WO2008102662A1 - 段ボール紙製造装置におけるダブルフェーサ及び該ダブルフェーサの熱盤の加熱制御方法 - Google Patents

段ボール紙製造装置におけるダブルフェーサ及び該ダブルフェーサの熱盤の加熱制御方法 Download PDF

Info

Publication number
WO2008102662A1
WO2008102662A1 PCT/JP2008/052210 JP2008052210W WO2008102662A1 WO 2008102662 A1 WO2008102662 A1 WO 2008102662A1 JP 2008052210 W JP2008052210 W JP 2008052210W WO 2008102662 A1 WO2008102662 A1 WO 2008102662A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
steam
heat
plate
hot
Prior art date
Application number
PCT/JP2008/052210
Other languages
English (en)
French (fr)
Inventor
Tadashi Itoyama
Hiroshi Ishibuchi
Kazukiyo Kono
Masashi Sasaki
Toshihide Kato
Toshinao Okihara
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP08704530A priority Critical patent/EP2058117A1/en
Priority to US12/308,245 priority patent/US20100186896A1/en
Publication of WO2008102662A1 publication Critical patent/WO2008102662A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/20Corrugating; Corrugating combined with laminating to other layers
    • B31F1/24Making webs in which the channel of each corrugation is transverse to the web feed
    • B31F1/26Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions
    • B31F1/28Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions combined with uniting the corrugated webs to flat webs ; Making double-faced corrugated cardboard
    • B31F1/2845Details, e.g. provisions for drying, moistening, pressing
    • B31F1/285Heating or drying equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/20Corrugating; Corrugating combined with laminating to other layers
    • B31F1/24Making webs in which the channel of each corrugation is transverse to the web feed
    • B31F1/26Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions
    • B31F1/28Making webs in which the channel of each corrugation is transverse to the web feed by interengaging toothed cylinders cylinder constructions combined with uniting the corrugated webs to flat webs ; Making double-faced corrugated cardboard
    • B31F1/2845Details, e.g. provisions for drying, moistening, pressing
    • B31F1/2877Pressing means for bringing facer sheet and corrugated webs into contact or keeping them in contact, e.g. rolls, belts
    • B31F1/2881Pressing means for bringing facer sheet and corrugated webs into contact or keeping them in contact, e.g. rolls, belts for bringing a second facer sheet into contact with an already single faced corrugated web

Definitions

  • the present invention relates to a double feather in a corrugated paper manufacturing apparatus called “Korge Ichiyu”. More specifically, the heat transfer coefficient of the double feather to the paper sheet of the hot platen is improved, and the quality of the corrugated paper is deteriorated. This is designed to prevent thermal deformation of the hot plate that leads to. Background art
  • the production line of corrugated board production equipment is generally a front / back side that is the raw material for corrugated pole paper.
  • Mill roll stands equipped with liner base paper and core base paper roll base paper, and corrugated base paper continuously toward the evening.
  • a splicer as a paper splicing device for supplying the sheet, and a cinder-feather which manufactures single-sided pole paper by forming the core paper fed from the splicer into a corrugated shape and bonding it to the back liner And a double feather for producing a corrugated paper by bonding a single-sided corrugated paper produced by the cinder feather and a front liner.
  • the downstream side of the double-fuser production line there is a slitter scorer that performs corrugation processing and cutting at a desired position along the corrugated paper production order, and a cut-off device that performs corrugated paper cutting processing.
  • a paper splicer and a remover that removes defective paper generated in the downstream production line.
  • the single-sided pole paper k is preheated by the preheater 0 1 1 and applied to the top of the core paper c by the gluing device 0 1 2 and then sent to the double facer 0 1 0. It is done.
  • the front liner paper n is fed from the base paper r attached to the mill roll stand, preheated in the preheater 0 1 3 and then sent to the double facer 0 1 0.
  • the double facer 0 1 0 includes a heating plate group 0 1 4 arranged in the horizontal direction to form a horizontal heating surface, and the heating plate group 0 1 is formed by superimposing the single-sided pole paper k and the front liner paper n. Drive on 4.
  • the heating plate group 0 1 4 has a steam chamber 0 2 1 to which heating steam is supplied by an appropriate means, and its upper surface 0 2 1 a is superposed on a single-sided pole paper.
  • a heat release surface for k and front liner paper n (hereinafter referred to as “paper sheet”) is formed, and the paper sheet receives heat from the upper surface of the heating plate 0 2 1 a and is heated.
  • An upper belt comparator 0 16 and a lower belt conveyor 0 17 are disposed above the heating plate group 0 14 in FIG. 9 and on the downstream side of the heating plate group 0 14.
  • Heating plate group 0 1 4 Upper belt conveyor 0 1 4
  • On the back side of the upper pressure conveyor 0 1 6 is a pressurizing device that pressurizes the single-sided roll paper k and front liner paper n from above with an air pressurizing device or rolls, etc.
  • 0 1 5 Is provided.
  • the lower roll group 0 1 8 that supports the lower belt conveyor 0 1 7 from the back side and the back side of the upper belt conveyor 0 1 6 are arranged downstream of the pressure device 0 1 5 and the heating plate group 0 1 4
  • An upper roll group 0 1 9 is provided, and the paper sheet is nipped by the upper and lower bell conveyors 0 1 6 and 0 1 7 while being pressed by the upper roll group 0 19.
  • the double sheeter 0 1 0 hot plate group 0 1 4 and the pressure device 0 1 5 The paper sheet introduced between the upper roll group 0 1 9 and the hot plate group 0 1 4 It travels above and is heated from the hot plate group 0 1 4. The paper sheet is heated from the heating plate group 0 1 4 so that the raw starch solution applied to the top of the core paper c of the single-sided cardboard paper k is gelatinized and bonded with its adhesive strength. Corrugated pole paper d is manufactured. Note that the paper sheet travels at a high speed of, for example, 30 O mZ, so it passes through the traveling surface of the double facer in a few seconds.
  • the cardboard paper d thus manufactured is sandwiched and conveyed from above and below by the upper belt conveyor 0 16 and the lower belt conveyor 0 17 and is carried out to the subsequent process.
  • the heating steam supplied into the steam chamber 0 2 1 of the hot plate group 0 1 4 is usually a saturated steam pressure of 1.0 to 1.3 MPa, and a temperature of 1880 to 190 ° C.
  • the adhesive strength of the paper sheet is controlled by the amount of heat and pressure applied to the paper sheet on the heating plate group 0 1 4.
  • an excessive amount of heat supply or pressure will cause the quality of corrugated pole paper to deteriorate, such as collapsing.
  • the heating plate group 0 1 4 needs to have a width corresponding to the maximum width to pass the paper. Therefore, the length is usually from 1900 to 2600 mm. Also, since it is necessary to supply heat uniformly to the paper sheet, the flatness must be highly accurate (within 0.1 mm).
  • the steam chamber 0 2 1 needs to be strong enough to withstand the pressure of the steam supplied to the inside (1.0 to 1.3 MPa), so it must have a thick wall (stiffness) of about 30 mm. . Therefore, the heat transfer efficiency to the paper sheet is not good.
  • the conventional hot plate group 0 14 has a structure with an extremely large heat capacity, and is composed of pig iron with a thickness of about 150 mm.
  • the conventional hot plate has a problem that it has poor responsiveness to a request for a rapid temperature increase or a decrease in temperature due to a change in the paper sheet laminating speed or the paper type constituting the paper sheet. .
  • the bonded part of single-sided corrugated sheet paper k and front liner paper n becomes overdried or undried, and as a result, adhesion failure such as pseudo adhesion occurs or the corrugated pole paper after production There were problems such as warping.
  • the responsiveness is poor, there is a problem that the traveling speed of the paper sheet cannot be increased and the productivity is not improved.
  • the heating temperature of the paper sheet is adjusted by adjusting the contact heat transfer coefficient between the paper sheet and the upper surface of the heating plate by changing the caloric pressure on the paper sheet of the pressure device 0 15.
  • the temperature of the corrugated paper d at the outlet of the double feather is set to 70 to 140 ° C.
  • Patent Document 1 the specification and drawings of Japanese Utility Model Publication No. 2-4 8 3 2 9
  • a large number of heat medium supply holes are provided in parallel in the thickness of the thick plate.
  • the partition wall from the heat medium supply hole to the paper running surface is made thinner, thereby improving and equalizing the heat dissipation efficiency to the paper running path side and facilitating heating adjustment.
  • FIG. 5 discloses a hot plate structure in which a plurality of reinforcing ribs are provided on the lower surface side of the thick plate.
  • Patent Document 2 U.S. Pat. No. 5, 6 62, 7 65 discloses that the heating plate is made thinner, for example, 20 to 50 mm thick, and a number of steam passage holes are provided in the heating plate. Parallel heating plates A structure is disclosed. By reducing the thickness of the heating plate in this way, the temperature responsiveness is improved, and the upper and lower surfaces of the heating plate are separated by thermally blocking the heating plate and the member supporting the heating plate. And a means for preventing warpage of the hot platen is disclosed.
  • Patent Document 1 discloses that the thickness of the hot platen is reduced, thereby increasing the heat dissipation efficiency for the paper sheet and improving the temperature response of the hot platen.
  • the heat radiation differs between the top and bottom surfaces of the heat plate, resulting in a temperature difference.
  • the hot plate is made thinner, the hot plate tends to deform due to the temperature difference between the upper and lower surfaces of the hot plate.
  • the produced cardboard paper is also deformed along the surface of the hot plate, leading to a deterioration in the quality of the cardboard.
  • Patent Document 1 does not disclose a solution to this problem.
  • Patent Document 2 discloses that the hot platen is thinned, the hot platen and the member supporting the hot plate are thermally cut off, and the upper surface and the lower surface of the hot plate are made to have the same thermal condition. Accordingly, a means for preventing warpage of the hot platen is disclosed. However, as described above, the top surface of the hot platen is in contact with the paper sheet and absorbs heat from the upper surface of the hot platen. It cannot be a condition. Therefore, the means of Patent Document 2 cannot solve the thermal deformation of the hot platen. Disclosure of the invention
  • the present invention improves the heat transfer efficiency for a paper sheet that runs on the top surface of the hot plate by reducing the thickness of the hot plate, improves the responsiveness to the set temperature, and By reducing the temperature difference between the sheet contact surface (upper surface) and the opposite surface (lower surface), the thermal deformation of the hot platen is kept within an allowable range, and thus the vertical warping of the corrugated paper due to the thermal deformation of the hot platen.
  • the purpose is to eliminate.
  • the heating method of the double facer according to the present invention is a double feather that manufactures a cardboard paper by laminating a belt-like single-sided cardboard paper and a liner paper and laminating them while running on a hot platen.
  • a heat dissipating means is provided on the lower surface of the heat plate, and the heat dissipated from the bottom surface of the heat plate and the heat dissipated from the lower surface of the heat plate are balanced on the upper surface of the heat plate.
  • the warp of the hot platen is suppressed within an allowable range.
  • the method of the present invention takes into consideration the amount of heat released to the paper sheet from the upper surface of the heating plate, and balances the amount of heat released from the lower surface of the heating plate with the amount of heat released from the upper surface of the heating plate. is there. As a result, the temperature difference between the upper and lower surfaces of the hot platen is reduced to prevent thermal deformation of the hot platen, that is, warpage in the vertical direction.
  • the sheet of paper that is carried in a state where the single-sided pole paper and front liner paper are stacked one above the other on the double facer has the lowest temperature at the double facer entrance, and then receives heat from the top face of the hot plate while running along the upper face of the hot plate.
  • the temperature is highest at the outlet of the hot platen. Therefore, when the temperature of the hot platen is constant from the inlet to the outlet, the temperature difference between the paper sheet and the hot plate is the largest at the inlet and the smallest at the hot plate outlet. For this reason, the amount of heat released from the top of the hot platen is the largest at the hot platen inlet and decreases toward the hotplate outlet.
  • the amount of heat dissipated from the bottom surface of the heat plate by the heat dissipating means is reduced from the heat plate inlet portion toward the heat plate outlet portion in accordance with the heat radiation amount of the upper surface of the heat plate. If the heat radiation amount decreasing gradient is set, the heat radiation amount on the upper and lower surfaces of the heating plate can be balanced. This reduces the temperature difference between the upper and lower surfaces of the hot platen and prevents the hot plate from warping.
  • the heating plate is formed in a plate shape, and a number of steam passage holes are provided in parallel in the direction intersecting the paper traveling direction (preferably in the direction orthogonal to the heating plate), and the steam flows through the steam passage holes.
  • the glue applied to the top of the single-sided cardboard paper is gelled to improve the adhesion between the single-sided pole paper and the front liner paper. It is necessary to make it. Since the paper sheet runs at a high speed, the hot platen temperature at the inlet of the double fuser is increased depending on the type of paper, and the hot platen temperature is changed from the inlet to the outlet of the hot plate. It may be preferable to set a decreasing gradient in the past. In the method of the present invention, as a means for reducing the temperature gradient from the inlet part to the outlet part of the hot platen, the platen-like hot platen intersects the paper running direction (preferably perpendicularly).
  • a number of steam through holes in the direction), and the steam through holes Saturated steam is supplied to the steam supply pipe from the steam supply pipe via a pressure reducing valve, and the pressure of the saturated steam supplied to the steam through hole is changed from the inlet part to the outlet part of the hot plate for each of the through holes provided in parallel.
  • the temperature of the saturated steam can be made a downward gradient from the inlet portion to the outlet portion of the hot platen.
  • the heat supply of the hot platen was set according to the high-speed bonding conditions for thick sheets, so there was a problem that the thin sheets were warped, etc. due to excessive heat when the thin sheets were bonded at low speed. .
  • the supply evaporating pressure can be changed according to the paper type of the paper sheet or the traveling speed, so that it is possible to prevent an excessive amount of heat at the time of low-speed bonding of the thin sheet.
  • the Dakar facer according to the first aspect of the present invention for carrying out the method of the present invention is a double facer for producing a corrugated paper sheet by laminating a belt-like single-sided cardboard paper and a liner paper while traveling on a hot platen.
  • the heat plate is configured in a plate shape, and a number of steam through holes are arranged in parallel in the direction intersecting the paper traveling direction (preferably in the direction orthogonal) to the heat plate,
  • a heat dissipating means is provided on the bottom surface of the heat sink (which is made of a good heat conductor of the same material as or higher than that of the heat plate). The amount of heat released to the single-sided pole paper and liner paper on the upper surface of the sheet is balanced with the amount of heat released from the lower surface of the hot platen.
  • the hot platen of the first device according to the present invention is formed in a plate shape and has a large number of steam insertion holes arranged in parallel in a direction crossing the paper traveling direction (preferably a direction orthogonal).
  • Such a configuration eliminates the need for a pressure vessel for storing high-pressure steam and enables the partition wall forming the steam insertion hole to be thinned, thereby enabling the heat plate itself to be thinned. Then, thinning the hot plate tends to cause the hot plate to warp. Therefore, in the present invention, the reinforcing ribs prevent warping of the heating plate, expand the heat radiation area, and cause natural convection of air along the height direction of the reinforcing ribs. To dissipate heat.
  • the temperature difference between the upper and lower surfaces of the hot platen is reduced and thermal deformation of the hot platen is reduced.
  • a large number of the reinforcing ribs are arranged at intervals (in a lattice shape or a rhombus combination) in the paper running direction and in a direction intersecting the paper running direction (for example, an orthogonal direction). Accordingly, it may be arranged so as to form a large number of lattices, or a large number of the reinforcing ribs may be arranged side by side in a direction (orthogonal direction) intersecting the paper running direction.
  • the reinforcing ribs are formed in a lattice shape, it is easy to expand the heat dissipation area, and the heat dissipation capability can be improved.
  • the reinforcing ribs are arranged in the paper running direction and in the direction intersecting the paper running direction (orthogonal direction), the reinforcing ribs cause thermal deformation in the paper running direction of the hot platen and the direction intersecting the paper running direction of the hot platen (orthogonal). Direction).
  • the latter configuration it is possible to prevent the cardboard paper from warping in the direction (orthogonal direction) intersecting the paper running direction of the corrugated paper, and the configuration of the reinforcing rib can be simplified, and the cost required for machining, welding, etc. during manufacturing. Can be reduced. Since a plurality of heating plate groups are arranged side by side along the paper sheet running direction, the thermal deformation in the paper running direction of each hot platen warps in the direction intersecting the paper running direction (orthogonal direction). Compared with, it does not affect the quality of corrugated paper. Therefore, the latter configuration can be applied to the manufacture of corrugated paper in which the fine warpage in the paper running direction can be ignored.
  • the amount of heat released from the upper surface of the heating plate has a decreasing gradient (stepwise) from the inlet to the outlet of the heating plate.
  • the height of the reinforcing rib is gradually reduced from the inlet portion to the outlet portion of the hot plate, so that the temperature of the saturated steam moves from the inlet portion to the outlet portion of the hot platen.
  • a plurality of heating plates arranged along the paper running direction in the double fuser are divided into, for example, 3 to 4 groups, and the upstream first group having a large heat supply amount to the paper sheet.
  • the height of the protrusion of the reinforcing rib of the heating plate is made the highest, and the height of the protruding rib of the reinforcing rib is lowered as going to the second group, the third group, and so on.
  • the temperature can be a stepped descending gradient from the inlet to the outlet of the hot platen.
  • saturated steam is supplied to the steam through hole from the steam supply pipe through a pressure reducing valve, and the saturated steam supplied to the steam through hole is made to have a decreasing gradient from the inlet portion to the outlet portion of the hot platen. Accordingly, the temperature of the saturated steam can be configured to have a downward gradient from the inlet portion to the outlet portion of the hot platen.
  • a steam passage hole may be connected in parallel to the steam supply pipe so that steam in the same direction flows through the steam passage hole.
  • a steam supply pipe may be connected to the steam through hole on the most upstream side in the direction, and each of the steam through holes may be connected in series via a U-shaped communication pipe outside the heating plate.
  • the steam passage holes are made to flow in the same direction through the respective steam passage holes, so that steam having a uniform temperature can be supplied to the hot platen arranged in the paper traveling direction. Therefore, the heating temperature of the hot platen can be made uniform in the paper running direction.
  • steam flows from the upstream side to the downstream side in the paper running direction in the hot platen, so that the paper sheet can absorb a large amount of heat from the high-temperature steam at the inlet of the hot plate, and saturated steam.
  • the temperature can be a stepped descending gradient from the inlet to the outlet of the hot platen. Accordingly, gelation of the glue is promoted, and a good adhesive force can be obtained.
  • the structure of the steam pipe can be simplified because there is no need to branch the branch pipe connected to each steam through hole from the steam supply pipe.
  • the double facer according to the second aspect of the present invention is the double facer for producing the cardboard paper by stacking the belt-like single-sided cardboard paper and the liner paper and laminating them while running on the hot board.
  • the amount of heat released to the single-sided corrugated paper and liner paper on the upper surface of the hot plate and the lower surface of the hot plate by setting the hot platen thickness below the steam passage hole larger than the plate thickness It is configured to balance the amount of heat released from the heat.
  • the mechanical heating can be simplified.
  • the amount of heat released from the top surface of the hot plate varies depending on the paper sheet running speed or paper type (basis weight), so the wall thickness from the steam vent to the bottom of the hot platen is the paper sheet running speed or paper type. Set as appropriate according to (basis weight).
  • the allowable limit value of the vertical warp of the double facer hot plate during operation is usually 0.3 mm.
  • the temperature difference between the upper and lower surfaces of the heating plate should be kept below 15 ° C.
  • the first inventive device or the second inventive device makes it possible to suppress the temperature difference between the upper and lower surfaces of the heating plate to 15 ° C. or less.
  • heat dissipating means is provided on the lower surface of the hot platen, and the amount of heat dissipated from the upper surface of the heat plate to the single-sided cardboard and liner paper and the heat dissipated from the lower surface of the hot plate.
  • the hot platen is configured in a plate shape, and a number of steam insertion holes are arranged in the hot plate in a direction intersecting with the paper traveling direction (preferably a direction orthogonal). This makes it possible to reduce the thickness of the hot platen, thus reducing the temperature difference between the steam passage hole and the upper surface of the hot plate, and giving more heat to the paper sheet per unit area. . Therefore, the shortage of heat during the high-speed running of thick paper sheets is resolved, and the upper limit value of the pasting speed is raised. Also, since the hot plate can be made thinner, the response speed required to change the set temperature is improved.
  • FIG. 1 relates to a hot platen according to a first embodiment of the present invention.
  • FIG. 1 is a perspective view
  • FIG. 1B is a bottom view
  • FIG. 1C is a cross-sectional view taken along line AA in FIG.
  • FIG. 2A is a perspective view of a hot platen according to a second embodiment of the present invention
  • FIG. 2B is a diagram showing a temperature curve on the hot platen of a paper sheet.
  • FIG. 3 is a configuration diagram of a double facer body according to a third embodiment of the present invention.
  • Fig. 4 shows (a) a cross-sectional view taken along line B-B in Fig. 3, (b) a cross-sectional view taken along line C-C in Fig. 3, and (c) a DD in Fig. 3.
  • D is a temperature curve diagram of the hot platen and paper sheet.
  • FIG. 5 is a perspective view of a hot platen according to a fourth embodiment of the present invention.
  • FIG. 6 is an explanatory plan view showing a modification of the fourth embodiment.
  • FIG. 7A and 7B relate to a hot platen according to a fifth embodiment of the present invention, in which FIG. 7A is a perspective view and FIG. 7B is a bottom view.
  • FIG. 8 relates to a hot platen according to a sixth embodiment of the present invention, in which (a) is a perspective view and (b) is a partially enlarged elevation view.
  • Fig. 9 is a system diagram of a conventional double feather.
  • FIG. 10 is a cross-sectional view of a conventional hot platen. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a heating plate 14 used in a double fuser, in which () is a perspective view, (b) is a bottom view, and (c) is a cross-sectional view taken along line AA in (a).
  • the heating plate 20 is formed in a thin plate shape having a thickness of about 50 mm, and is formed of a metal material such as SS, SUS, or FCD material.
  • SS material has particularly good heat transfer coefficient
  • SS and SUS material can be welded
  • SUS material has the advantage of not cracking.
  • a large number of steam insertion holes 21 arranged in parallel to a paper width direction b orthogonal to the paper sheet running direction a pass through the thin plate portion.
  • the steam through hole 21 has, for example, an outer diameter of about 30 mm.
  • One end of the steam passage hole 21 is connected to a branch pipe 25 branched in parallel from a steam supply pipe 24 connected to a steam supply source (not shown).
  • the other end of the steam through hole 21 is connected to a steam discharge pipe (not shown) through a branch pipe 26 on the steam discharge side.
  • Reinforcing ribs 2 2 project downward from the lower part of the heating plate 20.
  • the reinforcing ribs 22 are arranged in parallel with the paper running direction a and the paper width direction b so as to form a large number of lattices.
  • the length of the reinforcing rib 2 2 is uniform.
  • the length of the hot plate 20 in the paper width direction b is 1900 to 2600 mm, and the length of the paper running direction a is, for example, a plurality of grids each having a length of 800 mm.
  • a plurality of such hot plates 20 are arranged in the paper running direction a.
  • the length of the reinforcing rib 22 is appropriately set according to the amount of heat dissipated on the upper surface of the heating plate. For example, the length is set to about 100 mm, and the width is set to about 10 to 40 mm.
  • saturated steam is supplied from the steam supply source (not shown) to the steam through hole 21 through the steam supply pipe 24 and the branch pipe 25.
  • the heat plate 24 is heated to a predetermined temperature by flowing steam into the steam passage hole 21.
  • saturated steam having a normal pressure of 1.0 to 1.3 MPa and a temperature of 180 to 190 ° C. is supplied to the steam insertion hole 21.
  • a sheet of paper that travels in the direction of arrow a in contact with the upper surface 23 of the heating plate 20 (the one-sided corrugated paper k and the front liner paper n of FIGS. 9 and 10 are superposed) is heated and pressurized. (Pressurizing device 0 1 5 in FIG. 9) As a result, the paper sheet is pasted at the gluing section to produce corrugated paper d.
  • the heating plate 20 is a double fuser in which support brackets 27 are provided on both sides of the heating plate 20, and the support brackets 27 are arranged on both sides of the heating plate 20. Attached to main frame 28. In this way, a space in which no parts are installed is formed below the hot platen 20 and an environment in which air convection easily occurs. According to the present embodiment having such a configuration, by reducing the thickness of the heating plate 20, the temperature difference between the inner surface of the steam insertion hole 21 and the upper surface 23 of the heating plate where the paper sheet contacts is reduced. It is possible to give more heat to the paper sheet per unit area.
  • the shortage of heat during the high-speed running of the paper sheet is resolved, and the upper limit of the pasting speed is raised.
  • the thickness of the heating plate 20 can be reduced, the response speed required for changing the set temperature is improved 2 to 3 times compared to the conventional heating plate 0 14 shown in FIG.
  • the heat radiation area at the bottom of the heat plate is expanded by the reinforcing ribs 22 provided at the bottom of the hot platen, and the heat radiation at the lower part of the heat plate is increased by convection heat transfer in which air convects vertically along the reinforcing ribs 22 To do. Then, the temperature difference between the upper surface of the hot platen and the lower part of the hot platen in contact with the paper sheet is reduced, and the amount of thermal warp when the paper sheet is passed is reduced as compared with the case without the reinforcing rib 22. Therefore, it is possible to eliminate the warping of the corrugated paper due to the thermal warping of the hot platen 20.
  • the reinforcing ribs 22 are formed in a lattice shape with the vertical and horizontal sides facing the paper running direction a and the paper width direction b, the warp of the hot plate 20 in the paper running direction a and the paper width direction b can be further reduced. Can do.
  • the warpage in the paper width direction b of the double facer hot platen is 0.3 mm in the allowable limit value, but according to this embodiment, the warp of the hot platen 20 is sufficiently suppressed within the allowable limit value. It is possible.
  • the heating plate 20 by flowing steam in the same direction through the steam insertion hole 1, steam having a uniform temperature can be supplied to the heating plate 20 along the paper traveling direction a. Accordingly, the heating temperature of the hot platen 20 can be made uniform in the paper running direction.
  • FIG. 2 is a perspective view of the heating plate of the present embodiment
  • (b) is a diagram showing a temperature rise curve of the paper sheet when the paper sheet travels from the heating plate inlet to the heating plate outlet.
  • the steam supply piping 3 4 is connected to the steam vent 3 1 on the uppermost stream side in the paper travel direction a of the heat plate 30.
  • Each steam vent 3 1 is a U-shaped pipe outside the heat plate 30. By connecting via 3 5, each steam through hole 3 1 is connected in series.
  • U-shaped pipe 3 5 is flexible A hose can also be used. Steam supplied to the steam through hole 3 ⁇ and heated by the heating plate 30 is discharged from the steam discharge pipe 36.
  • the temperature rise curve of the paper sheet exhibits the maximum temperature rise gradient c at the entrance of the hot platen, thereby promoting the gelling of the glue and obtaining good adhesion.
  • steam is supplied to the steam passage hole 31 on the most upstream side in the paper running direction a, and the steam flows from the upstream side to the downstream side in the paper running direction a in the hot platen 30 (the hot platen 3 (From the 0 inlet to the outlet). Accordingly, since the paper sheet can absorb a large amount of heat from the high-temperature steam at the entrance of the hot platen 30, gelation of the glue is promoted and a good adhesive force can be obtained.
  • FIGS. Fig. 3 is a block diagram showing the double facer body of the present embodiment
  • Fig. 4 (a) is a BB cross-sectional view in Fig. 3
  • (b) is a CC cross-sectional view in Fig. 3
  • (c) Is a sectional view taken along the line DD in FIG. 3
  • (d) is a diagram showing temperature curves of the hot platen and the paper sheet from the hot platen inlet to the hot platen outlet.
  • the hot platen group 40 of the present embodiment is composed of a hot platen group having lattice-like reinforcing ribs similar to those of the first embodiment. From Fig. 4 (a) to Fig.
  • the heating plate group 40 is composed of three types of heating plates 40 0a in which the length of the reinforcing rib gradually decreases from the inlet to the outlet. , 40 b and 40 c. That is, the heating plate 40 a having the highest protruding height of the reinforcing rib 42 a is disposed at the inlet portion of the double facer 10, and the intermediate height of the heating plate 40 a in the paper running direction a is downstream.
  • a heating plate 40 b provided with a reinforcing rib 4 2 b having a thickness is arranged.
  • a heating plate 40 c having a reinforcing rib 42 c having the lowest projecting height is disposed downstream of the heating plate 40 b in the paper running direction a.
  • a large number of steam passage holes 41a, 41b or 41c are arranged in parallel in the paper width direction in the thin plate portion of each hot platen.
  • Each hot platen is supplied with saturated steam at the same pressure and temperature (usually 1.0 to 1.3 MPa, 180 to 190 ° C). Therefore, as shown in Fig. 4 (d), The temperature is constant from the inlet to the outlet. On the other hand, the temperature of the paper sheet is gradually heated by the heating plate from the inlet to the outlet of the heating plate, and the temperature rises. The amount of heat released to the paper sheet from the top of the hot plate increases as the temperature difference between the hot plate and the paper sheet increases. For this reason, the amount of heat released from the hot platen to the paper sheet increases as it approaches the inlet of the hot platen.
  • the heat sinks 4 O b and 40 c which are made shorter (lower) in order, are installed so that the amount of heat released from the upper surface of the heat plate to the paper sheet and the amount of heat released from the lower surface of the heat plate Can be balanced. As a result, the temperature difference between the upper and lower surfaces of the hot platen can be reduced and thermal warpage of the hot platen can be prevented.
  • FIG. 5 is a perspective view showing the heating board of this embodiment.
  • the heating plate 50 of the present embodiment is different from the first embodiment in that a pressure reducing valve 57 is provided in the steam supply pipe 54, and the other configuration is the same as that of the first embodiment. This is the same as in the first embodiment. That is, in the present embodiment, the saturated steam supplied from the steam supply pipe 54 is decompressed by the pressure reducing valve 57, so that the desired steam and the saturated steam having a desired temperature corresponding to the pressure can be obtained.
  • saturated steam adjusted to a desired temperature can be supplied to the steam passage hole 51.
  • saturated steam supplied from steam supply pipe 5 4 at 1.25 MPa and 190 ° C is passed through pressure reducing valve 5 7, saturated steam at 0.3 6 MPa and 140 ° C As shown in FIG.
  • saturated steam adjusted to a desired temperature is supplied to the steam through hole 51 by a simple configuration in which the pressure reducing valve 5 7 of the steam supply pipe 54 is interposed. it can.
  • a modification in which the present embodiment is applied to, for example, the third embodiment will be described below with reference to FIG.
  • FIG. 6 a branch that connects saturated steam supplied from the steam supply pipe 5 4 at a pressure of 1.25 MPa and a temperature of 190 ° C. to the heating platen 4 0 a, 40 b, or 40 c, respectively.
  • branch pipes 5 8 b and 5 8 c the saturated steam is changed to a different pressure by installing pressure reducing valves 5 7 b and 5 7 c, respectively.
  • the branch pipe 5 8 a does not include a pressure reducing valve, and passes saturated steam at a pressure that does not reduce pressure.
  • the pressure is changed to saturated steam at a pressure of 1.0 M Pa and a temperature of 180 ° C. by passing a pressure reducing valve 5 7 b.
  • the pressure 0.37 M Pa and the temperature 14 40 are provided by interposing a pressure reducing valve 57 c. Change to C saturated steam.
  • each branch pipe can supply saturated steam having a different pressure and temperature to each heating plate 40 through each header 43 and branch pipe 44. The steam supplied to each hot platen is discharged from each branch pipe 45 after being used for heating the paper sheet.
  • the temperature of the saturated steam is decreased from the inlet portion to the outlet portion of the hot plate by sequentially decreasing the pressure of the branch pipes 44 in units of the hot plate 40 arranged in parallel.
  • the heating temperature of the hot platen is not constant from the inlet part to the outlet part of the hot platen group.
  • a temperature curve with a decreasing slope can be formed.
  • the paper sheet at the entrance of the hot platen is heated at a high temperature, whereby gelation of the glue can be promoted and good adhesiveness can be imparted.
  • Fig. 4 (d) in order to make the temperature curve temperature gradient of the hot plate group high in the paper running direction and decrease toward the outlet, different pressures are applied to each hot plate 40.
  • FIG. 7 shows a heating plate of this embodiment, (a) is a perspective view thereof, and (b) is a bottom view.
  • the hot platen 60 according to the present embodiment is different from the first embodiment in that the reinforcing ribs 62 are arranged in parallel at intervals in the paper width direction b.
  • Other configurations are the first embodiment Is the same.
  • the reinforcing ribs 62 arranged at intervals in the paper width direction b are provided, the amount of heat released from the bottom surface of the heat plate is balanced with the amount of heat released from the top surface of the heat plate by the reinforcing ribs. Heating board 60 can be prevented from warping. Further, since the reinforcing rib 62 is disposed in the paper width direction b, the warp of the hot platen 60 in the paper width direction b can be suppressed by the reinforcing rib 62. Further, the configuration can be simplified as compared with the reinforcing ribs of the first embodiment, and the cost required for machining, welding, etc. during manufacturing can be reduced. The present embodiment is applicable to the manufacture of corrugated paper that can ignore the fine warpage in the paper running direction a.
  • FIG. 8 shows the heating plate of the present embodiment, where (a) is a perspective view and (b) is a partially enlarged elevation view.
  • the reinforcing ribs are eliminated and the hot platen 70 is formed in a thick plate shape.
  • the top of the heating plate 7 This is a balance between the amount of heat released by contact with paper sheet 3 and the amount of heat released by convective heat transfer on the bottom surface 7 7 of the heating plate.
  • the temperature difference between the upper and lower surfaces of the hot platen when the paper sheet is passed can be reduced, and the amount of thermal deformation of the hot platen 70 caused by the temperature difference can be reduced. Further, as in the above-described embodiment, since the reinforcing ribs for suppressing thermal deformation are eliminated and the hot platen 70 is composed of only a thick plate, machining of the hot platen 70 can be simplified. Industrial applicability
  • the heat plate in a double facer for producing corrugated pole paper, is made compact to improve the heat transfer efficiency for the paper sheet traveling on the top surface of the heat plate, and the temperature difference between the upper and lower surfaces of the heat plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)

Abstract

帯状の片面段ボール紙とライナ紙とを重ね合わせて熱盤上を走行させながら貼合して段ボール紙を製造するダブルフェーサにおいて、熱盤を薄肉化して熱盤上面を走行する紙シートに対する熱伝達効率を向上させ、熱盤の上下両面の温度差を減少させることにより、熱盤の熱変形を許容範囲に抑えるために、熱盤(20)の下面に放熱手段を設け、該熱盤の上面で片面段ボール紙(k)及びライナ紙(n)に放熱する放熱量と該熱盤の下面から放熱する放熱量とをバランスさせることにより、該熱盤の反りを許容範囲内に抑える。

Description

段ボール紙製造装置におけるダブルフエーサ及び該ダブルフエ一サの熱盤の加熱 制御方法 技術分野
本発明は、 コルゲ一夕と称される段ポール紙製造装置におけるダブルフエ一サ に関し、 詳しくは該ダブルフエ一ザの熱盤の紙シートに対する熱伝達率を向上さ せるとともに、 段ポール紙の品質低下につながる熱盤の熱変形を防止するように したものである。 背景技術
段ボール製造装置の製造ラインは、 一般的に、 段ポール紙の原料になる表 ·裏 ラィナ原紙や中芯原紙のロール原紙を装備するミルロールスタンドと、 コルゲー 夕に向けて連続的に段ポール原紙を供給するための紙継ぎ装置としてのスプライ サと、 該スプライサから繰り出された中芯紙を波形に成形して裏ライナと貼り合 おせることによつて片面段ポール紙を製造するシンダルフエ一サと、 該シンダル フエ一ザで製造された片面段ポール紙と表ライナとを貼り合わせて段ポール紙を 製造するダブルフエ一サとを含んで構成される。
さらにダブルフエ一ザの製造ライン下流側には、 段ボール紙の生産オーダに沿 つて所望位置に鄞線加工及び裁断加工を行なうスリッタスコアラと、 段ボール紙 の切断加工を行なうカツトオフ装置が設けられ、 カツトオフ装置の下流側には、 紙継ぎ装置やその下流側の製造ラインで発生した不良紙を除去する除去機が設け られている。
従来のダブルフエーサの一例を図 9を用いて説明する。 図 9において、 片面段 ポール紙 kは、 プレヒータ 0 1 1で予熱され、 糊付装置 0 1 2で中芯紙 cの段頂 部に生澱粉液が塗布された後、 ダブルフエーサ 0 1 0に送られる。 一方、 表ライ ナ紙 nは、 ミルロールスタンドに装着された口一ル原紙 rから繰り出され、 プレ ヒー夕 0 1 3で予熱された後、 ダブルフエーサ 0 1 0に送られる。 ダブルフエーサ 0 1 0は、 水平な加熱面を形成するため水平方向に並べられた 熱盤群 0 1 4を備え、 片面段ポール紙 kと表ライナ紙 nとが重ね合わされて該熱 盤群 0 1 4上を走行する。 熱盤群 0 1 4は、 図 1 0に示すように、 適宜の手段で 加熱用蒸気が供給される蒸気室 0 2 1を有し、 その上面 0 2 1 aは重ね合わされ た片面段ポール紙 k及び表ライナ紙 n (以下 「紙シート」 という。) に対する放 熱面を形成し、 紙シートは熱盤上面 0 2 1 aから受熱して加熱される。
図 9の熱盤群 0 1 4の上方及び該熱盤群 0 1 4の下流側には、 上ベルトコンペ ァ 0 1 6と下ベルトコンベア 0 1 7とが配設される。 熱盤群 0 1 4上方の上ベル トコンベア 0 1 6の背面側には、 エア加圧装置又はロール等によって片面段ポー ル紙 k及び表ライナ紙 nを上方から加圧する加圧装置 0 1 5が設けられている。 加圧装置 0 1 5及び熱盤群 0 1 4の下流側には下ベルトコンベア 0 1 7を背 面から支持する下ロール群 0 1 8と、 上ベルトコンベア 0 1 6の背面に配置され た上ロール群 0 1 9とが設けられ、 紙シ一トを上ロール群 0 1 9で加圧しながら 上下ベル卜コンベア 0 1 6及び 0 1 7で挟持し搬送する。
ダブルフエ一サ 0 1 0の熱盤群 0 1 4と加圧装置 0 1 5との間に導入された 紙シートは、 上ロール群 0 1 9で上方から加圧されながら熱盤群 0 1 4上を走行 し、 熱盤群 0 1 4から加熱される。 紙シートは、 熱盤群 0 1 4から加熱されるこ とにより、 片面段ポール紙 kの中芯紙 cの段頂部に塗布された生澱粉液が糊化さ れ、 その接着力で接着され、 段ポール紙 dが製造される。 なお、 紙シートは、 例 えば 3 0 O mZ分もの高速で走行するため、 ダブルフエーサの走行面を数秒で通 過する。
こうして製造された段ポール紙 dは上ベルトコンベア 0 1 6及び下ベルトコン ベア 0 1 7により上下から挟持されて搬送され、 後工程に搬出される。
前記熱盤群 0 1 4の蒸気室 0 2 1内に供給される加熱用蒸気は、 通常 1 . 0〜 1 . 3 MP aの飽和蒸気圧で、 1 8 0〜1 9 0 °Cの温度であり、 熱盤群 0 1 4上 の紙シートに対する供給熱量及び加圧力によって、 紙シートの接着力がコントロ ールされており、 上記供給熱量又は加圧力の不足は接着力の低下を招き、 逆に供 給熱量又は加圧力の過大は、 段つぶれ等の段ポール紙の品質の低下を招く。 ところで、 熱盤群 0 1 4は、 通紙する最大幅に相当する幅をもつ必要があるた め、 通常 1 9 0 0〜 2 6 0 0 mmの長さとなる。 また紙シートに均一に熱を供給 する必要があるため、 平面度が高精度 (0 . 1 mm以内) である必要がある。 ま た蒸気室 0 2 1は内部に供給する蒸気の圧力 (1 . 0〜1 . 3 MP a ) に耐える 強度が必要なので、 3 0 mm程度の厚肉の隔壁 (剛性) とする必要がある。 従つ て、 紙シートに対する熱伝導効率が良くない。 これを補うために、 従来の熱盤群 0 1 4は、 熱容量が極めて大きい構造をなし、 肉厚 1 5 0 mm程度の铸鉄で構成 されている。
このため従来の熱盤は、 紙シートの貼合速度や紙シートを構成する紙種の変ィ匕 に伴う急激な温度上昇又は温度下降の要求に対して、 応答性が悪いという問題が あった。 このため、 片面段ポ一ル紙 kと表ライナ紙 nの接着部が過乾燥状態又は 未乾燥状態となり、 その結果、 擬似接着等の接着不良が発生したり、 製造した後 の段ポール紙に反りが発生する等の問題があった。 また応答性が悪いと、 紙シー トの走行速度を高速化できず、 生産性が向上しないという問題があった。
そのため紙シートの加熱温度の調整は、 加圧装置 0 1 5の紙シートの対するカロ 圧力を変更して、 紙シートと熱盤上面との接触熱伝達率を調整することにより行 なわれる。 なお一般にダブルフエ一サ出口での段ポール紙 dの温度は 7 0〜1 4 0 °Cに設定される。
しかし、 加圧装置 0 1 5を構成する部材の紙幅方向の撓みの影響で紙シートに 紙幅方向に均一な加圧力を付与することが困難であり、 この圧力不均一は紙幅方 向の温度不均一となって、 紙シートに反りを発生させる原因となり、 生産される 段ポール紙の品質を低下させるという問題がある。
そこで、 特許文献 1 (実開平 2— 4 8 3 2 9号の明細書及び図面) には、 かか る問題に対処するため、 厚板の肉厚内に多数の熱媒体供給孔を並設することによ り、 熱媒体供給孔から通紙走行面までの隔壁の薄肉化を図り、 これによつて通紙 走行路側への熱放散効率を高めかつ均一化し、 かつ加熱調整を容易にした熱盤構 造が開示されている。 第 5図には厚板の下面側に複数の補強リブを付設した熱盤 構造が開示されている。
また特許文献 2 (米国特許第 5、 6 6 2、 7 6 5号公報)には、熱盤を薄肉化、 例えば肉厚 2 0〜5 0 mmにし、 熱盤に多数の蒸気揷通孔を並列に配置した熱盤 構造が開示されている。 このように熱盤を薄肉化することによって、 温度応答性 を高めるとともに、 熱盤と該熱盤を支持する部材とを熱的に遮断することによつ て、 該熱盤の上面と下面とを熱的に同一条件とし、 これによつて、 熱盤の反りを 防止する手段が開示されている。
特許文献 1には、 熱盤の肉厚を薄肉化し、 これによつて紙シートに対する熱放 散効率を高め、 熱盤の温度応答性を高めることが開示されている。 しかし、 熱盤 の上面は紙シートが走行し、 紙シートに放熱するため、 熱盤の上下面間では放熱 量が異なり、 温度差が生じる。 熱盤を薄肉化すると、 熱盤の上面と下面との温度 差により熱盤が変形しやすい。 熱盤が変形すると、 製造される段ポール紙も熱盤 表面に沿って変形し、 段ポール紙の品質低下につながる。 特許文献 1はかかる課 題に対する解決策を開示していない。
また特許文献 2には、 熱盤を薄肉化するとともに、 熱盤と該熱盤を支持する部 材とを熱的に遮断し、 該熱盤の上面と下面とを熱的に同一条件とすることによつ て、 熱盤の反りを防止する手段が開示されている。 しかし前述のように熱盤上面 は紙シートが接触して熱盤上面から熱を吸収するため、 熱盤を支持部材から熱的 に遮断するだけでは、熱盤の上面と下面を熱的に同一条件とすることはできない。 従つて、 特許文献 2の手段では熱盤の熱変形を解消することはできない。 発明の開示
本発明は、 かかる従来技術の課題に鑑み、 熱盤を薄肉化して熱盤上面を走行す る紙シートに対する熱伝達効率を向上させ、 かつ設定温度に対する応答性を向上 させるとともに、 熱盤の紙シート接触面 (上面) と反対面 (下面) との温度差を 減少させることにより、 熱盤の熱変形を許容範囲に抑え、 よって熱盤の熱変形に 起因した段ポール紙の上下方向の反りをなくすことを目的とする。
かかる目的を達成するため、 本発明のダブルフエーサの加熱方法は、 帯状の片面段ポール紙とライナ紙とを重ね合わせて熱盤上を走行させながら 貼合して段ポール紙を製造するダブルフエ一ザの加熱方法において、
前記熱盤の下面に放熱手段を設け、 該熱盤の上面で該片面段ポール紙及びライ ナ紙に放熱する放熱量と該熱盤の下面から放熱する放熱量とをバランスさせるこ とにより、 該熱盤の反りを許容範囲内に抑えるものである。
本発明方法は、 熱盤上面からの紙シートに対する放熱量を考慮し、 熱盤下面に 設けた放熱手段により、 熱盤下面の放熱量を熱盤上面の放熱量とバランスさせる ようにしたものである。 これによつて熱盤上下面の温度差を縮小し、 熱盤の熱変 形、 即ち上下方向への反りを防止するようにしたものである。
ダブルフエーサに片面段ポール紙及び表ライナ紙が上下に重ね合わされた状 態で搬入される紙シートは、 ダブルフエーサ入口部で最も温度が低く、 その後熱 盤上面に沿って走行しながら熱盤上面から受熱し、 熱盤出口部で最も温度が高い。 従って、 熱盤の温度を入口部から出口部まで一定としたとき、 紙シートと熱盤と の温度差は入口部が最も大きく、 熱盤出口部で最も小さくなる。 そのため熱盤上 面からの放熱量は、 熱盤入口部で最も大きく、 熱盤出口部に向かって減少勾配と なる。
従って、 本発明方法において、 好ましくは、 熱盤上面の放熱量に合わせて、 前 記放熱手段により熱盤下面から放熱する放熱量を熱盤入口部から熱盤出口部に 向かって放熱量を減少させる放熱量減少勾配とすれば、 熱盤上下面の放熱量をバ ランスさせることができる。 これによつて熱盤上下面の温度差を縮小し、 熱盤の 反りを防止できる。
この場合、 熱盤を板状に構成し、 熱盤に紙走行方向と交差する方向 (好ましく は直交する方向) に多数の蒸気揷通孔を並列に設け、 該蒸気揷通孔に蒸気を流す 構成とすれば、 熱盤上面を走行する紙シートに対する熱伝達効率を向上させ、 か つ設定温度の変更要求に対する応答性を向上させることができる。
尚、 紙シートが熱盤上を走行している間に、 片面段ボール紙の段頂部に付けら れた糊をゲルィヒ (糊化) して片面段ポール紙と表ライナ紙との接着性を良好にす る必要がある。紙シートは高速で走行するので、糊のゲルィ匕を確実にするために、 紙種によってはダブルフエ一サ入口部の熱盤温度を高くし、 熱盤温度を熱盤の入 口部から出口部に向かつて減少勾配に設定したほうが好ましい場合がある。 本発明方法において、 前記温度勾配を熱盤の入口部から出口部に向かって減少 勾配とする手段として、 板状に構成された熱盤に紙走行方向と交差する方向 (好 ましくは直交する方向) に多数の蒸気揷通孔を並設するとともに、 該蒸気揷通孔 に蒸気供給配管から減圧弁を介して飽和蒸気を供給し、 該蒸気揷通孔に供給され る飽和蒸気の圧力を熱盤の入口部から出口部に向かって前記並設された揷通孔毎 若しくは揷通孔群単位で順次圧力減少させることにより、 該飽和蒸気の温度を熱 盤の入口部から出口部に向かって下降勾配とすることができる。
かかる構成では、 前記並設された揷通孔毎若しくは揷通孔群単位で減圧弁を使 用することにより、 複数の蒸気供給源を必要とせず、 単一の蒸気供給源を用いて 簡単な配管構成で前記温度勾配を実現することができる。
紙シートの紙種 (坪量) 又は走行速度に応じて熱盤の紙シートに対する供給熱 量を変える必要がある。 従来は厚物シートの高速貼合条件に合わせて熱盤の供給 熱量を設定していたため、薄物シートの低速貼合時には熱量過多で過乾燥となり、 薄物シートに反り等が発生する不具合があった。 前記構成では、 紙シートの紙種 又は走行速度に応じて供給蒸発圧を変更できるので、 薄物シー卜の低速貼合時の 熱量過多を防止できる。
また前記本発明方法を実施するための第 1の本発明のダカレフエーサは、 帯状 の片面段ポール紙とライナ紙とを重ね合わせて熱盤上を走行させながら貼合して 段ボール紙を製造するダブルフエーサにおいて、 前記熱盤を板状に構成するとと もに、 該熱盤に紙走行方向と交差する方向 (好ましくは直交する方向) に多数の 蒸気揷通孔を並列に配設し、 前記熱盤の下面に放熱面積を拡大する (熱盤と同材 質かそれ以上の良熱伝導体で形成した) 補強リブ (リブ状放熱部) を突設してな る放熱手段を設け、 該熱盤の上面で該片面段ポール紙及びライナ紙に放熱する放 熱量と該熱盤の下面から放熱する放熱量とをバランスさせるように構成したもの である。
第 1の本発明装置の熱盤は、 板状に構成するとともに、 紙走行方向と交差する 方向 (好ましくは直交する方向) に多数の蒸気挿通孔を並列に配設してなるもの である。 かかる構成により、 高圧蒸気を貯留するための圧力容器を不要とし、 該 蒸気挿通孔を形成する隔壁の薄肉化を可能とし、 そのため熱盤自体の薄肉化が可 能となるものであるが、 一方では熱盤を薄肉化することによって、 熱盤の反りが 生じやすい。 そこで本発明では、 補強リブによって熱盤の反りの防止をはかると ともに、 放熱面積を拡大し、 補強リブの高さ方向に沿って空気の自然対流を起こ して放熱を行なう。 熱盤上面の紙シー卜との接触熱伝達による放熱量と熱盤下面 の自然対流による放熱量とをバランスさせることにより、 熱盤上下面間の温度差 を縮小し、 熱盤の熱変形を防止する。
前記第 1の本発明装置において、 多数の該補強リブを紙走行方向及び紙走行方 向と交差する方向 (例えば直交方向) に間隔を置いて (格子状又は菱形の組み合 わせ状に)並べることにより多数の格子を形成するように配設するようにするか、 あるいは多数の該補強リブを紙走行方向と交差する方向 (直交方向) に間隔を置 いて並設するようにしてもよい。
前者の構成では、 補強リブを格子状に形成するため、 放熱面積を拡大すること が容易であり、 放熱能力を向上できる。 また補強リブを紙走行方向及び紙走行方 向と交差する方向 (直交方向) に配置するため、 補強リブによって熱盤の紙走行 方向の熱変形及び熱盤の紙走行方向と交差する方向 (直交方向) の熱変形を抑え る作用をもつ。 このため製造する段ポール紙の紙走行方向及び紙走行方向と交差 する方向 (直交方向) の反りを防止できるので、 紙シートの高速走行が可能にな るとともに、 高品質な段ポール紙の製造が可能である。
一方後者の構成では、 段ボール紙の紙走行方向と交差する方向 (直交方向) の 段ボール紙の反りを防止でき、 また補強リブの構成を簡素化でき、 製造時の機械 加工、 溶接等に要するコストの低減が可能になる。 紙シートの走行方向に沿って 複数の熱盤群が並設されるので、 個々の熱盤の紙走行方向の熱変形は、 紙走行方 向と交差する方向 (直交方向) の熱盤の反りと比べてさほど段ポール紙の品質に 影響を与えない。 従って後者の構成は、 紙走行方向の微細な反りを無視できる段 ポール紙の製造に適用可能である。
また前述のように、 熱盤上面からの放熱量は、 熱盤の入口部から出口部に向か つて (階段状の) 減少勾配となる。 この熱盤上面の放熱量に合わせるため、 補強 リブの高さを熱盤の入口部から出口部に向かって徐々に小さくすることにより、 飽和蒸気の温度を熱盤の入口部から出口部に向かって連続的な下降勾配とするこ とができるとともに、 熱盤下面の放熱量を熱盤上面の放熱量とバランスさせるこ とができる。 この場合、 ダブルフエ一サに紙走行方向に沿って配設される複数個 の熱盤を例えば 3〜4群に分割し、 紙シ一卜への熱供給量の大きい上流側第 1群 の熱盤の補強リブの突設高さを一番高くし、 第 2群、 第 3群、 …と下流側に行く に従つて補強リブの突設高さを低くするようにして飽和蒸気の温度を熱盤の入口 部から出口部に向かって階段状の下降勾配とすることができる。
また蒸気揷通孔に蒸気供給配管から減圧弁を介して飽和蒸気を供給し、 該蒸気 揷通孔に供給される飽和蒸気を熱盤の入口部から出口部に向かって減少勾配とす ることにより、 該飽和蒸気の温度を熱盤の入口部から出口部に向かって下降勾配 となるように構成することができる。
また第 1の本発明装置では、 蒸気供給配管に蒸気揷通孔を並列に接続して該蒸 気揷通孔に同一方向の蒸気を流すように構成してもよく、 あるいは熱盤の紙走行 方向最上流側の蒸気揷通孔に蒸気供給配管を接続し、 各該蒸気揷通孔を熱盤の外 側で U字状の連通管を介して直列に接続するようにしてもよい。
前者の構成では、 各蒸気揷通孔に蒸気揷通孔を同一方向に流すようにしている ので、 紙走行方向に配置された熱盤に均一な温度の蒸気を供給できる。 従って熱 盤の加熱温度を紙走行方向に亘って均一化できる。
後者の構成では、 蒸気が熱盤内で紙走行方向上流側から下流側に向かって流れ るので、 紙シートが熱盤の入口部で高温蒸気から多量の熱量を吸収できるととも に、 飽和蒸気の温度を熱盤の入口部から出口部に向かって階段状の下降勾配とす ることができる。 従って、 糊のゲル化が促進され、 良好な接着力を得ることがで きる。 また蒸気供給配管から各蒸気揷通孔に接続される枝管を分岐させる必要が なく、 蒸気配管の構成が簡単になる長所がある。
次に第 2の本発明のダブルフエーサは、 帯状の片面段ポール紙とライナ紙とを 重ね合わせて熱盤上を走行させながら貼合して段ポール紙を製造するダブルフエ ーサにおいて、 前記熱盤を板状に構成するとともに、 該熱盤に紙走行方向と交差 する方向 (好ましくは直交する方向) に多数の蒸気揷通孔を並列に配設し、 該蒸 気揷通孔の上側の熱盤肉厚に対して該蒸気揷通孔の下側の熱盤肉厚を大きく設定 することにより、 該熱盤の上面で前記片面段ボール紙及びライナ紙に放熱する放 熱量と該熱盤の下面から放熱する放熱量とをバランスさせるように構成したもの である。
この構成では、 特別に放熱手段を設ける必要がない。 蒸気揷通孔からの熱盤の 上下面までの肉厚に差を付けるだけでよい。 即ち蒸気揷通孔から熱盤下面までの 肉厚を大きくとることにより、 蒸気揷通孔から熱盤下面までの温度差が大きくな る。 これによつて、 紙シート通紙時の熱盤上下面の温度差を縮小し、 該温度差に 起因する熱変形量を減少できる。
第 2の本発明装置によれば、 熱変形抑制用の補強リブを設けないため、 機械加 ェを簡素化できる。 なお熱盤上面の放熱量は、 紙シートの走行速度又は紙種 (坪 量) に応じて異なるので、 蒸気揷通孔から熱盤下面までの肉厚は、 紙シートの走 行速度又は紙種 (坪量) に応じて適宜設定する。
運転中におけるダブルフエーサ熱盤の上下方向の反りの許容限界値は通常士 0 . 3 mmである。 この許容限界値に抑えるためには、 熱盤の上面と下面との温 度差を 1 5 °C以下に抑えればよい。 前記第 1の本発明装置又は第 2の本発明装置 により、 熱盤上下面間の温度差を 1 5 °C以下に抑えることが可能になる。
本発明方法によれば、 前記熱盤の下面に放熱手段を設け、 該熱盤の上面で該片 面段ボール紙及びライナ紙に放熱する放熱量と該熱盤の下面から放熱する放熱量 とをバランスさせることにより、 該熱盤の反りを許容範囲内に抑えることができ る。 これによつて製造する段ポール紙の反りをなくし、 高品質の段ポール紙を製 造できる。
また第 1及び第 2の本発明装置によれば、 熱盤を板状に構成するとともに、 該 熱盤に紙走行方向と交差する方向 (好ましくは直交する方向) に多数の蒸気挿通 孔を並設することにより、 熱盤の薄肉化が可能になるため、 蒸気揷通孔と熱盤上 面との温度差が減少し、 単位面積当りの紙シ一トにより多くの熱量を与えること ができる。 従って厚物紙シートの高速走行時の熱量不足が解消され、 貼合速度の 上限値が従来より引き上げられる。 また熱盤の薄肉化が可能になるため、 設定温 度の変更に要する応答速度が向上する。
また第 1の本発明装置においては、 熱盤の下面に設けられた補強リブの効果に より、 第 2の本発明装置においては、 蒸気揷通孔からの熱盤上下面までの厚さに 差を設けることにより、 熱盤上下面の放熱量をバランスさせ、 熱盤上下面の温度 差を減少させ、 もって紙シート通紙時の熱盤の変形を防止できる。 図面の簡単な説明
第 1図は、 本発明の第 1実施形態の熱盤に係り、 ) は斜視図、 (b) は底面 図、 (c ) は (a ) 中の A— A線に沿う断面図である。
第 2図は、 (a ) は本発明の第 2実施形態の熱盤の斜視図、 (b) は紙シートの 熱盤上の温度曲線を示す線図である。
第 3図は、 本発明の第 3実施形態のダブルフエーサ本体の構成図である。 第 4図は、 (a ) は図 3中の B— B線に沿う断面図、 (b) は図 3中の C— C線 に沿う断面図、 (c ) は図 3中の D— D線に沿う断面図、 (d ) は熱盤及び紙シー トの温度曲線図である。
第 5図は、 本発明の第 4実施形態の熱盤の斜視図である。
第 6図は、 前記第 4実施形態の変形例を示す平面視説明図である。
第 7図は、 本発明の第 5実施形態の熱盤に係り、 (a ) は斜視図、 (b ) は底面 図である。
第 8図は、 本発明の第 6実施形態の熱盤に係り、 (a) は斜視図、 (b) は一部 拡大立面図である。
第 9図は、 従来のダブルフエ一サの系統図である。
第 1 0図は、 従来の熱盤の断面図である。 発明を実施するための最良の形態
以下、 本発明を図に示した実施形態を用いて詳細に説明する。 但し、 この実施 形態に記載されている構成部品の寸法、 材質、 形状、 その相対配置などは特に特 定的な記載がない限り、 この発明をそれのみに限定する趣旨ではない。
(実施形態 1 )
本発明の第 1実施形態を図 1に基づいて説明する。 図 1は、 ダブルフエ一サに 用いられる熱盤 1 4を示し、 ) は斜視図、 (b) は底面図、 (c ) は (a) 中の A— A線に沿う断面図である。 図 1において、 熱盤 2 0は、 厚さ 5 0 mm程度の 薄板状に構成され、 S S、 S U S、 F C D材等の金属材料で構成されている。 S S材は熱伝達率が特に良好であり、 S S及び S U S材は溶接が可能であり、 S U S材は鑌びないという長所をもつ。 該薄板部に紙シート走行方向 aと直交する紙幅方向 bに平行に配列された多 数の蒸気挿通孔 2 1が貫通している。 蒸気揷通孔 2 1は例えば外径 3 0 mm程度 の大きさを有する。 該蒸気揷通孔 2 1の一端は、 図示しない蒸気供給源に接続さ れた蒸気供給配管 2 4から並列に分岐した枝管 2 5が接続されている。 蒸気揷通 孔 2 1の他端は蒸気排出側の枝管 2 6を介して図示しない蒸気排出配管に接続さ れている。
熱盤 2 0の下部には補強リブ 2 2が下方に突設されている。 補強リブ 2 2は、 紙走行方向 a及び紙幅方向 bに平行に間隔を置いて並べられることにより多数の 格子を形成している。 補強リブ 2 2の長さは均一である。 熱盤 2 0の紙幅方向 b の長さは 1 9 0 0〜2 6 0 0 mmであり、 紙走行方向 aの長さは、 例えば 1辺が 8 0 0 mmの格子が複数形成される。 かかる大きさの熱盤 2 0が紙走行方向 aに 複数個並べられている。 また補強リブ 2 2の長さは、 熱盤上面の放熱量によって 適宜設定されるが、 例えば 1 0 0 mm程度とし、 幅は 1 0〜4 0 mm程度に設定 される。
かかる構成において、 図示しない蒸気供給源から蒸気供給配管 2 4及び枝管 2 5を介して蒸気揷通孔 2 1に飽和蒸気が供給される。 蒸気揷通孔 2 1に蒸気を流 すことによって熱盤 2 4が所定温度に加熱される。 前述のように通常圧力 1 . 0 〜 1 . 3 M P a及び温度 1 8 0〜 1 9 0 °Cの飽和蒸気が蒸気挿通孔 2 1に供給さ れる。 熱盤 2 0の上面 2 3に接して矢印 a方向に走行する紙シート (図 9及び図 1 0の片面段ボール紙 kと表ライナ紙 nとが重ね合わされたもの) は加熱され、 加圧装置 (図 9の加圧装置 0 1 5 ) によって加圧される。 これによつて紙シート は糊付け部で貼合されて段ポール紙 dが製造される。
なお図 1 ( c ) に示すように、 熱盤 2 0は、 その両側部に支持ブラケット 2 7 が突設され、 該支持ブラケット 2 7が熱盤 2 0の両側に配置されたダブルフエ一 サの主フレーム 2 8に取り付けられている。 このように熱盤 2 0の下方は何の部 材も設置されない空間が形成され、空気の対流が起こりやすい環境となっている。 かかる構成の本実施形態によれば、 熱盤 2 0を薄肉化したことにより、 蒸気挿 通孔 2 1の内面と紙シ一卜が接触する熱盤上面 2 3との温度差が減少し、 単位面 積当りの紙シートにより多くの熱量を与えることが可能になる。 また蒸気揷通孔 2 1は熱盤 2 0を貫通する方式であるため、 孔開け加工が容易であるとともに、 従来のように蒸気を容器内に溜める方式と比較して凝縮水が蒸気揷通孔 2 1内に 残らず、 蒸気の凝縮潜熱による熱伝達率が向上する。
従って紙シートの高速走行時の熱量不足が解消され、 貼合速度の上限値が従来 より引き上げられる。 また熱盤 2 0の薄肉化が可能になるため、 設定温度の変更 に要する応答速度が図 1 0に示す従来の熱盤 0 1 4と比較して 2〜 3倍に向上す る。
また熱盤下部に設けた補強リブ 2 2によって、 熱盤下部の放熱面積が拡大し、 空気が補強リブ 2 2に沿って上下方向に対流する対流熱伝達によって、 熱盤下部 の放熱量が増大する。 そして紙シ一トが接触する熱盤上面と熱盤下部との温度差 が縮小され、 補強リブ 2 2がない場合と比較して紙シートの通紙時の熱反り量が 減少する。 そのため熱盤 2 0の熱反りに起因した段ボール紙の反りを解消するこ とができる。
また補強リブ 2 2を縦横辺が紙走行方向 a及び紙幅方向 bに向いた格子状に形 成されているため、 熱盤 2 0の紙走行方向 a及び紙幅方向 bの反りをさらに減少 させることができる。 前述のようにダブルフエーサ熱盤の紙幅方向 bの反りは土 0 . 3 mmが許容限界値であるが、 本実施形態によれば、 熱盤 2 0の反りを該許 容限界値内に十分抑えることが可能である。
また本実施形態では、 蒸気挿通孔 1内を同一方向に蒸気を流すことにより、 熱 盤 2 0に紙走行方向 aに沿って均一な温度の蒸気を供給できる。 従って熱盤 2 0 の加熱温度を紙走行方向に亘つて均一化できる。
(実施形態 2 )
次に本発明の第 2実施形態を図 2に基づいて説明する。 図 2の (a ) は本実施 形態の熱盤の斜視図、 (b)は紙シートが熱盤入口部から熱盤出口部に走行すると きの紙シートの温度上昇曲線を示す線図である。 図 2 ( a) において、 蒸気揷通 孔 3 1及び補強リブ 3 2の構成は前記第 1実施形態と同一である。 蒸気供給配管 3 4は、 熱盤 3 0の紙走行方向 aの最上流側の蒸気揷通孔 3 1に接続され、 各蒸 気揷通孔 3 1は熱盤 3 0の外側で U字配管 3 5を介して接続することにより、 各 蒸気揷通孔 3 1を直列に接続してなるものである。 なお U字配管 3 5は可撓性の ホースも使用可能である。 蒸気揷通孔 3 Γに供給されて熱盤 3 0の加熱供給され た蒸気は蒸気排出配管 3 6から排出される。
図 2 ( b ) に示すように、 紙シートの温度上昇曲線は、 熱盤入口部で最大の温 度上昇勾配 cを呈することにより、 糊のゲル化を促進し、 良好な接着性を得るこ とができる。 本実施形態では、 蒸気を紙走行方向 a最上流側の蒸気揷通孔 3 1に 供給し、 蒸気が熱盤 3 0内で紙走行方向 aの上流側から下流側に向かって (熱盤 3 0の入口部から出口部に向かって) 流れるようにしている。 従って、 紙シート が熱盤 3 0の入口部で高温蒸気から多量の熱量を吸収できるので、 糊のゲル化が 促進され、 良好な接着力を得ることができる。
また蒸気供給配管 3 4から各蒸気揷通孔 3 1に接続させるための枝管やヘッダ 等を必要とせず、 蒸気配管の構成が簡素化できる。 その他熱盤 3 0の薄肉化によ る作用効果及び補強リブ 3 2による作用効果は、前記第 1実施形態と同一である。 (実施形態 3 )
次に本発明の第 3実施形態を図 3及び図 4に基づいて説明する。 図 3は、 本実 施形態のダブルフエーサ本体を示す構成図、 図 4の (a ) は図 3中の B— B断面 図、 (b ) は図 3中の C— C断面図、 (c ) は図 3中の D— D断面図、 (d ) は熱盤 入口部から熱盤出口部までの熱盤と紙シートの温度曲線を示す線図である。 図 3において、 本実施形態の熱盤群 4 0は、 前記第 1実施形態と同様の格子状 の補強リブを備えた熱盤群で構成されている。 図 4 ( a ) から図 4 ( c ) におい て、 図該熱盤群 4 0は、 入口部から出口部に向かって徐々に補強リブの長さが短 くなる 3種の熱盤 4 0 a、 4 0 b及び 4 0 cが配設されている。 即ちダブルフエ ーサ 1 0の入口部には最も補強リブ 4 2 aの突設高さが高い熱盤 4 0 aが配置さ れ、 熱盤 4 0 aの紙走行方向 a下流側に中間の高さを有する補強リブ 4 2 bを備 えた熱盤 4 0 bが配置される。 熱盤 4 0 bの紙走行方向 a下流側に突設高さの最 も低い長さの補強リブ 4 2 cを備えた熱盤 4 0 cが配置される。 なお各熱盤の薄 板部には、 それぞれ多数の蒸気揷通孔 4 1 a、 4 1 b又は 4 1 cが紙幅方向に平 行に配設されている。
各熱盤には同一圧力及び同一温度の飽和蒸気 (通常 1 . 0〜1 . 3 MP a、 1 8 0〜1 9 0 °C) が供給される。 従って、 図 4 ( d ) に示すように、 熱盤の加熱 温度は入口部から出口部まで一定である。 一方紙シートの温度は熱盤の入口部か ら出口部に沿って熱盤により徐々に加熱されて、 温度上昇する。 熱盤上面から紙 シ一トに供給する放熱量は、熱盤と紙シートとの温度差が大きいほど大きくなる。 そのため、 熱盤から紙シートに供給する放熱量は、 熱盤入口部に近いほど大きく なる。
従って、 本実施形態では、 熱盤の上下面の放熱量をバランスさせるために、 熱 盤入口部に設けられた熱盤 4 0 aの補強リブ 4 2 aの突設高さを高くして放熱面 積を増加させ、 これによつて、 熱盤下面からの放熱量を増加させている。 なお図 4 ( d ) に示すように、 熱盤 4 0 cが配置された熱盤出口部の紙シート温度は約 1 4 0 °Cに達している。
このように本実施形態によれば、 熱盤入口部に近いほど補強リブ 4 2の突設高 さを高くした熱盤を設置して放熱量を増加させ、 熱盤出口部に向かって補強リブ の突設高さを順に短く (低く) した熱盤 4 O b及び 4 0 cを設置しているので、 熱盤上面から紙シ一トに供給する放熱量と熱盤下面の放熱量とをバランスさせる ことができる。 これによつて、 熱盤の上下面の温度差を縮小し、 熱盤の熱反りを 防止することができる。
(実施形態 4 )
次に本発明の第 4実施形態を図 5に基づいて説明する。 図 5は本実施形態の熱 盤を示す斜視図である。 図 5において、 本実施形態の熱盤 5 0は、 前記第 1実施 形態と比べて、 蒸気供給配管 5 4に減圧弁 5 7が介設されている点が異なり、 そ の他の構成は第 1実施形態と同一である。 即ち、 本実施形態では、 蒸気供給配管 5 4から供給される飽和蒸気を減圧弁 5 7によって減圧することにより、 所望の 圧力及び該圧力に対応した所望の温度の飽和蒸気とすることができる。
これによつて所望の温度に調整した飽和蒸気を蒸気揷通孔 5 1に供給すること ができる。 例えば蒸気供給配管 5 4から 1 . 2 5 M P a、 1 9 0 °Cで供給される 飽和蒸気を減圧弁 5 7を通すことにより、 0 . 3 6 M P a、 1 4 0 °Cの飽和蒸気 として蒸気揷通孔 5 1に流すことができる。
このように本実施形態によれば、 蒸気供給配管 5 4の減圧弁 5 7を介設すると いう簡単な構成により、 所望の温度に調整した飽和蒸気を蒸気揷通孔 5 1に供給 できる。 本実施形態を例えば前記第 3実施形態に適用した変形例を図 6を参照し て以下説明する。 図 6において、 蒸気供給配管 5 4から圧力 1 . 2 5 MP a及び 温度 1 9 0 °Cで供給される飽和蒸気を、 それぞれ熱盤 4 0 a、 4 0 b又は 4 0 c に連通する分岐管 5 8 a、 5 8 b又は 5 8 cに分岐させる。 分岐管 5 8 b及び 5 8 cでは、 飽和蒸気を減圧弁 5 7 b及び 5 7 cを介装することによって、 それぞ れ異なる圧力に変更する。
一方分岐管 5 8 aでは減圧弁を介設せず、 減圧しない圧力で飽和蒸気を通す。 分岐管 5 8 bでは減圧弁 5 7 bを通すことによって、 圧力 1 . 0 M P a及び温度 1 8 0 °Cの飽和蒸気に変える。 分岐管 5 8 cでは、 減圧弁 5 7 cを介装すること によって、 圧力 0 . 3 6 M P a及び温度 1 4 0。Cの飽和蒸気に変える。 その後各 分岐管では各ヘッダ 4 3及び枝管 4 4を通して、 各熱盤 4 0に各々異なる圧力及 び温度の飽和蒸気を供給することができる。 各熱盤に供給された蒸気は紙シー卜 の加熱に供した後、 各枝管 4 5から排出される。
これによつて、 前記並設された熱盤 4 0単位で枝管 4 4群を順次圧力減少させ ることにより、 該飽和蒸気の温度を熱盤の入口部から出口部に向かって下降勾配 とすることができ、 その結果熱盤群の加熱温度を、 図 4 ( d) のように熱盤群の 入口部から出口部まで熱盤の加熱温度が一定ではなく、 入口部が高く出口部に向 かって減少勾配の温度曲線とすることができる。
このような温度勾配とすることによって、 熱盤入口部での紙シートを高温で加 熱することにより、糊のゲル化を促進して良好な接着性を付与することができる。 なおこのような図 4 ( d) のように熱盤群の紙走行方向入口部が高く出口部に向 かって減少勾配の温度曲線温度勾配とするには、 各熱盤 4 0に各々異なる圧力の 飽和蒸気を供給するだけではなく各熱盤に設けられた補強リブ 4 2 a、 4 2 b及 び 4 2 cの長さを該温度勾配に合わせて変えるのが好ましい。
(実施形態 5 )
次に本発明の第 5実施形態を図 7に基づいて説明する、 図 7は本実施形態の熱 盤を示し、 (a ) はその斜視図、 (b ) は底面図である。 図 7において、 本実施形 態の熱盤 6 0は、 前記第 1実施形態と比較して、 補強リブ 6 2を紙幅方向 bに間 隔をおいて並列に配置した構成とした点で異なる。 その他の構成は第 1実施形態 と同一である。
本実施形態においては、 紙幅方向 bに間隔をおいて配置された補強リブ 6 2を 設けているので、 該補強リブにより熱盤下面の放熱量を熱盤上面の放熱量とバラ ンスさせることにより、 熱盤 6 0の反りを防止できる。 また補強リブ 6 2が紙幅 方向 bに配設されているので、 熱盤 6 0の紙幅方向 bの反りを補強リブ 6 2で抑 えることができる。また前記第 1実施形態の補強リブと比べて構成を簡素化でき、 製造時の機械加工、 溶接等に要するコストの低減が可能になる。 本実施形態は、 紙走行方向 aの微細な反りを無視できる段ボール紙の製造に適用可能である。
(実施形態 6 )
次に本発明の第 6実施形態を図 8に基づいて説明する。 図 8は本実施形態の熱 盤を示し、 (a ) は斜視図、 (b ) は一部拡大立面図である。 図 8において、 本実 施形態は、 補強リブをなくし、 熱盤 7 0を厚板形状に形成したものである。 そし て蒸気揷通孔 7 1と熱盤上面 7 3までの肉厚 eに対して蒸気揷通孔 7 1と熱盤下 面 7 7までの肉厚 gを大きくしたことにより、 熱盤上面 7 3の紙シート接触によ る放熱量と熱盤下面 7 7の対流熱伝達による放熱量とをバランスさせたものであ る。
蒸気揷通孔 7 1と熱盤上面 7 3までの肉厚 e、 蒸気揷通孔 7 1の径 f及び蒸気 揷通孔 7 1から熱盤下面 7 7までの肉厚 gは、 紙シートの走行速度又は紙種に応 じて異なる。 これらの寸法は、 例えば e = 1 0 mm、 f = 3 0〜5 0 mm、 g = 8 0〜2 0 0 mmとする。
本実施形態によれば、 紙シート通紙時の熱盤上下面の温度差を縮小し、 温度差 に起因する熱盤 7 0の熱変形量を減少させることができる。 また前記実施形態に ように、 熱変形抑制用の補強リブを無くし、 熱盤 7 0を厚板のみで構成している ので、 熱盤 7 0の機械加工を簡素化できる。 産業上の利用可能性
本発明によれば、 段ポール紙を製造するダブルフエーサにおいて、 熱盤をコン パクトにして熱盤上面を走行する紙シートに対する熱伝達効率を向上させるとと もに、 熱盤の上下両面の温度差を減少させることにより、 熱盤の熱変形を許容範 囲に抑え、よって熱盤の熱変形に起因した段ポール紙の上下方向の反りをなくし、 品質向上を図ることができる b

Claims

請 求 の 範 囲
1 . 帯状の片面段ポール紙とライナ紙とを重ね合わせて熱盤上を走行させなが ら貼合して段ボール紙を製造するダブルフエ一ザの加熱方法において、 前記熱盤 の下面に放熱手段を設け、 該熱盤の上面で該片面段ポール紙及びライナ紙に放熱 する放熱量と該熱盤の下面から放熱する放熱量とをバランスさせることにより、 該熱盤の反りを許容範囲内に抑えることを特徴とするダブルフエ一サの熱盤の加 熱制御方法
2 . 前記熱盤の入口部から出口部に向かって減少勾配となる前記熱盤上面の放 熱量に合わせて該熱盤下面の放熱量が該熱盤の入口部から出口部に向かって連続 的若しくは段階的に減少する、 放熱量減少勾配とすることを特徴とする請求項 1 に記載のダブルフエ一サの熱盤の加熱制御方法
3 . 板状に構成された前記熱盤に紙走行方向と交差する方向、 好ましくは直交 する方向に多数の蒸気揷通孔を並列に設けるとともに、 該蒸気揷通孔に蒸気供給 配管から減圧弁を介して飽和蒸気を供給し、 該蒸気揷通孔に供給される飽和蒸気 の圧力を熱盤の入口部から出口部に向かつて連続的若しくは段階的に減少させる ることにより、 該飽和蒸気の温度を該熱盤の入口部から出口部に向かって下降さ せることを特徴とする請求項 2に記載のダブルフエ一サの熱盤の加熱制御方法
4. 帯状の片面段ポール紙とライナ紙とを重ね合わせて熱盤上を走行させなが ら貼合して段ポール紙を製造するダブルフエーサにおいて、
前記熱盤を板状に構成するとともに、 該熱盤に紙走行方向と交差する方向、 好 ましくは直交する方向に多数の蒸気揷通孔を並設し、 前記熱盤の下面に放熱面積 を拡大する補強リブを突設してなる放熱手段を設け、 該熱盤の上面で該片面段ポ —ル紙及びライナ紙に放熱する放熱量と該熱盤の下面から放熱する放熱量とをバ ランスさせるように構成したことを特徴とするダブルフエ一サ。
5 . 多数の前記補強リブを紙走行方向及び紙走行方向と交差する方向に間隔を 置いて並設して格子又は菱形の組み合わせを形成するように配設したことを特徴 とする請求項 4に記載のダブルフエーサ。
6 . 紙走行方向と交差する方向に延在させてなる多数の前記補強リブを間隔を 置いて並列配置したことを特徴とする請求項 4に記載のダブルフエーサ。
7 . 前記補強リブの突設高さを熱盤の入口部から出口部に向かつて徐々に小さ くしたことを特徴とする請求項 4に記載のダブルフエーサ。
8 . 前記蒸気揷通孔に蒸気供給配管から減圧弁を介して飽和蒸気を供給し、 該 蒸気揷通孔に供給される飽和蒸気の圧力を熱盤の入口部から出口部に向かって階 段状若しくは連続的に減少する減少勾配とすることにより、 該飽和蒸気の温度を 該熱盤の入口部から出口部に向かって下降するように構成したことを特徴とする 請求項 4に記載のダブルフヱ一サ。
9 . 蒸気供給配管に前記蒸気挿通孔を並列に接続して該蒸気揷通孔に同一方向 の蒸気を流すように構成したことを特徴とする請求項 4又は 8に記載のダブルフ エーサ。
1 0 . 前記熱盤の紙走行方向最上流側の蒸気揷通孔に蒸気供給配管を接続し、 各蒸気揷通孔を該熱盤の外側で連通管を介して直列に接続したことを特徴とする 請求項 4に記載のダブルフエ一サ。
1 1 . 帯状の片面段ポール紙とライナ紙とを重ね合わせて熱盤上を走行させな がら貼合して段ポール紙を製造するダブルフエーサにおいて、 前記熱盤を板状に 構成するとともに、 該熱盤に紙走行方向と交差する方向に多数の蒸気揷通孔を並 列に配設し、 該蒸気挿通孔の上側の熱盤肉厚に対して該蒸気揷通孔の下側の熱盤 肉厚を大きく設定することにより、 該熱盤の上面で前記片面段ポール紙及びライ ナ紙に放熱する放熱量と該熱盤の下面から放熱する放熱量とをバランスさせるよ うに構成したことを特徴とするダブルフエ一サ。
PCT/JP2008/052210 2007-02-19 2008-02-05 段ボール紙製造装置におけるダブルフェーサ及び該ダブルフェーサの熱盤の加熱制御方法 WO2008102662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08704530A EP2058117A1 (en) 2007-02-19 2008-02-05 Double facer in corrugated board manufacturing apparatus, and heating control method for hot plate of the double facer
US12/308,245 US20100186896A1 (en) 2007-02-19 2008-02-05 Double facer in apparatus for manufacturing corrugated board and method of controlling heating of the double facer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007038701A JP2008200961A (ja) 2007-02-19 2007-02-19 ダブルフェーサ及びその加熱方法
JP2007-038701 2007-02-19

Publications (1)

Publication Number Publication Date
WO2008102662A1 true WO2008102662A1 (ja) 2008-08-28

Family

ID=39709939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052210 WO2008102662A1 (ja) 2007-02-19 2008-02-05 段ボール紙製造装置におけるダブルフェーサ及び該ダブルフェーサの熱盤の加熱制御方法

Country Status (6)

Country Link
US (1) US20100186896A1 (ja)
EP (1) EP2058117A1 (ja)
JP (1) JP2008200961A (ja)
KR (1) KR20090040263A (ja)
TW (1) TW200927475A (ja)
WO (1) WO2008102662A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061841A1 (ja) * 2008-11-25 2010-06-03 三菱重工業株式会社 両面段ボールシート製造用熱板及びダブルフェーサ
CN113954495A (zh) * 2021-10-25 2022-01-21 盐城吉研智能科技有限公司 一种泡沫铝多层复合板的输送系统及生产工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403571B1 (it) * 2011-02-02 2013-10-31 Fosber Spa Dispositivo per la produzione di cartone ondulato e metodo di recupero delle condense
CN104108203B (zh) * 2014-07-08 2017-01-18 浙江恒特机械有限公司 一种纸板成型的蒸汽加热定型装置
USD873073S1 (en) 2018-01-31 2020-01-21 Samsung Electronics Co., Ltd. Door for oven
KR102253383B1 (ko) 2018-10-25 2021-05-18 주식회사 하이낸드 오실레이팅 히트파이프를 갖는 코루게이터 및 그 제조방법
TWI770492B (zh) * 2020-04-08 2022-07-11 全利機械股份有限公司 紙管生成機台
CN112874020A (zh) * 2021-01-12 2021-06-01 浙江邦的科技有限公司 一种生产瓦楞纸的蒸汽喷淋装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2487647A (en) * 1945-11-27 1949-11-08 Samuel M Langston Co Heating system for corrugating machines
JPH01269526A (ja) * 1988-04-20 1989-10-27 Mitsubishi Heavy Ind Ltd ダブルフェーサ
JPH0248329A (ja) 1988-08-10 1990-02-19 Daifuku Co Ltd 仕分け設備
JPH0248329U (ja) * 1988-09-29 1990-04-04
US5183525A (en) * 1990-05-24 1993-02-02 United Container Machinery Group, Inc. Heater for a double facing corrugating machine
JPH05177750A (ja) * 1992-01-06 1993-07-20 Mitsubishi Heavy Ind Ltd ダブルフェーサ熱板
US5662765A (en) 1994-10-18 1997-09-02 Bhs Corrugated Maschinen- Und Anlagenbau Gmbh Heating unit for a corrugated-board manufacturing plant
JP2002096410A (ja) * 2000-09-22 2002-04-02 Mitsubishi Heavy Ind Ltd 段ボールシート製造システムのダブルフェーサ
WO2006064818A1 (ja) * 2004-12-14 2006-06-22 Uetake, Takashi コルゲートマシン及びダブルフェーサ熱板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492305B2 (ja) * 2000-09-22 2004-02-03 三菱重工業株式会社 貼合シート材の製造システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2487647A (en) * 1945-11-27 1949-11-08 Samuel M Langston Co Heating system for corrugating machines
JPH01269526A (ja) * 1988-04-20 1989-10-27 Mitsubishi Heavy Ind Ltd ダブルフェーサ
JPH0248329A (ja) 1988-08-10 1990-02-19 Daifuku Co Ltd 仕分け設備
JPH0248329U (ja) * 1988-09-29 1990-04-04
US5183525A (en) * 1990-05-24 1993-02-02 United Container Machinery Group, Inc. Heater for a double facing corrugating machine
JPH05177750A (ja) * 1992-01-06 1993-07-20 Mitsubishi Heavy Ind Ltd ダブルフェーサ熱板
US5662765A (en) 1994-10-18 1997-09-02 Bhs Corrugated Maschinen- Und Anlagenbau Gmbh Heating unit for a corrugated-board manufacturing plant
JP2002096410A (ja) * 2000-09-22 2002-04-02 Mitsubishi Heavy Ind Ltd 段ボールシート製造システムのダブルフェーサ
WO2006064818A1 (ja) * 2004-12-14 2006-06-22 Uetake, Takashi コルゲートマシン及びダブルフェーサ熱板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061841A1 (ja) * 2008-11-25 2010-06-03 三菱重工業株式会社 両面段ボールシート製造用熱板及びダブルフェーサ
JP4996746B2 (ja) * 2008-11-25 2012-08-08 三菱重工印刷紙工機械株式会社 両面段ボールシート製造用熱板及びダブルフェーサ
US8307870B2 (en) 2008-11-25 2012-11-13 Mitsubishi Heavy Industries Printing & Packing Machinery, Ltd. Heat plate unit and double facer for fabricating double-faced corrugated fiberboard
CN113954495A (zh) * 2021-10-25 2022-01-21 盐城吉研智能科技有限公司 一种泡沫铝多层复合板的输送系统及生产工艺

Also Published As

Publication number Publication date
US20100186896A1 (en) 2010-07-29
TW200927475A (en) 2009-07-01
EP2058117A1 (en) 2009-05-13
JP2008200961A (ja) 2008-09-04
KR20090040263A (ko) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2008102662A1 (ja) 段ボール紙製造装置におけるダブルフェーサ及び該ダブルフェーサの熱盤の加熱制御方法
WO2010061841A1 (ja) 両面段ボールシート製造用熱板及びダブルフェーサ
JPH11221870A (ja) コルゲートマシン
JP2012515673A (ja) 波形成形作業における水分及び温度を制御する方法
WO2017110302A1 (ja) シート加熱装置及びシングルフェーサ並びに段ボールシートの製造装置
JP2008114468A (ja) 段ボール紙の反り及び接着不良防止方法
JP2015085665A (ja) 両面段ボールシート反り防止装置および方法ならびに両面段ボールシート製造装置
CN108367563A (zh) 用于制造不同尺寸的层压板特别是光伏板的无膜式层压机组和相关方法
JP2008055778A (ja) ダブルフェーサ
JP2013169657A (ja) シート加熱用ロールとシングルフェーサと段ボールシートの製造装置
JP3841580B2 (ja) 段ボールシートの製造方法
JP6906781B2 (ja) ダブルフェーサ
KR102412961B1 (ko) 라미네이터용 지지장치 및 라미네이터
WO2006064818A1 (ja) コルゲートマシン及びダブルフェーサ熱板
JPH10217370A (ja) 接着剤硬化装置
JP4405644B2 (ja) 段ボールの反り防止装置
JP3629459B2 (ja) 段ボールシートの製造装置
JP3509801B2 (ja) 段ボールシートの反り防止装置
JP3087245B1 (ja) 紙製緩衝板の製造方法
JP2000296570A (ja) 段ボールシートの製造方法
JP2003266569A (ja) 段ボールシート製造装置のダブルフェーサ
JPH06270299A (ja) 段ボール製造機におけるダブルフェーサ
JP2004168026A (ja) 段ボール材用中芯,段ボールシート、並びに、段ボール材用中芯の製造装置,段ボールシートの製造装置
JP2002120308A (ja) ダブルフェーサの荷重装置
JP4501150B2 (ja) ハニカムサンドイッチ構造物の製造方法及びこれに用いる加熱装置並びに加熱冷却式積層用ベース板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008704530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12308245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087030950

Country of ref document: KR