WO2007015536A1 - 化合物、光電変換素子及び光電気化学電池 - Google Patents

化合物、光電変換素子及び光電気化学電池 Download PDF

Info

Publication number
WO2007015536A1
WO2007015536A1 PCT/JP2006/315357 JP2006315357W WO2007015536A1 WO 2007015536 A1 WO2007015536 A1 WO 2007015536A1 JP 2006315357 W JP2006315357 W JP 2006315357W WO 2007015536 A1 WO2007015536 A1 WO 2007015536A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
complex compound
compound
groups
Prior art date
Application number
PCT/JP2006/315357
Other languages
English (en)
French (fr)
Inventor
Toshiya Takahashi
Kunihito Miyake
Tetsuo Kawata
Akio Tanaka
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2007015536A1 publication Critical patent/WO2007015536A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a compound, a photosensitizing dye containing the compound, a photoelectric conversion element containing the photosensitizing dye, and a photoelectrochemical cell such as a solar cell containing the photoelectric conversion element.
  • C_ ⁇ 2 released into the atmosphere in order to prevent global warming.
  • C_ ⁇ 2 for example, toggle to a solar system using photoelectrochemical cell such as a silicon-based solar cell pn-junction on the roof of a house it has been proposed.
  • photoelectrochemical cell such as a silicon-based solar cell pn-junction on the roof of a house it has been proposed.
  • single crystal, polycrystalline and amorphous silicon used in the silicon-based photoelectrochemical cell have a problem that they are expensive because high temperature and high vacuum conditions are required in the production process.
  • Japanese National Publication No. Hei 7-0 0 6 30 includes a photoelectric conversion element in which a photosensitizing dye (1) that is easy to manufacture is adsorbed on the surface of semiconductor fine particles such as titanium oxide.
  • a photoelectrochemical cell is disclosed.
  • the photosensitizing dye (1) has a low solubility in an organic solvent, and there is a problem that it takes a long time to adsorb a sufficient amount of the dye compound to the surface of the semiconductor fine particles. Disclosure of the invention
  • An object of the present invention is to provide a photosensitizing dye that can be adsorbed on the surface of a titanium oxide thin film in a short time due to its high solubility in an organic solvent, has a large amount of adsorption on the surface of the titanium oxide thin film, and can be easily produced. It is to provide a suitable compound. That is, the present invention provides the following [1] to [20].
  • a complex compound (I) comprising a metal atom, a ligand represented by the formula ( ⁇ ), and a ligand represented by the formula (III).
  • R 1 and R 2 each independently represent a salt of a proton-donating group or a proton-donating group, and at least one of R 1 and R 2 is a proton-donating group
  • R 3 and R 4 Each independently represents a proton non-donating group, R 3 and R 4 may be bonded to each other, and A and B each independently contain a silicon atom, a sulfur atom, or a selenium atom.
  • M and n each independently represents an integer of 0 to 2
  • a, b, c and d each independently represents an integer of 0 to 2, a + b ⁇ 1.
  • R 3 and R 4 are alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, alkoxyalkyl groups having 2 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms.
  • [1] to [4] which is at least one group selected from the group consisting of an aryl group, an alkyl group having 1 to 20 carbon atoms, or an amino group substituted with an aryl group having 6 to 20 carbon atoms.
  • Complex compound (I) in any one.
  • [6] The complex compound (1) according to any one of [1] to [5], wherein R 3 and R 4 are alkyl groups having 1 to 20 carbon atoms.
  • R 'and R 2 are strong lpoxyl groups or salts thereof
  • R 3 and R 4 are alkyl groups having 1 to 20 carbon atoms or alkoxy groups having 1 to 20 carbon atoms
  • B is — S— The complex compound (I) according to any one of [1] to [12].
  • R 3 and R 4 are each independently an alkyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms.
  • R 3 and R 4 is an alkyl group of 2-2 0 carbon atoms [1 5] to serial mounting of complex compound (111).
  • a photosensitizing dye comprising the compound according to any one of [1] to [14].
  • a photoelectrochemical cell comprising the photoelectric conversion element according to [19], a charge transfer layer, and a counter electrode.
  • the present invention provides a complex compound comprising a metal atom such as Fe, Ru, or Os, preferably Ru, a ligand represented by the formula (II), and a ligand represented by the formula (III) ( I).
  • R 1 and R 2 each independently represents a salt of a proton donating group or a donor donating group, and at least one of R 1 and R 2 is a proton donating group.
  • proton donating groups include phenolic hydroxyl groups, carboxyl groups, sulfonic acid groups, squaric acid groups, phosphoric acid groups, boric acid groups, and kaic acid groups. Of these, phenolic hydroxyl groups, carboxyl groups, and sulfonic acid groups are preferred because they are easy to produce, and carboxyl groups are particularly preferred.
  • R ′ and R 2 are the same type of group because production is easy.
  • At least one of R 1 and R 2 may form a salt.
  • the salt include organic base salts, such as tetraalkyl ammonium salt, imidazolium salt, pyridinium salt, etc. Is mentioned.
  • a and b each independently represents an integer of 0 to 2, and a + b ⁇ 1, that is, the formula (II) includes at least one proton donating group.
  • R 3 and R 4 each independently represent a proton non-donating group and are substituents different from R 1 and R 2 .
  • an alkyl group an alkoxy group, an alkoxyalkyl group, an aryloxy group, an arylalkyloxy group, an aryloxyalkyl group; an alkylthio group, an alkylthioalkyl group, an arylthio group, an arylalkylthio group, an alkyl group Reel thioalkyl group; alkyl A sulfonyl group, an arylsulfonyl group; an amino group disubstituted by an alkyl group or an aryl group, and the like.
  • the alkyl group has 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms.
  • specific examples include linear alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-pentyl group, an n-year-octyl group, and an n-nonyl group;
  • Examples include branched alkyl groups such as i-propyl group, t-butyl group and 2-ethylhexyl group; alicyclic alkyl groups such as cyclopropyl group and cyclohexyl group.
  • the aryl group has 6 to 20 carbon atoms, and specific examples include aromatic groups such as phenyl, naphthyl, and benzyl groups.
  • the carbon atom contained in the alkyl group or aryl group may be substituted with an oxygen atom, a sulfur atom, or a nitrogen atom.
  • Examples of the amino group that is disubstituted by an alkyl group or an aryl group include, for example, a straight chain such as a dimethylamino group, a jetylamino group, a dipropylamino group, a methylethylamino group, a methylhexylamino group, and a methyloctylamino group.
  • Dialkylamino groups including branched alkyl groups; aromatic amino groups such as phenylamino groups, naphthylamino groups, and benzilamino groups; diaromatic amino groups such as diphenylamino groups, dinaphthylamino groups, and dibenzylamino groups; Can be mentioned.
  • R 3 and R 4 may be bonded to each other.
  • R 3 may be bonded (or R 4 may be bonded).
  • c and d each independently represents an integer of 0 to 2.
  • R 3 and R 4 are preferably an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkoxyalkyl group having 2 to 20 carbon atoms, particularly 1 to 2 carbon atoms.
  • a 0 alkyl group and an alkoxy group having 1 to 20 carbon atoms are preferred.
  • a and B each independently represent a group containing a silicon atom, a sulfur atom, or a selenium atom.
  • n and n are each independently an integer of 0 to 2, and m + n ⁇ l.
  • -(A) m ⁇ and 1 (B) n — are specific examples: — S i (Y 1 ) (Y 2 ) — [where Y 1 and Y 2 are each independently a hydrogen atom or Represents a hydrocarbon group having 1 to 20 carbon atoms. ]), - S-, - SO-, - S_ ⁇ 2 - one S e- and the like, preferably as single S- is.
  • a (and B) SO in the case of S_ ⁇ 2 can be obtained by oxidizing in the S crosslinked m- black port perbenzoic acid, etc., in the manufacturing method of the ligand (II), R
  • 1 and R 2 are carboxyl groups, they can be protected with esters (eg, methyl ester, ethyl ester, propyl ester, butyl ester), etc., and then subjected to a coupling reaction and then hydrolyzed back to a strong loxyl group. or Pd cat.
  • m l, 2
  • a commercially available dipyridyl compound may be used as it is for the compound (ii) and the compound (III).
  • Specific examples of the compound ( ⁇ ) include the compounds represented by the following formula and Table 1 (II-1) (11-10).
  • R 3 and R 4 in formula (III) are each independently an alkyl group having 2 20 carbon atoms, an alkoxy group having 1 20 carbon atoms, or 2 20 carbon atoms. Alkoxyalkyl group, aryloxy group having 6 to 20 carbon atoms, arylalkyloxy group having 7 to 20 carbon atoms, carbon number?
  • alkyloalkyl group alkyl group having 1-20 carbon atoms, alkylthioalkyl group having 2-20 carbon atoms, arylthio group having 6-20 carbon atoms, arylalkylthio group having 7-20 carbon atoms 2 substitution with an aryl thioalkyl group having 7 to 20 carbon atoms, an alkylsulfonyl group having 1 to 20 carbon atoms, an arylsulfonyl group having 6 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or an aryl group.
  • a non-proton-providing group which is at least one group selected from the group consisting of selected amino groups, and — (B) n — is — S—, — S ⁇ 2 — or — S e— Yes, n represents an integer of 1 to 2, and c and d each independently represents an integer of 1 to 2.
  • the complex compound (I) preferably contains one ligand represented by the formula (II) and one ligand represented by the formula (III) with respect to one metal atom.
  • Ru reagent divalent and trivalent Ru reagents are used, and specific examples include RuCl 3 and RuCl 2 (DMS0).
  • specific examples of the complex compound (I) include the compounds represented by the following formula and Table 3 (1-1) to (1-56), and the compounds represented by the following formula and Table 4 (1-57 ) To (1-112).
  • the photosensitizing dye of the present invention is a dye containing the complex compound (I).
  • the dye may contain only the complex compound (I) or may contain a different type of compound from the complex compound (I).
  • Examples of the dye that may be mixed with the complex compound (I) include organic dyes and metal complexes having absorption in the vicinity of a wavelength of 300 to 700 nm.
  • metal complexes that may be mixed include metal phthalocyanines such as copper phthalocyanine, titanyl phthalocyanine, chlorophyll, hemin, ruthenium and osmium described in JP-A-11-220380. , Iron and zinc complexes.
  • metal phthalocyanines such as copper phthalocyanine, titanyl phthalocyanine, chlorophyll, hemin, ruthenium and osmium described in JP-A-11-220380.
  • Iron and zinc complexes Iron and zinc complexes.
  • ruthenium complexes include c-bis (isothiocyanate) bis (2,2'-pipyridyl-4,4'-dicarboxylate) -ruthenium (II) bis-tetrabutylammonium, Bis (isothiocynate) bis (2,2'-pipyridyl-4,4'-dicarboxylate) -ruthenium (11), tris (isothiocynate) monoruthenium ( ⁇ ) -2, 2 ': 6 ', 2 "-Te-Pyridine-4, 4', 4" -Tricarponate Tris-tetraptylammonium, cis-bis (isothiocyanate) (2,2'-bipyridyl-4, 4 ' -Dicarpoxylate) (2,2'-bibilidyl-4,4'-dinonyl) ruthenium (II).
  • organic dyes examples include metal-free phthalocyanine, cyanine dyes, merocyanine dyes, xanthene dyes, triphenylmethane dyes, coumarin dyes, indoline organic dyes, squalium dyes, and the like.
  • cyanine dyes include NK 1 1 94, NK 3422 (both manufactured by Nippon Photosensitivity Laboratories).
  • merocyanine dyes include NK242 6 and NK 2501 (both manufactured by Nippon Photosensitivity Laboratories).
  • xanthene dyes examples include uranin, eosin, rose bengal, rhodamine B, dibromofluorescein and the like.
  • triphenylmethane dye examples include malachite green and crystal violet.
  • Examples of coumarin dyes include NKX-2 6 7 7 (produced by Hayashibara Biochemical Research Institute).
  • indoline-based organic pigments include compounds containing the structural sites shown below.
  • squarylium-based organic dyes include compounds containing the structural sites shown below.
  • the photoelectric conversion element of the present invention is an element including a semiconductor fine particle layer adsorbed with a photosensitizing dye containing the complex compound (I) of the present invention and a conductive substrate, and the photosensitizing dye is Since the solubility in organic solvents is high, a large amount of the photosensitizing dye can be adsorbed to the semiconductor fine particles in a short time. As a result, the photoelectric conversion element can be produced industrially advantageously.
  • the primary particle size of the semiconductor fine particles used in the photoelectric conversion element is usually about 1 to 500 nm, preferably about 5 to 300 nm. For the purpose of improving the photoelectric conversion efficiency by reflection, semiconductor fine particles with different primary particle sizes may be mixed.
  • Tubes and hollow fine particles may be used.
  • the material compound constituting the semiconductor fine particles include titanium oxide, soot oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, and lanthanum oxide.
  • Metal oxides such as vanadium oxide, niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate;
  • Metal halides such as silver iodide, silver bromide, copper iodide, copper bromide;
  • Metal sulfides such as zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, antimony sulfide;
  • Metal selenides such as cadmium selenide, zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide;
  • Metal tellurides such as cadmium telluride, tungsten telluride, molybdenum telluride, zinc telluride, bismuth telluride;
  • Metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide, cadmium phosphide;
  • Material compounds such as gallium arsenide, copper-indium-selenide, copper indium-sulfide, silicon, germanium and the like can be mentioned.
  • a conductive substance itself or a substrate in which a conductive substance is superimposed can be used.
  • conductive materials include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, palladium, iron, and other metals, metal alloys of the metal, indium oxide composite oxide, tin oxide, and fluorine.
  • conductive metal oxides such as those prepared, conductive polymers such as carbon, polyethylene dioxythiophene (PEDOT), and polyaniline.
  • the conductive polymer may be doped with paratoluenesulfonic acid or the like.
  • the conductive substrate preferably has a texture structure on its surface.
  • the conductive layer (2 and 6 in FIG. 1) should have a lower resistance, and preferably has a high transmittance (at a wavelength longer than 3500 nm, a transmittance of 80% or more).
  • a glass or plastic coated with a conductive metal oxide is preferable.
  • conductive glass in which conductive layers made of tin dioxide doped with fluorine are laminated is particularly preferable.
  • PET Polyethylene terephthalate
  • PEN Polyethylene naphtharate
  • PPS Polyphenylene sulfide
  • PC Polypropylene
  • PI Polyimide
  • TAC Triacetyl cellulose
  • SPS syndiotactic polystyrene
  • PAR polyarylate
  • arton registered trademark of JSR
  • zeonoa registered trademark of Nippon Zeon
  • Abel registered trademark of Mitsui Chemicals
  • COP Cyclopolyolefin
  • TOPAS registered trademark of T icona
  • PES polyethersulfone
  • PEI polyetherimide
  • PSF polysulfone
  • PA polyamide
  • conductive PET with a conductive layer made of ingzimuthin composite oxide is particularly preferred because of its low resistance, good permeability, and low availability.
  • a method for forming a semiconductor fine particle layer on a conductive substrate a method in which semiconductor fine particles are directly formed as a thin film on a conductive substrate by spray spraying, etc .; a semiconductor fine particle thin film is electrically deposited using the conductive substrate as an electrode. Examples of the method include: a method in which a slurry of semiconductor fine particles is applied on a conductive substrate and then dried, cured, or baked.
  • Examples of methods for applying the semiconductor fine particle slurry onto the conductive substrate include doctor blades, squeegees, spin coating, dip coating, and screen printing.
  • the average particle diameter in the dispersed state of the semiconductor fine particles in the slurry is preferably from 0.01 zm to 100.
  • the dispersion medium for dispersing the slurry may be any medium that can disperse the semiconductor fine particles. Water or an alcohol solvent such as ethanol, isopropanol, t-butanol or terbinol; an organic solvent such as a ketone solvent such as acetone. A solvent is used. These water and organic solvent may be a mixture.
  • the dispersion may contain a polymer such as polyethylene glycol; a surfactant such as Triton-X; an organic acid or inorganic acid such as acetic acid, formic acid, nitric acid or hydrochloric acid; and a chelating agent such as acetylylaceton.
  • a polymer such as polyethylene glycol
  • a surfactant such as Triton-X
  • an organic acid or inorganic acid such as acetic acid, formic acid, nitric acid or hydrochloric acid
  • a chelating agent such as acetylylaceton.
  • the conductive substrate coated with the slurry is fired, but the firing temperature is lower than the melting point (or softening point) of the base material such as a thermoplastic resin.
  • the upper limit of the firing temperature is 900 ° C, preferably Is 600 and below.
  • the firing time is usually within 10 hours.
  • the thickness of the semiconductor fine particle layer on the conductive substrate is usually l to 200 m, preferably 5 to 50 m.
  • the surface of the semiconductor fine particle layer may be subjected to chemical plating using a titanium tetrachloride aqueous solution or electrochemical plating using a titanium trichloride aqueous solution.
  • the surface area of the semiconductor fine particles is increased, the purity in the vicinity of the semiconductor fine particles is increased, impurities such as iron existing on the surface of the semiconductor fine particles are obscured, or the connectivity of the semiconductor fine particles, The connectivity can be increased.
  • the semiconductor fine particles preferably have a large surface area so that many photosensitizing dyes can be adsorbed. Therefore, the surface area of the semiconductor fine particle layer applied on the substrate is preferably 10 times or more, more preferably 100 times or more the projected area. This upper limit is usually about 100 times.
  • the semiconductor fine particle layer is not limited to a single fine particle layer, and a plurality of layers having different particle diameters may be stacked.
  • a method for adsorbing the photosensitizing dye of the present invention to the semiconductor fine particles a method of immersing the well-dried semiconductor fine particles in the solution of the photosensitizing dye of the present invention for about 1 minute to 24 hours is used. The adsorption of the dye may be performed at room temperature or under heating and reflux.
  • Dye adsorption may be performed before or after application of the semiconductor fine particles.
  • the semiconductor fine particles and the dye may be applied and adsorbed simultaneously.
  • the dye is adsorbed on the semiconductor fine particle film after application. More preferably.
  • the dye adsorption is preferably performed after the heat treatment, and a method of quickly adsorbing the dye after the heat treatment and before water is adsorbed on the surface of the fine particle layer is particularly preferable.
  • One type of dye may be adsorbed, or a mixture of several types may be used.
  • a dye it is preferable to select a dye to be mixed so that the wavelength range of photoelectric conversion of irradiation light such as sunlight is as wide as possible.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably from 0.01 to 1 mmol per 1 g of the semiconductor fine particles. Such a dye amount is preferable because the sensitizing effect in the semiconductor fine particles can be sufficiently obtained and the reduction of the sensitizing effect due to the floating of the dye not attached to the semiconductor fine particles tends to be suppressed.
  • a colorless compound may be co-adsorbed for the purpose of suppressing the interaction between the dyes such as association and aggregation.
  • the hydrophobic compound to be co-adsorbed include a steroid compound having a strong lupoxyl group (for example, chenodeoxycholic acid).
  • the surface of the semiconductor fine particles may be treated with amines after adsorbing the dye.
  • Preferable amines include pyridine, 4 tert-butylpyridine, polyvinylpyridine and the like. When these are liquids, they may be used as they are, or solid combinations may be dissolved in an organic solvent.
  • the photoelectrochemical cell of the present invention includes a photoelectric conversion element, a charge transfer layer, and a counter electrode, and can convert light into electricity.
  • a photoelectric conversion element, a charge transfer layer, and a counter electrode are sequentially stacked, and a conductive substrate and a counter electrode of the photoelectric conversion element are connected to move charges, that is, generate power.
  • photoelectrochemical cells include, for example, a photoelectrochemical cell comprising a plurality of stacked portions composed of photoelectric conversion elements and charge transfer layers and one counter electrode, for example, a plurality of photoelectric conversion elements, one charge transfer layer. And a photoelectrochemical cell in which one counter electrode is laminated.
  • Photoelectrochemical cells are roughly classified into wet photoelectrochemical cells and dry photoelectrochemical cells.
  • the wet photoelectrochemical cell is a layer in which the included charge transfer layer is composed of an electrolyte solution. Normally, the charge transfer layer is filled with an electrolyte solution between a photoelectric conversion element and a counter electrode.
  • Examples of the dry photoelectrochemical cell include a battery in which the charge transfer layer between the photoelectric conversion element and the counter electrode is a solid hole transport material.
  • a semiconductor particle layer 3 is filled with an electrolytic solution 5 and sealed with a sealing material 10.
  • the conductive substrate 8 includes a substrate 1 and a conductive layer 2 in order from the top.
  • the counter electrode 9 is composed of a substrate 7 and a conductive layer 6 in order from the bottom.
  • examples of the electrolyte used in the electrolyte contained in the wet photoelectrochemical cell include a combination of 12 and various iodides, Br 2 Combinations of various bromides, combinations of metal complexes of ferrocyanate-ferricyanate, combinations of metal complexes of phenoxycene-ferricinium ion, combinations of alkyl compounds of alkylthio-monoalkyldisulfides, alkyl Examples include combinations of viologen and its reduced form, and combinations of polyhydroxybenzenes and their oxidants.
  • the ® ⁇ product that may be combined with I 2, for example, L i I, N a I , KI, C s I and C a I 2 of a metal such as iodides; 1-propyl - 3-methylimidazolium Riumuaio
  • a metal such as iodides
  • 1-propyl - 3-methylimidazolium Riumuaio examples include iodine, tetravalent imidazolium compounds such as diido, 1-propyl-1,2,3-dimethylimidazolium idide; iodine salts of tetravalent pyridinium compounds; iodine salts of tetraalkylammonium compounds, etc.
  • the bromide may be combined with B r 2, for example, L i B r, N a B r, KB r, C s B r and C a B r 2, etc. of the metal bromide; tetraalkyl ammonium Niu Mubu Roma Id and pyridinium Examples include bromine salts of tetravalent ammonium compounds such as umbromide.
  • alkyl viologen examples include methyl viologen chloride, hexyl viologen bromide, and benzyl viologen tetrafluoroborate.
  • polyhydroxybenzenes examples include hydroquinone and naphthohydroquinone. .
  • At least one iodine selected from the group consisting of metal iodides, tetravalent imidazolium compound iodine salts, tetravalent pyridinium compound iodine salts, and tetraalkylammonium compound iodine salts.
  • the combination of the compound and I 2 is preferred.
  • organic solvent used in the above electrolyte examples include nitrile solvents such as acetonitrile, methoxyacetate nitrile and propionitrile; carbonate solvents such as ethylene carbonate and pyrene carbonate; 1-methyl-1-propylimidazolium Iodide may include ionic liquids such as 1-methyl-3-hexylimidazolium iodide; 11-ethyl-3-methylimidazolium bis (trifluorosulfonic acid) imide.
  • lactone solvents such as alpha lactones
  • amide solvents such as N, N-dimethylformamide and the like can be mentioned.
  • solvents may be gelled with a polyacrylonitrile, polyvinylidene fluoride, poly-4-vinylpyridine, or a low-molecular gelling agent shown in Chemistry Letters, 1 24 1 (1 998).
  • a solid hole transport material can be used instead of the electrolyte.
  • p-type inorganic semiconductors containing monovalent copper such as Cu I and Cu S CN, Synthetic Metal, 89, 2 1 5 (1 997) and Nature, 39 5, 583 (1998); polythiophene and derivatives thereof; polypyrrole and derivatives thereof; polyaniline and derivatives thereof; poly (p-phenylene) and derivatives thereof; Conductive polymers such as p-phenylenevinylene) and derivatives thereof can be used.
  • the counter electrode constituting the photoelectric conversion element of the present invention is a conductive electrode, and a substrate similar to the conductive substrate may be used in order to maintain strength and improve hermeticity.
  • the conductive substrate and the counter electrode Since light reaches the semiconductor fine particle layer on which the photosensitizing dye is adsorbed, at least one of the conductive substrate and the counter electrode is substantially transparent.
  • the conductive substrate having the semiconductor fine particle layer is transparent and the irradiation light is incident from the conductive substrate side.
  • the counter electrode 9 has a property of reflecting light.
  • the counter electrode 9 of the photoelectric conversion element for example, glass or plastic on which metal, carbon, conductive oxide or the like is deposited can be used.
  • the conductive layer can be formed by a method such as vapor deposition or sputtering so as to have a thickness of 1 mm or less, preferably in the range of 5 nm to 100 m.
  • sealing may be performed using a sealing material.
  • sealing material examples include: Ionoma mono-resin such as Himiran (Mitsui DuPont Polychemical); Glass frit; Hot-melt adhesive such as SX 1 1700 (Solaronix); Amo sil 4 (Solaronix) Such adhesives; BY NEL (made by DuPont) can be used.
  • Ionoma mono-resin such as Himiran (Mitsui DuPont Polychemical)
  • Glass frit such as SX 1 1700 (Solaronix); Amo sil 4 (Solaronix)
  • BY NEL made by DuPont
  • BY NEL made by DuPont
  • the reaction solution is concentrated by evaporation and the main component is concentrated from the concentrated residue as a high-speed liquid. Separation by chromatography gave a purple solid (yield 72%). The obtained solid was confirmed to be the target compound (1-1, molecular weight 6 78) by ESI-MS.
  • a laminate of a semiconductor fine particle layer adsorbing a substrate and a photosensitizing dye was obtained (the area of the titanium oxide electrode was 24 mm 2 ) Next, around the layer, a thickness of 25 m was obtained as a spacer.
  • electrolyte solution solvent is acetonitrile, the iodine concentration in the solvent is 0.05 mol liters, the lithium iodide concentration is 0.1 mol liters, the same 4-t (Butylpyridine concentration was 0.5 mol liters and 1 -propyl-2,3-dimethylimidazolium iodide concentration was 0.6 mol liters.)
  • solvent is acetonitrile
  • the iodine concentration in the solvent is 0.05 mol liters
  • the lithium iodide concentration is 0.1 mol liters
  • the same 4-t butylpyridine concentration was 0.5 mol liters and 1 -propyl-2,3-dimethylimidazolium iodide concentration was 0.6 mol liters.
  • Superposition A photoelectrochemical cell in which a conductive substrate, a semiconductor fine particle layer adsorbing a photosensitizing dye, and a counter electrode of the
  • the conversion efficiency was measured in the wavelength range of 300 nm to 800 nm using a Yamashita Denso solar simulator (model YSS-80A).
  • the light intensity at the time of measurement was 10 OmW / cm 2 .
  • Example 2 For the photoelectrochemical cell obtained in Comparative Example 1 below, the conversion efficiency is 1, and the relative value of the conversion efficiency of the photoelectric conversion element obtained in Example 1 is shown in Table 5.
  • Example 2 For the photoelectrochemical cell obtained in Comparative Example 1 below, the conversion efficiency is 1, and the relative value of the conversion efficiency of the photoelectric conversion element obtained in Example 1 is shown in Table 5.
  • Example 3 A photoelectrochemical cell was obtained in the same manner as in Example 1 except that the compound (1-2) was used as the photosensitizing dye. Next, the conversion efficiency was measured in the same manner as in Example 1. The results are summarized in Table 5. Example 3
  • This product was purified by silica gel column chromatography, dissolved in 50 ml of hexane, 200 to 300 mg of activated carbon was added, and the mixture was stirred at room temperature for minutes and then filtered through celite. The residue obtained by concentrating the filtrate under reduced pressure was dried under reduced pressure to obtain an oily compound (111-8, 2.00 g, 4.27 mmoL) having a purity of 97.0% in a yield of 53.7%.
  • Compound (1-3) was obtained in the same manner as in Production Example 2, except that compound (III-8) was used in place of compound (III-3).
  • the obtained solid was confirmed by ESI-MS to be the target compound (1-3, molecular weight 930).
  • Example 4 A photoelectrochemical cell was obtained in the same manner as in Example 1 except that the compound (1-3) was used as the photosensitizing dye. Next, the conversion efficiency was measured in the same manner as in Example 1. The results are summarized in Table 5. Example 4
  • the obtained solid was confirmed by ESI-MS to be the target compound (1-4, molecular weight 1183).
  • Example 5 A photoelectrochemical cell was obtained in the same manner as in Example 1 except that the compound (1-4) was used as the photosensitizing dye. Next, the conversion efficiency was measured in the same manner as in Example 1. The results are summarized in Table 5. Example 5
  • the obtained solid was confirmed to be the target compound (1-5, molecular weight 7 10) by ESI-MS.
  • a photoelectrochemical cell was obtained in the same manner as in Example 1 except that the compound (I-5) was used as the photosensitizing dye. Next, the conversion efficiency was measured in the same manner as in Example 1. The results are summarized in Table 5. Comparative Example 1
  • the compound of the present invention can be adsorbed to semiconductor fine particles in a short time, it is suitably used industrially as a photosensitizing dye.
  • the photoelectric conversion element containing the compound is excellent in photoelectric conversion efficiency, it can be suitably used for solar cells using sunlight, photoelectrochemical cells using tunnels or artificial light indoors, and the like.
  • the photoelectric conversion element can be suitably used as a photosensor or the like because current flows when irradiated with light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

明 細 書 化合物、 光電変換素子及び光電気化学電池 技術分野
本発明は、 化合物、 該化合物を含む光増感色素、 該光増感色素を含む光電変 換素子、 及び該光電変換素子を含む太陽電池などの光電気化学電池に関する。 背景技術
近年、 地球温暖化防止のために大気中に放出される C〇2 の削減が求められ ている。 C〇2 の削減の有力な手段として、 例えば、 家屋の屋根に p n接合型 のシリコン系太陽電池などの光電気化学電池を用いるソーラーシステムへの切 り替えが提唱されている。 しかしながら、 上記シリコン系光電気化学電池に用 いられる単結晶、 多結晶及びアモルファスシリコンは、 その製造過程において 高温、 高真空条件が必要なために高価であるという問題があった。
特表平 7— 5 0 0 6 3 0号公報 (適用例 A ) には、 製造が容易な光増感色素 ( 1 ) を酸化チタンなどの半導体微粒子の表面に吸着させた光電変換素子を含 む光電気化学電池が開示されている。
Figure imgf000003_0001
しかしながら、 光増感色素 (1 ) は有機溶媒への溶解度が低く、 半導体微粒 子の表面へ十分な量の色素化合物を吸着させるためには、 長時間を必要とする という問題があった。 発明の開示
本発明の目的は、 有機溶媒への溶解度が高いことから短時間で酸化チタン薄 膜表面に吸着可能で、 酸化チタン薄膜表面への吸着量が多く、 容易に製造する ことができる光増感色素に好適な化合物を提供することである。 即ち、 本発明は、 以下の [ 1 ] 〜 [ 2 0 ] を提供するものである。
[ 1 ] . 金属原子、 式 (Π) で表される配位子、 及び式 (I I I ) で表される配 位子を含む錯体化合物 (I ) 。
Figure imgf000004_0001
[式中、 R1及び R2は、 それぞれ独立に、 プロトン供与性基の塩又はプロトン 供与性基を表し、 R1及び R2の少なくとも一方はプロトン供与性基であり、 R 3及び R4は、 それぞれ独立に、 プロトン非供与性基を表し、 R3及び R4は互い に結合していてもよく、 A及び Bはそれぞれ独立に、 ケィ素原子、 硫黄原子、 又はセレン原子を含む基を表し、 m及び nはそれぞれ独立に 0〜 2の整数を表 し、 m+n≥ lであり、 a、 b、 c及び dは、 それぞれ独立に、 0〜2の整数 を表し、 a + b≥ 1である。 ]
[ 2 ] . R'及び R2が、 フエノール性水酸基、 力ルポキシル基、 スルホン酸基 、 スクアリン酸基、 リン酸基、 ホウ酸基及びケィ酸基からなる群から選ばれる 少なくとも 1種のプロトン供与性基である [ 1] に記載の錯体化合物 (I) 。
[3] . R1及び R2が力ルポキシル基の塩又は力ルポキシル基である [ 1] 又 は [2] に記載の錯体化合物 (I) 。
[4] . R1及び R2の塩が、 有機塩基の塩である [1] 〜 [3] のいずれかに 記載の錯体化合物(1)。
[5] . R3及び R4が、 炭素数 1〜 2 0のアルキル基、 炭素数 1〜20のアル コキシ基、 炭素数 2〜 20のアルコキシアルキル基、 炭素数 6〜2 0のァリー ルォキシ基、 炭素数 7〜20のァリールアルキルォキシ基、 炭素数 7〜2 0の ァリールォキシアルキル基、 炭素数 1〜 20のアルキルチオ基、 炭素数 2〜2 0のアルキルチオアルキル基、 炭素数 6〜20のァリールチオ基、 炭素数 7〜 2 0のァリールアルキルチオ基、 炭素数 7〜 2 0のァリールチオアルキル基、 炭素数 1〜 2 0のアルキルスルホニル基、 炭素数 6〜20のァリールスルホニ ル基、 炭素数 1〜 20のアルキル基または炭素数 6〜 20のァリール基で 2置 換されたァミノ基からなる群から選ばれる少なくとも 1種の基である [ 1] 〜 [4] のいずれかに記載の錯体化合物 (I) 。 [6] . R3及び R4が、 炭素数 1〜 2 0のアルキル基である [ 1 ] 〜 [5] の いずれかに記載の錯体化合物(1)。
[7] . R3及び R4が、 炭素数 1〜 2 0のアルコキシ基である [ 1] 〜 [5] のいずれかに記載の錯体化合物(1)。
[8] . - (A) m ―、 及び一 (B) n —が、 — S ί (Υ1 ) (Υ2 ) ―、 一 S―、 一 SO—、 ― S〇2 —、 一 S e―からなる群から選ばれる少なくとも 1 種の基である [ 1] 〜 [7] のいずれかに記載の錯体化合物 (I) 。 [但、 Y 1 及び Y2 はそれぞれ独立に、 水素原子または炭素数 1〜 20の炭化水素基を 表す。 ]
[9] . ― (A) m ―、 及び— (B) n —が、 ― S—である [ 1] 〜 [8] の いずれかに記載の錯体化合物 (I)
[ 1 0] . a + b = 2及び c + d = 2である [1] 〜 [9] のいずれかに記載 の錯体化合物(1)。
[1 1] . m + n = 1である [ 1 ] 〜 [ 1 0] のいずれかに記載の錯体化合物 (1)。
[ 1 2] . m= 0、 n = 1である [ 1 ] 〜 [ 1 1 ] のいずれかに記載の錯体化 合物(1)。
[ 1 3] . R'及び R2が力ルポキシル基又はその塩で、 R3及び R4が炭素数 1 〜 20のアルキル基又は炭素数 1 ~ 20のアルコキシ基で、 Bが、 — S—であ る [ 1 ] 〜 [ 1 2] のいずれかに記載の錯体化合物 (I) 。
[ 14] . 金属原子が F e、 Ruまたは〇 sである [ 1] 〜 [ 1 3] のいずれ かに記載の錯体化合物 (I) 。
[ 1 5] . 式 (ΠΙ) で表される化合物。
Figure imgf000005_0001
[式中、 R3及び R4が、 それぞれ独立に、 炭素数 2〜 20のアルキル基、 炭素 数 1〜 20のアルコキシ基、 炭素数 2〜20のアルコキシアルキル基、 炭素数 6〜20のァリールォキシ基、 炭素数 7〜2 0のァリールアルキルォキシ基、 炭素数 7〜 2 0のァリールォキシアルキル基、 炭素数 1〜 20のアルキルチオ 基、 炭素数 2〜 20のアルキルチオアルキル基、 炭素数 6〜20のァリールチ ォ基、 炭素数 7〜 2 0のァリールアルキルチオ基、 炭素数 7〜20のァリール チォアルキル基、 炭素数 1〜 20のアルキルスルホニル基、 炭素数 6〜20の ァリールスルホニル基、 炭素数 1〜 20のアルキル基または炭素数 6〜 2 0の ァリール基で 2置換されたァミノ基からなる群から選ばれる少なくとも 1種の 基であるプロトン非供与性基であり、 Bは一 S―、 一 S〇2 —又は— S e—を 含む基を表し、 nは 1〜2の整数を表し、 c及び dは、 それぞれ独立に、 1〜 2の整数を表す。 ]
[ 1 6] . R 3 及び R4 が、 炭素数 2〜 2 0のアルキル基である [1 5] に記 載の錯体化合物(111)。
[1 7] . R 3 及び R4 が、 炭素数 1 20のアルコキシ基である [1 5] に 記載の錯体化合物(111)。
[ 1 8] [ 1 ] 〜 [ 14] のいずれかに記載の化合物を含む光増感色素。
[ 1 9] . 導電性基板及び [ 1 8] に記載の光増感色素を吸着させた半導体微 粒子層を含む光電変換素子。
[20] . [ 1 9] に記載の光電変換素子、 電荷移動層及び対極を含む光電気 化学電池。 図面の簡単な説明
[図 1 ]
本発明の光電気化学電池の断面模式図である。
[符号の説明]
1 基很
2 導電層
3 半導体粒子層
4 光増感色素
5 電解液
6 導電層
7 基板
8 導電性基板
9 対極
1 0 封止剤 発明を実施するための形態
以下、 本発明を詳細に説明する。
本発明は F e、 Ru、 〇 sなどの金属原子、 好ましくは Ruと、 前記式 (II ) で表される配位子及び前記式 (III) で表される配位子を含む錯体化合物 (I ) である。 式 (Π) 中、 R1及び R2は、 それぞれ独立に、 プロトン供与性基の塩又はプ 口トン供与性基を表し、 R1及び R2の少なくとも一方はプロトン供与性基であ る。 プロトン供与性基としては、 例えば、 フエノール性水酸基、 カルボキシル 基、 スルホン酸基、 スクアリン酸基、 リン酸基、 ホウ酸基、 ケィ酸基等が挙げ られる。 中でも、 フエノール性水酸基、 カルボキシル基、 スルホン酸基は製造 が容易であることから好ましく、 特にカルボキシル基が好適である。
R'及び R 2が同一種の基であると製造が容易であることから好ましい。
R1及び R2の少なくとも一方は、 塩を形成していてもよく、 塩としては、 有機 塩基の塩が挙げられ、 具体的にはテトラアルキルアンモニゥム塩、 イミダゾリ ゥム塩、 ピリジニゥム塩などが挙げられる。 a及び bはそれぞれ独立に 0〜 2の整数を表し、 a + b≥ l、 すなわち、 式 (II) には少なくとも 1つのプロトン供与性基が含まれる。 好ましくは a = b = 1である。 式 (III) において、 R3及び R4はそれぞれ独立にプロトン非供与性基を表 し、 R1及び R2とは異なる置換基である。 具体的には、 アルキル基;アルコキ シ基、 アルコキシアルキル基、 ァリールォキシ基、 ァリールアルキルォキシ基 、 ァリールォキシアルキル基; アルキルチオ基、 アルキルチオアルキル基、 ァ リールチオ基、 ァリールアルキルチオ基、 ァリールチオアルキル基;アルキル スルホニル基、 ァリールスルホニル基 ; アルキル基またはァリール基で 2置換 されたアミノ基などが挙げられる。
ここで、 錯体化合物 (I) として用いる場合、 アルキル基は、 炭素数 1〜 2 0、 好ましくは 1〜 1 2である。 具体例としては、 メチル基、 ェチル基、 n— プロピル基、 n—ブチル基、 n—へキシル基、 n—ペンチル基、 n—才クチル 基、 n—ノニル基などの直鎖状アルキル基 ; i —プロピル基、 t 一ブチル基、 2—エヂルーへキシル基などの分枝状アルキル基 ; シクロプロピル基、 シクロ へキシル基などの脂環式アルキル基等が挙げられる。
ァリール基は、 炭素数 6〜 2 0であり、 具体例としては、 フエニル基、 ナフ チル基、 ベンジル基などの芳香族基等が挙げられる。
アルキル基またはァリール基に含まれる炭素原子は、 酸素原子、 硫黄原子、 窒素原子に置換されていてもよい。 アルキル基またはァリール基で 2置換されたァミノ基としては、 例えば、 ジ メチルァミノ基、 ジェチルァミノ基、 ジプロピルアミノ基、 メチルェチルアミ ノ基、 メチルへキシルァミノ基、 メチルォクチルァミノ基などの直鎖状又は分 枝状のアルキル基を含むジアルキルアミノ基 ; フエニルァミノ基、 ナフチルァ ミノ基、 ベン.ジルァミノ基などの芳香族ァミノ基 ; ジフエ二ルァミノ基、 ジナ フチルァミノ基、 ジベンジルァミノ基などのジ芳香族アミノ基などが挙げられ る。
R3及び R4は互いに結合していてもよい。 また、 例えば、 c = 2 (又は d = 2) の場合には R3同士が (または R4 同士が) 結合していてもよい。
c及び dはそれぞれ独立に 0〜 2の整数を表す。
R3及び R4としては、 中でも、 炭素数 1〜 2 0のアルキル基、 炭素数 1〜2 0のアルコキシ基、 炭素数 2〜 2 0のアルコキシアルキル基が好ましく、 特に 、 炭素数 1〜 2 0のアルキル基、 炭素数 1〜 2 0のアルコキシ基が好ましい。 式 (II) 及び (III) において、 A及び Bはそれぞれ独立に、 ケィ素原子、 硫黄原子、 セレン原子を含む基を表す。
m及び nはそれぞれ独立に、 0〜 2の整数であり、 m+ n≥ lである。 好ま しくは、 m= 0のとき n= l、 m= lのとき n = 0、 または m =lのとき n = 1であり、 特に好ましくは、 m= 0、 n= lである。
- (A) m ―、 及び、 一 (B) n —の具体例としては、 — S i (Y1 ) (Y 2 ) — [ここで、 Y1 及び Y2 はそれぞれ独立に、 水素原子または炭素数 1〜 2 0の炭化水素基を表す。 ] ) 、 — S—、 — S O—、 — S〇2 ―、 一 S e—等 が挙げられ、 好ましくは一 S—が挙げられる。 化合物 (II) 及び化合物 (III) の製造方法としては、 例えば、 2—八ロゲ ン置換ピリジン誘導体を Ni触媒または Pd触媒存在下、 適当なホスフィン配位子 とともに反応させることで、 ピリジン誘導体の 2位でカツプリング反応させて 、 目的化合物 (m=0) を合成することが可能である (化合物 (II) の場合、 式 (2) の m=0のルートで表すことができる) 。
また、 A (及び B) が硫黄原子の場合は、 硫化ソーダと有機溶媒中、 反応さ せることで、 硫黄原子で架橋された目的化合物 (m= l、 2、 以下 S架橋体と いう場合がある) を得ることができる (化合物 (II) の場合、 式 (2) の下式 で表すことができる) 。
また、 A (及び B) が SO、 S〇2 の場合は S架橋体を m—クロ口過安息香 酸等で酸化することにより得ることができ、 配位子 (II) の製造方法において 、 R1及び R2がカルボキシル基である場合にはエステル (例えば、 メチルエス テル、 ェチルエステル、 プロピルエステル、 ブチルエステル) 等にして保護し てからカツプリング反応したのち、 加水分解して力ルポキシル基に戻せばよい or Pd cat.
Figure imgf000008_0001
m=l,2 化合物 (Π) 及び化合物 (III) は、 市販のジピリジル化合物をそのまま使 用してもよい。 化合物 (Π) の具体例としては、 下式及び表 1で表される化合物 (II - 1) (11-10) が挙げられる。
( II-l ) 〜 ( Π-10 )
Figure imgf000008_0002
表 1
Figure imgf000008_0003
(それぞれのピリジン環において、 窒素原子は 1位の位置であり、 Aと結合す る炭素原子は 2位の位置にある。 "A" の欄において一は単結合を意味する。 ) 化合物 (ΠΙ) の具体例としては、 下式及び表 2で表される化合物 (III - 2) 〜 (II 1-43) が挙げられる。
Figure imgf000009_0001
表 2
Figure imgf000009_0002
(それぞれのピリジン環において、 窒素原子は 1位の位置であり、 Bと結合す る炭素原子は 2位の位置にある。 "B" の欄において—は単結合を意味する。 ) 化合物 (III) としては、 式 (III) の R3及び R4が、 それぞれ独立に、 炭素 数 2 20のアルキル基、 炭素数 1 20のアルコキシ基、 炭素数 2 2 0の アルコキシアルキル基、 炭素数 6〜2 0のァリールォキシ基、 炭素数 7〜20 のァリールアルキルォキシ基、 炭素数?〜 2 0のァリールォキシアルキル基、 炭素数 1~20のアルキルチオ基、 炭素数 2〜 2 0のアルキルチオアルキル基 、 炭素数 6〜20のァリールチオ基、 炭素数 7〜 20のァリールアルキルチオ 基、 炭素数 7〜 20のァリールチオアルキル基、 炭素数 1〜 20のアルキルス ルホニル基、 炭素数 6〜20のァリールスルホニル基、 炭素数 1 ~2 0のアル キル基またはァリール基で 2置換されたァミノ基からなる群から選ばれる少な くとも 1種の基であるプロトン非供与性基であり、 ― (B) n —が、 — S―、 — S〇2 —又は— S e—であり、 nが 1〜2の整数を表し、 c及び dは、 それ ぞれ独立に、 1〜2の整数を表す。
具体例としては、 表 2の (III— 3) 〜 (III一 1 8) 、 (III- 22 ) 〜 (I II一 28) 、 (III— 3 7) 〜 (III一 43) が好ましい。 錯体化合物 (I) としては、 1つの金属原子に対して、 式 (II) で表される 配位子を 1つ、 式 (III) で表される配位子を 1つ含有することが好ましい。 錯体化合物 (I) に含まれる補助配位子としては、 例えば、 イソチオシァネ —ト (― N = C = S、 以下、 NC Sという場合がある) 、 チオシァネート (一 S— C≡N、 以下、 S CNという場合がある) 、 ジケトナート、 クロ口、 プロ モ、 ョ一ド、 シァノ、 水酸基等が挙げられ、 好ましくは NC Sもしくは S CN である。
ハロゲンァニオンなどのカウン夕一ァニオンを伴い、 電荷を中和した形で存 在する場合もある。 錯体化合物 (I) の製造方法としては、 金属原子が Ruである場合を例にとつ て説明すると、 [RuCl2 (p- cymene)]2を N,N-ジメチルホルムアミ ドなどの非プロ トン性極性溶媒に溶解し、 配位子 (II) 及び (III) を与える化合物を 40〜 1 80で程度で混合させたのち、 必要に応じて、 補助配位子を与える塩を混合 させ、 得られた反応溶液から再結晶、 クロマトグラフィなどで精製して得る方 法などが挙げられる。
ここで、 Ru試薬としては、 2価および 3価の Ru試薬が用いられ、 具体的には 、 RuCl3や RuCl2 (DMS0),などが例示される。 錯体化合物 (I) の具体例としては、 下式及び表 3で表される化合物 (1-1) 〜 (1-56) が挙げられ、 下式及び表 4で表される化合物 (1-57) 〜 (1-112) が挙げられる。
(ζπ-ι)〜(ΐ-ι)
Figure imgf000011_0001
.SCSTC/900Zdf/X3d 9CSST0/.00Z OAV 01
Figure imgf000012_0001
Z.SCSTC/900Zdf/X3d 9£SST0/.00Z OAV 表 4
Figure imgf000013_0001
本発明の光増感色素は、 前記の錯体化合物 (I) を含む色素である。 色素と しては、 錯体化合物 (I) のみであっても、 さらに錯体化合物 (I) とは異なる 種類の化合物が含有されていてもよい。
錯体化合物 (I) と混合してもよい色素としては、 波長 30 0〜 7 00 n m付近に吸収を持つ金属錯体ゃ有機色素などを挙げることができる。
混合してもよい金属錯体の具体例としては、 銅フタロシアニン、 チタニルフ 夕ロシアニンなどの金属フタロシアニン、 クロロフィル、 へミン、 特開平 1一 220 380号ゃ特公平 5— 50402 3号に記載のルテニウム、 オスミウム 、 鉄、 亜鉛の錯体などが挙げられる。
ルテニウム錯体をさらに詳しく例示すれば、 c -ビス(イソチオシァネート) ビス(2,2'-ピピリジル- 4, 4'-ジカルボキシレート)-ルテニウム(II) ビス-テト ラブチルアンモニゥム、 ビス(ィソチオシァネ一ト)ビス(2, 2'-ピピリジ ル -4, 4'-ジカルボキシレート)-ルテニウム(11)、 トリス (イソチオシァネート ) 一ルテニウム(Π)- 2, 2' :6',2"-テ一ピリジン- 4, 4', 4"-トリカルポン酸トリ ス一テトラプチルアンモニゥム、 cis -ビス (イソチオシァネート) (2,2'-ビ ピリジル- 4, 4'-ジカルポキシレート) (2, 2 '-ビビリジル -4, 4'-ジノニル)ルテニ ゥム(II)などが挙げられる。 有機色素としては、 例えば、 メタルフリーフタロシアニン、 シァニン系色素 、 メロシアニン系色素、 キサンテン系色素、 トリフエニルメタン色素、 クマリ ン系色素、 インドリン系等の有機色素、 スクァリ リウム系色素などが挙げられ る。
シァニン系色素としては、 具体的には、 NK 1 1 94、 NK 3422 (いず れも日本感光色素研究所製) などが例示される。
メロシアニン系色素としては、 具体的には、 NK 242 6、 NK 2 50 1 ( いずれも日本感光色素研究所製) が挙げられる。
キサンテン系色素としては、 例えば、 ゥラニン、 ェォシン、 ローズベンガル 、 ローダミン B、 ジブロムフルォレセインなどが挙げられる。
トリフエニルメタン色素としては、 例えば、 マラカイ トグリーン、 クリスタ ルバイォレッ トが挙げられる。
クマリン系色素としては、 NKX— 2 6 7 7 (林原生物化学研究所製) 等が 挙げられる。
インドリン系等の有機色素として、 具体的には以下に示した構造部位を含む 化合物などが例示される。
スクァリ リウム系等の有機色素として、 具体的には以下に示した構造部位を 含む化合物などが例示される。
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
(スクァリリウム系) 本発明の光電変換素子は、 本発明の錯体化合物 ( I ) を含む光増感色素を吸 着させた半導体微粒子層及び導電性基板を含む素子であり、 該光増感色素は有 機溶媒への溶解性が高いことから、 該光増感色素を半導体微粒子に短時間で多 くの量を吸着させることができる。 このことにより光電変換素子を工業的に有 利に製造することができる。 ここで、 光電変換素子に用いられる半導体微粒子の一次粒径は、 通常、 1〜 5 0 0 0 n m程度、 好ましくは 5〜 3 0 0 n m程度である。 反射による光電変 換効率の向上を目的として、 一次粒径の異なる半導体微粒子を混入させてもよ レ 。 また、 チューブや中空形状の微粒子を用いてもよい。 半導体微粒子を構成する材料化合物としては、 例えば、 酸化チタン、 酸化ス ズ、 酸化亜鉛、 酸化鉄、 酸化タングステン、 酸化ジルコニウム、 酸化ハフニゥ ム、 酸化ストロンチウム、 酸化インジウム、 酸化セリウム、 酸化イッ トリウム 、 酸化ランタン、 酸化バナジウム、 酸化ニオブ、 酸化タンタル、 酸化ガリウム 、 酸化ニッケル、 チタン酸ストロンチウム、 チタン酸バリウム、 ニオブ酸カリ ゥム、 タンタル酸ナトリウム等の金属酸化物 ;
ヨウ化銀、 臭化銀、 ヨウ化銅、 臭化銅等の金属ハロゲン化物 ; 硫化亜鉛、 硫化チタン、 硫化インジウム、 硫化ビスマス、 硫化カドミウム、 硫 化ジルコニウム、 硫化タンタル、 硫化モリブデン、 硫化銀、 硫化銅、 硫化スズ 、 硫化タングステン、 硫化アンチモン等の金属硫化物 ;
セレン化カ ドミウム、 セレン化ジルコニウム、 セレン化亜鉛、 セレン化チタン 、 セレン化インジウム、 セレン化タングステン、 セレン化モリブデン、 セレン 化ビスマス、 セレン化鉛等の金属セレン化物 ;
テルル化カドミウム、 テルル化タングステン、 テルル化モリブデン、 テルル化 亜鉛、 テルル化ビスマス等の金属テルル化物 ;
リン化亜鉛、 リン化ガリウム、 リン化インジウム、 リン化カ ドミウム等の金属 リン化物 ;
ガリウム砒素、 銅—インジウム—セレン化物、 銅一インジウム—硫化物、 シリ コン、 ゲルマニウム等の材料化合物が挙げられる。
さらに、 酸化亜鉛 酸化スズ、 酸化スズ Z酸化チタンのような二種以上の材 料化合物の混合物であってもよい。 中でも、 酸化チタン、 酸化スズ、 酸化亜鉛、 酸化鉄、 酸化タングステン、 酸 化ジルコニウム、 酸化ハフニウム、 酸化ストロンチウム、 酸化インジウム、 酸 化セリウム、 酸化イッ トリウム、 酸化ランタン、 酸化バナジウム、 酸化ニオブ 、 酸化タンタル、 酸化ガリウム、 酸化ニッケル、 チタン酸ストロンチウム、 チ タン酸バリウム、 ニオブ酸カリウム、 タンタル酸ナトリウム、 酸化亜鉛 Z酸化 スズ、 酸化スズ Z酸化チタン等の金属酸化物が、 比較的安価で入手しやすく、 色素にも染色されやすいことから好ましく、 特に、 酸化チタンが好適である。 本発明の光電変換素子に用いられる導電性基板 (図 1における 1及び 2) と しては、 導電性物質そのもの、 又は、 基板に導電性物質を重ねたものなどを用 いることができる。 導電性物質としては、 白金、 金、 銀、 銅、 アルミニウム、 ロジウム、 インジウム、 チタン、 パラジウム又は鉄等の金属や、 該金属のァロ ィ、 或いはインジウムースズ複合酸化物、 酸化スズにフッ素をド一プしたもの 等の導電性金属酸化物、 炭素、 ポリエチレンジォキシチォフェン (PEDOT ) 、 ポリア二リン等の導電性高分子などが挙げられる。 導電性高分子は、 例え ば、 パラトルエンスルフォン酸等がドープされていてもよい。
入射した光を閉じ込め、 有効に利用するために、 導電性基板は、 その表面に テクスチャー構造を有するものが好ましい。 導電層 (図 1における上記の 2、 6) は抵抗が低いほどよく、 高透過性 (3 5 0 nmより長波長側で、 透過率が 80 %以上) であることが好ましい。 導電性基板 (図 1における上記の 1、 7 ) としては、 ガラス又はプラスチックに導電性の金属酸化物を塗布したものが 好ましい。 中でも、 フッ素をドーピングした二酸化スズからなる導電層を積層 した導電性ガラスが特に好ましい。 プラスチック基板とする場合は、 ポリェチ レンテレフタレ一ト (P ET) 、 ボリエチレンナフ夕レート (PEN) 、 ポリ フエ二レンスルフイ ド (P P S) 、 ポリカーボネート (P C) 、 ポリプロピレ ン (P P) 、 ポリイミ ド (P I ) 、 トリァセチルセルロース (TAC) 、 シン ジオタクチックポリスチレン (S P S) 、 ポリアリレート (PAR) ; アート ン (J S Rの登録商標) 、 ゼォノア (日本ゼオンの登録商標) 、 アベル (三井 化学の登録商標) やトーパス (T i c o n a社の登録商標) 等の環状ポリオレ フィン (COP) ; ポリエーテルスルホン (PE S) 、 ポリエーテルイミ ド ( PE I ) 、 ポリスルフォン (P S F) 、 ポリアミ ド (P A) 等が用いられる。 これらの中でも、 ィンジゥムースズ複合酸化物からなる導電層を堆積した導 電性 P E Tが、 抵抗が低く、 透過性も良く、 入手もしゃすいことから特に好ま しい。 導電性基板上に半導体微粒子層を形成する方法としては、 半導体微粒子をス プレー噴霧等で直接、 導電性基板上に薄膜として形成する方法;導電性基板を 電極として電気的に半導体微粒子薄膜を析出させる方法;半導体微粒子のスラ リーを導電性基板上に塗布した後、 乾燥、 硬化又は焼成することによって製造 する方法などが例示される。
半導体微粒子のスラリーを導電性基板上に塗布する方法として、 例えば、 ド クタ一ブレード、 スキージ、 スピンコート、 ディップコートやスクリーン印刷 等の手法が挙げられる。 この方法の場合、 スラリー中の半導体微粒子の分散状 態における平均粒径は、 0 . 0 1 z m〜 1 0 0 であることが好ましい。 ス ラリーを分散させる分散媒としては半導体微粒子を分散させ得るものであれば よく、 水、 又はエタノール、 イソプロパノール、 t —ブ夕ノールやテルビネオ ール等のアルコール溶媒; アセトン等のケトン溶媒等の有機溶媒が用いられる 。 これらの水や有機溶媒は混合物であってもよい。 分散液には、 ポリエチレン グリコール等のポリマー; T r i t o n— X等の界面活性剤;酢酸、 蟻酸、 硝 酸や塩酸等の有機酸又は無機酸; ァセチルァセトン等のキレート剤を含んでい てもよい。
スラリーを塗布した導電性基板は焼成されるが、 該焼成温度は熱可塑性樹脂 等の基材の融点 (又は軟化点) 未満であり、 通常は、 焼成温度の上限は 900°C であり、 好ましくは 600で以下である。 また、 焼成時間は、 通常、 1 0時間以 内である。 導電性基板上の半導体微粒子層の厚みは、 通常は l ~ 2 0 0 ^ mで あり、 好ましくは 5〜 5 0 mである。 導電性基板上に比較的低温で半導体微粒子層を形成する方法としては、 水熱 処理を施してポ一ラスな半導体微粒子層を形成する Hydro therma l法 (実用化に 向けた色素増感光電気化学電池、 第 2講 (箕浦秀樹) 第 6 3〜 6 5頁、 N T S 社発行 ( 2 0 0 3 ) ) 、 分散された半導体粒子の分散液を基板に電着する泳動 電着法 (T. Miyas aka e t a l . , Chem. Le t t . , 1250 (2002) ) 、 半導体ペーストを基 板に塗布、 乾燥後にプレスするプレス法 (実用化に向けた色素増感光電気化学 電池、 第 1 2講 (萬 雄彦) 第 3 1 2〜 3 1 3頁、 N T S社発行 (2 0 0 3 ) ) 等が挙げられる。 半導体微粒子層の表面には、 四塩化チタン水溶液を用いた化学メツキや三塩 化チタン水溶液を用いた電気化学的メツキ処理を行ってもよい。 このことによ り、 半導体微粒子の表面積を増大させたり、 半導体微粒子近傍の純度を高めた り、 半導体微粒子表面に存在する鉄等の不純物を覆い隠したり、 または、 半導 体微粒子の連結性、 結合性を高めたりすることができる。
半導体微粒子は多くの光増感色素を吸着することができるように表面積の大 きいものが好ましい。 このため、 半導体微粒子層を基板上に塗布した状態での 表面積は、 投影面積に対して. 1 0倍以上であることが好ましく、 さらに 1 0 0 倍以上であることが好ましい。 この上限は、 通常、 1 0 0 0倍程度である。 半導体微粒子層は、 微粒子 1個の単層に限らず、 粒径の異なる層等を複数重 ねてもよい。 半導体微粒子への本発明の光増感色素の吸着方法としては、 本発明の光増感 色素の溶液中に、 よく乾燥した半導体微粒子を 1分〜 2 4時間程度、 浸漬する 方法が用いられる。 色素の吸着は室温で行ってもよいし、 加熱還流下に行って もよい。 色素の吸着は、 半導体微粒子の塗布前に行ってもよく、 塗布後に行つ てもよく、 半導体微粒子と色素を同時に塗布して吸着させてもよいが、 塗布後 の半導体微粒子膜に色素を吸着させるのがより好ましい。 半導体微粒子層を加 熱処理する場合の色素吸着は加熱処理後に行うことが好ましく、 加熱処理後、 微粒子層表面に水が吸着する前に、 すばやく色素を吸着させる方法が特に好ま しい。
半導体微粒子に付着していない色素が浮遊することによる増感効果の低減を 抑制するため、 未吸着の色素は洗浄によって除去することが望ましい。
吸着する色素は 1種類でもよいし、 数種混合して用いてもよい。 用途が光電 気化学電池である場合、 太陽光などの照射光の光電変換の波長域をできるだけ 広くするように、 混合する色素を選ぶことが好ましい。 また、 色素の半導体微 粒子に対する吸着量は、 半導体微粒子 1 gに対して 0 . 0 1〜 1ミリモルが好 ましい。 このような色素量とすると、 半導体微粒子における増感効果が十分に 得られ、 半導体微粒子に付着していない色素が浮遊することによる増感効果の 低減を抑制する傾向にあることから好ましい。 色素同士が会合や凝集等の相互作用することを抑制する目的で、 無色の化合 物を共吸着させてもよい。 共吸着させる疎水性化合物としては、 力ルポキシル 基を有するステロイド化合物 (例えばケノデォキシコール酸) 等が挙げられる 。 また、 余分な色素の除去を促進する目的で、 色素を吸着させた後、 アミン類 を用いて半導体微粒子の表面を処理してもよい。 好ましいアミン類としては、 ピリジン、 4 一 t e r t —ブチルピリジンやポリビニルピリジン等が挙げられ る。 これらが液体の場合はそのまま用いてもよいし、 固体の塲合は有機溶媒に 溶解して用いてもよい。 本発明の光電気化学電池とは、 光電変換素子、 電荷移動層及び対極を含み、 光を電気に変換することができるものである。 通常、 光電変換素子、 電荷移動 層及び対極が順次、 積層され、 光電変換素子の導電性基板と対極とが連結され て、 電荷が移動、 すなわち、 発電する。
他の光電気化学電池としては、 例えば、 光電変換素子及び電荷移動層からな る積層部が複数と 1つの対極からなる光電気化学電池、 例えば、 複数の光電変 換素子、 1つの電荷移動層及び 1つの対極が積層されてなる光電気化学電池な どが例示される。
光電気化学電池は、 湿式光電気化学電池及び乾式光電気化学電池に大別され る。 湿式光電気化学電池は、 含まれる電荷移動層が電解液から構成される層で あり、 通常、 電荷移動層は光電変換素子と対極の間に電解液が充填される。 乾式光電気化学電池としては、 例えば、 光電.変換素子と対極との間の電荷移 動層が固体のホール輸送材料である電池などが挙げられる。 光電気化学電池の一実施態様を図 1に示した。 導電性基板 8と、 該導電性基 板 8に対向する対極 9と、 これらの間に、 光電変換素子用色素 4が吸着された 半導体微粒子層 3が存在する。 湿式光電変換素子とする場合は、 半導体粒子層 3は電解液 5で満たされ、 封止材 1 0で封止されている。
上記の導電性基板 8は、 上から順に基板 1と導電層 2で構成されている。 対 極 9は、 下から順に基板 7と導電層 6で構成されている。 本発明の光電気化学電池が湿式光電気化学電池である場合、 湿式光電気化学 電池に含まれる電解液に用いられる電解質としては、 例えば、 12 と各種ヨウ 化物との組合せ、 B r 2 と各種の臭化物との組合せ、 フエロシアン酸塩—フエ リシアン酸塩の金属錯体の組合せ、 フエ口セン—フェリシニゥムイオンの金属 錯体の組合せ、 アルキルチオ一ルーアルキルジスルフィ ドのィォゥ化合物の組 合せ、 アルキルピオローゲンとその還元体の組合せ、 ポリヒドロキシベンゼン 類とその酸化体の組合せ等が挙げられる。
ここで、 I 2 と組合せ得るョゥ化物としては、 例えば、 L i I、 N a I、 K I、 C s Iや C a I 2 等の金属ヨウ化物; 1—プロピル— 3—メチルイミダゾ リウムアイオダイド、 1一プロピル一 2, 3—ジメチルイミダゾリゥムアイド ダイド等の 4価のィミダゾリゥム化合物のヨウ素塩; 4価のピリジニゥム化合 物のヨウ素塩;テトラアルキルアンモニゥム化合物のヨウ素塩等が挙げられる
B r 2 と組合せ得る臭化物としては、 例えば、 L i B r、 N a B r、 KB r 、 C s B rや C a B r 2 等の金属臭化物;テトラアルキルアンモニゥムブロマ イドやピリジニゥムブロマイ ド等の 4価のアンモニゥム化合物の臭素塩等が挙 げられる。
アルキルビオローゲンとしては、 例えば、 メチルビオ口一ゲンクロリ ド、 へ キシルビオローゲンブロミ ド、 ベンジルビオローゲンテトラフルォロボレ一ト などが挙げられ、 ポリヒドロキシベンゼン類としては、 例えばハイドロキノン やナフトハイドロキノン等が挙げられる。
電解質としては中でも、 金属ヨウ化物、 4価のイミダゾリウム化合物のヨウ 素塩や 4価のピリジニゥム化合物のヨウ素塩、 及びテトラアルキルアンモニゥ ム化合物のヨウ素塩からなる群から選ばれる少なくとも 1種のヨウ化物と I 2 との組合せが好ましい。 上記の電解液に用いる有機溶媒としては、 ァセトニトリル、 メトキシァセト 二トリルやプロピオ二トリル等の二トリル系溶媒; エチレンカーボネートゃプ 口ピレンカーボネート等のカーボネート系溶媒; 1一メチル一 3—プロピルイ ミダゾリウムアイオダィドゃ 1—メチル— 3—へキシルイミダゾリゥムアイォ ダイド ; 1一ェチル— 3—メチルイミダゾリゥムービス (トリフルォロメ夕 ンスルホン酸) イミ ド等のイオン性液体が挙げられる。 また、 ァ—プチロラ クトン等のラクトン系溶媒; N, N—ジメチルホルムアミ ド等のアミ ド系溶媒 等が挙げられる。 これらの溶媒は、 ポリアクリロニトリル、 ポリビニリデンフ ルォライド、 ポリ 4—ビニルピリジンや Ch em i s t r y L e t t e r s , 1 24 1 ( 1 998 ) に示される低分子ゲル化剤でゲル化されていてもよい 本発明の光電気化学電池では、 電解液の代わりに、 固体のホール輸送材料を 用いることができる。
ホール輸送材料としては、 Cu Iや C u S CN等の一価の銅を含む p型無機 半導体や、 S y n t h e t i c Me t a l , 89, 2 1 5 ( 1 997 ) 及び N a t u r e, 39 5, 583 ( 1 998 ) で示されるような芳香族アミン類; ポリチォフェン及びその誘導体;ポリピロール及びその誘導体;ポリァニリン 及びその誘導体;ポリ (p—フエ二レン) 及びその誘導体;ポリ (p—フエ二 レンビニレン) 及びその誘導体等の導電性高分子を用いることができる。 本発明の光電変換素子を構成する対極とは、 導電性を有する電極であり、 強 度を維持したり密閉性を向上させるため前記導電性基板と同様の基板を用いて もよい。
光増感色素が吸着された半導体微粒子層に光が到達するため、 前述の導電性 基板と対極の少なくとも一方は実質的に透明である。 本発明の光電変換素子に おいては、 半導体微粒子層を有する導電性基板が透明で、 照射光を導電性基板 の側から入射させるものが好ましい。 この場合、 対極 9は光を反射する性質を 有することがさらに好ましい。
光電変換素子の対極 9としては、 例えば、 金属、 カーボン、 導電性の酸化物 などを蒸着したガラスやプラスチックを使用することができる。 また、 導電層 を、 1mm以下、 好ましくは 5 nm〜 1 00 mの範囲の膜厚になるように、 蒸着やスパッタリング等の方法により形成して作製することもできる。 本発明 では白金やカーボンを蒸着したガラス、 又は、 蒸着やスパッタリングによって 導電層を形成した対極とすることが好ましい。 電解液の漏洩や蒸散を防ぐため、 封止材を使用して封止してもよい。 該封止 材としては、 ハイミラン (三井デュポンポリケミカル製) 等のアイオノマ一樹 脂;ガラスフリット ; SX 1 1 7 0 (S o l a r o n i x製) 等のホットメル 卜接着剤; Amo s i l 4 (S o l a r o n i x製) のような接着剤; BY NEL (デュポン製) を使用することができる。 本発明によれば、 有機溶媒への溶解度が高いことから製造が容易で、 半導体 微粒子への吸着量に優れた光増感色素に好適な化合物であり、 光電気化学電池 用などの光電変換素子に好適に用いることができる。 実施例
以下、 本発明を実施例に基いて更に詳細に説明するが、 本発明がこれらの実 施例により限定されるものでないことは言うまでもない。 実施例 1
<製造例 1 :化合物 (1-1) の製造例 >
200mlのフラスコを窒素置換し、 [RuCl2 (p- cymene)]2147mg (0.24關 ol、 関東 化学より購入) 、 Ν,Ν-ジメチルホルムアミ ド 80mlを仕込み、 60でで 10分間攪 拌し、 溶解するのを確認した。 その後、 III- 2 (Eu r. J . I n o r g. Ch e m. , 1353 (2001) の記載に準じて調製した。 ) を 108mg (0.50ramol) 仕込み 、 60でで 2時間攪拌し、 原料が消失するのを HPLCで確認した。 次いで、 化合 物 (11-1、 Alfa Aesarより購入) を 122mg (0.50mmol) 仕込み、 0°Cに昇温 して 1時間、 150でで 3.5時間攪拌した。 その後、 120°Cに冷却し、 チォシアン 酸カリウム 729mg (7.50mmol) を水 8mlに溶解した溶液を仕込み、 125でで 3 時間攪拌した。
反応後、 反応溶液をエバポレー夕で濃縮し、 濃縮残查から主成分を高速液体 クロマトグラフィにより分取し、 紫色の固形物を得た (収率 7 2 %) 。 得られ た固形物は ESI-MSにより目的化合物(1-1、 分子量 6 7 8)であることを確認し た。
化合物(1-1) ESI- MS(m/z)
m/z=678 M+
m/z=620 脱 NCS体 [M- NCS] +
<化合物 (1-1) を含む光電気化学電池の調製 >
導電性基板である、 フッ素をドープした酸化スズ膜付き導電性ガラス (日本 板硝子製、 1 0 Ω /口) の導電性面に、 酸化チタン分散液である T i — N a n o x i d e T/SP (商品名、 S o 1 a r o n i x社製) をスクリーン印刷機 を用いて塗布後、 5 0 01:で焼成し、 ガラスを冷却して、 導電性基板に半導体 粒子層を積層させた。 続いて、 化合物 (1-1) の溶液 (濃度は 0. 0 0 3モル /リットル、 溶媒はエタノールに 5分間浸漬し、 溶液から取り出したのち、 ァ セトニトリルで洗浄後、 自然乾燥させ、 導電性基板及び光増感色素を吸着させ た半導体微粒子層の積層体 (酸化チタン電極の面積は 2 4mm2 ) を得た。 次 に、 該層の周りに、 スぺ一サ一として 2 5 m厚のポリエチレンテレフタレー トフイルムを設置後、 該層に電解液 (溶媒はァセトニトリル;溶媒中の沃素 濃度は 0. 0 5モルノリットル、 同じくヨウ化リチウム濃度は 0. 1モル ノリットル、 同じく 4— t —ブチルピリジン濃度は 0. 5モルノリットル 、 同じく 1 —プロピル— 2, 3—ジメチルイミダゾリゥムアイオダイド濃度は 0. 6モル リットル) を含浸させた。 最後に、 対極である白金蒸着ガラス を重ね合わせ、 導電性基板、 光増感色素を吸着させた半導体微粒子層、 並びに 該導電性基板の対極が積層され、 導電性基板と対極との間に電解液が含浸され た、 光電気化学電池を得た。 このようにして作製した光電気化学電池につい て、 変換効率を山下電装製のソーラーシユミレーター (型式 YSS-80A) を用 いて 3 0 0 nm〜 8 0 0 nmの波長域で測定した。 測定時の光強度は、 1 0 OmW/c m2 であった。
下記比較例 1で得た光電気化学電池について、 変換効率を 1に対し、 実施 例 1で得た光電変換素子の変換効率の相対的な値を表 5に示す。 実施例 2
ぐ化合物 (III- 3) の合成例 >
窒素気流下、 2—ブロモー 4—ェチルピリジン 4.88g (53. lmmol) を仕込み 、 N,N-ジメチルホルムアミド 90mlに溶解し、 硫化ナトリウム 2.07g (26.6mmol
) を添加して油浴上 150〜155でで 4.0時間反応した。 さらに硫化ナトリウム 1.0
Og (12.8mmol) を追加して 2.5時間攪拌させた。
次いで、 室温まで冷却して水を注入、 エーテルで抽出した。 抽出エーテル層 を水、 飽和食塩水で洗浄して硫酸マグネシウム上で乾燥、 溶媒を減圧留去する ことにより粗目的物を得た。 本品をシリカゲルカラムクロマトグラフィー(へ キサン/酢酸ェチル = 7/3)で精製することにより、 純度 93.3%の化合物 (III - 3
) (4.38g, 18. lmmol)を収率 68· 1%で得た。 1 H-NMR ( δ , pm, CDC13) 1. 2(6H
, t, - CH2(¾)、 2.61 (4H, q, -(¾ CH3 )、 7.00(2H, d, ピリジン環 5位 H)、 7.28
(2H, s, ピリジン環 3位 H)、 8.41 (2H, d, ピリジン環 6位 H) ぐ製造例 2 :化合物 (1-2) の製造例 > 200mlのフラスコを窒素置換し、 [RuCl2 (P- cymene)]2 147mg (0.24mmoし 関東 化学より購入) 、 Ν,Ν-ジメチルホルムアミド 60mlを仕込み、 60T:で 10分間攪拌 し、 溶解するのを確認した。 その後、 前記で得られた化合物 (III-3) を 122mg (0.50mmol) 仕込み、 60でで 2時間攪拌し、 原料が消失するのを HPLCで確認し た。 次いで、 化合物 (11-1、 Alfa Aesarより購入) を 122mg (0.50ramol) 仕込 み、 150でに昇温して 4時間攪拌した。 その後、 120でに冷却し、 チォシアン酸 カリウム 729mg (7.50mmol) を水 2mlに溶解した溶液を仕込み、 130でで 2時間攪 拌した。
続いて、 反応溶液をエバポレー夕で濃縮し、 濃縮残査から主成分を高速液体 クロマトグラフィにより分取し、 紫色の固形物を得た (収率 8 0 %) 。 得られ た固形物は ESI- MSにより目的化合物(1-2、 分子量 7 0 6)であることを確認し た。
化合物(1-2) ESI-MS(m/z)
m/z=706 Μ+
m/z = 648 脱 NCS体 [M_NCS] +
<化合物 (1-2) を含む光電気化学電池の調製 >
光増感色素として、 化合物 (1-2) を用いた以外は、 実施例 1と同様にして光 電気化学電池を得た。 次いで、 変換効率を実施例 1と同様にして測定した。 結 果を表 5にまとめた。 実施例 3
<化合物 (III-8) の合成例 >
窒素気流下、 2—ブロモ— 4—デシルビリジン 4.73g (15.9mmol) を仕込 み、 N,N-ジメチルホルムアミド 28mlに溶解し、 硫化ナトリウム 1 · 43g (18.2mmo 1)を添加して油浴上150〜155でで6.5時間反応した。 反応後、 室温まで冷却し て水を注入、 酢酸ェチルで抽出した。 抽出酢酸ェチル層を水、 飽和食塩水で洗 浄して硫酸マグネシウム上で乾燥、 溶媒を減圧留去することにより粗目的物を 得た。 本品をシリカゲルカラムクロマトグラフィーにより精製後、 へキサン 50mlに溶解、 活性炭 200〜300mgを添加して室温下 分間撹拌後セライ トろ過 した。 ろ液を減圧濃縮して得られた残渣を減圧乾燥することにより純度 97.0% のオイル状の化合物 (111-8、 2.00g, 4.27mmoL) を収率 53.7%で得た。
Mass Spectrum (FD/Pos i t i ve, m/z) ;468 M+
1 H-NMR ( δ , ppm, CDC13 ) 0.880 (6H, t, -CH2 C )、 1.20~1.40 (28H, m, デシ ル基部分 H)、 1.53〜1.70(2H, m, Pyr.-CH2 CH2 -), 2.55 (2H, t , Pyr.-CH2CH 2 -)、 6.98(2H, d, ピリジン環 5位 H)、 7.25 (2H, s, ピリジン環 3位 H)、 8.40(2H , d, ピリジン環 6位 H)
<製造例 3 :化合物 (1-3) の製造例 >
化合物 (III- 3) の代わりに化合物 (III-8) を用いた以外は、 製造例 2と同 様に反応、 後処理、 精製を行い、 化合物 (1-3) を得た。
得られた固形物は ESI-MSにより目的化合物(1-3、 分子量 9 3 0)であることを 確認した。
化合物(1-3) ESI-MS(m/z)
m/z=930 M+
m/z = 872 脱 NCS体 [M- NCS] + <化合物 (1-3) を含む光電気化学電池の調製 >
光増感色素として、 化合物 (1-3) を用いた以外は、 実施例 1と同様にして 光電気化学電池を得た。 次いで、 変換効率を実施例 1と同様にして測定した。 結果を表 5にまとめた。 実施例 4
<化合物 (III- 9) の合成例 >
窒素気流下、 2-ブロモ体 5.19g (12.2ramol) を仕込み、 N,N-ジメチルホルム アミ ド 22mlに溶解し、 硫化ナトリウム 1.09g (U.OmmoU を添加して油浴上 150 〜 155でで 8.0時間反応した。
反応後、 室温まで冷却して水を注入、 エーテルで抽出した。 抽出エーテル層を 水、 飽和食塩水で洗浄して硫酸マグネシウム上で乾燥、 溶媒を減圧留去するこ とにより粗目的物を得た。 本品をシリカゲルカラムクロマトグラフィ一で精製 することにより、 純度 92.0%のオイル状の III- 9(1.24g, 1.72mmol)を収率 28.2% で得た。
Mass Spec t rum (EI/Pos i t i ve, m/z) ; 720 M+
1 H-NMR ( δ , ρριη, CDC13) 0.871 (12H, t, -CH2 CH3 ) , 1.00〜し 80 (64H, m, >C H-(C8Hl 6)-)、 2.39〜2·45(2Η, m, >CH-) , 6.92(2H, d, ピリジン環 5位 H)、 7.1 9 (2H, s, ピリジン環 3位 H)、 8.40(2H, d, ピリジン環 6位 H)
<製造例 4 :化合物 (1-4) の製造例 >
化合物 (III- 3) の代わりに化合物 (ΠΙ-9) を用いた以外は、 製造例 2と同 様に反応、 後処理、 精製を行い、 化合物 (1-4) を得た。
得られた固形物は ESI - MSにより目的化合物(1-4、 分子量 1 1 83 )であること を確認した。
化合物(1-4) ESI-MS (m/z)
m/z = 1125 脱 NCS体 [M- NCS] + <化合物 (1-4) を含む光電気化学電池の調製 >
光増感色素として、 化合物 (1-4) を用いた以外は、 実施例 1と同様にして 光電気化学電池を得た。 次いで、 変換効率を実施例 1と同様にして測定した。 結果を表 5にまとめた。 実施例 5
<化合物 (111-10) の合成例 >
窒素気流下、 2—ブロモー 4—メトキシピリジン 1.41g (7.50mmol) をエタ ノール 110mlに溶解し、 チォ尿素 1.13g (14.8ramol) を添加して還流下 8.5時間 攪拌した。 次いで、 溶媒を留去し 1—ブ夕ノール 110mlを加え、 チォ尿素 0.35 0g (4.60mmol) を追加して還流下 8時間攪拌した。 続いて、 水を注入し、 酢酸 ェチルで抽出した。 抽出酢酸ェチル層を水、 飽和食塩水で洗浄して、 硫酸マグ ネシゥム上で乾燥後、 溶媒を減圧留去した。 得られた残渣をカラムクロマトグ ラフィ一にて精製し、 純度 94.2%の III-10(226mg, 0.910mmol)を収率 24.3SKで得 た。
Mass Spectrum (EI/Pos i t ive, m/z) ;249 [M + H] +
' H-NMR ( δ , pm, CDC13) 3.82 (6H, s, -0(¾)、 6.70 (2H, d, ピリジン環 5位 H )、 7.02C2H, s, ピリジン環 3位 H)、 8.35(2H, d, ピリジン環 6位 H)
<製造例 5 :化合物 (1-5) の製造例 >
化合物 (III-3) の代わりに化合物 (111-10) を用いた以外は、 製造例 2と 同様に反応、 後処理、 精製を行い化合物 (1-5) を得た。
得られた固形物は ESI-MSにより目的化合物(1-5、 分子量 7 1 0)であることを 確認した。
化合物(1-5) ESI-MS(m/z)
m/z = 652 脱 NCS体 [M- NCS] +
<化合物 (1-5) を含む光電気化学電池の調製 >
光増感色素として、 化合物 (I - 5) を用いた以外は、 実施例 1と同様にして光 電気化学電池を得た。 次いで、 変換効率を実施例 1と同様にして測定した。 結 果を表 5にまとめた。 比較例 1
光増感色素として、 cis-ビス(ィソチオシァネート)ビス(2, 2'-ビピリジル- 4 ,4'-ジカルポキシレート)-ルテニウム(Π) (化合物 ( 1 ) ) を用い、 エタノー ル溶液の濃度を 0. 0 0 0 3モル リットルとして完溶させた (化合物 ( 1 ) は実施例 1で調製したエタノール溶液の濃度では完溶しなかった) 以外は、 実 施例 1と同様にして光電気化学電池を得た。 次いで、 変換効率を実施例 1と同 様にして測定した。 結果を表 5にまとめた。 表 5
Figure imgf000024_0001
産業上の利用可能性
本発明の化合物は、 短時問で半導体微粒子に吸着させることが可能であるこ とから、 光増感色素として工業的に好適に用いられる。 また、 該化合物を含む 光電変換素子は光電変換効率に優れることから、 太陽光による太陽電池、 トン ネルや屋内での人工光による光電気化学電池などに好適に用いることができる 。 また、 該光電変換素子は、 光の照射を受けて電流が流れることから、 光セン サーなどとして好適に用いることができる。

Claims

請 求 の 範 囲
1. 金属原子、 式 (II) で表される配位子、 及び式 (in) で表される配位子 を含む錯体化合物 (I) 。
Figure imgf000025_0001
[式中、 R1及び R2は、 それぞれ独立に、 プロトン供与性基の塩又はプロトン 供与性基を表し、 R1及び R2の少なくとも一方はプロトン供与性基であり、 R 3及び R4は、 それぞれ独立に、 プロトン非供与性基を表し、 R3及び R4は互い に結合していてもよく、 A及び Bはそれぞれ独立に、 ケィ素原子、 硫黄原子、 又はセレン原子を含む基を表し、 m及び nはそれぞれ独立に 0〜 2の整数を表 し、 m+n≥ lであり、 a、 b、 c及び dは、 それぞれ独立に、 0〜 2の整数 を表し、 a + b≥ lである。 ]
2. R1及び R2が、 フエノール性水酸基、 力ルポキシル基、 スルホン酸基、 ス クアリン酸基、 リン酸基、 ホウ酸基及びケィ酸基からなる群から選ばれる少な くとも 1種のプロトン供与性基であるクレーム 1に記載の錯体化合物 (I) 。
3. R'及び R.2がカルボキシル基の塩又は力ルポキシル基であるクレーム 1又 は 2に記載の錯体化合物 (I) 。
4. R1及び R2の塩が、 有機塩基の塩であるクレーム 1〜 3のいずれかに記載 の錯体化合物(1)。
5. R3及び R4が、 炭素数 1〜 2 0のアルキル基、 炭素数 1〜20のアルコキ シ基、 炭素数 2〜 20のアルコキシアルキル基、 炭素数 6〜 20のァリ一ルォ キシ基、 炭素数 7〜2 0のァリールアルキルォキシ基、 炭素数 7〜20のァリ ールォキシアルキル基、 炭素数 1〜 2 0のアルキルチオ基、 炭素数 2〜20の アルキルチオアルキル基、 炭素数 6〜 2 0のァリ一ルチオ基、 炭素数 7〜20 のァリールアルキルチオ基、 炭素数 7〜20のァリールチオアルキル基、 炭素 数 1〜 20のアルキルスルホニル基、 炭素数 6〜 2 0のァリ一ルスルホニル基 、 炭素数 1〜20のアルキル基または炭素数 6〜2 0のァリール基で 2置換さ れたアミノ基からなる群から選ばれる少なくとも 1種の基であるクレ"ム 1〜 4のいずれかに記載の錯体化合物 (I) 。
6. R3及び R4が、 炭素数 1〜 2 0のアルキル基であるクレーム 1〜 5のいず れかに記載の錯体化合物(1)。
7. R3及び R4が、 炭素数 1〜 2 0のアルコキシ基であるクレーム 1 ~ 5のい ずれかに記載の錯体化合物(1)。
8. - (A) m ―、 及び— (B) n —が、 — S i (Y1 ) (Y2 ) 一、 - S - 、 一SO—、 一 S〇2 —、 — S e—からなる群から選ばれる少なくとも 1種の 基であるクレーム 1 ~ 7のいずれかに記載の錯体化合物 (I) 。 [但、 Y1 及 び Y2 はそれぞれ独立に、 水素原子または炭素数 1〜 20の炭化水素基を表す 。 ]
9. 一 (A) m 一、 及び一 (B) n —が、 一 S—であるクレーム:!〜 8のいず れかに記載の錯体化合物 (I) 。
1 0. a + b = 2及び c + d = 2であるクレーム 1〜 9のいずれかに記載の錯 体化合物(1)。
1 1. m+n= lであるクレーム 1〜 1 0のいずれかに記載の錯体化合物(I)
1 2. m=0、 n= 1であるクレーム 1〜 1 1のいずれかに記載の錯体化合物 (1)。
1 3. R1及び R2が カルボキシル基又はその塩で、 R3及び R4が炭素数 1〜 2 0のアルキル基又は炭素数 1〜 20のアルコキシ基で、 Bが、 — S—であるク レーム 1〜 1 2のいずれかに記載の錯体化合物 (I) 。
1 4. 金属原子が F e、 R uまたは〇 sであるクレーム 1〜 1 3のいずれかに 記載の錯体化合物 (I) 。
1 5. 式 (III) で表される化合物。
Figure imgf000026_0001
[式中、 R3及び R4が、 それぞれ独立に、 炭素数 2〜20のアルキル基、 炭素 数 1〜 20のアルコキシ基、 炭素数 2〜 20のアルコキシアルキル基、 炭素数 6〜20のァリールォキシ基、 炭素数 7〜2 0のァリールアルキルォキシ基、 炭素数 7 ~ 20のァリールォキシアルキル基、 炭素数 1〜 2 0のアルキルチオ 基、 炭素数 2〜 20のアルキルチオアルキル基、 炭素数 6〜20のァリールチ ォ基、 炭素数 7〜 2 0のァリールアルキルチオ基、 炭素数 7〜 20のァリール チォアルキル基、 炭素数;!〜 20のアルキルスルホニル基、 炭素数 6〜2 0の ァリールスルホニル基、 炭素数 1〜20のアルキル基または炭素数 6〜 2 0の ァリール基で 2置換されたァミノ基からなる群から選ばれる少なくとも 1種の 基であるプロ トン非供与性基であり、 Bは一 S—、 一 S〇2 —又は— S e—を 含む基を表し、 nは 1〜2の整数を表し、 c及び dは、 それぞれ独立に、 1〜 2の整数を表す。 ]
1 6. R 3 及び R4 が、 炭素数 2〜 20のアルキル基であるクレーム 1 5に記 載の錯体化合物(111)。
1 7. R 3 及び R4 が、 炭素数 1〜 20のアルコキシ基であるクレーム 1 5に 記載の錯体化合物(111)。
1 8 . クレーム 1〜 1 4のいずれかに記載の化合物を含む光増感色素。
1 9 . 導電性基板及びクレーム 1 8に記載の光増感色素を吸着させた半導体微 粒子層を含む光電変換素子。
2 0 . クレーム 1 9に記載の光電変換素子、 電荷移動層及び対極を含む光電気 化学電池。
PCT/JP2006/315357 2005-08-03 2006-07-27 化合物、光電変換素子及び光電気化学電池 WO2007015536A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005225041 2005-08-03
JP2005-225041 2005-08-03

Publications (1)

Publication Number Publication Date
WO2007015536A1 true WO2007015536A1 (ja) 2007-02-08

Family

ID=37708816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315357 WO2007015536A1 (ja) 2005-08-03 2006-07-27 化合物、光電変換素子及び光電気化学電池

Country Status (1)

Country Link
WO (1) WO2007015536A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745523B1 (en) 2008-12-08 2010-06-29 The Goodyear Tire & Rubber Company Coupling compounds and their uses in rubber compositions and tires
JP2012116824A (ja) * 2010-11-12 2012-06-21 Everlight Usa Inc 新規のルテニウム錯体及びそれを用いた光電部品
CN102675348A (zh) * 2012-03-13 2012-09-19 中山大学 硒多吡啶配体、钌-硒多吡啶配合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003140299A (ja) * 2001-11-05 2003-05-14 Konica Corp 光熱写真画像形成材料
WO2004003565A2 (en) * 2002-07-01 2004-01-08 Santhera Pharmaceuticals (Schweiz) Gmbh A screening method and compounds for treating friedreich ataxia
JP2004077791A (ja) * 2002-08-19 2004-03-11 Konica Minolta Holdings Inc ドライイメージング材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003140299A (ja) * 2001-11-05 2003-05-14 Konica Corp 光熱写真画像形成材料
WO2004003565A2 (en) * 2002-07-01 2004-01-08 Santhera Pharmaceuticals (Schweiz) Gmbh A screening method and compounds for treating friedreich ataxia
JP2004077791A (ja) * 2002-08-19 2004-03-11 Konica Minolta Holdings Inc ドライイメージング材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRUNO G. ET AL.: "Synthesis and spectroscopic properties of di-2-pyridyl sulfide (dps) compounds. Crystal structure of [Ru(dps)2Cl2]", JOURNAL OF THE CHEMICAL SOCIETY, DALTON TRANSACTIONS: INORGANIC CHEMISTRY, no. 1, 1995, pages 17 - 24, XP003007859 *
LITVINOVA V.V. ET AL.: "The formation of condensed sulfur- and nitrogen-containing heterocyclic compounds in the conversion of allyl 2-pyrydyl sulfide and its S-oxide", KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII, no. 6, 1989, pages 851 - 853, XP003007855 *
SCOPELLITI R. ET AL.: "Incorporation of non-planar chelating ligands in the coordination sphere of ruthenium(II) complexes. Unusual S-thioether N-pyridyl chelation mode of di-2-pyridyl sulfide (dps) to Ru(N,N-dps)2 core: NMR studies of sterically induced internal dynamics", INORGANICA CHIMICA ACTA, vol. 313, 2001, pages 43 - 55, XP003007858 *
TOKAMI K. ET AL.: "Yuki Selenium Kagobutsu no Tanso-13 NMR Spectrum", WAKAYAMA KOGYO KOTO SENMON GAKKO KENKYU KIYO, no. 24, 1989, pages 52 - 56, XP003007856 *
TRESOLDI G. ET AL.: "A congested Ru(dps)2 or Ru(dprs)2 core (dps = di-2-pyridyl sulfide; dprs = di-2-pyrimidinyl sulfide) promotes sulfur inversion of N,S-chelate thioethers containing CH2R and 2-pyridyl or 2-pyrimidinyl groups", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, vol. 1, 2002, pages 181 - 191, XP003007857 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745523B1 (en) 2008-12-08 2010-06-29 The Goodyear Tire & Rubber Company Coupling compounds and their uses in rubber compositions and tires
JP2012116824A (ja) * 2010-11-12 2012-06-21 Everlight Usa Inc 新規のルテニウム錯体及びそれを用いた光電部品
CN102675348A (zh) * 2012-03-13 2012-09-19 中山大学 硒多吡啶配体、钌-硒多吡啶配合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP2008266639A (ja) 化合物、光電変換素子及び光電気化学電池
WO2008120810A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2010529226A (ja) 新規な有機染料及びその製造方法
JP2008174734A (ja) 化合物、光電変換素子及び光電気化学電池
WO2012060346A1 (ja) 光電気素子、光電気素子の製造方法、及び光増感剤
JP4999334B2 (ja) 色素化合物、該化合物を用いた光電変換素子及び光電気化学電池
WO2014103831A1 (ja) 担持体及び光電変換素子
EP2781555A1 (en) Novel compound and support supporting this novel compound
JP5874140B2 (ja) 色素増感太陽電池
JP2008266634A (ja) 化合物、光電変換素子及び光電気化学電池
JP2007112987A (ja) 化合物、光電変換素子及び光電気化学電池
JP2007197424A (ja) 化合物、光電変換素子及び光電気化学電池
WO2007015536A1 (ja) 化合物、光電変換素子及び光電気化学電池
WO2007072970A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2007063266A (ja) 化合物、光電変換素子及び光電気化学電池
JP4721755B2 (ja) 錯体、光電変換素子および色素増感型太陽電池
US9496095B2 (en) Compound and carrier system having the compound
JP6101625B2 (ja) 光電変換素子用色素、それを用いた光電変換膜、電極及び太陽電池
JP5914462B2 (ja) 新規化合物及び光電変換素子
JP6253167B2 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素および色素溶液
JP2007217581A (ja) 環状化合物
WO2007034976A1 (ja) 化合物、光電変換素子及び光電気化学電池
JP2009242379A (ja) 共役化合物、該共役化合物を用いた光電変換素子及び光電気化学電池及び光電変換素子電解液
JP4979914B2 (ja) 化合物、該化合物を用いた光電変換素子及び光電気化学電池
JP2008105967A (ja) 化合物、光電変換素子及び光電気化学電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768420

Country of ref document: EP

Kind code of ref document: A1