WO2009025250A1 - 傾斜微細孔加工方法 - Google Patents

傾斜微細孔加工方法 Download PDF

Info

Publication number
WO2009025250A1
WO2009025250A1 PCT/JP2008/064665 JP2008064665W WO2009025250A1 WO 2009025250 A1 WO2009025250 A1 WO 2009025250A1 JP 2008064665 W JP2008064665 W JP 2008064665W WO 2009025250 A1 WO2009025250 A1 WO 2009025250A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
workpiece
cutting
hole
tip
Prior art date
Application number
PCT/JP2008/064665
Other languages
English (en)
French (fr)
Inventor
Kouji Yanagisawa
Yasuhiro Saito
Takajyu Yanagisawa
Masahisa Kanuma
Kiyoshi Fujikura
Original Assignee
Yanagisawa-Giken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanagisawa-Giken Co., Ltd. filed Critical Yanagisawa-Giken Co., Ltd.
Priority to DE112008002220T priority Critical patent/DE112008002220T5/de
Publication of WO2009025250A1 publication Critical patent/WO2009025250A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/011Micro drills

Definitions

  • the present invention relates to an inclined fine hole machining method, and more particularly to an inclined fine hole machining method for providing fine holes having a predetermined inclination in a workpiece made of a material having a relatively high hardness such as metal or ceramics.
  • Japanese Patent Application Laid-Open No. 10-282686 discloses a fine hole having a diameter of several tens / diameter by applying low-frequency vibration to the drill in a direction parallel to the cutting direction of the drill with respect to the workpiece. A method and an apparatus for providing a device in a relatively short time are described.
  • this machining method basically assumes the case where a fine hole is provided perpendicular to the workpiece surface.
  • a fine hole inclined at a predetermined angle or more with respect to the vertical line of the machining surface is made into a relatively hard workpiece.
  • a weak drill bends in the centrifugal direction at the initial stage of cutting when the tip of the drill comes into contact with the workpiece surface, and the tip is displaced or broken. For this reason, work efficiency is significantly reduced, and the shape accuracy and position accuracy of the fine holes obtained are extremely lowered, and there are many cases where the expected work results cannot be obtained.
  • Japanese Patent Laid-Open No. 2 0 0 3-2 6 0 6 1 1 discloses that a work is applied to a workpiece using a drill whose tip is hemispherical or whose apex angle is twice the tilt angle with respect to the machining surface.
  • An inclined hole machining method has been proposed in which an inclined hole can be provided with high positioning accuracy by providing a pre-machined hole during subsequent drill cutting.
  • the pre-machined hole by this machining method does not hold the drill tip so that the drill rotation axis does not move in the centrifugal direction from the cutting scheduled line, but simply forms a vertical surface on the workpiece surface with respect to the drill rotation axis fc. It ’s just that. For this reason, using a very fine drill for fine holes that can be bent and broken with a slight force, When inclined fine holes are provided in the shaft, troubles of drill breakage occur frequently even with a slight error. Further, in this case, a slight misalignment of the drill tip leads to a significant decrease in machining accuracy, so that it is insufficient as a means for providing a precise inclined fine hole.
  • the tip of the drill 30 sways in the direction of the arrow, but frequently breaks along the penetration operation.
  • the drill 30 tip end penetrates to the back surface, so that the edge of the opening is turned over and cracks are formed, and the fine hole 10 itself is also curved at the outlet, so the finished shape accuracy is high. It will be extremely worse. Disclosure of the invention
  • the present invention is intended to solve the above-described problems, and a tilted microhole drilling method for penetrating a microhole inclined at a predetermined angle in a workpiece made of a relatively hard material is described in detail. It is possible to achieve a high level of shape accuracy and position accuracy while allowing a hole to be drilled deeper with a larger inclination angle. And as an issue
  • the present invention is configured so that the rotation axis of the drill coincides with the planned cutting line inclined at a predetermined angle with respect to the vertical line toward the workpiece surface and at a predetermined angle with respect to the vertical line toward the workpiece back surface.
  • the inner diameter of the drill is approximately the same as the diameter of the drill, the tip of the drill is held, and the rotation axis is centrifuged.
  • a guide hole that regulates the movement in the direction is provided by cutting the workpiece surface into a substantially cylindrical shape so that the center axis coincides with the planned cutting line using an end mill, and then the tip of the drill is provided in this guide hole.
  • Insert and start the drill cutting process guide the drill cutting position and cutting direction with the guide hole in the drilling approach process to match the planned cutting line, and then the tip of the drill Repeat the operation of rotating the specified distance several times without rotating the drill until the tip part of the drill is completely penetrated from the time immediately before the part of the side is exposed to the back of the workpiece. It is characterized by carrying out profile file processing.
  • the drilling process is characterized in that the drill is pulled out and replaced with a new one every time the drill is fed into the cake for a predetermined distance.
  • the cutting ability is reduced to a higher level by discharging the cutting powder when the drill is pulled out and replacing it with a new drill according to the wear of the blade. It is possible to maintain deeper and deeper cutting can be performed.
  • the drill rotation speed in the drill cutting process is set to 7500 rpm to 1250 rpm, and the feed pitch depends on the workpiece hardness and the drill diameter. If it is selected within the range of 1. Om to 6.0 im, the drill damage trajectory is secured while ensuring the prescribed work efficiency.
  • FIG. 1 is a longitudinal cross-sectional view for explaining the procedure of the method for processing inclined fine holes according to the embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view for explaining an approach process in the procedure of FIG.
  • FIG. 3A and 3B are enlarged longitudinal sectional views for explaining the details of the approach process of FIG. 2, and FIG. 3C is a plan view of the guide hole of FIG.
  • FIG. 4 is an enlarged longitudinal sectional view for explaining profile processing in the procedure of FIG.
  • FIG. 5 is a longitudinal sectional view for explaining the procedure according to the first embodiment.
  • FIG. 6 is a front micrograph of the micropores obtained in Example 1.
  • FIG. 7 is a backside micrograph of the micropores obtained in Example 1.
  • FIG. 8 is a graph showing the hole diameter measurement results of the front side opening and the back side opening of the fine holes obtained in Example 1.
  • 9A and 9B are longitudinal sectional views for explaining a conventional example.
  • FIG. 1 to FIG. 4 show the method of the inclined fine hole machining method according to the embodiment of the present invention.
  • the longitudinal cross-sectional view for demonstrating order is shown.
  • the inclined micro-hole machining method of the present embodiment is applied to a workpiece 1 made of a relatively hard material such as stainless steel or ceramics, with a diameter of less than 0.3 mm, particularly 0.1 mm or less.
  • the fine holes are at a tilt angle of 0 ° to 45 ° with respect to the vertical line to the workpiece 1 surface, in particular in the range of 40 ° to 45 °, with a depth of hole length g of diameter d X 5 or more. It is highly useful when drilling along the planned cutting line X, and the goal is to achieve an accuracy in which the shape accuracy of the resulting fine hole 10 is within the tolerance range of 5% of the planned hole diameter soil.
  • the feature of the process is that the drill rotation axis is regulated so that it does not move in the centrifugal direction at the initial introduction stage of drilling process with drill 30a.
  • the guide hole 10 a having the same size as the diameter d is drilled into a substantially cylindrical shape using the end mill 2 and then drilled.
  • the drill 30 a will move inside, and the drill 30 0 a cutting position and cutting direction will have an error and the opening of the micro hole
  • the drill tip will be slippery and difficult to hold in the correct position if the diameter is smaller than the diameter d.
  • the drill is replaced with a new one from 30 a to 30 b, 30 c for each feed amount c.
  • profile machining is also performed in a range from immediately before a part of the drill 30 c is exposed to the back surface until the tip completely penetrates.
  • machine oil an appropriate cutting oil
  • finishing process such as deburring and polishing of both openings of the fine holes. Since it is substantially the same, detailed description is abbreviate
  • a general apparatus can be used as it is for a function of a drilling apparatus having a workpiece fixing means, a motor, a machining head, a feeding means, etc., a detailed description thereof will be omitted. To do.
  • the workpiece 1 is supported and fixed by the workpiece fixing means at a relatively large inclination angle 0, for example, 40 ° to 45 ° with respect to the horizontal plane, and fine along the planned cutting line X having an inclination angle 0 with respect to the vertical line.
  • the approach process is performed in the initial stage of the cutting operation.
  • the end mill 2 having a diameter basically the same as the diameter d of the drill used for drilling
  • a substantially cylindrical guide hole 10 a along the planned cutting line X is formed at a predetermined depth. Drilling at b is preferred.
  • it is possible to enlarge the diameter of the guide hole to the size of the guide hole using an end mill having a diameter smaller than the drill diameter d ( the diameter of the guide hole), but this requires extra labor and time.
  • the rotation speed and the feed pitch are appropriately set according to the diameter, the hardness of the work 1, and the inclination angle 0.
  • the feed pitch is the same as that of the end mill 2.
  • the depth b of the guide hole 10 a drilled by the end mill 2 is the depth of the outer peripheral surface when the tip of the drill 30 a is inserted.
  • the length of the part (arc) in contact with the inner peripheral surface of the guide hole 10 0 a near the lower end line 3 1 0 exceeds 50 0% of the outer periphery of the drill 3 0 a as shown in the plan view of Fig. 3 (C).
  • the range Y is defined as the depth to form a substantially cylindrical hole that can be held by the inner peripheral surface.
  • the rotation axis is regulated and fixed so as not to float in the centrifugal direction.
  • a pre-machined hole is provided with a center drill to drill inclined fine holes in the conventional example, if the material hardness of the workpiece is high or the inclination angle is large, the drill slides on the inclined surface and squeezes or breaks.
  • the cylindrical guide hole 10 a is provided at a depth b, so that the drill cutting position and cutting direction are correctly guided in the initial stage of the drilling process with the drill 30 a. This enables high cutting work to be performed.
  • the drill rotates according to the drill diameter and the material hardness of the workpiece 1. While setting the speed in the range of 7500 rpm to 1250 rpm, set the feed pitch in the range of 1 to 6 O ⁇ m and repeat the feed operation. As a result, the door is secured while ensuring a predetermined level of work efficiency. It avoids breakage of the rill and enables to drill fine holes with high accuracy.
  • the profile process which is the final stage of the drilling process, will be described with reference to FIG.
  • the contact surface 1 0 The tip of the inclined surface (cutting surface) slides over 0 0 and the drill has less resistance. 3 0 The tip is bent and easily broken, and the opening is deformed and broken to improve the hole shape accuracy. Trouble which falls extremely was produced. Therefore, in the present embodiment, as shown in FIG. 4, the width from the point immediately before the drill 30c tip end portion (corner portion) is exposed to the back surface of the workpiece 1 to the drill 30c tip end completely penetrating. The range of f is rotated a predetermined number of times without feeding the drill 30c. After that, a so-called profile processing step is performed in which the feeding operation is repeated a plurality of times while rotating a predetermined distance.
  • a drill 30 c with a diameter of 0.1 mm or less is set to 100
  • the profile processing width f is about 1.0 to 1.5 times the drill diameter d.
  • the rotation without feeding operation in this profile processing is usually 1 to 2 rotations, and the pitch to be fed while rotating is usually about 1.0 m. This is because if the rotation without feed operation exceeds two times, the cutting of the blade tends to be worse, and if the feed pitch exceeds this, the drill 30 c is likely to bend and break.
  • the process described above can be carried out using a general drilling device as it is, so that it is not necessary to introduce a dedicated device. In addition, since the process does not require excessive labor and time, it can be carried out without excessively increasing costs.
  • the inclined fine hole machining method of the present embodiment it is possible to more deeply form finer fine holes with a larger inclination angle for a relatively hard workpiece without requiring special skill. It is possible to achieve the hole shape accuracy and position accuracy at a high level.
  • Figure 5 shows this example. It is a longitudinal cross-sectional view for demonstrating the procedure of the inclined fine hole processing method. As can be seen from the figure, this example specifically implements the contents of the above-described embodiment, and the configuration of the work procedure is the same. The accuracy of the holes thus obtained was examined by confirming the arrangement state of the micropores from the appearance photograph and measuring each hole diameter from the micrograph of the micropore opening.
  • Work material (Workpiece 1) Material: SUS SK5, Hardness HRA50 or more, Thickness: 0.4 mm b.
  • Work target (Micro hole 1 0) Hole shape: Diameter (d) 0.1 0 OmmX hole length (G) 0.566mmX 8 pieces (circular arrangement), inclination angle: 45 °, accuracy: within 5% tolerance to the planned hole diameter c.
  • the penetration was confirmed in all the micropores (eight).
  • the hole shape accuracy was obtained.
  • the accuracy of the holes achieved a tolerance within ⁇ 0.05 mm (5%) from the measured hole diameter.
  • the inclination angle of the fine hole was 45 °.
  • the present invention is not limited to this range, and depends on conditions such as the drill diameter, the hardness of the workpiece, and the hole length. Of course, when the angle is smaller than this, it may be possible to implement even in a situation where the angle of inclination is large, and the effects described above can be expected.
  • the micro-hole is drilled deeper with a larger inclination.
  • the hole shape accuracy and position accuracy could be achieved at a high level.
  • the shape accuracy and the position accuracy are increased at a high level while making the fine hole deeper with a larger inclination angle.
  • it can be widely used in industries such as semiconductor manufacturing and medical device manufacturing.

Abstract

 本発明は、比較的硬質の素材からなるワークに所定角度傾斜した微細孔を設けるための傾斜微細孔加工方法について、微細孔をより大きな傾斜角でより深く穿設可能としながら、その形状精度及び位置精度を高いレベルで達成できるようにすることを課題とし、この課題を解決するために、ワーク1表面への垂直線に対し所定角度傾斜した切削予定線Xに、ドリル回転軸線を一致させて所定の送りピッチで送りながら微細孔を穿設する傾斜微細孔加工方法において、ドリル径dと略同サイズの内径を有しドリル先端部を保持して回転軸線の遠心方向への遊動を規制するガイド孔10aを、エンドミル2を用いて中心軸線が切削予定線Xに一致するようにワーク1表面から略円柱状に切削して設け、次いでガイド孔10aにドリル30a先端部を挿入しドリル切削工程を開始するものとして、穴開け加工のアプローチ工程でガイド10a孔によりドリルの切削位置・切削方向をガイドして切削予定線Xに一致させるものとした。

Description

明 細 書 傾斜微細孔加工方法 技術分野
本発明は、 傾斜微細孔加工方法に関し、 殊に、 金属やセラミックスなど比較 的硬度の高い素材からなるワークに、所定の傾きを有した微細孔を設けるため の傾斜微細孔加工方法に関する。 背景技術
近年、 被加工材料であるワークに、 微細孔 (直径 0 . 3 mm未満の孔) を設 ける技術が普及しており、半導体基盤の細孔や医療器の孔を穿設する場合等に 用いられている。 例えば、 特開平 1 0— 2 8 6 7 0 8号公報にはワークに対す るドリルの切り込み方向に平行する向きで低周波振動をドリルに印加するこ とにより、直径数十/ 程度の微細孔を比較的短時間で設ける方法及び装置が 記載されている。
このような技術を用いることにより、微細孔を高精度に効率よくワークに設 けることが可能になる。 また、 細く折損しやすいドリルを用いてより深く微細 孔を設けるために、 ドリルを所定量送り込む度にこれを一端ワークから引き抜 く手順を繰り返すことで、 切り粉 (切削屑) を外部に排出しドリルの刃詰まり による抵抗の増大 ·切削不良の発生を回避しながら、 切込み能力の維持をはか つている。
しかし、 斯かる技術を実施するには、 加工用ヘッドを昇降させる送り手段に 送り方向と平行な低周波振動を与える振動発生手段を設けた専用の穴開け装 置が必要となる。 このことにより、 一般的な装置をそのまま流用することがで きないことから新たな設備投資が必要となって、コストの高騰を招く結果とな
—る。
また、 この加工方法は、 基本的にワーク表面に対し垂直に微細孔を設ける場 合を想定したものであり、加工面の垂直線に対し所定角度以上傾斜した微細孔 を比較的硬質のワークに設ける場合には、 ワーク表面にドリル先端が傾斜して 当接する切り込み初期段階で遠心方向に弱いドリルが撓み、先端がずれたり折 損したりする。 そのため、 作業効率が著しく低下するとともに得られた微細孔 の形状精度及び位置精度が極端に低下して、期待した作業結果を得られないケ ースが多い。
この問題に対し、 特開 2 0 0 3— 2 6 0 6 1 1号公報には、 先端が半球状、 または加工面に対する傾斜角の 2倍の頂角に設定したドリルを用いて、ワーク に予備加工穴を設けることによりその後のドリル切削時において、位置決め精 度よく傾斜孔を設けることを可能とした傾斜孔の加工方法が提案されている。
しかしながら、 この加工方法による予備加工穴は、 ドリル回転軸線が切削予 定線から遠心方向に遊動しないようにドリル先端部を保持するものではなく、 単にドリル回転軸 fc対する垂直面をワーク表面に形成しただけのものである。 そのため、 僅かな力で湾曲 ·折損する微細孔用の極細ドリルを用いて硬質のヮ ークに傾斜微細孔を設ける場合には、僅かな誤差でもドリル折損のトラブルが 多発してしまう。 また、 この場合にドリル先端の僅かなズレが加工精度の著し い低下に繋がることから、精密な傾斜微細孔を設ける手段としては不充分であ る。
さらに、 既存の加工方法を用いて傾斜微細孔を設ける技術に共通して、 図 9 (A) の拡大した縦断面部分図に示すように、 ワーク 1の裏面までドリル 3 0 を貫通させる場合に、 ドリル 3 0先端側一部分が裏面に露出する時点でその露 出位置の反対側にドリル 3 0の先端で受面 1 0 0が形成されるため、 ドリル 3 0先端部が抵抗の少ない方に向かって受面 1 0 0上を滑ることなり、 ドリル 3 0自体が湾曲して切削予定線 Xに対してズレが生じてしまう。
そのため、 図 9 ( B ) に示すようにドリル 3 0の先端が矢印方向にぶれなが ら貫通動作に伴ない途中で折損するトラブルが多発する。 また、 ドリル 3 0先 端部が裏面まで貫通することにより、開口部の縁にめくれ 1 0 1や亀裂を形成 するとともに微細孔 1 0自体も出口部分で湾曲するため、その仕上がり形状精 度が極端に悪化することになる。 発明の開示
本発明は、 上記のような問題点を解決しょうとするものであり、 比較的硬質 の素材からなるワークに所定角度傾斜した微細孔を貫通して設けるための傾 斜微細孔加工方法について、微細孔をより大きな傾斜角でより深く穿設可能と しながら、その形状精度及び位置精度を高いレベルで達成できるようにするこ とを課題とする
そこで、 本発明は、 ワーク表面への垂直線に対し所定角度傾斜しているとと もにワーク裏面への垂直線に対し所定角度傾斜した切削予定線に、 ドリルの回 転軸線を一致させるようにして所定の送りピッチで送りながらワークに微細 孔を貫通して設ける傾斜微細孔加工方法において、 ドリルの径と略同サイズの 内径を有しドリルの先端部を保持してその回転軸線の遠心方向への遊動を規 制するガイド孔を、エンドミルを用いて中心軸線が切削予定線に一致するよう にワーク表面から略円柱状に切削して設け、次いでこのガイド孔にドリルの先 端部を挿入しドリル切削工程を開始して、穴開け加工のアプローチ工程でガイ ド孔によりドリルの切削位置 ·切削方向をガイドして切削予定線に一致させる ものとし、 その後、 前記ドリルの先端側一部分がワーク裏面に露出する直前か らドリルの先端部が完全に貫通するまでの範囲を、 ドリルの送り動作なしに所 定数回転させてから所定距離を回転させながら送る動作を複数回繰り返す、プ 口ファイル加工を実施することを特徴とするものとした。
即ち、比較的硬質のワークに微細孔用の極細ドリルを用いて傾斜微細孔を貫 通して設ける際に、 センタードリルで予備加工穴を設ける場合は、 傾斜角が大 きいとドリル先端がワークの傾斜面に食い込まずに滑って湾曲したりズレ動 いたりして正確に予備加工穴を設けることが困難であり、 且つ、 ドリルを予備 加工穴の底面に当接してもその先端が保持されずに回転軸線が正しい位置'方 向にガイドされにくかったのに対し、上述のようにエンドミルでガイド孔を設 ける場合は、 エンドミルの回転軸線に対し切削面が垂直であるため、 大きく傾 斜したワーク面でも滑りにくく正確な位置 ·角度 ·深さで円柱状に穿設するこ とが可能となり、挿入されたドリル先端部がガイド孔内で遊動を規制されて正 確な位置 ·方向にガイドされるため、 誤差やトラブルの発生しやすい穴開け作 業初期段階において、 精度の高い切削を行えるようになる。 これに加えて、 切 削予定線に対し垂直線が傾斜したワーク裏面にドリル先端側が貫通する際に、 プロファイル加工を実施することでドリル折損や開口部の変形を有効に回避 できるものとなる。
この場合、 そのプロファイル加工は、 送り動作のない回転が各々 1乃至 2回 転であり、 回転させながら送る距離が各々 0 . 5 m乃至 1 . 5 mであるも のとすれば、微細孔の傾斜レベルに応じて裏側開口部の形状精度を確保しやす いものとなる。
さらに、 上述した傾斜微細孔加工方法において、 ドリル切削工程の際に、 ヮ ーク内にドリルを所定距離送り込む度に、 ドリルを引き抜いて新しいものに交 換してから作業を続行することを特徴とするものとすれば、切り粉がドリル刃 に詰まることによる切削能力の低下を、 ドリルの引き抜きで切り粉を排出する とともに刃の摩耗に応じて新しいドリルに替えることで、切削能力を高レベル で維持することができ、 より深い切削を実施できるものとなる。
さらにまた、 上述した傾斜微細孔加工方法において、 そのドリル切削工程に おけるドリル回転速度を 7 5 0 0 r p m乃至 1 2 5 0 0 r p mとし、その送り ピッチをワークの素材硬度とドリル径に応じて 1 . O m乃至 6 . 0 i mの範 囲で選択したものとすれば、所定の作業効率を確保しながらドリルの破損トラ ブルを回避しやすいものとなる 図面の簡単な説明
図 1は本発明における実施の形態の傾斜微細孔加工方法の手順を説明する ための縦断面図である。
図 2は図 1の手順におけるアプローチ工程を説明するための縦断面図であ る。
図 3 (A) 及び (B ) は図 2のアプローチ工程の詳細を説明するための拡大 した縦断面図、 (C ) は (A) のガイド孔の平面図である。
図 4は図 1の手順におけるプロファイル加工を説明するための拡大した縦 断面図である。
図 5は実施例 1による手順を説明するための縦断面図である。
図 6は実施例 1により得られた微細孔の表側顕微鏡写真である。
図 7は実施例 1により得られた微細孔の裏側顕微鏡写真である。
図 8は実施例 1により得られた微細孔の表側開口部と裏側開口部の孔径測 定結果を示すグラフである。
図 9 ( A) 及び (B ) は従来例を説明するための縦断面図である。 発明を実施するための最良の形態
以下に、図面を参照しながら本発明を実施するための最良の形態を説明する。 図 1乃至図 4は、本発明における実施の形態である傾斜微細孔加工方法の手 順を説明するための縦断面図を示している。 図 1を参照して、 本実施の形態の 傾斜微細孔加工方法は、ステンレス鋼やセラミックスなどの比較的硬質の素材 からなるワーク 1に、 直径 0 . 3 mm未満、 特に 0 . 1 mm以下の微細孔を、 ワーク 1表面への垂直線に対し 0 ° 〜4 5 ° 、 特に 4 0 ° 〜4 5 ° の範囲の傾 斜角 0で、径 d X 5以上の孔長 gの深さで切削予定線 Xに沿って穿設する場合 に有用性が高いものであり、得られる微細孔 1 0の形状精度が予定孔径土 5 % の公差範囲に収まる精度を達成することを目標としている。
その工程における特徴は、 ドリル 3 0 aによる穴開け工程初期導入段階 (ァ プロ一チェ程) において、 ドリル回転軸線を遠心方向に遊動しないように規制 して切削位置 ·切削方向をガイドさせるための径 dと略同サイズのガイド孔 1 0 aを、エンドミル 2を用いて略円柱状に穿設してからドリル切削を行う点に ある。 この場合、 ガイド孔 1 0 aが径 dよりも大径であると内部でドリル 3 0 aが遊動してドリル 3 0 aの切削位置 ·切削方向に誤差が生じゃすいとともに 微細孔の開口部が当初から拡大されて孔径精度の低下を招き、径 dよりも小径 であると傾斜角度が大きい場合にドリル先端が滑りやすくなり正しい位置に 保持されにくいものとなる。
また、 この特徴に加えて、 ドリル切削工程で送り量 c毎にドリルを 3 0 aか ら 3 0 b、 3 0 cと新しいものに交換する点、 微細孔 1 0をワーク 1の裏面ま で貫通して設ける場合に、 ドリル 3 0 c先端側一部分が裏面に露出する直前か ら先端部が完全に貫通するまでの範囲で、所謂プロファイル加工を実施する点 も特徴部分となっている。 尚、 以下の各工程において、 切削時に適当な切削油 (マシン油) を用いるこ と、 及ぴ、 微細孔の両開口部のバリ取り ·研磨等の仕上げ加工を施す点は、 従 来技術とほぼ同様であるため詳細な説明は省略する。 また、 ワーク固定手段、 モータ、加工へッド、送り手段等を有する穴開け装置の構成'機能についても、 一般的な装置をそのまま使用可能であることから、その詳細な説明を省略する ものとする。
先ず、 図 2, 図 3を参照しながらアプローチ工程について説明する。 ワーク 1が水平面に対し例えば 4 0 ° 〜4 5 ° の比較的大きな傾斜角 0でワーク固 定手段により支持 ·固定され、 その垂直線に対し傾斜角 0を有する切削予定線 Xに沿って微細孔 1 0を設ける加工方法において、アプローチ工程は切削作業 における初期段階において行われる。 この場合、 穿設に使用するドリルの径 d と基本的に同サイズの径を有するェンドミル 2を用いて、切削予定線 Xに沿つ て略円柱状のガイド孔 1 0 aを所定の深さ bで穿設することが好ましい。即ち、 ドリル径 d ( =ガイド孔の径) よりも小径のエンドミルを用いてガイド孔のサ ィズまで孔径を拡大して設けることは可能だが、余分な手間と時間を要するか らである。
このエンドミル 2によるガイド孔 1 0 aの穿設においては、 その径、 ワーク 1の硬度、傾斜角 0の大きさに応じて回転速度及び送りピッチを適宜設定する が、例えば送りピッチはエンドミル 2の破損を回避しながら所定の作業効率を 確保する観点で、 ワーク 1がステンレス鋼で傾斜角が 4 0 ° 〜4 5 ° の場合に 通常 1 . 0 m程度が適当である。 図 3 (A) , ( B ) の拡大部分図を参照して、 エンドミル 2により穿設する ガイド孔 1 0 aの深さ bは、 ドリル 3 0 a先端部を挿入した場合にその外周面 の下端線 3 1 0付近でガイド孔 1 0 aの内周面に接する部分 (弧) の長さが、 図 3 ( C ) の平面図に示すようにドリル 3 0 a外周の 5 0 %を超えて、 斜線で 示すドリル 3 0 a横断面のうち範囲 Yを内周面で保持可能な略円柱状の孔を 形成させる深さとする。
これにより、 ドリル 3 0 aが駆動した場合に回転軸線が遠心方向に遊動しな いように規制されて固定されるものとなる。 即ち、 従来例において傾斜微細孔 を穿設するのにセンタードリルで予備加工穴を設ける際、 ワークの素材硬度が 高かったり傾斜角が大きかつたりするとドリルが傾斜面で滑つて橈んだり折 損したりするため、 ワーク表面に対し垂直方向に設けざるを得ず、 しかも浅い 穴となるためにその後の切削において正しい切削位置,方向にドリルをガイド することが困難であつたのに対し、本実施の形態において円柱状のガイド孔 1 0 aを深さ bで設けたことで、 ドリル 3 0 aによる穴開け作業工程初期段階に おいて、 ドリルの切削位置 ·切削方向が正しくガイドされて精度の高い切削作 業の実施を可能としたものである。
次に、 再度図 1を参照しながらドリル 3 0 a , 3 0 b , 3 0 cによる切削ェ 程についてさらに詳細に説明すると、 この切削工程ではドリル径とワーク 1の 素材硬度に応じてドリル回転速度を 7 5 0 0 r p m乃至 1 2 5 0 0 r p mの 範囲に設定しながら、 送りピッチを 1 . 乃至 6 . O ^ mの範囲で設定し て送り動作を繰り返す。 これにより、 所定レベルの作業効率を確保しながらド リルの破損を回避して、 精度高く微細孔を穿設できるようになる。 また、 これ に加えて、切り粉による刃詰まりと刃先の摩耗状況に応じて設定された所定の 送り量 C毎に、 ドリルを抜いて新しいものに取り替える手順を有している。 即ち、 最初のドリル 3 0 aを送り量 c送って切削した段階で、 これを抜いて 新しいドリル 3 0 bに取り替える。 このドリル 3 0 bでさらに送り量 c送って 切削してから、 同様に新しいドリル 3 0 cに取り替えて、 さらに送り量 c送つ て切削することにより微細孔 1 0が貫通する。 このような手順を採用したこと で、 ドリルを抜く度に刃の間に詰まった切り粉が外部に排出され、 切削抵抗を 軽減させた状態にして作業効率を高めることが可能となる。 また、 新しいドリ ルに替えることで刃が摩耗,高温化して切削機能が低下した状態も同時に解消 することができ、より細いドリルでより深い微細孔を効率的に設けられるよう になる。
図 4を参照しながら穴開け工程の最終段階であるプロファイル工程につい て説明する。 従来の傾斜微細孔加工方法においては、 傾斜した微細孔をワーク 1の裏面まで貫通して設ける場合に、図 9に示したようにドリル 3 0先端部が 裏面に突出する直前に、 当たり面 1 0 0の上を先端の傾斜面 (切削面) が滑つ て抵抗の少ない方にドリル 3 0先端部が湾曲して折損しやすくなるとともに、 開口部が変形 ·破断して孔の形状精度が極端に低下するトラブルを生じていた。 そこで、 本実施の形態においては、 図 4に示すようにドリル 3 0 c先端側一 部分 (角部分) がワーク 1裏面に露出する直前からドリル 3 0 c先端部が完全 に貫通するまでの幅 f の範囲を、 ドリル 3 0 cの送り動作なしに所定数回転さ せた後、 所定距離を回転させながら送る動作を複数回繰り返す、 所謂プロファ ィル加工の工程を実施するものとした。
例えば、 ワーク 1がステンレス鋼等の比較的硬度が高い素材で微細孔の傾斜 角 0が 4 0 ° 以上と比較的大きな場合に、 径 0 . 1 0 mm以下のドリル 3 0 c を 1 0 0 0 0 r p m程度の回転速度でワーク 1裏面まで貫通させる際に、 プロ ファイル加工による幅 f は、 ドリル径 dの 1 . 0〜 1 . 5倍程度となる。
そして、 このプロファイル加工における送り動作なしの回転は、 通常 1〜 2 回転が適当であり、 回転させながら送るピッチは通常 1 . 0 m程度が適当な ものとなる。 これは、 送り動作なしの回転が 2回を超えると刃の切れが悪くな りやすく、 送りピッチがこれを超えるとドリル 3 0 cが湾曲 '破折しやすくな るからである。
上述した工程は、一般的な穴開け装置をそのまま用いて実施できることから、 専用の装置を新たに導入する必要がないものである。 また、 その工程において 過大な手間と時間を要しないことから、コストを過分に高騰させることなく実 施することができる。 そして、 本実施の形態の傾斜微細孔加工方法を実施する ことにより、 特別な熟練を要することなく比較的硬質のワークに対し、 より大 きな傾斜角でより細い微細孔をより深く設けることができ、孔の形状精度及び 位置精度を高いレベルで達成することが可能となるものである。 実施例 1
以下に、 実施例により本発明をさらに詳細に説明する。 図 5は本実施例にお ける傾斜微細孔加工方法の手順を説明するための縦断面図である。図から分か るように、本実施例は前述した実施の形態の内容を具体的に実施するものであ り、 作業手順の構成は同一である。 そして、 これにより得られた孔の精度につ いて、外観写真から微細孔の配置状態を確認するとともに微細孔開口部の顕微 鏡写真から各孔径を測定して検討した。
(実施内容)
a. 被加工材料 (ワーク 1) 素材: SUS SK5、 硬度 ·· HRA50以上、 厚さ : 0. 4mm b. 作業目標 (微細孔 1 0) 孔形状:径 (d) 0. 1 0 OmmX孔長 (g) 0. 566mmX 8個 (円形配置) 、 傾斜角度: 45° 、 精度:予定孔径に対する公差 5 %以内 c. ドリル (3 0 a, 30 b, 3 0 c) 直径: 0. 1 0111111、 刃長: 0. 8 mm、 製品名:マイクロドリル NS MD、 日進工具社製、 エフエーシステム社販売 d. エンドミル(2) 直径: 0. 1 Omm、 刃長: 0. 5 mm、 製品名: NSME 23 0、 日進工具社製、 エフエーシステム社販売 e. アプローチ工程 (エンドミル切削部分) 回転 速度: 1 0000 r pm、 送りピッチ: 1. O m、 深さ (b) : 0. 0 2 5 mm、 傾斜角度: 45° 、 使用装置: MAK I NO V 22 f. 切削工程 回転速度: 1 0000 r pm、 送りピッチ: 1· 0 m、 送り量 c : 0. 20 Omm (c X 3 = 0. 6 0 Omm) 、 傾斜角度: 45° 、 プロファイル加工: (2回転 +送り幅 1. Ο ΠΙ) X 1 20回 (幅 f 、 0. 1 2 Omm) 、 切削油: 不揮発油、 製品名:ュシロンカツトアーバス BM40 5、 使用装置: MAK I NO V 22 (結果)
総ての微細孔 (8個) で貫通が確認され、 図 6の微細孔表側開口部の顕微鏡 写真、 及び図 7の微細孔裏側開口部の顕微鏡写真に示すように、 各々比較的良 好な孔の形状精度が得られた。 また、 孔の精度も図 8のグラフに示すように実 測した孔径から総て公差 ± 0 . 0 0 5 mm ( 5 % ) 以内を達成した。
尚、 上述した実施例において微細孔の傾斜角は 4 5 ° で実施したが、 本発明 はこの範囲に限定されるものではなく、 ドリル径とワークの硬度、 孔長等の条 件等に応じて、 この傾斜角よりも小さい場合は当然のことながら、 傾斜角が大 きい状況においても実施可能な場合もあり、それぞれ上述した効果が期待でき るものである。
以上、 述べたように、 比較的硬質のワークに微細孔を所定の傾斜角で貫通し て設けるための傾斜微細孔加工方法について、 本発明により、 微細孔をより大 きな傾斜でより深く穿設可能としながら、孔の形状精度及び位置精度を高いレ ベルで達成することができた。 産業上の利用可能性
微細孔の傾斜レベルに応じてワークの裏側開口部まで正確に貫通すること ができる本発明によると、微細孔をより大きな傾斜角でより深く穿設しながら その形状精度及び位置精度を高いレベルで達成可能であることより、例えば半 導体製造業や医療機器製造業などの産業において広く利用可能である。

Claims

請 求 の 範 囲 ワーク表面への垂直線に対し所定角度傾斜しているとともにワーク裏 面への垂直線に対し所定角度傾斜した切削予定線に、 ドリルの回転軸線 を一致させるようにして所定の送りピッチで送りながら前記ワークに 微細孔を貫通して設ける傾斜微細孔加工方法において、 前記ドリルの径 と赂同サイズの内径を有し前記ドリルの先端部を保持して前記回転軸 線の遠心方向への遊動を規制するガイド孔を、 エンドミルを用いて中心 軸線が前記切削予定線に一致するように前記ワーク表面から略円柱状 に切削して設け、 次いで前記ガイド孔に前記ドリルの先端部を挿入しド リル切削工程を開始して、 穴開け加工のアプローチ工程で前記ガイド孔 により前記ドリルの切削位置 ·切削方向をガイドして前記切削予定線に 一致させるものとし、 その後、 前記ドリルの先端側一部分が前記ワーク 裏面に露出する直前から前記ドリルの先端部が完全に貫通するまでの 範囲を、 前記ドリルの送り動作なしに所定数回転させてから所定距離を 回転させながら送る動作を複数回繰り返すプロファイル加工を実施す ることを特徴とする、 傾斜微細孔加工方法。
前記プロファイル加工は、 前記送り動作のない回転が各々 1乃至 2回転 であり、 前記回転させながら送る距離が各々 0 . 5 ^ m乃至 1 . 5 i m である、 ことを特徴とする請求の範囲 1項に記載した傾斜微細孔加工方 法。
3. 前記ドリル切削工程の際に、 前記ワーク内に前記ドリルを所定距離送り 込む度に、 前記ドリルを引き抜いて新しいものに交換してから作業を続 行する、 ことを特徵とする請求の範囲 1または 2項に記載した傾斜微細 孔加工方法。
4. 前記ドリル切削工程におけるドリル回転速度は、 7 50 0 111乃至1 250 0 r pmとされ、 前記送りピッチが前記ワークの素材硬度と前記 ドリルの径に応じて 1. O Atm乃至 6. 0 mの範囲で選択されたこと を特徴とする請求項の範囲 1, 2または 3項に記載した傾斜微細孔加工 方法。
PCT/JP2008/064665 2007-08-17 2008-08-11 傾斜微細孔加工方法 WO2009025250A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008002220T DE112008002220T5 (de) 2007-08-17 2008-08-11 Schrägfeinloch-Bearbeitungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-212512 2007-08-17
JP2007212512A JP4126081B1 (ja) 2007-08-17 2007-08-17 傾斜微細孔加工方法

Publications (1)

Publication Number Publication Date
WO2009025250A1 true WO2009025250A1 (ja) 2009-02-26

Family

ID=39704940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064665 WO2009025250A1 (ja) 2007-08-17 2008-08-11 傾斜微細孔加工方法

Country Status (3)

Country Link
JP (1) JP4126081B1 (ja)
DE (1) DE112008002220T5 (ja)
WO (1) WO2009025250A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189281A (zh) * 2011-05-31 2011-09-21 长城汽车股份有限公司 一种卧式镗床上加工汽车后扭转梁的方法
RU2448813C1 (ru) * 2010-10-05 2012-04-27 Иван Иванович Михеев Станок для сверления отверстий малого диаметра
CN104646707A (zh) * 2014-06-14 2015-05-27 柳州市安龙机械设备有限公司 细长轴斜孔的加工方法
CN109909526A (zh) * 2019-04-03 2019-06-21 南通银宝山新科技有限公司 钻孔加工装置及加工斜孔方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002220018A1 (en) 2000-11-29 2002-06-11 Colorado State University System for in-vitro fertilization with spermatozoa separated into x-chromosome and y-chromosome bearing populations
US7169548B2 (en) 2002-09-13 2007-01-30 Xy, Inc. Sperm cell processing and preservation systems
DK2309245T3 (en) 2003-03-28 2016-01-04 Inguran Llc Methods for providing sex-sorted animal semen
CN102335775A (zh) * 2011-09-14 2012-02-01 中国航空工业第六一八研究所 一种适用于数控加工的高精度微孔钻削加工方法
CN102528112B (zh) * 2012-02-07 2013-12-18 济南重工股份有限公司 非回转工件的深孔加工工艺
CN102601406A (zh) * 2012-03-28 2012-07-25 北京中科科仪股份有限公司 一种微孔成型方法
CN103111651A (zh) * 2013-02-22 2013-05-22 胜宏科技(惠州)股份有限公司 多层pcb板压合后定位孔钻孔靶标的设计方法
KR101602058B1 (ko) * 2014-09-26 2016-03-10 정정영 머시닝센터를 이용한 베어링의 터진 핀홀 가공방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117691U (ja) * 1976-03-03 1977-09-06
JPS56107862A (en) * 1980-01-29 1981-08-27 Toshiba Corp Machine tool
JPS60201811A (ja) * 1984-03-22 1985-10-12 Toshiba Corp 穴明け加工装置
JPS61152307A (ja) * 1984-12-26 1986-07-11 Riken Corp ドリルによる穿孔方法
JPH0343109A (ja) * 1989-07-05 1991-02-25 Fuji Heavy Ind Ltd ドリルによる斜孔の穿孔方法
JPH0516023U (ja) * 1991-08-02 1993-03-02 本田技研工業株式会社 被加工物におけるドリル孔穿設構造
JPH06198505A (ja) * 1992-12-29 1994-07-19 Ntn Corp 転がり軸受軌道輪の加工方法
JP2007216334A (ja) * 2006-02-16 2007-08-30 Miyazu Seisakusho Co Ltd 穴の加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286708A (ja) 1997-04-11 1998-10-27 Akimichi Koide 微細孔加工方法及びこれに用いる加工装置
JP2003260611A (ja) 2002-03-08 2003-09-16 Hitachi High-Technologies Corp 傾斜孔加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117691U (ja) * 1976-03-03 1977-09-06
JPS56107862A (en) * 1980-01-29 1981-08-27 Toshiba Corp Machine tool
JPS60201811A (ja) * 1984-03-22 1985-10-12 Toshiba Corp 穴明け加工装置
JPS61152307A (ja) * 1984-12-26 1986-07-11 Riken Corp ドリルによる穿孔方法
JPH0343109A (ja) * 1989-07-05 1991-02-25 Fuji Heavy Ind Ltd ドリルによる斜孔の穿孔方法
JPH0516023U (ja) * 1991-08-02 1993-03-02 本田技研工業株式会社 被加工物におけるドリル孔穿設構造
JPH06198505A (ja) * 1992-12-29 1994-07-19 Ntn Corp 転がり軸受軌道輪の加工方法
JP2007216334A (ja) * 2006-02-16 2007-08-30 Miyazu Seisakusho Co Ltd 穴の加工方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448813C1 (ru) * 2010-10-05 2012-04-27 Иван Иванович Михеев Станок для сверления отверстий малого диаметра
CN102189281A (zh) * 2011-05-31 2011-09-21 长城汽车股份有限公司 一种卧式镗床上加工汽车后扭转梁的方法
CN102189281B (zh) * 2011-05-31 2013-02-13 长城汽车股份有限公司 一种卧式镗床上加工汽车后扭转梁的方法
CN104646707A (zh) * 2014-06-14 2015-05-27 柳州市安龙机械设备有限公司 细长轴斜孔的加工方法
CN109909526A (zh) * 2019-04-03 2019-06-21 南通银宝山新科技有限公司 钻孔加工装置及加工斜孔方法

Also Published As

Publication number Publication date
JP4126081B1 (ja) 2008-07-30
JP2009045680A (ja) 2009-03-05
DE112008002220T5 (de) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2009025250A1 (ja) 傾斜微細孔加工方法
US7278806B1 (en) Two edge deburring tool
KR101825173B1 (ko) 바늘 팁의 근위부에 홀, 슬롯 및/또는 오목부를 형성하는 방법 및 장치
JP2006175238A (ja) 歯科技術的な成形部分を製作するためのブランクおよび該成形部分を製作する方法
JP2011073129A (ja) 穴あけ用ドリル
WO2019049258A1 (ja) 深穴加工方法
JP2005205593A (ja) ボールノーズ・エンドミル
CN106181674B (zh) 触针的制造方法以及触针
JP7068567B2 (ja) 最適孔径測定方法、及び最適孔径測定装置
JPH09117914A (ja) 切り屑排出用の溝を有するドリルの刃
JP3474549B2 (ja) エンドミルによる溝加工方法
KR100817458B1 (ko) 드릴
KR101531381B1 (ko) 절삭 연마 장치
JP2003024334A (ja) 縫合針及びその製造方法
JP5083276B2 (ja) 微細加工用工具および脆性材料の微細加工方法
JP2003260611A (ja) 傾斜孔加工方法
JP2009248233A (ja) プリント基板用小径ドリル及び小径ドリルのシンニング形状加工方法
JP2007229899A (ja) ドリル
JP4193360B2 (ja) ドリル
JP4349384B2 (ja) 微細加工用工具および脆性材料の微細加工方法
JP5623716B2 (ja) 加工用ドリル、加工装置、及び加工体の製造方法
CN207804321U (zh) 骨科用锥形钻头
JP2009083071A (ja) シート面加工工具およびシート面加工方法並びにそのシート面加工工具を用いたインジェクタの製造方法
JP2005205566A (ja) ネジ加工用工具
JP2005205520A (ja) 切削インサート、切削工具、自動旋盤、及びセンター穴加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792511

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008002220

Country of ref document: DE

Date of ref document: 20100826

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08792511

Country of ref document: EP

Kind code of ref document: A1