール樹脂は、アルキルフェノールとホルムアルデヒドを縮合反応して得られたフェノール樹脂とロジンとを反応させて得られたものを主成分とするもので、更に多価アルコールを樹脂の構成成分としたものであってもよい。
 また、印刷インキ用溶剤としては、高沸点の石油系溶剤、脂肪族炭化水素溶剤、高級アルコール系溶剤、植物油であり、芳香族成分が1質量%未満のものであり、単独または2種類以上を組み合わせた混合組成物でも良い。
 ここでいう植物油は、インキ原料として通常使われているものであれば何でも用いることができる。例として、大豆油、亜麻仁油、キリ油、ひまし油、脱水ひまし油、コーン油、サフラワー油、カノール油等の油類、合成油(及び再生油)などが挙げられる。これらの植物油は、単独で用いても良いし、2種類以上組み合わせて用いることもできる。
そして、好ましい印刷インキ用溶剤としては、溶剤のアニリン点が65℃~100℃を有するナフテン系、パラフィン系溶剤、大豆油でありこの様な印刷インキ用溶剤としては、例えば、新日本石油(株)製のAFソルベント4号(芳香族成分含有量0.1質量%)、AFソルベント5号(同0.2質量%)、AFソルベント6号(同0.3質量%)、AFソルベント7号(同0.2質量%)、大豆油(日清オイリオグループ株式会社:大豆サラダ油)等が挙げられる。
 印刷インキワニスを調製する際の印刷インキ用樹脂と印刷インキ用溶剤との混合割合は、質量換算で、樹脂が20~75質量%、溶剤が25~80質量%の範囲内で適宜調整して用いることができる。
 また、加熱する工程は上記した顔料誘導体や添加剤の存在下で行うこともできる。添加剤としては、例えば、ゲル化剤、顔料分散剤、金属ドライヤー、乾燥抑制剤、酸化防止剤、耐摩擦向上剤、裏移り防止剤、非イオン系界面活性剤、多価アルコール等を挙げることができる。
 次に、湿式練肉分散する工程について説明する。
 加熱する工程で混晶型から安定且つ、印刷インキに適した安定型(β型)結晶への転移と印刷インキワニスとの湿潤処理がなされたペースト状混合物中の粗製銅フタロシアニンは、個々の粒子径は、15~350nm程度に整えられているが、粒子同士がアグリゲート及びアグロメレートの状態にあり、まだ印刷インキに適した顔料分散状態とは言えない。このペースト状混合物を印刷インキの製造で一般的に使用されている3本ロールミル、ビーズミル、単軸または多軸の押出し機等で練肉分散度が5ミクロン以下になるように湿式練肉処理することで、印刷インキが完成する。
 この湿式練肉分散処理は、ペースト状混合物中の銅フタロシアニン質量濃度が高く設定でき、メディアの種類、粒径を選定することで高い分散力が得られることから、ビーズミルで処理されることが好ましい。また、粗製銅フタロシアニン、印刷インキ用樹脂、溶剤、印刷インキワニス、添加剤等を個別投入することが出来、且つ加熱、冷却が可能な短軸または多軸の押出し機等の混練分散装置を用いれば、加熱処理する工程と湿式練肉分散する工程を同時に行うことも可能であり、装置コストは高くなるが、有効な手段である。
 上記した加熱処理する工程及びその後或いは同時に行うことのできる湿式練肉分散する工程では、最終的に使用に供される印刷インキ(最終印刷インキという)に必要な顔料濃度となる様に、印刷インキ用ワニス、印刷インキ用溶剤、体質ベースインキ、添加剤などを用いて一段階で最終印刷インキを調製しても良い。一般的には、加熱処理する工程及び湿式練肉分散する工程での被処理液量を低減し、生産効率を向上させる目的として、必要限度の印刷インキ用ワニス、溶剤、添加剤だけで予め最終印刷インキよりも高顔料濃度の混合物(以下、印刷インキ用ベースインキという)を一旦調製し、これを更に印刷インキ用ワニス、印刷インキ用溶剤、体質ベースインキ、添加剤等で希釈するという多段階で最終印刷インキを調製することが好ましい。
 印刷インキ用ベースインキ中の銅フタロシアニン質量率は、加熱処理する工程及び湿式練肉分散処理する工程の生産効率を考えると、15~40%が望ましい。
 前記印刷インキ用ベースインキないし最終印刷インキ中に含まれる銅フタロシアニンは、結晶変化時の一次粒子の結晶成長が抑制されており、粒径分布が狭く、粒子径の小さい微粒子を形成している。その理由は定かではないが、乾式粉砕の際に添加した炭酸カルシウムが粉砕助剤として作用しただけではなく、さらに結晶成長を抑制する作用を呈したためと思われる。その結果、印刷インキ用ベースインキないし最終印刷インキ中に含まれる銅フタロシアニン(一次粒子)の平均粒子径は15~350nmであり、より好ましいものでは20~200nmである。また、粒子径400nmを超える巨大粒子の存在が抑えられており、例えば、400nmを超える巨大粒子が存在しない状態のものを得ることもできる。さらに、該銅フタロシアニンは、結晶形態サイズの長い辺の長さと短い辺の長さとの比(アスペクト比)の大きな針状結晶ではなく、アスペクト比の小さな立方形状結晶である。これらの特徴により、本発明の印刷インキ用顔料組成物を用いた印刷インキは各種光学特性(着色力、透明性、光沢等)、印刷適性(乳化、耐刷性等)に優れる。
 本発明の印刷インキ用顔料組成物は、オフセット印刷インキ(ヒートセットオフ輪インキ、枚葉インキ、新聞インキ、UVインキなど)、フレキソ印刷インキ、グラビア印刷インキ、特殊機能インキなど各種印刷インキに適用出来るが、特にオフセット印刷インキに好適に適用できる。
 以下、実施例により本発明を詳細に説明するが、本発明はこれら実施例の範囲に限定されるものではない。尚、特に断りのない限り、「部」及び「%」はいずれも質量基準である。
 また、本実施例で行われる測定及び評価は下記の方法に従った。
(銅フタロシアニンの結晶含有比測定)
 粉砕物及び試作インキ中の銅フタロシアニンの不安定型(α型)結晶/安定型(β型)結晶の含有比は、(株)リガク製粉末X線回折装置 RINT1100を用いて、X線回折図の特異ブラック角(2θ)が6.8°±0.2°のピーク高さ(Lα)と9.2°±0.2°のピーク高さ(Lβ)の比に着眼して求めた。
(銅フタロシアニンの純度測定)
 硫酸法による純度測定により計測した。
(銅フタロシアニン一次粒子の平均粒子径)
被測定物をシクロヘキサン中に質量比で500~5,000倍希釈したものを透過型電子顕微鏡撮影(TEM)用のグリッドに滴下、乾燥させ、撮影した画像中から銅フタロシアニンの一次粒子100個の長径長を実測した平均値である。
(炭酸カルシウムの平均粒子径)
・乾式粉砕に用いる炭酸カルシウム
 炭酸カルシウムをシクロヘキサン中に質量比で500~5,000倍希釈したものを透過型電子顕微鏡撮影(TEM)用のグリッドに滴下、乾燥させ、撮影した画像中から粒子100個の長径長を実測した平均値である。
・乾式粉砕後の炭酸カルシウム
 乾式粉砕して得られた印刷インキ用顔料組成物(凝集体)をマイクロトームで薄膜切片加工し、透過型電子顕微鏡(TEM)撮影した凝集体断面の画像中から炭酸カルシウムの分散粒子100個の長径長を実測した平均値である。
(試作インキの練肉分散度測定)
 鋼の盤に深さが0~0.025mmまで変化している2本の溝を刻んだグラインドメーターの最深部にインキを置き、スクレーバーで浅い方に引き伸ばし、粗粒子の直径より浅いところにできるスジの位置の目盛りから求めた。
*)((社)色材協会編集の色材工学ハンドブックのII-III印刷インキの5.1.2印刷インキ試験方法の(1)に記載の方法による。
(試作インキの着色力評価方法)
 着色力の評価は、印刷インキ5gと白インキ(DIC(旧 大日本インキ化学工業)(株)製カルトンセルフ709白)95gとを各々よく混合して練り合わせた着色力確認用インキを作り、この白希釈インキを用いてへら引きにより次に示す手順で着色力を評価する。
 着色力の数値比較については、特開2003-73581公報記載の方法を使用し、比較例12で得られた印刷インキの測定値を100とした。
(試作インキの光沢評価方法)
 実施例1~7、比較例1~5で作製したインキを日本工業規格JIS K 5701-1によって定められた展色方法に則って、0.125mlをアート紙に展色して展色物を得た。この展色物を、Gardner社製反射型光沢計で光沢を測定し、その数値を表示した。
(試作インキの透明性評価方法)
 透明性差は(社)色材協会編集の色材工学ハンドブックのII-III印刷インキの5.1.2印刷インキ試験方法の(8)(ii)に記載のへら引きによる方法で測定評価した。透明性が非常に高いものを5、非常に低いものを1とした。
(試作インキの展色濃度評価方法)
 0.125ccのインキを計量し、RIテスターにて紙面展色、乾燥後、Gretagmacbeth製分光光度計「SpectroEye」、濃度基準DIN16536で展色物の10カ所を測定、最大値、最小値を除いた平均値をインキの着色力値(展色濃度)とした。
(製造例1)粗製銅フタロシアニンの作製
 無水フタル酸1218部、尿素1540部、無水塩化第一銅200部、モリブデン酸アンモニウム5部及び不活性溶媒として、HS-SOL-700(Hwa Sung社製)の混合物4000部を反応器に仕込み、攪拌しながら加熱して200℃まで昇温させた後、同温度で2.5時間反応させた。反応終了後、減圧下で不活性溶媒を留去し、残った反応生成物を2%塩酸(水溶液)8000部中に加え、70℃で1時間攪拌した後、吸引濾過してケーキを得た。引き続き、得られたケーキを2%水酸化ナトリウム水溶液8000部中に加え、70℃で1時間攪拌した後、中和し吸引濾過した。このようにして得られたケーキを80℃の温水で充分洗浄した後、乾燥させて結晶形が安定型(β型)の粗製銅フタロシアニン(純度98%)を作製した。
(実施例1)印刷インキ用顔料組成物の作製-1
 製造例1の粗製銅フタロシアニンと炭酸カルシウムを、目的とする印刷インキ用顔料組成物が500gとなるように、表1に示した比率で配合し、内容積25リットルのアトライター(直径3/8インチのスチールボール 67Kgを含む)中に投入して回転数200rpm、内温80~110℃で60分間粉砕して、印刷インキ用顔料組成物を作製した。得られた印刷インキ用顔料組成物中の銅フタロシアニンの一次粒子の平均粒子径と、α形/β型の結晶比率、および銅フタロシアニン粒子が集合してできた凝集体中に含まれる炭酸カルシウム粒子の存在をTEM写真(図1)にて確認し、その平均粒子径を表1に記載した。図1は、乾式粉砕して得られた印刷インキ用顔料組成物(凝集体)をマイクロトームで薄膜切片加工し、透過型電子顕微鏡(TEM)撮影した断面図であり、銅フタロシアニン粒子の凝集体(バックグラウンドの灰色状のもこもこした部分)中に炭酸カルシウム粒子(黒点)が存在することが明かとなった。
 次に、実施例1と同様の操作で表1に記載の条件で実施例2~10を行い、印刷インキ用顔料組成物を得た。
(比較例1)印刷インキ用顔料組成物の作製-2
 製造例1で得られた粗製銅フタロシアニンと表1に示したロジン変性樹脂(ベッカサイトF7310、DIC(旧 大日本インキ化学工業)(株)製)及び炭酸カルシウムの組み合わせにより、実施例1と同様の操作で比較例1~4を行い、表1に記載の印刷インキ用顔料組成物を得た。
Figure JPOXMLDOC01-appb-T000001
 表中の記号は以下のとおり。
A:銅フタロシアニン、B:樹脂、C:炭酸カルシウム
Cal:カルサイト、Ara:アラゴナイト
合立:合成立方形、重不:重質不定形、合紡:合成紡錘形、合針:合成針状
(製造例2)印刷インキワニスの製造
 ロジン変性フェノール樹脂(ベッカサイトF-7310(DIC(旧 大日本インキ化学工業)製))を45部、大豆油を15部、AFソルベント7号(新日本石油(株)製)を39部仕込み、180℃に昇温して、同温度で50分放置した後、ゲル化剤としてアルミキレート(アルミニウム ジイソプロキシド モノエチルアセテート)1部を仕込み、180℃で30分間撹拌して印刷インキ用ワニスを得た。
(実施例11)印刷インキ用ベースインキの作製
 上記実施例1で得られた印刷インキ用顔料組成物と製造例2で得られた印刷インキワニス、AFソルベント7号(新日本石油(株)製)、大豆油(日清オイリオグループ(株))を銅フタロシアニンの含有率が30質量%となるような表2に示す配合比率で均一混合した後、90~120℃で2時間加熱処理した。その後、練肉分散度が5ミクロン以下になるようにビーズミル(Buhler(株)K8型ラボビーズミル、φ2mmジルコニアビーズ、充填率90%、ローター回転数950rpm)練肉分散処理を90℃~110℃の温度で行い、印刷インキ用ベースインキを作製した。
 次に、実施例11と同様の操作で表2に記載の組成で実施例12~20及び比較例5~8を行い、印刷インキ用ベースインキを得た。
Figure JPOXMLDOC01-appb-T000002
 実施例11~20、比較例5~8で得られた印刷インキ用ベースインキ中に含まれる銅フタロシアニン(一次粒子)の平均粒子径、粒径分布、アスペクト比および結晶形態を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(製造例3)体質ベースインキの製造
 炭酸カルシウム(白石カルシウム(株)製 白艶華T-DD)40部と製造例2で得た印刷インキワニス50部、AFソルベント7号(新日本石油(株)製)10部を均一になるまで撹拌混合した後、3本ロールミルで粒度5μm以下になるまで練肉分散処理を行い、体質ベースインキを得た。
(実施例21)印刷インキの作製
 上記実施例11で得られた印刷インキ用ベースインキと製造例2で得られた印刷インキ用ワニス、AFソルベント7号(新日本石油(株)製)、製造例3で得られた体質ベースインキを表4に示した組み合わせ、ラレー粘度計25℃における粘度を20~25Pa・Sに撹拌調整し、印刷インキを作製した。
 次に、実施例21と同様の操作で表4に記載の組成で実施例22~30及び比較例9~12を行い、印刷インキを得た。
Figure JPOXMLDOC01-appb-T000004
 その後得られた印刷インキの評価を行った。結果を表5に示す。
 なお、着色力の評価は、より具体的には以下の手順に準じて算出した。すなわち、本実施例では印刷インキ(比較例12)の着色力(D比12)を標準としてその値を100とする。印刷インキ(比較例12)に対しての印刷インキ(実施例21)の着色力(D実21)を求める例を示すと、質量濃度は両方とも30%である。色の濃い印刷インキ(実施例21)に対して、さらに白インキXgを添加して、印刷インキ(比較例12)と濃度を一致させる。このとき次の式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
本実施例においてはD比12=100としているので、D実21は次式で求められる。
Figure JPOXMLDOC01-appb-M000006
印刷インキ(実施例21)の場合には、印刷インキ(実施例21)に9.5gの白インキを添加して濃度が一致したので、印刷インキ(実施例21)の着色力は式(2)より110となる。
Figure JPOXMLDOC01-appb-T000007
 以上の実施例、比較例により、本発明の製造方法による特定の体質顔料を含有する印刷インキ用顔料組成物、及び該印刷インキ用顔料組成物を用いた印刷インキは、従来法による印刷インキと比較して高い着色力品位を有していることが確認できた。
乾式粉砕して得られた印刷インキ用顔料組成物(凝集体)をマイクロトームで薄膜切片加工し、透過型電子顕微鏡(TEM)撮影した断面図である。
符号の説明
1:炭酸カルシウム粒子

Claims (8)

  1.  粗製銅フタロシアニンと、平均粒子径が20~1500nmである炭酸カルシウムとを、実質的に印刷インキ用樹脂の不存在下で、乾式粉砕することを特徴とする印刷インキ用顔料組成物の製造方法。
  2.  粗製銅フタロシアニン100質量部に対して、炭酸カルシウムが3~70質量部である請求項1に記載の印刷インキ用顔料組成物の製造方法。
  3.  炭酸カルシウムの結晶形が、カルサイト型またはアラゴナイト型である請求項1または2に記載の印刷インキ用顔料組成物の製造方法。
  4.  炭酸カルシウムが、樹脂酸、飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸、シランカップリング剤、及びそれらの塩からなる群から選ばれる少なくとも1種の表面処理剤により表面処理されたものである、請求項1乃至3のいずれかに記載の印刷インキ用顔料組成物の製造方法。
  5. (1)請求項1乃至4のいずれかに記載の印刷インキ用顔料組成物の製造方法により得られる印刷インキ用顔料組成物、印刷インキ用樹脂及び印刷インキ用溶剤を含む混合物を加熱する工程と、
    (2)該混合物を湿式練肉する工程と
    を含む印刷インキの製造方法。
  6.  銅フタロシアニン粒子の凝集体であって、(1)前記銅フタロシアニン粒子が2種以上の結晶形を含み、(2)前記凝集体内部に前記炭酸カルシウム粒子を含み、かつ、(3)実質的に前記凝集体内部に印刷インキ用樹脂が存在しない、ことを特徴とする印刷インキ用顔料組成物。
  7. 前記炭酸カルシウム粒子の平均粒子形が15~200nmである請求項6記載の印刷インキ用顔料組成物。
  8.  前記銅フタロシアニン粒子の平均粒子径が20~300nmである請求項6記載の印刷インキ用顔料組成物。
PCT/JP2008/073157 2007-12-21 2008-12-19 印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法 WO2009081850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009547071A JP4535207B2 (ja) 2007-12-21 2008-12-19 印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法
EP08864734.2A EP2253675B1 (en) 2007-12-21 2008-12-19 Pigment composition for printing ink, method for production thereof, and method for production of printing ink
CN2008801215588A CN101903470A (zh) 2007-12-21 2008-12-19 印刷油墨用颜料组合物、其制造方法以及印刷油墨的制造方法
US12/809,296 US8754148B2 (en) 2007-12-21 2008-12-19 Pigment composition for printing ink, method for producing the same and method for producing printing ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-329938 2007-12-21
JP2007329938 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081850A1 true WO2009081850A1 (ja) 2009-07-02

Family

ID=40801151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073157 WO2009081850A1 (ja) 2007-12-21 2008-12-19 印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法

Country Status (5)

Country Link
US (1) US8754148B2 (ja)
EP (1) EP2253675B1 (ja)
JP (1) JP4535207B2 (ja)
CN (1) CN101903470A (ja)
WO (1) WO2009081850A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145187A1 (ja) * 2010-05-19 2011-11-24 荒川化学工業株式会社 ロジン変性フェノール樹脂、その製造方法、印刷インキ用ワニス、および印刷インキ
JP2013139551A (ja) * 2011-12-05 2013-07-18 Toyo Ink Sc Holdings Co Ltd 平版印刷インキ組成物
JP2014214159A (ja) * 2013-04-22 2014-11-17 サカタインクス株式会社 印刷インキ組成物用顔料分散体の製造方法、印刷インキ組成物用顔料分散体及び印刷インキ組成物
JP2015048376A (ja) * 2013-08-30 2015-03-16 Dic株式会社 活性エネルギー線硬化性顔料分散体の製造方法及び活性エネルギー線硬化型インクジェット記録用インク
JP2017014435A (ja) * 2015-07-03 2017-01-19 Dicグラフィックス株式会社 オフセット印刷インキ組成物および印刷物
JP2018053135A (ja) * 2016-09-29 2018-04-05 山本化成株式会社 ナフタロシアニン化合物ナノ粒子の製造方法、並びに該ナノ粒子の用途
JP2018053134A (ja) * 2016-09-29 2018-04-05 山本化成株式会社 テトラアザポルフィリン化合物ナノ粒子の製造方法、並びに該ナノ粒子を用いた着色組成物、分散インキ、およびカラーフィルタ
WO2021124744A1 (ja) * 2019-12-20 2021-06-24 Dic株式会社 顔料組成物、活性エネルギー線硬化型オフセットインキ、及び顔料組成物の製造方法
JP7005809B1 (ja) 2021-06-30 2022-01-24 東京インキ株式会社 抗菌オーバープリントニス、抗菌印刷物、および抗菌印刷物の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092306B1 (ko) * 2011-04-07 2011-12-13 주식회사 유익 유무기 복합 무독성 친환경 녹색 안료
PL225091B1 (pl) * 2012-09-26 2017-02-28 Rr Donnelley Europe Spółka Z Ograniczoną Odpowiedzialnością Sposób pomiaru aplikacji lakieru zapachowego
JP5477995B1 (ja) * 2013-03-12 2014-04-23 サカタインクス株式会社 活性エネルギー線硬化型オフセット印刷インキ組成物
US9637652B2 (en) * 2013-03-15 2017-05-02 Xerox Corporation Systems and methods for manufacturing pigmented radiation curable inks for ink-based digital printing
US9340687B2 (en) * 2014-05-21 2016-05-17 Jetcoat Corporation Aluminum chelate, method for manufacturing the same, and photocured ink including the same
US9921499B2 (en) * 2015-10-28 2018-03-20 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and phthalocyanine pigment
JP7135616B2 (ja) * 2018-09-07 2022-09-13 コニカミノルタ株式会社 静電荷像現像用トナー

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294365A (ja) 1989-04-08 1990-12-05 Basf Ag ペースト状の高粘度印刷インキに適した銅フタロシアニンの製造方法、およびペースト状印刷インキの製造方法
JP3139396B2 (ja) 1996-02-05 2001-02-26 東洋インキ製造株式会社 印刷インキの製造方法
JP3159049B2 (ja) 1996-04-26 2001-04-23 東洋インキ製造株式会社 顔料組成物の製造方法、顔料組成物およびその用途
JP2003041173A (ja) 2001-07-26 2003-02-13 Dainichiseika Color & Chem Mfg Co Ltd 印刷インキの製造方法及び印刷インキ
JP2003049102A (ja) * 2001-08-07 2003-02-21 Dainichiseika Color & Chem Mfg Co Ltd 印刷インキの製造方法
JP2003073581A (ja) 2001-08-31 2003-03-12 Dainippon Ink & Chem Inc 顔料の分散用ベース組成物および分散方法
JP2003165925A (ja) * 2001-11-29 2003-06-10 Nippon Paint Co Ltd 顔料組成物およびその製法
JP2003231829A (ja) * 2002-02-08 2003-08-19 Dainichiseika Color & Chem Mfg Co Ltd 印刷インキの製造方法
JP2005075919A (ja) * 2003-08-29 2005-03-24 Toda Kogyo Corp 水系超微細顔料分散体及び該水系超微細顔料分散体を用いた着色剤
JP2006206804A (ja) 2005-01-31 2006-08-10 Toyo Ink Mfg Co Ltd 印刷インキ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003272923A1 (en) 2002-10-03 2004-04-23 Maruo Calcium Company Limited Surface-treated calcium carbonate and resin composition comprising the same
JP2004287100A (ja) 2003-03-20 2004-10-14 Fuji Xerox Co Ltd 両面複写用静電潜像現像用乾式トナー、現像剤および画像形成方法
JP4089479B2 (ja) 2003-03-24 2008-05-28 富士ゼロックス株式会社 画像形成方法
JP2005002250A (ja) * 2003-06-13 2005-01-06 Toyo Ink Mfg Co Ltd β型銅フタロシアニン顔料の製造方法
JP4565040B2 (ja) 2009-03-27 2010-10-20 白石工業株式会社 表面処理炭酸カルシウム及びそれを含むペースト状樹脂組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294365A (ja) 1989-04-08 1990-12-05 Basf Ag ペースト状の高粘度印刷インキに適した銅フタロシアニンの製造方法、およびペースト状印刷インキの製造方法
JP3139396B2 (ja) 1996-02-05 2001-02-26 東洋インキ製造株式会社 印刷インキの製造方法
JP3159049B2 (ja) 1996-04-26 2001-04-23 東洋インキ製造株式会社 顔料組成物の製造方法、顔料組成物およびその用途
JP2003041173A (ja) 2001-07-26 2003-02-13 Dainichiseika Color & Chem Mfg Co Ltd 印刷インキの製造方法及び印刷インキ
JP2003049102A (ja) * 2001-08-07 2003-02-21 Dainichiseika Color & Chem Mfg Co Ltd 印刷インキの製造方法
JP2003073581A (ja) 2001-08-31 2003-03-12 Dainippon Ink & Chem Inc 顔料の分散用ベース組成物および分散方法
JP2003165925A (ja) * 2001-11-29 2003-06-10 Nippon Paint Co Ltd 顔料組成物およびその製法
JP2003231829A (ja) * 2002-02-08 2003-08-19 Dainichiseika Color & Chem Mfg Co Ltd 印刷インキの製造方法
JP3872356B2 (ja) 2002-02-08 2007-01-24 大日精化工業株式会社 印刷インキの製造方法
JP2005075919A (ja) * 2003-08-29 2005-03-24 Toda Kogyo Corp 水系超微細顔料分散体及び該水系超微細顔料分散体を用いた着色剤
JP2006206804A (ja) 2005-01-31 2006-08-10 Toyo Ink Mfg Co Ltd 印刷インキ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Ganryo no Jiten", ASAKURA SHOTEN, 25 September 2000 (2000-09-25), pages 172 - 174, XP008140798 *
See also references of EP2253675A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145187A1 (ja) * 2010-05-19 2011-11-24 荒川化学工業株式会社 ロジン変性フェノール樹脂、その製造方法、印刷インキ用ワニス、および印刷インキ
EP2573123A1 (en) * 2010-05-19 2013-03-27 Arakawa Chemical Industries, Ltd. Rosin-modified phenol resin, process for production thereof, varnish for printing ink, and printing ink
EP2573123A4 (en) * 2010-05-19 2014-01-22 Arakawa Chem Ind COLOPHONIUM MODIFIED PHENOL RESIN, METHOD OF MANUFACTURING THEREOF, LACQUER FOR PRINTING INK AND PRINTING INK
JP2013139551A (ja) * 2011-12-05 2013-07-18 Toyo Ink Sc Holdings Co Ltd 平版印刷インキ組成物
JP2014214159A (ja) * 2013-04-22 2014-11-17 サカタインクス株式会社 印刷インキ組成物用顔料分散体の製造方法、印刷インキ組成物用顔料分散体及び印刷インキ組成物
JP2015048376A (ja) * 2013-08-30 2015-03-16 Dic株式会社 活性エネルギー線硬化性顔料分散体の製造方法及び活性エネルギー線硬化型インクジェット記録用インク
JP2017014435A (ja) * 2015-07-03 2017-01-19 Dicグラフィックス株式会社 オフセット印刷インキ組成物および印刷物
JP2018053134A (ja) * 2016-09-29 2018-04-05 山本化成株式会社 テトラアザポルフィリン化合物ナノ粒子の製造方法、並びに該ナノ粒子を用いた着色組成物、分散インキ、およびカラーフィルタ
JP2018053135A (ja) * 2016-09-29 2018-04-05 山本化成株式会社 ナフタロシアニン化合物ナノ粒子の製造方法、並びに該ナノ粒子の用途
WO2021124744A1 (ja) * 2019-12-20 2021-06-24 Dic株式会社 顔料組成物、活性エネルギー線硬化型オフセットインキ、及び顔料組成物の製造方法
JPWO2021124744A1 (ja) * 2019-12-20 2021-06-24
JP7099645B2 (ja) 2019-12-20 2022-07-12 Dic株式会社 顔料組成物、活性エネルギー線硬化型オフセットインキ、及び顔料組成物の製造方法
CN114945637A (zh) * 2019-12-20 2022-08-26 Dic株式会社 颜料组合物、活性能量射线固化型胶印油墨以及颜料组合物的制造方法
CN114945637B (zh) * 2019-12-20 2023-10-13 Dic株式会社 颜料组合物、活性能量射线固化型胶印油墨以及颜料组合物的制造方法
JP7005809B1 (ja) 2021-06-30 2022-01-24 東京インキ株式会社 抗菌オーバープリントニス、抗菌印刷物、および抗菌印刷物の製造方法
JP2023006814A (ja) * 2021-06-30 2023-01-18 東京インキ株式会社 抗菌オーバープリントニス、抗菌印刷物、および抗菌印刷物の製造方法

Also Published As

Publication number Publication date
EP2253675A1 (en) 2010-11-24
CN101903470A (zh) 2010-12-01
JP4535207B2 (ja) 2010-09-01
EP2253675B1 (en) 2018-07-04
JPWO2009081850A1 (ja) 2011-05-06
US8754148B2 (en) 2014-06-17
US20100331460A1 (en) 2010-12-30
EP2253675A4 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP4535207B2 (ja) 印刷インキ用顔料組成物、その製造方法、及び印刷インキの製造方法
JPH0753889A (ja) 銅フタロシアニン顔料の製造方法および該製造方法より得られる銅フタロシアニン顔料を含む印刷インキもしくは塗料組成物
JP5678519B2 (ja) 微細黄色顔料組成物及び該微細黄色顔料組成物を含む顔料分散体、並びに前記微細黄色顔料組成物の製造方法
US7255733B2 (en) Process for the production of β type copper phthalocyanine pigment and a use thereof
JP2006321821A (ja) 顔料の製造方法
JP5703550B2 (ja) 微細化顔料組成物および該微細化顔料組成物を用いた顔料分散体の製造方法
JP6424695B2 (ja) アゾメチン金属錯体の固溶体
JP2006077062A (ja) 顔料の製造方法
JP2006328262A (ja) 微細キナクリドン顔料の製造方法
JP2000290578A (ja) 水系顔料分散体の製造方法
JP5534325B2 (ja) 銅フタロシアニン顔料組成物の製造方法及び印刷インキの製造方法
JP3872356B2 (ja) 印刷インキの製造方法
JP2006096927A (ja) グラビアインキ用キナクリドン顔料組成物、その製造方法および該顔料組成物を含有するグラビアインキ
JP2003041173A (ja) 印刷インキの製造方法及び印刷インキ
JPH0826242B2 (ja) β型銅フタロシアニン顔料の製造方法
JP2002121413A (ja) 紺藍色顔料の製造方法
JP2003049102A (ja) 印刷インキの製造方法
KR100497113B1 (ko) 안정형 구리 프탈로시아닌 안료의 제조방법
JP2003335997A (ja) 印刷インキ用銅フタロシアニン顔料組成物の製造方法および印刷インキの製造方法
JP2004099793A (ja) β型銅フタロシアニン顔料の製造方法
JP4185312B2 (ja) 易分散性銅フタロシアニン顔料組成物、その製造方法及び着色組成物の製造方法
JP2008019367A (ja) 微細有機顔料の製造方法
JP2011225771A (ja) 銅フタロシアニン顔料組成物及び印刷インキ
WO2023203789A1 (ja) ε型銅フタロシアニン顔料組成物の製造方法
JP2014094971A (ja) 顔料組成物の製造、ならびにこの顔料組成物を用いて製造してなる平版印刷用インキ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121558.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547071

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2640/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008864734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12809296

Country of ref document: US