WO2008075534A1 - 含フッ素アルカンエステル類の製造方法 - Google Patents

含フッ素アルカンエステル類の製造方法 Download PDF

Info

Publication number
WO2008075534A1
WO2008075534A1 PCT/JP2007/072740 JP2007072740W WO2008075534A1 WO 2008075534 A1 WO2008075534 A1 WO 2008075534A1 JP 2007072740 W JP2007072740 W JP 2007072740W WO 2008075534 A1 WO2008075534 A1 WO 2008075534A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
water
formula
fluorine
anhydride
Prior art date
Application number
PCT/JP2007/072740
Other languages
English (en)
French (fr)
Inventor
Takeo Komata
Kenji Hosoi
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Priority to DE112007003065.8T priority Critical patent/DE112007003065B4/de
Priority to CN2007800427537A priority patent/CN101535234B/zh
Publication of WO2008075534A1 publication Critical patent/WO2008075534A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds

Definitions

  • the present invention relates to a method for producing fluorine-containing alkane esters useful as monomers corresponding to functional polymers such as medical lenses or photoresists.
  • a fluorine-containing alkane ester obtained by using a fluorine-containing alcohol compound and a carboxylic acid having a polymerization site is useful as a monomer corresponding to a functional polymer such as a medical lens or a photoresist.
  • a polymer based on 1,1,1,1,3,3,3-hexafluoro-2-metatalylate, which is a fluorine-containing alkane ester is a compound that is transparent and has a low refractive index. Widely used in the field, it is used as an important functional material.
  • Patent Document 2 discloses an example in which a methacrylic acid is used to produce a fluorinated alcohol metatalylate in anhydrous phosphoric acid.
  • Patent Document 1 U.S. Pat.No. 3,177,185
  • Patent Document 2 JP-A-2-295948
  • Patent Document 2 is useful because the target product can be produced in high yield.
  • the reaction is carried out using methacrylic acid in an equivalent amount or more with respect to the raw material fluorinated alcohol, a process of separating unreacted fluorinated alcohol that does not participate in the reaction is required. There was a considerable problem in productivity and efficiency due to an increase in waste.
  • R and R are each a carbon number;! To 6 linear or branched alkyl group or alkenyl.
  • R and R may be the same or different.
  • the target product is a fluorine-containing alkane ester represented by the formula [3] with high selectivity and high yield.
  • n, a, b are the same as above, R is carbon number;! -6 to 6 straight chain or branched chain alkyl group
  • Acid anhydrides such as methacrylic anhydride used in the present invention or acid chlorides used in Patent Document 1 generally easily undergo hydrolysis when reacted with water, and correspondingly. It is known to decompose into acids (such as carboxylic acids) (see, for example, “Chemical Dictionary” (Kyoritsu Shuppan Co., Ltd.), Vol. 3, page 997). For this reason, when carboxylic acid anhydride is used as a reactant, the reaction is usually carried out under anhydrous conditions.
  • the present inventors have obtained a surprising finding that hydrolysis does not actually occur and the acid anhydride reacts preferentially with the fluorine-containing alcohol and the target product can be obtained satisfactorily. .
  • the fluorinated alcohol represented by the formula [1] has a fluorine atom. Due to the strong electron withdrawing property of the fluorine atom, the reactivity of alcohol was greatly different, and it was also expected that it would be difficult to induce the side reaction and obtain the target product with high selectivity.
  • the present inventors select a fluorine-containing alcohol as a substrate, and further allow the above-described water to coexist in the system so that the reaction can be efficiently performed without decomposition of the acid anhydride. As a result, the target product was obtained with high selectivity and high yield.
  • the present invention can produce the target compound in a yield higher than that of the prior art under easy reaction conditions that can be carried out industrially, and is favorable even under conditions in which no organic solvent coexists. Since the reaction progressed, the environmental load was not imposed, and the target fluorine-containing alkane ester could be produced with high productivity.
  • 1, 1, 1, 3, 3, 3 hexafluoro-2-propanol is reacted with 1,1, 1, 3, 3, 3 It is characterized in that 0.2g to 20g of water coexists as a solvent per lg of hexafluoro-2-propanol, sodium hydroxide is used without organic solvent, and the reaction is carried out at 10 ° C to 50 ° C. 1, 1, 1, 3, 3, 3 Hexafluoro-2-metatalate production method (third method) may be used.
  • 0.2g to 20g of water coexists as a solvent per lg of hexafluoro-2-propanol
  • sodium hydroxide is used without organic solvent, and the reaction is carried out at 10 ° C to 50 ° C.
  • 1, 1, 1, 3, 3, 3 Hexafluoro-2-metatalate production method (third method) may be used.
  • the reaction is a two-layer system (heterogeneous system) in the presence of water
  • the purification load after the reaction is greatly increased by simplifying the process of removing by-products. Therefore, it is useful for producing the target compound on a large scale because of its high productivity.
  • the fluorine-containing alcohol represented by the formula [1], which is the starting material of the present invention, has an alkyl group having 1 to 10 carbon atoms, and is a linear, branched or cyclic alkyl group, and at least one Is a compound in which a hydrogen atom is replaced by a fluorine atom.
  • fluorine-containing alcohol represented by the formula [1] examples include 2, 2, 2 ⁇ Lifnore old Roetanore, 3, 3, 3 ⁇ Lifnore old Roprono Nore, 1, 1, 1, 3, 3, 3 Hexafunoleol 2—Propanole, 1, 1, 1 Trifanolore 2—Propanole, 2, 2, 3, 3 Tetrafluoropropanol, Perfluoro-butanol, 2, 2, 3, 4, 4, 4 Hexafluorobutanol, 1, 1, 1, 3, 3, 3 Hexafluoro-2-methylisoprono Nonore, 2, 2, 3, 3, 4, 4, 5, 5 years old Kutafu Nore old Lopentanore, 2, 2, 3, 3, 4, 4, 5, 5, 5 Nonafluoropentanore, 3 Fluorocyclohexanol, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 Dodecafnorheoheptanol, 1H, 1H, 2H, 2H Examples include, but are not
  • fluorine-containing alcohols compounds having an alkyl group having 1 to 5 carbon atoms are preferably used since the usefulness of the product and the effect of coexisting water are particularly remarkable.
  • 3, 3, 3—Trifnore Roprono Norole, 1, 1, 1, 3, 3, 3—Hexaf Noroleo 2 propanol, 2, 2, 3, 3, 4, 4, 5, 5 Octa Fluoropentanol is preferred, and 3,3,3 trifnolic rosprono norole, 1,1,1,3,3,3 hexafnore diol-2-propanol is particularly preferred.
  • the acid anhydride represented by the formula [2], which is a starting material of the present invention, is a carboxylic acid anhydride having a linear or branched alkyl group or alkenyl group having 6 to 6 carbon atoms.
  • Specific examples of the acid anhydride represented by the formula [2] include acetic anhydride, propionic anhydride, attalinoleic anhydride, methacrylic anhydride, butanoic anhydride, isobutyric anhydride, pivalic anhydride. Force including, but not limited to, valeric acid anhydride, hexanoic acid anhydride and the like.
  • acetic anhydride, acrylic acid anhydride, methacrylic acid anhydride are particularly prominent from the viewpoint of economy, usefulness of the product, and the effect of improving productivity by coexisting water.
  • Acetic anhydride and methacrylic anhydride are particularly preferred.
  • the mixing ratio of the fluorine-containing alcohol represented by the formula [1] and the acid anhydride represented by the formula [2] is not particularly limited, the reaction is performed at a molar ratio of 1: 1. It is preferable to mix both at an equimolar ratio (1: 1). However, if one is significantly more expensive than the other, it may be economically preferable to use a slightly excessive amount of an inexpensive compound in order to completely consume the expensive reagent.
  • the acid anhydride is usually 0.5 to 5 mol, preferably 0.9 to 2 monoleca, and more preferably 1 to; 2 mol, with respect to 1 mol of the fluorinated alcohol compound.
  • the reaction temperature (temperature of the internal liquid) is a force S that can be in the range of 20 ° C to 90 ° C, 10 ° C to 50 ° C is not a cooling load force S, and temperature control is also possible It is preferable because it is easy. Among these, it is a particularly preferable embodiment of the present invention to perform the reaction in the range of ⁇ 5 ° C. to 30 ° C. If the temperature is lower than -20 ° C, when a large amount of water is added to the reaction system, it may solidify and it does not require harsh cooling conditions! /, And! / It is preferable because it is hard to make use of! On the other hand, if it exceeds 90 ° C, the reaction mixture may be colored and the product may be decomposed immediately, which is not preferable.
  • the amount of water to be present is usually in the range of 0. lg to;! OOg with respect to the fluorine-containing alcohol compound lg.
  • the temperature is 0 ° C or lower (especially lower than -10 ° C)
  • the water may solidify and the productivity will be reduced.
  • a range of 20 g is preferred; a range of! To 5 g is particularly preferred.
  • the present invention includes a force using water as a solvent, a force S for performing a reaction under the condition that an organic solvent does not coexist, and one of preferred embodiments.
  • the organic solvent means an inert organic compound that does not directly participate in the reaction of the present invention.
  • “does not coexist with an organic solvent” means that these organic solvents do not substantially exist in the system, and specifically, 5 wt% with respect to the fluorinated alcohol compound. % Or less, preferably 1% by weight or less, more preferably 0.1% by weight or less.
  • the base used for the reaction is preferably a base having a strength such that the pH is 8 or more when dissolved in water at a concentration of lmol ⁇ dm- 3 .
  • Bases include ammonia, sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium carbonate, potassium bicarbonate, potassium hydroxide, etc., inorganic bases such as calcium hydroxide, lithium hydroxide, trimethylamine, triethylamine, tripropylamine, tributyl Tertiary amines such as amines, secondary amines such as dimethylamine, jetylamine and dipropylamine, primary amines such as methylamine, propylamine and butylamine, pyridine, piperidine, methylpyridine, dimethylpyridine, and aniline And organic bases such as pyridines.
  • the base either an inorganic base or an organic base can be used, but when an organic base is used as the base, among the above-mentioned organic bases, tertiary bases such as trimethylamine, triethylamine, tripropylamine, and triptylamamine are used. Amminic force It is preferably used because the reaction proceeds smoothly.
  • sodium hydroxide or potassium hydroxide among the inorganic bases described above is preferably used because the reaction proceeds smoothly.
  • the amount of the base used in the reaction is usually from 0 ⁇ 9 to 10 monoles, preferably from! More preferably 2 to 1 monole.
  • the fact that the base is less than 0.9 mol does not have a large effect on the selectivity in this reaction, but it leads to a decrease in yield due to a low conversion rate. Since it will become economically disadvantageous if it is more than the amount, it is not preferred.
  • the production method of the present invention is simple and advantageous to carry out by a notch reactor.
  • the contact between the acid anhydride and water can be suppressed as much as possible, which is an unnecessary side reaction. It is preferable because hydrolysis from an anhydride to a carboxylic acid can be suppressed.
  • esterification of a fluorine-containing alcohol compound proceeds preferentially over hydrolysis of an acid anhydride to a carboxylic acid. It is possible to obtain the target product without taking a typical addition method. However, it is more preferable to adopt a sequential or continuous addition method because the reaction can be easily controlled.
  • the optimum reaction time varies depending on the conditions under which the reaction time is not particularly limited. Therefore, the composition of the reaction mixture is not measured by a method such as thin-layer chromatography or gas chromatography, and the reaction is performed to determine the content of the raw materials. It is desirable to terminate the reaction after confirming that the fluoroalcohol has been sufficiently reduced.
  • the reaction pressure There is no particular limitation on the reaction pressure, and the reaction can be performed from normal pressure to increased pressure.
  • This reaction can be performed in air or in an inert gas such as nitrogen, helium, or argon. Because there is almost no difference in reactivity and coloring behavior due to the coexistence of these gases, the reaction is usually carried out in air.
  • an inert gas such as nitrogen, helium, or argon. Because there is almost no difference in reactivity and coloring behavior due to the coexistence of these gases, the reaction is usually carried out in air.
  • the target fluorine-containing alkane ester When the target fluorine-containing alkane ester is solid, the target compound precipitates in an aqueous solvent as the reaction proceeds. In the case of a liquid, the target compound layer and the aqueous medium layer are separated into two layers after completion of the reaction. Therefore, when the target compound is a solid, it can be easily recovered by filtration, and when it is a liquid, it can be easily recovered by a liquid separation operation.
  • the fluorine-containing alkane ester recovered in this way can usually be used as it is. High purity can be achieved by performing purification operations such as flash distillation and recrystallization as necessary.
  • % of the composition analysis value represents “% of area” of the composition obtained by directly measuring the reaction mixture by gas chromatography (GC, unless otherwise specified, the detector is FID). .
  • GC gas chromatography
  • the 500 ml 4-neck flask is allowed to warm to room temperature over 1 hour, and then the reaction mixture is transferred to a separatory funnel and separated into two layers to perform crude 1, 1, 1, 3, 3, 3 g of hexahexafluoroisopropyl-2-acetate (yield 96.9%, purity 99.8 GC%) was obtained.
  • the resulting crude 1, 1, 1, 3, 3, 3—hexafluoroisopropyl-2-acetate has a trace amount of 1, 1, 1, 3, 3, 3—hexafluoroisopropyl.
  • 100g of water was used for washing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

含フッ素アルコールと酸無水物を塩基の存在下反応させる際、水を溶媒として共存させることを特徴とする、式[3]で表される含フッ素アルカンエステル (式中、nは1~10の整数を表し、aは0又は正の整数、bは正の整数であり、かつ、a+b=2n+1である。R3は炭素数1~6の直鎖、分岐鎖のアルキル基又はアルケニル基を表す。)の製造方法が提供される。この方法に依れば、従来よりも安価に、簡便な操作条件で含フッ素アルカンエステルを製造できる。

Description

明 細 書
含フッ素アルカンエステル類の製造方法
技術分野
[0001] 本発明は、医療用レンズまたはフォトレジスト等の機能性高分子に対応するモノマ 一として有用な含フッ素アルカンエステル類の製造方法に関する。
発明の背景
[0002] 含フッ素アルコール化合物と重合部位を有するカルボン酸類を用いて得られる含 フッ素アルカンエステルは、医療用レンズまたはフォトレジスト等の機能性高分子に 対応するモノマーとして有用である。例えば、含フッ素アルカンエステルである 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—メタタリレートを主原料としたポリマーは、透明か つ屈折率が低い化合物であるため、医療用光学レンズ開発分野で幅広く使用されて おり、重要な機能性材料として用いられてレ、る。
[0003] この化合物を製造する方法として、例えば特許文献 1では、ピリジン存在下、 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—プロパノールとメタクリル酸塩化物を反応させて該 化合物を製造する例が開示されて!/、る。
[0004] 一方、特許文献 2ではメタクリル酸を用いて、無水リン酸中、含フッ素アルコールの メタタリレート体を製造する例が開示されてレ、る。
特許文献 1 :米国特許第 3 177 185号明細書
特許文献 2:特開平 2-295948号公報
発明の概要
[0005] 上述のように、一般に知られている公知の方法は、工業的に製造する上ではいくつ か難があった。すなわち、特許文献 1の方法は、 1 , 1 , 1 , 3, 3, 3 キサフルォロ —2—メタタリレートを製造した場合、収率は約 20%と極めて低い。さらに、当該文献 の方法は、反応の進行に伴い副生物として水にも有機溶媒にも難溶性の塩を生じる ため、反応終了後、塩をろ過する工程が必須と言え、後処理に過大な負荷が掛かる
[0006] 一方、特許文献 2の方法では、該目的物を高収率で製造できることからも、有用な 方法であるが、原料の含フッ素アルコールに対して、当量以上のメタクリル酸を用い て反応を行うため、反応に関与しない未反応の含フッ素アルコールゃメタクリル酸を 分離する工程が必要であり、また廃棄物等が増加するため、生産性及び効率性にい くぶん問題があった。
[0007] そこで、高収率かつ高純度な含フッ素メタタリレートを工業的に製造するため、環境 負荷の力、からない条件で製造する方法が強く求められていた。
[0008] 本発明者らはかかる問題点を解決するため、鋭意検討した結果、式 [1]で表される 含フッ素アルコール
[化 1コ
CnHaFbOH [ 1 ]
(式中、 nは 1〜10の整数を表し、 aは 0又は正の整数、 bは正の整数であり、かつ a + b = 2n+ lである。)と、式 [2]で表される酸無水物
[化 2]
Π Π [ 2 ]
0 0 し 」
(式中、 R、 Rはそれぞれ炭素数;!〜 6の直鎖、分岐鎖のアルキル基又はアルケニル
1 2
基を表す。また、 R、 Rはそれぞれ同じか、もしくは別々であっても良い)
1 2
を塩基の存在下反応させる際、水を溶媒として共存させることにより、高選択率かつ 高収率で当該目的物である、式 [3]で表される含フッ素アルカンエステル
[化 3コ
FbHaCn Π [ 3 ]
(式中、 n、 a、 bは前記と同じであり、 Rは炭素数;!〜 6の直鎖、分岐鎖のアルキル基
3
又はアルケニル基である) を製造する方法 (第 1方法)を見出した。
[0009] 本発明で用いられるメタクリル酸無水物等の酸無水物、もしくは特許文献 1で用いら れている酸塩化物は、一般的に水と反応させると容易に加水分解を起こし、対応する 酸 (カルボン酸など)へと分解してしまうことが知られている(例えば「化学大辞典」(共 立出版株式会社)、第 3巻、 997頁を参照)。このため、カルボン酸無水物を反応剤と して使用する場合、反応は通常は無水条件下で行われる。
[0010] 本発明者らは、原料である式 [1]で表される含フッ素アルコールと式 [2]で表される 酸無水物を反応させる際、溶媒として水を使用した場合、式 [2]で表される酸無水物 1S 含フッ素アルコールとではなく水と優先的に反応し、加水分解を起こしてしまうこ とを予測していた。
[0011] ところ力 本発明者らは、実際は加水分解が起こらず、酸無水物が含フッ素アルコ ールと優先的に反応し、当該目的物が良好に得られるという、驚くべき知見を得た。
[0012] また、詳細は後述するが、反応の進行と共に生成する副生成物を水層側へ溶解さ せることにより、当該目的物と副生成物との分離を容易にさせ、特許文献 2と比べても
、反応終了後の精製負荷を大幅に軽減する知見も得た。
[0013] さらに、系内に水を共存させることで、その結果二層系(不均一系)になるため、塩 基として無機塩基を用いた場合でも反応が高い収率で進行するようになった。
[0014] また、本発明は、特異的な反応を示すことも見出した。
[0015] これまでに、フッ素原子を持たない、直鎖、分岐鎖もしくは環状のアルキル基を有 する飽和アルキルアルコールに対して、酸無水物を反応させて対応するアルカンエ ステルを製造する技術は知られていなかった。例えば、イソプロピルアルコールにメタ クリル酸無水物を、水を溶媒として反応させても、対応するイソプロピル 2—メタタリ レートは殆ど得られな!/、(後述の参考例 1参照)。
[0016] さらに、式 [1]で表す含フッ素アルコールはフッ素原子を有する。フッ素原子の強い 電子求引性のため、アルコールの反応性は大きく異なり、副反応を誘発して、該目的 物を高選択的に得るのは困難であることも予想された。
[0017] しかしながら、本発明者らは基質として含フッ素アルコールを選択し、さらに前述し た水を系内に共存させることにより、酸無水物の分解が起こらずに反応が効率的に 進行し、高選択的かつ高収率で該目的物を得ることとなった。
[0018] 併せて、本発明者らは、詳細は後述するが、水を溶媒として用いる際に、有機溶媒 を共存させない条件、すなわち水のみを共存させただけでも、充分反応が進行する 知見も得た。
[0019] このように、本発明は工業的に実施可能な容易な反応条件において、従来技術よ りも高い収率で目的化合物が製造可能であり、また、有機溶媒を共存させない条件 でも良好に反応が進行するため、環境負荷がかからず、高い生産性で目的とする含 フッ素アルカンエステルを製造できることとなった。
[0020] 第 1方法は、 1, 1 , 1, 3, 3, 3 へキサフルオロー 2—プロパノールとメタクリル酸無 水物を塩基存在下反応させる際、水を溶媒として共存させ、有機溶媒を共存させな い条件にて行うことを特徴とする、 1, 1, 1 , 3, 3, 3—へキサフルオロー 2—メタクリレ ートの製造方法 (第 2方法)であってもよ!/、。
[0021] 第 1又は第 2方法は、 1, 1, 1, 3, 3, 3 へキサフルオロー 2—プロパノールとメタク リル酸無水物とを反応させる際、 1, 1 , 1, 3, 3, 3 へキサフルオロー 2 プロパノー ル lgあたり、 0.2g〜20gの水を溶媒として共存させ、有機溶媒を共存させず、水酸 化ナトリウムを用い、かつ一 10°C〜50°Cで反応させることを特徴とする、 1, 1, 1, 3, 3, 3 へキサフルオロー 2 メタタリレートの製造方法(第 3方法)であってもよい。 詳細な説明
[0022] また本発明の方法によれば、水を共存させた二層系(不均一系)の反応のため、副 生成物を除去する工程を簡略化させることで反応後の精製負荷を大幅に軽減できる ことや、有機溶媒を用いる必要がないため、生産性が良いことなどから、大規模で目 的化合物を製造するために有用である。
[0023] 以下、本発明につき、さらに詳細に説明する。本発明の出発原料である式 [1]で表 される含フッ素アルコールは、炭素数 1〜; 10のアルキル基を有し、直鎖、分岐鎖もし くは環状のアルキル基で、少なくとも 1個は水素原子がフッ素原子で置換されている 化合物である。式 [1]で表される含フッ素アルコールの具体的な化合物としては、 2, 2, 2 卜リフノレ才ロエタノーノレ、 3, 3, 3 卜リフノレ才ロプロノ ノーノレ、 1, 1, 1, 3, 3, 3 一へキサフノレオロー 2—プロパノーノレ、 1, 1, 1 トリフノレオロー 2—プロパノーノレ、 2, 2, 3, 3 テトラフルォロプロパノール、パーフルオロー tーブタノール、 2, 2, 3, 4, 4 , 4一へキサフルォロブタノール、 1 , 1 , 1 , 3, 3, 3 へキサフルオロー 2 メチルイソ プロノ ノーノレ、 2, 2, 3, 3, 4, 4, 5, 5 才クタフノレ才ロペンタノ一ノレ、 2, 2, 3, 3, 4 , 4, 5, 5, 5 ノナフルォロペンタノ一ノレ、 3 フルォロシクロへキサノーノレ、 2, 2, 3 , 3, 4, 4, 5, 5, 6, 6, 7, 7 ドデカフノレォロヘプタノ一ノレ、 1H, 1H, 2H, 2H ノ 一フルォロォクタノール、 1H, 1H, 2H, 2H—パーフルォロデ力ノール等が挙げら れるカ S、これらに限定されない。
[0024] これらの含フッ素アルコールのうち、生成物の有用性、水を共存させることの効果が 特に顕著であることから、炭素数 1〜5のアルキル基を有する化合物が好ましく用いら れる。具体 ί列として 3, 3, 3—トリフノレ才ロプロノ ノーノレ、 1 , 1 , 1 , 3, 3, 3—へキサフ ノレオロー 2 プロパノール、 2, 2, 3, 3, 4, 4, 5, 5 ォクタフルォロペンタノールが 好ましく、 3, 3, 3 トリフノレ才ロプロノ ノーノレ、 1 , 1 , 1 , 3, 3, 3 へキサフノレ才ロ一 2 プロパノールが特に好ましい。
[0025] 本発明の出発原料である式 [2]で表される酸無水物は、炭素数;!〜 6の直鎖、分岐 鎖のアルキル基又はアルケニル基を有するカルボン酸無水物である。式 [2]で表さ れる酸無水物の具体的な化合物としては、無水酢酸、プロピオン酸無水物、アタリノレ 酸無水物、メタクリル酸無水物、ブタン酸無水物、イソ酪酸無水物、ピバル酸無水物 、吉草酸無水物、へキサン酸無水物等が挙げられる力 これらに限定されない。
[0026] これらのうち、経済性の観点、生成物の有用性、水を共存させることでの生産性向 上の効果が特に顕著であることから、無水酢酸、アクリル酸無水物、メタクリル酸無水 物が好ましぐ無水酢酸、メタクリル酸無水物が特に好ましい。
[0027] 式 [1]で表される含フッ素アルコールと式 [2]で表される酸無水物の混合比に特別 な制限はないが、 1: 1のモル比での反応であるため、両者を等モル比率(1: 1)前後 で混合することが好ましい。ただし、一方が他方よりも著しく高価である場合、高価な 試薬を完全に消費させるために、安価な化合物をやや過剰に用いることも差し支え なぐ経済的にかえって好ましい場合がある。具体的には、含フッ素アルコール化合 物 1モルに対して、酸無水物は通常 0. 5〜5モルであり、 0. 9〜2モノレカ好ましく、 1 〜; ! · 2モルが特に好ましい。 [0028] 反応温度(内部の液体の温度)は— 20°C〜90°Cの範囲で可能である力 S、 10°C 〜50°Cが冷却の負荷力 Sかからず、温度制御も容易であることから、好ましい。中でも 、—5°C〜30°Cの範囲で反応を行うことは、本発明の特に好ましい態様である。 -20 °C未満であると、反応系中に水を多量に加えた場合、固化することがある上に、過酷 な冷却条件を必要としな!/、と!/、う本発明の長所を生かしにくいことから、好ましくな!/、 。一方、 90°Cを越えると反応混合物が着色しやすぐ生成物の分解等が起こる場合 があり好ましくない。
[0029] 本発明の反応において、その反応性の促進を達成するために、水を反応系に共存 させることにより、反応の進行に伴い、副生するカルボン酸塩が水層へ溶解するため
、難溶解性塩の析出を回避でき、操作性も著しく改善される。
[0030] 共存させる水の量は、含フッ素アルコール化合物 lgに対し、通常 0. lg〜; !OOgの 範囲である。ただし、 0°C以下(特に— 10°Cよりも低い温度)にする場合、多量の水を 用いると水の固化が起こることがあり、また、生産性が低下するので、通常 0. 2g〜20 gの範囲であるのが好ましぐ;!〜 5gの範囲が特に好ましい。
[0031] 以上のことから、本発明は、 10°C〜50°Cの温度で、かつ、式 [1]で表される含フ ッ素アルコール lgに対し、 0. 2g〜20gの水を添カロすることは、特に好ましい態様とし て挙げられる。
[0032] また、本発明は、水を溶媒としている力 有機溶媒を共存させない条件にて反応を 行うこと力 S、好ましい態様の一つとして挙げられる。ここで有機溶媒とは、本発明の反 応に直接関与しない不活性な有機化合物のことを言う。具体的には、ベンゼン、トノレ ェン、キシレン、ペンタン、へキサン、ヘプタン、ァセトニトリル、四塩化炭素、クロロホ ノレム、塩化メチレン、 1, 2—ジクロロェタン、ェチノレベンゼン、メシチレン、ジォキサン 、ジメチノレエーテノレ、ジェチノレエーテノレ、ジブチノレエーテノレ、テトラヒドロフランなど、 有機溶媒として入手可能なものをいう。尚、本明細書において「有機溶媒を共存させ ない」とは、実質的にはこれらの有機溶媒を系内に存在させないことを指し、具体的 には、含フッ素アルコール化合物に対して、 5重量%以下、好ましくは 1重量%以下、 さらに好ましくは 0. 1重量%以下の量をいう。これらの物質を積極的に系内に加えず に反応を実施する限り、有機溶媒を共存させないという条件を達成することは容易で ある。
[0033] 例えば、水を用いずに有機溶媒を共存させた場合、反応は進行するが、 目的物で ある 1 , 1 , 1 , 3, 3, 3—へキサフルォロ一 2—メタタリレートと反応溶媒との分離精製 が難しぐ精製時に収率が低下してしまう(後述の比較例 1を参照)。
[0034] 本発明の工業的な製造方法を考えた場合、前述した水を溶媒とした方法でも充分 反応が進行することから、有機溶媒を共存させない方が、精製操作に負荷がかから ないことで、操作性が著しく改善され、経済的に、高収率かつ高選択的に目的物が 得られる(後述の実施例参照)ことからも、好ましい態様の一つとして挙げられる。
[0035] 反応に用レ、る塩基として水に lmol · dm— 3の濃度で溶解したときの pHが 8以上とな る強度を有する塩基が好ましい。塩基としてはアンモニア、炭酸ナトリウム、炭酸水素 ナトリウム、水酸化ナトリウム、炭酸カリウム、炭酸水素カリウム、水酸化カリウム等、水 酸化カルシウム、水酸化リチウム等の無機塩基、トリメチルァミン、トリェチルァミン、ト リプロピルァミン、トリブチルァミン等の第 3級ァミン、ジメチルァミン、ジェチルァミン、 ジプロピルアミン等の第 2級ァミン、メチルァミン、プロピルァミン、ブチルァミン等の第 1級ァミン、ピリジン、ピぺリジン、メチルピリジン、ジメチルピリジン、ァニリン等のピリジ ン類等の有機塩基が挙げられる。
[0036] 塩基としては、無機塩基又は有機塩基、いずれも使用できるが、塩基として有機塩 基を用いる場合、前述した有機塩基のうち、トリメチルァミン、トリェチルァミン、トリプロ ピルァミン、トリプチルァミン等の第 3級ァミン力 反応が円滑に進行することからも、 好ましく用いられる。
[0037] 塩基として無機塩基を用いる場合、前述した無機塩基のうち、水酸化ナトリウム又は 水酸化カリウムが、反応が円滑に進行することからも、好ましく用いられる。
[0038] 本発明の特徴の 1つは環境への負荷が少ないということであるので、廃棄物という 観点から有機塩基よりもむしろ無機塩基を使用するのが好ましい。
[0039] また、反応に用いる塩基の量に特別の制限はなぐ含フッ素アルコール化合物 1モ ノレに対して、通常 0· 9〜; 10モノレで り、;!〜 5モノレで ることカ好ましく、;!〜 2モノレで あることがさらに好ましい。塩基が 0. 9モルより少ないことは、本反応において選択率 では大きな影響はないが、変換率が低ぐ収率の低下につながり、逆に塩基が 10モ ルよりも多いと、経済的に不利になるので、いずれも好ましくない。
[0040] 本発明の製造方法は、ノ ツチ式反応装置によって実施するのが簡便で、有利であ る。また、酸無水物または水の何れか一方を反応系内に逐次添加または連続添加す る方式で行うと、酸無水物と水との接触を極力抑えることができ、不要な副反応である 酸無水物からカルボン酸への加水分解を抑制できるため、好ましい。前述のように、 本発明の反応系では、酸無水物からカルボン酸への加水分解よりも含フッ素アルコ ール化合物のエステル化が優先的に進行するため、敢えて、このような逐次または連 続的な添加方式をとらなくても目的物を得ることは可能である。しかし、逐次または連 続添加方式をとることは、反応の制御が容易になることから、より好ましい。
[0041] 反応時間に特別な制限はなぐ条件によって最適の反応時間は異なるので、薄層 クロマトグラフィー、ガスクロマトグラフィーなどの方法で反応混合物の組成を測定しな 力 ¾反応を行い、原料の含フッ素アルコールが十分に減少したことを確認してから反 応終了とするのが望ましい。反応圧力には特別な制限はなく常圧から加圧でも反応 は可能である。
[0042] 尚、本反応は空気中でも、窒素、ヘリウム、アルゴンなどの不活性気体中でも行うこ とができる。これらの気体の共存によって、反応性、着色などの挙動にはほとんど差 異が見られないので、通常、反応は空気中で行えばよい。
[0043] 目的とする含フッ素アルカンエステルが固体の場合、反応の進行に伴って目的化 合物は水溶媒中に析出してくる。液体の場合、反応終了後は目的化合物の層と水溶 媒の層が二層に分離する。従って、 目的化合物が固体である場合にはろ過による回 収、液体である場合には分液操作による回収が容易に行える。
[0044] このようにして回収した含フッ素アルカンエステルは通常そのまま使用が可能である 力 必要に応じてフラッシュ蒸留、再結晶等の精製操作を行うことで高純度化が可能 である。
[0045] 以下に、本発明を、実施例をもって説明する力 本発明はこれらの実施例により限 定されない。ここで、組成分析値の「%」とは、反応混合物を直接ガスクロマトグラフィ 一(GC、特に記述のない場合、検出器は FID)によって測定して得られた組成の「面 積%」を表す。 実施例 1
[0046] 1. 1.1.3.3.3 へキサフノレ才ロイソプロピノレー 2 メタクリレー卜の製造
攪拌羽、滴下ロート、温度計を備えたガラス製の 2Lの 4口フラスコに 1, 1, 1, 3, 3, 3 へキサフノレ才口イソプロピノレアノレ 一ノレ 400g (2· 38mol)、水酸ィ匕ナトリウム 105 g(2. 62mol)、そして水 1000g(55. 6mol)を仕込み、攪拌下、内温 0°Cまで冷却し た。冷却後、これに対してメタクリル酸無水物 385g (2.45mol)を発熱に注意しなが ら 1時間かけて内温 0— 3°Cで滴下した。滴下終了後、 2L、 4口フラスコを 1時間かけ て室温まで自然昇温後、反応液を分液ロートに移液し、二層分離を行うことで粗 1, 1 , 1, 3, 3, 3 へキサフノレ才ロイソプロピノレー 2 メタタリレート 556g (収率 98· 9%, 純度 99. 8GC%)を得た。得られた粗 1, 1, 1, 3, 3, 3—へキサフルォロイソプロピ ノレ 2—メタタリレートに対して、微量の 1, 1, 1, 3, 3, 3—へキサフノレ才ロイソプロピ ルアルコールを除去するため、 400gの 2%苛性水、そして 400gの水をそれぞれ用 い洗浄を行った。洗浄後、塩化カルシウム 80gによる脱水、ろ過、常圧フラッシュ蒸留 (bp;100°C、重合禁止剤添加(0. 2wt%))の操作を行ことで、 1, 1, 1, 3, 3, 3— へキサフノレ才ロイソプロピノレー 2 メタタリレートを 533g (収率 94. 80/0、純度 99. 9G C%)得た。
実施例 2
[0047] 1. 1.1.3.3.3 へキサフノレ才ロイソプロピノレー 2 メタクリレー卜の製造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 200mlの 4ロフラ ス =ιίこ 1, 1, 1, 3, 3, 3 へキサフノレ才ロイソプロピノレアノレ 一ノレ 50.0g(0. 298mol )、トリエチルァミン 33. 2g(0. 328mol)、そして水 125g(6. 94mol)を仕込み、攪 拌下、内温 2°Cまで冷却した。冷却後、これに対してメタクリル酸無水物 48. lg(0. 3 13mol)を発熱に注意しながら 1時間かけて内温 2— 8°Cで滴下した。滴下終了後、 2 00ml、 4口フラスコを 1時間かけて室温まで自然昇温後、反応液を分液ロートに移液 し、二層分離を行うことで粗 1, 1, 1, 3, 3, 3 へキサフルォロイソプロピノレー 2 メタ タリレート 67. 5g (収率 96.4%)を得た。この粗体をガスクロマトグラフィーにより測定 したところ、 1, 1, 1, 3, 3, 3 へキサフノレ才ロイソプロピノレー 2 メタタリレート力 99· 5%、トリェチルァミンが 0. 1%、メタクリル酸無水物が 0.4%であった。 実施例 3
[0048] 1, 1, 1, 3, 3, 3 へキサフノレ才ロイソプロピノレー 2 ァクリレー卜の製造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 200mlの 4ロフラ ス =ιίこ 1, 1, 1, 3, 3, 3 へキサフノレ才ロイソプロピノレアノレ 一ノレ 50.0g(0. 30mol) 、水酸化ナトリウム 13. lg(0. 327mol)、そして水 125g(6. 94mol)を仕込み、攪拌 下、内温 8°Cまで冷却した。冷却後、これに対してアクリル酸無水物 39. 3g(0. 312 mol)を発熱に注意しながら 15分かけて内温 8— 10°Cで滴下した。滴下終了後、 20 0ml、 4口フラスコを 1時間かけて室温まで自然昇温後、反応液を分液ロートに移液し 、二層分離を行うことで粗 1, 1, 1, 3, 3, 3 へキサフルォロイソプロピル 2 アタリ レー卜 62. 7g (収率 95. 1%、純度 99. 9GC%)を得た。得られた粗 1, 1, 1, 3, 3, 3 一へキサフルォロイソプロピルー2—アタリレートに対して、微量の 1, 1, 1, 3, 3, 3 へキサフルォロイソプロピルアルコールを除去するため、 50gの水を用 V、洗浄を行 つた。洗浄後、塩化カルシウム 10gによる脱水、ろ過、常圧フラッシュ蒸留 (bp;74°C 、重合禁止剤添加(0. 2wt%))の操作を行ことで、 1, 1, 1, 3, 3, 3—へキサフルォ 口イソプロピル一 2—アタリレートを 60· lg (収率 90· 8%、純度 99. 9GC%)得た。 実施例 4
[0049] 1. 1. 1. 3. 3. 3 へキサフルォロイソプロピルー2 アセテートの製造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 500mlの 4ロフラ ス =ιίこ 1, 1, 1, 3, 3, 3 へキサフノレ才ロイソプロピノレアノレ 一ノレ 100g(0. 595mol )、水酸化ナトリウム 25. 0g(0. 625mol)、そして水 250g(13. 9mol)を仕込み、攪 拌下、内温 5°Cまで冷却した。冷却後、これに対して無水酢酸 63. 8g(0. 625mol) を発熱に注意しながら 15分かけて内温 8— 10°Cで滴下した。滴下終了後、 500ml の 4口フラスコを 1時間かけて室温まで自然昇温後、反応液を分液ロートに移液し、 二層分離を行うことで粗 1, 1, 1, 3, 3, 3 へキサフルォロイソプロピルー2 ァセテ 一卜 121g (収率 96. 9%、純度 99. 8GC%)を得た。得られた粗 1, 1, 1, 3, 3, 3— へキサフルォロイソプロピルー2—アセテートに対して、微量の 1, 1, 1, 3, 3, 3—へ キサフルォロイソプロピルアルコールを除去するため、 100gの水を用 V、洗浄を行つ た。洗浄後、塩化カルシウム 20gによる脱水、ろ過、常圧フラッシュ蒸留 (bp;72°C、 重合禁止剤添加(0. 2wt%) )の操作を行ことで、 1 , 1 , 1 , 3, 3, 3—へキサフルォロ イソプロピル— 2 アセテートを 103g (収率 82· 6%、純度 99. 9GC%)得た。
実施例 5
[0050] 3. 3. 3 卜リフノレ才 Pプ Pピノレメタクリレー卜の製造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 200mlの 4ロフラ スコに 3, 3, 3 トリフノレオロフ。ロノ ノーノレ 50.0g (0. 439mol)、水酸ィ匕ナトリウム 19· 2g (0. 482mol)、そして水 125g (6. 94mol)を仕込み、攪拌下、内温 5°Cまで冷却 した。冷却後、これに対してメタクリル酸無水物 70. 9g (0. 460mol)を発熱に注意し ながら 1時間かけて内温 5— 16°Cで滴下した。滴下終了後、 200mlの 4口フラスコを 1時間かけて室温まで自然昇温後、反応液を分液ロートに移液し、二層分離を行うこ とで粗 3, 3, 3 トリフルォロプロピルメタタリレート 73· 9g (収率 92· 5%)を得た。こ の粗体をガスクロマトグラフィーにより測定したところ、原料の 3, 3, 3—トリフルォロプ ロノ ノーノレ力 5. 4%、 3, 3, 3—トリフノレ才ロプロピノレメタクリレートカ 79. 8%、メタタリ ル酸無水物が 14. 8%であった。
実施例 6
[0051] 2. 2. 3. 3. 4. 4. 5. 5 才クタフノレ才口ペンチノレメタクリレー卜の製造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 200mlの 4ロフラ スコに 2, 2, 3, 3, 4, 4, 5, 5 才クタフノレ才ロペンタノ一ノレ 50.0g (0· 215mol)、水 酸化ナトリウム 9. 5g (0. 237mol)、そして水 125g (6. 94mol)を仕込み、攪拌下、 内温 5°Cまで冷却した。冷却後、これに対してメタクリル酸無水物 34. 8g (0. 226mo 1)を発熱に注意しながら 30分かけて内温 5— 16°Cで滴下した。滴下終了後、 200ml 、 4口フラスコを 1時間かけて室温まで自然昇温後、反応液を分液ロートに移液し、二 層分離を fiうことで粗 2, 2, 3, 3, 4, 4, 5, 5 才クタフノレ才ロペンチノレメタタリレート 63.3g (収率 98.0%)を得た。この粗体をガスクロマトグラフィーにより測定したところ、 原料の 2, 2, 3, 3, 4, 4, 5, 5 才クタフノレ才ロペンタノ一ノレ力 1.10/0、 2, 2, 3, 3, 4 , 4, 5, 5 ォクタフルォロペンチルメタタリレートが 97.0%、メタクリル酸無水物が 1. 8%であった。
[0052] このように、実施例 1 6では、いずれも水を共存させ、系内を二層系(不均一系) にした条件下、無機塩基または有機塩基を用いた場合において、後述する比較例 1 と比べ、顕著に高収率及び高純度で目的化合物が得られた。
[0053] [比較例 1]
1. 1. 1. 3. 3. 3—へキサフノレ才ロイソプロピノレー 2—メタクリレー卜の製造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 200mlの 4ロフラ ス =ι ίこ 1 , 1 , 1 , 3, 3, 3—へキサフノレ才ロイソプロピノレアノレ 一ノレ 50.0g (0.298mol )、トリェチルァミン 33.2g (0.328mol)、そしてへキサン 125g (l . 45mol)を仕込み、 攪拌下、内温 3°Cまで冷却した。冷却後、これに対してメタクリル酸無水物 48. lg (0. 315mol)を発熱に注意しながら 10分かけて内温 6_12°Cで滴下した。滴下終了後、 ガスクロマトグラフィーにより反応液を測定したところ、 1 , 1 , 1 , 3, 3, 3—へキサフル ォロイソプロピルアルコールが 0. 4%、 1 , 1 , 1 , 3, 3, 3—へキサフルォロイソプロピ ルー 2—メタタリレートが 9.3%、トリェチルァミンが 10.3%、へキサンが 77.9%、メタタリ ル酸が 0.6%、メタクリル酸無水物が 0.3%、その他が 1.2%であった。反応終了後、反応 液をそのまま理論段数 25段の蒸留塔で常圧蒸留を行い、 100°C前後の留分を集め た。その結果、 1 , 1 , 1 , 3, 3, 3—へキサフノレ才ロイソプロピノレー 2—メタタリレートの 収率が 42.9%、
純度 99.2% (へキサン 0.4%、トリエチノレアミン 0.1 %、その他 0.3%)であった。
[0054] 上記の比較例 1にお!/、て、有機溶媒を用いた反応でも本反応は進行し、該目的物 は良好に得られる。し力、しながら、精製時において、 1 , 1 , 1 , 3, 3, 3—へキサフノレ ォロイソプロピル— 2—メタタリレート(常圧での沸点 100°C)と反応溶媒であるへキサ ン(常圧での沸点 68°C)が共沸状態となり、その結果、蒸留操作における損失分が 多ぐ得られた純度の高い該目的物は低収率 (42.9%)であった。精製を考えると、 水のみで行った方が、精製時の負荷を軽減でき、さらに経済的でもあるから好ましい と曰ん' )。
[0055] [参考例 1]
イソプロピノレー 2—メタクリレートの經造
マグネチックスターラー、滴下ロート、温度計を備えたガラス製の 200mlの 4ロフラ ス =1にイソプロピノレアノレ: π—ノレ 50.0g (0.832mol)、水酸ィ匕ナトリウム 36.6g (0.915m ol)、そして水 125g (6.94mol)を仕込み、攪拌下、内温 6°Cまで冷却した。冷却後、 これに対してメタクリル酸無水物 134.5g (0. 874mol)を発熱に注意しながら 15分か けて内温 6— 22°Cで滴下した。滴下終了後、 200ml、 4口フラスコを 1時間かけて室 温まで自然昇温後、反応液を分液ロートに移液し、二層分離を行うことで粗イソプロ ピル一 2 メタタリレート 40.4gを得た。ガスクロマトグラフィーにより粗体を測定したと ころ、イソプロピルアルコールが 79.4%、イソプロピルー2 メタタリレートが 5.7%、メタ クリル酸が 2.2%、メタクリル酸無水物が 12.7%であり、ほぼ原料回収であった。
イソプロピルアルコールにメタクリル酸無水物を反応させても対応するイソプロピル 2—メタタリレートは殆ど得られず、メタクリル酸無水物の分解がほぼ優先的に進行 するのみである。

Claims

請求の範囲
式 [ 1 ]で表される含フッ素アルコール
[化 4コ
CnHaFbOH [ 1 ]
(式中、 nは 1〜10の整数を表し、 aは 0又は正の整数、 bは正の整数であり、かつ、 a
+ b = 2n+ lである。 )
と、式 [2]で表される酸無水物
[化 5]
I [ 2 ]
(式中、 R、 Rはそれぞれ炭素数;!〜 6の直鎖、分岐鎖のアルキル基又はアルケニル
1 2
基を表す。また、 R、 Rはそれぞれ同じか、もしくは別々であっても良い。 )
1 2
を塩基の存在下反応させる際、水を溶媒として共存させることを特徴とする、式 [3]で 表される含フッ素アルカンエステル
[化 6]
FbHaC I [ 3 ]
(式中、 n、 a、 bは前記と同じであり、 Rは炭素数;!〜 6の直鎖、分岐鎖のアルキル基
3
又はアルケニル基を表す。 )
の製造方法。
[2] 含フッ素アルコールが 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—プロパノールである ことを特徴とする、請求項 1に記載の方法。
[3] 酸無水物がメタクリル酸無水物又は無水酢酸であることを特徴とする、請求項 1に記 載の方法。
[4] 系内に有機溶媒を共存させない条件にて反応させることにより行うことを特徴とする、 請求項 1乃至 3の何れかに記載の方法。
[5] 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—プロパノールとメタクリル酸無水物を塩基存 在下反応させる際、水を溶媒として共存させ、有機溶媒を共存させない条件にて行う ことを特徴とする、 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—メタタリレートの製造方法
[6] 式 [1]で表される含フッ素アルコールと、式 [2]で表される酸無水物を反応させる際、 無機塩基又は有機塩基を共存させることを特徴とする、請求項 1乃至請求項 5の何 れかに記載の方法。
[7] 無機塩基がアンモニア、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸 化カリウム、炭酸カリウム、炭酸水素カリウム、水酸化カルシウム、水酸化リチウム、か らなる群より選ばれる少なくとも 1種であることを特徴とする、請求項 6に記載の方法。
[8] 有機塩基がメチルァミン、ジメチルァミン、トリメチルァミン、ジェチルァミン、トリェチル ァミン、トリブチルァミン、ピリジン、ピぺリジン、メチルピリジン、ジメチルピリジン、ァニ リンからなる群より選ばれる少なくとも 1種であることを特徴とする、請求項 6に記載の 方法。
[9] 水の量が、含フッ素アルコール lgあたり、 0.2g〜20gであることを特徴とする、請求 項 1乃至請求項 8の何れかに記載の方法。
[10] 反応を行う際の温度が— 10°C〜50°Cであることを特徴とする、請求項 1乃至請求項
9の何れかに記載の方法。
[11] 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—プロパノールとメタクリル酸無水物とを反応 させる際、 1 , 1 , 1 , 3, 3, 3—へキサフノレ才ロ一 2—プロノ ノーノレ lgあたり、 0.2g〜2 Ogの水を溶媒として共存させ、有機溶媒を共存させず、水酸化ナトリウムの存在下、 かつ一 10°C〜50°Cで反応させることを特徴とする、 1 , 1 , 1 , 3, 3, 3—へキサフノレ オロー 2—メタタリレートの製造方法。
PCT/JP2007/072740 2006-12-19 2007-11-26 含フッ素アルカンエステル類の製造方法 WO2008075534A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112007003065.8T DE112007003065B4 (de) 2006-12-19 2007-11-26 Verfahren zur Herstellung von Fluoralkanester
CN2007800427537A CN101535234B (zh) 2006-12-19 2007-11-26 用于生产氟烷酯的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-341887 2006-12-19
JP2006341887A JP5018067B2 (ja) 2006-12-19 2006-12-19 含フッ素アルカンエステル類の製造方法

Publications (1)

Publication Number Publication Date
WO2008075534A1 true WO2008075534A1 (ja) 2008-06-26

Family

ID=39536168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072740 WO2008075534A1 (ja) 2006-12-19 2007-11-26 含フッ素アルカンエステル類の製造方法

Country Status (4)

Country Link
JP (1) JP5018067B2 (ja)
CN (1) CN101535234B (ja)
DE (1) DE112007003065B4 (ja)
WO (1) WO2008075534A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102073562B1 (ko) * 2018-06-27 2020-02-05 삼화페인트공업주식회사 플루오르화 메타크릴레이트 화합물의 제조방법
CN110981756A (zh) * 2019-11-25 2020-04-10 三明学院 一种六氟异丙基丙烯酸酯类单体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180743A (ja) * 1985-02-07 1986-08-13 Showa Roodeia Kagaku Kk フツ素化アルキルアクリレ−ト類の製造方法
JPS6296451A (ja) * 1985-06-18 1987-05-02 ソシエテ シミツク デ シヤルボナ−ジユ エス.ア−. フロオロアルキル(メタ)アクリレ−トの製造法
JPH02169544A (ja) * 1988-12-22 1990-06-29 Tosoh Corp (メタ)アクリル酸含フッ素アルキルエステルの製造方法
JP2005206587A (ja) * 2003-12-26 2005-08-04 Central Glass Co Ltd 1,1−ビス(トリフルオロメチル)−1,3−ジオール類アクリル酸系エステルの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177187A (en) * 1963-10-28 1965-04-06 Allied Chem Sym-tetrafluorodichloroisopropyl acrylate compounds and polymers thereof
IT1229669B (it) * 1989-04-24 1991-09-06 Ausimont Srl Procedimento per la preparazione di metacrilati di alcooli fluorurati.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180743A (ja) * 1985-02-07 1986-08-13 Showa Roodeia Kagaku Kk フツ素化アルキルアクリレ−ト類の製造方法
JPS6296451A (ja) * 1985-06-18 1987-05-02 ソシエテ シミツク デ シヤルボナ−ジユ エス.ア−. フロオロアルキル(メタ)アクリレ−トの製造法
JPH02169544A (ja) * 1988-12-22 1990-06-29 Tosoh Corp (メタ)アクリル酸含フッ素アルキルエステルの製造方法
JP2005206587A (ja) * 2003-12-26 2005-08-04 Central Glass Co Ltd 1,1−ビス(トリフルオロメチル)−1,3−ジオール類アクリル酸系エステルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COXON G.D. ET AL: "The synthesis of (11R,12S)-lactobacillus acid and its enantiomer", TETRAHEDRON: ASYMMETRY, vol. 14, no. 9, 2 May 2003 (2003-05-02), pages 1211 - 1222, XP004420965 *

Also Published As

Publication number Publication date
JP2008150339A (ja) 2008-07-03
JP5018067B2 (ja) 2012-09-05
CN101535234B (zh) 2013-04-24
CN101535234A (zh) 2009-09-16
DE112007003065B4 (de) 2018-03-29
DE112007003065T5 (de) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4667035B2 (ja) 1,1−ビス(トリフルオロメチル)−1,3−ジオール類アクリル酸系エステルの製造方法
EP0847974B1 (en) Process for the preparation of cyclopropylacetylene and its derivatives
RU2404173C2 (ru) Способ получения метилового эфира 5-ацетилфуран-2-карбоновой кислоты
WO2008075534A1 (ja) 含フッ素アルカンエステル類の製造方法
JP4896040B2 (ja) 重合性ヒドロキシジアマンチルエステル化合物の製造方法
JP4065689B2 (ja) 2−アダマンタノンの製造方法
JP5506914B2 (ja) フルオロアルカンスルフィン酸エステルの製造方法
JP4038657B2 (ja) アダマンタノンの製造方法
WO2020212955A1 (en) Process for the preparation of a key intermediate of gemfibrozil
JP2007231002A (ja) 重合性ジアマンチルエステル化合物の製造方法
JP2001322955A (ja) 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
WO2007122691A1 (ja) 高純度α-(メタ)アクリロイロキシーγ-ブチロラクトン及びその製造方法
JP4857984B2 (ja) 含フッ素ジオール及びその誘導体の製造方法
JP4810111B2 (ja) アルコラート化合物の製造方法
JP2007131600A (ja) 含フッ素乳酸誘導体の製造方法および含フッ素乳酸誘導体の中間体
JP4893903B2 (ja) ブロモイソフタル酸化合物の製造方法
JP5000031B2 (ja) 芳香族−o−ジアルデヒド化合物の製造方法
JP2007308464A (ja) 2−メチル−2−アダマンチル(メタ)アクリレートの製造方法
JP3624478B2 (ja) ポリフルオロアルキルエステル化合物の製造方法
JP4120715B2 (ja) 2−ブロム及び/又は2,5−ジブロムテレフタル酸ジアルキル化合物の製造方法
JP5175460B2 (ja) (メタ)アクリル酸オキソアダマンチルエステル類の製造方法
JP3849412B2 (ja) 2−アルキリデンアダマンタンの製造方法
JP2005255584A (ja) ラクトン骨格含有(メタ)アクリル酸エステルの製造方法
JP2006036735A (ja) 不飽和カルボン酸ポリフルオロアルキルエステルの製造方法
JP2009023913A (ja) 1,1−ビス(トリフルオロメチル)−1,3−ジオールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042753.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070030658

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007003065

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07832465

Country of ref document: EP

Kind code of ref document: A1