WO2008119252A1 - Matériau ti-si contenant un métal noble et son procédé de préparation - Google Patents

Matériau ti-si contenant un métal noble et son procédé de préparation Download PDF

Info

Publication number
WO2008119252A1
WO2008119252A1 PCT/CN2008/000616 CN2008000616W WO2008119252A1 WO 2008119252 A1 WO2008119252 A1 WO 2008119252A1 CN 2008000616 W CN2008000616 W CN 2008000616W WO 2008119252 A1 WO2008119252 A1 WO 2008119252A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
palladium
titanium
titanium silicon
group
Prior art date
Application number
PCT/CN2008/000616
Other languages
English (en)
French (fr)
Inventor
Min Lin
Chunfeng Shi
Jun Long
Bin Zhu
Xingtian Shu
Xuhong Mu
Yibin Luo
Xieqing Wang
Yingchun Ru
Original Assignee
China Petroleum & Chemical Corporation
Research Institute Of Petroleum Processing, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chemical Corporation, Research Institute Of Petroleum Processing, Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to JP2010501357A priority Critical patent/JP5340258B2/ja
Priority to AU2008234308A priority patent/AU2008234308B2/en
Priority to BRPI0808615-0A priority patent/BRPI0808615B1/pt
Priority to KR1020097020546A priority patent/KR101466631B1/ko
Priority to US12/594,008 priority patent/US8349756B2/en
Priority to EP08733849.7A priority patent/EP2133144B1/en
Priority to ES08733849T priority patent/ES2813853T3/es
Publication of WO2008119252A1 publication Critical patent/WO2008119252A1/zh
Priority to ZA2009/06473A priority patent/ZA200906473B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/06Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a titanium silicon material and a preparation method thereof, in particular to a titanium metal material containing noble metal and a preparation method thereof.
  • Background Art ⁇ , , , , 'J , , sieve.
  • TS-1 with MFI structure, TS-2 with MEL structure, Ti-MCM-22 with MWW structure, and TS-48 with larger pore structure have been synthesized.
  • the titanium-silicon molecular sieve TS-1 developed by Enichem Company of Italy is a new type of titanium-silicon molecular sieve with excellent catalytic selective oxidation performance by introducing transition metal element titanium into the molecular sieve framework of ZSM-5 structure.
  • TS-1 not only has the catalytic oxidation of titanium, but also has the shape-selective effect and excellent stability of ZSM-5 molecular sieve.
  • Titanium silicon molecular sieve materials can be used as catalysts to catalyze various types of organic oxidation reactions, such as epoxidation of olefins, partial oxidation of alkanes, oxidation of alcohols, hydroxylation of phenols, and ammoxidation of cyclic ketones. Due to the oxidation of organic matter in TS-1 molecular sieve, non-polluting low-concentration hydrogen peroxide can be used as oxidant, which avoids the complicated process of oxidation process and environmental pollution. It has unparalleled energy saving, economy and environment. It has the advantages of being friendly, and has good reaction selectivity, so it has great industrial application prospects. Titanium silicon molecular sieves, as organic selective oxidation catalysts, are considered to be a milestone in the field of molecular catalysis.
  • H 2 O 2 is a recognized green oxidant, its oxidation by-product is only water.
  • H 2 0 2 due to the difficulty in storage and transportation of H 2 0 2 aqueous solution, H 2 0 2 is extremely unstable. It will decompose when exposed to heat, light, rough surface, heavy metals and other miscellaneous shields, and it is corrosive. It must be specially used in packaging, storage and transportation. Security measures. Therefore, the application of H 2 0 2 in situ, or the combination of H 2 0 2 production process and downstream process using H 2 0 2 can make more efficient use of this chemical product.
  • H 2 0 2 and H 2 can be synthesized directly 02, and to use the original rate of 100%, and further H 2 Synthesis of people want to re-oxidation of the organic material 02 of H 2 0 2 in situ and directly used in order to resolve H 2 0 2 cost and security issues. Since Pt, Pd, Au, etc. are the effective components of H 2 0 2 synthesis of H 2 O 2 , many literature patents have reported that they are supported on titanium silicon materials. H 2 O 2 was formed in situ for the study of selective oxidation of organic compounds. For example, Meiers R. et al. (J.
  • the invention aims at the deficiency of the in-situ formation of H 2 O 2 on the titanium silicon material for the selective oxidation reaction of organic substances on the titanium metal material such as Pt, Pd, Au, etc., and provides a titanium metal material containing noble metal and provides a preparation method thereof.
  • the noble metal-containing titanium silicon material provided by the present invention is characterized in that the composition of the material is represented by an oxide form of xTi0 2 ⁇ 100SiO 2 ⁇ yEO m ⁇ zE, wherein the value of x is 0.001 ⁇ 50, ( y + z) Is 0.0001 to 20 and y/z ⁇ 5, and E represents one or more precious metals selected from the group consisting of Ru, Rh, Pd, Re, Os, Ir, Pt, Ag, and Au, and m is required to satisfy the E oxidation state.
  • the material grain contains a hollow structure, or a concave-convex structure.
  • (y+z) value is preferably 0.005 to 20, or 0.001 to 10.0, more preferably 0.005 to 10, most preferably 0.01 to 7, y/
  • the z value is preferably ⁇ 3, more preferably ⁇ 2, more preferably ⁇ 1, and most preferably 0.01 to 0.8.
  • the noble metal is preferably one or more of Pd, Pt, Ag and Au, more preferably Pd and/or Pt. When the noble metal is two or more, the value of y is each precious metal y The sum of the values, the value of z is the sum of the z values of each noble metal.
  • the adsorption amount of benzene measured under the condition of adsorption time of 1 hour is at least 25 mg/g, preferably at least 35 mg/g; adsorption of low temperature nitrogen adsorption, etc. There is a hysteresis loop between the temperature line and the desorption isotherm.
  • the shape of the cavity portion is not fixed, and may be various shapes such as a rectangle, a circle, an irregular circle, an irregular polygon, or a combination of one or more of these shapes; A single crystal grain or aggregated grain aggregated by a plurality of crystal grains.
  • the material provided by the present invention may have a hollow, or concave-convex structure, or may be partially hollow or concave-convex.
  • the hollow crystal grain is favorable for the diffusion of the reactants and the product molecules, the synergistic effect of the noble metal and the titanium silicon molecular sieve is improved, the precious metal dispersibility is good; and the noble metal-containing titanium silicon material provided by the invention, the hollow structure
  • the ability to hold carbon deposits is strong.
  • the oxidation reaction for example, in the reaction of epoxidation of propylene to produce propylene oxide, the selectivity and catalytic activity and stability of the reaction product are remarkably improved as compared with the prior art (e.g., conventional impregnation loading technique).
  • the invention also provides two preparation methods of the above noble metal-containing titanium silicon material.
  • One of the preparation methods provided by the present invention is that the titanium silicon molecule, the protective agent, the precious metal source, the reducing agent, the alkali source and the water are first mixed and then transferred to the reaction vessel for hydrothermal treatment, filtering, washing and drying, more specifically, Said the method includes:
  • step (2) The mixture obtained in the step (1) is further transferred to a reaction vessel for reaction under hydrothermal treatment, and the product is recovered to obtain the titanium silicon material of the present invention.
  • the composition in the step (1) is preferably a titanium silicon molecular sieve.
  • the titanium silicon molecular sieve referred to in the step (1) comprises titanium silicon molecular sieves of various types, such as TS-1, TS-2, Ti-BETA, Ti-MCM-22, Ti-. MCM-41 , Ti-ZSM-48 , Ti-ZSM-12 , Ti-MMM-1 , Ti-SBA- 15 , Ti-MSU, Ti-MCM-48, etc., preferably TS-1.
  • the protective agent in the step (1) refers to a polymer or a surfactant, wherein the polymer may be polypropylene, polyethylene glycol, polystyrene, polyvinyl chloride, polyethylene, or the like. And derivatives thereof, the surfactants may be anionic surfactants, cationic surfactants, and nonionic surfactants.
  • the reducing agent in the above preparation method step (1) may be hydrazine, borohydride, sodium citrate or the like, wherein the hydrazine may be hydrazine hydrate, hydrazine hydrochloride, barium sulphate or the like, and the borohydride may be sodium borohydride or boron. Potassium hydride and the like.
  • the noble metal source in the above preparation method step (1) is selected from the inorganic or organic substance of the above noble metal, and may be an oxide, a sulphate, a carbonate, a nitrate, an ammonium nitrate salt, an ammonium chloride salt or a hydroxide. Or other complexes of precious metals, etc.
  • the palladium source may be an inorganic palladium source and/or an organic palladium source.
  • the inorganic 4 bar source may be palladium oxide, palladium carbonate, palladium chloride, palladium nitrate, palladium nitrate, palladium chloride, palladium hydroxide or other complexes of palladium, and the organic palladium source may be palladium acetate or acetyl. Acetone palladium and the like.
  • the above preparation method step (1) is that the alkali source is an inorganic alkali source or an organic alkali source.
  • the inorganic alkali source is ammonia water, sodium hydroxide, potassium hydroxide, barium hydroxide or the like;
  • the organic alkali source is urea, a quaternary amine compound, a fatty amine compound, an alcohol amine compound or a mixture thereof.
  • the quaternary ammonium base compound has the formula (R 1 ) 4 NOH , wherein R 1 is an alkyl group having 1 to 4 carbon atoms, preferably a propyl group.
  • the compound is ethylamine, n-butylamine, butanediamine or hexamethylenediamine.
  • the amine compound is monoethanolamine, diethanolamine or triethanolamine.
  • a protective agent may or may not be added.
  • the hydrothermal treatment condition described in the step (2) of the above preparation method is hydrothermal treatment at a temperature of 80 to 200 ° C and autogenous pressure for 2 to 360 hours, and the process of recovering the product is well known to those skilled in the art, and there is no particular Wherein, it usually includes a process of washing, drying, and the like of the crystallized product.
  • the invention also provides a second preparation method of the titanium metal material containing noble metal, which comprises the following steps:
  • the reducing agent of 10 After the reducing agent of 10, it is hydrothermally treated in a reaction vessel at a temperature of 80 to 200 ° C and autogenous pressure for 2 to 360 hours, and the product is recovered to obtain the titanium silicon material of the present invention.
  • the step (2) may be repeated one or more times as necessary.
  • the silicon source is silica gel, silica sol or organosilicate, preferably organosilicate;
  • the organosilicate has the formula R 4 4 Si0 4 , wherein R 4 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an ethyl group.
  • the titanium source is an inorganic titanium salt or an organic titanate, preferably an organic titanate; and the inorganic titanium salt may be TiCl 4 or Ti (S0). 4 ) 2 or TiOCl 2 ; said organotitanate having the formula Ti (OR 5 ) 4 , wherein R 5 is an alkyl group having 1 to 6 carbon atoms, more preferably having 2 to 4 carbon atoms The alkyl group of the atom.
  • the alkali source in the step (1) is a mixture of a quaternary amine base compound or a quaternary amine base compound and a fatty amine compound or an alcohol amine compound.
  • the quaternary ammonium base compound has the formula (R 6 ) 4 NOH, and R 6 is an alkyl group having 1 to 4 carbon atoms, preferably a propyl group.
  • the protective agent in the step (1) refers to a polymer or a surfactant, wherein the polymer may be polypropylene, polyethylene glycol, polystyrene, polyvinyl chloride, The polyethylene or the like and the derivative thereof may be an anionic surfactant, a cationic surfactant, and a nonionic surfactant.
  • the noble metal source of the step (1) is selected from the organic or inorganic substances of the noble metal, and may be an oxide, a halide, a carbonate, a nitrate, an ammonium nitrate salt, Ammonium chloride salt, hydroxide or other complex of noble metal, and the like.
  • the palladium source may be an inorganic palladium source and/or an organic palladium source, wherein the inorganic 4 bar source may be palladium oxide, 4 bar carbonic acid, 4 bar chlorination, 4 bar nitric acid, 4 bar ammonium nitrate, palladium chloride chloride.
  • the organic palladium source may be palladium acetate, palladium acetylacetonate or the like.
  • the reducing agent in the step (1) may be hydroxylamine, hydrazine, borohydride, sodium citrate or the like, wherein the hydrazine may be hydrazine hydrate, hydrazine hydrochloride, barium sulphate or the like.
  • the borohydride may be sodium borohydride, potassium borohydride or the like.
  • the preparation method provided by the invention has the catalytic oxidation activity and the product selectivity significantly improved compared with the prior art, and has better catalytic activity stability (see the examples).
  • the material of the present invention has a hollow or convex-concave structure, it is advantageous for the diffusion of reactants and product molecules, especially larger molecules (such as aromatic compounds) in the catalytic reaction, for aromatic compounds, cyclic compounds, etc. Catalytic oxidation is particularly advantageous.
  • Figure 1 is an adsorption-desorption isotherm plot of low temperature nitrogen adsorption of Comparative Example 1 versus sample DB-1.
  • Figure 2 is a graph showing the adsorption-desorption isotherm curve of the low temperature nitrogen adsorption of Sample A of Example 1.
  • FIG. 3 is an adsorption-desorption isotherm diagram of the low temperature nitrogen adsorption of Sample B of Example 2.
  • 4 is an adsorption-desorption isotherm curve of low temperature nitrogen adsorption of sample C of Example 3
  • FIG. 5 is an adsorption-desorption isotherm curve of low temperature nitrogen adsorption of sample D of Example 4
  • FIG. 6 is a low temperature nitrogen adsorption of sample E of Example 5.
  • the adsorption-desorption isotherm curve of FIG. 7 is the adsorption-desorption isotherm curve of the low-temperature nitrogen adsorption of the sample F of Example 6.
  • FIG. 8 is the adsorption-desorption isotherm curve of the low-temperature nitrogen adsorption of the sample G of Example 7.
  • Figure 9 is an adsorption-desorption isotherm curve of the low temperature nitrogen adsorption of sample H of Example 8.
  • Figure 10 is an adsorption-desorption isotherm curve of the low temperature nitrogen adsorption of Sample I of Example 9.
  • Figure 11 is an adsorption-desorption isotherm curve of the low temperature nitrogen adsorption of Sample J of Example 10.
  • Example 12 is an adsorption-desorption isotherm curve diagram of Example 11 sample K for low temperature nitrogen adsorption.
  • Figure 14 is a transmission electron microscope (TEM) photograph of Sample A of Example 1.
  • Figure 15 is a transmission electron microscope (TEM) photograph of Sample B of Example 2.
  • Figure 16 is a transmission electron microscope (TEM) photograph of Sample C of Example 3.
  • Figure 17 is a transmission electron microscope (TEM) photograph of Sample C of Example 4.
  • Figure 18 is a transmission electron microscope (TEM) photograph of Sample E of Example 5.
  • Figure 19 is a transmission electron microscope (TEM) photograph of Sample F of Example 6.
  • Figure 20 is a transmission electron microscope (TEM) photograph of Sample G of Example 7.
  • Figure 21 is a transmission electron microscope (TEM) photograph of Sample H of Example 8.
  • Figure 22 is a transmission electron microscope (TEM) photograph of Sample I of Example 9.
  • Figure 23 is a transmission electron microscope (TEM) photograph of Sample J of Example 10.
  • Figure 24 is a transmission electron microscope (TEM) photograph of Sample K of Example 11. detailed description
  • the reagents used in the examples were all commercially available chemically pure reagents.
  • the comparative examples and the titanium-silicon molecular sieve TS-1 used in the examples were prepared according to the method described in the prior art Zeolites, 1992, Vol. 12, 943; the titanium-silicon molecular sieve Ti-BETA used was according to the prior art J. Prepared by the method described in Catal., 1994, Vol. 145, 151; the titanium silica molecular sieve TS-2 used is prepared according to the method described in the prior art Appl. Catal., 1990, Vol. 58, L1.
  • the titanium silica molecular sieve Ti-ZSM-48 used was prepared according to the method described in J. Chem. Soc. Chem.
  • the titanium silica molecular sieve Ti-ZSM-12 used was Prepared by the method described in the prior art Zeolites, 1995, Vol. 15, 236.
  • the adsorption-desorption isotherm curve of the sample for low temperature nitrogen adsorption was determined by the American Micromeritics ASAP 2405 static nitrogen adsorption apparatus according to the ASTM D4222-98 standard method.
  • the transmission electron micrograph (TEM) of the sample was obtained on a Tecnai G 2 F20S-TWIN transmission electron microscope from FEI, Netherlands, with an accelerating voltage of 20 kV.
  • the benzene adsorption amount of the sample was measured by a conventional static adsorption method.
  • This comparative example illustrates the process of conventionally preparing a supported palladium/titanium silicon molecular sieve catalyst. Take 20 g of titanium silicalite TS-1 and 20 ml of a solution of 0.01 g/ml (as palladium atom) of ammonium nitrate solution, add 20 ml of deionized water, mix well, and seal properly. The temperature is 40 °C. Immerse for 24 hours. Then, it was naturally dried and subjected to reduction activation in a hydrogen atmosphere at 150 ° C for 3 hours to obtain a conventional conventional supported palladium/titanium silicon molecular sieve catalyst DB-1.
  • the oxide form Characterized by the oxide form, it can be expressed as 6 ⁇ 0 0 ⁇ 100 SiO 2 ⁇ 0.7 PdO ⁇ 0.3 Pd.
  • the adsorption-desorption isotherm curve of the low-temperature nitrogen adsorption has no hysteresis loop (Fig. 1), and it is a solid structure in the transmission electron micrograph, and no hollow or convex-concave structure is observed (Fig. 13).
  • titanium silica molecular sieve TS-1 Take 20 g of titanium silica molecular sieve TS-1, a concentration of 0.01 g/ml (as palladium atom) of an ammonium palladium nitrate complex solution, and an appropriate amount of hydrazine hydrate and cetyltridecyl ammonium bromide added to the tetrapropyl group.
  • a new titanium metal material A containing precious metals Characterized by the oxide form can be expressed as 4Ti0 2 ⁇ 100SiO 2 ⁇ O.OlPdO ⁇ 0.09Pd, the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has hysteresis loop (Fig. 2), transmission electron micrograph It is shown as a hollow structure ( Figure 14).
  • titanium-silicon molecular sieve Ti-BETA 20 g of titanium-silicon molecular sieve Ti-BETA, a palladium chloride solution having a concentration of 0.01 g/ml (as palladium atom), and an appropriate amount of guanidine hydrochloride and polypropylene are added to an aqueous solution of sodium hydroxide (15% by mass).
  • titanium silicalite (g): polypropylene (mole): sodium hydroxide (mole): hydrazine hydrochloride (mole): palladium chloride (grams, in palladium): water (mole) 100: 0.9: 1.8: 0.15: 0.1: 4600.
  • Titanium silicon material B of precious metal Characterized by the oxide form can be expressed as 8Ti0 2 ⁇ IOOS1O2 ⁇ 0.006PdO ⁇ 0.008Pd, the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has hysteresis loop (Fig. 3), transmission electron micrograph shows It is a hollow structure (Fig. 15).
  • the new noble metal-containing titanium silicon material of the present invention is obtained (: characterized by the composition of the oxide can be expressed as 0.008 TiO 2 ⁇ 100 SiO 2 ⁇ O.OlPdO 0.2Pd, the adsorption-desorption isotherm curve of the low-temperature nitrogen adsorption has a hysteresis loop (Fig. 4), and the transmission electron micrograph shows that it is a hollow structure (Fig. 16).
  • composition can be expressed as 19Ti0 2 ⁇ 100SiO 2 ⁇ 0.5PdO ⁇ 1.3Pd in the form of oxide.
  • the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has a hysteresis loop (Fig. 5), and the transmission electron micrograph shows It is a hollow structure (Fig. 17).
  • a new titanium metal material E containing precious metals Characterized by the oxide form can be expressed as 0.1TiO 2 ⁇ IOOS1O2 ⁇ 0.66PdO ⁇ 0.12Pd, the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has a hysteresis loop (Figure 6), transmission electron micrograph shows Out of Hollow structure ( Figure 18).
  • a new titanium metal material F containing precious metals Characterized by the oxide form can be expressed as 0.04TiO 2 '100SiO 2 ⁇ 3.6PdO ⁇ l.lPd, the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has a hysteresis loop (Fig. 7), transmission electron microscope The photo shows it as a hollow structure ( Figure 19).
  • Tetraethyl orthosilicate, tetraethyl titanate, palladium acetate solution having a concentration of 0.01 g/ml (as palladium atom) and cetyltrimethylammonium bromide were added to tetrapropylammonium hydroxide ( The mass percentage concentration is 13%).
  • Tetradecyl orthosilicate, TiCl 4 at a concentration of 0.01 g/ml (as palladium atom)
  • composition can be expressed as 12Ti0 2 ⁇ 100SiO 2 ⁇ O.OlPdO ⁇ 6.4Pd in the form of oxide.
  • Titanium silicon material I of precious metals Characterized by the oxide form can be expressed as 0.5TiO 2 ⁇ 100SiO 2 ⁇ 0.7PdO ⁇ 1.3Pd, the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has a hysteresis loop (Fig. 10), transmission electron micrograph It is seen as a hollow structure (Fig. 22).
  • Characterized by its oxide form can be expressed as 2Ti0 2 ⁇ 100SiO 2 ⁇ 0.6PdO ⁇ 3.3Pd, its adsorption-desorption isotherm curve for low-temperature nitrogen adsorption has hysteresis loop (Fig. 11), transmission electron The microscopic photograph shows that it is a hollow structure (Fig. 23).
  • a new titanium silicon material K containing a double precious metal Characterized by the oxide form, it can be expressed as 4Ti0 2 -100SiO 2 -0.3PdO -O.lPtO -0.9Pd -0.7Pt, and the adsorption-desorption isotherm curve of low temperature nitrogen adsorption has a hysteresis loop ( Figure 12 ), a transmission electron micrograph shows that it is a hollow structure (Fig. 24).
  • This comparative example illustrates the process of conventionally preparing a supported palladium-platinum/titanium silica molecular sieve catalyst.
  • composition of which can be expressed as 6Ti0 2 - 100SiO 2 - 0.8PdO - 0.4PtO ⁇ 0.2Pd ⁇ 0.5Pt.
  • the adsorption-desorption isotherm curve of the low-temperature nitrogen adsorption has no hysteresis loop, and no hollow structure is observed in the transmission electron microscope photograph.
  • This comparative example illustrates the process of conventionally preparing a supported palladium/titanium silicon molecular sieve catalyst.
  • 20 g of titanium silicon molecular sieve obtained according to the preparation method of Example 1 of CN 1 132699C and 20 ml of a solution of 0.01 g/ml (4 bar atom) of ammonium nitrate 4 bar complex were added to 20 ml of deionized water and stirred. After homogenization, properly seal and immerse at 40 °C for 24 hours. Then, it was naturally dried and subjected to reduction activation in a hydrogen atmosphere at 150 ° C for 3 hours to obtain a supported palladium-platinum/titanium silica molecular sieve catalyst DB-3.
  • the oxide form Characterized by the oxide form, it can be expressed as 6Ti0 2 ⁇ 100SiO 2 ⁇ 0.9PdO ⁇ 0.1 Pd.
  • the adsorption-desorption isotherm curve of the low-temperature nitrogen adsorption has a hysteresis loop, and a hollow structure is observed in the transmission electron microscope photograph.
  • This comparative example illustrates the process of conventionally preparing a supported palladium/titanium silicon molecular sieve catalyst.
  • the temperature is 40 °C. Dip for 24 hours.
  • This example illustrates the effect of the sample of the examples provided by the present invention and the sample prepared in the comparative example for the gas phase epoxidation of propylene to produce propylene oxide in the presence of hydrogen.
  • Table 1 and Table 2 show the propylene conversion rate of the reaction for 2 hours and 12 hours, respectively. And PO selective data.
  • Table 1 Sample Source Sample No. propylene conversion % PO selectivity %
  • Example 1 A 5.24 91.68
  • Example 2 B 5.53 92.56
  • Example 3 C 4.36 92.14
  • Example 4 D 4.73 91.87
  • Example 5 E 4.21 91.65
  • Example 6 F 5.21 91.45
  • Example 11 K 5.45 92.14
  • Comparative Example 2 DB-2 2.71 88.52
  • Comparative Example 3 DB -3 2.68 89.34 Comparative Example 4 DB-4 1.14 86.65
  • Table 3 Sample Source Sample No. Benzene Adsorption Amount, mg/g Radial Length, nm
  • Example 1 A 65 10-120
  • Example 2 B 48
  • Example 3 C 56
  • Example 4 D
  • Example 5 E
  • Example 7 G 55 5-115
  • Example 11 K 45 5-90 Comparative Example 2 DB-2 19 - Comparative Example 3 DB-3 34 60-80 Comparative Example 4 DB-4 28 -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Epoxy Compounds (AREA)

Description

一种含贵金属的钛硅材料及其制备方法 技术领域
本发明涉及一种钛硅材料及其制备方法,具体的说是含贵金属 的钛硅材料及其制备方法。 背景技术 ^ 、 、 、 , 'J 、 、 筛。 目前已合成出的有 MFI型结构的 TS- 1 , MEL型结构的 TS-2 , MWW型结构的 Ti-MCM-22以及具有较大孔结构的 TS-48等。 其 中意大利 Enichem公司开发合成的钛硅分子筛 TS- 1 , 是将过渡金 属元素钛引入具有 ZSM-5 结构的分子筛骨架中所形成的一种具有 优良催化选择性氧化性能的新型钛硅分子筛。 TS- 1 不但具有钛的 催化氧化作用, 而且还具有 ZSM-5分子筛的择形作用和优良的稳 定性。 采用钛硅分子筛材料作为催化剂, 可以催化多种类型的有 机氧化反应, 如烯烃的环氧化、 烷烃的部分氧化、 醇类的氧化、 酚类的羟基化、 环酮的氨氧化等。 由于 TS- 1分子筛在有机物的氧 化反应中, 可采用无污染的低浓度过氧化氢作为氧化剂, 避免了 氧化过程工艺复杂和污染环境的问题, 具有传统氧化体系无可比 拟的节能、 经济和环境友好等优点, 并具有良好的反应选择性, 因此具有极大的工业应用前景。 钛硅分子筛作为有机物选择性氧 化催化剂, 被认为是分子 催化领域的一个里程碑。
虽然 H202是公认的绿色氧化剂, 其氧化副产物只有水。 但由 于 H202水溶液储运困难, H202极不稳定, 遇热、 光, 粗糙表面、 重金属及其它杂盾会分解, 且具有腐蚀性, 在包装、 储存、 运输 中要采取特别的安全措施。 所以, 将 H202就地应用, 或将 H202 的生产工艺与使用 H202的下游工艺相结合, 才可以更有效的利用 这一化工产品。
利用 H2和 02可以直接合成 H202, 且原予利用率达 100% , 进 而人们想利用 H2和 02来原位合成 H202再氧化有机原料以解决直 接利用 H202的成本和安全问题。 由于 Pt、 Pd、 Au等是 H2和 02 合成 H202的有效组分, 有许多文献专利报道将其负载在钛硅材料 上原位生成 H202用于有机物选择性氧化反应的研究。如, Meiers R. 等 (J. Catal., 1998, 176: 376-386 ) 以 Pt-Pd/TS-1 为催化剂对丙 烯气相环氧化进行了研究; US 6867312B1 以及 US 6884898B1 等 也都进行了这方面的研究。 虽然该工艺反应条件温和、 选择性好 (可达到 95%以上) , 但存在催化剂活性较低、 以及催化剂稳定 性差等缺陷。 所以, 制备及改性相应催化剂以提高反应的转化率, 以及改善催化剂的抗失活性能、 再生性能, 是该工艺研究开发的 关键。 发明内容
本发明针对 Pt、 Pd、 Au等贵金属负载在钛硅材料上原位生成 H202用于有机物选择性氧化反应工艺存在的不足, 提供一种含贵 金属的钛硅材料并提供其制备方法。
本发明提供的含贵金属的钛硅材料,其特征在于该材料的组成 用氧化物的形式表示为 xTi02 · 100SiO2 · yEOm · zE, 其中 x值为 0.001 ~ 50、 ( y+z) 值为 0.0001 ~ 20且 y/z < 5, E表示选自 Ru、 Rh、 Pd、 Re、 Os、 Ir、 Pt、 Ag 和 Au 中的一种或几种贵金属, m 为满足 E 氧化态所需的数, 该材料晶粒包含空心结构, 或凹凸结 构。
本发明提供的含贵金属的钛硅材料, 其中所说的 X 值优选
0.005 - 25, 或者为 0.001 ~ 20, 更优选为 0.005 ~ 20, (y+z)值优 选 0.005 ~ 20, 或者为 0.001 ~ 10.0, 更优选为 0.005 ~ 10, 最优选 为 0.01 -7, y/z值优选 <3、 更优选为 <2、 再优选为 < 1、 最优选 为 0.01 ~ 0.8。 所说的贵金属优选 Pd、 Pt、 Ag和 Au中的一种或几 种, 更优选 Pd和 /或 Pt, 当贵金属为两种或两种以上时, 所说的 y 的值为每种贵金属 y值的和,所说的 z的值为每种贵金属 z值的和, 例如, 当所选贵金属为 Pt和 Pd时, 该材料的组成用氧化物的形式 表示为 xTi02 · IOOS1O2 · yiPtO · y2PdO · zjPt · z2Pd, 即 y=y】+y2、 z=Zl+z2。 该材料的晶粒全部或部分为空心结构, 空心晶粒的空腔 部分的径向长度为 0.1 ~ 500纳米, 优选为 0.5 ~ 300纳米; 该材料 在 25°C, P/P0=0.10, 吸附时间 1 小时的条件下测得的苯吸附量为 至少 25毫克 /克, 优选为至少 35毫克 /克; 其低温氮吸附的吸附等 温线和脱附等温线之间存在滞后环,在相对压力 P/PQ=0.60附近时, 其脱附时氮吸附量与吸附时氮吸附量差值大于其吸附时氮吸附量 的 2%; 空腔部分的形状不是固定不变的, 可以为矩形、 圆形、 不 规则圆形、 不规则多边形等各种形状, 或者是这些形状中的一种 或几种的结合; 其晶粒可以为单个晶粒或者由多个晶粒聚集成的 聚集晶粒。
本发明提供的材料, 晶粒可以是全部为空心、 或凹凸结构, 也 可以部分为空心、 或凹凸结构。
本发明提供的材料, 空心晶粒有利于反应物和产物分子的扩 散, 使贵金属与钛硅分子筛的协同作用得到提高, 贵金属分散性 好; 而且本发明提供的含贵金属的钛硅材料, 空心结构容纳积炭 的能力强。 与现有技术 (如传统浸渍负载技术) 相比, 在氧化反 应中, 例如在丙烯环氧化制备环氧丙烷的反应中, 反应产物的选 择性和催化活性及稳定性明显提高。
本发明还提供了上述含贵金属的钛硅材料的两种制备方法。 本发明提供的制备方法之一是先将钛硅分子 、 保护剂、 贵金 属源、 还原剂、 碱源和水混匀后转入反应釜中水热处理, 过滤、 洗涤、 干燥即得, 更具体地说该方法包括:
( 1 ) 先将钛硅分子筛、 保护剂、 贵金属源、 还原剂、 碱源和 水混勾得到混合物, 其组成为钛硅分子筛 (克): 保护剂 (摩尔): 碱源 (摩尔 ) : 还原剂 (摩尔) : 贵金属源 (克, 以贵金属单质 计) : 水(摩尔) = 100: ( 0.0 - 5.0 ) : ( 0.005 ~ 5.0 ) : ( 0.005 - 15.0 ) : ( 0.005 ~ 10.0 ) : ( 200 ~ 10000 ) ;
( 2 )再将步骤( 1 )所得的混合物转入反应釜中在水热处理条 件下反应, 并回收产物即得本发明的钛硅材料。
上述第一种制备方法中, 步骤 ( 1 ) 中组成优选为钛硅分子筛
(克) : 保护剂 (摩尔) : 碱源 (摩尔) : 还原剂 (摩尔) : 贵 金属源(克, 以贵金属单质计): 水(摩尔)=100: ( 0.005 - 1 .0 ): ( 0.01 ~ 2.0 ) : ( 0.01 - 10.0 ) : ( 0.01 ~ 5.0 ) : ( 500 ~ 5000 ) 。
上述第一种制备方法中, 步骤 ( 1 ) 中所说的钛硅分子筛包括 各种类型结构的钛硅分子筛 ,如 TS- 1 , TS-2, Ti-BETA , Ti-MCM-22 , Ti-MCM-41 , Ti-ZSM-48 , Ti-ZSM- 12 , Ti-MMM- 1 , Ti-SBA- 15 , Ti-MSU , Ti-MCM-48等, 优选为 TS- 1。
上述第一种制备方法中, 步骤 ( 1 ) 所说的保护剂是指聚合物 或表面活性剂, 其中聚合物可以是聚丙烯、 聚乙二醇、 聚苯乙烯、 聚氯乙烯、 聚乙烯等及其衍生物, 表面活性剂可以是阴离子表面 活性剂、 阳离子表面活性剂以及非离子表面活性剂。
上述制备方法步骤 ( 1 ) 所说的还原剂可以是肼、 硼氢化物、 拧檬酸钠等, 其中肼可以是水合肼、 盐酸肼、 硫酸肼等, 硼氢化 物可以是硼氢化钠、 硼氢化钾等。
上述制备方法步骤 ( 1 ) 所说的贵金属源选自上述贵金属的无 机物或有机物, 可以是氧化物、 |¾化物、 碳酸盐、 硝酸盐、 硝酸 铵盐、 氯化氨盐、 氢氧化物或贵金属的其它络合物等。 以钯为例, 钯源可以是无机钯源和 /或有机钯源。其中无机 4巴源可以是氧化钯、 碳酸钯、 氯化钯、 硝酸钯、 硝酸氨钯、 氯化氨钯、 氢氧化钯或者 钯的其它络合物等, 有机钯源可以是醋酸钯、 乙酰丙酮钯等。
上述制备方法步骤 ( 1 ) 所说碱源为无机碱源或有机碱源。 其 中无机碱源为氨水、 氢氧化钠、 氢氧化钾、 氢氧化钡等; 有机碱 源为尿素、 季胺碱类化合物、 脂肪胺类化合物、 醇胺类化合物或 由它们所组成的混合物。
所说的季铵碱类化合物其通式为 ( R1 ) 4NOH , 其中 R1为具有 1 - 4个碳原子的烷基, 优选的为丙基。
所说的脂肪胺类化合物其通式为 R2 ( NH2 ) n, 其中 R2选自具 有 1 ~ 6 个碳原子的烷基或者亚烷基, n= l 或 2 ; 所说脂肪胺类化 合物为乙胺、 正丁胺、 丁二胺或己二胺。
所说的醇胺类化合物其通式为 ( HOR3 ) mNH ( 3-m ); 其中 R3 选自具有 1 ~ 4个碳原子的烷基; m=l、 2或 3 ; 所说醇胺类化合物 为单乙醇胺、 二乙醇胺或三乙醇胺。
上述第一种制备方法中, 可以添加保护剂, 也可以不加入保护 剂。
上迷制备方法步骤( 2 )所说的水热处理条件是在温度 80 ~ 200 °C及自生压力下水热处理 2 ~ 360小时, 所说的回收产物的过程为 本领域技术人员所熟知, 并无特别之处, 通常包括将晶化产物洗 涤、 干燥等过程。 本发明还提供了上迷含贵金属的钛硅材料的第二种制备方法, 具体包括如下步骤:
( 1 )将钛源、 硅源、 碱源、 保护剂、 贵金属源和水混合均匀, 得到摩尔组成为硅源: 钛源: 碱源: 贵金属源: 保护剂: 水 =100: ( 0.005 - 50.0 ) : ( 0.005 - 20.0 ) : ( 0.005 - 10.0 ) : ( 0.0001 ~ 5.0 ): ( 200 ~ 10000 )的混合物, 其中硅源以 Si02计, 钛源以 Ti02 计, 贵金属源以单质计, 混合物于 120 ~ 200°C水热晶化至少 2 小 时, 取出产物, 过滤、 干燥、 焙烧得中间晶态材料;
(2) 将步骤 ( 1 ) 所得的中间晶态材料转入步骤 ( 1 ) 所剩的 滤液中, 加入与步骤 ( 1 ) 中所加入的贵金属源的摩尔比为 0.1 ~
10 的还原剂后, 于反应釜中在温度 80~ 200°C及自生压力下水热 处理 2~ 360小时, 并回收产物即得本发明的钛硅材料。
本发明提供的第二种制备方法中, 必要时可以重复步骤 ( 2) 一次或多次。
本发明提供的第二种制备方法中, 步骤 ( 1 ) 混合物的摩尔组 成优选为硅源: 钛源: 碱源: 贵金属源: 保护剂: 水 =100: ( 0.01 - 10.0) : ( 0.01 - 10.0 ): ( 0.01— 5.0 ) : ( 0.0005— 1.0 ) : ( 500— 5000 ) 。
发明提供的第二种制备方法中, 步骤 ( 1 ) 所说硅源为硅胶、 硅溶胶或者有机硅酸酯, 优选的是有机硅酸酯; 所说的有机硅酸 酯其通式为 R4 4Si04, 其中 R4优选具有 1 ~4个碳原子的烷基, 更 优选的为乙基。
发明提供的第二种制备方法中, 步骤 ( 1 ) 所说钛源为无机钛 盐或者有机钛酸酯, 优选的为有机钛酸酯; 所说的无机钛盐可以 是 TiCl4、 Ti ( S04) 2或者 TiOCl2; 所说的有机钛酸酯其通式为 Ti ( OR5 ) 4, 其中 R5为具有 1 ~6个碳原子的烷基, 更优选的是具有 2~4个碳原子的烷基。
发明提供的第二种制备方法中, 步骤 ( 1 ) 中所说碱源为季胺 碱类化合物或季胺碱类化合物与脂肪胺类化合物、 醇胺类化合物 所组成的混合物。 其中, 所说的季铵碱类化合物其通式为 ( R6) 4NOH, R6为具有 1 -4 个碳原子的烷基, 优选的为丙基。 所说的 脂肪胺类化合物其通式为 R7 (NH2) n, 其中 R7选自具有 1 ~ 6个 碳原子的烷基或者亚烷基, n=l或 2 , 例如乙胺、 正丁胺、 丁二胺、 己二胺等。 所说的醇胺类化合物其通式为 ( HOR8 ) mNH ^m ); 其 中 R8选自具有 1 ~ 4个碳原子的烷基; m= l、 2或 3 , 例如单乙醇 胺、 二乙醇胺、 三乙醇胺等。
本发明提供的第二种制备方法中, 步骤 ( 1 ) 所说的保护剂是 指聚合物或表面活性剂, 其中聚合物可以是聚丙烯、 聚乙二醇、 聚苯乙烯、 聚氯乙烯、 聚乙烯等及其衍生物, 表面活性剂可以是 阴离子表面活性剂、 阳离子表面活性剂以及非离子表面活性剂。
本发明提供的第二种制备方法中, 步骤 ( 1 ) 所说的贵金属源 选自贵金属的有机物或无机物, 可以是它们的氧化物、 鹵化物、 碳酸盐、 硝酸盐、 硝酸铵盐、 氯化铵盐、 氢氧化物或贵金属的其 它络合物等。 以钯源为例, 可以是无机钯源和 /或有机钯源, 其中 无机 4巴源可以是氧化钯、 碳酸 4巴、 氯化 4巴、 硝酸 4巴、 硝酸氨 4巴、 氯化氨钯、 氢氧化钯或钯的其它络合物等, 有机钯源可以是醋酸 钯、 乙酰丙酮钯等。
在本发明提供的第二种制备方法中, 步骤 ( 1 ) 中所说的还原 剂可以是羟胺、 肼、 硼氢化物、 柠檬酸钠等, 其中肼可以是水合 肼、 盐酸肼、 硫酸肼等, 硼氢化物可以是硼氢化钠、 硼氢化钾等。
本发明提供的制备方法其催化氧化活性和产物选择性与现有 技术相比明显提高, 同时具有较好的催化活性稳定性 (见实施例
12 ) 。 另外, 由于本发明的材料其晶粒含有空心或凸凹结构, 在 催化反应中有利于反应物和产物分子尤其是较大分子 (如芳香族 化合物) 的扩散, 对芳香族化合物、 环类化合物等的催化氧化特 别有利。 附图说明
图 1为对比例 1对比样品 DB- 1的低温氮气吸附的吸附-脱附等 温曲线图。
图 2为实施例 1样品 A的低温氮气吸附的吸附-脱附等温曲线 图。
图 3为实施例 2样品 B的低温氮气吸附的吸附-脱附等温曲线 图。 图 4为实施例 3样品 C的低温氮气吸附的吸附-脱附等温曲线 图 5为实施例 4样品 D的低温氮气吸附的吸附-脱附等温曲线 图 6为实施例 5样品 E的低温氮气吸附的吸附-脱附等温曲线 图 7为实施例 6样品 F的低温氮气吸附的吸附-脱附等温曲线 图 8为实施例 7样品 G的低温氮气吸附的吸附-脱附等温曲线 图
图 9为实施例 8样品 H的低温氮气吸附的吸附-脱附等温曲线 图
图 10为实施例 9样品 I的低温氮气吸附的吸附-脱附等温曲线 图 11 为实施例 10样品 J的低温氮气吸附的吸附 -脱附等温曲 线图。
12为实施例 11样品 K的低温氮气吸附的吸附 -脱附等温曲 线图。
13 为对比例 1 对比样品 DB-1 的透射电子显 :镜 ( TEM) 照片。
图 14为实施例 1样品 A的透射电子显微镜 ( TEM) 照片。 图 15为实施例 2样品 B的透射电子显微镜 ( TEM) 照片。 图 16为实施例 3样品 C的透射电子显微镜 ( TEM) 照片。 图 17为实施例 4样品 C的透射电子显微镜 ( TEM) 照片。 图 18为实施例 5样品 E的透射电子显微镜 ( TEM) 照片。 图 19为实施例 6样品 F的透射电子显微镜 ( TEM) 照片。 图 20为实施例 7样品 G的透射电子显微镜 ( TEM) 照片。 图 21 为实施例 8样品 H的透射电子显微镜 ( TEM) 照片。 图 22为实施例 9样品 I的透射电子显微镜 ( TEM) 照片。 图 23为实施例 10样品 J的透射电子显微镜 ( TEM) 照片。 图 24为实施例 11样品 K的透射电子显微镜 ( TEM) 照片 具体实施方式
以下的实施例将对本发明作进一步地说明,但并不因此限制本 发明。
实施例中所用到的试剂均为市售的化学纯试剂。对比例以及实 施例中所用的钛硅分子筛 TS-1 是按现有技术 Zeolites, 1992, Vol.12, 943 中所描述的方法制备的; 所用的钛硅分子筛 Ti-BETA 是按现有技术 J. Catal., 1994, Vol.145, 151 中所描述的方法制备 的; 所用的钛硅分子筛 TS-2 是按现有技术 Appl. Catal., 1990, Vol.58, L1 中所描述的方法制备的; 所用的钛硅分子筛 Ti-ZSM-48 是按现有技术 J. Chem. Soc. Chem. Commun., 1994, 745 中所描述 的方法制备的; 所用的钛硅分子筛 Ti-ZSM-12 是按现有技术 Zeolites, 1995, Vol.15, 236中所描述的方法制备的。 样品的低温 氮气吸附的吸附-脱附等温曲线是在美国 Micromeritics 公司 ASAP2405静态氮吸附仪上按照 ASTM D4222-98标准方法进行测 定。 样品的透射电子显微镜照片 ( TEM)是在荷兰 FEI公司 Tecnai G2F20S-TWIN型透射电子显微镜上获得, 加速电压 20kV。 样品的 苯吸附量的测定采用常规的静态吸附法。
对比例 1
本对比例说明常规制备负载型钯 /钛硅分子筛催化剂的过程。 取 20克钛硅分子筛 TS-1 以及浓度为 0.01 g/ml (以钯原子计) 的硝酸氨^ <络合物溶液 20ml加入到 20ml去离子水中搅拌均匀后, 适当密封, 温度在 40°C下浸渍 24小时。 然后自然干燥, 并在 150 °C下氢气气氛中进行还原活化 3 小时, 即得传统常规负载型钯 /钛 硅分子筛催化剂 DB-1。 经表征, 其组成用氧化物的形式可以表示 为 6Τι02 · 100SiO2 · 0.7PdO · 0.3Pd。 其低温氮气吸附的吸附 -脱附 等温曲线图没有滞后环 (图 1 ) , 透射电子显微镜照片中其为实心 结构, 看不出空心或凸凹结构 (图 13) 。
实施例 1
取 20克钛硅分子筛 TS-1、 浓度为 0.01 g/ml (以钯原子计) 的 硝酸氨钯络合物溶液以及适量水合肼和十六烷基三曱基溴化铵加 入到四丙基氢氧化铵的水溶液 (质量百分比浓度 10%) 中搅拌混 合均匀, 其中钛硅分子筛 (克): 十六烷基三曱基溴化铵(摩尔): 四丙基氢氧化铵(摩尔): 水合肼(摩尔): 硝酸氨钯络合物(克, 以钯计) : 水 (摩尔) =100: 0.005: 0.5: 3.0: 2.0: 1000。 然后 放入不锈钢密封反应釜, 在 150°C的温度和自生压力下水热处理 48 小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 180°C下 继续干燥 3小时, 即得本发明的新型含贵金属的钛硅材料 A。 经表 征 , 其 组 成 用 氧 化 物 的 形 式 可 以 表 示 为 4Ti02 · 100SiO2 · O.OlPdO · 0.09Pd, 其低温氮气吸附的吸附 -脱附 等温曲线图有滞后环 (图 2) , 透射电子显微镜照片显示出其为空 心结构 (图 14) 。
实施例 2
取 20克钛硅分子筛 Ti-BETA、 浓度为 0.01 g/ml(以钯原子计) 的氯化钯溶液以及适量盐酸肼和聚丙烯加入到氢氧化钠的水溶液 (质量百分比浓度 15%)中搅拌混合均匀, 其中钛硅分子筛(克): 聚丙烯 (摩尔 ) : 氢氧化钠 (摩尔 ) : 盐酸肼 (摩尔 ) : 氯化钯 (克, 以钯计) : 水 (摩尔) =100: 0.9: 1.8: 0.15: 0.1: 4600。 然后放入不锈钢密封反应釜, 在 180°C的温度和自生压力下水热处 理 24 小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 110 下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅材料 B。 经 表 征 , 其 组 成 用 氧 化 物 的 形 式 可 以 表 示 为 8Ti02 · IOOS1O2 · 0.006PdO · 0.008Pd, 其低温氮气吸附的吸附-脱 附等温曲线图有滞后环 (图 3) , 透射电子显微镜照片显示出其为 空心结构 (图 15) 。
实施例 3
将正硅酸四乙酯、 钛酸四丁酯、 浓度为 0.01 g/ml (以钯原子 计) 的乙酸 4巴溶液和吐温 80加入到四丙基氢氧化铵和丁二胺的水 溶液 (质量百分比浓度 10%) 中搅拌混合均勾, 其中摩尔组成硅 源: 钛源: 碱源: 钯源: 保护剂: 水 =100: 0.03: 0.5: 0.05: 0.02: 550, 硅源以 Si02计, 钛源以 Ti02计, 4巴源以 Pd计。 然后放入密 封反应釜, 在 12(TC的温度和自生压力下水热处理 120小时, 将所 得物取出过滤后干燥、 焙烧得中间晶态材料。 将中间晶态材料转 入上述所剩的滤液中, 加入适量水合肼后在 170°C的温度和自生压 力下水热处理 36小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 150°C下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅 材料 (:。 经表征 , 其组成用 氧化物 的 形 式可 以表示 为 0.008TiO2 · 100SiO2 · O.OlPdO · 0.2Pd, 其低温氮气吸附的吸附- 脱附等温曲线图有滞后环 (图 4) , 透射电子显微镜照片显示出其 为空心结构 (图 16) 。
实施例 4
将硅溶胶、 钛酸四丁酯、 浓度为 0.01 g/ml (以钯原子计) 的 氯化氨钯溶液和十二烷基苯磺酸钠加入到四丙基氢氧化铵的水溶 液 (质量百分比浓度 15%) 中搅拌混合均匀, 其中摩尔组成硅源: 钛源: 碱源: 钯源: 保护剂: 水 = 100: 2.0: 5.2: 2.0: 0.5: 2500, 硅源以 Si02计, 钛源以 Ti02计, 钯源以 Pd计。 然后放入不锈钢 密封反应釜, 在 150°C的温度和自生压力下水热处理 96 小时, 将 所得物取出过滤后干燥、 焙烧得中间晶态材料。 将中间晶态材料 转入上述所剩的滤液中,加入适量盐酸肼后在 120°C的温度和自生 压力下水热处理 48小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 120°C下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅 材料 D。 经表征, 其组成用 氧化物 的 形 式可 以 表示 为 19Ti02 · 100SiO2 · 0.5PdO · 1.3Pd, 其低温氮气吸附的吸附-脱附等 温曲线图有滞后环 (图 5) , 透射电子显微镜照片显示出其为空心 结构 (图 17) 。
实施例 5
取 20克钛硅分子筛 TS-2、 浓度为 0.01 g/ml (以钯原子计) 的 乙酸 4巴溶液以及适量硼氢化钠和吐温 80 加入到丁二胺的水溶液 (质量百分比浓度 10%)中搅拌混合均匀, 其中钛硅分子筛(克): 吐温 80 (摩尔) : 丁二胺 (摩尔) : 硼氢化钠 (摩尔) : 乙酸钯 (克, 以钯计) : 水 (摩尔) =100: 0.1: 0.02: 0.05: 0.03: 520。 然后放入不锈钢密封反应釜,在 120°C的温度和自生压力下水热处 理 120 小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 150 °C下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅材料 E。 经 表 征 , 其 组 成 用 氧 化 物 的 形 式 可 以 表 示 为 0.1TiO2 · IOOS1O2 · 0.66PdO · 0.12Pd, 其低温氮气吸附的吸附-脱 附等温曲线图有滞后环 (图 6) , 透射电子显微镜照片显示出其为 空心结构 (图 18) 。
实施例 ό
取 20克钛硅分子筛 Ti-ZSM-48、 浓度为 0.01 g/ml (以钯原子 计) 的氯化氨钯溶液以及适量硫酸肼和非离子表面活性剂 P123加 入到四丙基氢氧化铵的水溶液 (质量百分比浓度 10%) 中搅拌混 合均匀, 其中钛硅分子筛(克): 非离子表面活性剂 P123(摩尔): 四丙基氢氧化铵 (摩尔) : 硫酸肼 (摩尔 ) : 氯化氨钯 (克, 以 钯计) : 水 (摩尔) =100: 0.5: 0.1: 8.5: 4.8: 2000。 然后放入 不锈钢密封反应釜, 在 90°C的温度和自生压力下水热处理 240 小 时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 120°C下继续干 燥 3小时, 即得本发明的新型含贵金属的钛硅材料 F。 经表征, 其 组 成 用 氧 化 物 的 形 式 可 以 表 示 为 0.04TiO2 ' 100SiO2 · 3.6PdO · l .lPd, 其低温氮气吸附的吸附 -脱附 等温曲线图有滞后环 (图 7) , 透射电子显微镜照片显示出其为空 心结构 (图 19 ) 。
实施例 7
将正硅酸四乙酯、 钛酸四乙酯、 浓度为 0.01 g/ml (以钯原子 计) 的乙酸钯溶液和十六烷基三曱基溴化铵加入到四丙基氢氧化 铵 (质量百分比浓度 13%) 中搅拌混合均匀, 其中硅源: 钛源: 碱源: 巴源: 保护剂: 水 =100: 8.2: 7.5: 0.1: 0.005: 800, 硅源 以 Si02计, 钛源以 Ti02计, 钯源以 Pd计。 然后放入不锈钢密封 反应釜, 在 160°C的温度和自生压力下水热处理 96 小时, 将所得 物取出过滤后干燥、 焙烧得中间晶态材料。 将中间晶态材料转入 上述所剩的滤液中, 加入适量盐酸肼后在 170°C的温度和自生压力 下水热处理 36小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并 在 150°C下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅材 料 G。 经 表征 , 其 组 成 用 氧化物 的 形 式可 以 表 示 为 23Ti02 · 100SiO2 · 0.004PdO · 0.8Pd, 其低温氮气吸附的吸附 -脱附 等温曲线图有滞后环 (图 8) , 透射电子显微镜照片显示出其为空 心结构 (图 20) 。
实施例 8
将正硅酸四曱酯、 TiCl4、 浓度为 0.01 g/ml (以钯原子计) 的 硝酸氨钯溶液和聚氯乙烯加入到四丙基氢氧化铵的水溶液 (质量 百分比浓度 15%) 中搅拌混合均匀, 其中硅源: 钛源: 碱源: 钯 源: 保护剂: 水 = 100: 5.0: 0.02: 4.5: 0.9: 4800, 硅源以 Si02 计, 钛源以 Ti02计, 钯源以 Pd计。 然后放入不锈钢密封反应釜, 在 150°C的温度和自生压力下水热处理 96 小时, 将所得物取出过 滤后干燥、 焙烧得中间晶态材料。 将中间晶态材料转入上述所剩 的滤液中, 加入适量硼氢化钠后在 120°C的温度和自生压力下水热 处理 48 小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 120 °C下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅材料 H。 经 表 征 , 其 组 成 用 氧 化 物 的 形 式 可 以 表 示 为 12Ti02 · 100SiO2 · O.OlPdO · 6.4Pd, 其低温氮气吸附的吸附 -脱附 等温曲线图有滞后环 (图 9) , 透射电子显微镜照片显示出其为空 心结构 (图 21 ) 。
实施例 9
取 20克钛硅分子筛 Ti-ZSM-12、 浓度为 0.01 g/ml (以钯原子 计) 的乙酸钯的乙醇溶液 10ml以及适量柠檬酸钠和聚乙二醇加入 到三乙醇胺的水溶液 (质量百分比浓度 18%) 中搅拌混合均匀, 其中钛硅分子筛 (克) : 聚乙二醇 (摩尔) : 三乙醇胺 (摩尔) : 柠檬酸钠 (摩尔) : 乙酸钯 (克, 以钯计) : 水 (摩尔) =100: 0.01: 1.2: 0.05: 1.0: 1500。 然后放入反应釜, 在 130°C的温度和 自生压力下水热处理 320 小时, 将所得物过滤、 用水洗涤, 自然 干燥后, 并在 140°C下继续干燥 3小时, 即得本发明的新型含贵金 属的钛硅材料 I。 经表征, 其组成用氧化物的形式可以表示为 0.5TiO2 · 100SiO2 · 0.7PdO · 1.3Pd, 其低温氮气吸附的吸附 -脱附 等温曲线图有滞后环 (图 10) , 透射电子显微镜照片看出其为空 心结构 (图 22) 。
实施例 10
将正硅酸四乙酯、 钛酸四丙酯、 浓度为 0.01 g/ml (以钯原子 计) 的乙酸钯溶液和十四烷基三甲基溴化铵加入到四丙基氢氧化 铵 (质量百分比浓度 13°/。) 中搅拌混合均匀, 其中硅源: 钛源: 碱源: 钯源: 保护剂: 水 = 100: 0.1: 0.1: 1.1: 0.001: 1500, 硅 源以 Si02计, 钛源以 Ti02计, 钯源以 Pd计。 然后放入不锈钢密 封反应釜, 在 16(TC的温度和自生压力下水热处理 72 小时, 将所 得物取出过滤后干燥、 焙烧得中间晶态材料。 将中间晶态材料转 入上述所剩的滤液中, 加入适量盐酸肼后在 17(TC的温度和自生压 力下水热处理 36小时, 将所得物过滤、 用水洗涤, 自然干燥后, 并在 150°C下继续干燥 3小时, 即得本发明的新型含贵金属的钛硅 材料 J。 经表征, 其组成用 氧化物 的 形 式可以 表示 为 2Ti02 · 100SiO2 · 0.6PdO · 3.3Pd, 其低温氮气吸附的吸附-脱附等 温曲线图有滞后环 (图 11 ) , 透射电子显微镜照片看出其为空心 结构 (图 23) 。
实施例 11
取 20克钛硅分子筛 TS-1、 浓度均为 0.01 g/ml (以钯或铂原子 计) 的硝酸氨钯和硝酸氨铂络合物溶液以及水合肼和十六烷基三 曱基溴化铵加入到四丙基氢氧化铵的水溶液 (质量百分比浓度 14%) 中搅拌混合均匀, 其中钛硅分子筛 (克) : 十六烷基三曱基 溴化铵 (摩尔 ) : 四丙基氢氧化铵 (摩尔) : 水合肼 (摩尔 ) : 硝酸氨铂 (克, 以铂计) : 硝酸氨钯 (克, 以钯计) : 水 (摩尔 ) = 100: 0.1: 1.2: 2.0: 0.8: 1.2: 1800。 然后放入不锈钢密封反应 釜, 在 180°C的温度和自生压力下水热处理 72 小时, 将所得物过 滤、 用水洗涤, 自然干燥后, 并在 180°C下继续干燥 3小时, 即得 本发明的新型含双贵金属的钛硅材料 K。 经表征, 其组成用氧化物 的形式可以表示为 4Ti02 -100SiO2 -0.3PdO -O.lPtO -0.9Pd -0.7Pt, 其低温氮气吸附的吸附 -脱附等温曲线图有滞后环 (图 12) , 透射 电子显微镜照片看出其为空心结构 (图 24) 。
对比例 2
本对比例说明常规制备负载型钯-铂 /钛硅分子筛催化剂的过 程。 '
取 20克钛硅分子筛 TS-1 以及浓度均为 0.01 g/ml (以钯或铂 原子计) 的硝酸氨钯和硝酸氨铂络合物溶液各 10ml 加入到 20ml 去离子水中搅拌均匀后, 适当密封, 温度在 4(TC下浸渍 24小时。 然后自然干燥, 并在 150°C下氢气气氛中进行还原活化 3小时, 即 得传统常规负载型钯-铂 /钛硅分子筛催化剂 DB-2。 经表征, 其组 成 用 氧 化 物 的 形 式 可 以 表 示 为 6Ti02 - 100SiO2 - 0.8PdO - 0.4PtO · 0.2Pd · 0.5Pt。 其低温氮气吸附 的吸附-脱附等温曲线图没有滞后环, 透射电子显微镜照片中没有 观察到空心结构。
对比例 3
.本对比例说明常规制备负载型钯 /钛硅分子筛催化剂的过程。 取 20克按照 CN 1 132699C中实施例 1 的制备方法得到的钛硅 分子筛以及浓度为 0.01 g/ml (以 4巴原子计) 的硝酸氨 4巴络合物溶 液 20ml加入到 20ml去离子水中搅拌均匀后, 适当密封, 温度在 40 °C下浸渍 24 小时。 然后自然干燥, 并在 150 °C下氢气气氛中进 行还原活化 3 小时, 即得负载型钯-铂 /钛硅分子筛催化剂 DB-3。 经 表 征 , 其 组 成 用 氧 化 物 的 形 式 可 以 表 示 为 6Ti02 · 100SiO2 · 0.9PdO · 0. 1 Pd。 其低温氮气吸附的吸附-脱附等 温曲线图存在滞后环, 透射电子显微镜照片中观察到空心结构。
对比例 4
本对比例说明常规制备负载型钯 /钛硅分子筛催化剂的过程。 取 20克钛硅分子筛 TS-2 以及浓度为 0.01 g/ml (以钯原子计) 的硝酸氨钯络合物溶液 15ml加入到 30ml去离子水中搅拌均匀后, 适当密封, 温度在 40 °C下浸渍 24小时。 然后自然干燥, 并在 150 °C下氢气气氛中进行还原活化 1 小时, 即得传统负载型钯 /钛硅分 子筛催化剂 DB-4。 经表征, 其组成用氧化物的形式可以表示为 7Ti02 · I OOS1O2 · 0.2PdO · 0.6Pd。 其低温氮气吸附的吸附-脱附等 温曲线图没有滞后环, 透射电子显微镜照片中其为实心结构, 看 不出空心结构。
实施例 12
本实施例说明本发明提供的实施例样品与对比例制备的样品 用于氢气存在下丙烯气相环氧化制备环氧丙烷反应的效果。
分别取上述实施例 1 - 1 1和对比例 1、 2、 3、 4所制备的样品各 0.5 g加入到含有 80 ml甲醇的环氧化反应容器中, 通入丙烯、 氧 气、 氢气和氮气, 形成丙烯-氧气-氢气-氮气混合气氛(摩尔比为 1 : 1 : 1 : 7 ) , 在温度 60 °C , 压力 1.0 MPa, 丙烯空速为 10 h 的条 件下, 进行环氧化反应生成环氧丙烷 (PO ) 。
表 1 和表 2分别给出的是反应 2小时及 12小时的丙烯转化率 和 PO选择性的数据。 表 1 样品来源 样品编号 丙烯转化率% PO选择性% 实施例 1 A 5.24 91.68 实施例 2 B 5.53 92.56 实施例 3 C 4.36 92.14 实施例 4 D 4.73 91.87 实施例 5 E 4.21 91.65 实施例 6 F 5.21 91.45 实施例 7 G 5.13 92.26 实施例 8 H 4.86 92.61 实施例 9 I 5.32 91.29 实施例 10 J 4.53 91.88 对比例 1 DB-1 2.63 89.01 实施例 11 K 5.45 92.14 对比例 2 DB-2 2.71 88.52 对比例 3 DB-3 2.68 89.34 对比例 4 DB-4 1.14 86.65
表 2
Figure imgf000018_0001
从表 1和表 2可以看出,本发明提供材料的活性明显高于对比 样品, 选择性也有所增加, 说明其催化氧化活性和选择性与现有 技术相比明显提高, 同时具有较好的催化活性稳定性。
表 3样品在 25 °C, P/P0=0. 10 , 吸附时间 1 小时的条件下苯吸 附量和样品晶粒中空心的径向长度数据。 表 3 样品来源 样品编号 苯吸附量, mg/g 径向长度, nm 实施例 1 A 65 10-120 实施例 2 B 48 5-80 实施例 3 C 56 8-90 实施例 4 D 43 5-155 实施例 5 E 51 2-75 实施例 6 F 71 2-200 实施例 7 G 55 5-115 实施例 8 H 49 5-280 实施例 9 I 44 20-180 实施例 10 J 36 0.5-130 对比例 1 DB-1 22 一 实施例 11 K 45 5-90 对比例 2 DB-2 19 - 对比例 3 DB-3 34 60-80 对比例 4 DB-4 28 -

Claims

权 利 要 求
1.一种含贵金属的钛硅材料, 其特征在于该材料的组成用氧化 物的形式表示为 xTi02 · 100SiO2 · yEOm · zE, 其中 x值为 0.001 ~ 50.0、 ( y+z) 值为 0.0001 ~ 20.0且 y/z< 5, E表示选自 Ru、 Rh、 Pd、 Re、 Os、 Ir、 Pt、 Ag和 Au中的一种或几种贵金属, m为满足 E氧化态所需的数, 该材料晶粒包含空心或凹凸结构。
2.按照权利要求 1 的钛硅材料, 其特征在于所说的贵金属 E选 自 Pd、 Pt、 Ag和 Au中的一种或几种。
3.按照权利要求 2的钛硅材料, 其特征在于所说的贵金属 E为
Pd和 /或 Pt。
4.按照权利要求 3的钛硅材料, 其特征在于所说的贵金属 E为
Pd。
5.按照权利要求 1 的钛硅材料, 其特征在于所说的 X 值为 0.005 - 25.0, ( y+z ) 值为 0.005 ~ 20.0、 y/z<3。
6.按照权利要求 1 的钛硅材料, 其特征在于所说的 X 值为 0.001 ~ 20.0、 ( y+z) 值为 0.001 ~ 10.0、 y/z<2。
7.按照权利要求 1 的钛硅材料, 其特征在于所说的 X 值为 0.005 - 20.0、 ( y+z) 值为 0.005 ~ 10.0、 y/z < 1。
8.按照权利要求 1 的钛硅材料, 其特征在于该材料在 25°C,
P/P0=0.10, 吸附时间 1 小时的条件下测得的苯吸附量为至少 25毫 克 /克。
9.按照权利要求 1 的钛硅材料, 其特征在于该材料在 25°C, P/P0=0.10, 吸附时间 1小时的条件下测得的笨吸附量为至少 35毫 克 /克。
10. 按照权利要求 1 的钛硅材料,其特征在于该材料的低温氮 吸附的吸附等温线和脱附等温线之间存在滞后环。
11. 按照权利要求 1 的钛硅材料, 其特征在于在相对压力 P/Po=0.60 附近时, 其脱附时氮吸附量与吸附时氮吸附量差值大于 其吸附时氮吸附量的 2%。
12. 按照权利要求 1 的钛硅材料,其特征在于该材料的晶粒全 部或部分为空心或凹凸结构。
13. 按照权利要求 12的钛硅材料, 其特征在于该材料的空心 晶粒空腔部分的径向长度为 0. 1 - 500纳米。
14. 按照权利要求 12的钛硅材料, 其特征在于该材料的空心 晶粒空腔部分的径向长度为 0.5 ~ 300纳米。
〗5. 按照权利要求 12的钛硅材料, 其特征在于该材料空心晶 粒的空腔部分的形状选自矩形、 圆形、 不规则圆形和不规则多边 形中的一种或者几种的结合。
16. 按照权利要求 1 的钛硅材料,其特征为该材料晶粒为单个 晶粒或者由多个晶粒聚集成的聚集晶粒。
17. 权利要求 1 中含贵金属的钛硅材料的制备方法,其特征在 于包括:
U ) 将钛硅分子筛、 保护剂、 贵金属源、 还原剂、 碱源和水 混合均勾, 得到混合物组成为钛硅分子筛: 保护剂: 碱源: 还原 剂: 贵金属源: 水 = 100: ( 0.0 - 5.0 ): ( 0.005 ~ 5.0 ): ( 0.005 - 15.0 ) : ( 0.005 - 10.0 ) : ( 200 ~ 10000 ) , 其中钛硅分子筛以克 计, 保护剂、 碱源、 还原剂和水以摩尔计, 贵金属源以贵金属单 质克计;
( 2 )将步骤 ( 1 )所得的混合物转入反应釜中, 水热处理条件 下反应, 回收产物即得钛硅材料。
18. 按照权利要求 17的制备方法, 其中步骤( 1 )所说的钛硅 分子筛选自 TS- 1、 TS-2、 Ti-BETA、 Ti-MCM-41 , Ti-ZSM-48 , Ti-ZSM- 12 , Ti-MMM- 1 , Ti-MCM-22 , Ti-SBA- 15 , Ti-MSU 和 Ti-MCM-48中的一种或它们的混合物。
19. 按照权利要求 17的制备方法, 其中步骤( 1 )所说的钛硅 分子筛为 TS- 1。
20. 按照权利要求 17的制备方法, 其中步骤( 1 )所说的保护 剂为聚合物, 选自聚丙烯、 聚乙二醇、 聚苯乙烯、 聚氯乙烯和聚 乙烯及其衍生物中的一种或它们的混合物。
21 . 按照权利要求 17的制备方法, 其中步骤( 1 )所说的保护 剂为表面活性剂, 选自阴离子表面活性剂、 阳离子表面活性剂或 者非离子表面活性剂。
22. 按照权利要求 17的制备方法, 其中步骤( 1 ) 中所说的还 原剂为肼、 硼氢化物或柠檬酸钠。
23. 按照权利要求 17的制备方法, 其中步骤( 1 )所说的贵金 属源选自贵金属的氧化物、 1¾化物、 碳酸盐、 硝酸盐、 硝酸铵盐、 氯化氨盐、 氢氧化物或贵金属的其它络合物。
24. 按照权利要求 17的制备方法, 其中所说的贵金属源为钯 源。
25. 按照权利要求 24的制备方法, 其中所说的钯源选自氧化 钯、 碳酸钯、 氯化钯、 硝酸钯、 硝酸铵钯、 氯化氨钯、 氢氧化钯 或者钯的其它络合物, 或者选自醋酸钯或乙酰丙酮钯。
26. 按照权利要求 17的制备方法, 其中碱源为氨水、 氢氧化 钠、 氢氧化钾、 氢氧化钢; 或者为尿素、 季胺碱类化合物、 脂肪 胺类化合物、 醇胺类化合物或由它们所组成的混合物。
27. 按照权利要求 26的制备方法, 其中所说的季铵碱类化合 物其通式为 ( R1 ) 4NOH, 其中 R1为具有 1 ~ 4个碳原子的烷基。
28. 按照权利要求 27的制备方法, 其中所说的 R1为丙基。
29. 按照权利要求 26的方法, 其中所说的脂肪胺类化合物其 通式为 R2 (NH2) n, 其中 R2选自具有 1 ~6个碳原子的烷基或者 亚烷基, n=l或 2。
30. 按照权利要求 29的方法, 其中所说脂肪胺类化合物为乙 胺、 正丁胺、 丁二胺或己二胺。
31. 按照权利要求 26的方法, 其中所说的醇胺类化合物其通 式为 ( HOR3)mNH(3-m); 其中 R3选自具有 1 ~4个碳原子的烷基, m=l、 2或 3。
32. 按照权利要求 31 的方法, 其中所说醇胺类化合物为单乙 醇胺、 二乙醇胺或三乙醇胺。
33. 按照权利要求 17的方法, 其特征在于步骤( 1 )所说的混 合物组成为: 钛硅分子筛: 保护剂: 碱源: 还原剂: 贵金属源: 水 =100: ( 0.005 ~ 1.0) : ( 0.01 ~ 2.0) : ( 0.01 ~ 10.0) : ( 0.01 ~ 5.0) : ( 500 ~ 5000 ) , 其中钛硅分子筛以克计, 保护剂、 碱源、 还原剂和水以摩尔计, 贵金属源以贵金属单质克计。
34. 按照权利要求 17的方法, 其中步骤( 2) 中所说的水热处 理条件是在温度 80 ~ 200°C及自生压力下水热处理 2~ 360小时。
35. 权利要求 1 的含贵金属的钛硅材料的制备方法,其特征在 于该方法包括下列步骤:
( 1 )将钛源、 硅源、 碱源、 保护剂、 贵金属源和水混合均匀, 得到摩尔组成为硅源: 钛源: 碱源: 贵金属源: 保护剂: 水 =100.· ( 0.005 - 50.0 ) : ( 0.005 - 20.0 ) : ( 0.005 - 10.0 ) : ( 0.0001 - 5.0 ): ( 200 - 10000 )的混合物, 其中硅源以 Si02计, 钛源以 Ti02 计, 贵金属源以单质计, 混合物于 120~ 200°C水热晶化至少 2 小 时, 取出产物, 过滤、 干燥、 焙烧得中间晶态材料;
( 2) 将步骤 ( 1 ) 所得的中间晶态材料转入步骤 ( 1 ) 过滤后 的滤液中, 加入与步骤( 1 )中所加入的贵金属源的摩尔比为 0.1 ~
10 的还原剂, 在反应釜中温度 80~ 200°C及自生压力下水热处理 2 ~ 360小时, 回收产物即得钛硅材料。
36. 按照权利要求 35的制备方法, 其中步骤( 1 )所说硅源为 硅胶、 硅溶胶或者有机硅酸酯。
37. 按照权利要求 36的制备方法, 其中所说有机硅酸酯通式 为 R4 4Si04, 其中 R4选自具有 1 ~ 4个碳原子的烷基。
38. 按照权利要求 37的制备方法,其特征在于所说的 R4为乙 基。
39. 按照权利要求 35的制备方法, 其中步骤( 1 )所说钛源为 无机钛盐或者有机钛酸酯。
40. 按照权利要求 39 的制备方法, 其中所说的无机钛盐为 TiCl4、 Ti ( S04) 2或者 1^0( 12
41. 按照权利要求 39的制备方法, 其中所说的有机钛酸酯其 通式为 Ti (OR5) 4, 其中 R5选自具有 1 ~6个碳原子的烷基。
42. 按照权利要求 41 的制备方法, 其中 R5选自具有 2~4个 碳原子的烷基。
43. 按照权利要求 35的制备方法, 其中步骤( 1 ) 中所说碱源 为季胺碱类化合物或季胺碱类化合物与脂肪胺类化合物或醇胺类 化合物所组成的混合物。
44. 按照权利要求 42的制备方法, 其中所说的季铵碱类化合 物其通式为 (R6) 4NOH, 其中 R6为具有 1 ~4个碳原子的烷基
45. 按照权利要求 44的制备方法, 其中所说的 R6为丙基。
46. 按照权利要求 43的制备方法, 其中所说的脂肪胺类化合 物其通式为 R7 ( NH2) n, 其中 R7选自具有 1 ~ 6个碳原子的烷基 或者亚烷基, n=l或 2。
47. 按照权利要求 43的制备方法, 其中所说脂肪胺类化合物 为乙胺、 正丁胺、 丁二胺或己二胺。
48. 按照权利要求 43的制备方法, 其中所说的醇胺类化合物 其通式为 ( HOR8) mNH, 3-m); 其中 R8选自具有 1 ~ 4个碳原子的 烷基, m=l、 2或 3。
49. 按照权利要求 43的制备方法, 其中所说醇胺类化合物为 单乙醇胺、 二乙醇胺或三乙醇胺。
50. 按照权利要求 35的制备方法, 其特征在于步骤( 1 )所说 的保护剂为聚合物或者表面活性剂, 其中聚合物选自聚丙烯、 聚 乙二醇、 聚苯乙烯、 聚氯乙烯和聚乙烯及其衍生物中的一种或它 们的混合物, 表面活性剂选自阴离子表面活性剂、 阳离子表面活 性剂或者非离子表面活性剂。
51. 按照权利要求 35的制备方法, 其中步骤( 1 )所说的贵金 属源为该贵金属的无机物或者有机物。
52. 按照权利要求 51 的制备方法, 所说的贵金属源为无机钯 源或有机钯源。
53. 按照权利要求 52的制备方法, 所说的无机钯源选自氧化 钯、 碳酸 4巴、 氯化 4巴、 硝酸钯、 硝酸铵钯、 氯化氨 4£、 氢氧化 4巴 或钯的其它络合物, 所说的有机钯源为醋酸钯或乙酰丙酮钯。
54. 按照权利要求 35的制备方法, 其特征在于步骤( 1 )混合 物的摩尔组成为硅源:钛源:碱源:钯源:保护剂:水 =100: ( 0.01 - 10.0) : ( 0.01 -" 10.0 ): ( 0.01 ~ 5.0 ): ( 0.0005 ~ 1.0 ): ( 500 - 5000 ) 。
55. 按照权利要求 35的制备方法, 其中步骤( 2 ) 中所说的还 原剂选自羟胺、 肼、 硼氢化物和柠檬酸钠中的一种或几种的混合 物。
56. 按照权利要求 55的制备方法, 所说的肼选自水合肼、 盐 酸肼或硫酸肼, 所说的硼氢化物选自硼氢化钠或硼氢化钾。
PCT/CN2008/000616 2007-03-30 2008-03-27 Matériau ti-si contenant un métal noble et son procédé de préparation WO2008119252A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010501357A JP5340258B2 (ja) 2007-03-30 2008-03-27 貴金属を含有するチタノシリケート材料およびその製造方法
AU2008234308A AU2008234308B2 (en) 2007-03-30 2008-03-27 A noble metal-containing Ti-Si material and the preparing method thereof
BRPI0808615-0A BRPI0808615B1 (pt) 2007-03-30 2008-03-27 Titanosilicate material containing a noble metal and its preparation methods
KR1020097020546A KR101466631B1 (ko) 2007-03-30 2008-03-27 귀금속 함유 티타노실리케이트 재료 및 이의 제조 방법
US12/594,008 US8349756B2 (en) 2007-03-30 2008-03-27 Noble metal-containing titanosilicate material and its preparation method
EP08733849.7A EP2133144B1 (en) 2007-03-30 2008-03-27 A noble metal-containing ti-si material and the preparing method thereof
ES08733849T ES2813853T3 (es) 2007-03-30 2008-03-27 Material de Ti-Si que contiene metales nobles y método de preparación del mismo
ZA2009/06473A ZA200906473B (en) 2007-03-30 2009-09-16 A noble metal-containing ti-si material and the preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710064981.6 2007-03-30
CN2007100649816A CN101274765B (zh) 2007-03-30 2007-03-30 一种含贵金属的微孔钛硅材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2008119252A1 true WO2008119252A1 (fr) 2008-10-09

Family

ID=39807804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000616 WO2008119252A1 (fr) 2007-03-30 2008-03-27 Matériau ti-si contenant un métal noble et son procédé de préparation

Country Status (12)

Country Link
US (1) US8349756B2 (zh)
EP (1) EP2133144B1 (zh)
JP (1) JP5340258B2 (zh)
KR (1) KR101466631B1 (zh)
CN (1) CN101274765B (zh)
AU (1) AU2008234308B2 (zh)
BR (1) BRPI0808615B1 (zh)
ES (1) ES2813853T3 (zh)
RU (1) RU2459661C2 (zh)
TW (1) TW200940167A (zh)
WO (1) WO2008119252A1 (zh)
ZA (1) ZA200906473B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544582B (zh) * 2008-03-27 2012-06-27 中国石油化工股份有限公司 一种丁酮肟的合成方法
TWI480100B (zh) * 2011-04-27 2015-04-11 China Petrochemical Dev Corp Taipei Taiwan Titanium-silicon molecular sieve and its preparation method and method for producing cyclohexanone oxime using the molecular sieve
CN102850207B (zh) * 2011-06-30 2015-11-25 中国石油化工股份有限公司 一种苯乙烯氧化的方法
CN103288678B (zh) * 2012-02-29 2014-09-24 北京安耐吉能源工程技术有限公司 一种环己酮肟的制备方法
CN103288679B (zh) * 2012-02-29 2015-06-24 北京安耐吉能源工程技术有限公司 环己酮肟的制备方法
CN103007978A (zh) * 2012-12-28 2013-04-03 湘潭大学 一种纳米金属催化剂及其制备方法和应用
TWI642481B (zh) * 2013-07-17 2018-12-01 東楚股份有限公司 Catalyst system for the production of heterogeneous catalysts and 1,2-dichloroethane
CN103785381B (zh) * 2014-02-28 2016-07-06 西安元创化工科技股份有限公司 一种用于制备低负载量贵金属催化剂的方法
US9433935B2 (en) * 2014-03-28 2016-09-06 Exxonmobil Research And Engineering Company Synthesis of framework modified ZSM-48 crystals
RU2567314C1 (ru) * 2014-04-10 2015-11-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения кристаллического титаносиликата
CN105293517B (zh) * 2014-06-24 2017-07-21 中国石油化工股份有限公司 钛硅分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
RU2568699C1 (ru) * 2014-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения натрийсодержащего титаносиликата
CN105013480A (zh) * 2015-07-10 2015-11-04 华东理工大学 一种提高用于丙烯气相环氧化的催化剂的稳定性和活性的方法
CN106915753B (zh) * 2015-12-24 2019-07-23 中国石油化工股份有限公司 贵金属改性钛硅分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
CN105537618B (zh) * 2015-12-29 2017-06-23 吉林大学 一种制备介孔Au@SiO2复合粒子的方法
CN107879357B (zh) * 2016-09-30 2019-11-15 中国石油化工股份有限公司 一种钛硅分子筛及其合成方法和应用以及一种环酮氧化的方法
CN106587091B (zh) * 2016-11-16 2018-12-04 大连理工大学 含有连续介孔的介微孔复合钛硅分子筛ts-1的制备方法
TWI628146B (zh) * 2016-11-28 2018-07-01 東聯化學股份有限公司 Preparation method and application of titanium-containing cerium oxide material with high thermal stability
CN109574033A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 成型的含贵金属钛硅分子筛及其制备方法和应用以及生产过氧化氢的方法
CN107983296A (zh) * 2017-12-09 2018-05-04 芜湖瑞德机械科技有限公司 绝热气瓶用氧化钯复合物以及制备方法
CN112978754B (zh) * 2019-12-13 2022-12-02 中国科学院大连化学物理研究所 一种碱性钛硅分子筛ts-1的制备方法及其应用
CN113267419A (zh) * 2021-06-15 2021-08-17 山西太钢不锈钢股份有限公司 一种铝质脱氧剂的检测方法
US20230191382A1 (en) * 2021-12-20 2023-06-22 Johnson Matthey Public Limited Company Catalytic material for treating an exhaust gas produced by a natural gas engine
CN115615965B (zh) * 2022-11-17 2023-04-14 中国工程物理研究院材料研究所 一种氢气传感器及其制备方法、检测氢气浓度的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044836B2 (ja) * 1991-05-28 2000-05-22 東ソー株式会社 プロピレンオキシドの製法
US6194591B1 (en) * 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
CN1301599A (zh) * 1999-12-24 2001-07-04 中国石油化工集团公司 一种钛硅分子筛及其制备方法
CN1358570A (zh) * 2000-12-15 2002-07-17 中国石油化工股份有限公司 一种钛硅分子筛的改性方法
EP1382391A1 (de) * 1997-07-23 2004-01-21 Degussa AG Granulate, enthaltend Titansilikalit-1
US6867312B1 (en) 2004-03-17 2005-03-15 Arco Chemical Technology, L.P. Propylene oxide process
US6884898B1 (en) 2003-12-08 2005-04-26 Arco Chemical Technology, L.P. Propylene oxide process
CN1913968A (zh) * 2004-02-19 2007-02-14 利安德化学技术有限公司 环氧化催化剂

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299169A (en) * 1961-09-18 1967-01-17 Dow Chemical Co Elastomeric epoxy resin
US4248548A (en) * 1974-11-04 1981-02-03 Danford-Champlin Farms, Ltd. Sewage disposal system and apparatus
JPH0344836A (ja) 1989-07-11 1991-02-26 Sanyo Electric Co Ltd 光ヘッド装置
US5206285A (en) * 1990-12-21 1993-04-27 Northrop Corporation Aqueous coating of silane precursor from epoxy and amino trialkoxysilanes
WO1994019277A1 (en) 1993-02-25 1994-09-01 Sandia National Laboratories Novel silico-titanates and their methods of making and using
DE4323774A1 (de) 1993-07-15 1995-02-09 Basf Ag Hohlkugelartig agglomerierte Pentasilzeolithe
JPH07300312A (ja) * 1994-03-09 1995-11-14 Nippon Shokubai Co Ltd メソポアチタノシリケートおよびその合成方法
DE4425672A1 (de) * 1994-07-20 1996-01-25 Basf Ag Oxidationskatalysator, Verfahren zu seiner Herstellung und Oxidationsverfahren unter Verwendung des Oxidationskatalysators
FR2733685B1 (fr) * 1995-05-05 1997-05-30 Adir Utilisation des derives du benzopyrane pour l'obtention de compositions pharmaceutiques destinees au traitement des pathologies liees a l'echangeur c1-/hc03-, na+ independant
IT1295267B1 (it) 1997-10-03 1999-05-04 Enichem Spa Processo per preparare zeoliti legate
DE60008235T2 (de) * 1999-04-08 2004-12-02 Dow Global Technologies, Inc., Midland Verfahren für die oxidierung von olefinen zu olefinoxiden unter verwendung eines oxidierten gold-katalysators
RU2243217C2 (ru) 2000-06-26 2004-12-27 Коеи Кемикал Компани, Лимитед Способ получения пиридиновых оснований
US6403815B1 (en) 2001-11-29 2002-06-11 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
JP4170165B2 (ja) * 2003-06-30 2008-10-22 Tdk株式会社 反応性イオンエッチング用のマスク材料、マスク及びドライエッチング方法
JP2005219956A (ja) * 2004-02-04 2005-08-18 Tokuyama Corp 結晶性無機多孔質材料およびその製造方法
JP2006265056A (ja) * 2005-03-25 2006-10-05 Ne Chemcat Corp メタロシリケートの製造方法
RU2282587C1 (ru) 2005-04-08 2006-08-27 Ирина Игоревна Иванова Способ получения материала с микромезопористой структурой
US7781493B2 (en) * 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
WO2007037026A1 (ja) * 2005-09-28 2007-04-05 Nippon Oil Corporation 触媒及びその製造方法
US7288237B2 (en) 2005-11-17 2007-10-30 Lyondell Chemical Technology, L.P. Epoxidation catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044836B2 (ja) * 1991-05-28 2000-05-22 東ソー株式会社 プロピレンオキシドの製法
EP1382391A1 (de) * 1997-07-23 2004-01-21 Degussa AG Granulate, enthaltend Titansilikalit-1
CN1301599A (zh) * 1999-12-24 2001-07-04 中国石油化工集团公司 一种钛硅分子筛及其制备方法
CN1132699C (zh) 1999-12-24 2003-12-31 中国石油化工集团公司 一种钛硅分子筛及其制备方法
US6194591B1 (en) * 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
CN1358570A (zh) * 2000-12-15 2002-07-17 中国石油化工股份有限公司 一种钛硅分子筛的改性方法
US6884898B1 (en) 2003-12-08 2005-04-26 Arco Chemical Technology, L.P. Propylene oxide process
CN1913968A (zh) * 2004-02-19 2007-02-14 利安德化学技术有限公司 环氧化催化剂
US6867312B1 (en) 2004-03-17 2005-03-15 Arco Chemical Technology, L.P. Propylene oxide process

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
APPL. CATAL, vol. 58, 1990, pages LI
J. CATAL., vol. 145, 1994, pages 151
J. CHEM. SOC. CHEM. COMMUN., 1994, pages 745
MEIERS R. ET AL., J. CATAL., vol. 176, 1998, pages 376 - 386
ZEOLITES, vol. 12, 1992, pages 943
ZEOLITES, vol. 15, 1995, pages 236

Also Published As

Publication number Publication date
EP2133144B1 (en) 2020-08-05
BRPI0808615B1 (pt) 2017-06-27
KR20090127321A (ko) 2009-12-10
TW200940167A (en) 2009-10-01
US8349756B2 (en) 2013-01-08
JP2010522689A (ja) 2010-07-08
TWI370751B (zh) 2012-08-21
JP5340258B2 (ja) 2013-11-13
AU2008234308A1 (en) 2008-10-09
KR101466631B1 (ko) 2014-11-28
AU2008234308B2 (en) 2012-09-06
RU2009140032A (ru) 2011-05-10
RU2459661C2 (ru) 2012-08-27
EP2133144A1 (en) 2009-12-16
EP2133144A4 (en) 2010-04-14
CN101274765A (zh) 2008-10-01
ES2813853T3 (es) 2021-03-25
ZA200906473B (en) 2012-01-25
US20100105542A1 (en) 2010-04-29
BRPI0808615A2 (pt) 2014-08-12
CN101274765B (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2008119252A1 (fr) Matériau ti-si contenant un métal noble et son procédé de préparation
TWI480100B (zh) Titanium-silicon molecular sieve and its preparation method and method for producing cyclohexanone oxime using the molecular sieve
JP6345884B2 (ja) 水素化触媒及びその製造方法
EP2917151B1 (en) Method of preparing ferrierite with small crystal size
CN101314577B (zh) 一种催化环己酮氨肟化的方法
TW201307260A (zh) 鈦-矽分子篩及其製法暨及使用該分子篩製造環己酮肟之方法
JP2008502571A (ja) エポキシ化触媒
CN101434587B (zh) 一种催化氧化苯乙烯合成环氧苯乙烷的方法
PL203222B1 (pl) Sposób epoksydowania związków olefinowych oraz zastosowanie zeolitu zawierającego tytan
CN111841623A (zh) 分子筛催化剂及其制备方法及用途
CN101654256B (zh) 一种原位合成含贵金属的钛硅分子筛材料的方法
CN101683984B (zh) 一种合成含贵金属钛硅材料的方法
CN101397235A (zh) 一种催化氧化环己烷的方法
CN101397240B (zh) 一种苯酚羟基化制备对苯二酚和邻苯二酚的方法
CN103183356B (zh) 一种用贵金属源改性钛硅分子筛的方法
CN101683986B (zh) 一种钛硅材料的制备方法
CN101683985B (zh) 一种含贵金属钛硅材料的原位合成方法
CN101544582A (zh) 一种丁酮肟的合成方法
CN101434515B (zh) 一种苯酚的制备方法
CN101544620B (zh) 一种环氧环己烷的制备方法
CN112742469A (zh) 核壳结构钛硅材料及其制备方法和大分子酮类氨肟化反应生产酮肟的方法
JPH11343114A (ja) ゼオライトの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08733849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010501357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12594008

Country of ref document: US

Ref document number: 1020097020546

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008733849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008234308

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009140032

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0808615

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090929