WO2008075756A1 - 化合物、光電変換素子及び光電気化学電池 - Google Patents

化合物、光電変換素子及び光電気化学電池 Download PDF

Info

Publication number
WO2008075756A1
WO2008075756A1 PCT/JP2007/074596 JP2007074596W WO2008075756A1 WO 2008075756 A1 WO2008075756 A1 WO 2008075756A1 JP 2007074596 W JP2007074596 W JP 2007074596W WO 2008075756 A1 WO2008075756 A1 WO 2008075756A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
complex compound
compound according
independently
Prior art date
Application number
PCT/JP2007/074596
Other languages
English (en)
French (fr)
Inventor
Toshiya Takahashi
Kunihito Miyake
Akio Tanaka
Tetsuo Kawata
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US12/519,467 priority Critical patent/US20100101650A1/en
Priority to DE112007003115T priority patent/DE112007003115T5/de
Publication of WO2008075756A1 publication Critical patent/WO2008075756A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0814Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring is substituted at a C ring atom by Si
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/02Coumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a compound, a photosensitizing dye containing the compound, a photoelectric conversion element containing the dye, and a photoelectrochemical cell such as a solar cell containing the photoelectric conversion element.
  • JP 7-500 0 30 discloses a photoelectrochemical cell including a photoelectric conversion element in which a photosensitizing dye that is easy to manufacture is adsorbed on the surface of semiconductor fine particles such as titanium oxide. Specifically, it has been reported that the compound represented by the formula (1) exhibits excellent photoelectric conversion efficiency.
  • An object of the present invention is to provide a compound that provides a photoelectric conversion element having high photoelectric conversion efficiency in a wide region from a visible light region to a long wavelength region, a dye for a photoelectric conversion device containing the compound, a photoelectric conversion device containing the dye, and It is to provide a photoelectrochemical cell including the element. Disclosure of the invention
  • the present invention provides a complex compound (I) obtained by coordinating a ligand represented by the formula (II) and a bidentate ligand to a metal atom; a photosensitizing dye containing the complex compound (I); A photoelectric conversion element comprising the dye; and a photoelectrochemical cell comprising the element.
  • Y 1 and Y 2 each independently contain an unsaturated aliphatic hydrocarbon group and an aromatic ring, and R 1 and R 2 each independently represent an acidic group salt or an acidic group.
  • A represents a group including a nitrogen atom, an oxygen atom, a carbon atom, a carbon atom, a sulfur atom, or a selenium atom, m, a and b each independently represent an integer of 0 to 2, a + b ⁇ l.
  • bidentate ligands include biviridine derivatives, phenantorin derivatives, or the following ligands ( ⁇ ), (I I I), (IV), etc.
  • ligand ( ⁇ ) examples include biviridine derivatives, phenantorin derivatives, or the following ligands ( ⁇ ), (I I I), (IV), etc.
  • ligand ( ⁇ ) examples include biviridine derivatives, phenantorin derivatives, or the following ligands ( ⁇ ), (I I I), (IV), etc.
  • ligand ( ⁇ ) examples include biviridine derivatives, phenantorin derivatives, or the following ligands ( ⁇ ), (I I I), (IV), etc.
  • examples include biviridine derivatives, phenantorin derivatives, or the following ligands ( ⁇ ), (I I I), (IV), etc.
  • examples include biviridine derivatives, phenantorin derivatives, or the following ligands ( ⁇ ), (I I I), (IV), etc.
  • a complex compound ( ⁇ ) obtained by coordinating two molecules of a ligand represented by the formula (II) to a metal atom; a photosensitizing dye containing the complex compound ( ⁇ );
  • a photoelectric conversion element comprising: a photoelectrochemical cell comprising the element.
  • a photosensitizing dye containing; a photoelectric conversion element containing the dye; and a photoelectrochemical cell containing the element are preferred.
  • Y 1 and Y 2 each independently contain an unsaturated aliphatic hydrocarbon group and an aromatic ring
  • RR ⁇ R 3 and R 4 each independently represent an acidic group salt or an acidic group
  • a and B each independently represent a group including a nitrogen atom, an oxygen atom, a carbon atom, a silicon atom, a sulfur atom, or a selenium atom
  • m, n, a, b, c, and d are respectively Independently, it represents an integer of 0 to 2, and a + b ⁇ l and c + d ⁇ l.
  • a complex compound ( ⁇ ") obtained by coordinating a ligand represented by the formula ( ⁇ ) and a ligand represented by the formula (IV) to a metal atom; the complex compound (1"' ) A photosensitizing dye containing the dye; a photoelectric conversion element containing the dye; and a photoelectrochemical cell containing the element.
  • R 1 and R 2 each independently represents a salt of an acidic group or an acidic group.
  • Y 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 each independently represent a group containing an unsaturated aliphatic hydrocarbon and an aromatic ring, and ⁇ and ⁇ are each independently a nitrogen atom, an oxygen atom, a carbon atom, Represents a group containing a silicon atom, a sulfur atom, or a selenium atom, and m, n, a, b, c and d each independently represent an integer of 0 to 2, a + b ⁇ l, c + d ⁇ l. ]
  • FIG. 1 is a schematic sectional view of the photoelectrochemical cell of the present invention.
  • the present invention is a complex compound (I) obtained by coordinating a metal atom with a ligand represented by the formula (I I) and a bidentate ligand.
  • the metal atoms include Group 4 Ti, Zr, Group 8 Fe, Ru, 0s, Group 9 Co, Rh, Ir, Group 10 Ni, Pd, Pt, Group 11 Cu, Group 11 Group 12 Zn and the like can be mentioned, preferably a Group 8 metal atom, more preferably Ru.
  • RR 2 , R 3 and R 4 each independently represents a salt of an acidic group or an acidic group.
  • acidic groups include strong lpoxyl groups, sulfonic acid groups (—S 0 3 H), squaric acid groups, phosphoric acid groups (_P 0 3 H 2 ), boric acid groups (one B (OH) 2 ) Etc. In particular, a force lupoxyl group is preferred.
  • the salt of an acidic group include a salt with an organic base, and specific examples include a tetraalkyl ammonium salt, an imidazolium salt, and a pyridinium salt.
  • ⁇ ⁇ 2 , ⁇ ⁇ 3 and ⁇ ⁇ ⁇ ⁇ 4 are each independently a group containing an unsaturated aliphatic hydrocarbon group (olefinic hydrocarbon group or acetylenic hydrocarbon group) and an aromatic ring. Or it is preferable that it is a group conjugated with the pyridine ring in Formula (IV). From the viewpoint of ease of production, it is preferable that ⁇ 1 and ⁇ 2 and ⁇ 3 and ⁇ 4 are independently the same.
  • Examples of ⁇ ⁇ 2 , ⁇ 3 and ⁇ 4 include groups represented by formula (V) or formula (V ′), preferably a group represented by formula (V).
  • Ar represents an aryl group which may have a substituent
  • Q 1 and Q 2 are each independently a hydrogen atom, a carbon number of 1 to 20 Represents an alkyl group, an aryl group having 6 to 20 carbon atoms, or a cyan group
  • p represents an integer of 1 to 3.
  • Ar examples include the following examples.
  • the mark * and ** in the following examples represent binding sites with other groups, but are not limited thereto.
  • Ar is preferably a group represented by the formula (A-1) or (A-4).
  • Q 1 and Q 2 represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group or a cyano group having 6 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-pentyl group, an n-octyl group, and an n-nonyl group.
  • Straight chain alkyl groups such as i-propyl group, t-butyl group, 2-ethylhexyl group and the like; alicyclic alkyl groups such as cyclopropyl group and cyclohexyl group, etc. It is done.
  • the aryl group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
  • substituent for Ar include a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and 2 to 2 carbon atoms.
  • 20 represents a dialkylamino group having 20 to 20 carbon atoms and a dialkylamino group having 12 to 20 carbon atoms.
  • alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, W
  • Linear alkyl groups such as n-hexyl, n-pentyl, n-octyl, and n-nonyl; i-propyl, t-butyl, 2-ethylhexyl, etc.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • E isomer or the Z isomer may be a structural isomer, or a mixture of the E isomer and the Z isomer.
  • one of the unsaturated aliphatic hydrocarbons is bonded to the pyridine ring, and the other is bonded to the binding site ** of Ar.
  • the binding site * of A r is bonded to R 1 or R 2 or a substituent.
  • Y 1 and Y 2 are each preferably a group represented by the formula (V), and in particular, Ar is thiophene and p is preferably 1.
  • a and B each independently represent a group containing a nitrogen atom, an oxygen atom, a carbon atom, a silicon atom, a sulfur atom, or a selenium atom.
  • Specific examples of one (A) m— and one (B) n— include one S—, one O—, one S0 2- , one P (R 5 ) one, -N (R 5 ) one , — C (R 5 ) (R 6 )
  • R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-pentyl group, an n-tactyl group, and an n- Linear alkyl groups such as nonyl groups; branched alkyl groups such as i-propyl groups, t-butyl groups and 2-ethylhexyl groups; alicyclic alkyl groups such as cyclopropyl groups and cyclohexyl groups Etc. I can get lost.
  • the aryl group having 6 to 20 carbon atoms examples include a phenyl group and a naphthyl group.
  • the ligand ( ⁇ ) for example, a 2-halogen-substituted pyridine derivative having Y 1 and Y 2 is reacted with an appropriate phosphine ligand in the presence of Ni reagent or Pd catalyst.
  • a (or B) is a sulfur atom
  • a (or B) is S_ ⁇ , in the case of S0 2 can be obtained by oxidizing the S crosslinked body obtained in the above-m- click every mouth perbenzoic acid.
  • R 1 and R 2 are coupled with a protective group after introducing a protective group such as an ester (for example, methyl ester, ethyl ester, propyl ester, butyl ester) and the like. May be removed.
  • a protective group such as an ester (for example, methyl ester, ethyl ester, propyl ester, butyl ester) and the like. May be removed.
  • a 2-halogen-substituted pyridine derivative having Y 1 and Y 2 can be synthesized by a reaction that inserts olefin in the Wit tig reaction, Suzuki reaction, etc., for example, by the reaction shown below.
  • Ligands (III) and (IV) use 2-halogen substituted pyridine derivatives -(A) It can be produced according to the ligand (II) except that it is 1 (B) n- in place of m-.
  • ligand (II) examples include compounds represented by the following formula and Table 1.
  • R 1 or R 2 is preferably an acidic group, more preferably a carboxylic acid group. It is more preferable that both are acidic groups, and a carboxylic acid group is more preferable. As the position of Y 1 or Y 2 , 4, 4 is preferable.
  • m is preferably 0 or 1, and more preferably 0.
  • ligand (III) examples include compounds represented by the following formula and Table 2.
  • R 3 or R 4 is preferably an acidic group, more preferably a carboxylic acid group. It is more preferable that both are acidic groups, and a carboxylic acid group is more preferable.
  • the position of R 3 or R 4 is preferably 4 or 4 ′.
  • n is preferably 0 or 1, and more preferably 0.
  • (III-1) to (II 1-5) are preferred, (III-1) force, et al. (II 1-4) are more preferred, and (II 1-1) is more preferred.
  • Examples of the ligand (IV) include compounds represented by the following formulas and Tables 3 and 4.
  • the position of the ethylene group is preferably 4, 4 '.
  • Ar is preferably A-1, and the substituent of Ar is preferably an alkyl group, an aryloxy group, an alkoxy group, a dialkylamino group or a diarylamino group, more preferably an alkoxy group.
  • n is preferably 0 or 1, and more preferably 0.
  • the complex compound (I) of the present invention has a compound represented by the above formula (II) on the metal atom. Obtained by coordinating ligands and bidentate ligands.
  • the central atom is a metal atom
  • one of the ligands is a ligand represented by the formula ( ⁇ ).
  • Complex compounds ( ⁇ ), ( ⁇ ′), and ( ⁇ ′′) include bidentate ligands other than the ligand represented by the formula (II) (for example, the formula (II), (III) Or (IV) :) or an auxiliary ligand may be coordinated.
  • auxiliary ligand is monovalent, use a counteranion such as a halogenanion.
  • a counteranion such as a halogenanion.
  • the charge may exist in a neutralized form.
  • [RuCl 2 (p-cymene)] 2 is dissolved in an aprotic polar solvent such as N, N-dimethylformamide. Then, after mixing the ligand (II) and the bidentate ligand at about 40 to 180 ° C, if necessary, a salt that gives an auxiliary ligand is mixed, and from the obtained reaction solution Examples thereof include a method obtained by purification by recrystallization, chromatography or the like.
  • divalent and trivalent Ru reagents are used as the Ru reagent, and specific examples include RuC 1 3 and RuC 1 2 (DMS0) 4 .
  • complex compound (I) examples include ( ⁇ ), (1 ′′), ( ⁇ ′′) and the like, and the compounds (1-1) to (1-43) represented by the following formula and Table 5: ), Compounds (1-44) to (1-74) represented by Table 6, and compounds (1-75) to (1-141) represented by Table 7.
  • the photosensitizing dye of the present invention is a complex compound of the present invention (a dye containing D.
  • the dye may be one kind of complex compound ⁇ or a mixture of several kinds of complex compounds ⁇ . It may be a mixture with different types of complex compounds.
  • Examples of the dye that may be mixed with the complex compound (I) include metal complexes and organic dyes having absorption in the vicinity of a wavelength of 300 to 70 Onm.
  • metal complexes that may be mixed include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll, hemin, ruthenium described in JP-A-1-22 0380 and JP-A-5-504023, osmium, Examples include iron and zinc complexes.
  • metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll, hemin, ruthenium described in JP-A-1-22 0380 and JP-A-5-504023, osmium
  • examples include iron and zinc complexes.
  • Examples of the above ruthenium complexes include cis-bis (isothiocyanate) bis (2,2'-pipyridyl-4, '-dicarboxyloxy) -ruthenium ⁇ ) bis-tetraptylammonium, cis-bis (isothiocyanate) ) Bis (2,2'-bipyridyl-4,4'-dicarboxylate) -ruthenium (11), tris (isothiocyanate) -ruthenium (10-2,2 ': 6', 2 "-thepyridine-4, 4 ', 4 "-tricarboxylic acid tris-tetraptyl ammonium, cis-bis (isothiocyanate) (2,2'-bibilidinole-4,4'-dicarpo Xylate) (2,2'-bipyridyl-4,4'-dinonyl) ruthenium (II) and the like.
  • organic dyes include
  • cyanine dyes include NK 1 19 4 and NK 3 4 2 2 (both manufactured by Nippon Photosensitivity Laboratories).
  • merocyanine dyes include NK 2 4 2 6 and NK 2 5 0 1 (both manufactured by Nippon Photosensitive Dye Research Laboratories).
  • xanthene dye examples include uranin, eosin, rose bengal, rhodami B, dibromofluorescein and the like.
  • triphenylmethane dye examples include malachite green and crystal bioletts.
  • Examples of coumarin dyes include compounds containing the following structural sites such as NKX-2 6 7 7 (manufactured by Hayashibara Biochemical Laboratories).
  • indoline-based organic dyes include compounds containing the following structural sites such as D 1 4 9 (Mitsubishi Paper Co., Ltd.).
  • the photoelectric conversion element of the present invention is an element including a semiconductor fine particle layer adsorbed with a photosensitizing dye containing the complex compound (I) of the present invention and a conductive substrate, and the adsorbed photosensitization Pigment is
  • Light energy having a long wavelength of 700 nm or more can also be absorbed.
  • the photoelectric conversion element is used, for example, in an optical sensor sensitive to a wavelength of 700 nm or more, which is an absorption wavelength of a photosensitizing dye containing the complex compound (I) of the present invention, and a photoelectrochemical cell described later. Can be done.
  • the primary particle size of the semiconductor fine particles used in the photoelectric conversion element of the present invention is usually 1 to 1.
  • semiconductor particles having different primary particle sizes may be mixed. Tubes and hollow fine particles may be used.
  • Semiconductor fine particles include, for example, titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, vanadium oxide, niobium oxide
  • Metal oxides such as tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate;
  • Metal halides such as silver iodide, silver bromide, copper iodide, copper bromide;
  • Metal sulfides such as zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, antimony sulfide;
  • Metal selenides such as dimethyl selenide, zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide;
  • Metal tellurides such as telluride power Dom, tungsten telluride, molybdenum telluride, zinc telluride, bismuth telluride;
  • Metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide, cadmium phosphide;
  • Examples include gallium arsenide, copper indium-selenide, copper-indium monosulfide, silicon, and germanium.
  • two or more types such as zinc oxide Z tin oxide, tin oxide titanium oxide It may be a mixture.
  • Metal oxides such as nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate, zinc oxide Z tin oxide, tin oxide / titanium oxide are relatively inexpensive and readily available, and are also used as dyes Titanium oxide is particularly preferable because it is easily dyed.
  • a conductive substance itself or a substrate in which a conductive substance is superimposed can be used as the conductive substrate (8 and 9 in FIG. 1) used in the photoelectric conversion element of the present invention.
  • Conductive materials include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, palladium, iron, and other metals, alloys of these metals, or indium-tin composite oxides, tin oxide doped with fluorine.
  • Examples thereof include conductive metal oxides such as carbon, conductive polymers such as carbon, polyethylene dioxythiophene (PEDOT), and polyaniline.
  • the conductive polymer may be doped with, for example, paratoluene sulfonic acid.
  • the conductive layer (2, 6 in FIG. 1) should have a lower resistance, and preferably has a high transmittance (at a wavelength longer than 3500 nm, a transmittance of 80% or more).
  • the conductive substrate (8 and 9 in FIG. 1) is preferably a glass or plastic coated with a conductive metal oxide.
  • conductive glass in which a conductive layer made of tin dioxide doped with fluorine is laminated is particularly preferable.
  • plastic substrates Arton (registered trademark of JSR), Zeonor (registered trademark of Nippon Zeon), Abel (registered trademark of Mitsui Chemicals), Topas (registered by T icona) Trademark) Cyclic polyolefin (COP), Polyethylene terephthalate (PET), Polyethylene naphthalate (PEN), Polyphenylene sulfide (PP S), Polystrength Ponate (PC), Polypropylene (PP), Polyimide (PI), triacetyl cellulose (TAC), syndiotactic polystyrene (SPS), polyarylate (PAR), polyethersulfone (PES), polyetherimide (PE I), polysulfone (PSF), polyamide
  • conductive PET in which a conductive layer made of indium-suosto complex oxide is deposited is particularly preferable because of its low resistance, good permeability, and low availability.
  • a method for forming a semiconductor fine particle layer on a conductive substrate a method in which semiconductor fine particles are directly formed as a thin film on a conductive substrate by spray spraying or the like; a semiconductor fine particle thin film is electrically deposited using the conductive substrate as an electrode. Examples of the method include: a method in which a slurry of semiconductor fine particles is applied on a conductive substrate and then dried, cured, or baked.
  • Examples of the method for applying the semiconductor fine particle slurry onto the conductive substrate include a doctor blade, squeegee, spin coating, dip coating, and screen printing.
  • the average particle size in the dispersed state of the semiconductor fine particles in the slurry is preferably 0.01 m to 100 m.
  • the dispersion medium for dispersing the slurry is not limited as long as it can disperse the semiconductor fine particles.
  • Water or an alcohol solvent such as ethanol, isopropanol, t-butyl alcohol or terpineol; an organic solvent such as a ketone solvent such as aceton Is mentioned. These water and organic solvent may be a mixture.
  • the dispersion may contain a polymer such as polyethylene glycol; a surfactant such as Triton-X; an organic acid or inorganic acid such as acetic acid, formic acid, nitric acid or hydrochloric acid; and a chelating agent such as acetylacetone. Good.
  • the conductive substrate coated with the slurry is fired, but the firing temperature is lower than the melting point (or softening point) of the base material such as thermoplastic resin.
  • the upper limit of the firing temperature is 900.
  • it is 600 ° C or lower.
  • the firing time is usually within 10 hours.
  • the thickness of the semiconductor fine particle layer on the conductive substrate is usually from 1 to 200 m, and preferably from 5 to 50 m.
  • the surface of the semiconductor fine particle layer may be subjected to a chemical plating process using a titanium tetrachloride aqueous solution or an electrochemical plating process using a titanium trichloride aqueous solution.
  • This increases the surface area of the semiconductor fine particles, increases the purity in the vicinity of the semiconductor fine particles, obscures impurities such as iron existing on the surface of the semiconductor fine particles, or the connectivity and bonding properties of the semiconductor fine particles. Can be increased.
  • the semiconductor fine particles preferably have a large surface area so that many photoelectric conversion element dyes can be adsorbed.
  • the surface area of the semiconductor fine particle layer applied on the substrate is preferably 10 times or more, more preferably 100 times or more the projected area. This upper limit is usually about 100000 times.
  • the semiconductor fine particle layer is not limited to a single fine particle layer, and a plurality of layers having different particle diameters may be stacked.
  • a method for adsorbing the photosensitizing dye of the present invention to the semiconductor fine particles a method of immersing the well-dried semiconductor fine particles in the solution of the photosensitizing dye of the present invention for about 1 minute to 24 hours is used.
  • Adsorption of the photosensitizing dye may be performed at room temperature or under heating and reflux. Adsorption of the photosensitizing dye may be performed before or after application of the semiconductor fine particles. Alternatively, the semiconductor fine particles and the photosensitizing dye may be applied and adsorbed simultaneously. It is more preferable to adsorb the photosensitizing dye to the semiconductor fine particle film.
  • Photosensitizing dye adsorption when the child layer is heat-treated is preferably performed after the heat treatment, and a method of quickly adsorbing the photosensitizing dye after heat treatment and before water is adsorbed on the surface of the fine particle layer is particularly preferable.
  • the photosensitizing dye to be adsorbed may be one kind or a mixture of several kinds.
  • a photosensitizing dye to be mixed so that the photoelectric conversion wavelength region of irradiation light such as sunlight is as wide as possible.
  • the adsorption amount of the photosensitizing dye to the semiconductor fine particles is preferably from 0.01 to 1 millimole per 1 g of the semiconductor fine particles. Such a dye amount is preferable because the sensitizing effect in the semiconductor fine particles can be sufficiently obtained, and the reduction of the sensitizing effect due to floating of the photosensitizing dye not attached to the semiconductor fine particles tends to be suppressed. .
  • a colorless compound may be co-adsorbed for the purpose of suppressing interaction such as association and aggregation between photosensitizing dyes.
  • the hydrophobic compound to be co-adsorbed include a steroid compound having a strong lupoxyl group (for example, kenodeoxycholic acid).
  • the surface of semiconductor fine particles may be treated with amines after adsorbing the photosensitizing dye.
  • Preferable amines include pyridine, 4-tert-butylpyridine, and polyvinylpyridine. When these are liquids, they may be used as they are, or when they are solids, they may be dissolved in an organic solvent.
  • the photoelectrochemical cell of the present invention includes a photoelectric conversion element, a charge transfer layer, and a counter electrode, and can convert light into electricity.
  • a photoelectrochemical cell usually, a photoelectric conversion element, a charge transfer layer, and a counter electrode are sequentially stacked, and a conductive substrate and a counter electrode of the photoelectric conversion element are connected to move the charge, that is, power generation occurs. .
  • photoelectrochemical cells include, for example, a photoelectrochemical cell comprising a plurality of stacked portions composed of photoelectric conversion elements and charge transfer layers and one counter electrode, a plurality of photoelectric conversion elements, one charge transfer layer and one Examples thereof include a photoelectrochemical cell in which a counter electrode is laminated.
  • Photoelectrochemical cells are roughly classified into wet photoelectrochemical cells and dry photoelectrochemical cells.
  • the wet photoelectrochemical cell is a layer in which the included charge transfer layer is composed of an electrolyte solution. Normally, the charge transfer layer is filled with an electrolyte solution between a photoelectric conversion element and a counter electrode.
  • dry photoelectrochemical cell examples include a battery in which the charge transfer layer between the photoelectric conversion element and the counter electrode is a solid hole transport material.
  • the semiconductor particle layer 3 is filled with the electrolytic solution 5 and sealed with the sealing material 10.
  • the conductive substrate 8 includes a substrate 1 and a conductive layer 2 in order from the top.
  • the counter electrode 9 is composed of a substrate 7 and a conductive layer 6 in order from the bottom.
  • examples of the electrolyte used in the electrolyte contained in the charge transfer layer include a combination of I 2 and various iodides, Br 2 and various bromides.
  • metal iodides such as Li I, Nal, KI, C s I and C a I 2 ; 1-propyl-3-methylimidazolium iodide
  • metal iodides such as Li I, Nal, KI, C s I and C a I 2
  • 1-propyl-3-methylimidazolium iodide examples include iodine salts of tetravalent imidazolium compounds such as 1-propyl-1,2,3-dimethylimidazolium idide; iodine salts of tetravalent pyridinium compounds; iodine salts of tetraalkylammonium compounds.
  • bromides that can be combined with B r 2 include metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr2; tetraalkylammonium bromide and pyridinium.
  • metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr2
  • tetraalkylammonium bromide and pyridinium.
  • bromine salts of tetravalent ammonium compounds such as mubromide.
  • alkyl biologues examples include methyl viologen chloride, hex Examples thereof include sylviologen bromide and benzyl viologen tetrafluoroborate.
  • polyhydroxybenzenes examples include hydride quinone and naphthohydroquinone.
  • metal iodides iodine salts of tetravalent imidazolium compounds
  • iodine salts of tetravalent pyridinium compounds iodine salts of tetraalkylammonium compounds.
  • I 2 iodine salts of tetraalkylammonium compounds.
  • organic solvent used in the above electrolyte examples include nitrile solvents such as acetonitrile, methoxyacetonitrile and propionitol; carbonate solvents such as ethylene carbonate and propylene carbonate; 1-methyl-3-propylimidazolium 1-methyl-3-hexylimidazolium iodide; 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonic acid) ionic liquid such as imide; aptilolactone, etc.
  • amide solvents such as N, N-dimethylformamide.
  • These solvents include polyacrylonitrile, polyvinylidene fluoride, poly 4-vinylpyridine,
  • the solid hole transport material used for the charge transfer layer is a p-type inorganic semiconductor containing monovalent copper such as Cu I or Cu SCN; aromatic amines such as those shown in thetic Meter, 89, 215 (1997) and Nature, 395, 583 (1998); polythiophene and its derivatives; polypyrrole and its derivatives; polyaniline and its derivatives; Examples thereof include conductive polymers such as poly (p-phenylene vinylene) and derivatives thereof.
  • the counter electrode constituting the photoelectrochemical cell of the present invention is an electrode having conductivity, and a substrate similar to the above-described conductive substrate may be used in order to maintain strength and improve hermeticity.
  • a substrate similar to the above-described conductive substrate may be used in order to maintain strength and improve hermeticity.
  • at least one of the conductive substrate and the counter electrode is usually substantially transparent.
  • the conductive substrate having the semiconductor fine particle layer is transparent and the irradiation light is incident from the conductive substrate side.
  • the counter electrode 9 has a property of reflecting light.
  • the counter electrode 9 of the photoelectrochemical cell for example, glass or plastic deposited with metal, carbon, conductive oxide, or the like can be used.
  • the conductive layer can also be formed by vapor deposition or sputtering or the like so as to have a thickness of 1 mm or less, preferably in the range of 5 nm to 100 m.
  • sealing may be performed using a sealing material.
  • the sealing material include: ionomer resin such as Himiran (Mitsui DuPont Polychemical); glass frit; hot melt adhesive such as SX1 170 (So 1 ar on ix); Amo sil (So 1 aronix) Adhesives such as BYNEL (made by DuPont) can be used.
  • the reaction vessel was purged with nitrogen, and [RuCl 2 (p-c iene)] 2 29 mg (purchased from Kanto Chemical Co., Inc.) and 50 ml of ⁇ , ⁇ -dimethylformamide were added and stirred at room temperature and confirmed to dissolve. .
  • 24 mg of Compound ⁇ -1 (0.10 leakage ol, purchased from AVOCADO) was charged, and 7 (stirred for 4 hours with T and confirmed by HPLC that the raw material disappeared.
  • Compound II-4 onatshefte fuer Was prepared according to the description of Chemie (1988), 119 (1), 1-15.) 46 mg (0. lOmmoI), and the mixture was heated at 130 ° Cfc and stirred for 6 hours.
  • a solution prepared by dissolving 6 mg (l.50 mmol) of thiocyanic acid lithium in 3 ml of water was charged and stirred at 120 ° C. for 5 hours.
  • the reaction solution was concentrated by evaporation, and the concentrated residue was separated by high performance liquid chromatography to obtain a highly purified purple solid.
  • the obtained solid was confirmed by ESI-MS to be the target compound (1-47, molecular weight 922).
  • a conductive glass with a tin oxide film doped with fluorine made by Nippon Sheet Glass, 10 ⁇ / port
  • Nan ox ide T / SP (trade name, manufactured by So 1 aronix) using a screen printer, firing at 500 ° C, cooling the glass, and laminating the semiconductor particle layer on the conductive substrate It was. Subsequently, it is immersed in a solution of the compound (1-47) (concentration is 0.0003 mol / liter, solvent is ethanol, and chenodeoxycholic acid is added at 0.01 mol / liter) for 16 hours and taken out from the solution. After that, it is washed with acetonitrile and then naturally dried, and a laminate of semiconductor fine particle layers adsorbed with conductive substrate and photosensitizing dye
  • the area of the titanium oxide electrode was 24 mm 2).
  • a polyethylene terephthalate film having a thickness of 25 m was installed as a spacer around the layer, and then an electrolyte solution (solvent was acetonitrile; the iodine concentration in the solvent was 0.05 mol Z ⁇ ⁇ ⁇ ⁇ Lithium iodide concentration is 0.1 mol / liter, also 4!: — Butylpyridine concentration is 0.5 mol Z liter, also 1-propyl-2,3-dimethylimidazolium iodide concentration is 0.6 mol Z liter) was impregnated.
  • a platinum-deposited glass as a counter electrode is stacked, and a conductive substrate, a semiconductor fine particle layer adsorbing a photosensitizing dye, and a counter electrode of the conductive substrate are laminated, and the conductive substrate and the counter electrode are stacked.
  • a photoelectrochemical cell impregnated with an electrolyte was obtained.
  • the reaction solution was concentrated by evaporation, and the concentrated residue was separated by high performance liquid chromatography to obtain a highly purified purple solid.
  • the obtained solid was confirmed by ESI-MS to be the target compound (1-83, molecular weight 1130).
  • a photoelectrochemical cell was obtained in the same manner as in Example 1 except that Compound 1-83 was used instead of Compound 1-47 as a photosensitizing dye.
  • IPCE was measured in the same manner as in Example 1. The results are summarized in Table 8.
  • Compound 1-101 was produced in the same manner as in Production Example 2, except that compound IV-27 was used instead of compound IV-9. The obtained solid was confirmed to be the target compound (1-101, molecular weight 914) by ESI-MS.
  • a photoelectrochemical cell was obtained in the same manner as in Example 1 except that Compound 1-101 was used instead of Compound 1-47 as a photosensitizing dye.
  • IPCE was measured in the same manner as in Example 1. The results are summarized in Table 8.
  • the conversion efficiency was measured using a Yamashita Denso Solar Smiret Yui (model YSS-80A).
  • the light intensity during measurement was 10 OmW / cm 2 .
  • Table 9 shows the relative values of the conversion efficiencies of the photoelectric conversion batteries obtained in Examples 1 and 3 with respect to the conversion efficiency of 1 for the photoelectrochemical battery obtained in Example 2.
  • the complex compound (I) of the present invention is excellent in photoelectric conversion not only in the visible light but also in the near infrared region, and is suitably used as a photosensitizing dye.
  • the photoelectric conversion element containing the compound is excellent in photoelectric conversion efficiency, it can be used for solar cells using sunlight, photoelectrochemical cells using artificial light in tunnels or indoors.
  • the photoelectric conversion element can be used as an optical sensor because a current flows when irradiated with light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

下記式(II)で表される配位子と2座配位子を金属原子に配位させて得られる錯体化合物(I)を提供する。[式(II)中、Y1及びY2は、それぞれ独立に、不飽和脂肪族炭化水素と芳香環を含有する基を表し、R1及びR2は、それぞれ独立に、酸性基の塩、又は酸性基を表し、Aは、窒素原子、酸素原子、炭素原子、ケイ素原子、硫黄原子、又はセレン原子を含む基を表し、m、a及びbは、それぞれ独立に、0~2の整数を表し、a+b≧1である。]

Description

化合物、 光電変換素子及び光電気化学電池 技術分野
本発明は、 化合物、 該化合物を含む光増感色素、 該色素を含む光電変換素子、 及び該光電変換素子を含む太陽電池などの光電気化学電池に関する。 背景技術
近年、 地球温暖化防止のために大気中に放出される c o2の削減が求められて いる。 C 02の削減の有力な手段として、 例えば、 家屋の屋根に p n接合型のシ リコン系太陽電池などの光電気化学電池を用いるソーラーシステムへの切り替え が提唱されている。 しかしながら、 上記シリコン系光電気化学電池に用いられる 単結晶、 多結晶及びアモルファスシリコンは、 その製造過程において高温、 高真 空条件が必要なために高価であるという問題があつた。
一方、 特表平 7— 5 0 0 6 3 0号公報には、 製造が容易な光増感色素を酸化チ タンなどの半導体微粒子の表面に吸着させた光電変換素子を含む光電気化学電池 が提案され、 具体的には式 ( 1 ) で表される化合物が優れた光電変換効率を示す ことが報告されている。
Figure imgf000002_0001
本発明者らが光増感色素 (1 ) を含む光電気化学電池について検討したところ、 可視光領域から長波長領域、 特に 7 0 0 nm以上の長波長領域における光電変換 効率が十分ではないことが明らかになつた。 本発明の目的は、 可視光領域から長波長領域の広い領域での光電変換効率の高 い光電変換素子を与える化合物、 該化合物を含む光電変換素子用色素、 該色素を 含む光電変換素子、 及び、 該素子を含む光電気化学電池を提供することである。 発明の開示
本発明は、 式 (I I) で表される配位子と 2座配位子を金属原子に配位させて得 られる錯体化合物 (I) ;該錯体化合物 (I) を含む光増感色素;該色素を含む光 電変換素子;並びに該素子を含む光電気化学電池である。
Figure imgf000003_0001
[式中、 Y 1及び Y 2は、 それぞれ独立に、 不飽和脂肪族炭化水素基と芳香環を含 有し、 R1及び R2は、 それぞれ独立に、 酸性基の塩、 又は酸性基を表し、 Aは、 窒素原子、 酸素原子、 炭素原子、 ケィ素原子、 硫黄原子、 又はセレン原子を含む 基を表し、 m、 a及び bは、 それぞれ独立に、 0〜 2の整数を表し、 a + b≥l である。 ]
2座配位子としては、 ビビリジン誘導体、 フエナント口リン誘導体、 又は、 以下 に示す配位子 (Π) 、 (I I I) 、 (IV) などが挙げられるが、 特に、 配位子 (Π) 、
(I I I) 又は (IV) が好ましい。
好ましくは、 式 (I I) で表される配位子を 2分子、 金属原子に配位させて得られ る錯体化合物 (Γ ) ;該錯体化合物 (Γ ) を含む光増感色素;詨色素を含む光電 変換素子;並びに該素子を含む光電気化学電池である。
あるいは、 式 (Π) で表される配位子及び式 (I I I) で表される配位子を金属原子 に配位させて得られる錯体化合物 (Γ ' );該錯体化合物(Γ ' )を含む光増感色素; 該色素を含む光電変換素子;並びに該素子を含む光電気化学電池が好ましい。
Figure imgf000004_0001
[式中、 Y 1及び Y 2は、 それぞれ独立に、 不飽和脂肪族炭化水素基と芳香環を含 有し、 R R\ R3及び R4は、 それぞれ独立に、酸性基の塩、又は酸性基を表す。 A及び Bは、 それぞれ独立に、 窒素原子、 酸素原子、 炭素原子、 ゲイ素原子、 硫 黄原子、 又はセレン原子を含む基を表し、 m、 n、 a、 b、 c及び dは、 それぞ れ独立に、 0〜2の整数を表し、 a + b≥l、 c + d≥lである。 ] あるいは、 式 (Π) で表される配位子及び式 (IV) で表される配位子を金属原子 に配位させて得られる錯体化合物(Γ") ;該錯体化合物(1"')を含む光増感色素; 該色素を含む光電変換素子;並びに該素子を含む光電気化学電池である。
Figure imgf000004_0002
[式中、 R 1及び R2は、それぞれ独立に、酸性基の塩、又は酸性基を表す。 Y 1 、 Υ2、 Υ3及び Υ4は、 それぞれ独立に不飽和脂肪族炭化水素と芳香環を含有する 基を表し、 Α及び Βは、 それぞれ独立に、 窒素原子、 酸素原子、 炭素原子、 ゲイ 素原子、 硫黄原子、 又はセレン原子を含む基を表し、 m、 n、 a、 b、 c及び d は、 それぞれ独立に、 0〜2の整数を表し、 a + b≥l、 c + d≥lである。 〕
図面の簡単な説明 図 1 本発明の光電気化学電池の断面模式図である。
符号の説明
1 基板
2 導電層
3 半導体粒子層
4 光増感色素
5 電解液
6 導電層
7 基板
8 導電性基板
9 対極 (導電性基板)
1 0 封止剤 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明は金属原子に、 前記式 (I I) で表される配位子と 2座配位子を配位させ て得られる錯体化合物 (I) である。
金属原子としては、 第 4族の Ti、 Zr、 第 8族の Fe、 Ru、 0s、 第 9族の Co、 Rh、 Ir、 第 10族の Ni、 Pd、 Pt、 第 11族の Cu、 第 12族の Znなどが挙げられるが、 好 ましくは第 8族の金属原子、 より好ましくは Ruである。
式(Π)、 (I I I) 及び (IV) 中、 R R2、 R3及び R4は、 それぞれ独立に、 酸性 基の塩、 又は酸性基を表す。 酸性基としては、 例えば、 力ルポキシル基、 スルホ ン酸基 (—S 03H) 、 スクアリン酸基、 リン酸基 (_ P 03H2) 、 ホウ酸基 (一 B (OH) 2) 等が挙げられる。 特に力ルポキシル基が好適である。
Figure imgf000005_0001
酸性基の塩としては、 有機塩基との塩が挙げられ、 具体的にはテトラアルキルァ ンモニゥム塩、 イミダゾリウム塩、 ピリジニゥム塩などが挙げられる。
a、 b、 c及び dはそれぞれ独立に、 0〜2の整数を表し、 好ましくは a + b ≥1、 c + d≥lであり、 より好ましくは a = b= 1、 c = d=lである。
Υ Υ2、 Υ3及び Υ4は、 それぞれ独立に、 不飽和脂肪族炭化水素基 (ォレフィ ン系炭化水素基またはアセチレン系炭化水素基) と芳香環を含有する基であり、 式 (II) または式 (IV) 中のピリジン環と共役する基であることが好ましい。 製造の容易さの観点から、 Υ1と Υ2、 Υ3と Υ4は、 独立に同一であることが好 ましい。
Υ Υ2、 Υ3及び Υ4の例としては、 式 (V) 又は式(V ')で表される基が挙げ られ、 好ましくは、 式 (V) で表される基である。
Figure imgf000006_0001
(式(V) 又は式(V ')中、 A rは置換基を有していてもよいァリール基を表し、 Q1及び Q2は、 それぞれ独立に、 水素原子、 炭素数 1〜20のアルキル基、 炭素 数 6〜20のァリール基、 又はシァノ基を表し、 pは 1〜3の整数を表す。 )
A rとしては、 以下の例が挙げられる。 尚、 下記例示中の印 *、 * *は、 他の 基との結合部位を表すが、 これにより限定されるものではない。 A rとしては、 式 (A- 1) あるいは (A- 4) で表される基が好ましい。
Figure imgf000007_0001
(A-l) (A - 2) (A— 3) (A-4) (A-5) (A - 6) N-N
Figure imgf000007_0002
(A - 7) (A - 8) (A-9) (A - 10〉 (A- 10') (A - 11)
Figure imgf000007_0003
(A— 12) (A-l 3) (A— 14) (A- 15) (A - 16) (A— 17)
Figure imgf000007_0004
(A- 18) (A— 19) (A-20) (A— 21) (A - 22)
Q 1及び Q2の具体例としては、 水素原子または炭素数 1〜2 0のアルキル基又は 炭素数 6〜 2 0のァリール基又はシァノ基を表す。 炭素数 1〜2 0のアルキル基 としては、 例えば、 メチル基、 ェチル基、 n—プロピル基、 n—ブチル基、 n— へキシル基、 n—ペンチル基、 n—ォクチル基、 n—ノニル基などの直鎖状アル キル基; i—プロピル基、 t—プチル基、 2ーェチルーへキシル基などの分枝状 アルキル基;シクロプロピル基、 シクロへキシル基などの脂環式アルキル基など が挙げられる。 炭素数 6〜 2 0のァリール基としては、 例えば、 フエニル基、 ナ フチル基等が挙げられる。
A rの置換基の具体例としては、 水素原子、 水酸基、 炭素数 1〜 2 0のアルキル 基、 炭素数 1〜2 0のアルコキシ基、 炭素数 6〜2 0のァリールォキシ基、 炭素 数 2〜2 0のジアルキルアミノ基、 炭素数 1 2〜2 0のジァリ一ルァミノ基を表 す。 アルキル基としては、 メチル基、 ェチル基、 n—プロピル基、 n—ブチル基、 W
7
n—へキシル基、 n—ペンチル基、 n—才クチル基、 n—ノニル基などの直鎖状 アルキル基; i一プロピル基、 t—ブチル基、 2—ェチルーへキシル基などの分 枝状アルキル基;シクロプロピル基、 シクロへキシル基などの脂環式アルキル基 などが挙げられる。 ァリール基としては、 フエニル基、 ナフチル基などが挙げら れる。
式 (V) 又は式(V ')中、 pは 1〜3の整数を表し、 好ましくは p=lである。 E体、 Z体のいずれの構造異性体であってもよく、 E体と Z体の混合物であって もよい。
式(V)又は式(V ')で表される基において、 不飽和脂肪族炭化水素の一方は、 ピリジン環と結合しており、他方は A rの結合部位 * *と結合している。 また、 A rの結合部位 *は、 R1又は R2もしくは置換基と結合している。
Y1及び Y2としては、 いずれも、式(V)で表される基であることが好ましく、 中でもとりわけ、 A rがチォフェンで、 pが 1である基であることが好ましい。 式 (II) 、 (III) 及び (IV) において、 A及び Bはそれぞれ独立に、 窒素原 子、 酸素原子、 炭素原子、 ゲイ素原子、 硫黄原子、 又はセレン原子を含む基を表 す。
m及び nはそれぞれ独立に、 0〜2の整数を表すが、 好ましくは、 m=n = 0 である。 - 一 (A) m—、 及び、 一 (B) n—の具体例としては、 一 S—、 一 O—、 一 S02 -、 一 P (R5) 一、 -N (R5) 一、 — C (R5) (R6) 一、
— S i (R5) (R6) 一、 一 S e—等が挙げられ、 好ましくは一 S—である。 こ こで R5及び R6は、 それぞれ独立に、 水素原子または炭素数 1〜20のアルキル 基または炭素数 6〜 20のァリール基を表す。 炭素数 1〜20のアルキル基とし ては、 例えば、 メチル基、 ェチル基、 n—プロピル基、 n—ブチル基、 n—へキ シル基、 n—ペンチル基、 n—才クチル基、 n—ノニル基などの直鎖状アルキル 基; i—プロピル基、 t一ブチル基、 2—ェチルーへキシル基などの分枝状アル キル基;シクロプロピル基、 シクロへキシル基などの脂環式アルキル基などが挙 げられる。 炭素数 6 20のァリール基としては、 例えば、 フエニル基、 ナフチ ル基等が挙げられる。
配位子 (Π) の製造方法としては、 例えば、 Y1及び Y2を有する 2—ハロゲン置 換ピリジン誘導体を Ni試薬または: Pd触媒存在下、 適当なホスフィン配位子とと もに反応させることで、 ピリジン誘導体の 2位でカップリング反応させて、 目的 化合物 (m=0) を合成することが可能である (式 (2) で表すことができる) 。 また、 A (又は B) が硫黄原子の場合は、 硫化ソーダと Y1及び Y2を有する 2 一ハロゲン置換ピリジン誘導体を有機溶媒中、 反応させることで、 硫黄原子で架 橋された目的化合物 (m=l 2、 以下 S架橋体という塲合がある) を得ること ができる (式 (2) で表すことができる) 。
また、 A (又は B) が S〇、 S02の場合は上記で得られた S架橋体を m—ク 口口過安息香酸等で酸化することにより得ることができる。
配位子 (II) の製造方法において、 R1及び R2をエステル (例えば、 メチルェ ステル、 ェチルエステル、 プロピルエステル、 ブチルエステル) 等の保護基を導 入してからカップリング反応したのち、 保護基を外してもよい。
Figure imgf000009_0001
Y1及び Y2を有する 2—ハロゲン置換ピリジン誘導体は、 Wit tig反応、 Suzuki 反応などで、 ォレフィンを挿入する反応により合成でき、 例えば、 以下に示す反 応により合成できる。
Figure imgf000009_0002
配位子 (III) 及び (IV) は、 2—ハロゲン置換ピリジン誘導体を用いて、 - (A) m—に代えて一 (B) n—である以外は、 配位子 (II) に準じて製造す ることができる。
配位子 (II) の具体例としては、 下式及び表 1で表される化合物が挙げられる。
Figure imgf000010_0001
(II)
Figure imgf000011_0001
(それぞれのピリジン環において、 窒素原子は 1位の位置であり、 Aと結合する 炭素原子は 2位の位置にある。 A rの番号は前記の例示の番号に対応する。 ) 上記表中、 R1または R2は酸性基が好ましく、 より好ましくはカルボン酸基であ る。 両方が酸性基の場合がより好ましく、 カルボン酸基がさらに好ましい。 Y1 または Y2の位置としては 4、 4,が好ましい。
また、 Υ Υ2はエチレン基 (一 C = C— ) が好ましく、 両方がエチレン基がよ り好ましい。
mは 0または 1であることが好ましく、 0であることがさらに好ましい。
上記表中、 (I I- 1) 力 ら (I I— 32) が好ましく、 (I I一 1) から (I I
-22) がより好ましく、 (11— 1) 、 (I I— 4) がさらに好ましい。 配位子 (III) の例としては、 下式及び表 2で表される化合物が挙げられる。
Figure imgf000012_0001
(III) 表 2
Figure imgf000012_0002
上記表中、 R3または R4は酸性基が好ましく、 より好ましくはカルボン酸基であ る。 両方が酸性基の場合がより好ましく、 カルボン酸基がさらに好ましい。 R3 または R4の位置としては 4、 4'が好ましい。
nは、 0または 1であることが好ましく、 0であることがより好ましい。
上記表中、 (I I I— 1)から (I I 1— 5)力好ましく、 (I I I— 1)力、ら (I I 1—4) がより好ましく、 (I I 1— 1) がさらに好ましい。 配位子 (IV) の例としては、下式及び表 3および表 4で表される化合物が挙げら れる。
Figure imgf000013_0001
(IV)
Figure imgf000013_0002
3
Figure imgf000014_0001
表 4
Figure imgf000015_0001
上記表中、 Y3または Y ま、 エチレン基 (一 c = c一) が好ましく、 両方がェチ レン基がより好ましい。 エチレン基の位置としては 4、 4'が好ましい。
また Arは A- 1が好ましく、 A rの置換基としてはアルキル基、ァリールォキシ 基、 アルコキシ基、 ジアルキルアミノ基、 ジァリールァミノ基が好ましく、 アル コキシ基がより好ましい。
nは、 0または 1であることが好ましく、 0であることがより好ましい。
上記表中、 (I V- 1) から (I V— 57) 、 ( I V- 66) から ( I V— 76) が好ましく、 (I V— 1) から (IV— 36) および (I V— 66) から (I V -76) がより好ましく、 (I V— 19) から (I V— 36) がさらに好ましレ^ 本発明の錯体化合物 (I) は、 金属原子に、 前記式 (II) で表される配位子と 2 座配位子を配位させることにより得られる。
また、 本発明の錯体化合物 (I) は、 中心原子が金属原子であり、 配位子の 1つ が前記式 (Π) で表される配位子である。 錯体化合物 (Γ) 、 (Γ')及び (Γ'') には、 前記式 (II) で表される配位子以外の 2座配位子 (例えば、 前記式 (II) 、 (III) 又は (IV) :)や補助配位子が配位していてもよく、 補助配位子としては、 例えば、 イソチオシァネート (一 N=C = S、 以下、 NCSという場合がある) 、 チオシァネート (一 S— C三 N、 以下、 SCNという場合がある) 、 ジケトナー ト、 クロ口、 プロモ、 ョード、 シァノ、 水酸基等が挙げられ、 好ましくは NCS もしくは S CNである。
補助配位子が 1価の場合には、 ハロゲンァニオンなどのカウンターァニオンを 伴い、 電荷を中和した形で存在する場合もある。
錯体化合物(I) の製造方法として、 中心金属原子が Ruである場合を例にとって 説明すると、 [RuCl2(p- cymene)]2を N,N-ジメチルホルムアミドなどの非プロトン 性極性溶媒に溶解し、 配位子 (II) 及び 2座配位子を 40〜180°C程度で混合 させたのち、 必要に応じて、 補助配位子を与える塩を混合させ、 得られた反応溶 液から再結晶、 クロマトグラフィーなどによりで精製して得る方法などが挙げら れる。
ここで、 Ru試薬としては、 2価および 3価の Ru試薬が用いられ、 具体的には、 RuC 13や RuC 12 (DMS0) 4などが例示される。
錯体化合物 (I) の具体例としては、 (Γ) 、 (1") 又は (Γ'') 等が挙げられ、 下式及び表 5で表される化合物(1-1)〜(1-43)、表 6で表される化合物(1-44) 〜 (1-74) 、 表 7で表される化合物 (1-75) 〜 (1-141) が挙げられる。
Figure imgf000016_0001
(Ι')
Figure imgf000017_0001
6
Figure imgf000018_0001
Figure imgf000019_0001
8t S L0/L00Zdr/13d 9S.S.0/800J OAV 表 5中、 (I一 4) および (1—23) から (I一 43) が好ましい。 表 6中、 (1-47) および (1ー66) から (1— 74) が好ましく、 (1ー47) お よび (1—66) から (1— 69) がより好ましく、 ( I一 47) および ( I一 66) から (1—68) が更に好ましい。 表 7中、 (I— 75) から (I— 131) が好ましく、 (1— 75) から (1— 110) がより好ましく、 (I一 93) から (1— 110) が更に好ましい。 錯体化合物 (I) としては、 中でも、 R1— Y1—及び R2— Y2—が、 式 (V") で 表される基であり、 m=0である化合物が好ましい。
Figure imgf000020_0001
本発明の光増感色素は、 本発明の錯体化合物 (D を含む色素である。色素として は、 一種類の錯体化合物 ωであっても、数種の錯体化合物 ωの混合物であつ ても、 異なる種類の錯体化合物との混合物であつてもよい。
錯体化合物(I) と混合してもよい色素としては、波長 300〜70 Onm付 近に吸収を持つ金属錯体ゃ有機色素などを挙げることができる。
混合してもよい金属錯体の具体例としては、 銅フタロシアニン、 チタニルフタ ロシアニンなどの金属フタロシアニン、 クロロフィル、 へミン、 特開平 1—22 0380号や特表平 5— 504023号に記載のルテニウム、 ォスミゥム、 鉄、 亜鉛の錯体などが挙げられる。
上記ルテニウム錯体の例としては、 cis-ビス(ィソチオシァネ一ト)ビス(2, 2' - ピピリジル -4, ' -ジカルポキシレー卜)-ルテニウム αι) ビス-テトラプチルアン モニゥム、 cis-ビス(ィソチオシァネ一ト)ビス(2, 2' -ビピリジル- 4, 4' -ジカルポ キシレート)-ルテニウム(11)、 トリス (ィゾチオシァネ一ト) —ルテニウム (10-2,2' :6' ,2" -テーピリジン- 4, 4' , 4" -トリカルボン酸トリスーテトラプチルァ ンモニゥム、 cis-ビス (イソチオシァネート) (2, 2'-ビビリジノレ- 4,4'-ジカルポ キシレート) (2, 2' -ビピリジル -4, 4' -ジノニル)ルテニウム(I I)などが挙げられる。 有機色素としては、 例えば、 メタルフリーフタロシアニン、 シァニン系色素、 メロシアニン系色素、 キサンテン系色素、 トリフエニルメタン色素、 インドリン 系等の有機色素などが挙げられる。
シァニン系色素としては、 具体的には、 NK 1 1 9 4、 N K 3 4 2 2 (いずれ も日本感光色素研究所製) などが例示される。
メロシアニン系色素としては、 具体的には、 NK 2 4 2 6、 NK 2 5 0 1 (い ずれも日本感光色素研究所製) が挙げられる。
キサンテン系色素としては、 例えば、 ゥラニン、 ェォシン、 ローズベンガル、 ローダミ B , ジブロムフルォレセィンなどが挙げられる。
トリフエニルメタン色素としては、 例えば、 マラカイトグリーン、 クリスタル バイオレツ卜が挙げられる。
クマリン系色素としては、 NKX— 2 6 7 7 (林原生物化学研究所製) 等の以 下に示した構造部位を含む化合物などが挙げられる。
インドリン系等の有機色素としては、 D 1 4 9 (三菱製紙社製) 等の以下に示 した構造部位を含む化合物などが例示される。
Figure imgf000021_0001
(DI49) 本発明の光電変換素子とは、 本発明の錯体化合物(I) を含む光増感色素を吸着さ せた半導体微粒子層及び導電性基板を含む素子であり、 吸着された光増感色素は
7 0 0 nm以上の長波長の光エネルギーも吸収することができる。 光電変換素子は、 例えば、本発明の錯体化合物 (I) を含む光増感色素の吸収波 長である 7 0 0 n m以上の波長に感応する光センサや後述する光電気化学電池な どに用いられることができる。
本発明の光電変換素子に用いられる半導体微粒子の一次粒径は、 通常、 1〜
5 0 0 0 n m程度、 好ましくは 5〜 3 0 0 n m程度である。 反射による光電変 換効率の向上を目的として、 一次粒径の異なる半導体粒子を混入させてもよい。 また、 チューブや中空形状の微粒子を用いてもよい。
半導体微粒子としては、 例えば、 酸化チタン、 酸化スズ、 酸化亜鉛、 酸化鉄、 酸化タングステン、 酸化ジルコニウム、 酸化ハフニウム、 酸化ストロンチウム、 酸化インジウム、 酸化セリウム、 酸化イットリウム、 酸化ランタン、 酸化バナジ ゥム、 酸化ニオブ、 酸化タンタル、 酸化ガリウム、 酸化ニッケル、 チタン酸スト ロンチウム、 チタン酸バリウム、 ニオブ酸カリウム、 タンタル酸ナトリウム等の 金属酸化物;
ヨウ化銀、 臭化銀、 ヨウ化銅、 臭化銅等の金属ハロゲン化物;
硫化亜鉛、 硫化チタン、 硫化インジウム、 硫化ビスマス、 硫化カドミウム、 硫化 ジルコニウム、 硫化タンタル、 硫化モリブデン、 硫化銀、 硫化銅、 硫化スズ、 硫 化タングステン、 硫化アンチモン等の金属硫化物;
セレン化力ドミゥム、 セレン化ジルコニウム、 セレン化亜鉛、 セレン化チタン、 セレン化インジウム、 セレン化タングステン、 セレン化モリブデン、 セレン化ビ スマス、 セレン化鉛等の金属セレン化物;
テルル化力ドミゥム、 テルル化タングステン、 テルル化モリブデン、 テルル化亜 鉛、 テルル化ビスマス等の金属テルル化物;
リン化亜鉛、 リン化ガリウム、 リン化インジウム、 リン化カドミウム等の金属リ ン化物;
ガリウム砒素、 銅一インジウム—セレン化物、 銅—インジウム一硫化物、 シリコ ン、 ゲルマニウム等が挙げられる。
またさらに、 酸化亜鉛 Z酸化スズ、 酸化スズノ酸化チタンのような二種以上の 混合物であってもよい。
中でも、 酸化チタン、 酸化スズ、 酸化亜鉛、 酸化鉄、 酸化タングステン、 酸化 ジルコニウム、 酸化ハフニウム、 酸化ストロンチウム、 酸化インジウム、 酸化セ リウム、 酸化イットリウム、 酸化ランタン、 酸化バナジウム、 酸化ニオブ、 酸化 タンタル、 酸化ガリウム、 酸化ニッケル、 チタン酸ストロンチウム、 チタン酸バ リウム、 ニオブ酸カリウム、 タンタル酸ナトリウム、 酸化亜鉛 Z酸化スズ、 酸化 スズ /酸化チタン等の金属酸化物が、 比較的安価で入手しやすく、 色素にも染色 されやすいことから好ましく、 特にとりわけ、 酸化チタンが好適である。
本発明の光電変換素子に用いられる導電性基板 (図 1における 8及び 9 ) とし ては、 導電性物質そのもの、 又は、 基板に導電性物質を重ねたものを用いること ができる。
導電性物質としては、 白金、 金、 銀、 銅、 アルミニウム、 ロジウム、 インジゥ ム、 チタン、 パラジウム又は鉄等の金属や、 該金属のァロイ、 或いはインジウム ースズ複合酸化物、 酸化スズにフッ素をドープしたもの等の導電性金属酸化物、 炭素、 ポリエチレンジォキシチォフェン (P E D O T) 、 ポリア二リン等の導電 性高分子が挙げられる。
導電性高分子は、 例えば、 パラトルエンスルフォン酸等がド一プされていても い。
入射した光を閉じ込め、 有効に利用するために、 表面にテクスチャ一構造を有 するものが好ましい。
導電層 (図 1における 2、 6 ) は抵抗が低いほどよく、 高透過性 (3 5 0 nm より長波長側で、 透過率が 8 0 %以上) であることが好ましい。
導電性基板 (図 1における 8及び 9 ) としては、 ガラス又はプラスチックに導 電性の金属酸化物を塗布したものが好ましい。 中でも、 フッ素をドーピングした 二酸化スズからなる導電層を積層した導電性ガラスが特に好ましい。 プラスチッ ク基板とする場合は、 アートン (J S Rの登録商標) 、 ゼォノア (日本ゼオンの 登録商標) 、 アベル (三井化学の登録商標) 、 トーパス (T i c o n a社の登録 商標) 等の環状ポリオレフイン (COP) 、 ポリエチレンテレフタレ一ト (PE T) 、 ポリエチレンナフタレー卜 (PEN) 、 ポリフエ二レンスルフイド (PP S) 、 ポリ力一ポネート (PC) 、 ポリプロピレン(PP)、 ポリイミド (P I)、 トリァセチルセルロース(TAC)、シンジオタクチックポリスチレン(S P S)、 ポリアリレート (PAR) 、 ポリエ一テルスルホン (PES) 、 ポリエーテルィ ミド (PE I) 、 ポリスルフォン (PSF) 、 ポリアミド (PA) 等が挙げられ る。
これらの中でも、 インジウムースズ複合酸化物からなる導電層を堆積した導電 性 PETが、抵抗が低く、透過性も良く、入手もしゃすいことから特に好ましい。 導電性基板上に半導体微粒子層を形成する方法としては、 半導体微粒子をスプ レー噴霧等で直接、 導電性基板上に薄膜として形成する方法;導電性基板を電極 として電気的に半導体微粒子薄膜を析出させる方法;半導体微粒子のスラリーを 導電性基板上に塗布した後、 乾燥、 硬化又は焼成することによって製造する方法 などが例示される。
半導体微粒子のスラリーを導電性基板上に塗布する方法として、 例えば、 ドク ターブレード、 スキージ、 スピンコート、 ディップコートやスクリーン印刷等の 手法が挙げられる。
この方法の場合、 スラリー中の半導体微粒子の分散状態における平均粒径は、 0. 01 m~ 100 mであることが好ましい。
スラリーを分散させる分散媒としては半導体微粒子を分散させ得るものであれ ばよく、水、又はエタノール、イソプロパノール、 t—プ夕ノールやテルピネオ一 ル等のアルコール溶媒;ァセトン等のケトン溶媒等の有機溶媒が挙げられる。 こ れらの水や有機溶媒は混合物であってもよい。分散液には、ポリエチレングリコー ル等のポリマー; Tr i t on— X等の界面活性剤;酢酸、 蟻酸、 硝酸や塩酸等 の有機酸又は無機酸;ァセチルアセトン等のキレート剤を含んでいてもよい。 スラリーを塗布した導電性基板は焼成されるが、 該焼成温度は熱可塑性榭脂等 の基材の融点 (又は軟化点) 未満であり、 通常は、 焼成温度の上限は 900 であ り、 好ましくは 600°C以下である。 また、 焼成時間は、 通常、 1 0時間以内であ る。 導電性基板上の半導体微粒子層の厚みは、 通常は 1〜2 0 0 mであり、 好 ましくは 5〜5 0 mである。
導電性基板上に比較的低温で半導体微粒子層を形成する方法としては、 水熱処 理を施してポ一ラスな半導体微粒子層を形成する Hydrothermal法(実用化に向け た色素増感光電気化学電池、 第 2講 (箕浦秀樹) 第 6 3〜6 5頁、 N T S社発行 ( 2 0 0 3 ) )、分散された半導体粒子の分散液を基板に電着する泳動電着法(T. Miyasaka et al. , Chem. Let t. , 1250 (2002) ) 、 半導体べ一ストを基板に塗布、 乾燥 後にプレスするプレス法(実用化に向けた色素増感光電気化学電池、第 1 2講(萬 雄彦) 第 3 1 2〜 3 1 3頁、 N T S社発行 (2 0 0 3 ) ) 等が挙げられる。
半導体微粒子層の表面に、 四塩化チタン水溶液を用いた化学メツキや三塩化チ タン水溶液を用いた電気化学的メツキ処理を行ってもよい。 このことにより、 半 導体微粒子の表面積を増大させたり、 半導体微粒子近傍の純度を高めたり、 半導 体微粒子表面に存在する鉄等の不純物を覆い隠したり、 または、 半導体微粒子の 連結性、 結合性を高めたりすることができる。
半導体微粒子は多くの光電変換素子用色素を吸着することができるように表面 積の大きいものが好ましい。 このため、 半導体微粒子層を基板上に塗布した状態 での表面積は、 投影面積に対して 1 0倍以上であることが好ましく、 さらに 1 0 0倍以上であることがより好ましい。 この上限は、通常、 1 0 0 0倍程度である。 半導体微粒子層は、 微粒子 1個の単層に限らず、 粒径の異なる層等を複数重ね てもよい。
半導体微粒子への本発明の光増感色素の吸着方法としては、 本発明の光増感色 素の溶液中に、 よく乾燥した半導体微粒子を 1分〜 2 4時間程度浸漬する方法が 用いられる。 光増感色素の吸着は室温で行ってもよいし、 加熱還流下に行っても よい。光増感色素の吸着は、半導体微粒子の塗布前に行ってもよく、塗布後に行つ てもよく、 半導体微粒子と光増感色素を同時に塗布して吸着させてもよいが、 塗 布後の半導体微粒子膜に光増感色素を吸着させるのがより好ましい。 半導体微粒 子層を加熱処理する場合の光増感色素吸着は加熱処理後に行うことが好ましく、 加熱処理後、 微粒子層表面に水が吸着する前に、 すばやく光増感色素を吸着させ る方法が特に好ましい。
半'導体微粒子に付着していない光増感色素が浮遊することによる増感効果の低 減を抑制するため、未吸着の光増感色素は洗浄によって除去することが望ましい。 吸着する光増感色素は 1種類でもよいし、 数種混合して用いてもよい。 用途が 光電気化学電池である場合、 太陽光などの照射光の光電変換波長域をできるだけ 広くするように、 混合する光増感色素を選ぶことが好ましい。 また、 光増感色素 の半導体微粒子に対する吸着量は、 半導体微粒子 1 gに対して 0 . 0 1〜 1ミリ モルが好ましい。 このような色素量とすると、 半導体微粒子における増感効果が 十分に得られ、 半導体微粒子に付着していない光増感色素が浮遊することによる 増感効果の低減を抑制する傾向にあることから好ましい。
光増感色素同士が会合や凝集等の相互作用することを抑制する目的で、 無色の 化合物を共吸着させてもよい。 共吸着させる疎水性化合物としては力ルポキシル 基を有するステロイド化合物(例えば、 ケノデォキシコール酸)等が挙げられる。 また、 余分な光増感色素の除去を促進する目的で、 光増感色素を吸着させた後、 アミン類を用いて半導体微粒子の表面を処理してもよい。 好ましいアミン類とし ては、 ピリジン、 4一 t e r t—ブチルピリジンゃポリビニルピリジン等が挙げ られる。 これらが液体の場合はそのまま用いてもよいし、 固体の場合は有機溶媒 に溶解して用いてもよい。
本発明の光電気化学電池とは、 光電変換素子、 電荷移動層及び対極を含み、 光 を電気に変換することができる。 光電気化学電池は、 通常、 光電変換素子、 電荷 移動層及び対極が順次、 積層され、 光電変換素子の導電性基板と対極とが連結さ れて、 電荷が移動して、 すなわち、 発電が起こる。
他の光電気化学電池としては、 例えば、 光電変換素子及び電荷移動層からなる 積層部が複数と 1つの対極からなる光電気化学電池、 複数の光電変換素子、 1つ の電荷移動層及び 1つの対極が積層されてなる光電気化学電池などが例示される。 光電気化学電池は、湿式光電気化学電池及び乾式光電気化学電池に大別される。 湿式光電気化学電池は、 含まれる電荷移動層が電解液から構成される層であり、 通常、 電荷移動層は光電変換素子と対極の間に電解液が充填される。
乾式光電気化学電池としては、 例えば、 光電変換素子と対極との間の電荷移動 層が固体のホール輸送材料である電池などが挙げられる。
光電気化学電池の一実施態様を図 1に示した。 導電性基板 8と、 該導電性基板 8に対向する対極 9と、 これらの間に、 光電変換素子用色素 4が吸着された半導 体微粒子層 3が存在する。 湿式光電変換素子とする場合は、 半導体粒子層 3は電 解液 5で満たされ、 封止材 1 0で封止されている。
上記の導電性基板 8は、 上から順に基板 1と導電層 2で構成されている。 対極 9は、 下から順に基板 7と導電層 6で構成されている。
本発明の光電気化学電池が湿式である場合、 電荷移動層に含まれる電解液に用 いられる電解質としては、 例えば、 I 2と各種ヨウ化物との組合せ、 B r 2と各種 の臭化物との組合せ、フエロシアン酸塩—フヱリシァン酸塩の金属錯体の組合せ、 フエ口セン—フエリシニゥムイオンの金属錯体の組合せ、 アルキルチオール—ァ ルキルジスルフィドのィォゥ化合物の組合せ、 アルキルビオローゲンとその還元 体の組合せ、 ポリヒドロキシベンゼン類とその酸化体の組合せ等が挙げられる。 ここで、 I 2と組合せ得るヨウ化物としては、 例えば、 L i I、 N a l、 K I、 C s Iや C a I 2等の金属ヨウ化物; 1—プロピル— 3—メチルイミダゾリゥム アイオダイド、 1一プロピル一 2, 3—ジメチルイミダゾリゥムアイドダイド等 の 4価のィミダゾリゥム化合物のヨウ素塩; 4価のピリジニゥム化合物のョゥ素 塩;テトラアルキルアンモニゥム化合物のヨウ素塩等が挙げられる。
B r 2と組合せ得る臭化物としては、 例えば、 L i B r、 N a B r、 K B r、 C s B rや C a B r 2等の金属臭化物;テトラアルキルアンモニゥムブロマイド やピリジニゥムブロマイド等の 4価のアンモニゥム化合物の臭素塩等が挙げられ る。
アルキルビオ口一ゲンとしては、 例えば、 メチルビオローゲンクロリド、 へキ シルビオローゲンブロミド、 ベンジルビオローゲンテトラフルォロボレートなど が挙げられ、 ポリヒドロキシベンゼン類としては、 例えば、 ハイド口キノンゃナ フトハイドロキノン等が挙げられる。
電解質としては中でも、 金属ヨウ化物、 4価のイミダゾリウム化合物のヨウ素 塩や 4価のピリジニゥム化合物のヨウ素塩、 及びテトラアルキルアンモニゥム化 合物のヨウ素塩からなる群から選ばれる少なくとも 1種のヨウ化物と I 2との組 合せが好ましい。
上記の電解液に用いる有機溶媒としては、 ァセトニトリル、 メトキシァセトニ トリルやプロピオ二トリル等の二トリル系溶媒;エチレンカーポネ一トゃプロピ レンカーポネ一ト等のカーボネート系溶媒; 1—メチルー 3—プロピルイミダゾ リウムアイオダィドゃ 1—メチルー 3—へキシルイミダゾリゥムアイオダィド; 1—ェチルー 3—メチルイミダゾリゥム—ビス(トリフルォロメタンスルホン酸) イミド等のイオン性液体; ァープチロラクトン等のラクトン系溶媒; N, N—ジ メチルホルムアミド等のアミド系溶媒等が挙げられる。 これらの溶媒は、 ポリア クリロニトリル、 ポリビニリデンフルオライド、 ポリ 4—ビニルピリジンや
Chemi s t ry Le t t e r s, 1241 (1998)に示される低分子ゲ ル化剤でゲル化されていてもよい。
本発明の光電気化学電池が乾式である場合、電荷移動層に用いられる固体のホー ル輸送材料としては、 Cu Iや Cu S CN等の一価の銅を含む p型無機半導体; や、 Syn t h e t i c Me t a l, 89, 215 (1997) 及び N a t u r e, 395, 583 (1998) で示されるような芳香族ァミン類;ポリチォフエ ン及びその誘導体;ポリピロール及びその誘導体;ポリアニリン及びその誘導体; ポリ (p—フエ二レン) 及びその誘導体;ポリ (p—フエ二レンビニレン) 及び その誘導体等の導電性高分子などが挙げられる。
本発明の光電気化学電池を構成する対極は、 導電性を有する電極であり、 強度 を維持したり密閉性を向上させるため前記導電性基板と同様の基板を用いてもよ い。 光電変換素子用色素が吸着された半導体微粒子層に光が到達するためには、 前 述の導電性基板と対極の少なくとも一方は、 通常、 実質的に透明である。 本発明 の光電変換素子においては、 半導体微粒子層を有する導電性基板が透明で、 照射 光を導電性基板の側から入射させるものが好ましい。 この場合、 対極 9は光を反 射する性質を有することがより好ましい。
光電気化学電池の対極 9としては、 例えば、 金属、 カーボン、 導電性の酸化物 などを蒸着したガラスやプラスチックを使用することができる。 具体的には、 導 電層を、 1mm以下、好ましくは 5 nm〜l 00 mの範囲の膜厚になるように、 蒸着ゃスパッ夕リング等の方法により形成して作製することもできる。 本発明で は白金や力一ボンを蒸着したガラス、 又は、 蒸着やスパッタリングによって導電 層を形成した対極とすることが好ましい。
光電気化学電池における電解液の漏洩や蒸散を防ぐため、 封止材を使用して封 止してもよい。 該封止材としては、 ハイミラン (三井デュポンポリケミカル製) 等のアイオノマ一樹脂;ガラスフリツト; SX1 170 (S o 1 a r on i x製) 等のホットメルト接着剤; Amo s i l (S o 1 a r o n i x製) のような 接着剤; BYNEL (デュポン製) を使用することができる。 次に、 実施例等を挙げて本発明を更に詳細に説明するが、 本発明はこれらの 例により限定されるものではない。
<製造例 1 :化合物 (1-47) の製造例 >
反応容器を窒素置換し、 [RuCl2(p- c iene)] 2 29mg (Ο.ΟδιηιαοΚ 関東化学より 購入) 、 Ν,Ν-ジメチルホルムアミド 50mlを仕込み、 室温で攪拌し、 溶解するのを 確認した。 その後、 化合物 ΙΠ- 1 24mg (0.10漏 ol、 AVOCADOより購入) を仕込 み、 7(T で 4時間攪拌し、 原料が消失するのを HPLCで確認した。 次いで、 化合 物 II- 4 ( onatshefte fuer Chemie (1988), 119(1), 1-15の記載に準じて調製 した。 ) を 46mg (0. lOmmoI) 仕込み、 130°Cfc昇温して 6時間攪拌した。 その後、 チォシアン酸力リゥム U6mg(l.50mmol)を水 3mlに溶解した溶液を仕込み、 120°C で 5時間攪拌した。
反応後、 反応溶液をエバポレー夕で濃縮し、 濃縮残查を高速液体クロマトダラ フィにより分取し、高純度化された紫色の固形物を得た。得られた固形物は ESI-MS により目的化合物(1-47、 分子量 922)であることを確認した。
化合物(1-47) ESI-MS(m/z) ιη/ζ- 922M+
(実施例 1 )
導電性基板である、 フッ素をドープした酸化スズ膜付き導電性ガラス (日本 板硝子製、 10Ω /口) の導電性面に、 酸化チタン分散液である T i一
Nan ox i d e T/SP (商品名、 S o 1 a r o n i x社製) をスクリーン印刷 機を用いて塗布後、 500°Cで焼成し、 ガラスを冷却して、 導電性基板に半導体 粒子層を積層させた。 続いて、 化合物 (1-47) の溶液 (濃度は 0. 0003モル /リットル、 溶媒はエタノール、 ケノデォキシコール酸を 0. 01モル/リット ル添加) に 16時間浸漬し、 溶液から取り出したのち、 ァセトニトリルで洗浄後、 自然乾燥させ、 導電性基板及び光増感色素を吸着させた半導体微粒子層の積層体
(酸化チタン電極の面積は 24mm 2)を得た。次に、該層の周りに、スぺーサー として 25 m厚のポリエチレンテレフタレ一トフイルムを設置後、 該層に電解 液 (溶媒はァセトニトリル;溶媒中の沃素濃度は 0. 05モル Zリツトル、 同じ くヨウ化リチウム濃度は 0. 1モル/リットル、 同じく 4一!:—ブチルピリジン 濃度は 0. 5モル Zリットル、 同じく 1一プロピル— 2, 3—ジメチルイミダゾ リウムアイオダイド濃度は 0. 6モル Zリットル) を含浸させた。 最後に、 対極 である白金蒸着ガラスを重ね合わせ、 導電性基板、 光増感色素を吸着させた半導 体微粒子層、 並びに該導電性基板の対極が積層され、 導電性基板と対極との間に 電解液が含浸された、 光電気化学電池を得た。 このようにして作製した光電気化 学電池について、 I PCE (incident photon- to- current efficiency) 測定装置
(分光計器製) を用いて I PCEを測定した。 実施例 1で得た光電変換素子の I P C Eを表 8に示す。 <製造例 2 :化合物 (1-83) の製造例 >
反応容器を窒素置換し、 [RuCl2 (p- cymene) ] 2 27mg (0. 04mmo K 関東化学より 購入) 、 N,N-ジメチルホルムアミド 8mlを仕込み、 室温で攪拌し、 溶解するのを 確認した。 その後、 化合物 (IV-9) 40mg (0. 09ramoi) を仕込み、 60°Cで 30分間攪 拌し、 原料が消失するのを HPLCで確認した。 次いで、 化合物 I I- 4 (Monat shef te fuer Chemie (1988) , 119 (1), 1-15の記載に準じて調製した。)を 41mg(0. 09匪 o l) 仕込み、 100°Cに昇温して 1時間後、 140°Cまで昇温して、 2時間攪拌した。 その 後、 チォシアン酸カリウム 129mg (1. 33mmo l) を水 1. 2ηιΙに溶解した溶液を仕込 み、 60°Cで 1時間攪拌後、 105°Cまで昇温して 1時間加熱攪拌した。
反応後、 反応溶液をエバポレー夕で濃縮し、 濃縮残査を高速液体クロマトダラ フィにより分取し、高純度化された紫色の固形物を得た。得られた固形物は ESI-MS により目的化合物(1-83、 分子量 1 130)であることを確認した。
化合物(1-83) ESI-MS (m/z) m/z=1130 M+
(実施例 2 )
光増感色素として、 化合物 1-47の代わりに化合物 1-83を用いた以外は、 実施 例 1と同様にして光電気化学電池を得た。 次いで、 I P C Eを実施例 1と同様に して測定した。 結果を表 8にまとめた。
<製造例 3 :化合物 (1-101) の製造例 >
化合物 IV- 9の代わりに化合物 IV- 27を用いた以外は、製造例 2と同様にして化 合物 1-101を製造した。得られた固形物は ESI- MSにより目的化合物(1-101、分子 量 914)であることを確認した。
化合物(1-101) ESI-MS (m/z) m/z=914 M+ (実施例 3)
光増感色素として、化合物 1-47の代わりに化合物 1-101を用いた以外は、実施 例 1と同様にして光電気化学電池を得た。 次いで、 I PCEを実施例 1と同様に して測定した。 結果を表 8にまとめた。
(比較例 1 )
光増感色素として、 cis-ビス(ィソチオシァネ一ト)ビス(2, ΐ -ビピリジル - 4, 4'-ジカルボキシレート) -ルテニウム(II) (化合物 (1) ) を用いた以外は、 実施例 1と同様にして光電気化学電池を得た。 次いで、 I PCEを実施例 1と同 様にして測定した。 結果を表 8にまとめた。 表 8
Figure imgf000032_0001
実施例 1, 2および 3で得られた光電気化学電池について、 変換効率を山下電装 製のソ一ラーシュミレー夕一 (型式 YSS-80A) を用いて測定した。 測定時の光強 度は、 10 OmW/cm2であった。
実施例 2で得た光電気化学電池について、 変換効率を 1に対し、 実施例 1およ び 3で得た光電変換電池の変換効率の相対的な値を表 9に示す。 表 9
Figure imgf000033_0001
産業上の利用可能性
本発明の錯体化合物(I) は、 可視光のみならず近赤外領域においても光電変換に 優れ、 光増感色素として好適に用いられる。 また、 該化合物を含む光電変換素子 は光電変換効率に優れることから、 太陽光による太陽電池、 トンネルや屋内での 人工光による光電気化学電池に用いることができる。 また、 該光電変換素子は、 光の照射を受けて電流が流れることから、光センサーとして用いることができる。

Claims

請求の範囲
1. 下記式 (II) で表される配位子と 2座配位子と金属原子からなる錯体化合物 (I) 。
Figure imgf000034_0001
(II)
[式中、 Y1及び Y2は、 それぞれ独立に、 不飽和脂肪族炭化水素基と芳香環を含 有し、 R1及び R2は、 それぞれ独立に、 酸性基の塩、 又は酸性基を表し、 Aは、 窒素原子、 酸素原子、 炭素原子、 ケィ素原子、 硫黄原子、 又はセレン原子を含む 基を表し、 m、 a及び bは、 それぞれ独立に、 0〜2の整数を表し、 a + b≥l である。 ]
2. 2座配位子が式 (II) で表される配位子である請求項 1記載の錯体化合物。
Figure imgf000034_0002
(II)
3. 2座配位子が下記式(III)で表される配位子である請求項 1記載の錯体化合 物。
Figure imgf000034_0003
(III)
(II)
[式中、 Y1及び Y2は、 それぞれ独立に、 不飽和脂肪族炭化水素基と芳香環を含 有し、 R1, R2、 R3及び R4は、それぞれ独立に、酸性基の塩、 又は酸性基を表す。 A及び Bは、 それぞれ独立に、 窒素原子、 酸素原子、 炭素原子、 ケィ素原子、 硫 黄原子、 又はセレン原子を含む基を表し、 m、 n、 a、 b、 c及び dは、 それぞ れ独立に、 0〜 2の整数を表し、 a + b≥l、 c + d≥lである。 ]
4. 2座配位子が下記式(IV)で表される配位子である請求項 1記載の錯体化合 物。
Figure imgf000035_0001
[式中、 R1及び R2、 は、それぞれ独立に、 酸性基の塩、 又は酸性基を表す。 Y 1 Ύ Υ3及び Υ4は、 それぞれ独立に、 不飽和脂肪族炭化水素と芳香環を含有する 基を表し、 Α及び Βは、 それぞれ独立に、 窒素原子、 酸素原子、 炭素原子、 ケィ 素原子、 硫黄原子、 又はセレン原子を含む基を表し、 m、 n、 a、 b、 c及び d は、 それぞれ独立に、 0〜 2の整数を表し、 a + b≥l、 c + d≥lである。 ]
5 . R1または R 2のいずれかが酸性基である請求項 1〜4記載の錯体化合物。
6 . 酸性基が、 力ルポキシル基、 スルホン酸基、 スクアリン酸基、 リン酸基、 ホ ゥ酸基からなる群から選ばれる少なくとも 1つである請求項 5に記載の錯体化合 物。
7 . 酸性基が、 カルボキシル基である請求項 6に記載の錯体化合物。
8 . または R 2のいずれかが酸性基の塩である請求項 1〜 4記載の錯体化合物。
9 . 酸性基の塩が、 有機塩基との塩である請求項 8に記載の錯体化合物。
1 0 . Υ 1 , Υ Υ3及び Υ4が、 それぞれ独立に、 下記式 (V) 又は式 (ν' ) で 表される基であることを特徴とする請求項 1〜4に記載の錯体化合物。
Figure imgf000036_0001
[式中、 A rは置換基を有していてもよいァリール基を表し、 Q1及び Q2は、 そ れぞれ独立に水素原子、 炭素数 1〜 20のアルキル基、 炭素数 6〜 20のァリー ル基、 又はシァノ基を表し、 pは 1〜3の整数を表す。 ]
1 1. Y1及び が、 請求項 10に記載の式 (V) で表される基であり、 Q1及 び Q2が、 水素原子、 Arが置換基を有していてもよいチォフェン環であり、 p が 1である請求項 10に記載の錯体化合物。
12. Aが、 それぞれ独立に、 — N (R5) ―、 — 0—、
-C (R5) (R6) 一、 —S i (R5) (R6) 一、 一 S―、 一 SO -、 一 S〇2—、 -S e—からなる群から選ばれる少なくとも 1つである請求項 1〜
4に記載の錯体化合物。
[ここで、 R5及び R6はそれぞれ独立に、 水素原子、 炭素数 1〜20のアルキル 基、 又は炭素数 6〜 20のァリール基を表す。 ]
13. Bが、 それぞれ独立に、 一 N (R5) 一、 一 0—、
― C (R5) (R6) 一、 一 S i (R5) (R6) 一、 一 S -、 一 SO -、 一 S〇2—、 一 S e—からなる群から選ばれる少なくとも 1つである請求項 3ま たは 4に記載の錯体化合物。
[ここで、 R 5及び R 6はそれぞれ独立に、 水素原子、 炭素数 1〜20のアルキル 基、 又は炭素数 6〜20のァリール基を表す。 ]
14. mが、 0である請求項 1〜4に記載の錯体化合物。
15. nが、 0である請求項 3または 4に記載の錯体化合物。
16. & +13 = 2でぁる請求項1〜4に記載の錯体化合物。
17. Bがー S—、 nが 1である請求項 4に記載の錯体化合物。
18. R R2、 R3及び R4が、 それぞれ独立に力ルポキシル基、 又はその塩、 mが 0である請求項 10に記載の錯体化合物。
19. R1及び R2が、 それぞれ独立にカルボキシル基、 又はその塩で、 nが 0又 は 1である請求項 10に記載の錯体化合物。
20. 金属原子が F e、 R u又は O sである請求項 1に記載の錯体化合物。
21. 請求項 1に記載の錯体化合物を含む光増感色素。
22. 導電性基板、 及び請求項 21に記載の光増感色素を吸着させた半導体微粒 子層を含む光電変換素子。
23. 請求項 22に記載の光電変換素子、 電荷移動層及び対極を含む光電気化学 電池。
PCT/JP2007/074596 2006-12-18 2007-12-14 化合物、光電変換素子及び光電気化学電池 WO2008075756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/519,467 US20100101650A1 (en) 2006-12-18 2007-12-14 Compound, photoelectric conversion device and photoelectrochemical battery
DE112007003115T DE112007003115T5 (de) 2006-12-18 2007-12-14 Verbindung, photoelektrisches Umwandlungsgerät und photoelektrochemische Batterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-339615 2006-12-18
JP2006339615 2006-12-18

Publications (1)

Publication Number Publication Date
WO2008075756A1 true WO2008075756A1 (ja) 2008-06-26

Family

ID=39536381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074596 WO2008075756A1 (ja) 2006-12-18 2007-12-14 化合物、光電変換素子及び光電気化学電池

Country Status (4)

Country Link
US (1) US20100101650A1 (ja)
JP (1) JP2008174734A (ja)
DE (1) DE112007003115T5 (ja)
WO (1) WO2008075756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110303267A1 (en) * 2008-11-11 2011-12-15 Mohammad Nazeeruddin Photoelectric conversion devices comprising novel ligands and sensitizers
JP2014086191A (ja) * 2012-10-19 2014-05-12 Fujikura Ltd 光増感色素及びこれを有する色素増感太陽電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980479B2 (ja) * 2010-06-02 2012-07-18 富士フイルム株式会社 金属錯体色素、光電変換素子及び色素増感太陽電池
JP5721717B2 (ja) * 2010-08-03 2015-05-20 富士フイルム株式会社 金属錯体色素、光電変換素子及び光電気化学電池
WO2012017872A1 (ja) * 2010-08-03 2012-02-09 富士フイルム株式会社 金属錯体色素、光電変換素子及び光電気化学電池
JP5580139B2 (ja) * 2010-08-03 2014-08-27 富士フイルム株式会社 光電変換素子及びこれを用いた光電気化学電池
JP5774727B2 (ja) * 2011-02-18 2015-09-09 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション I2−ii−iv−vi4及びi2−(ii、iv)−iv−vi4半導体フィルムを含む半導体フィルムを形成する方法
JP5756772B2 (ja) * 2011-03-30 2015-07-29 富士フイルム株式会社 光電変換素子及び光電気化学電池
CN111808138A (zh) * 2020-07-22 2020-10-23 天津师范大学 一种基于甲基紫精配体的有机无机杂化钙钛矿晶体及其制备方法和在光电领域中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296170A (ja) * 2003-03-26 2004-10-21 Mitsui Chemicals Inc 光電変換素子用材料、光電変換素子ならびにルテニウム錯体化合物
WO2007034976A1 (ja) * 2005-09-22 2007-03-29 Sumitomo Chemical Company, Limited 化合物、光電変換素子及び光電気化学電池
WO2007072970A1 (ja) * 2005-12-21 2007-06-28 Sumitomo Chemical Company, Limited 化合物、光電変換素子及び光電気化学電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (ja) 1988-02-12 1990-06-15 Sulzer Ag
EP0525070B1 (en) 1990-04-17 1995-12-20 Ecole Polytechnique Federale De Lausanne Photovoltaic cells
GB9217811D0 (en) * 1992-08-21 1992-10-07 Graetzel Michael Organic compounds
EP1622178A1 (en) * 2004-07-29 2006-02-01 Ecole Polytechnique Federale De Lausanne (Epfl) 2,2 -Bipyridine ligand, sensitizing dye and dye sensitized solar cell
US8124777B2 (en) * 2005-09-22 2012-02-28 Sumitomo Chemical Company, Limited Compound, photoelectric converter and photoelectrochemical cell
JP2007112987A (ja) * 2005-09-22 2007-05-10 Sumitomo Chemical Co Ltd 化合物、光電変換素子及び光電気化学電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296170A (ja) * 2003-03-26 2004-10-21 Mitsui Chemicals Inc 光電変換素子用材料、光電変換素子ならびにルテニウム錯体化合物
WO2007034976A1 (ja) * 2005-09-22 2007-03-29 Sumitomo Chemical Company, Limited 化合物、光電変換素子及び光電気化学電池
WO2007072970A1 (ja) * 2005-12-21 2007-06-28 Sumitomo Chemical Company, Limited 化合物、光電変換素子及び光電気化学電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110303267A1 (en) * 2008-11-11 2011-12-15 Mohammad Nazeeruddin Photoelectric conversion devices comprising novel ligands and sensitizers
US8962977B2 (en) * 2008-11-11 2015-02-24 Ecole Polytechnique Federale De Lausanne (Epfl) Photoelectric conversion devices comprising novel ligands and sensitizers
KR101747443B1 (ko) * 2008-11-11 2017-06-14 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 새로운 리간드 및 감응제를 포함하는 광전 변환 소자
JP2014086191A (ja) * 2012-10-19 2014-05-12 Fujikura Ltd 光増感色素及びこれを有する色素増感太陽電池

Also Published As

Publication number Publication date
US20100101650A1 (en) 2010-04-29
JP2008174734A (ja) 2008-07-31
DE112007003115T5 (de) 2009-11-05

Similar Documents

Publication Publication Date Title
WO2008075756A1 (ja) 化合物、光電変換素子及び光電気化学電池
US8415558B2 (en) Dye sensitization photoelectric converter
JP5204848B2 (ja) 光電気素子
EP1528580B2 (en) Dye-sensitized type solar cell
EP1981047B1 (en) Photoelectric conversion device
KR20110134470A (ko) 색소 증감 태양전지, 광전 변환 소자 및 그것에 사용되는 색소
WO2008120810A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2008266639A (ja) 化合物、光電変換素子及び光電気化学電池
JP4999334B2 (ja) 色素化合物、該化合物を用いた光電変換素子及び光電気化学電池
JP5874140B2 (ja) 色素増感太陽電池
JP2007112987A (ja) 化合物、光電変換素子及び光電気化学電池
JP2008266634A (ja) 化合物、光電変換素子及び光電気化学電池
WO2007072970A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2007197424A (ja) 化合物、光電変換素子及び光電気化学電池
JP2012156096A (ja) 光電変換素子およびそれを用いた色素増感型太陽電池
KR101530454B1 (ko) 광전 변환 소자 및 광전 변환 소자용 색소, 그리고 화합물
JP6101625B2 (ja) 光電変換素子用色素、それを用いた光電変換膜、電極及び太陽電池
JP2007063266A (ja) 化合物、光電変換素子及び光電気化学電池
WO2010117871A2 (en) An electrolyte solution for dye-sensitized solar cells and a dye-sensitized solar cell
WO2007015536A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2007217581A (ja) 環状化合物
WO2007034976A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2006004736A (ja) 光電変換素子及び光電変換素子用色素
WO2011104992A1 (ja) 光電変換素子及び光電変換素子用色素
JP2009242379A (ja) 共役化合物、該共役化合物を用いた光電変換素子及び光電気化学電池及び光電変換素子電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070031158

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007003115

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07859921

Country of ref document: EP

Kind code of ref document: A1