WO2009019991A1 - ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 - Google Patents

ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 Download PDF

Info

Publication number
WO2009019991A1
WO2009019991A1 PCT/JP2008/063340 JP2008063340W WO2009019991A1 WO 2009019991 A1 WO2009019991 A1 WO 2009019991A1 JP 2008063340 W JP2008063340 W JP 2008063340W WO 2009019991 A1 WO2009019991 A1 WO 2009019991A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
fuel
temperature
hybrid vehicle
travel
Prior art date
Application number
PCT/JP2008/063340
Other languages
English (en)
French (fr)
Inventor
Takashi Watanabe
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/452,077 priority Critical patent/US8290650B2/en
Priority to EP08791590A priority patent/EP2174849B1/en
Priority to CN2008801021351A priority patent/CN101772444B/zh
Publication of WO2009019991A1 publication Critical patent/WO2009019991A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03414Arrangements or special measures related to fuel tanks or fuel handling associated with the fuel tank for cooling heated fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/211Fuel quality, e.g. water content due to age of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to travel control of a hybrid vehicle equipped with an internal combustion engine and an electric motor for vehicle travel.
  • a hybrid vehicle is a vehicle equipped with a power storage device, an inverter, and an electric motor driven by an inverter as a power source for traveling the vehicle, in addition to a conventional internal combustion engine.
  • hybrid vehicle capable of traveling by switching between a first traveling mode in which the internal combustion engine is stopped and a second traveling mode in which the internal combustion engine is operated according to the vehicle state.
  • Dry corrosion is a phenomenon in which aluminum is corroded by an alcohol-containing fuel.
  • oxidation corrosion of aluminum proceeds rapidly in an environment of high temperature and low moisture concentration.
  • the fuel pipe is supplied to the fuel pipe.
  • the cooling effect of the fuel piping due to the fuel that is produced cannot be obtained, and the fuel piping becomes hot due to the effects of solar radiation and the atmosphere around the engine, causing dry corrosion.
  • an object of the present invention is to provide a hybrid vehicle capable of suppressing the occurrence of dry corrosion in a fuel pipe.
  • Another object of the present invention is to provide a hybrid vehicle control method capable of suppressing the occurrence of dry corrosion in fuel piping, and a computer-readable recording medium storing a program for causing a computer to execute the control method. It is to provide.
  • the hybrid vehicle includes the power storage device, the electric motor, the internal combustion engine, the fuel pipe, the first temperature estimation unit, and the travel mode control unit.
  • the power storage device stores electric power for running the vehicle.
  • the electric motor receives driving power from the power storage device and generates driving power.
  • the fuel pipe is at least partially made of aluminum and is used to supply fuel from the fuel tank to the internal combustion engine.
  • the first temperature estimation unit estimates the temperature of the fuel piping.
  • the travel mode control unit controls switching of travel modes including a first mode (EV mode) in which the internal combustion engine is stopped and a second mode (HV mode) in which the internal combustion engine is operated.
  • the traveling mode control unit switches from the first mode to the second mode when the temperature of the fuel pipe estimated by the first temperature estimating unit during traveling in the first mode is equal to or higher than the first specified value. Change the driving mode.
  • the hybrid vehicle further includes a second temperature estimation unit.
  • the second temperature estimation unit estimates the temperature of the fuel.
  • the travel mode control unit further includes a second temperature When the fuel temperature estimated by the degree estimation unit is equal to or higher than the second specified value, the travel mode is set to the first mode.
  • the hybrid vehicle further includes a charge state estimation unit.
  • the charging state estimation unit estimates a state quantity (SOC) indicating a charging state of the power storage device.
  • the traveling mode control unit further sets the traveling mode to the second mode when the state quantity (SOC) is smaller than the third specified value.
  • the hybrid vehicle further includes an alcohol concentration detection device and a moisture concentration detection device.
  • the alcohol concentration detection device is configured to detect the concentration of alcohol contained in the fuel.
  • the moisture concentration detection device is configured to detect the moisture concentration contained in the fuel.
  • the travel mode control unit starts from the first mode only when the alcohol concentration detected by the alcohol concentration detection device and the water concentration detected by the water concentration detection device satisfy predetermined conditions. Switch the running mode to the second mode.
  • the hybrid vehicle further includes a power generation device and a charging device.
  • the power generation device is configured to generate electricity using kinetic energy generated by the internal combustion engine and to charge the power storage device.
  • the charging device is configured to be able to charge the power storage device by receiving power supplied from a power source outside the vehicle.
  • the control method is a control method for a hybrid vehicle.
  • the hybrid vehicle includes a power storage device, an electric motor, an internal combustion engine, and a first temperature estimation unit.
  • the power storage device stores electric power for running the vehicle.
  • the electric motor generates a driving force by receiving electric power from the power storage device.
  • the fuel pipe is at least partially made of aluminum and is used to supply fuel from the fuel tank to the internal combustion engine.
  • the first temperature estimation unit estimates the temperature of the fuel pipe.
  • the control method includes the step of determining whether or not the vehicle is traveling in the first mode (EV mode) in which the vehicle is traveling with the internal combustion engine stopped, and the temperature of the fuel pipe estimated by the first temperature estimating unit is A step of determining whether or not the specified value is equal to or greater than 1, and operating the internal combustion engine from the first mode when it is determined that the temperature of the fuel pipe is equal to or greater than the first specified value during traveling in the first mode. And a step of switching the driving mode to the second mode (HV mode).
  • the hybrid vehicle further includes a second temperature estimation unit. The second temperature estimation unit estimates the temperature of the fuel.
  • the control method includes a step of determining whether or not the temperature of the fuel estimated by the second temperature estimation unit is equal to or higher than the second specified value, and that the temperature of the fuel is determined to be equal to or higher than the second specified value. And a step of setting the travel mode to the first mode.
  • the hybrid vehicle includes a step of estimating a state quantity (SOC) indicating a charging state of the power storage device, a step of determining whether the state quantity (SOC) is less than a third specified value, The method further includes the step of setting the travel mode to the second mode when it is determined that the quantity (SOC) is less than the third specified value.
  • the hybrid vehicle further includes an alcohol concentration detection device and a moisture concentration detection device.
  • the alcohol concentration detection device is configured to detect the concentration of alcohol contained in the fuel.
  • the moisture concentration detection device is configured to detect the moisture concentration contained in the fuel.
  • the control method further includes a step of determining whether the alcohol concentration detected by the alcohol concentration detection device and the water concentration detected by the water concentration detection device satisfy a predetermined condition. In the step of switching the traveling mode from the first mode to the second mode, the traveling mode is switched only when it is further determined that the alcohol concentration and the moisture concentration satisfy the predetermined conditions.
  • the recording medium is a computer-readable recording medium, and records a program for causing the computer to execute any of the control methods described above.
  • the traveling mode is switched from the first mode to the second mode (HV mode). Therefore, when the internal combustion engine operates, fuel is supplied from the fuel tank to the fuel pipe, and the fuel pipe is cooled by the supplied fuel.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to Embodiment 1 of the present invention.
  • Fig. 2 is a functional block diagram of the HV-ECU shown in Fig. 1.
  • Fig. 3 is a flow chart for explaining the control of the travel mode based on the temperature of the fuel pipe.
  • FIG. 4 is an overall block diagram of a hybrid vehicle according to the second embodiment.
  • FIG. 5 is a functional block diagram of the HV—ECU shown in FIG.
  • FIG. 6 is a flowchart for explaining control of the travel mode by the travel mode control unit shown in FIG.
  • FIG. 7 is a flowchart for explaining control of the travel mode in the modified example.
  • FIG. 8 is an overall block diagram of the hybrid vehicle according to the third embodiment.
  • Fig. 9 is a functional block diagram of the HV-ECU shown in Fig. 8.
  • FIG. 10 is a flowchart for explaining the driving mode control by the driving mode control unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to Embodiment 1 of the present invention.
  • hybrid vehicle 100 includes engine 2, power split device mechanism 4, motor generators 6, 10, speed reducer 8, drive shaft 12, and wheels 14.
  • the hybrid vehicle 1 0 0 includes a power storage device 1 6, a power converter 1 8, 2 0, a fuel tank 2 2, a fuel pipe 2 4, a temperature sensor 2 6, a charger 2 8, and a charge It further includes a plug 30, an engine ECU (Electronic Control Unit) 3 2, an MG—ECU 3 4, and an HV—ECU 3 6.
  • ECU Electronic Control Unit
  • the power split mechanism 4 is coupled to the engine 2, the motor generator 6, and the speed reducer 8 and distributes the power among them.
  • sun gear, planetary carrier A planetary gear having three rotating shafts of a ring gear and a ring gear can be used as the power split mechanism 4, and these three rotating shafts are connected to the rotating shaft of the engine 2 and the motor generator 6 and the input shaft of the speed reducer 8, respectively.
  • the rotating shaft of the motor generator 10 is connected to the input shaft of the speed reducer 8. That is, the motor generator 10 and the speed reducer 8 have the same rotating shaft, and the rotating shaft is connected to the ring gear of the power split mechanism 4.
  • engine 2 is incorporated in hybrid vehicle 100 as a power source for driving drive shaft 12 and motor generator 6.
  • the motor generator 6 operates as a generator driven by the engine 2 and is incorporated in the hybrid vehicle 100 as operating as an electric motor that can start the engine 2.
  • the motor generator 10 is incorporated into the hybrid vehicle 10 0 0 as a power source for driving the drive shaft 12.
  • the power storage device 16 is a chargeable / dischargeable DC power source that stores electric power for vehicle travel, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • the power storage device 16 supplies power to the power converters 18 and 20.
  • power storage device 16 is charged by receiving electric power from power converters 18 and 2 or 20 when motor generator 6 and Z or 10 generate electric power. Further, the power storage device 16 is charged by receiving power from the charger 28 when charging from a power source (not shown) connected to the charging plug 30 (not shown) outside the vehicle.
  • a large-capacity capacitor can also be used as the power storage device 16, and the power generated by the motor generators 6 and 10 and the power from the external power source are temporarily stored, and the stored power is stored in the motor generators 6 and 1. Any power buffer that can be supplied to ⁇ may be used.
  • voltage V B of power storage device 16 and current IB input / output to power storage device 16 are detected by a sensor (not shown), and the detected value is output to HV—ECU 36.
  • power converter 18 Based on signal P WM 1 from MG—ECU 34, power converter 18 converts the power generated by motor generator 6 into DC power and outputs it to power storage device 16.
  • the power converter 20 stores power based on the signal P WM 2 from the MG—ECU 3 4.
  • the DC power supplied from electric device 16 is converted into AC power and output to motor generator 10.
  • the power converter 18 converts the DC power supplied from the power storage device 16 into AC power based on the signal PWM 1 and outputs it to the motor generator 6 when the engine 2 is started.
  • the power converter 20 converts the electric power generated by the motor generator 10 into DC power based on the signal P WM 2 when the vehicle is braked or when acceleration is reduced on a downward slope, and the power storage device 1 6 Output to.
  • Each power converter 18, 20 is composed of, for example, a three-phase PWM WM (Pulse Width Modulation) inverter including switching elements for three phases.
  • the motor generators 6 and 10 are AC motors, for example, three-phase AC synchronous motors in which permanent magnets are embedded in a rotor.
  • the motor generator 6 converts the kinetic energy generated by the engine 2 into electric energy and outputs it to the power converter 18.
  • Motor generator 6 generates driving force by the three-phase AC power received from power converter 18 and starts engine 2.
  • Motor generator 10 generates vehicle driving torque by the three-phase AC power received from power converter 20.
  • the motor generator 10 also converts the mechanical energy stored in the vehicle as kinetic energy or potential energy into electrical energy and outputs it to the power converter 20 when braking the vehicle or reducing acceleration on the down slope.
  • the engine 2 is supplied with fuel from the fuel tank 2 2 through the fuel pipe 2 4. Then, the engine 2 converts the thermal energy generated by the combustion of the fuel into the kinetic energy of a moving element such as a piston or rotor, and outputs the converted kinetic energy to the power split mechanism 4. For example, if the moving element is a piston and the movement is a reciprocating movement, the reciprocating movement is converted into a rotational movement via a so-called crank mechanism, and the kinetic energy of the piston is transmitted to the power split mechanism 4.
  • a moving element such as a piston or rotor
  • the fuel tank 2 2 stores fuel supplied from the outside of the vehicle.
  • the fuel pipe 2 4 is a pipe for supplying fuel from the fuel tank 2 2 to the engine 2.
  • the fuel supply pipe connected to the fuel tank and the fuel supplied from the fuel supply pipe are supplied to the fuel injection device of the engine 2. It consists of a delivery pipe, etc. At least a part of this fuel pipe 2 4 is made of aluminum. Formed with minium. All fuel pipes 24 may be made of aluminum.
  • the temperature sensor 26 detects the temperature T 1 of the fuel pipe 24 and outputs the detection to the engine ECU 32.
  • the temperature sensor 26 is installed on the outer surface of the delivery pipe constituting the fuel pipe 24.
  • Charging plug 30 is an external charging interface that receives power for charging power storage device 16 from an external power source. Based on the signal PWM3 from the HV—ECU 36, the charger 28 converts the power from the external power source supplied to the charging plug 30 into the voltage level of the power storage device 16 and outputs it to the power storage device 16.
  • the engine ECU 3 2 controls the engine 2 based on the operation command from the HV—ECU 3 6. Further, the engine ECU 32 receives the detected value of the temperature T 1 of the fuel pipe 24 from the temperature sensor 26 and outputs the detected value to the HV—ECU 36.
  • the MG—ECU 34 receives the torque command values of the motor generators 6, 10 and the detected value of the voltage VB of the power storage device 16 from the HV—ECU 36. MG—ECU 34 drives motor generators 6 and 10 based on the received torque command value and detected value of voltage VB, and the motor current and motor rotation angle of motor generators 6 and 10, respectively. Signals PWM1 and PWM2 are generated, and the generated signals PWM1 and PWM2 are output to the power converters 18 and 20 respectively. The motor current and motor rotation angle of each motor generator are detected by a sensor not shown.
  • HV—ECU 3 6 generates various command values necessary to drive and control motor generators 6, 10 and engine 2 based on vehicle conditions such as accelerator opening, vehicle speed, and shift position.
  • the generated command value is output to MG_ECU 34 and engine ECU 3 2.
  • the HV—ECU 36 controls the traveling mode of the hybrid vehicle 100. In other words, the HV-ECU 36 controls switching between whether the engine 2 is stopped and the vehicle is driven using only the motor generator 10 (motor drive mode) or the engine 2 is operated (hybrid drive mode). (Hereafter, the electric motor drive mode is referred to as “EV mode” and the hybrid drive mode is referred to as “HV mode”. ).
  • HV_ECU 36 refers to the state of charge of power storage device 16 based on voltage VB and current IB of power storage device 16 (hereinafter referred to as “SOC (State of Charge)”). ) Is estimated, and the switching of the driving mode is controlled based on the estimated SOC. Further, here, the HV-ECU 36 receives the detected value of the temperature T 1 of the fuel pipe detected by the temperature sensor 26 from the engine ECU 32 and, based on the received detected value of the temperature T 1, according to the control structure described later. Control the running mode.
  • SOC State of Charge
  • the HV_ECU 36 generates a signal PWM 3 for driving the charger 28 when charging the power storage device 16 from an external power source connected to the charging plug 30, and uses the generated signal PWM 3 as the charger 28. Output to.
  • FIG. 2 is a functional block diagram of the HV_ECU 36 shown in FIG. Referring to FIG. 2, HV—ECU 36 includes a travel mode control unit 54, a 300 estimation unit 56, and a charge control unit 58.
  • the travel mode control unit 54 switches the travel mode based on the signal SOC from the SOC estimation unit 56 indicating the SOC of the power storage device 16 and the detected value of the temperature T 1 of the fuel pipe 24 detected by the temperature sensor 26. Control. As an example, when SOC of power storage device 16 is higher than a prescribed threshold value (for example, set to 20 to 30%), traveling mode control unit 54 sets the traveling mode to the EV mode. When the SOC of power storage device 16 reaches the above threshold value, traveling mode control unit 54 sets the traveling mode to the HV mode in order to maintain the SOC in the vicinity of the threshold value (that is, engine 2). Is activated.)
  • a prescribed threshold value for example, set to 20 to 30%
  • the traveling mode control unit 54 operates in the EV mode regardless of S0C. Prohibit traveling. That is, if running in EV mode, start Engine 2 and switch the running mode to HV mode.
  • the driving mode is forcibly set to the HV mode regardless of the SOC in order to suppress the occurrence of dry corrosion in the fuel pipe 24. That is, the fuel pipe 24 is at least partly (deliver As the fuel pipe is made of aluminum, when alcohol-containing fuel is used as the fuel, dry corrosion occurs when the temperature of the part becomes high.
  • power storage device 16 can be charged from an external power source using charger 28, and electric power supplied from the external power source can be used in EV mode. Because long-distance travel is possible, the cooling effect of the fuel pipe 24 due to the fuel supply to the fuel pipe 24 due to the engine 2 being stopped for a long time cannot be obtained. The fuel pipe 2 4 can become hot.
  • the engine 2 when the temperature T 1 of the fuel pipe 24 exceeds the temperature at which dry corrosion can occur, the engine 2 is operated by forcibly setting the traveling mode to the HV mode.
  • the fuel pipe 24 is cooled by the fuel supplied from the fuel tank 22 to the fuel pipe 24 as the engine 2 operates.
  • the engine 2 is allowed to operate when the driver depresses the accelerator pedal greatly, when the engine-driven air conditioner is operating, or when the engine is warming up. That is, during traveling in the EV mode, the engine 2 is not started unless it is necessary for driving force, and basically the motor generator 10 consumes the charging power of the power storage device 16 to drive the vehicle.
  • the SOC estimation unit 5 6 estimates the SOC of the power storage device 16 based on the detected values of the voltage VB and current IB of the power storage device 16, and sends a signal SOC indicating the estimated SOC to the driving mode control unit 5. Output to 4. Note that various known methods can be used as a method for estimating SOC.
  • the charging controller 5 8 detects each value of the voltage VAC and current IAC of the power input from the charging plug 30. Based on the above, a signal PW M 3 for driving the charger 28 is generated and output to the charger 28.
  • the voltage V A C and the current I A C are detected by sensors not shown.
  • FIG. 3 is a flowchart for explaining control of the travel mode based on the temperature T 1 of the fuel pipe 24. Note that the processing of this flowchart is performed at regular time intervals or at predetermined intervals when the vehicle is in a state where it can travel (for example, when the vehicle system is activated). Each time the condition is met, it is called from the main routine and executed.
  • traveling mode control unit 54 determines whether temperature T 1 of fuel pipe 24 is equal to or higher than a prescribed threshold value T th h 1 (step S 10).
  • the threshold value T th 1 is preset based on a predetermined temperature at which dry corrosion can occur in the fuel pipe 24.
  • traveling mode control unit 5 4 determines whether or not the current traveling mode is EV mode. Determine (Step S 2 0).
  • step S30 travel mode control unit 54 prohibits the travel in the EV mode (step S30). That is, the travel mode control unit 54 starts the engine 2 and switches the travel mode to the HV mode. As a result, fuel is supplied from the fuel tank 22 to the fuel pipe 24 as the engine 2 operates, and the fuel pipe 24 is cooled by the supplied fuel.
  • step S 1 0 if it is determined in step S 1 0 that the temperature T 1 of the fuel pipe 24 is lower than the threshold T th 1 (NO in step S 1 0), or the travel mode in step S 2 0
  • traveling mode control unit 54 cancels the prohibition of traveling in the EV mode (step S40). Therefore, in this case, the traveling mode is controlled based on S0C of power storage device 16.
  • the temperature T 1 of the fuel pipe 24 is detected by the temperature sensor 26 installed in the fuel pipe 24.
  • the temperature T 1 of the fuel pipe 24 is determined by the engine 2 It may be estimated based on the cooling water temperature, the outside air temperature around the vehicle, the temperature in the engine room, the fuel temperature, the fuel consumption, and the like.
  • the fuel pipe is running while traveling in the EV mode.
  • the driving mode is switched from the EV mode to the HV mode, so that the fuel is supplied from the fuel tank 2 2 to the fuel pipe 2 4 when the engine 2 is operated, and then supplied The fuel pipe 24 is cooled by the heated fuel. Therefore, according to the first embodiment, the temperature rise of the fuel pipe 24 is suppressed, and As a result, the occurrence of dry corrosion can be suppressed.
  • FIG. 4 is an overall block diagram of a hybrid vehicle according to the second embodiment.
  • this hybrid vehicle 10 OA further includes a temperature sensor 38 in the configuration of hybrid vehicle 100 in the first embodiment shown in FIG. 1, and is replaced with HV—ECU 36 A instead of HV—ECU 36 A. Is provided.
  • the temperature sensor 38 detects the fuel temperature T 2 and outputs the detected value to the engine ECU 3 2.
  • the temperature sensor 38 is installed in the fuel tank 22 and detects the temperature of the fuel in the fuel tank 22.
  • the ECU 36A estimates the SOC of the power storage device 16 and calculates the estimated SO
  • the HV—ECU 36A receives, from the engine ECU 32, the detected values of the fuel pipe temperature T 1 detected by the temperature sensor 26 and the fuel temperature T 2 detected by the temperature sensor 38. Based on the detected values of temperature Tl and ⁇ 2, the running mode is controlled according to the control structure described later.
  • the other functions of the HV-ECU 36 are the same as those of the HV-ECU 36 in the first embodiment.
  • the other configuration of hybrid vehicle 10 OA is the same as that of hybrid vehicle 100 according to the first embodiment.
  • FIG. 5 is a functional block diagram of the HV—ECU 36 A shown in FIG.
  • HV—ECU 36 A includes travel mode control unit 54 A instead of travel mode control unit 54 in the configuration of HV—ECU 36 in the first embodiment shown in FIG.
  • the travel mode control unit 54 A operates when the SOC of the power storage device 16 is higher than a predetermined threshold (for example, set to 20 to 30%). Is set to EV mode, and when SOC reaches the above threshold, the driving mode is set to HV mode.
  • a predetermined threshold for example, set to 20 to 30%.
  • the traveling mode control unit 54 A determines that the fuel temperature T 2 Suppresses the occurrence of dry corrosion if it is lower than the specified threshold Therefore, driving in EV mode is prohibited regardless of SOC. That is, if the vehicle is traveling in the EV mode, the engine 2 is started and the traveling mode is switched to the HV mode. -On the other hand, even if the temperature T 1 of the fuel pipe 24 rises to the threshold value T th 1 or more, the fuel supplied from the fuel tank 22 to the fuel pipe 24 will be maintained if the fuel temperature T 2 is high.
  • the cooling effect of the fuel pipe 24 cannot be expected, and conversely, the generation of dry corrosion is promoted by supplying high-temperature fuel to the fuel pipe 24. Maintain EV mode. If the SOC of power storage device 16 is reduced, power storage device 16 may be over-discharged, which may impede vehicle travel, so travel mode control unit 54 A sets the travel mode to HV mode. And
  • the operation of the engine 2 is permitted when the accelerator pedal is depressed greatly by the driver, as in the first embodiment.
  • the other configuration of the HV-ECU 36 A is the same as that of the HV-ECU 36 in the first embodiment.
  • FIG. 6 is a flowchart for explaining control of the travel mode by travel mode control unit 54A shown in FIG. The process of this flowchart is also called and executed from the main routine every certain time or when a predetermined condition is satisfied when the vehicle is in a state where it can travel (for example, when the vehicle system is being activated). .
  • traveling mode control unit 54 A determines whether or not temperature T 1 of fuel pipe 24 is equal to or higher than threshold value T t h 1 (step S 1 10). If it is determined that temperature T 1 is lower than threshold value T th 1 (NO in step S 1 10), travel mode control unit 54 A performs travel mode restriction based on temperatures T 1 and T 2. Instead, normal control is performed to switch the driving mode based on the SOC of the power storage device 16.
  • step S 1 10 If it is determined in step S 1 10 that the temperature T 1 of the fuel pipe 24 is equal to or higher than the threshold value T th 1 (YES in step S 1 10), the travel mode control unit 5 4 A determines the fuel temperature T 2 is determined to be equal to or greater than a specified threshold value T th 2 (step S 1 20).
  • This threshold value T th 2 is a predetermined temperature at which dry corrosion can occur in the fuel pipe 24. Preset based on the threshold It may be the same value as T th 1 or a different value.
  • traveling mode control unit 54A prohibits traveling in EV mode (step S160). . That is, traveling mode control unit 54 A starts engine 2 and switches the traveling mode to the HV mode. Thus, fuel is supplied from the fuel tank 22 to the fuel pipe 24 as the engine 2 operates, and the fuel pipe 24 is cooled by the supplied fuel.
  • step S 120 If it is determined in step S 120 that the fuel temperature T 2 is equal to or higher than the threshold T th 2 (YES in step S 120), the traveling mode control unit 54 A defines the SOC of the power storage device 16. It is determined whether or not the threshold value Sth is greater than or equal to (step S1 30). The threshold value S th is set to a predetermined SOC value at which the power storage device 16 is not overdischarged.
  • traveling mode control unit 54 A sets the traveling mode to the EV mode (step S 140). As a result, high-temperature fuel is not supplied to the fuel pipe 24. On the other hand, when it is determined that SOC is lower than threshold value S th (NO in step S130), traveling mode control unit 54A sets the traveling mode to HV mode (step S150). Thereby, overdischarge of the power storage device 16 is prevented.
  • the fuel temperature T 2 is detected by the temperature sensor 38.
  • the fuel temperature T 2 is provided in the cooling water temperature of the engine 2, the outside air temperature around the vehicle, and the exhaust system.
  • the estimation may be based on the catalyst temperature, vehicle speed, or the like.
  • the switching of the traveling mode is controlled in consideration of not only the temperature T 1 of the fuel pipe 24 but also the temperature T 2 of the fuel and the SOC of the power storage device 16. Therefore, according to the second embodiment, it is possible to more reliably suppress the occurrence of dry corrosion while considering the overdischarge of power storage device 16.
  • the driving mode is controlled based on the temperature T 1 of the fuel pipe 24 and the temperature T 2 of the fuel.
  • the driving mode may be controlled based on the temperature T 2 of the material. That is, in the first embodiment, the travel mode is controlled based on the temperature T 1 of the fuel pipe 24, whereas in this modification, the travel mode is controlled based on the fuel temperature ⁇ 2.
  • FIG. 7 is a flowchart for explaining control of the travel mode in this modification.
  • the processing of this flowchart is also called and executed from the main routine every predetermined time or when a predetermined condition is satisfied when the vehicle is ready to travel (for example, when the vehicle system is starting up). .
  • the traveling mode control unit in this modified example determines whether or not fuel temperature ⁇ 2 is equal to or higher than threshold value T th 2 (step S 2 10). When it is determined that temperature T 2 is equal to or higher than threshold value T th 2 (YES in step S 2 10), traveling mode control unit determines whether SOC of power storage device 16 is equal to or higher than threshold value S th. It is determined whether or not (step S 2 2 0).
  • step S 2 3 0 If it is determined that S OC is equal to or greater than the straight line St h (Y E S in step S 2 20), the travel mode control unit prohibits travel in the HV mode (step S 2 3 0). That is, the travel mode control unit stops the engine 2 and sets the travel mode to the EV mode. As a result, high temperature fuel is not supplied to the fuel pipe 24, and the occurrence of dry corrosion is suppressed.
  • step S 2 1 if it is determined in step S 2 1 0 that the fuel temperature T 2 is lower than the threshold value T th 2 (NO in step S 2 10), or the SOC is threshold in step S 2 2 0.
  • the traveling mode control unit cancels the prohibition of traveling in the HV mode (step S 2 40). This prevents overdischarge of power storage device 16. According to this modification, it is possible to suppress the occurrence of dry corrosion while taking into account overdischarge of the power storage device 16 with a simpler configuration than that of the second embodiment.
  • FIG. 8 is an overall block diagram of a hybrid vehicle according to the third embodiment.
  • hybrid vehicle 100 B further includes alcohol concentration sensor 40 and moisture concentration sensor 42 in the configuration of hybrid vehicle 100 in the first embodiment shown in FIG. HV—ECU 36 B is provided.
  • the alcohol concentration sensor 40 detects the alcohol concentration D 1 contained in the fuel and outputs the detected value to the HV—ECU 36 B.
  • a known sensor such as an electric type or an optical type can be used.
  • the moisture concentration sensor 42 detects the moisture concentration D 2 contained in the fuel and outputs the detected value to the HV—ECU 36 B.
  • various known sensors can be used.
  • FIG. 8 shows an example in which the alcohol concentration sensor 40 and the moisture concentration sensor 42 are installed in the fuel pipe 24. However, at least one of the alcohol concentration sensor 40 and the moisture concentration sensor 42 is attached to the fuel tank 22. You can install it.
  • HV—ECU 36B estimates the SOC of power storage device 16, and calculates the estimated SO
  • the switching of the driving mode is controlled.
  • the HV—ECU 36 B detects the temperature T 1 of the fuel pipe 24 from the temperature sensor 26, the alcohol concentration D 1 from the alcohol concentration sensor 40, and the water concentration D 2 from the water concentration sensor 42. Based on the value, the driving mode is controlled according to the control structure described later.
  • the other functions of the HV—ECU 36 B are the same as those in the first embodiment.
  • hybrid vehicle 100 B Same as CU 36.
  • the other configuration of hybrid vehicle 100 B is the same as that of hybrid vehicle 100 according to the first embodiment.
  • FIG. 9 is a functional block diagram of the HV-ECU 36 B shown in FIG.
  • HV—ECU 36 B includes a travel mode control unit 54 B instead of travel mode control unit 54 in the configuration of HV—ECU 36 in the first embodiment shown in FIG. .
  • the travel mode control unit 54 B operates when the SOC of the power storage device 16 is higher than a specified threshold value (for example, set to 20 to 30%). Is set to EV mode and SOC reaches the above threshold And the driving mode is HV mode.
  • a specified threshold value for example, set to 20 to 30%.
  • the temperature T 1 of the fuel pipe 24 is equal to or higher than the threshold value T th 1
  • the alcohol concentration D 1 is equal to or higher than the specified threshold value
  • the moisture concentration D 2 is equal to the specified threshold value.
  • the driving mode control unit 54 B prohibits driving in the EV mode regardless of the SOC. That is, if the vehicle is traveling in the EV mode, the engine 2 is started and the traveling mode is switched to the HV mode.
  • the operation of the engine 2 is permitted when the accelerator pedal is depressed greatly by the driver, as in the first embodiment.
  • the other configuration of the HV-ECU 36 B is the same as that of the HV-ECU 36 in the first embodiment.
  • FIG. 10 is a flowchart for explaining control of the travel mode by travel mode control unit 54B shown in FIG.
  • the process of this flowchart is also called from the main routine and executed every predetermined time or every time a predetermined condition is satisfied when the vehicle is in a state where it can travel (for example, when the vehicle system is activated).
  • this flowchart further includes steps S 12 and S 14 in the flowchart shown in FIG. That is, if it is determined in step S10 that the temperature T1 of the fuel pipe 24 is equal to or higher than the threshold value Tth1 (YES in step S10), the travel mode control unit 54B It is determined whether or not the alcohol concentration D1 in the medium is greater than or equal to a specified threshold value Dth1 (step S12).
  • this threshold value D thi is a predetermined value that can cause dry collision. Is preset based on the alcohol concentration.
  • step S 1 2 If it is determined that the alcohol concentration D 1 is equal to or greater than the threshold value D th 1 (YES in step S 1 2), the driving mode control unit 5 4 B indicates that the moisture concentration D 2 in the fuel is the specified threshold value. It is determined whether or not D th 2 or less (step S 14).
  • the threshold value D th 2 is set in advance based on a predetermined moisture concentration at which dry corrosion can occur. If it is determined that the moisture concentration D 2 is equal to or less than the threshold value D t h 2 (Y E S in step S 14), traveling mode control unit 54 B shifts the process to step S 20.
  • step S12 determines whether the alcohol concentration D1 is lower than the threshold value Dth1 (NO in step S12), or the water concentration D2 is threshold in step S14. If it is determined that the value is higher than value D th 2 (NO in step S 14), travel mode control unit 5 4 B proceeds to step S 40 and cancels the travel prohibition in EV mode. Is done.
  • the switching of the running mode is controlled in consideration of not only the temperature T 1 of the fuel pipe 24 but also the alcohol concentration D 1 and the water concentration D 2 in the fuel. Therefore, according to the third embodiment, it is possible to suppress the occurrence of dry corrosion, and it is also possible to prevent the engine 2 from being driven unnecessarily and deteriorating fuel consumption.
  • the power storage device 16 is charged from an external power source by the dedicated charger 28.
  • the charging method of the power storage device 16 from the external power source is as described above. It is not limited to a simple method.
  • a pair of power lines connected to the charging plug 30 is connected to the neutral point of the motor generator 6, 10, and the external power applied to the neutral point of the motor generator 6, 10 from the charging plug 30
  • the power storage device 16 may be charged by converting the power from the power source with the power converters 18 and 20.
  • the series / parallel type hybrid vehicle has been described in which the power split mechanism 4 can divide and transmit the power of the engine 2 to the speed reducer 8 and the motor generator 6.
  • the present invention is also applicable to other types of hybrid vehicles. That is, for example, the engine 2 is used only to drive the motor generator 6 and the motor generator 10 only A so-called series-type hybrid vehicle that generates driving force, a hybrid vehicle in which only regenerative energy is recovered as electrical energy from the kinetic energy generated by the engine 2, and the motor assists the engine as needed with the engine as the main power.
  • the present invention can also be applied to a motor-assisted hybrid vehicle.
  • the control in the HV—ECUs 3 6, 3 6 A, and 3 6 B is actually performed by a CPU (Central Processing Unit), and the CPU is the flowchart described in each embodiment.
  • the program with each step is read from ROM (Read Only Memory), the read program is executed, and the process is executed according to the flow chart. Therefore, the ROM corresponds to a computer (CPU) readable recording medium in which a program including each step of the flowchart described in each embodiment is recorded.
  • motor generator 10 corresponds to “electric motor” in the present invention
  • engine 2 corresponds to “internal combustion engine J” in the present invention
  • the alcohol concentration sensor 40 corresponds to the “alcohol concentration detection device” in the present invention
  • the water concentration sensor 42 corresponds to the “water concentration detection device” in the present invention.
  • motor generator 6 and power converter 18 form a “power generation device” in the present invention
  • charger 28 and charge plug 30 form a “charging device” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

温度センサ(26)は、燃料タンク(22)からエンジン(2)へ燃料を供給するための燃料配管(24)の温度(T1)を検出する。HV−ECU(36)は、エンジン(2)を停止させて走行するEVモードとエンジン(2)を動作させて走行するHVモードとを含む走行モードの切替を制御する。そして、HV−ECU(36)は、温度(T1)の検出値をエンジンECU(32)から受け、EVモードで走行中に燃料配管(24)の温度(T1)が規定のしきい値以上に上昇すると、EVモードからHVモードへ走行モードを切替える。

Description

明細書 ハイブリッド車両、 ハイブリッド車両の制御方法およびその制御方法をコンビュ ータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 技術分野
この発明は、 内燃機関と車両走行用の電動機とを搭載したハイプリッド車両の 走行制御に関する。 背景技術
近年、 環境に配慮した車両としてハイプリッド車両 (Hybrid Vehicle) が注目 されている。 ハイブリッド車両は、 従来の内燃機関に加え、 蓄電装置とインバー タとインバータによって駆動される電動機とを車両走行用の動力源として搭載し た車両である。
このようなハイブリッド車両について、 内燃機関を停止させて走行する第 1の 走行モードと内燃機関を動作させて走行する第 2の走行モードとを車両状態に応 じて切替えて走行可能なハイプリッド車両が知られている。
たとえば、 特開 2 0 0 5— 1 4 6 9 1 0号公報では、 エンジンのお 出ガスを浄 化する触媒の暖気が終了するまで第 1の走行モードから第 2の走行モードへの切 替を禁止し、 触媒が所定温度まで加熱されてから第 2の走行モードへ切替可能と するハイプリッド車両が開示されている。
しかしながら、 特開 2 0 0 5— 1 4 6 9 1 0号公報で開示されるハイブリッド 車両では、 燃料供給系の温度を考慮することなく走行モードの切替が行なわれる ので、 以下に説明する通り、 燃料配管が腐食するいわゆるドライコロージヨンが 発生し得る。
ドライコロージヨンとは、 アルコール含有燃料によりアルミニウムが腐食する 現象であり、 特に高温かつ低水分濃度の環境下でアルミニウムの酸化腐食が急激 に進行する。 そして、 燃料配管の少なくとも一部がアルミニウムから成る場合、 第 1の走行モードでの走行時間が長くなると、 燃料タンクから燃料配管に供給さ れる燃料による燃料配管の冷却効果が得られず、 日射やエンジン周囲の雰囲気等 の影響により燃料配管が高温となってドライコロージョンが発生する。
特に、 車両外部の電源 (系統電源など) から蓄電装置を充電可能ないわゆるプ ラグイン ·ハイプリッド車両においては、 車両外部の電源から蓄電装置に蓄えら れた電力のみを用いての走行距離が拡大され、 内燃機関を停止させて走行する第 1の走行モードでの走行時間が長時間となるので、 ドライコロージョンの発生を 抑制することは重要な課題である。 発明の開示
そこで、 この発明は、 かかる課題を解決するためになされたものであり、 その 目的は、 燃料配管においてドライコロージョンの発生を抑制可能なハイプリッド 車両を提供することである。
また、 この発明の別の目的は、 燃料配管においてドライコロージヨンの発生を 抑制可能なハイブリッド車両の制御方法およびその制御方法をコンピュータに実 行させるためのプログラムを記録したコンピュータ読取可能な記録媒体を提供す ることである。
この発明によれば、 ハイブリッド車両は、 蓄電装置と、 電動機と、 内燃機関と、 燃料配管と、 第 1の温度推定部と、 走行モード制御部とを備える。 蓄電装置は、 車両走行用の電力を蓄える。 電動機は、 蓄電装置から電力の供給を受けて走行駆 動力を発生する。 燃料配管は、 少なくとも一部がアルミニウム製であり、 燃料タ ンクから内燃機関へ燃料を供給するためのものである。 第 1の温度推定部は、 燃 料配管の温度を推定する。 走行モード制御部は、 内燃機関を停止させて走行する 第 1のモード (E Vモード) と内燃機関を動作させて走行する第 2のモード (H Vモード) とを含む走行モードの切替を制御する。 そして、 走行モード制御部は、 第 1のモードで走行中に第 1の温度推定部によって推定された燃料配管の温度が 第 1の規定値以上のとき、 第 1のモードから第 2のモードへ走行モードを切替え る。
好ましくは、 ハイブリッド車両は、 第 2の温度推定部をさらに備える。 第 2の 温度推定部は、 燃料の温度を推定する。 走行モード制御部は、 さらに、 第 2の温 度推定部によって推定された燃料の温度が第 2の規定値以上のとき、 走行モード を第 1のモードとする。
さらに好ましくは、 ハイブリッド車両は、 充電状態推定部をさらに備える。 充 電状態推定部は、 蓄電装置の充電状態を示す状態量 (S O C ) を推定する。 走行 モード制御部は、 さらに、 状態量 (S O C ) が第 3の規定値よりも少ないとき、 走行モードを第 2のモードとする。
好ましくは、 ハイブリッド車両は、 アルコール濃度検出装置と、 水分濃度検出 装置とをさらに備える。 アルコール濃度検出装置は、 燃料に含まれるアルコール の濃度を検出可能に構成される。 水分濃度検出装置は、 燃料に含まれる水分濃度 を検出可能に構成される。 走行モード制御部は、 アルコール濃度検出装置によつ て検出されたアルコール濃度および水分濃度検出装置によつて検出された水分濃 度が所定の条件を満たしている場合に限り、 第 1のモードから第 2のモードへ走 行モードを切替える。
好ましくは、 ハイブリッド車両は、 発電装置と、 充電装置とをさらに備える。 発電装置は、 内燃機関が発生する運動エネルギーを用いて発電し、 蓄電装置を充 電可能に構成される。 充電装置は、 車両外部の電源から電力の供給を受けて蓄電 装置を充電可能に構成される。
また、 この発明によれば、 制御方法は、 ハイブリッド車両の制御方法である。 ハイブリッド車両は、 蓄電装置と、 電動機と、 内燃機関と、 第 1の温度推定部と を備える。 蓄電装置は、 車両走行用の電力を蓄える。 電動機は、 蓄電装置から電 力の供給を受けて走行駆動力を発生する。 燃料配管は、 少なくとも一部がアルミ ニゥム製であり、 燃料タンクから内燃機関へ燃料を供給するためのものである。 第 1の温度推定部は、 燃料配管の温度を推定する。 そして、 制御方法は、 内燃機 関を停止させて走行する第 1のモード (E Vモード) で走行中か否かを判定する ステップと、 第 1の温度推定部によって推定された燃料配管の温度が第 1の規定 値以上か否かを判定するステップと、 第 1のモードで走行中に燃料配管の温度が 第 1の規定値以上であると判定されたとき、 第 1のモードから内燃機関を動作さ せて走行する第 2のモード (H Vモード) へ走行モードを切替えるステップとを 含む。 好ましくは、 ハイブリッド車両は、 第 2の温度推定部をさらに備える。 第 2の 温度推定部は、 燃料の温度を推定する。 そして、 制御方法は、 第 2の温度推定部 によって推定された燃料の温度が第 2の規定値以上か否かを判定するステップと、 燃料の温度が第 2の規定値以上であると判定されたとき、 走行モードを第 1のモ ードとするステップとをさらに含む。
さらに好ましくは、 ハイブリッド車両は、 蓄電装置の充電状態を示す状態量 ( S O C ) を推定するステップと、 状態量 (S O C ) が第 3の規定値よりも少な いか否かを判定するステップと、 状態量 (S O C ) が第 3の規定値よりも少ない と判定されたとき、 走行モードを第 2のモードとするステップとをさらに含む。 好ましくは、 ハイブリッド車両は、 アルコール濃度検出装置と、 水分濃度検出 装置とをさらに備える。 アルコール濃度検出装置は、 燃料に含まれるアルコール の濃度を検出可能に構成される。 水分濃度検出装置は、 燃料に含まれる水分濃度 を検出可能に構成される。 制御方法は、 アルコール濃度検出装置によって検出さ れたアルコール濃度および水分濃度検出装置によって検出された水分濃度が所定 の条件を満たしているか否かを判定するステップをさらに含む。 そして、 第 1の モードから第 2のモードへ走行モードを切替えるステップにおいて、 アルコール 濃度および水分濃度が所定の条件を満たしているとさらに判定された場合に限り、 走行モードが切替えられる。
また、 この発明によれば、 記録媒体は、 コンピュータ読取可能な記録媒体であ つて、 上述したいずれかの制御方法をコンピュータに実行させるためのプログラ ムを記録する。
この発明においては、 第 1のモード (E Vモード) で走行中に燃料配管の温度 が第 1の規定値以上になると、 第 1のモードから第 2のモード (HVモード) へ 走行モードが切替えられるので、 内燃機関が動作することにより燃料タンクから 燃料配管へ燃料が供給され、 その供給された燃料により燃料配管が冷却される。
したがって、 この発明によれば、 燃料配管の温度上昇が抑制され、 その結果、 ドライコロージヨンの発生を抑制することができる。 図面の簡単な説明 図 1は、 この発明の実施の形態 1によるハイブリッド車両の全体ブロック図で ある。
図 2は、 図 1に示す HV— E C Uの機能ブロック図である。
図 3は、 燃料配管の温度に基づく走行モードの制御を説明するためのフローチ ヤートである。
図 4は、 実施の形態 2によるハイブリッド車両の全体プロック図である。
図 5は、 図 4に示す H V— E C Uの機能ブロック図である。
図 6は、 図 5に示す走行モード制御部による走行モードの制御を説明するため のフローチヤ一トである。
図 7は、 変形例における走行モードの制御を説明するためのフローチャートで. ある。
図 8は、 実施の形態 3によるハイプリ'ッド車両の全体プロック図である。
図 9は、 図 8に示す HV— E C Uの機能ブロック図である。
図 1 0は、 図 9に示す走行モード制御部による走行モードの制御を説明するた めのフローチャートである。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照しながら詳細に説明する。 な お、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1 ]
図 1は、 この発明の実施の形態 1によるハイプリッド車両の全体ブロック図で ある。 図 1を参照して、 ハイブリッド車両 1 0 0は、 エンジン 2と、 動力分割機 構 4と、 モータジェネレータ 6, 1 0と、 減速機 8と、 駆動軸 1 2と、 車輪 1 4 とを備える。 また、 ハイブリッド車両 1 0 0は、 蓄電装置 1 6と、 電力変換器 1 8, 2 0と、 燃料タンク 2 2と、 燃料配管 2 4と、 温度センサ 2 6と、 充電器 2 8と、 充電プラグ 3 0と、 エンジン E C U (Electronic Control Unit) 3 2と、 MG— E C U 3 4と、 H V— E C U 3 6とをさらに備える。
動力分割機構 4は、 エンジン 2、 モータジェネレータ 6および減速機 8に結合 されてこれらの間で動力を分配する。 たとえば、 サンギヤ、 プラネタリキヤリャ およびリングギヤの 3つの回転軸を有する遊星歯車を動力分割機構 4として用い ることができ、 この 3つの回転軸がエンジン 2およびモータジェネレータ 6の回 転軸ならびに減速機 8の入力軸にそれぞれ接続される。 また、 モータジエネレー タ 1 0の回転軸は、 減速機 8の入力軸に連結される。 すなわち、 モータジエネレ ータ 1 0と減速機 8とは、 同一の回転軸を有し、 その回転軸が動力分割機構 4の リングギヤに接続される。
そして、 エンジン 2が発生する運動エネルギーは、 動力分割機構 4によってモ ータジェネレータ 6と減速機 8とに分配される。 すなわち、 エンジン 2は、 駆動 軸 1 2を駆動するとともにモータジェネレータ 6を駆動する動力源としてハイブ リツド車両 1 0 0に組込まれる。 モータジェネレータ 6は、 エンジン 2によって 駆動される発電機として動作し、 かつ、 エンジン 2の始動を行ない得る電動機と して動作するものとしてハイブリッド車両 1 0 0に組込まれる。 また、 モータジ エネレータ 1 0は、 駆動軸 1 2を駆動する動力源としてハイプリッド車両 1 0 0 に組込まれる。
蓄電装置 1 6は、 車両走行用の電力を蓄える充放電可能な直流電源であり、 た とえば、 ニッケル水素やリチウムイオン等の二次電池から成る。 蓄電装置 1 6は、 電力変換器 1 8, 2 0へ電力を供給する。 また、 蓄電装置 1 6は、 モータジエネ レータ 6および Zまたは 1 0の発電時、 電力変換器 1 8およびノまたは 2 0から 電力を受けて充電される。 さらに、 蓄電装置 1 6は、 充電プラグ 3 0に接続され る図示されない車両外部の電源 (以下 「外部電源」 と称する。 ) からの充電時、 充電器 2 8から電力を受けて充電される。 なお、 蓄電装置 1 6として、 大容量の キャパシタも採用可能であり、 モータジェネレータ 6 , 1 0による発電電力や外 部電源からの電力を一時的に蓄え、 その蓄えた電力をモータジェネレータ 6, 1 ◦へ供給可能な電力バッファであれば如何なるものでもよい。 なお、 蓄電装置 1 6の電圧 V Bおよび蓄電装置 1 6に入出力される電流 I Bが図示されないセンサ によって検出され、 その検出値が HV— E C U 3 6へ出力される。
電力変換器 1 8は、 MG— E C U 3 4からの信号 P WM 1に基づいて、 モータ ジェネレータ 6により発電された電力を直流電力に変換して蓄電装置 1 6へ出力 する。 電力変換器 2 0は、 MG— E C U 3 4からの信号 P WM 2に基づいて、 蓄 電装置 1 6から供給される直流電力を交流電力に変換してモータジェネレータ 1 0へ出力する。 なお、 電力変換器 1 8は、 エンジン 2の始動時、 信号 PWM 1に 基づいて、 蓄電装置 1 6から供給される直流電力を交流電力に変換してモータジ エネレータ 6へ出力する。 また、 電力変換器 2 0は、 車両の制動時や下り斜面で の加速度低減時、 信号 P WM 2に基づいて、 モータジェネレータ 1 0により発電 された電力を直流電力に変換して蓄電装置 1 6へ出力する。 なお、 各電力変換器 1 8, 2 0は、 たとえば、 三相分のスイッチング素子を含む三相 P WM (Pulse Width Modulation) インバータから成る。
モータジェネレータ 6 , 1 0は、 交流電動機であり、 たとえばロータに永久磁 石が埋設された三相交流同期電動機から成る。 モータジェネレータ 6は、 ェンジ ン 2により生成された運動エネルギーを電気エネルギーに変換して電力変換器 1 8へ出力する。 また、 モータジェネレータ 6は、 電力変換器 1 8から受ける三相 交流電力によつて駆動力を発生し、 エンジン 2の始動を行なう。
モータジェネレータ 1 0は、 電力変換器 2 0から受ける三相交流電力によって 車両の駆動トルクを発生する。 また、 モータジェネレータ 1 0は、 車両の制動時 や下り斜面での加速度低減時、 運動エネルギーや位置エネルギーとして車両に蓄 えられた力学的エネルギーを電気エネルギーに変換して電力変換器 2 0へ出力す る。
エンジン 2は、 燃料タンク 2 2から燃料配管 2 4を介して燃料の供給を受ける。 そして、 エンジン 2は、 燃料の燃焼による熱エネルギーをピストンやロータなど の運動子の運動エネルギーに変換し、 その変換された運動エネルギーを動力分割 機構 4へ出力する。 たとえば、 運動子がピストンであり、 その運動が往復運動で あれば、 いわゆるクランク機構を介して往復運動が回転運動に変換され、 ピス ト ンの運動エネルギーが動力分割機構 4に伝達される。
燃料タンク 2 2は、 車両外部から供給される燃料を貯蔵する。 燃料配管 2 4は、 燃料タンク 2 2からエンジン 2へ燃料を供給するための配管であり、 燃料タンク に接続される燃料供給パイプや、 燃料供給パイプから供給される燃料をエンジン 2の燃料噴射装置へ供給するデリバリ一パイプ等から成る。 この燃料配管 2 4の 少なくとも一部は、 アルミニウム製であり、 たとえば、 デリバリーパイプがアル ミニゥムで形成される。 なお、 燃料配管 24の全てをアルミニウム製としてもよ い。
温度センサ 26は、 燃料配管 24の温度 T 1を.検出し、 その検出 をエンジン ECU 32へ出力する。 一例として、 温度センサ 26は、 燃料配管 24を構成す るデリバリ一パイプの外面に据付けられる。
充電プラグ 30は、 外部電源から蓄電装置 1 6を充電するための電力を受電す る外部充電インターフェースである。 充電器 28は、 HV— ECU3 6からの信 号 PWM3に基づいて、 充電プラグ 30に与えられる外部電源からの電力を蓄電 装置 1 6の電圧レベルに変換して蓄電装置 1 6へ出力する。
エンジン ECU 3 2は、 HV— ECU3 6からの動作指令に基づいてエンジン 2を制御する。 また、 エンジン ECU32は、 燃料配管 24の温度 T 1の検出値 を温度センサ 26かち受け、 その検出値を HV— ECU 3 6へ出力する。
MG— ECU 34は、 モータジェネレータ 6, 1 0の各々のトルク指令値およ び蓄電装置 1 6の電圧 VBの検出値を HV— ECU3 6から受ける。 そして、 M G— ECU 34は、 その受けたトルク指令値および電圧 VBの検出値、 ならびに モータジェネレータ 6, 1 0の各々のモータ電流およびモータ回転角に基づいて、 モータジェネレータ 6, 1 0をそれぞれ駆動するための信号 PWM1, PWM2 を生成し、 その生成した信号 PWM1, PWM 2をそれぞれ電力変換器 1 8, 2 0へ出力する。 なお、 各モータジェネレータのモータ電流およびモータ回転角は、 図示されないセンサによって検出される。
HV— ECU 3 6は、 アクセル開度や車両速度、 シフト位置などの車両状態に 基づいて、 モータジェネレータ 6, 1 0およびエンジン 2を駆動制御するのに必 要な各種指令値を生成し、 その生成した指令値を MG_ ECU 34およびェンジ ン ECU 3 2へ出力する。
また、 HV— ECU 3 6は、 このハイブリッド車両 1 00の走行モードを制御 する。 すなわち、 HV— ECU36は、 エンジン 2を停止してモータジエネレー タ 1 0のみを用いて走行するか (電動機走行モード) 、 それともエンジン 2を動 作させて走行するか (ハイブリッド走行モード) の切替を制御する (以下では、 電動機走行モードを 「EVモード」 と称し、 ハイブリッド走行モードを 「HVモ ード」 と称する) 。
ここで、 HV_ ECU 36は、 蓄電装置 16の電圧 VBおよび電流 I Bに基づ いて、 蓄電装置 16の充電状態 (以下 「SOC (State of Charge) 」 と称し、 満充電状態に対して 0~100%で表わされる。 ) を推定し、 その推定された S OCに基づいて走行モードの切替を制御する。 さらにここで、 HV— ECU 36 は、 温度センサ 26によって検出された燃料配管の温度 T 1の検出値をエンジン ECU32から受け、 その受けた温度 T 1の検出値に基づいて、 後述の制御構造 に従って走行モードの制御を行なう。
また、 HV_ ECU 36は、 充電プラグ 30に接続される外部電源から蓄電装 置 16の充電時、 充電器 28を駆動するための信号 PWM 3を生成し、 その生成 した信号 PWM 3を充電器 28へ出力する。
図 2は、 図 1に示した HV_ ECU 36の機能ブロック図である。 図 2を参照 して、 HV— ECU 36は、 走行モード制御部 54と、 3〇〇推定部56と、 充 電制御部 58とを含む。
走行モード制御部 54は、 蓄電装置 16の S O Cを示す S O C推定部 56から の信号 SOC、 および温度センサ 26によって検出される燃料配管 24の温度 T 1の検出値に基づいて、 走行モードの切替を制御する。 一例として、 蓄電装置 1 6の SOCが規定のしきい値 (たとえば 20〜 30%に設定) よりも高いとき、 走行モード制御部 54は、 走行モードを EVモードとする。 そして、 蓄電装置 1 6の SOCが上記しきい値に達すると、 走行モード制御部 54は、 SOCをその しきい値近傍に維持するために、 走行モードを HVモードとする (すなわち、 ェ ンジン 2が起動される。 ) 。
ここで、 走行モード制御部 54は、 燃料配管 24が高温になっていることを示 す規定のしきい値以上に燃料配管 24の温度 T 1が上昇すると、 S〇Cに拘わら ず EVモードでの走行を禁止する。 すなわち、 EVモードで走行中であれば、 ェ ンジン 2を起動し、 走行モードを HVモードへ切替える。
このように燃料配管 24が高温になると SOCに拘わらず走行モードを強制的 に HVモードとするのは、 燃料配管 24においてドライコロージョンが発生する のを抑制するためである。 すなわち、 燃料配管 24は、 少なくとも一部 (デリバ リーパイプなど) がアルミニウム製であるので、 燃料としてアルコール含有燃料 が用いられた場合、 当該部分が高温になるとドライコロージヨンが発生する。 特 に、 この実施の形態 1によるハイブリッド車両 1 0 0では、 充電器 2 8を用いて 外部電源から蓄電装置 1 6を充電可能であり、 外部電源から補給される電力を用 いて E Vモードでの長距離走行が可能であるので、 エンジン 2が長時間停止する ことにより燃料配管 2 4への燃料供給による燃料配管 2 4の冷却効果が得られず、 日射やエンジン 2の周囲の雰囲気の影響により燃料配管 2 4が高温になり得る。 そこで、 この実施の形態 1では、 ドライコロージヨンが発生し得る温度を燃料配 管 2 4の温度 T 1が超えた場合、 走行モードを強制的に H Vモードとすることに よってエンジン 2を動作させ、 エンジン 2の動作に伴なつて燃料タンク 2 2から 燃料配管 2 4へ供給される燃料により燃料配管 2 4を冷却することとしたもので ある。
なお、 E Vモードでの走行中であっても、 運転者によりアクセルペダルが大き く踏込まれたり、 エンジン駆動タイプのエアコン動作時やエンジン暖機時などは、 エンジン 2の動作が許容される。 すなわち、 E Vモードでの走行中は、 駆動力的 に必要がない限りはエンジン 2を始動させず、 基本的に蓄電装置 1 6の充電電力 をモータジェネレータ 1 0で消費して車両を走行させる。
S O C推定部 5 6は、 蓄電装置 1 6の電圧 V Bおよび電流 I Bの各検出値に基 づいて蓄電装置 1 6の S O Cを推定し、 その推定された S O Cを示す信号 S O C を走行モード制御部 5 4へ出力する。 なお、 S O Cの推定方法については、 種々 の公知の手法を用いることができる。
充電制御部 5 8は、 充電器 2 8による蓄電装置 1 6の充電を要求する信号 C H R Gが活性化されているとき、 充電プラグ 3 0から入力される電力の電圧 V A C および電流 I A Cの各検出値に基づいて、 充電器 2 8を駆動するための信号 PW M 3を生成して充電器 2 8へ出力する。 なお、 電圧 V A Cおよび電流 I A Cは、 それぞれ図示されないセンサによって検出される。
図 3は、 燃料配管 2 4の温度 T 1に基づく走行モードの制御を説明するための フローチャートである。 なお、 このフローチャートの処理は、 車両が走行可能な 状態にあるとき (たとえば、 車両システムの起動中) 、 一定時間毎または所定の 条件が成立するごとにメインルーチンから呼び出されて実行される。
図 3を参照して、 走行モード制御部 5 4は、 燃料配管 2 4の温度 T 1が規定の しきい値 T t h 1以上であるか否かを判定する (ステップ S 1 0 ) 。 なお、 この しきい値 T t h 1は、 燃料配管 2 4においてドライコロージヨンが発生し得る所 定の温度に基づいて予め設定される。
温度 T 1がしきい値 T t h 1以上であると判定されると (ステップ S 1 0にお いて Y E S ) 、 走行モード制御部 5 4は、 現在の走行モードが E Vモードである か否かを判定する (ステップ S 2 0 ) 。
そして、 走行モードが E Vモードであると判定されると (ステップ S 2 0にお いて Y E S ) 、 走行モード制御部 5 4は、 E Vモードでの走行を禁止する (ステ ップ S 3 0 ) 。 すなわち、 走行モード制御部 5 4は、 エンジン 2を起動し、 走行 モードを HVモードへ切替える。 これにより、 エンジン 2の動作に伴なつて燃料 タンク 2 2から燃料配管 2 4へ燃料が供給され、 その供給された燃料によって燃 料配管 2 4が冷却される。
—方、 ステップ S 1 0において燃料配管 2 4の温度 T 1がしきい値 T t h 1よ りも低いと判定された場合 (ステップ S 1 0において N O) 、 または、 ステップ S 2 0において走行モードが E Vモードでない (すなわち H Vモード) と判定さ れた場合 (ステップ S 2 0において N O) 、 走行モード制御部 5 4は、 E Vモー ドでの走行禁止を解除する (ステップ S 4 0 ) 。 したがって、 この場合は、 蓄電 装置 1 6の S〇Cに基づいて走行モードが制御される。
なお、 上記においては、 燃料配管 2 4の温度 T 1は、 燃料配管 2 4に据付けら れた温度センサ 2 6によって検出されるものとしたが、 燃料配管 2 4の温度 T 1 は、 エンジン 2の冷却水温度や車両周囲の外気温度、 エンジンルーム内の温度、 燃料温度、 燃料消費量などに基づいて推定してもよい。
以上のように、 この実施の形態 1においては、 E Vモードで走行中に燃料配管
2 4の温度 T 1が高温になると、 E Vモードから H Vモードへ走行モードが切替 えられるので、 エンジン 2が動作することにより燃料タンク 2 2から燃料配管 2 4へ燃料が供給され、 その供給された燃料により燃料配管 2 4が冷却される。 し たがって、 この実施の形態 1によれば、 燃料配管 2 4の温度上昇が抑制され、 そ の結果、 ドライコロージヨンの発生を抑制することができる。
[実施の形態 2]
図 4は、 実施の形態 2によるハイブリッド車両の全体ブロック図である。 図 4 を参照して、 このハイブリッド車両 10 OAは、 図 1に示した実施の形態 1にお けるハイブリッド車両 100の構成において、 温度センサ 38をさらに備え、 H V— ECU36に代えて HV— ECU36 Aを備える。
温度センサ 38は、 燃料の温度 T 2を検出し、 その検出値をエンジン ECU 3 2へ出力する。 一例として、 温度センサ 38は、 燃料タンク 22に据付けられ、 燃料タンク 22内の燃料の温度を検出する。
HV— ECU36Aは、 蓄電装置 16の S O Cを推定し、 その推定された SO
Cに基づいて走行モードの切替を制御する。 ここで、 HV— ECU36Aは、 温 度センサ 26によって検出された燃料配管の温度 T 1および温度センサ 38によ つて検出された燃料の温度 T 2の各検出値をエンジン ECU 32から受け、 その 受けた温度 T l, Τ 2の各検出値に基づいて、 後述の制御構造に従って走行モー ドの制御を行なう。
なお、 HV— ECU 36 Αのその他の機能は、 実施の形態 1における HV— E CU 36と同じである。 また、 ハイブリッド車両 10 OAのその他の構成は、 実 施の形態 1によるハイブリッド車両 100と同じである。
図 5は、 図 4に示した HV— ECU36 Aの機能ブロック図である。 図 5を参 照して、 HV— ECU 36 Aは、 図 2に示した実施の形態 1における HV— E C U 36の構成において、 走行モード制御部 54に代えて走行モード制御部 54 A を含む。
走行モード制御部 54 Aは、 実施の形態 1における走行モード制御部 54と同 様に、 蓄電装置 16の SOCが規定のしきい値 (たとえば 20〜 30%に設定) よりも高いとき、 走行モードを EVモードとし、 SOCが上記しきい値に達する と、 走行モードを HVモードとする。
ここで、 燃料配管 24が高温になっていることを示すしきい値 T t h 1以上に 燃料配管 24の温度 T 1が上昇した場合、 走行モード制御部 54 Aは、 燃料の温 度 T 2が規定のしきい値よりも低ければ、 ドライコロージョンの発生を抑制する ために、 SOCに拘わらず EVモードでの走行を禁止する。 すなわち、 EVモー ドで走行中であれば、 エンジン 2を起動し、 走行モードを HVモードへ切替える。 —方、 燃料配管 24の温度 T 1がしきい値 T t h 1以上に上昇した場合であつ ても、 燃料の温度 T 2が高温であれば、 燃料タンク 22から燃料配管 24に供給 される燃料による燃料配管 24の冷却効果は見込めず、 逆に高温の燃料が燃料配 管 24へ供給されることにより ドライコロージヨンの発生が助長されるので、 走 行モード制御部 54 Aは、 走行モードを EVモードに維持する。 伹し、 蓄電装置 16の SOCが低下している場合には、 蓄電装置 16が過放電となり車両の走行 に支障をきたす可能性があるので、 走行モード制御部 54 Aは、 走行モードを H Vモードとする。
なお、 EVモードでの走行中であっても、 運転者によりアクセルペダルが大き く踏込まれたりした場合にエンジン 2の動作が許容されるのは、 実施の形態 1と 同じである。 また、 HV— ECU 36 Aのその他の構成は、 実施の形態 1におけ る HV— ECU36と同じである。
図 6は、 図 5に示した走行モード制御部 54 Aによる走行モードの制御を説明 するためのフローチャートである。 なお、 このフローチャートの処理も、 車両が 走行可能な状態にあるとき (たとえば、 車両システムの起動中) 、 一定時間毎ま たは所定の条件が成立するごとにメインルーチンから呼び出されて実行される。 図 6を参照して、 走行モード制御部 54 Aは、 燃料配管 24の温度 T 1がしき い値 T t h 1以上であるか否かを判定する (ステップ S 1 10) 。 温度 T 1がし きい値 T t h 1よりも低いと判定されると (ステップ S 1 10において NO) 、 走行モード制御部 54 Aは、 温度 T 1 , T 2に基づく走行モードの制限を行なう ことなく、 蓄電装置 16の S O Cに基づいて走行モードを切替える通常制御を行 なう。
ステップ S 1 10において燃料配管 24の温度 T 1がしきい値 T t h 1以上で あると判定されると (ステップ S 1 10において YE S) 、 走行モード制御部 5 4 Aは、 燃料の温度 T 2が規定のしきい値 T t h 2以上であるか否かを判定する (ステップ S 1 20) なお、 このしきい値 T t h 2は、 燃料配管 24において ドライコロージヨンが発生し得る所定の温度に基づいて予め設定され、 しきい値 T t h 1と同じ値であっても異なる値であってもよい。
温度 T 2がしきい値 T t h 2よりも低いと判定されると (ステップ S 120に おいて NO) 、 走行モード制御部 54 Aは、 EVモードでの走行を禁止する (ス テツプ S 160) 。 すなわち、 走行モード制御部 54 Aは、 エンジン 2を起動し、 走行モードを HVモードへ切替える。 これにより、 エンジン 2の動作に伴なつて 燃料タンク 22から燃料配管 24へ燃料が供給され、 その供給された燃料によつ て燃料配管 24が冷却される。
ステップ S 1 20において燃料の温度 T 2がしきい値 T t h 2以上であると判 定されると (ステップ S 120において YE S) 、 走行モード制御部 54 Aは、 蓄電装置 16の SOCが規定のしきい値 S t h以上であるか否かを判定する (ス テツプ S 1 30) 。 なお、 このしきい値 S t hは、 蓄電装置 16が過放電となら ない所定の SO C値に設定される。
そして、 SOCがしきい値 S t h以上であると判定されると (ステップ S 13 〇において YES) 、 走行モード制御部 54 Aは、 走行モードを EVモードとす る (ステップ S 140) 。 これにより、 高温の燃料が燃料配管 24に供給される ことはない。 一方、 SOCがしきい値 S t hよりも低いと判定されると (ステツ プ S 130において NO) 、 走行モード制御部 54 Aは、 走行モードを HVモー ドとする (ステップ S 1 50) 。 これにより、 蓄電装置 16の過放電が防止され る。
なお、 上記においては、 燃料の温度 T 2は、 温度センサ 38によって検出され るものとしたが、 燃料の温度 T 2は、 エンジン 2の冷却水温度や車両周囲の外気 温度、 排気系に設けられる触媒の温度、 車両速度などに基づいて推定してもよい。 以上のように、 この実施の形態 2においては、 燃料配管 24の温度 T 1だけで なく、 燃料の温度 T 2および蓄電装置 16の SOCも考慮して走行モードの切替 が制御される。 したがって、 この実施の形態 2によれば、 蓄電装置 1 6の過放電 に配慮しつつ、 ドライコロージヨンの発生をより確実に抑制することができる。
[変形例]
上記の実施の形態 2においては、 燃料配管 24の温度 T 1と燃料の温度 T 2と に基づいて走行モードの制御を行なうものとしたが、 より簡易な構成として、 燃 料の温度 T 2に基づいて走行モードを制御してもよい。 すなわち、 実施の形態 1 では、 燃料配管 2 4の温度 T 1に基づいて走行モードを制御するのに対し、 この 変形例では、 燃料の温度 Τ 2に基づいて走行モードの制御が行なわれる。
図 7は、 この変形例における走行モードの制御を説明するためのフローチヤ一 トである。 なお、 このフローチャートの処理も、 車両が走行可能な状態にあると き (たとえば、 車両システムの起動中) 、 一定時間毎または所定の条件が成立す るごとにメインルーチンから呼び出されて実行される。
図 7を参照して、 この変形例における走行モード制御部は、 燃料の温度 Τ 2が しきい値 T t h 2以上であるか否かを判定する (ステップ S 2 1 0 ) 。 温度 T 2 がしきい値 T t h 2以上であると判定されると (ステップ S 2 1 0において Y E S ) 、 走行モード制御部は、 蓄電装置 1 6の S O Cがしきい値 S t h以上である か否かを判定する (ステップ S 2 2 0 ) 。
S O Cがしきぃィ直 S t h以上であると判定されると (ステップ S 2 2 0におい て Y E S ) 、 走行モード制御部は、 HVモードでの走行を禁止する (ステップ S 2 3 0 ) 。 すなわち、 走行モード制御部は、 エンジン 2を停止し、 走行モードを E Vモードとする。 これにより、 高温の燃料が燃料配管 2 4に供給されることは なく、 ドライコロージヨンの発生が抑制される。
一方、 ステップ S 2 1 0において燃料の温度 T 2がしきい値 T t h 2よりも低 いと判定された場合 (ステップ S 2 1 0において N O) 、 または、 ステップ S 2 2 0において S O Cがしきい値 S t hよりも低いと判定された場合 (ステップ S 2 2 0において N O) 、 走行モード制御部は、 HVモードでの走行禁止を解除す る (ステップ S 2 4 0 ) 。 これにより、 蓄電装置 1 6の過放電が防止される。 この変形例によれば、 実施の形態 2に比べてより簡易な構成で、 蓄電装置 1 6 の過放電に配慮しつつドライコロージヨンの発生を抑制することができる。
[実施の形態 3 ]
この実施の形態 3では、 ドライコロージョンの発生条件をより正確に検知する ために、 燃料配管 2 4の温度 T 1に加えて、 燃料中のアルコール濃度および水分 濃度が検出され、 これらの各検出値に基づいて走行モードの制御が行なわれる。 図 8は、 実施の形態 3によるハイブリッド車両の全体ブロック図である。 図 8 を参照して、 ハイブリッド車両 100 Bは、 図 1に示した実施の形態 1における ハイブリッド車両 100の構成において、 アルコール濃度センサ 40と、 水分濃 度センサ 42とをさらに備え、 HV— ECU 36に代えて HV—ECU 36 Bを 備える。
アルコール濃度センサ 40は、 燃料に含まれるアルコール濃度 D 1を検出し、 その検出値を HV— ECU 36 Bへ出力する。 なお、 アルコール濃度センサ 40 としては、 電気式や光学式のものなど公知のセンサを用いることができる。 水分 濃度センサ 42は、 燃料に含まれる水分濃度 D 2を検出し、 その検出値を HV— ECU36 Bへ出力する。 なお、 水分濃度センサ 42としても、 種々の公知のセ ンサを用いることができる。
なお、 この図 8では、 アルコール濃度センサ 40および水分濃度センサ 42が 燃料配管 24に据付けられる場合が一例として示されているが、 アルコール濃度 センサ 40および水分濃度センサ 42の少なくとも一方を燃料タンク 22に据付 けてもよレヽ。
HV— ECU36Bは、 蓄電装置 16の S O Cを推定し、 その推定された SO
Cに基づいて走行モードの切替を制御する。 ここで、 HV— ECU36 Bは、 温 度センサ 26からの燃料配管 24の温度 T 1、 アルコール濃度センサ 40力ゝらの アルコール濃度 D 1、 および水分濃度センサ 42からの水分濃度 D 2の各検出値 に基づいて、 後述の制御構造に従って走行モードの制御を行なう。
なお、 HV— ECU 36 Bのその他の機能は、 実施の形態 1における H V— E
CU 36と同じである。 また、 ハイブリッド車両 100 Bのその他の構成は、 実 施の形態 1によるハイプリッド車両 100と同じである。
図 9は、 図 8に示した HV— ECU 36 Bの機能ブロック図である。 図 9を参 照して、 HV— ECU 36 Bは、 図 2に示した実施の形態 1における HV— EC U 36の構成において、 走行モード制御部 54に代えて走行モード制御部 54 B を含む。
走行モード制御部 54 Bは、 実施の形態 1における走行モード制御部 54と同 様に、 蓄電装置 16の SOCが規定のしきい値 (たとえば 20〜 30%に設定) よりも高いとき、 走行モードを EVモードとし、 SOCが上記しきい値に達する と、 走行モードを HVモードとする。
ここで、 燃料配管 24の温度 T 1がしきい値 T t h 1以上であって、 さらに、 アルコール濃度 D 1が規定のしきい値以上であり、 かつ、 水分濃度 D 2が規定の しきい値以下の場合、 走行モード制御部 54 Bは、 SOCに拘わらず EVモード での走行を禁止する。 すなわち、 EVモードで走行中であれば、 エンジン 2を起 動し、 走行モードを HVモードへ切替える。
ドライコロージヨンは、 燃料に高濃度のアルコールが含まれ、 かつ、 高温 '低 水分濃度の環境下で発生しやすいので、 この実施の形態 3では、 このような条件 が揃ったときにドライコロージョンが発生するものとして、 エンジン 2を起動し、 走行モードを HVモードへ切替えることとしたものである。 言い換えると、 燃料 配管 24の温度 T 1が高温であっても、 燃料中のアルコール濃度 D 1が低い場合、 または、 低水分濃度でないときは、 ドライコロージヨンが発生する可能性は低い ものとして、 走行モードを強制的に HVモードへ切替えることはしない。 これに より、 エンジン 2が不必要に駆動されて燃費が悪化するのを防止することができ る。
なお、 EVモードでの走行中であっても、 運転者によりアクセルペダルが大き く踏込まれたりした場合にエンジン 2の動作が許容されるのは、 実施の形態 1と 同じである。 また、 HV— ECU 36 Bのその他の構成は、 実施の形態 1におけ る HV— ECU 36と同じである。
図 10は、 図 9に示した走行モード制御部 54 Bによる走行モードの制御を説 明するためのフローチャートである。 なお、 このフローチャートの処理も、 車両 が走行可能な状態にあるとき (たとえば、 車両システムの起動中) 、 一定時間毎 または所定の条件が成立するごとにメインルーチンから呼び出されて実行される。 図 10を参照して、 このフローチャートは、 図 3に示したフローチャートにお いて、 ステップ S 1 2, S 14をさらに含む。 すなわち、 ステップ S 10におレヽ て、 燃料配管 24の温度 T 1がしきい値 T t h 1以上であると判定されると (ス テツプ S 10において YES) 、 走行モード制御部 54 Bは、 燃料中のアルコー ル濃度 D 1が規定のしきい値 D t h 1以上であるか否かを判定する (ステップ S 1 2) 。 なお、 このしきい値 D t h iは、 ドライコロ一ジョンが発生し得る所定 のアルコール濃度に基づいて予め設定される。
アルコール濃度 D 1がしきい値 D t h 1以上であると判定されると (ステップ S 1 2において Y E S ) 、 走行モード制御部 5 4 Bは、 燃料中の水分濃度 D 2が 規定のしきい値 D t h 2以下であるか否かを判定する (ステップ S 1 4 ) 。 なお、 このしきい値 D t h 2は、 ドライコロージョンが発生し得る所定の水分濃度に基 づいて予め設定される。 そして、 水分濃度 D 2がしきい値 D t h 2以下であると 判定されると (ステップ S 1 4において Y E S ) 、 走行モード制御部 5 4 Bは、 ステップ S 2 0へ処理を移行する。
一方、 ステップ S 1 2においてアルコール濃度 D 1がしきぃィ直 D t h 1よりも 低いと判定された場合 (ステップ S 1 2において N O) 、 または、 ステップ S 1 4において水分濃度 D 2がしきい値 D t h 2よりも高いと判定された場合 (ステ ップ S 1 4において N O) 、 走行モード制御部 5 4 Bは、 ステップ S 4 0へ処理 を移行し、 E Vモードでの走行禁止が解除される。
以上のように、 この実施の形態 3においては、 燃料配管 2 4の温度 T 1だけで なく、 燃料中のアルコール濃度 D 1および水分濃度 D 2も考慮して走行モードの 切替が制御される。 したがって、 この実施の形態 3によれば、 ドライコロージョ ンの発生を抑制可能であり、 さらに、 エンジン 2が不必要に駆動されて燃費が悪 化するのを防止可能である。
なお、 上記の各実施の形態においては、 蓄電装置 1 6は、 専用の充電器 2 8に よって外部電源から充電するものとしたが、 外部電源から蓄電装置 1 6の充電方 法は、 このような方法に限られない。 たとえば、 充電プラグ 3 0に接続される電 力線対をモータジェネレータ 6 , 1 0の中性点に接続し、 充電プラグ 3 0からモ —タジェネレータ 6 , 1 0の中性点に与えられる外部電源からの電力を電力変換 器 1 8, 2 0により変換することによって蓄電装置 1 6を充電してもよレ、。
また、 上記の各実施の形態においては、 動力分割機構 4によりエンジン 2の動 力を減速機 8とモータジェネレータ 6とに分割して伝達可能なシリーズ/パラレ ル型のハイブリッド車両について説明したが、 この発明は、 その他の形式のハイ ブリツド車両にも適用可能である。 すなわち、 たとえば、 モータジェネレータ 6 を駆動するためにのみエンジン 2を用い、 モータジェネレータ 1 0でのみ車両の 駆動力を発生する、 いわゆるシリーズ型のハイブリッド車両や、 エンジン 2が生 成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収さ れるハイブリッド車両、 エンジンを主動力として必要に応じてモータがアシスト するモータアシスト型のハイブリッド車両などにもこの発明は適用可能である。 なお、 上記において、 H V— E C U 3 6 , 3 6 A, 3 6 Bにおける制御は、 実 際には、 C P U (Central Processing Unit) によって行なわれ、 C P Uは、 各 実施の形態において説明したフローチヤ一トの各ステップを備えるプログラムを R OM (Read Only Memory) から読出し、 その読出したプログラムを実行してフ ローチャートに従って処理を実行する。 したがって、 R OMは、 各実施の形態に おいて説明したフローチャートの各ステップを備えるプログラムを記録したコン ピュータ (C P U) 読取可能な記録媒体に相当する。
なお、 上記において、 モータジェネレータ 1 0は、 この発明における 「電動 機」 に対応し、 エンジン 2は、 この発明における 「内燃機関 J に対応する。 また、 温度センサ 2 6は、 この発明における 「第 1の温度推定部」 に対応し、 温度セン サ 3 8は、 この発明における 「第 2の温度推定部」 に対応する。
さらに、 アルコール濃度センサ 4 0は、 この発明における 「アルコール濃度検 出装置」 に対応し、 水分濃度センサ 4 2は、 この発明における 「水分濃度検出装 置」 に対応する。 また、 さらに、 モータジェネレータ 6および電力変換器 1 8は、 この発明における 「発電装置」 を形成し、 充電器 2 8および充電プラグ 3 0は、 この発明における 「充電装置」 を形成する。
今回開示された実施の形態は、 すべての点で例示であって制限的なものではな いと考えられるべきである。 本発明の範囲は、 上記した実施の形態の説明ではな くて請求の範囲によって示され、 請求の範囲と均等の意味および範囲内でのすべ ての変更が含まれることが意図される。

Claims

請求の範囲
1. 車両走行用の電力を蓄える蓄電装置 (16) と、
前記蓄電装置 (1 6) から電力の供給を受けて走行駆動力を発生する電動機 (10) と、
内燃機関 (2) と、
少なくとも一部がアルミニウム製であり、 燃料タンク (22) から前記内燃機 関 (2) へ燃料を供給するための燃料配管 (24) と、
前記燃料配管 (24) の温度を推定する第 1の温度推定部 (26) と、 前記内燃機関 (2) を停止させて走行する第 1のモード (EVモード) と前記 内燃機関 (2) を動作させて走行する第 2のモード (HVモード) とを含む走行 モードの切替を制御する走行モード制御部 (54, 54A, 54 B) とを備え、 - 前記走行モード制御部 (54, 54 A, 54 B) は、 前記第 1のモード (E V モード) で走行中に前記第 1の温度推定部 (26) によって推定された前記燃料 配管 (24) の温度が第 1の規定値以上のとき、 前記第 1のモード (EVモー ド) から前記第 2のモード (HVモード) へ前記走行モードを切替える、 ハイブ リッド、单両。
2. 前記燃料の温度を推定する第 2の温度推定部 (38) をさらに備え、 前記走行モード制御部 ( 54 A) は、 さらに、 前記第 2の温度推定部 (38) によって推定された前記燃料の温度が第 2の規定値以上のとき、 前記走行モード を前記第 1のモード (EVモード) とする、 請求の範囲 1に記載のハイブリッド 車両。
3. 前記蓄電装置 (16) の充電状態を示す状態量 (SOC) を推定する充 電状態推定部 (56) をさらに備え、
前記走行モード制御部 (54A) は、 さらに、 前記状態量 (SOC) が第 3の 規定値よりも少ないとき、 前記走行モードを前記第 2のモード (HVモード) と する、 請求の範囲 2に記載のハイブリッド車両。
4. 前記燃料に含まれるアルコールの濃度を検出可能に構成されたアルコー ル濃度検出装置 (40) と、 前記燃料に含まれる水分濃度を検出可能に構成された水分濃度検出装置 (4 2) とをさらに備え、
前記走行モード制御部 (54B) は、 前記アルコール濃度検出装置 (40) に よって検出されたアルコール濃度および前記水分濃度検出装置 (42) によって 検出された水分濃度が所定の条件を満たしている場合に限り、 前記第 1のモード (EVモード) から前記第 2のモード (HVモード) へ前記走行モードを切替え る、 請求の範囲 1から 3のいずれか 1項に記載のハイブリッド車両。
5. 前記内燃機関 (2) が発生する運動エネルギーを用いて発電し、 前記蓄 電装置 (16) を充電可能に構成された発電装置 (6, 18) と、
車両外部の電源から電力の供給を受けて前記蓄電装置 (16) を充電可能に構 成された充電装置 (28, 30) とをさらに備える、 請求の範囲 1から 3のいず れか 1項に記載のハイブリッド車両。
6. ハイブリツド車両の制御方法であって、
前記ハイブリッド車両は、
車両走行用の電力を蓄える蓄電装置 (16) と、
前記蓄電装置 (1 6) から電力の供給を受けて走行駆動力を発生する電動機 (10) と、
内燃機関 (2) と、
少なくとも一部がアルミニウム製であり、 燃料タンク (22) から前記内燃機 関 (2) へ燃料を供給するための燃料配管 (24) と、
前記燃料配管 (24) の温度を推定する第 1の温度推定部 (26) とを備え、 前記制御方法は、
前記内燃機関 (2) を停止させて走行する第 1のモード (EVモード) で走行 中か否かを判定するステップと、
前記第 1の温度推定部 (26) によって推定された前記燃料配管 (24) の温 度が第 1の規定値以上力否かを判定するステップと、
前記第 1のモード (EVモード) で走行中に前記燃料配管 (24) の温度が前 記第 1の規定値以上であると判定されたとき、 前記第 1のモード (EVモード) から前記内燃機関 (2) を動作させて走行する第 2のモード (HVモード) へ走 行モードを切替えるステップとを含む、 ハイプリッド車両の制御方法。
7. 前記ハイプリッド車両は、 前記燃料の温度を推定する第 2の温度推定部 (38) をさらに備え、
前記制御方法は、
前記第 2の温度推定部 (38) によって推定された前記燃料の温度が第 2の規 定値以上か否かを判定するステップと、
前記燃料の温度が第 2の規定値以上であると判定されたとき、 前記走行モード を前記第 1のモード (EVモード) とするステップとをさらに含む、 請求の範囲 6に記載のハイプリッド車両の制御方法。
8. 前記蓄電装置 (16) の充電状態を示す状態量 (SOC) を推定するス テップと、
前記状態量 (SOC) が第 3の規定値よりも少ないか否かを判定するステップ と、
前記状態量 (SOC) が前記第 3の規定値よりも少ないと判定されたとき、 前 記走行モードを前記第 2のモード (HVモード) とするステップとをさらに含む、 請求の範囲 7に記載のハイプリッド車両の制御方法。
9. 前記ハイブリッド車両は、
前記燃料に含まれるアルコールの濃度を検出可能に構成されたアルコール濃度 検出装置 (40) と、
前記燃料に含まれる水分濃度を検出可能に構成された水分濃度検出装置 (4 2) とをさらに備え、
前記制御方法は、 前記アルコール濃度検出装置 (40) によって検出されたァ ルコール濃度および前記水分濃度検出装置 (42) によって検出された水分濃度 が所定の条件を満たしているか否かを判定するステップをさらに含み、
前記第 1のモード (EVモード) から前記第 2のモード (HVモード) へ前記 走行モードを切替えるステップにおいて、 前記アルコール濃度および前記水分濃 度が前記所定の条件を満たしているとさらに判定された場合に限り、 前記走行モ 一ドが切替えられる、 請求の範囲 6から 8のいずれか 1項に記載のハイブリッド 車両の制御方法。
1 0 . 請求の範囲 6から 8のいずれか l項に記載の制御方法をコンピュータ に実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体。
PCT/JP2008/063340 2007-08-09 2008-07-17 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 WO2009019991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/452,077 US8290650B2 (en) 2007-08-09 2008-07-17 Hybrid vehicle, control method for hybrid vehicle and computer-readable recording medium to record program for making computer execute control method
EP08791590A EP2174849B1 (en) 2007-08-09 2008-07-17 Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing a program for causing a computer to execute the control method
CN2008801021351A CN101772444B (zh) 2007-08-09 2008-07-17 混合动力车辆、混合动力车辆的控制方法以及存储有用于使计算机执行该控制方法的程序的计算机能够读取的存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007208146A JP4321641B2 (ja) 2007-08-09 2007-08-09 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可
JP2007-208146 2007-08-09

Publications (1)

Publication Number Publication Date
WO2009019991A1 true WO2009019991A1 (ja) 2009-02-12

Family

ID=40341226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063340 WO2009019991A1 (ja) 2007-08-09 2008-07-17 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体

Country Status (5)

Country Link
US (1) US8290650B2 (ja)
EP (1) EP2174849B1 (ja)
JP (1) JP4321641B2 (ja)
CN (1) CN101772444B (ja)
WO (1) WO2009019991A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022213A (zh) * 2009-09-16 2011-04-20 通用汽车环球科技运作公司 用于发动机和燃料系统维护的系统和方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655124B2 (ja) 2008-08-25 2011-03-23 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5488147B2 (ja) * 2010-04-09 2014-05-14 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP5093300B2 (ja) 2010-06-15 2012-12-12 トヨタ自動車株式会社 車両制御システム
JP5660309B2 (ja) * 2011-01-14 2015-01-28 スズキ株式会社 車両駆動用モータ制御装置
CN103338999B (zh) * 2011-01-31 2016-03-02 铃木株式会社 用于混合动力车辆的驱动控制装置和驱动控制方法及混合动力车辆
US20130047963A1 (en) * 2011-08-26 2013-02-28 Continental Automotive Systems Us, Inc. Warranty violation detection system for disallowed fuels
JP2017094892A (ja) * 2015-11-24 2017-06-01 トヨタ自動車株式会社 ハイブリッド車両
JP2018047740A (ja) * 2016-09-20 2018-03-29 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7227553B2 (ja) * 2018-08-27 2023-02-22 三菱自動車工業株式会社 電池冷却制御装置
US11338811B2 (en) * 2019-09-05 2022-05-24 Aptiv Technologies Limited Mode selector module for a vehicle component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270294A (ja) * 1992-03-23 1993-10-19 Mitsubishi Motors Corp 内燃機関を有する電気自動車の制御装置
JP2001115869A (ja) * 1999-08-09 2001-04-24 Honda Motor Co Ltd ハイブリッド自動車
JP2005146910A (ja) 2003-11-12 2005-06-09 Nissan Motor Co Ltd ハイブリッド車両及びその制御方法
JP2005180222A (ja) * 2003-12-16 2005-07-07 Toyota Motor Corp アルコール混合燃料エンジン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132446U (ja) * 1991-05-29 1992-12-08 本田技研工業株式会社 自動車のガソリン冷却装置
JPH09184459A (ja) 1995-12-27 1997-07-15 Toyota Motor Corp 内燃機関の始動時制御装置
JP3453976B2 (ja) 1995-12-27 2003-10-06 トヨタ自動車株式会社 車両用制御装置
JP3292064B2 (ja) * 1996-10-22 2002-06-17 日産自動車株式会社 発電機駆動用エンジンの制御方法およびその装置
JP3663834B2 (ja) 1997-06-06 2005-06-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JPH11200918A (ja) * 1997-11-17 1999-07-27 Denso Corp 内燃機関の燃料噴射制御装置
JP3409325B2 (ja) 1998-11-20 2003-05-26 トヨタ自動車株式会社 内燃機関の冷却制御装置
JP4042058B2 (ja) * 2003-11-17 2008-02-06 株式会社デンソー 内燃機関用燃料噴射装置
DE102004016559A1 (de) * 2004-04-03 2005-10-27 Volkswagen Ag Verfahren zum Betreiben eines Hybrid-Kraftfahrzeugs
JP4270305B2 (ja) * 2007-05-30 2009-05-27 トヨタ自動車株式会社 ハイブリッド車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270294A (ja) * 1992-03-23 1993-10-19 Mitsubishi Motors Corp 内燃機関を有する電気自動車の制御装置
JP2001115869A (ja) * 1999-08-09 2001-04-24 Honda Motor Co Ltd ハイブリッド自動車
JP2005146910A (ja) 2003-11-12 2005-06-09 Nissan Motor Co Ltd ハイブリッド車両及びその制御方法
JP2005180222A (ja) * 2003-12-16 2005-07-07 Toyota Motor Corp アルコール混合燃料エンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2174849A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022213A (zh) * 2009-09-16 2011-04-20 通用汽车环球科技运作公司 用于发动机和燃料系统维护的系统和方法

Also Published As

Publication number Publication date
JP4321641B2 (ja) 2009-08-26
EP2174849B1 (en) 2012-06-27
EP2174849A4 (en) 2011-10-26
US8290650B2 (en) 2012-10-16
CN101772444B (zh) 2013-01-23
CN101772444A (zh) 2010-07-07
JP2009040255A (ja) 2009-02-26
EP2174849A1 (en) 2010-04-14
US20100121510A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4321641B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可
JP6011541B2 (ja) 充電制御装置および充電制御方法
JP5418676B2 (ja) 電動車両およびその制御方法
US8594872B2 (en) Vehicular control apparatus and vehicular control method
CN102470856B (zh) 车辆用控制装置及车辆用控制方法
JP5067445B2 (ja) 車両用制御装置および車両用制御方法
US9623861B2 (en) Hybrid vehicle
US9028366B2 (en) Vehicle and method for controlling vehicle
US9493153B2 (en) Vehicle and control method of vehicle
CN103328292B (zh) 车辆及车辆用控制方法
JP5747724B2 (ja) 車両および車両の制御方法
JP5729475B2 (ja) 車両および車両の制御方法
JP2010064499A (ja) ハイブリッド車両
US9067584B2 (en) Vehicle and control method for vehicle
EP2762374B1 (en) Vehicle and control method for vehicle
JP2010124652A (ja) 充電制御装置
JP2008094238A (ja) ハイブリッド車の制御装置
JP2006170128A (ja) 車両の制御装置および車両
JP5772209B2 (ja) 蓄電装置の充放電制御装置およびそれを搭載した電動車両
JP6665582B2 (ja) ハイブリッド車両
US20130311015A1 (en) Vehicle and control method for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880102135.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12452077

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008791590

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE