RU2459661C2 - Содержащий благородный металл титаносиликатный материал и способ его получения - Google Patents

Содержащий благородный металл титаносиликатный материал и способ его получения Download PDF

Info

Publication number
RU2459661C2
RU2459661C2 RU2009140032/04A RU2009140032A RU2459661C2 RU 2459661 C2 RU2459661 C2 RU 2459661C2 RU 2009140032/04 A RU2009140032/04 A RU 2009140032/04A RU 2009140032 A RU2009140032 A RU 2009140032A RU 2459661 C2 RU2459661 C2 RU 2459661C2
Authority
RU
Russia
Prior art keywords
source
production method
palladium
titanosilicate
noble metal
Prior art date
Application number
RU2009140032/04A
Other languages
English (en)
Other versions
RU2009140032A (ru
Inventor
Минь ЛИНЬ (CN)
Минь Линь
Чуньфын ШИ (CN)
Чуньфын ШИ
Цзюнь ЛУН (CN)
Цзюнь ЛУН
Бинь ЧЖУ (CN)
Бинь ЧЖУ
Синтянь ШУ (CN)
Синтянь ШУ
Сюйхун МУ (CN)
Сюйхун МУ
Ибинь ЛО (CN)
Ибинь ЛО
Сецин ВАН (CN)
Сецин ВАН
Инчунь ЖУ (CN)
Инчунь ЖУ
Original Assignee
Чайна Петролеум Энд Кемикал Корпорейшн
Рисерч Инститьют Оф Петролеум Просессинг, Синопек
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Петролеум Энд Кемикал Корпорейшн, Рисерч Инститьют Оф Петролеум Просессинг, Синопек filed Critical Чайна Петролеум Энд Кемикал Корпорейшн
Publication of RU2009140032A publication Critical patent/RU2009140032A/ru
Application granted granted Critical
Publication of RU2459661C2 publication Critical patent/RU2459661C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/06Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Epoxy Compounds (AREA)

Abstract

Изобретение относится к титаносиликатным материалам и способам их получения. Описан содержащий благородный металл титаносиликатный материал, являющийся катализатором, характеризующийся тем, что упомянутый материал представлен оксидной формой xTiO2·100SiO2·yEOm·zE, где x составляет в диапазоне от 0,001 до 50,0; (y+z) составляет в диапазоне от 0,0001 до 20,0 и y/z<5; E представляет собой один или более благородных металлов, выбранных из группы, состоящей из Ru, Rh, Pd, Re, Os, Ir, Pt, Ag и Au; m является числом, отвечающим степени окисления E; и кристаллические зерна упомянутого материала обладают полой структурой или изогнутой структурой. Описан способ получения указанного выше материала, включающий следующие стадии: (1) гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой с получением смеси, обладающей соотношением титаносиликат:защитное средство:источник щелочи:восстановитель:источник благородного металла:вода 100:(0,0-5,0):(0,005-5,0):(0,005-15,0):(0,005-10,0):(200-10000), где титаносиликат рассчитывают в граммах; защитное средство, источник щелочи, восстановитель и воду рассчитывают в молях; а источник благородного металла рассчитывают в граммах простого вещества благородного металла; и (2) подачу смеси, полученной на стадии (1), в реакционный сосуд, реагирование при условиях гидротермальной обработки, выделение продукта с получением титаносиликатного материала, причем упомянутые условия гидротермальной обработки относятся к гидротермальной обработке в течение 2-360 ч при температуре 80-200°С и аутогенном давлении. Описан способ получения указанного выше материала, включающий следующие с�

Description

Область техники
Настоящее изобретение относится к титаносиликатному материалу и способу его получения. А именно, настоящее изобретение относится к содержащему благородный металл титаносиликатному материалу и способу его получения.
Предпосылки изобретения
Титаносиликат представляет собой новый тип гетероатомного молекулярного сита, разработанный в начале 1980-х годов. В настоящее время синтетические титаносиликатные молекулярные сита включают TS-1 со структурой типа MFI, TS-2 со структурой типа MEL, Ti-MCM-22 со структурой типа MWW и TS-48 со структурой с относительно более крупными порами. Среди упомянутых титаносиликатных молекулярных сит титаносиликат TS-1, разработанный компанией Enichem, Италия, представляет собой новый титаносиликат, обладающий превосходной каталитической селективностью и окислительной способностью и получаемый путем введения переходного металла, титана, в каркас молекулярного сита со структурой ZSM-5. TS-1 обладает не только свойством каталитического окисления титана, но и функцией конфигурационной селективности и превосходной стабильностью молекулярных сит ZSM-5. В качестве катализатора этот титаносиликатный материал может быть использован для катализа окисления различных органических веществ, например, эпоксидирования олефинов, частичного окисления алканов, окисления спиртов, гидроксилирования фенолов, аммоксидирования циклонов и т.п. При окислении органических веществ с использованием молекулярных сит TS-1 в качестве окислителя может быть использован свободный от примесей пероксид водорода в низкой концентрации с тем, чтобы избежать использования сложной технологии и загрязнения окружающей среды в процессе окисления. Он также имеет такие преимущества, как рациональное использование энергии, экономичность, благоприятность для окружающей среды, несравнимые с обычной системой окисления, и более высокую селективность реакции. Таким образом, он имеет большие перспективы применения в промышленности. Титаносиликат в качестве катализатора селективного окисления органических веществ считается ключевым в области молекулярно-ситового катализа.
Н2О2 представляет собой общепризнанный экологически чистый окислитель, и единственным побочным продуктом его окисления является вода. Однако водный раствор Н2О2 сложно хранить и перевозить. Н2О2 очень неустойчив и разлагается под воздействием тепла, света, шероховатой поверхности, тяжелых металлов и других примесей. Кроме того, из-за его коррозионной активности должны предприниматься особые меры безопасности при его упаковке, хранении и транспортировке. Таким образом, этот химический продукт может быть эффективно использован только в случае, если Н2О2 используют на месте, либо процесс производства Н2О2 объединен с осуществляемым далее технологическим процессом, в котором используется Н2О2.
Н2О2 может быть синтезирован непосредственно из Н2 и О2, при этом степень использования исходных веществ достигает 100%. Таким образом, возлагаются надежды на использование Н2 и О2 для синтеза Н2О2 непосредственно на месте и последующее окисление органического материала с тем, чтобы посредством прямого использования Н2О2 решить проблемы стоимости и безопасности. Поскольку Pt, Pd, Au и т.д. являются эффективными компонентами для синтезирования Н2О2 из Н2 и О2, во многих патентных документах сообщалось об исследованиях по нанесению их на титаносиликатный материал с целью производства на месте Н2О2 для селективного окисления органических веществ. Например, Meiers R. и другие (J. Catal., 1998, 176:376-386) провели исследования по газофазному эпоксидированию пропилена с использованием в качестве катализатора Pt-Pd/TS-1. Кроме того, в US 6867312В1 и US 6884898В1 также описаны подобные исследования. Хотя упомянутый метод осуществляется в мягких реакционных условиях и имеет хорошую селективность (возможно, выше 95%), ему присущи недостатки - относительно более низкая активность катализатора, плохая стабильность катализатора и т.п. Таким образом, основные задачи исследований и совершенствования упомянутого метода заключаются в приготовлении и модификации соответствующих катализаторов с целью увеличения степени конверсии реакций и повышения устойчивости к дезактивации и регенерируемости катализатора.
Описание изобретения
Ввиду недостатков, свойственных нанесенным на титаносиликатный материал благородным металлам, таким как Pt, Pd, Au и т.п., с целью производства на месте Н2О2 для процесса реакции селективного окисления органических веществ, настоящим изобретением предлагается содержащий благородный металл титаносиликатный материал и способ его получения.
Содержащий благородный металл титаносиликатный материал, предложенный в настоящем изобретении, отличается тем, что упомянутый материал представлен оксидной формой xTiO2·100SiO2·yEOm·zE, где х составляет в диапазоне от 0,001 до 50,0; (y+z) составляет в диапазоне от 0,0001 до 20,0 и y/z<5; Е представляет собой один или более благородных металлов, выбранных из группы, состоящей из Ru, Rh, Pd, Re, Os, Ir, Pt, Ag и Au; m является числом, отвечающим степени окисления Е. Кристаллические зерна упомянутого материала обладают полой структурой или изогнутой (вогнуто-выпуклой) структурой.
В содержащем благородный металл титаносиликатном материале, предложенном в настоящем изобретении, х предпочтительно составляет в диапазоне от 0,005 до 25 или от 0,001 до 20, более предпочтительно - от 0,005 до 20; (y+z) предпочтительно составляет в диапазоне от 0,005 до 20 или от 0,001 до 10, более предпочтительно - от 0,005 до 10, наиболее предпочтительно - от 0,01 до 7; y/z предпочтительно составляет меньше 3, более предпочтительно - меньше 2, более предпочтительно - меньше 1, наиболее предпочтительно - от 0,01 до 0,8. Упомянутый благородный металл предпочтительно является одним или более металлом, выбранным из группы, состоящей из Pd, Pt, Ag и Au, более предпочтительно - Pd и/или Pt. Когда благородный металл - это два или более металла, выбранных из этой группы, упомянутая величина у представляет собой сумму величины у для каждого благородного металла; а упомянутая величина z является суммой величины z для каждого благородного металла. Например, когда благородный металл - это Pt и Pd, упомянутый материал представлен оксидной формой xTiO2·100SiO2·y1PtO·y2PdO·z1Pt·z2Pd, т.е. y=y1+y2; и z=z1+z2. Кристаллические зерна упомянутого материала полностью или частично обладают полой структурой, и полость полых кристаллических зерен упомянутого материала имеет радиальную протяженность 0,1-500 нм, предпочтительно, 0,5-300 нм. Адсорбционная способность по бензолу упомянутого материала, измеренная при условиях температуры 25ºС, Р/Р0=0,10 и времени адсорбции 1 ч, составляет по меньшей мере 25 мг/г, предпочтительно, по меньшей мере 35 мг/г. Между изотермой адсорбции и изотермой десорбции низкотемпературной адсорбции азота упомянутым материалом имеется петля гистерезиса. При относительном давлении Р/Р0 примерно 0,60 разность между адсорбционной способностью по азоту при десорбции и адсорбционной способностью по азоту при адсорбции составляет более 2% адсорбционной способности по азоту при адсорбции. Форма полости упомянутого материала может быть различной, не фиксированной формой, например, круглой, или прямоугольной, или неправильной многоугольной, или неправильной круглой, или комбинациями этих форм. Кристаллические зерна упомянутого материала представляют собой монокристаллические зерна или агрегатные кристаллические зерна, агрегированные из множества кристаллических зерен.
Кристаллические зерна материала, предложенного в настоящем изобретении, могут полностью или частично иметь полую структуру или изогнутую структуру.
Что касается материала, предложенного в настоящем изобретении, то полые кристаллические зерна являются выгодными для дисперсии молекул реагентов и продуктов, что повышает синергический эффект между благородным металлом и титаносиликатом; а благородные металлы обладают более высокой диспергируемостью. Кроме того, полая структура содержащего благородный металл титаносиликатного материала, предложенного в настоящем изобретении, обладает сильной способностью вмещать углеродистые отложения. По сравнению с уровнем техники (например, обычным методом пропитки носителя), селективность, каталитическая активность и устойчивость продукта реакции заметно увеличиваются в реакции окисления, например, реакции получения пропиленоксида путем эпоксидирования пропилена.
Кроме этого настоящим изобретением предлагается два способа получения вышеуказанного содержащего благородный металл титаносиликатного материала.
Один из способов, предложенных в настоящем изобретении, включает гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой, подачу данной смеси в реакционный сосуд для гидротермальной обработки, фильтрование, промывку, сушку с получением этого материала. Более конкретно, упомянутый способ включает стадии:
(1) гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой с получением смеси, обладающей соотношением титаносиликат (г):защитное средство (моль):источник щелочи (моль):восстановитель (моль):источник благородного металла (г, рассчитанный по индивидуальному веществу благородного металла):вода (моль) 100:(0,0-5,0):(0,005-5,0):(0,005-15,0):(0,005-10,0):(200-10000); и
(2) подачу смеси, полученной на стадии (1), в реакционный сосуд, реагирование при условиях гидротермальной обработки, выделение продукта с получением титаносиликатного материала.
В упомянутом первом способе получения смесь обладает предпочтительным молярным соотношением титаносиликат (г):защитное средство (моль):источник щелочи (моль):восстановитель (моль): источник благородного металла (г, рассчитанный по индивидуальному веществу благородного металла): вода 100:(0,005-1,0):(0,01-2,0):(0,01-10,0):(0,01-5,0):(500-5000).
В вышеуказанном первом способе получения титаносиликат на стадии (1) включает различные типы титаносиликатных молекулярных сит с разными структурами, например, TS-1, TS-2, Ti-BETA, Ti-MCM-22, Ti-MCM-41, Ti-ZSM-48, Ti-ZSM-12, Ti-MMM-1, Ti-SBA-15, Ti-MSU, Ti-MCM-48 и т.п., предпочтительно, TS-1.
В вышеуказанном первом способе получения защитное средство представляет собой полимер или поверхностно-активное вещество, причем этот полимер выбран из группы, состоящей из полипропилена, полиэтиленгликоля, полистирола, поливинилхлорида, полиэтилена и их производных; а поверхностно-активное вещество выбрано из группы, состоящей из анионогенных поверхностно-активных веществ, катионогенных поверхностно-активных веществ и неионогенных поверхностно-активных веществ.
Восстановитель на стадии (1) вышеупомянутого способа получения может быть выбран из группы, состоящей из гидразина, боргидрида и цитрата натрия, причем гидразин выбран из группы, состоящей из гидрата гидразина, гидрохлорида гидразина и сульфата гидразина; а упомянутый боргидрид выбран из группы, состоящей из боргидрида натрия и боргидрида калия.
Источник благородного металла на стадии (1) вышеупомянутого способа получения представляет собой неорганическое или органическое вещество упомянутого благородного металла, которое может быть выбрано из группы, состоящей из оксидов, галогенидов, карбонатов, нитратов, аммонийнитратов, солей хлористого аммония, гидроксидов и других комплексов благородного металла. Если взять в качестве примера палладий, источник палладия может представлять собой неорганический и/или органический источник палладия, причем неорганический источник палладия выбирают из группы, состоящей из оксида палладия, карбоната палладия, хлорида палладия, нитрата палладия, аммонийнитрата палладия, аммонийхлорида палладия, гидроксида палладия и других комплексов палладия; органический источник палладия выбирают из группы, состоящей из ацетата палладия и ацетилацетоната палладия.
Источник щелочи на стадии (1) вышеупомянутого способа получения представляет собой неорганический или органический источник щелочи, причем неорганический источник щелочи выбирают из группы, состоящей из аммиака, гидроксида натрия, гидроксида калия и гидроксида бария; а органический источник щелочи выбирают из группы, состоящей из карбамида, щелочных соединений четвертичного аммония, соединений алифатических аминов, соединений аминоспиртов и их смесей.
Щелочные соединения четвертичного аммония имеют общую формулу (R1)4NOH, где R1 обозначает алкил с 1-4 атомами углерода, предпочтительно, пропил.
Соединения алифатических аминов имеют общую формулу R2(NH2)n, где R2 обозначает алкил или алкилиден с 1-6 атомами углерода, и n равно 1 или 2. Соединения алифатических аминов выбирают из группы, состоящей из этиламина, н-бутиламина, бутандиамина и гександиамина.
Соединения аминоспиртов имеют общую формулу (HOR3)mNH(3-m), где R3 обозначает алкил с 1-4 атомами углерода, и m равно 1, 2 или 3. Соединения аминоспиртов выбирают из группы, состоящей из моноэтаноламина, диэтаноламина и триэтаноламина.
В вышеуказанном первом способе получения защитное средство может добавляться или не добавляться.
Условия гидротермальной обработки на стадии (2) вышеупомянутого способа получения относятся к гидротермальной обработке в течение 2-360 ч при температуре 80-200ºС и аутогенном давлении. Упомянутый процесс выделения хорошо известен специалистам в данной области, и в нем нет ничего особенного. Упомянутый процесс выделения, как правило, включает такие процессы, как промывка, сушка кристаллизованного продукта и т.п.
Второй способ получения, предложенный в настоящем изобретении, включает, в частности, следующие стадии:
(1) гомогенное смешивание источника титана, источника кремния, источника щелочи, защитного средства, источника благородного металла с водой с получением смеси, обладающей молярным соотношением источник кремния:источник титана:источник щелочи: источник благородного металла: защитное средство:вода 100:(0,005-50,0):(0,005-20,0):(0,005-10,0):(0,0001-5,0):(200-10000), где источник кремния рассчитывают как SiO2, источник титана рассчитывают как TiO2; а источник благородного металла рассчитывают как простое вещество; гидротермальную кристаллизацию смеси в течение по меньшей мере 2 ч при 120-200ºС, извлечение, фильтрование, сушку и прокаливание продукта с получением промежуточного кристаллического материала; и
(2) подачу промежуточного кристаллического материала, полученного на стадии (1), в оставшийся на стадии (1) фильтрат, добавление восстановителя в молярном соотношении 0,1-10 к источнику благородного металла, добавленному на стадии (1), гидротермальную обработку в течение 2-360 ч при 80-200ºС и аутогенном давлении, и выделение продукта с получением титаносиликатного материала по настоящему изобретению.
Во втором способе получения, предложенном в настоящем изобретении, стадия (2) может быть повторена один раз или, если нужно, многократно.
Во втором способе получения, предложенном в настоящем изобретении, смесь на стадии (1) обладает предпочтительным молярным соотношением источник кремния:источник титана:источник щелочи: источник благородного металла:защитное средство:вода 100:(0,01-10,0):(0,01-10,0):(0,01-5,0):(0,0005-1,0):(500-5000).
Во втором способе получения, предложенном в настоящем изобретении, источник кремния на стадии (1) выбирают из группы, состоящей из геля кремниевой кислоты (силикагеля), золя кремниевой кислоты и органического силиката, причем предпочтительным является органический силикат. Этот органический силикат имеет общую формулу (R4)4SiO4, где R4 обозначает алкил с 1-4 атомами углерода, предпочтительно, этил.
Во втором способе получения, предложенном в настоящем изобретении, источник титана представляет собой неорганическую соль титана или органический титанат, предпочтительно, органический титанат. Эту неорганическую соль титана выбирают из группы, состоящей из TiCl4, Ti(SO4)2 и TiOCl2. Органический титанат имеет общую формулу Ti(OR5)4, где R5 обозначает алкил с 1-6 атомами углерода, предпочтительно, алкил с 2-4 атомами углерода.
Во втором способе получения, предложенном в настоящем изобретении, источник щелочи на стадии (1) представляет собой щелочное соединение четвертичного аммония или смесь щелочного соединения четвертичного аммония, соединения алифатического амина и соединения аминоспирта. Щелочное соединение четвертичного аммония имеет общую формулу (R6)4NOH, где R6 обозначает алкил с 1-4 атомами углерода, предпочтительно, пропил. Соединение алифатического амина имеет общую формулу R7(NH2)n, где R7 обозначает алкил или алкилиден с 1-6 атомами углерода, и n равно 1 или 2. Соединение алифатического амина выбирают из группы, состоящей из этиламина, н-бутиламина, бутандиамина и гександиамина. Соединение аминоспирта имеет общую формулу (HOR8)mNH(3-m), где R8 обозначает алкил с 1-4 атомами углерода, и m равно 1, 2 или 3. Соединение аминоспирта выбирают из группы, состоящей из моноэтаноламина, диэтаноламина и триэтаноламина.
Во втором способе получения, предложенном в настоящем изобретении, защитное средство представляет собой полимер или поверхностно-активное вещество, причем полимер выбирают из группы, состоящей из полипропилена, полиэтиленгликоля, полистирола, поливинилхлорида, полиэтилена и их производных; а поверхностно-активное вещество выбирают из группы, состоящей из анионогенных поверхностно-активных веществ, катионогенных поверхностно-активных веществ и неионогенных поверхностно-активных веществ.
Источник благородного металла на стадии (1) вышеупомянутого второго способа получения представляет собой неорганическое или органическое вещество упомянутого благородного металла, которое может быть выбрано из группы, состоящей из оксидов, галогенидов, карбонатов, нитратов, аммонийнитратов, солей хлористого аммония, гидроксидов и других комплексов благородного металла. Если взять в качестве примера палладий, то источник палладия может представлять собой неорганический и/или органический источник палладия, причем неорганический источник палладия выбирают из группы, состоящей из оксида палладия, карбоната палладия, хлорида палладия, нитрата палладия, аммонийнитрата палладия, аммонийхлорида палладия, гидроксида палладия и других комплексов палладия; органический источник палладия выбирают из группы, состоящей из ацетата палладия и ацетилацетоната палладия.
Во втором способе получения, предложенном в настоящем изобретении, восстановитель на стадии (1) выбирают из группы, состоящей из гидроксиламина, гидразина, боргидрида и цитрата натрия, причем гидразин выбирают из группы, состоящей из гидрата гидразина, гидрохлорида гидразина и сульфата гидразина; а упомянутый боргидрид выбирают из группы, состоящей из боргидрида натрия и боргидрида калия.
По сравнению с уровнем техники каталитическая и окислительная активность и селективность продукта способов получения, предложенных в настоящем изобретении, явно повышены. При этом указанные способы обеспечивают более высокую каталитическую активность и стабильность (см. пример 12). Кроме того, поскольку полая или изогнутая структура, имеющаяся у кристаллических зерен материала, предложенного в настоящей заявке, является благоприятной для диспергирования молекул реагентов и продуктов, особенно, макромолекул (например, ароматических соединений), в ходе каталитической реакции, он особенно выгоден для каталитического окисления ароматических соединений, циклических соединений и т.п.
Краткое описание чертежей
На фиг. 1 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота сравнительного образца DB-1 в Сравнительном Примере 1.
На фиг. 2 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца А в Примере 1.
На фиг. 3 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца В в Примере 2.
На фиг. 4 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца С в Примере 3.
На фиг. 5 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца D в Примере 4.
На фиг. 6 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца Е в Примере 5.
На фиг. 7 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца F в Примере 6.
На фиг. 8 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца G в Примере 7.
На фиг. 9 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца Н в Примере 8.
На фиг. 10 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца I в Примере 9.
На фиг. 11 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца J в Примере 10.
На фиг. 12 представлена адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота образца K в Примере 11.
На фиг. 13 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение сравнительного образца DB-1 в Сравнительном Примере 1.
На фиг. 14 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца А в Примере 1.
На фиг. 15 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца В в Примере 2.
На фиг. 16 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца С в Примере 3.
На фиг. 17 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца D в Примере 4.
На фиг. 18 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца Е в Примере 5.
На фиг. 19 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца F в Примере 6.
На фиг. 20 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца G в Примере 7.
На фиг. 21 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца Н в Примере 8.
На фиг. 22 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца I в Примере 9.
На фиг. 23 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца J в Примере 10.
На фиг. 24 представлено полученное просвечивающим электронным микроскопом (ПЭМ) изображение образца K в Примере 11.
Варианты осуществления изобретения
Следующие ниже примеры обеспечивают дополнительное пояснение настоящего изобретения, но при этом не ограничивают настоящее изобретение.
Все реагенты, использованные в примерах, были серийно выпускаемыми продуктами химически чистых реагентов. Титаносиликат TS-1, использованный в сравнительных примерах и примерах, был получен в соответствии со способом, описанным в уровне техники в Zeolites, 1992, Vol.12, 943; использованный в них титаносиликат Ti-BETA был получен в соответствии со способом, описанным в уровне техники в J. Catal., 1994, Vol.145, 151; титаносиликат TS-2, использованный в сравнительных примерах и примерах, был получен в соответствии со способом, описанным в уровне техники в Appl. Catal., 1990, Vol.58, L1; использованный в них титаносиликат Ti-ZSM-48 был получен в соответствии со способом, описанным в уровне техники в J. Chem. Soc. Chem. Commun., 1994, 745; использованный в них титаносиликат Ti-ZSM-12 был получен в соответствии со способом, описанным в уровне техники в Zeolites, 1995, Vol.15, 236. Адсорбционно-десорбционная изотерма низкотемпературной адсорбции азота этих образцов была получена в соответствии со стандартным методом ASTM D4222-98 на приборе для измерения статической адсорбции азота (Static Nitrogen Adsorption Device) ASAP2405 компании Micromeritics, США. ПЭМ-Изображения образцов были получены при помощи просвечивающего электронного микроскопа (ПЭМ) Tecnai типа G2F20S-TWIN компании FEI, Голландия, при ускоряющем напряжении 20 кВ. Кроме того, у этих образов была измерена величина адсорбции бензола с помощью обычного процесса статической адсорбции.
Сравнительный Пример 1
Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий/титаносиликат.
20 г титаносиликата TS-1 и 20 мл раствора комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) добавили к 20 мл деионизированной воды. Смесь перемешали до гомогенного состояния, подходящим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 3 ч в атмосфере водорода при 150ºС с получением обычного нанесенного на носитель катализатора палладий/титаносиликат DB-1. При характеризации этот катализатор был представлен оксидной формой 6TiO2·100SiO2·0,7PdO·0,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 1) отсутствовала петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна твердотельная структура, а не полая или изогнутая структура (фиг. 13).
Пример 1
20 г титаносиликата TS-1, раствор комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество гидрата гидразина и бромида цетилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):бромид цетилтриметиламмония (моль):гидроксид тетрапропиламмония (моль):гидрат гидразина (моль):комплекс амонийнитрата палладия (г, в расчете на палладий):вода (моль) 100:0,005:0,5:3,0:2,0:1000. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 48 ч при 150ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 180ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала А по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 4TiO2·100SiO2·0,01PdO·0,09Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 2) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 14).
Пример 2
20 г титаносиликата Ti-ВЕТА, раствор комплекса хлорида палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество гидрохлорида гидразина и полипропилена добавили к водному раствору гидроксида натрия (с массовой концентрацией 15%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):полипропилен (моль):гидроксид натрия (моль):гидрохлорид гидразина (моль):хлорид палладия (г, в расчете на палладий):вода (моль) 100:0,9:1,8:0,15:0,1:4600. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 24 ч при 180ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 110ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала В по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 8TiO2·100SiO2·0,006PdO·0,008Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 3) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 15).
Пример 3
Тетраэтилортосиликат, тетрабутилтитанат, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и Tween 80 добавили к водному раствору гидроксида тетрапропиламмония и бутандиамина (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:0,03:0,5:0,05:0,02:550, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд, подвергали гидротермальной обработке в течение 120 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, затем добавили подходящее количество гидрата гидразина для гидротермальной обработки в течение 36 ч при 170ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала С по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,008TiO2·100SiO2·0,01PdO·0,2Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 4) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 16).
Пример 4
Золь кремниевой кислоты, тетрабутилтитанат, аммонийхлорид палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и додецилбензолсульфонат натрия добавили к водному раствору гидроксида тетрапропиламмония и бутандиамина (с массовой концентрацией 15%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:2,0:5,2:2,0:0,5:2500, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 96 ч при 150ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество гидрохлорида гидразина для гидротермальной обработки в течение 48 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 120ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала D по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 19TiO2·100SiO2·0,5PdO·1,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 5) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 17).
Пример 5
20 г титаносиликата TS-2, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество боргидрида натрия и Tween 80 добавили к водному раствору бутандиамина (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):Tween 80 (моль):бутандиамин (моль):боргидрид натрия (моль):ацетат палладия (г, в расчете на палладий):вода (моль) 100:0,1:0,02:0,05:0,03:520. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 120 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала Е по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,1TiO2·100SiO2·0,66PdO·0,12Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 6) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 18).
Пример 6
20 г титаносиликата Ti-ZSM-48, аммонийхлорид палладия с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество сульфата гидразина и Pluronic P123 добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 10%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):Pluronic P123 (моль):гидроксид тетрапропиламмония (моль):сульфат гидразина (моль):аммонийхлорид палладия (г, в расчете на палладий):вода (моль) 100:0,5:0,1:8,5:4,8:2000. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 240 ч при 90ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 120ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала F по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,04TiO2·100SiO2·3,6PdO·1,1Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 7) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 19).
Пример 7
Тетраэтилортосиликат, тетраэтилтитанат, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и бромид цетилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 13%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:8,2:7,5:0,1:0,005:800, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд, подвергали гидротермальной обработке в течение 96 ч при 160ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество гидрохлорида гидразина для гидротермальной обработки в течение 36 ч при 170ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала G по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 23TiO2·100SiO2·0,004PdO·0,8Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 8) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 20).
Пример 8
Тетраметилортосиликат, TiCl4, аммонийнитрат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и полихлорвинил добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 15%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:5,0:0,02:4,5:0,9:4800, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд, подвергали гидротермальной обработке в течение 96 ч при 150ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество боргидрида натрия для гидротермальной обработки в течение 48 ч при 120ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 120ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала Н по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 12TiO2·100SiO2·0,01PdO·6,4Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 9) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 21).
Пример 9
20 г титаносиликата Ti-ZSM-12, 10 мл раствора ацетата палладия в этаноле с концентрацией 0,01 г/мл (в расчете на атом палладия), подходящее количество цитрата натрия и полиэтиленгликоля добавили к водному раствору триэтаноламина (с массовой концентрацией 18%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):полиэтиленгликоль (моль):триэтаноламин (моль):цитрат натрия (моль):ацетат палладия (г, в расчете на палладий):вода (моль) 100:0,01:1,2:0,05:1,0:1500. Затем эту смесь подавали в реакционный сосуд, подвергали гидротермальной обработке в течение 320 ч при 130ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 140ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала I по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 0,5TiO2·100SiO2·0,7PdO·1,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 10) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 22).
Пример 10
Тетраэтилортосиликат, тетрапропилтитанат, ацетат палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) и бромид тетрадецилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 13%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:0,1:0,1:1,1:0,001:1500, где источник кремния рассчитан как SiO2, источник титана рассчитан как TiO2; источник палладия рассчитан как Pd. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 72 ч при 160ºС и аутогенном давлении. Образовавшееся в результате вещество извлекли, отфильтровали, высушили и прокалили с получением промежуточного кристаллического материала. Указанный промежуточный кристаллический материал подавали в оставшийся фильтрат, а затем добавили подходящее количество гидрохлорида гидразина для гидротермальной обработки в течение 36 ч при 170ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 150ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала J по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 2TiO2·100SiO2·0,6PdO·3,3Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 11) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 23).
Пример 11
20 г титаносиликата TS-1, раствор комплекса аммонийнитрата палладия и аммонийнитрата платины с концентрацией 0,01 г/мл (в расчете на атом палладия или платины), гидрат гидразина и бромид цетилтриметиламмония добавили к водному раствору гидроксида тетрапропиламмония (с массовой концентрацией 14%), смешали и перемешали до гомогенного состояния с получением смеси, обладающей соотношением титаносиликат (г):бромид цетилтриметиламмония (моль):гидроксид тетрапропиламмония (моль):гидрат гидразина (моль):аммонийнитрат платины (г, в расчете на платину):аммонийнитрат палладия (г, в расчете на палладий):вода (моль) 100:0,1:1,2:2,0:0,8:1,2:1800. Затем эту смесь подавали в герметичный реакционный сосуд из нержавеющей стали, подвергали гидротермальной обработке в течение 72 ч при 180ºС и аутогенном давлении. Образовавшееся в результате вещество отфильтровали, промыли водой, подвергли естественной сушке и далее сушили при 180ºС в течение 3 ч с получением нового содержащего благородный металл титаносиликатного материала К по настоящему изобретению. При характеризации этот материал был представлен оксидной формой 4TiO2·100SiO2·0,3PdO·0,1PtO·0,9Pd·0,7Pt. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота (фиг. 12) имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура (фиг. 24).
Сравнительный Пример 2
Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий-платина/титаносиликат.
20 г титаносиликата TS-1 и по 10 мл растворов комплекса аммонийнитрата палладия и аммонийнитрата платины с концентрацией 0,01 г/мл (в расчете на атом палладия или платины) добавили к 20 мл деионизированной воды. Смесь перемешали до гомогенного состояния, надлежащим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 3 ч в атмосфере водорода при 150ºС с получением обычного нанесенного на носитель катализатора палладий-платина/титаносиликат DB-2. При характеризации этот катализатор был представлен оксидной формой 6TiO2·100SiO2·0,8PdO·0,4PtO ·0,2Pd·0,5Pt. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота отсутствовала петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), полая структура не зафиксирована.
Сравнительный Пример 3
Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий/титаносиликат.
20 г титаносиликата, полученного в соответствии со способом, описанным в Примере 1 документа CN1132699C, и 20 мл раствора комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) добавили к 20 мл деионизированной воды. Смесь перемешали до гомогенного состояния, надлежащим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 3 ч в атмосфере водорода при 150ºС с получением нанесенного на носитель катализатора палладий-платина/титаносиликат DB-3. При характеризации этот катализатор был представлен оксидной формой 6TiO2·100SiO2·0,9PdO·0,1Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота имела место петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна полая структура.
Сравнительный Пример 4
Этот сравнительный пример иллюстрирует процесс обычного приготовления нанесенного на носитель катализатора палладий/титаносиликат.
20 г титаносиликата TS-2 и 15 мл раствора комплекса аммонийнитрата палладия с концентрацией 0,01 г/мл (в расчете на атом палладия) добавили к 30 мл деионизированной воды. Смесь перемешали до гомогенного состояния, надлежащим образом герметизировали, пропитывали в течение 24 ч при температуре 40ºС, подвергли естественной сушке и восстановительной активации в течение 1 ч в атмосфере водорода при 150ºС с получением обычного нанесенного на носитель катализатора палладий/титаносиликат DB-4. При характеризации этот катализатор был представлен оксидной формой 7TiO2·100SiO2·0,2PdO·0,6Pd. В его адсорбционно-десорбционной изотерме низкотемпературной адсорбции азота отсутствовала петля гистерезиса. На изображении, полученном просвечивающим электронным микроскопом (ПЭМ), видна твердотельная, а не полая структура.
Пример 12
Этот пример иллюстрирует влияние на реакцию получения пропиленоксида путем газофазного эпоксидирования пропилена образцов катализатора, полученных в примерах и сравнительных примерах настоящего изобретения, в присутствии водорода.
0,5 г каждого из образцов, полученных в описанных выше Примерах 1-11 и Сравнительных Примерах 1, 2, 3 и 4, соответственно добавили в реактор эпоксидирования, содержащий 80 мл метанола. В этот реактор подавали пропилен, кислород, водород и азот с образованием газообразной смеси пропилен-кислород-водород-азот (с молярным соотношением 1:1:1:7). Эпоксидирование этой смеси проводили при условиях температуры 60ºС, давления 1,0 МПа и объемного расхода пропилена 10 ч-1 с получением пропиленоксида (ПО).
Данные о степени конверсии пропилена и селективности ПО через 2 ч и 12 ч после начала реакции соответственно приведены в Таблицах 1 и 2.
Таблица 1
Источник образца Номер образца Степень конверсии пропилена, % Селективность ПО, %
Пример 1 A 5,24 91,68
Пример 2 B 5,53 92,56
Пример 3 C 4,36 92,14
Пример 4 D 4,73 91,87
Пример 5 E 4,21 91,65
Пример 6 F 5,21 91,45
Пример 7 G 5,13 92,26
Пример 8 H 4,86 92,61
Пример 9 I 5,32 91,29
Пример 10 J 4,53 91,88
Срав. Пример 1 DB-1 2,63 89,01
Пример 11 K 5,45 92,14
Срав. Пример 2 DB-2 2,71 88,52
Срав. Пример 3 DB-3 2,68 89,34
Срав. Пример 4 DB-4 1,14 86,65
Таблица 2
Источник образца Номер образца Степень конверсии пропилена, % Селективность ПО, %
Пример 1 A 5,18 91,21
Пример 2 B 5,42 92,11
Пример 3 C 4,35 92,06
Пример 4 D 4,71 91,52
Пример 5 E 4,25 91,49
Пример 6 F 5,20 91,43
Пример 7 G 5,12 92,12
Пример 8 H 4,88 92,54
Пример 9 I 5,14 91,07
Пример 10 J 4,51 91,72
Срав. Пример 1 DB-1 0,49 80,32
Пример 11 K 5,42 92,03
Срав. Пример 2 DB-2 1,26 81,24
Срав. Пример 3 DB-3 1,04 82,31
Срав. Пример 4 DB-4 0,61 80,28
Из Таблиц 1 и 2 видно, что активность материалов, предложенных в настоящем изобретении, заметно выше, чем материалов сравнительных образцов, а их селективность также в некоторой степени увеличена, что указывает на то, что их каталитическая активность при окислении и селективность явно улучшены по сравнению с уровнем техники, и при этом материалы по настоящему изобретению обладают лучшей стабильностью каталитической активности.
Данные по величине адсорбции бензола при условиях 25ºС, Р/Р0=0,10 и времени адсорбции 1 ч, а также радиальной протяженности полостей у образцов приведены в Таблице 3.
Таблица 3
Источник образца Номер образца Величина адсорбции бензола, мг/г Радиальная протяженность, нм
Пример 1 A 65 10-120
Пример 2 B 48 5-80
Пример 3 C 56 8-90
Пример 4 D 43 5-155
Пример 5 E 51 2-75
Пример 6 F 71 2-200
Пример 7 G 55 5-115
Пример 8 H 49 5-280
Пример 9 I 44 20-180
Пример 10 J 36 0,5-130
Срав. Пример 1 DB-1 22 -
Пример 11 K 45 5-90
Срав. Пример 2 DB-2 19 -
Срав. Пример 3 DB-3 34 60-80
Срав. Пример 4 DB-4 28 -

Claims (55)

1. Содержащий благородный металл титаносиликатный материал, являющийся катализатором, отличающийся тем, что упомянутый материал представлен оксидной формой xTiO2·100SiO2·yEOm·zE, где х составляет в диапазоне от 0,001 до 50,0; (y+z) составляет в диапазоне от 0,0001 до 20,0 и y/z<5; E представляет собой один или более благородных металлов, выбранных из группы, состоящей из Ru, Rh, Pd, Re, Os, Ir, Pt, Ag и Au; m является числом, отвечающим степени окисления E; и кристаллические зерна упомянутого материала обладают полой структурой или изогнутой структурой.
2. Титаносиликатный материал по п.1, отличающийся тем, что упомянутый благородный металл Е является одним или более благородными металлами, выбранными из группы, Pd, Pt, Ag и Au.
3. Титаносиликатный материал по п.2, отличающийся тем, что упомянутый благородный металл Е является Pd и/или Pt.
4. Титаносиликатный материал по п.3, отличающийся тем, что упомянутый благородный металл Е является Pd.
5. Титаносиликатный материал по п.1, отличающийся тем, что x составляет в диапазоне от 0,005 до 25,0; (y+z) составляет в диапазоне от 0,005 до 20,0 и y/z<3.
6. Титаносиликатный материал по п.1, отличающийся тем, что x составляет от 0,001 до 20,0; (y+z) составляет в диапазоне от 0,001 до 10,0 и y/z<2.
7. Титаносиликатный материал по п.1, отличающийся тем, что x составляет в диапазоне от 0,005 до 20,0; (y+z) составляет в диапазоне от 0,005 до 10,0 и y/z<1.
8. Титаносиликатный материал по п.1, отличающийся тем, что адсорбционная способность по бензолу упомянутого материала составляет по меньшей мере 25 мг/г, измеренная при условиях температуры 25°С, P/P0=0,10 и времени адсорбции 1 ч.
9. Титаносиликатный материал по п.1, отличающийся тем, что адсорбционная способность по бензолу упомянутого материала составляет по меньшей мере 35 мг/г, измеренная при условиях температуры 25°С, P/P0=0,10 и времени адсорбции 1 ч.
10. Титаносиликатный материал по п.1, отличающийся тем, что между изотермой адсорбции и изотермой десорбции низкотемпературной адсорбции азота упомянутым материалом имеется петля гистерезиса.
11. Титаносиликатный материал по п.1, отличающийся тем, что при относительном давлении Р/Р0 примерно 0,60 разность между адсорбционной способностью по азоту при десорбции и адсорбционной способностью по азоту при адсорбции составляет более 2% адсорбционной способности по азоту при адсорбции.
12. Титаносиликатный материал по п.1, отличающийся тем, что кристаллические зерна упомянутого материала полностью или частично имеют полую структуру или изогнутую структуру.
13. Титаносиликатный материал по п.12, отличающийся тем, что полость полых кристаллических зерен упомянутого материала имеет радиальную протяженность 0,1-500 нм.
14. Титаносиликатный материал по п.12, отличающийся тем, что полость полых кристаллических зерен упомянутого материала имеет радиальную протяженность 0,5-300 нм.
15. Титаносиликатный материал по п.12, отличающийся тем, что полость полых кристаллических зерен упомянутого материала имеет форму, выбранную из прямоугольной, круглой, неправильной круглой, неправильной многоугольной и их комбинаций.
16. Титаносиликатный материал по п.1, отличающийся тем, что кристаллические зерна упомянутого материала представляют собой монокристаллические зерна или агрегатные кристаллические зерна, агрегированные из множества кристаллических зерен.
17. Способ получения содержащего благородный металл титаносиликатного материала, являющегося катализатором, по п.1, отличающийся тем, что он включает следующие стадии:
(1) гомогенное смешивание титаносиликата, защитного средства, источника благородного металла, восстановителя, источника щелочи с водой с получением смеси, обладающей соотношением титаносиликат:защитное средство:источник щелочи:восстановитель:источник благородного металла:вода 100:(0,0-5,0):(0,005-5,0):(0,005-15,0):(0,005-10,0):(200-10000), где титаносиликат рассчитывают в граммах; защитное средство, источник щелочи, восстановитель и воду рассчитывают в молях; а источник благородного металла рассчитывают в граммах простого вещества благородного металла; и
(2) подачу смеси, полученной на стадии (1), в реакционный сосуд, реагирование при условиях гидротермальной обработки, выделение продукта с получением титаносиликатного материала, причем упомянутые условия гидротермальной обработки относятся к гидротермальной обработке в течение 2-360 ч при температуре 80-200°С и аутогенном давлении.
18. Способ получения по п.17, отличающийся тем, что титаносиликат на стадии (1) выбран из группы, состоящей из TS-1, TS-2, Ti-BETA, Ti-МСМ-41, Ti-ZSM-48, Ti-ZSM-12, Ti-MMM-1, Ti-MCM-22, Ti-SBA-15, Ti-MSU, Ti-MCM-48 и их смесей.
19. Способ получения по п.17, отличающийся тем, что титаносиликат на стадии (1) представляет собой TS-1.
20. Способ получения по п.17, отличающийся тем, что защитное средство на стадии (1) представляет собой полимер, подобранный из группы, состоящей из полипропилена, полиэтиленгликоля, полистирола, поливинилхлорида, полиэтилена и их производных или их смесей.
21. Способ получения по п.17, отличающийся тем, что защитное средство на стадии (1) представляет собой поверхностно-активное вещество, выбранное из группы, состоящей из анионогенных поверхностно-активных веществ, катионогенных поверхностно-активных веществ и неионогенных поверхностно-активных веществ.
22. Способ получения по п.17, отличающийся тем, что восстановитель на стадии (1) выбран из группы, состоящей из гидразина, боргидрида и цитрата натрия.
23. Способ получения по п.17, отличающийся тем, что источник благородного металла на стадии (1) выбран из группы, состоящей из оксидов, галогенидов, карбонатов, нитратов, аммонийнитратов, солей хлористого аммония, гидроксидов и других комплексов благородного металла.
24. Способ получения по п.17, отличающийся тем, что источник благородного металла на стадии (1) представляет собой источник палладия.
25. Способ получения по п.24, отличающийся тем, что источник палладия выбран из группы, состоящей из оксида палладия, карбоната палладия, хлорида палладия, нитрата палладия, аммонийнитрата палладия, аммонийхлорида палладия, гидроксида палладия и других комплексов палладия, или выбран из группы, состоящей из ацетата палладия и ацетилацетоната палладия.
26. Способ получения по п.17, отличающийся тем, что источник щелочи на стадии (1) выбран из группы, состоящей из аммиака, гидроксида натрия, гидроксида калия и гидроксида бария, или выбран из группы, состоящей из карбамида, щелочных соединений четвертичного аммония, соединений алифатических аминов, соединений аминоспиртов и их смесей.
27. Способ получения по п.26, отличающийся тем, что щелочные соединения четвертичного аммония имеют общую формулу (R1)4NOH, где R1 обозначает алкил с 1-4 атомами углерода.
28. Способ получения по п.27, отличающийся тем, что R1 обозначает пропил.
29. Способ получения по п.26, отличающийся тем, что соединения алифатических аминов имеют общую формулу R2(NH2)n, где R2 обозначает алкил или алкилиден с 1-6 атомами углерода, и n равно 1 или 2.
30. Способ получения по п.29, отличающийся тем, что соединения алифатических аминов выбраны из группы, состоящей из этиламина, н-бутиламина, бутандиамина и гександиамина.
31. Способ получения по п.26, отличающийся тем, что соединения аминоспиртов имеют общую формулу (HOR3)mNH(3-m), где R3 обозначает алкил с 1-4 атомами углерода, и m равно 1, 2 или 3.
32. Способ получения по п.31, отличающийся тем, что соединения аминоспиртов выбраны из группы, состоящей из моноэтаноламина, диэтаноламина и триэтаноламина.
33. Способ получения по п.17, отличающийся тем, что смесь на стадии (1) содержит титаносиликат:защитное средство:источник щелочи:восстановитель:источник благородного металла:воду в соотношении 100:(0,005-1,0):(0,01-2,0):(0,01-10,0):(0,01-5,0):(500-5000), где титаносиликатное молекулярное сито рассчитывают в граммах; защитное средство, источник щелочи, восстановитель и воду рассчитывают в молях; источник благородного металла рассчитывают в граммах простого вещества благородного металла.
34. Способ получения содержащего благородный металл титаносиликатного материала, являющегося катализатором, по п.1, отличающийся тем, что он включает следующие стадии:
(1) гомогенное смешивание источника титана, источника кремния, источника щелочи, защитного средства, источника благородного металла с водой с получением смеси, обладающей соотношением источник кремния:источник титана: источник щелочи:источник благородного металла:защитное средство:вода 100:(0,005-50,0):(0,005-20,0):(0,005-10,0):(0,0001-5,0):(200-10000), где источник кремния рассчитывают как SiO2, источник титана рассчитывают как TiO2; и источник благородного металла рассчитывают как простое вещество; гидротермальную кристаллизацию смеси в течение по меньшей мере 2 ч при 120-200°С и аутогенном давлении, извлечение, фильтрование, сушку и прокаливание продукта с получением промежуточного кристаллического материала;
(2) подачу промежуточного кристаллического материала, полученного на стадии (1), в фильтрат, полученный после фильтрования на стадии (1), добавление восстановителя в молярном соотношении 0,1-10 к источнику благородного металла, добавленному на стадии (1), гидротермальную обработку в течение 2-360 ч при 80-200°С и аутогенном давлении, и выделение продукта с получением титаносиликатного материала.
35. Способ получения по п.34, отличающийся тем, что источник кремния на стадии (1) выбран из группы, состоящей из геля кремниевой кислоты, золя кремниевой кислоты и органического силиката.
36. Способ получения по п.35, отличающийся тем, что органический силикат имеет общую формулу R44SiO4, где R4 обозначает алкил с 1-4 атомами углерода.
37. Способ получения по п.36, отличающийся тем, что R4 обозначает этил.
38. Способ получения по п.34, отличающийся тем, что источник титана представляет собой неорганическую соль титана или органический титанат.
39. Способ получения по п.38, отличающийся тем, что неорганическая соль титана выбрана из группы, состоящей из TiCl4, Ti(SO4)2 и TiOСl2.
40. Способ получения по п.38, отличающийся тем, что органический титанат имеет общую формулу Ti(OR5)4, где R5 обозначает алкил с 1-6 атомами углерода.
41. Способ получения по п.40, отличающийся тем, что R5 обозначает алкил с 2-4 атомами углерода.
42. Способ получения по п.34, отличающийся тем, что источник щелочи на стадии (1) представляет собой щелочное соединение четвертичного аммония или смесь щелочного соединения четвертичного аммония, соединения алифатического амина и соединения аминоспирта.
43. Способ получения по п.41, отличающийся тем, что щелочное соединение четвертичного аммония имеет общую формулу (R6)4NOH, где R6 обозначает алкил с 1-4 атомами углерода.
44. Способ получения по п.43, отличающийся тем, что R6 обозначает пропил.
45. Способ получения по п.42, отличающийся тем, что соединение алифатического амина имеет общую формулу R7(NH2)n, где R7 обозначает алкил или алкилиден с 1-6 атомами углерода, и n равно 1 или 2.
46. Способ получения по п.42, отличающийся тем, что соединение алифатического амина выбрано из группы, состоящей из этиламина, н-бутиламина, бутандиамина и гександиамина.
47. Способ получения по п.42, отличающийся тем, что соединение аминоспирта имеет общую формулу (HOR8)mNH(3-m), где R8 обозначает алкил с 1-4 атомами углерода, и m равно 1, 2 или 3.
48. Способ получения по п.42, отличающийся тем, что соединение аминоспирта выбрано из группы, состоящей из моноэтаноламина, диэтаноламина и триэтаноламина.
49. Способ получения по п.34, отличающийся тем, что защитное средство на стадии (1) представляет собой полимер или поверхностно-активное вещество, причем упомянутый полимер выбран из группы, состоящей из полипропилена, полиэтиленгликоля, полистирола, поливинилхлорида, полиэтилена и их производных и их смесей; а поверхностно-активное вещество выбрано из группы, состоящей из анионогенных поверхностно-активных веществ, катионогенных поверхностно-активных веществ и неионогенных поверхностно-активных веществ.
50. Способ получения по п.34, отличающийся тем, что источник благородного металла на стадии (1) представляет собой неорганическое или органическое вещество упомянутого благородного металла.
51. Способ получения по п.50, отличающийся тем, что источник благородного металла представляет собой неорганический или органический источник палладия.
52. Способ получения по п.51, отличающийся тем, что неорганический источник палладия выбран из группы, состоящей из оксида палладия, карбоната палладия, хлорида палладия, нитрата палладия, аммонийнитрата палладия, аммонийхлорида палладия, гидроксида палладия и других комплексов палладия; а упомянутый органический источник палладия выбран из группы, состоящей из ацетата палладия и ацетилацетоната палладия.
53. Способ получения по п.34, отличающийся тем, что смесь на стадии (1) обладает молярным соотношением источник кремния:источник титана:источник щелочи:источник палладия:защитное средство:вода 100:(0,01-10,0):(0,01-10,0):(0,01-5,0):(0,0005-1,0):(500-5000).
54. Способ получения по п.34, отличающийся тем, что восстановитель на стадии (2) выбран из группы, состоящей из гидроксиламина, гидразина, боргидрида, цитрата натрия и их смесей.
55. Способ получения по п.54, отличающийся тем, что гидразин выбран из группы, состоящей из гидрата гидразина, гидрохлорида гидразина и сульфата гидразина; а упомянутый боргидрид выбран из группы, состоящей из боргидрида натрия и боргидрида калия.
RU2009140032/04A 2007-03-30 2008-03-27 Содержащий благородный металл титаносиликатный материал и способ его получения RU2459661C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100649816A CN101274765B (zh) 2007-03-30 2007-03-30 一种含贵金属的微孔钛硅材料及其制备方法
CN200710064981.6 2007-03-30

Publications (2)

Publication Number Publication Date
RU2009140032A RU2009140032A (ru) 2011-05-10
RU2459661C2 true RU2459661C2 (ru) 2012-08-27

Family

ID=39807804

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009140032/04A RU2459661C2 (ru) 2007-03-30 2008-03-27 Содержащий благородный металл титаносиликатный материал и способ его получения

Country Status (12)

Country Link
US (1) US8349756B2 (ru)
EP (1) EP2133144B1 (ru)
JP (1) JP5340258B2 (ru)
KR (1) KR101466631B1 (ru)
CN (1) CN101274765B (ru)
AU (1) AU2008234308B2 (ru)
BR (1) BRPI0808615B1 (ru)
ES (1) ES2813853T3 (ru)
RU (1) RU2459661C2 (ru)
TW (1) TW200940167A (ru)
WO (1) WO2008119252A1 (ru)
ZA (1) ZA200906473B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567314C1 (ru) * 2014-04-10 2015-11-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения кристаллического титаносиликата
RU2568699C1 (ru) * 2014-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения натрийсодержащего титаносиликата

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544582B (zh) * 2008-03-27 2012-06-27 中国石油化工股份有限公司 一种丁酮肟的合成方法
TWI480100B (zh) * 2011-04-27 2015-04-11 China Petrochemical Dev Corp Taipei Taiwan Titanium-silicon molecular sieve and its preparation method and method for producing cyclohexanone oxime using the molecular sieve
CN102850207B (zh) * 2011-06-30 2015-11-25 中国石油化工股份有限公司 一种苯乙烯氧化的方法
CN103288678B (zh) * 2012-02-29 2014-09-24 北京安耐吉能源工程技术有限公司 一种环己酮肟的制备方法
CN103288679B (zh) * 2012-02-29 2015-06-24 北京安耐吉能源工程技术有限公司 环己酮肟的制备方法
CN103007978A (zh) * 2012-12-28 2013-04-03 湘潭大学 一种纳米金属催化剂及其制备方法和应用
TWI642481B (zh) * 2013-07-17 2018-12-01 東楚股份有限公司 Catalyst system for the production of heterogeneous catalysts and 1,2-dichloroethane
CN103785381B (zh) * 2014-02-28 2016-07-06 西安元创化工科技股份有限公司 一种用于制备低负载量贵金属催化剂的方法
US9433935B2 (en) * 2014-03-28 2016-09-06 Exxonmobil Research And Engineering Company Synthesis of framework modified ZSM-48 crystals
CN105293517B (zh) * 2014-06-24 2017-07-21 中国石油化工股份有限公司 钛硅分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
CN105013480A (zh) * 2015-07-10 2015-11-04 华东理工大学 一种提高用于丙烯气相环氧化的催化剂的稳定性和活性的方法
CN106915753B (zh) * 2015-12-24 2019-07-23 中国石油化工股份有限公司 贵金属改性钛硅分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
CN105537618B (zh) * 2015-12-29 2017-06-23 吉林大学 一种制备介孔Au@SiO2复合粒子的方法
CN107879357B (zh) * 2016-09-30 2019-11-15 中国石油化工股份有限公司 一种钛硅分子筛及其合成方法和应用以及一种环酮氧化的方法
CN106587091B (zh) * 2016-11-16 2018-12-04 大连理工大学 含有连续介孔的介微孔复合钛硅分子筛ts-1的制备方法
TWI628146B (zh) * 2016-11-28 2018-07-01 東聯化學股份有限公司 Preparation method and application of titanium-containing cerium oxide material with high thermal stability
CN109574033A (zh) * 2017-09-28 2019-04-05 中国石油化工股份有限公司 成型的含贵金属钛硅分子筛及其制备方法和应用以及生产过氧化氢的方法
CN107983296A (zh) * 2017-12-09 2018-05-04 芜湖瑞德机械科技有限公司 绝热气瓶用氧化钯复合物以及制备方法
CN112978754B (zh) * 2019-12-13 2022-12-02 中国科学院大连化学物理研究所 一种碱性钛硅分子筛ts-1的制备方法及其应用
CN113267419A (zh) * 2021-06-15 2021-08-17 山西太钢不锈钢股份有限公司 一种铝质脱氧剂的检测方法
US20230191382A1 (en) * 2021-12-20 2023-06-22 Johnson Matthey Public Limited Company Catalytic material for treating an exhaust gas produced by a natural gas engine
CN115615965B (zh) * 2022-11-17 2023-04-14 中国工程物理研究院材料研究所 一种氢气传感器及其制备方法、检测氢气浓度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059632A1 (en) * 1999-04-08 2000-10-12 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
RU2243217C2 (ru) * 2000-06-26 2004-12-27 Коеи Кемикал Компани, Лимитед Способ получения пиридиновых оснований
EP0906784B1 (en) * 1997-10-03 2005-11-16 Polimeri Europa S.p.A. Process for preparing bound zeolites
RU2282587C1 (ru) * 2005-04-08 2006-08-27 Ирина Игоревна Иванова Способ получения материала с микромезопористой структурой

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299169A (en) * 1961-09-18 1967-01-17 Dow Chemical Co Elastomeric epoxy resin
US4248548A (en) * 1974-11-04 1981-02-03 Danford-Champlin Farms, Ltd. Sewage disposal system and apparatus
JPH0344836A (ja) 1989-07-11 1991-02-26 Sanyo Electric Co Ltd 光ヘッド装置
US5206285A (en) * 1990-12-21 1993-04-27 Northrop Corporation Aqueous coating of silane precursor from epoxy and amino trialkoxysilanes
JP3044836B2 (ja) * 1991-05-28 2000-05-22 東ソー株式会社 プロピレンオキシドの製法
WO1994019277A1 (en) 1993-02-25 1994-09-01 Sandia National Laboratories Novel silico-titanates and their methods of making and using
DE4323774A1 (de) 1993-07-15 1995-02-09 Basf Ag Hohlkugelartig agglomerierte Pentasilzeolithe
JPH07300312A (ja) * 1994-03-09 1995-11-14 Nippon Shokubai Co Ltd メソポアチタノシリケートおよびその合成方法
DE4425672A1 (de) * 1994-07-20 1996-01-25 Basf Ag Oxidationskatalysator, Verfahren zu seiner Herstellung und Oxidationsverfahren unter Verwendung des Oxidationskatalysators
FR2733685B1 (fr) * 1995-05-05 1997-05-30 Adir Utilisation des derives du benzopyrane pour l'obtention de compositions pharmaceutiques destinees au traitement des pathologies liees a l'echangeur c1-/hc03-, na+ independant
DE19731627A1 (de) * 1997-07-23 1999-01-28 Degussa Granulate, enthaltend Titansilikalit-l
CN1132699C (zh) * 1999-12-24 2003-12-31 中国石油化工集团公司 一种钛硅分子筛及其制备方法
US6194591B1 (en) 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
CN1111092C (zh) * 2000-12-15 2003-06-11 中国石油化工股份有限公司 一种钛硅分子筛的改性方法
US6403815B1 (en) 2001-11-29 2002-06-11 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
JP4170165B2 (ja) * 2003-06-30 2008-10-22 Tdk株式会社 反応性イオンエッチング用のマスク材料、マスク及びドライエッチング方法
US6884898B1 (en) * 2003-12-08 2005-04-26 Arco Chemical Technology, L.P. Propylene oxide process
JP2005219956A (ja) * 2004-02-04 2005-08-18 Tokuyama Corp 結晶性無機多孔質材料およびその製造方法
US6984606B2 (en) * 2004-02-19 2006-01-10 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US6867312B1 (en) * 2004-03-17 2005-03-15 Arco Chemical Technology, L.P. Propylene oxide process
JP2006265056A (ja) * 2005-03-25 2006-10-05 Ne Chemcat Corp メタロシリケートの製造方法
US7781493B2 (en) * 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
JP5067942B2 (ja) * 2005-09-28 2012-11-07 Jx日鉱日石エネルギー株式会社 触媒及びその製造方法
US7288237B2 (en) * 2005-11-17 2007-10-30 Lyondell Chemical Technology, L.P. Epoxidation catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906784B1 (en) * 1997-10-03 2005-11-16 Polimeri Europa S.p.A. Process for preparing bound zeolites
WO2000059632A1 (en) * 1999-04-08 2000-10-12 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
RU2243217C2 (ru) * 2000-06-26 2004-12-27 Коеи Кемикал Компани, Лимитед Способ получения пиридиновых оснований
RU2282587C1 (ru) * 2005-04-08 2006-08-27 Ирина Игоревна Иванова Способ получения материала с микромезопористой структурой

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567314C1 (ru) * 2014-04-10 2015-11-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения кристаллического титаносиликата
RU2568699C1 (ru) * 2014-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения натрийсодержащего титаносиликата

Also Published As

Publication number Publication date
EP2133144A4 (en) 2010-04-14
TW200940167A (en) 2009-10-01
WO2008119252A1 (fr) 2008-10-09
BRPI0808615A2 (pt) 2014-08-12
EP2133144A1 (en) 2009-12-16
AU2008234308A1 (en) 2008-10-09
ZA200906473B (en) 2012-01-25
CN101274765A (zh) 2008-10-01
BRPI0808615B1 (pt) 2017-06-27
TWI370751B (ru) 2012-08-21
AU2008234308B2 (en) 2012-09-06
EP2133144B1 (en) 2020-08-05
CN101274765B (zh) 2011-11-30
KR20090127321A (ko) 2009-12-10
JP5340258B2 (ja) 2013-11-13
US8349756B2 (en) 2013-01-08
ES2813853T3 (es) 2021-03-25
KR101466631B1 (ko) 2014-11-28
RU2009140032A (ru) 2011-05-10
JP2010522689A (ja) 2010-07-08
US20100105542A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
RU2459661C2 (ru) Содержащий благородный металл титаносиликатный материал и способ его получения
TWI480100B (zh) Titanium-silicon molecular sieve and its preparation method and method for producing cyclohexanone oxime using the molecular sieve
CN101314577B (zh) 一种催化环己酮氨肟化的方法
CN101434587B (zh) 一种催化氧化苯乙烯合成环氧苯乙烷的方法
CN106031882A (zh) 含贵金属分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
CN101654256B (zh) 一种原位合成含贵金属的钛硅分子筛材料的方法
CN101683984B (zh) 一种合成含贵金属钛硅材料的方法
CN101397235A (zh) 一种催化氧化环己烷的方法
CN101665256B (zh) 一种用贵金属源处理钛硅分子筛的方法
CN101314583B (zh) 一种催化氧化叔丁醇的方法
CN101397240B (zh) 一种苯酚羟基化制备对苯二酚和邻苯二酚的方法
CN101570523B (zh) 一种催化氧化烯丙醇生产环氧丙醇的方法
CN101683986B (zh) 一种钛硅材料的制备方法
CN101397283B (zh) 一种催化丙烯环氧化生产环氧丙烷的方法
WO2022018081A1 (en) A zeolite catalyst and use thereof for the dehydrogenation of alkanes
CN101544582B (zh) 一种丁酮肟的合成方法
CN105293517A (zh) 钛硅分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
CN101683985B (zh) 一种含贵金属钛硅材料的原位合成方法
CN101654255B (zh) 一种合成含贵金属钛硅材料的方法
CN101434515B (zh) 一种苯酚的制备方法
CN106915753B (zh) 贵金属改性钛硅分子筛及其制备方法和应用以及一种烯烃直接氧化的方法
CN101670297A (zh) 一种含贵金属钛硅材料的合成方法
CN101544620A (zh) 一种环氧环己烷的制备方法