WO2020212955A1 - Process for the preparation of a key intermediate of gemfibrozil - Google Patents

Process for the preparation of a key intermediate of gemfibrozil Download PDF

Info

Publication number
WO2020212955A1
WO2020212955A1 PCT/IB2020/053691 IB2020053691W WO2020212955A1 WO 2020212955 A1 WO2020212955 A1 WO 2020212955A1 IB 2020053691 W IB2020053691 W IB 2020053691W WO 2020212955 A1 WO2020212955 A1 WO 2020212955A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
formula
bromo
isobutyl ester
peroxide
Prior art date
Application number
PCT/IB2020/053691
Other languages
French (fr)
Inventor
Hitesh Trambak Kubavat
Vikrant Maruti Patil
Somnath Nandkumar Salalkar
Pravin Mahadu NAVALE
Srinivas DUDDEDA
Sandeep SURYAWANSHI
Sudhir Nambiar
Original Assignee
Hikal Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikal Limited filed Critical Hikal Limited
Publication of WO2020212955A1 publication Critical patent/WO2020212955A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/60Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification

Abstract

The present invention relates to an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I), a key intermediate of Gemfibrozil, by using radical initiator in an environment friendly and commercially viable manner with safer conditions in high yield and high chemical purity.

Description

PROCESS FOR THE PREPARATION OF A KEY INTERMEDIATE
OF GEMFIBROZIL
RELATED APPLICATION
This application claims the benefit to Indian Provisional Application No. 201921015587 filed on April 18, 2019, the contents of which are incorporated by reference herein.
FIELD OF THE INVENTION
The present invention relates to an improved process for the preparation of 5- bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I), a key intermediate of Gemfibrozil, by using radical initiator in an environment friendly and commercially viable manner in high yield and high chemical purity.
Figure imgf000002_0001
BACKGROUND OF THE INVENTION
Gemfibrozil, or 2,2-dimethyl-5-(2,5-xylyloxy)-valeric acid is used in the treatment of hyper lipidemias. The U.S. Patent no. 3,674,836 discloses the gemfibrozil and analogues thereof with process for preparation of the same. The esters of 5-halo-2,2-dimethyl-pentanoic acid are an important and key intermediate for the preparation of gemfibrozil and many pharmaceutical compounds.
The various literature discloses the synthesis of gemfibrozil by principally using ester of 5-halo-2,2-dimethyl-pentanoic acid such as 5-bromo- or 5-chloro-2,2- dimethylpentanoic acid methyl ester or lower alkyl ester. The special emphasis of several literature includes the synthesis of gemfibrozil by using 5-bromo-2,2- dimethylpentanoic acid methyl ester. Some of the literature discloses the use of 5- bromo- or 5-chloro-2,2-dimethylpentanoic acid methyl ester or lower alkyl ester are summarized below.
The U.S. Patent no. 4,665,226 discloses the reaction of 2,5-dimethylphenol with 5-bromo- or 5-chloro-2,2-dimethylpentanoic acid ester, in a mixed solvent system to yield gemfibrozil. The said patent also discloses the reaction of a lower alkyl ester of 2-methylpropanoic acid (isobutyric acid), lithium diisopropylamide and either l-bromo-3-chloropropane or 1,3-dibromopropane to yield the corresponding lower alkyl ester of 5-bromo- or 5-chloro-2,2-dimethylpentanoic acid.
The U.S. Patent no. 5,654,476 discloses the reaction of 2,5-dimethylphenol with a 5-bromo- or 5-chloro-2,2-dimethylpentanoic acid esters in absence of solvents and in the presence of an ammonium or phosphonium quaternary salt to yield gemfibrozil. The said patent has referred the known, conventional methods for preparation of the 5-bromo- or 5-chloro-2,2-dimethylpentanoic acid esters, in the description.
The Asian Journal of chemistry, vol. 27, no. 3 (2015), 925-928 discloses the reaction of isobutyric acid with allyl alcohol to obtain allyl isobutyrate, which was reacted with sodium hydride in solvent toluene to obtain 2,2-dimethyl-4-pentenoic acid. Further, 2,2-dimethyl-4-pentenoic acid was treated with hydrogen bromide in presence of dibenzoyl peroxide and solvent hexane to obtain 5-bromo-2,2- dimethylpentanoic acid, followed by esterification with methanol and concentrated sulphuric acid to synthesize 5-bromo-2,2-dimethylpentanoic acid methyl ester which was further converted to gemfibrozil. The preparation of 5- bromo-2,2-dimethylpentanoic acid methyl ester involved the multiple steps and use of more solvents, which makes process uneconomical.
The European Patent no. 0219117 discloses the preparation of 2,2-dimethyl-5- bromovaleric acid by reacting 2,2-dimethyl-4-pentenoic acid (DMP) with hydrogen bromide in solvents selected from aliphatic hydrocarbons, aromatic hydrocarbons, ethereal solvents or halogen-containing solvents, in the presence or absence of a catalyst i.e. radical initiator selected from an organic peroxide or an organic azo compound.
The Indian Patent no. 175368 discloses the preparation of 2,2-dimethyl-5-bromo pentanoic acid by reacting 2,2-dimethyl-4-pentenoic acid with hydrobromic acid (hydrogen bromide), in the presence of benzoyl peroxidein solvent petroleum ether.
The Indian Patent application 201721035354 discloses the reaction of isobutyric acid isobutyl ester with 3-chloropropene using sodium hydride and dimethoxy ethane in presence or absence of catalyst to obtain 2,2-dimethyl-4-pentenoic acid isobutyl ester which is treated with brominating agent such as HBr in acetic acid in solvent such as hexane, cyclohexane to obtain 5-bromo-2,2-dimethylpentanoic acid methyl ester. However, on higher scale, the reaction was not completed and simultaneously 15-20% 4-bromo-2,2-dimethylpentanoic acid isobutyl ester (4- bromo IBDV) impurity of formula (III) was formed compared to maximum 3% of the same in the laboratory experiments.
Figure imgf000004_0001
To get the pure 5-bromo-2,2-dimethylpentanoic acid isobutyl ester, the aforesaid impurity must be removed by any means. The removal of the said impurity from synthesis or crude IBDV by fractional distillation is difficult due to close boiling point of functional group positional isomers5-bromo-2,2-dimethylpentanoic acid isobutyl ester and 4-bromo-2,2-dimethylpentanoic acid isobutyl ester, which also resulted in the loss of yield and required additional time cycle for production at commercial quantities. Based on the observations at higher scale reaction, additional radical initiator may be required for smooth reaction, to drive the reaction for completion and to control the formation of another isomer 4-bromo
IBDV. The significance of by-products from reactions in process development work arises from the need to control or eliminate their formation which might affect product cost, process safety, product purity and environmental health. Now days, not only purity profile but also impurity profile has become mandatory according to various regulatory authorities. Since, the strict regulations of the regulatory authorities pertaining to the presence of impurities in the active ingredient, it is highly essential to align the research in line with the guidelines of the regulatory authorities in accordance to appropriate regulations and limits to register and commercialize the product in respective countries.
Appraising the importance of the key intermediates, 5 -halo-2, 2-dimethyl- pentanoic acid esters for preparation of gemfibrozil and to overcome existing problem associated with the formation of excess 4-bromo IBDV impurity, incomplete reaction and more time cycle required for higher batch production, the inventors of instant invention developed process for preparation of 5-bromo-2,2- dimethylpentanoic acid isobutyl ester with cost-saving and industrially convenient way with high purity and less time cycle at commercial quantities, which can further utilize for the preparation of gemfibrozil.
The aforesaid prior art documents singly as a whole or combinedly, (a) do not motivate to pursue the research using radical initiator which also controls the formation of another isomer 4-bromo IBDV in the preparation of 5-bromo-2,2- dimethylpentanoic acid isobutyl ester; (b) do not identify the formation of 4- bromo IBDV isomer impurity or problem associated with it having so identified this isomer. Also, the inventors of the instant invention have for the first time identified an excess formation of 4-bromo IBDV isomer impurity, lactonizing it to corresponding lactone derivative of formula (IV) by using acid as a catalyst and process for removal of same which no one has reported earlier. Additionally, the prior processes are silent about the said isomer impurity.
Figure imgf000005_0001
The advantages of 5-bromo-2,2-dimethylpentanoic acid isobutyl ester over 5- bromo-2,2-dimethylpentanoic acid methyl ester is the bulkiness of isobutyl group over methyl group, which is easily eliminated during reaction or chemical transformation. Therefore, it is easier to convert 4-bromo-2,2-dimethylpentanoic acid isobutyl ester to lactone derivative compared to 4-bromo-2,2- dimethylpentanoic acid methyl ester or lower alkyl ester.
The prior art documents do not disclose the use of radical initiator to control formation of an unwanted isomer impurity, 4-bromo-2,2-dimethylpentanoic acid isobutyl ester (4-bromo IBDV) and process for removal of said isomer in the preparation of 5-bromo-2,2-dimethylpentanoic acid isobutyl ester. Hence, to overcome the cost constrains and multiple synthesis steps, the instant inventors are motivated to pursue the research to synthesize 5-bromo-2,2-dimethyl- pentanoic acid isobutyl ester of formula (I) by using radical initiator, with or without acid, with high yield, high chemical purity in an economically and commercially viable manner.
OBJECTIVES OF THE INVENTION
The main object of the present invention is to provide an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) using radical initiator, which is simple, economical friendly and commercially viable.
Another objective of the present invention is to provide an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) using radical initiator to control an excess formation of impurity 4-bromo-2,2- dimethylpentanoic acid isobutyl ester of formula (III).
Another objective of the present invention is to provide a process for purification of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) by using acid to lactonize unwanted isomer impurity 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV) and subsequently removing the said lactone. Another objective of the present invention is to provide an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I), which would be easy to implement on commercial scale, and to avoid excessive use of reagent(s) and organic solvent(s), which makes the present invention environment friendly as well.
Yet another objective of the present invention is to provide an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) in a high yield with high chemical purity.
Yet another objective of the present invention is to provide an improved process for the preparation of Gemfibrozil using 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) obtained by a process of the instant invention.
SUMMARY OF THE INVENTION
In one aspect of the present invention provides an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) which comprises the steps of:
Figure imgf000007_0001
a) reacting a compound of formula (II) with brominating reagent in presence of a radical initiator, in a suitable solvent or mixture of solvents thereof;
Figure imgf000007_0002
b) obtaining the crude compound of formula (I);
c) optionally, treating the crude compound of formula (I) with acid;
d) obtaining a pure compound of formula (I). An another aspect of the present invention provides process for purification of 5- bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) by using acid to lactonize unwanted isomer impurity 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV) and subsequently removing the said lactone to obtain pure compound of formula (I).
In another aspect of the instant invention provides an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) which comprises the steps of:
Figure imgf000008_0001
a) reacting a compound of formula (II) with brominating reagent in presence of a radical initiator to control excess formation of impurity 4-bromo-2,2- dimethylpentanoic acid isobutyl ester of formula (III), in a suitable solvent or mixture of solvents thereof;
Figure imgf000008_0002
b) obtaining the crude compound of formula (I);
c) optionally, treating the crude compound of formula (I) with acid to lactonize the unwanted impurity 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV)
Figure imgf000008_0003
d) obtaining a pure compound of formula (I). DETAILED DESCRIPTION OF THE INVENTION
The present invention now will be described more fully hereinafter. The invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification, and in the appended claims, the singular forms“a”,“an”,“the”, include plural referents unless the context clearly indicates otherwise.
In one aspect of the present invention provides an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) which comprises the steps of:
Figure imgf000009_0001
a) reacting a compound of formula (II) with brominating reagent in presence of a radical initiator, in a suitable solvent or mixture of solvents thereof;
Figure imgf000009_0002
b) obtaining the crude compound of formula (I);
c) optionally, treating the crude compound of formula (I) with acid;
d) obtaining a pure compound of formula (I).
The above process is illustrated in the following general synthetic scheme:
Figure imgf000009_0003
In another aspect of the present invention provides process for purification of 5- bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) by using acid to lactonize unwanted isomer impurity, 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV) and subsequently removing the said lactone by fractional distillation to obtain pure compound of formula (I) with high chemical purity in an economically and commercially viable manner.
An another aspect of the instant invention provides an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) which comprises the steps of:
Figure imgf000010_0001
a) reacting a compound of formula (II) with brominating reagent in presence of a radical initiator to control excess formation of impurity 4-bromo-2,2- dimethylpentanoic acid isobutyl ester of formula (III), in a suitable solvent or mixture of solvents thereof;
Figure imgf000010_0002
b) obtaining the crude compound of formula (I);
c) optionally, treating the crude compound of formula (I) with acid to lactonize the unwanted impurity 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV);
Figure imgf000010_0003
(IV) d) obtaining a pure compound of formula (I).
In accordance with the objectives, wherein the present invention provides an improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) by using radical initiator, with or without acid, with high yield, high chemical purity in an economically and commercially viable manner.
In an embodiment of the present invention, wherein the use of radical initiator enhances reaction speed, which reduces time cycle and makes process cost efficient.
In an embodiment of the present invention, wherein the radical initiator used in step (a) is one or more selected from the group consisting of air, oxygen, peracid, organic peroxide, an organic azo compound. The peracid is selected from the group consisting of peracetic acid, trifluoroperacetic acid, 2,4-dinitroperbenzoic acids, m-chloroperbenzoic acid(MCPBA), persulfuric acid, percarbonic acid, perboric acid and the like. The organic peroxide is selected from the group consisting of benzoyl peroxide, hydrogen peroxide, hydroperoxides, di-tert-butyl peroxide, tert-butylcumyl peroxide, dicumyl peroxide, isobutyryl peroxide, propionyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, para-menthane hydroperoxide and the like.
In another embodiment of the present invention, wherein the said solvent used in step (a) is selected from the organic solvent, aliphatic hydrocarbons, aromatic hydrocarbons, ethereal solvents and halogen-containing solvents or mixture of solvents thereof. Specific examples of the solvent include for example hexane, cyclohexane, n-hcptanc, pentane, ether, toluene, carbon tetrachloride, benzene, dioxane, tetrahydrofuran (THF), acetic acid and the like or mixture of solvents thereof. In another embodiment of the present invention, wherein the said brominating reagent used in step (a) is hydrogen bromide (HBr); preferably hydrogen bromide in acetic acid.
In another embodiment of the present invention, the reaction step (a) is carried out at temperature between 0°C to -10°C.
In another embodiment of the present invention, wherein the step (c) the reaction mixture comprises the crude 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I), isomer 4-bromo-2,2-dimethylpentanoic acid isobutyl ester (4- bromo IBDV) of formula (III), is treated with acid such as concentrated sulphuric acid (cone. FhSQ which results in conversion of excess 4-bromo IBDV to corresponding lactone derivative of formula (IV) and the compound of formula (I) remain as it is. Further, the5-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (I) and lactone derivative of formula (IV) are easily separated by fractional distillation in different fraction taking advantage of a significant difference in their boiling points to obtain pure 5-bromo-2,2-dimethylpentanoic acid isobutyl ester (IBDV) of formula (I). The reaction scheme as shown below indicates the removal of unwanted isomer.
Figure imgf000012_0001
In another embodiment of the present invention, wherein the said acid used in step (c) is selected from one or more organic acid or inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, or mixture thereof.
In another embodiment of the present invention, wherein the preparation of a 5- bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I)is performed in an in-situ manner. In another embodiment of the present invention, wherein all the crude compound is used as such or may be purified by distillation or crystallization or by different techniques well understood by those skilled in the art.
The compound 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) is prepared with the process of instant invention is further use for the preparation of gemfibrozil.
The preparation of the starting materials and reagents used in the present invention are well known in prior art.
The invention is further illustrated by the following examples, which should not be construed to limit the scope of the invention in anyway.
EXAMPLES
Example 1: Preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (I)
100 g of 2,2-dimethyl-pent-4-enoic acid isobutyl ester (AIBIB) and 200 mL of cyclohexane were charged in to the dry round bottom flask (RBF) at temperature between 25°C to 30°C. The reaction mixture was cooled to -5°C to 0°Cunder stirring. To the reaction mixture, 3.0 g of peracetic acid was added. To the cooled reaction mass, 333 g of HBr in acetic acid (2.5 eq.) was dropwise added at temperature -5°C to 0°Cover period of 1-2 h. The progress of reaction was monitored by GC. The HBr in acetic acid layer was separated from cyclohexane layer and cyclohexane layer washed with water. Finally, cyclohexane layer was washed with saturated NaHCCL solution. The cyclohexane was distilled off under reduced pressure to obtainel58.0 g crude 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (IBDV) (GC purity: IBDV 91.92%; 4-Bromo IBDV 2.80).
Example 2: Preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (I)
100 g of 2,2-dimethyl-pent-4-enoic acid isobutyl ester (AIBIB) and 200 mL of cyclohexane were charged in to the dry RBF at temperature between 25°C to 30°C. The reaction mixture was cooled to -5°C to 0°C under stirring. To the reaction mixture, 3.0 g of peracetic acid was added. To the cooled reaction mass, 333 g of HBr in acetic acid (2.5 eq.) was dropwise added at temperature -5°C to 0°Cover period of 1-2 h. The progress of reaction was monitored by GC. The HBr in acetic acid layer was separated from cyclohexane layer and cyclohexane layer washed with water. Finally, cyclohexane layer was washed with saturated NaHCCF solution. The cyclohexane was distilled off under reduced pressure to obtained 158.33 g crude 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (IBDVXGC purity: IBDV 92.53%; 4-bromo IBDV 0.97%).
Example 3: Preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (I)
In a clean and dry glass reactor (30L capacity), 5.49 kg crude 2,2-dimethyl-pent- 4-enoic acid isobutyl ester (assay: 72.76%) and cyclohexane (8 L) were charged at temperature between 25°C to 30°C. The reaction mixture was cooled to -5°C to 0°C under stirring. To the reaction mixture, 160 g (1% w.r.t AIBIB) of peracetic acid solution was added at temperature -5°C to 0°C. To the cooled reaction mass, 13.31 kg of HBr in acetic acid was dropwise added at temperature -5°C to 0°C. The progress of reaction was monitored by GC. The HBr in acetic acid layer was separated from cyclohexane layer and cyclohexane layer washed with water. Finally, cyclohexane layer was washed with saturated NaHC03 solution till neutral pH of aqueous layer. The cyclohexane was distilled off under reduced pressure to obtain crude 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (IBDV) followed by fractional distillation to yield 5.10 kg pure final product IBDV (yield: 88.60%; GC purity: 98.83%).
Example 4: Purification of 5-bromo-2,2-dimethylpentanoic acid isobutyl ester
(I)
In a clean and dry round bottom flask equipped with thermometer pocket, 845.40 g of crude 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester (IBDV) (IBDV 75.67%, 4-bromo IBDV 15.87 %) was charged. 4.23 g (0.5%) of concentrated sulphuric acid was added. The reaction mass was heated to 130°C to 140°C for 4h. The conversion of 4-bromo IBDV isomer to corresponding lactone derivative was characterized by GC. The fractional distillation of reaction mass yield 398 g of pure IBDV (GC purity: 97.61%).
Abbreviations
AcOH Acetic acid
AIBIB 2,2-dimethyl-4-pentenoic acid isobutyl ester
4-bromo 4-bromo-2,2-dimethylpentanoic acid isobutyl
IBDV ester
DMP 2,2-dimethyl-4-pentenoic acid
Eq Equivalent
G Gram
GC Gas chromatography
H Hour/s
H2O Water
HBr Hydrogen bromide
HPLC High performance liquidchromatography
5-bromo-2,2-dimethyl-pentanoic acid isobutyl
IBDV
ester
Kg Kilogram
L Fitre
MCPBA m-chloroperbenzoic acid
mL Millilitre
NaHCOs Sodium bicarbonate
RBF Round bottom flask
RM Reaction mixture
Rt Room temperature
THF T etr ahydro fur an
V Volume
w.r.t With respect to

Claims

CLAIM:
1. An improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) which comprises the steps of:
Figure imgf000016_0001
a) reacting a compound of formula (II) with brominating reagent in presence of a radical initiator, in a solvent or mixture of solvents thereof;
Figure imgf000016_0002
b) obtaining the crude compound of formula (I);
c) optionally, treating the crude compound of formula (I) with acid; d) obtaining a pure compound of formula (I).
2. A process for purification of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I)
Figure imgf000016_0003
by using acid to lactonize unwanted isomer impurity 4-bromo-2,2- dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV)
Figure imgf000017_0001
and subsequently removing the said lactone.
3. An improved process for the preparation of 5-bromo-2,2-dimethyl-pentanoic acid isobutyl ester of formula (I) which comprises the steps of:
Figure imgf000017_0002
a) reacting a compound of formula (II) with brominating reagent in presence of a radical initiator to control excess formation of impurity 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III), in a solvent or mixture of solvents thereof;
Figure imgf000017_0003
b) obtaining the crude compound of formula (I);
c) optionally, treating the crude compound of formula (I) with acid to lactonize the unwanted impurity 4-bromo-2,2-dimethylpentanoic acid isobutyl ester of formula (III) to corresponding lactone derivative of formula (IV);
Figure imgf000018_0001
d) removing lactone derivation of formula (IV) to obtain pure compound of formula (I).
4. The process as claimed in claim 1 and 3, wherein the radical initiator is selected from air, oxygen, peracid, organic peroxide, or an organic azo compound, where peracid is selected from peracetic acid, trifluoroperacetic acid, 2,4-dinitroperbenzoic acids, m-chloroperbenzoic acid(MCPBA), persulfuric acid, percarbonic acid and perboric acid, where organic peroxide is selected from benzoyl peroxide, hydrogen peroxide, hydroperoxides, di-tert- butyl peroxide, tert-butylcumyl peroxide, dicumyl peroxide, isobutyryl peroxide, propionyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide and para-menthane hydroperoxide.
5. The process as claimed in claim 1 and 3, wherein the solvent used in step (a)is selected from hexane, cyclohexane, n- heptane, pentane, ether, toluene, carbon tetrachloride, benzene, dioxane, tetrahydrofuran (THF), acetic acid or mixture of solvents thereof.
6. The process as claimed in claim 1 and 3, wherein the said brominating reagent used in step (a) is hydrogen bromide (HBr); preferably hydrogen bromide in acetic acid.
7. The process as claimed in claim 1 and 3, the reaction step (a) is carried out at temperature in between 0°C to -10°C.
8. The process as claimed in claim 1, 2 and 3, wherein the acid is selected from one or more organic acid or inorganic acid.
9. The process as claimed in claim 1, 2 and 3, wherein the acid is selected from hydrochloric acid, nitric acid, sulfuric acid, or mixture thereof.
PCT/IB2020/053691 2019-04-18 2020-04-18 Process for the preparation of a key intermediate of gemfibrozil WO2020212955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201921015587 2019-04-18
IN201921015587 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020212955A1 true WO2020212955A1 (en) 2020-10-22

Family

ID=72837064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/053691 WO2020212955A1 (en) 2019-04-18 2020-04-18 Process for the preparation of a key intermediate of gemfibrozil

Country Status (1)

Country Link
WO (1) WO2020212955A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592275A (en) * 2020-12-28 2021-04-02 杭州宇龙化工有限公司 Preparation method of isobutyl 5-chloro-2, 2-dimethylpentanoate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226161A1 (en) * 1985-12-09 1987-06-24 Warner-Lambert Company Improved process for preparing 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid
EP0575303A1 (en) * 1992-06-16 1993-12-22 S.A. Omnichem N.V. A process for the preparation of 5-(2,5-dimethyl-phenoxy)-2,2-dimethyl pentanoic acid
WO2019069321A1 (en) * 2017-10-05 2019-04-11 Hikal Limited An improved process for the preparation of a key intermediate of gemfibrozil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226161A1 (en) * 1985-12-09 1987-06-24 Warner-Lambert Company Improved process for preparing 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid
EP0575303A1 (en) * 1992-06-16 1993-12-22 S.A. Omnichem N.V. A process for the preparation of 5-(2,5-dimethyl-phenoxy)-2,2-dimethyl pentanoic acid
WO2019069321A1 (en) * 2017-10-05 2019-04-11 Hikal Limited An improved process for the preparation of a key intermediate of gemfibrozil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592275A (en) * 2020-12-28 2021-04-02 杭州宇龙化工有限公司 Preparation method of isobutyl 5-chloro-2, 2-dimethylpentanoate

Similar Documents

Publication Publication Date Title
AU2002217114B2 (en) Process for preparing oxirane compounds
Armstrong et al. Synthesis of (±)-karahana ether and a (±)-labdadienoic acid by the electrophilic cyclization of epoxy allylsilanes
WO2020212955A1 (en) Process for the preparation of a key intermediate of gemfibrozil
JP2818652B2 (en) Method for producing isobornyl (meth) acrylate
EP2894145A1 (en) Method for producing unsaturated acid and/or unsaturated acid ester
CN107641067B (en) Alpha-bromination method of o-diketone
CN113773182B (en) Method for synthesizing 6, 8-dichloro octanoate
DE60018077T2 (en) PERFLUOROSULFONYLMETHIDE COMPOUNDS; THEIR USE IN THE PREPARATION OF C-C BINDINGS
WO2019069321A1 (en) An improved process for the preparation of a key intermediate of gemfibrozil
US3953526A (en) Synthesis of hydroquinone
JP4065689B2 (en) 2-Adamantanone production method
JPWO2010113531A1 (en) Method for producing high purity terminal olefin compound
US6414167B1 (en) Octafluorotricyclodecane derivatives and processes for producing same
JP2594826B2 (en) Method for producing p- or m-hydroxyphenethyl alcohol
JPS6345666B2 (en)
JPH0632747A (en) Hydrogenation
WO2008075534A1 (en) Process for producing fluoroalkane ester
SU962281A1 (en) Esters of 5-chloro-2-ketobicyclo (2,2,1)-heptane-7-carboxydic acid and process for producing the same
Yan et al. A Convenient Two-Step Synthesis of Coenzyme Q1
EP0282914B1 (en) Process for preparing chlorinated olefins
SU727615A1 (en) Method of preparing methylvinylketone
JP4749638B2 (en) Production of tetrafluorohalogenbenzene
CN111484407A (en) Preparation method of 1-halogenated-2-methyl-4-substituted carbonyloxy-2-butene
JP3849412B2 (en) 2-Method for producing alkylidene adamantane
JPH02237951A (en) Preparation of 3-phenoxybenzyl alcohol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20792032

Country of ref document: EP

Kind code of ref document: A1