WO2008072673A1 - 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 - Google Patents

固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 Download PDF

Info

Publication number
WO2008072673A1
WO2008072673A1 PCT/JP2007/073970 JP2007073970W WO2008072673A1 WO 2008072673 A1 WO2008072673 A1 WO 2008072673A1 JP 2007073970 W JP2007073970 W JP 2007073970W WO 2008072673 A1 WO2008072673 A1 WO 2008072673A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
polymer
membrane
electrolyte membrane
fluorine
Prior art date
Application number
PCT/JP2007/073970
Other languages
English (en)
French (fr)
Inventor
Seigo Kotera
Tetsuji Shimohira
Satoru Honmura
Susumu Saito
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to CN200780045773XA priority Critical patent/CN101563802B/zh
Priority to JP2008549344A priority patent/JP5251515B2/ja
Priority to EP07859790A priority patent/EP2109171A4/en
Publication of WO2008072673A1 publication Critical patent/WO2008072673A1/ja
Priority to US12/483,315 priority patent/US8673517B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid polymer electrolyte membrane for a polymer electrolyte fuel cell and a membrane electrode assembly.
  • a polymer electrolyte fuel cell is, for example, formed by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells.
  • the membrane electrode assembly includes an anode having a catalyst layer and a force sword, and a solid polymer electrolyte membrane disposed between the anode and the force sword.
  • a fluorine-based proton conductive polymer such as a perfluorocarbon polymer having a sulfonic acid group is usually used.
  • the solid polymer electrolyte membrane is required to have low electrical resistance.
  • the solid polymer electrolyte membrane may be thinned.
  • the mechanical strength of the membrane decreases, and when the membrane / electrode assembly is manufactured, it becomes difficult to process or handle.
  • the solid polymer electrolyte membrane tends to cause various adverse effects as soon as its dimensions increase in the length direction of the membrane when it contains water.
  • the electrode follows the dimensional change of the solid polymer electrolyte membrane.
  • the membrane electrode assembly is constrained by a separator or the like, the dimensional increase of the solid polymer electrolyte membrane becomes “wrinkles”. The wrinkles may fill the separator groove and hinder gas flow.
  • Examples of solid polymer electrolyte membranes that have high mechanical strength and excellent dimensional stability when containing water even when the polymer electrolyte membrane is thin include reinforcing materials (porous bodies, fibrils, woven fabrics, nonwoven fabrics, etc.). ) Has been proposed (see Patent Documents 1 to 5).
  • Patent Document 1 Japanese Patent Publication No. 5-75835 (Claims)
  • Patent Document 2 Japanese Patent Publication No. 7-68377 (Claims)
  • Patent Document 3 Japanese Patent Laid-Open No. 6-231779 (Claims)
  • Patent Document 4 Pamphlet of International Publication No. 04/011535 (claims)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2003-297394 (Claims, paragraphs 0012 and 0026)
  • a solid polymer electrolyte membrane for a solid molecular fuel cell having excellent dimensional stability and a membrane electrode assembly having high output and excellent durability are provided.
  • the solid polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention includes a fluorine-based proton conductive polymer and a fluorine-based reinforcing material, and the fluorine-based proton conductive polymer has the following conditions ⁇ and It satisfies the condition ( ⁇ ).
  • the membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention is a polymer electrolyte membrane force for a polymer electrolyte fuel cell of the present invention, which is disposed between an anode and a force sword. Effect of the invention
  • the solid polymer electrolyte membrane for a solid molecular fuel cell of the present invention has a small thickness and a high concentration of ionic groups contained in the fluorinated proton conductive polymer in order to reduce electrical resistance. Even so, the mechanical strength is high and the dimensional stability is excellent when containing water.
  • the membrane electrode assembly for a solid molecular fuel cell of the present invention has high output and excellent durability.
  • FIG. 1 is a cross-sectional view showing an example of a membrane electrode assembly of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the membrane / electrode assembly of the present invention.
  • a group represented by the formula ( ⁇ 1) is referred to as a group).
  • groups represented by other formulas are referred to as a group.
  • a compound represented by the formula (1) is referred to as a compound (1).
  • the solid polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a solid polymer electrolyte membrane) is a membrane comprising a fluorine-based proton conductive polymer and a fluorine-based reinforcing material.
  • the thickness of the solid polymer electrolyte membrane is preferably 100 m or less, more preferably 50 m or less, and even more preferably 30 m or less. Further, the thickness of the solid polymer electrolyte membrane is preferably 5 m or more, more preferably 20 m or more. If the thickness of the solid polymer electrolyte membrane is 100 m or less, the electrical resistance of the solid polymer electrolyte membrane can be sufficiently lowered. Also, V, which tends to cause reverse diffusion of the water produced on the force sword side. If the thickness of the solid polymer electrolyte membrane is 20 m or more, the mechanical strength becomes high and problems such as gas leakage are unlikely to occur.
  • the solid polymer electrolyte membrane is a layer reinforced with a fluorine-based reinforcing material (hereinafter referred to as a reinforcing layer) from the viewpoint that the electrical resistance at the joint between the solid polymer electrolyte membrane and the electrode can be reduced. It is more preferable to have a non-reinforcing layer on both sides of the reinforcing layer, which preferably has a layer that is not reinforced with a fluorine-based reinforcing material (hereinafter referred to as a non-reinforcing layer) on at least one side.
  • a fluorine-based reinforcing material hereinafter referred to as a non-reinforcing layer
  • the fluorine-based proton conductive polymer of the non-reinforcing layer may be the same as or different from the fluorine-based proton conductive polymer of the reinforcing layer.
  • the non-reinforcing layer may contain other components other than the fluorine-based reinforcing material as long as the electrical resistance is not increased.
  • the thickness of the non-reinforcing layer is excellent in fuel gas barrier properties and can suppress electric resistance, force, etc. More preferred is 15 ⁇ m force, 2 to 10 ⁇ m is particularly preferred.
  • the thickness of the non-reinforcing layer is the shortest distance from the surface of the solid polymer electrolyte membrane to the fluorine-based reinforcing material, and can be measured by cross-sectional observation using an optical microscope, laser microscope, SEM, or the like.
  • the solid polymer electrolyte membrane includes a fluorine-based proton conductive polymer as a proton conductive polymer because it is excellent in chemical durability and can secure long-term stable performance.
  • the proportion of the fluorine-based proton conductive polymer is preferably 100% by mass of the proton conductive polymer (100% by mass).
  • the fluorine-based proton conductive polymer is a polymer having a fluorine atom and an ionic group, and satisfies the following conditions (i) and (ii).
  • a polymer containing a repeating unit based on a vinyl ether type monomer having an ionic group is obtained by polymerizing using a monomer having such a precursor group and then converting it to an ionic group. Containing polymers.
  • the proton conductivity of the fluorine-based proton conductive polymer is 0.06 S / cm or more, the ⁇ loss as an electrolyte membrane is small when used as an electrolyte membrane for a solid fuel cell, and the power generation voltage is significantly reduced. Without inviting, it can be used in a wide current density range.
  • the proton conductivity of the fluorine-based proton conductive polymer is preferably 0.07 S / cm or more, more preferably 0.08 S / cm or more.
  • the EW of the bull ether type monomer is 400 or less, the polymer having a repeating unit based on the bull ether type monomer and a repeating unit based on the perfluoro monomer is based on the bull ether type monomer. It is enough even if we do not reduce repeating unit High ionic group concentration can be obtained. As a result, the polymer can have low electrical resistance and sufficiently high mechanical strength. On the other hand, if the EW is too low, the hydrophilicity of the polymer increases and it becomes easier to dissolve in water.
  • the EW of the butyl ether type monomer is preferably 230 to 330. Examples of the ionic group include a sulfonic acid group, a sulfonimide group, and a sulfonemethide group.
  • the repeating unit based on the butyl ether monomer is preferably a repeating unit based on a monomer having a group ( ⁇ ).
  • a fluorine-based proton conductive polymer having a repeating unit based on a monomer having a group) and a repeating unit based on a perfluoromonomer is referred to as polymer Q.
  • Q 1 has an etheric oxygen atom! /, May! /, A perfluoroalkylene group
  • Q 2 has a single bond or an etheric oxygen atom
  • R fl may be a perfluoroalkyl group optionally having an etheric oxygen atom
  • X 1 is an oxygen atom, a nitrogen atom or a carbon atom
  • a is ,
  • X 1 is 0 when oxygen atom, X 1 when nitrogen atom is 1, X 2 when X 1 is carbon atom, Y 1 is fluorine atom or monovalent perfluoro organic group.
  • the number of oxygen atoms may be one or two or more. Further, the oxygen atom may be inserted between carbon atom bonds of carbon atoms or carbon atom bonds of the perfluoroalkylene group.
  • the perfluoroalkylene group is preferably linear, whether linear or branched.
  • the number of carbon atoms in the perfluoronolealkylene group is preferably 1-6; more preferably! -4. If the number of carbon atoms is too large, the boiling point of the fluorine-containing monomer increases, and distillation purification becomes difficult. Also, if there are too many carbons, the ion exchange capacity of polymer Q will decrease and proton conductivity will be low. I will give you.
  • Q 2 is preferably a perfluoroalkylene group having 1 to 6 carbon atoms which may have an etheric oxygen atom. If Q 2 has an etheric oxygen atom! /, May! /, And if it is a perfluoroalkylene group having 1 to 6 carbon atoms, it will last longer than when Q 2 is a single bond. Excellent stability of power generation performance when operating a polymer electrolyte fuel cell
  • At least one of QQ 2 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom.
  • a fluorine-containing monomer having a C1-C6 perfluoroalkylene group having an etheric oxygen atom can be synthesized without undergoing a fluorination reaction with a fluorine gas, resulting in a good yield and easy production. It is.
  • -SO X 'CSO R fl ) — H + group includes sulfonic acid group (one SO—H + group), sulfonimide
  • the perfluoroalkyl group of R fl is preferably a straight chain or a straight chain.
  • the carbon number of 1 to 6 is preferred;! To 4 is more preferred.
  • the R f l, par full O b methyl, perfluoro full O Roe methyl group and the like are preferable.
  • the two R fl may be the same group or different groups.
  • Y 1 is preferably a fluorine atom or a linear perfluoroalkyl group having from 6 to 6 carbon atoms which may have an etheric oxygen atom.
  • the repeating unit based on perfluoromonomer is a repeating unit based on tetrafluoroethylene (hereinafter referred to as TFE) from the viewpoint of mechanical strength and chemical durability of the solid polymer electrolyte membrane. Units are preferred. Moreover, it is also preferable that it consists of a repeating unit based on two or more kinds of perfluoroolefin monomers containing TFE. In addition, polymer Q is not perfluoronole monomer V, it may contain repeating units based on monomer V, V!
  • the repeating units based on perfluoromonomers other than TFE that may be included in polymer Q and those based on monomers that are not perfluoromonomers are collectively referred to as ⁇ Repeating units based on other monomers '' below. That's it.
  • Examples of the repeating unit based on another monomer include a repeating unit based on a monomer having no ionic group and a repeating unit based on a monomer having an ionic group.
  • Monomers having no ionic groups include chlorofluoroethylene, vinylidene fluoride, hexafluoropropylene, trifluoroethylene, butyl fluoride, ethylene, compounds (nl) to (n3), etc. Is mentioned.
  • CH CHR f3 .
  • R f2 is a perfluoroalkyl group having 1 to 12 carbon atoms which may contain one or more etheric oxygen atoms
  • R f3 is a perfluoroalkyl group having 1 to 12 carbon atoms.
  • Examples of the monomer having an ionic group include compound (n4).
  • Q 3 is a single bond or a perfluoroalkylene group which may have an etheric oxygen atom
  • R f4 is a perfluoroalkyl group which may have an etheric oxygen atom
  • X 2 is an oxygen atom, a nitrogen atom or a carbon atom
  • b is 0 when X 2 is an oxygen atom, 1 when X 2 is a nitrogen atom, and 2 when X 2 is a carbon atom
  • Y 2 is a fluorine atom or a monovalent perfluoro organic group.
  • the repeating unit based on the compound (n 1) and the compound can be used because the solid polymer electrolyte membrane is not easily damaged even if it is repeatedly swollen in a wet state and contracted in a dry state.
  • the repeating unit based on (n4) is preferred.
  • the polymer Q is preferably a perfluorinated polymer from the viewpoint of the chemical durability of the solid polymer electrolyte membrane. Therefore, when it contains a repeating unit based on another monomer, the other monomer is a perfluoromonomer. Preferably there is.
  • the polymer Q As the polymer Q, the polymer Q (100 mol%), the repeating units 50 to 95 mole 0/0 based on the repeating unit 5-25 Monore 0/0, TFE-based monomer having a group (alpha), the other Polymers consisting of 0 to 25 mol% of repeating units based on the monomer of are preferred.
  • Polymer Q can be produced, for example, through the following steps.
  • a monomer having a group (/ 3) hereinafter referred to as a compound (ml)
  • a perfluoromonomer and, if necessary, other monomers are polymerized to form a precursor polymer having a SO F group (hereinafter referred to as
  • polymer P (P. )
  • QQ 2 and Y 1 are synonymous with those in the group ( ⁇ ).
  • the other monomer is a monomer having an ionic group
  • it is used in the form of a precursor monomer having a SOF group which is a precursor of the ionic group.
  • Compound (ml) can be obtained, for example, by the synthesis example shown in Example 1 described later.
  • Examples of the polymerization method include known polymerization methods such as a Barta polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • Polymerization is performed under conditions where radicals occur.
  • examples of the method for generating radicals include a method of irradiating radiation such as ultraviolet rays, X-rays, and electron beams, and a method of adding an initiator.
  • the polymerization temperature is usually from 20 to 150 ° C.
  • Initiators include bis (fluoroacyl) baroxides, bis (chlorofluoroacyl) baroxides, dialkylperoxydicarbonates, disilveroxides, peroxyesters, azo compounds, peroxides.
  • Perfluoro compounds such as bis (fluoroacyl) peroxides are preferred from the viewpoint of obtaining a precursor polymer P having few unstable terminal groups, such as sulfates.
  • Solvents used in the solution polymerization method include polyfluorotrialkylamine compounds, Fluoroalkane, Hyde-mouthed Fluoroalkane, Black-mouthed Fluoroalkane, Fluoroolefin with no double bond at the molecular chain end, Polyfluorocycloalkane, Polyfluorocyclic ether compound, Hydrofluoroether, Fluorine-containing low molecular weight polyether , T-butanol and the like.
  • the fluorine gas may be used after being diluted with an inert gas such as nitrogen, helium or carbon dioxide, or may be used as it is without being diluted.
  • an inert gas such as nitrogen, helium or carbon dioxide
  • the temperature at which the polymer P and the fluorine gas are brought into contact with each other is preferably room temperature to 300 ° C, more preferably 50 to 250 ° C, more preferably 100 to 220 ° C, and particularly preferably 150 to 200 ° C.
  • Preferred contact time of polymer P and fluorine gas is preferably 1 minute to 1 week; more preferably! To 50 hours.
  • step (III 1) when converting a SO F group to a sulfonic acid group, the step (III 1) is performed and S
  • the step (III 2) is performed.
  • Step of converting to acid form and converting to sulfonic acid group Step of converting to acid form and converting to sulfonic acid group.
  • the hydrolysis is performed, for example, by bringing polymer P and a basic compound into contact in a solvent.
  • the basic compound include sodium hydroxide and potassium hydroxide.
  • the solvent include water, a mixed solvent of water and a polar solvent, and the like.
  • polar solvents include alcohols (methanol, ethanol, etc.), dimethyl sulfoxide, and the like.
  • the acidification is performed by, for example, polymer P having hydrolyzed SO F groups and water such as hydrochloric acid and sulfuric acid. Perform in contact with the solution.
  • Hydrolysis and acidification are usually carried out at 0 to 120 ° C.
  • sulfonimidation examples include known methods such as the method described in US Pat. No. 5,463,005 and the method described in Inorg. Chem. 32 (23), page 5007 (1993).
  • the ion exchange capacity of the fluorine-based proton conductive polymer is preferably 0.5 to 2.0 meq / g dry resin, 0.7 to 1.6; more preferably 1.6 meq / g dry resin. If the ion exchange capacity is 0.5 meq / g dry resin or more, the electric resistance of the solid polymer electrolyte membrane can be sufficiently lowered. If the ion exchange capacity is 2.0 meq / g dry resin or less, the hydrophilicity of the polymer is suppressed, and the solid polymer electrolyte membrane does not dissolve during power generation.
  • the fluorine-based proton conductive polymer preferably has a glass transition point of 120 ° C or higher. When it has a glass transition point of 120 ° C or higher, it has excellent mechanical strength even when operating at a battery temperature of 100 ° C or higher.
  • Fluorine-based reinforcing materials include porous materials made of fluorine-containing polymers, fibrils, woven fabrics, non-woven fabrics, etc. In the case of woven fabrics, the manufacturing process is complicated and the cost is relatively high. It is difficult to satisfy the demands for thin film formation. Also, the addition of short fibers such as fibrils has a weaker reinforcing effect than other systems. In view of the above, a fluorine-based reinforcing material having a porous form or a non-woven form is particularly desirable.
  • the nonwoven fabric is preferably a nonwoven fabric composed of continuous fibers of a fluorine-containing polymer and having at least a part of the intersections between the fibers fixed, from the viewpoint of strength development as a reinforcing material.
  • the thickness of the nonwoven fabric is preferably 50 111 or less, more preferably 30 mm or less, and particularly preferably 20 mm or less.
  • the basis weight of the nonwoven fabric is preferably 5 to 50 g / m 2 (2.5 to 25 cc / m 2 ) from the viewpoint of the reinforcing effect and the reduction of electric resistance.
  • Continuous fiber means a fiber having an aspect ratio of 10,000 or more. Fiber length is 20mm The above is preferable.
  • the fiber diameter (diameter) of continuous fibers is 0.01 to 13 m force S, preferably 0.01 to 5111, more preferably 0.01 to 3111. If the fiber diameter is 0 ⁇ 01 m or more, the tensile strength per fiber will be sufficient, and the handling properties will be good. If the fiber diameter is 13 111 or less, proton transfer is performed smoothly, so that an increase in electrical resistance due to reinforcement can be suppressed. In addition, since the number of intersections between fibers per thickness increases, the strength of the nonwoven fabric can be increased and the dimensional stability of the solid polymer electrolyte membrane is improved. More preferably, the fiber diameter (diameter) force of the nonwoven fabric continuous fiber is 0.01 to 13 m, and the basis weight is 5 to 50 g / m 2.
  • fluorine-containing polymer repeating based on fluorine-containing monomers such as perfluororefin (TFE, hexafluoropropylene, etc.), black trifluoroethylene, perfluoro (alkyl butyl ether) and the like.
  • fluorine-containing monomers such as perfluororefin (TFE, hexafluoropropylene, etc.), black trifluoroethylene, perfluoro (alkyl butyl ether) and the like.
  • TFE perfluororefin
  • hexafluoropropylene etc.
  • black trifluoroethylene perfluoro (alkyl butyl ether) and the like.
  • a homopolymer or copolymer having at least one unit is preferred.
  • Examples of the homopolymer or copolymer include TFE / perfluoro (alkyl butyl etherate) copolymer (PFA), ethylene / TFE copolymer (ETFE), TFE / hexafluoropropylene copolymer (FEP). ), Polychlorinated trifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polyvinylidene fluoride polymer (PV dF), polybulufluoride polymer (PVF), etc. It is done.
  • PFA perfluoro (alkyl butyl etherate) copolymer
  • EFE ethylene / TFE copolymer
  • FEP hexafluoropropylene copolymer
  • PCTFE Polychlorinated trifluoroethylene
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • PV dF polyvinylidene fluoride poly
  • PFA and ETFE are particularly preferable because ETFE, PFA, FEP, PVdF, etc. are preferable from the viewpoint of melt molding and excellent mechanical strength and moldability.
  • the monorepulsive force of the repeating unit based on TFE / the repeating unit based on ethylene is preferably 70/30 to 30/70, more preferably 65/35 to 40/60.
  • ETFE, PFA, FEP, and PVdF may contain a repeating unit based on a small amount of a comonomer.
  • comonomer examples include the following compounds.
  • X 3 is a fluorine atom or a trifluoromethyl group
  • k is an integer of 0 to 5.
  • Olefins (excluding ethylene): C3 olefin (propylene, etc.), C4 olefin (butylene, isobutylene, etc.), etc.
  • CFCFCFCFCH CH is preferable.
  • CF CF OCF CF
  • CF CF CF OCF CF
  • the proportion of the repeating units based on comonomers, fluorine-containing polymer (ETFE, PFA, FEP, PVdF) constituting, of repeating units based on all monomers (100 mol 0/0), is 30 mole% or less Preferable 0.;! ⁇ 15 mol% is more preferable 0 ⁇ 2 ⁇ ; 10 mol% is more preferable.
  • the melt flow rate of PFA (hereinafter referred to as MFR) is 40 to 300 g / 10 component force S preferred! / ⁇ .
  • MFR melt flow rate
  • the force S is preferably 150 g / 10 min or less.
  • ETFE's MFR is more than 40g / 10min.
  • the ETFE MFR is measured according to ASTM D3159.
  • the fluoropolymer is a melt-moldable fluoropolymer such as PFA or ETFE
  • a melt blown method is preferably employed.
  • the melt-blown method can form fibers and fabrics almost simultaneously. Productivity is high.
  • the fibers constituting the nonwoven fabric can be made very thin, An increase in electric resistance of the solid polymer electrolyte membrane can be suppressed for reinforcement.
  • the nonwoven fabric is produced by the melt blown method, for example, as follows.
  • melt-formable fluorine-containing polymer is discharged from the discharge hole of the spinning nozzle in a molten state, and stretched by the gas discharged from the discharge hole of the gas discharge nozzle disposed in the vicinity of the spinning nozzle.
  • a continuous fiber is obtained by spinning.
  • the non-woven fabric is formed by collecting the continuous fibers on the surface having the adsorption ability.
  • Examples of the surface having an adsorption function include a metal mesh placed on a conveyor.
  • intersection between the fibers of the nonwoven fabric is not fixed, it is difficult to perform operations such as winding and handling.
  • the elastic modulus and strength can be expressed as a single nonwoven fabric.
  • the nonwoven fabric itself is self-supporting, the handling property is improved, and the production of the solid polymer electrolyte membrane having the nonwoven fabric is facilitated.
  • Examples of the aspect in which at least a part of the intersections between the fibers are fixed include the following aspects.
  • a spray coating method is preferable.
  • a solvent-soluble fluorine-containing polymer is preferable from the viewpoint of excellent chemical durability.
  • the solvent-soluble fluorine-containing polymer means a fluorine-containing polymer in which a solvent capable of dissolving it exists, and can exist as a solution having a concentration of 0.1% or more at room temperature.
  • the solution also includes a liquid in which the fluoropolymer is present in a dispersed or swollen state, but is macroscopically recognized as a solution.
  • the solvent-soluble fluorine-containing polymer is preferably a perfluoropolymer from the viewpoint of excellent chemical durability.
  • solvent-soluble fluorine-containing polymer examples include the following polymers (A) to (C).
  • Examples of the precursor group of the ionic group include a SO F group.
  • the polymer (A) becomes an electrolyte and does not increase the electrical resistance of the solid polymer electrolyte membrane without lowering the opening ratio of the nonwoven fabric.
  • the polymer (A) may be the same as the fluorine-based proton conductive polymer constituting the solid polymer electrolyte membrane.
  • the fluorine-containing polymer having a SO F group includes a repeating unit based on the compound (1 ') and
  • CF CF (OCF CFY 3 ) —0— (CF) —SO F ⁇ ⁇ ⁇ (l ') 0
  • Y 3 is a fluorine atom or a trifluoromethyl group
  • m is an integer of 0 to 3
  • n is an integer of 1 to 12
  • q is 0 or 1.
  • Examples of the fluorinated polymer having a sulfonic acid group include a copolymer obtained by converting the SOF group of the copolymer into a sulfonic acid group by hydrolysis and acidification.
  • a fluorine-containing polymer having a sulfonic acid group that is soluble in an alternative fluorocarbon solvent is soluble in ethanol.
  • polymers (B) examples include polymers having a repeating unit represented by any of the following formulas (Bl), (B2), and (B3).
  • the polymer is soluble in perfluorobenzene, trifluoroethane, perfluoro (2-butyltetrahydrofuran), Fluorinert FC-77 (manufactured by 3M) and the like.
  • the polymer of (C) includes TFE / hexafluoropropylene / vinylidene fluoride copolymer; TFE, hexafluoropropylene, vinylidene fluoride, chloroethylene selected from the group consisting of trifluoroethylene power. Repeating units based on at least one monomer of olorefhin and butyl ether, butyl ester, allyle ester, arnino estenole, isopropeno eno tenole, isopropeneno estenole, methacrylo enotenole, methacrine estenore
  • the polymer (C) is soluble in ketones, esters, chloroethanes, benzene derivatives and the like.
  • (a-1) A casting method in which a fluorine-containing reinforcing material is coated or impregnated with a solution or dispersion containing a fluorine-based proton conductive polymer, and then dried to form a film.
  • (a-2) A method of laminating and integrating a film-like material containing a preliminarily formed fluorine-based proton conductive polymer on a fluorine-based reinforcing material. If necessary, the solid polymer electrolyte membrane may be reinforced by stretching or the like.
  • examples of the method for producing the solid polymer electrolyte membrane include the following methods.
  • (b-1) A method in which a non-reinforcing layer is simultaneously formed when a solid polymer electrolyte membrane is formed by the method (a-1) or (a-2).
  • (b-3) A membrane-like material containing a preliminarily molded fluorine-based proton conductive polymer on the surface of the solid polymer electrolyte membrane (reinforcing layer) obtained by the method (a-1) or (a-2) A method of laminating and integrating (non-reinforcing layers).
  • FIG. 1 is a cross-sectional view showing an example of a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane electrode assembly).
  • the membrane / electrode assembly 10 includes an anode 13 having a catalyst layer 11 and a gas diffusion layer 12, a force sword 14 having a catalyst layer 11 and a gas diffusion layer 12, and a catalyst layer between the anode 13 and the force sword 14. 11 and a solid polymer electrolyte membrane 15 disposed in contact with 11.
  • the solid polymer electrolyte membrane 15 is a membrane containing the above-described fluorine-based proton conductive polymer and a fluorine-based reinforcing material.
  • the catalyst layer 11 is a layer containing a catalyst and a proton conductive polymer.
  • the catalyst examples include a supported catalyst in which platinum or a platinum alloy is supported on a carbon support.
  • a supported catalyst in which a platinum-cobalt alloy is supported on a carbon support is preferred from the viewpoint of durability!
  • Examples of the carbon carrier include carbon black powder. From the viewpoint of durability, a carbon black powder graphitized by heat treatment or the like is preferable.
  • the proton conductive polymer polymer Q, and other proton conductivity excluding the polymer Q Polymer Q, and the polymer Q is preferred.
  • Other proton conductive polymers include other fluorine-based proton conductive polymers and hydrocarbon polymers other than polymer Q, and other fluorine-based proton conductive polymers are preferable from the viewpoint of durability.
  • a copolymer having a repeating unit based on TFE and a repeating unit based on a fluorine-containing monomer having a sulfonic acid group is particularly preferable.
  • the compound (1) is preferred.
  • CF CF (OCF CFY 4 ) O— (CF)-SO H ⁇ ⁇ ⁇ ⁇ (1) 0
  • Y 4 is a fluorine atom or a trifluoromethyl group
  • m is an integer of 0 to 3
  • n is an integer of 1 to 12
  • q is 0 or 1.
  • Hydrocarbon polymers include sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzoimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyether ether.
  • the catalyst layer 11 may contain a water repellent agent from the viewpoint of increasing the effect of suppressing flooding.
  • a water repellent agent a copolymer of TFE and hexafluoroethylene propylene, a copolymer of TFE and perfluoro (alkyl butyl ether), polytetrafluoroethylene (hereinafter referred to as PTFE). Etc.
  • PTFE polytetrafluoroethylene
  • Etc a fluorine-containing polymer that can be dissolved in a solvent is preferable because the catalyst layer 11 is easily subjected to water repellent treatment.
  • the ratio of the water repellent agent is preferably 0.0;! To 30% by mass in the catalyst layer 11 (100% by mass).
  • gas diffusion layer 12 examples include carbon paper, carbon cloth, and carbon felt.
  • the gas diffusion layer 12 is preferably water repellent treated with PTFE or the like.
  • the membrane electrode assembly 10 may have a carbon layer 16 between the catalyst layer 11 and the gas diffusion layer 12 as shown in FIG. By disposing the carbon layer 16, the gas diffusibility on the surface of the catalyst layer 11 is improved, and the power generation performance of the polymer electrolyte fuel cell is greatly improved.
  • the carbon layer 16 is a layer containing carbon and a nonionic fluoropolymer.
  • the carbon is preferably a carbon nanofiber having a fiber diameter of 1 to 1000 nm and a fiber length of 1000 ⁇ m or less.
  • nonionic fluorine-containing polymer examples include PTFE.
  • the membrane electrode assembly 10 is manufactured, for example, by the following method.
  • (X-1) A method in which a catalyst layer 11 is formed on a solid polymer electrolyte membrane 15 to form a membrane catalyst layer assembly, and the membrane catalyst layer assembly is sandwiched between gas diffusion layers 12.
  • the membrane / electrode assembly 10 has the carbon layer 16
  • the membrane / electrode assembly 10 is produced, for example, by the following method.
  • a dispersion liquid containing carbon and a nonionic fluoropolymer is applied on a base film and dried to form a carbon layer 16, and a catalyst layer 11 is formed on the carbon layer 16.
  • (y-2) A dispersion liquid containing carbon and a nonionic fluorine-containing polymer is applied on the gas diffusion layer 12 and dried to form the carbon layer 16, and the film contact in the method (X-1) is performed.
  • Examples of the method for forming the catalyst layer 11 include the following methods.
  • (z-1) A method in which a catalyst layer forming solution is applied onto the solid polymer electrolyte membrane 15, the gas diffusion layer 12, or the carbon layer 16 and dried.
  • (z 2) A method in which a catalyst layer forming solution is applied onto a substrate film, dried to form a catalyst layer 11, and the catalyst layer 11 is transferred onto a solid polymer electrolyte membrane 15.
  • the catalyst layer forming liquid is a liquid in which a proton conductive polymer and a catalyst are dispersed in a dispersion medium.
  • the catalyst layer forming liquid can be prepared, for example, by mixing a liquid composition described later and a catalyst dispersion.
  • the viscosity of the catalyst layer forming liquid varies depending on the method of forming the catalyst layer 11, it may be a dispersion liquid of about several tens of cP or a paste of about 20000 cP.
  • the catalyst layer forming liquid may contain a thickener in order to adjust the viscosity.
  • a thickening agent examples include ethyl cellulose, methylcellulose, cellosolve thickener, and fluorine-based solvents (pentafluoropropanol, chlorofluorocarbon, etc.).
  • the liquid composition is a dispersion in which a proton conductive polymer is dispersed in a dispersion medium containing an organic solvent having a hydroxyl group and water.
  • the organic solvent having a hydroxyl group is preferably an organic solvent having a main chain carbon number of! ⁇ 4. Examples thereof include methanol, ethanol, n propanol, isopropanol, tert butanol, and n butanol.
  • the organic solvent having a hydroxyl group one kind may be used alone, or two or more kinds may be mixed and used.
  • the proportion of water is preferably 40 to 99 mass%, more preferably 10 to 99 mass% of the dispersion medium (100 mass%). Increasing the proportion of water can improve the dispersibility of the proton conductive polymer in the dispersion medium.
  • the proportion of the organic solvent having a hydroxyl group is preferably from! To 90% by mass, more preferably from! To 60% by mass in the dispersion medium (100% by mass).
  • the dispersion medium may contain a fluorine-containing solvent.
  • fluorinated solvent include hydronorenocarbon, fluorenocarbon carbon, hydrotarolonoleorocarbon, fluoreophore ether, and fluorinated alcohol.
  • the proportion of the proton conductive polymer is preferably from 3 to 30% by mass, preferably from! To 50% by mass in the liquid composition (100% by mass).
  • the membrane electrode assembly of the present invention is used for a polymer electrolyte fuel cell.
  • Solid polymer form A fuel cell is manufactured, for example, by forming a cell by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells.
  • the separator examples include a conductive carbon plate in which a groove serving as a passage for an oxidant gas (air, oxygen, etc.) containing fuel gas or oxygen is formed.
  • solid polymer fuel cells examples include hydrogen / oxygen fuel cells and direct methanol fuel cells (DMFC).
  • the solid polymer electrolyte membrane 15 described above includes a fluorine-based proton conductive polymer that satisfies the above conditions (i) and (ii) and a fluorine-based reinforcing material, so that the electrical resistance is lowered. For this reason, even if the thickness is reduced and the concentration of the ionic group contained in the fluorine-based proton conductive polymer is increased, the dimensional stability when containing water is excellent. The reason is as follows.
  • the solid polymer electrolyte membrane is thinned by reinforcing with a reinforcing material, and the dimensional stability of the solid polymer electrolyte membrane is maintained, and the electrical conductivity is maintained to some extent. Resistance can be lowered.
  • the solid polymer electrolyte membrane is reinforced with a reinforcing material. The dimensional stability of the molecular electrolyte membrane cannot be maintained.
  • the present invention since the present invention has a repeating unit based on a bull ether type monomer having a fluorine-based proton conductive polymer power EW of 400 or less, the repeating unit based on a bull ether type monomer is used. Even with a small amount, a sufficiently high ionic group concentration can be obtained. Therefore, it is possible to increase the number of repeating units based on the perfluoroolefin monomer, and as a result, it is possible to reduce the thickness and increase the concentration of ionic groups contained in the fluorinated proton conductive polymer.
  • the solid polymer electrolyte membrane 15 having excellent dimensional stability can be formed.
  • a sufficiently high concentration of ionic groups can be obtained even if the number of repeating units based on the bull ether type monomer is reduced, so that the fluorine-based proton conductive polymer can be used in an atmosphere at a temperature of 80 ° C and a relative humidity of 50%.
  • the proton conductivity in can be increased to 0.06 S / cm or more, and as a result, the electric resistance of the solid polymer electrolyte membrane 15 can be lowered.
  • the membrane electrode assembly 10 described above has an electrical resistance as a solid polymer electrolyte membrane.
  • Solid polymer electrolyte membrane with excellent mechanical strength and high dimensional stability when containing water, even if the thickness is reduced and the concentration of ionic groups in the fluorine-based proton conductive polymer is increased. Since it has 15, output is high and durability is excellent.
  • Examples 8 to 8 are synthesis examples, examples 9 to 17 are production examples, examples 18 to 25 and 30 to 38 are examples, and examples 26 to 29, 39 and 40 are comparative examples.
  • the ion exchange capacity (AR) of polymer P was determined by the following method.
  • the TQ value (unit: C) is an index of the molecular weight of the polymer. Using a nozzle with a length of 1 mm and an inner diameter of 1 mm, 2. Extrusion when the polymer is melt extruded under a 94 MPa extrusion pressure condition The temperature is 100mm 3 / sec.
  • the molar ratio of the repeating units constituting the polymer P was determined by melting 19 F-NMR.
  • the proton conductivity of polymer Q was determined by the following method.
  • a substrate with 4-terminal electrodes arranged at 5 mm intervals is adhered to a 5 mm width polymer Q film, and the temperature is controlled at a constant temperature and humidity of 80 ° C and relative humidity of 50% by the known 4-terminal method. Measure the resistance of the film at an AC voltage of 10 kHz IV, and calculate proton conductivity from the results.
  • the softening temperature and glass transition temperature of polymer Q were determined by the following methods. Using a dynamic viscoelasticity measuring device (DVA200, manufactured by IT Measurement Co., Ltd.), polymer Q film under the conditions of sample width 0.5cm, grip length 2cm, measurement frequency 1 ⁇ ⁇ , heating rate 2 ° C / min The dynamic viscoelasticity was measured, and the value at which the storage elastic modulus was half that at 50 ° C was taken as the softening temperature. The glass transition temperature (Tg) was determined from the peak value of tan ⁇ .
  • DVA200 dynamic viscoelasticity measuring device
  • a PET film with an adhesive was pressed against the nonwoven fabric, the nonwoven fabric was transferred, and the basis weight of the nonwoven fabric was measured from the transferred area and the mass increase. Moreover, the cross-sectional micrograph force, the thickness of the nonwoven fabric, and the fiber diameter were measured.
  • the aperture ratio was calculated by the following formula.
  • Opening ratio (%) 100—eight 100 / (8 times)
  • A The weight per unit area (g / m 2) of the non-electrolyte material of the non-woven fabric material
  • the cross section of the solid polymer electrolyte membrane was observed with a laser microscope, and the shortest distance from the surface of the solid polymer electrolyte membrane to the fluorine-based reinforcing material was measured.
  • a 200 mm square sample was cut out from the solid polymer electrolyte membrane.
  • the sample was exposed to an atmosphere at a temperature of 25 ° C. and a relative humidity of 50% for 16 hours, and the length and width of the sample were measured.
  • the length was measured in the same manner. The average value of the elongation in the vertical direction and the horizontal direction of the sample was determined and used as the dimensional change rate.
  • a carbon plate with a narrow groove for gas passage cut into a zigzag shape As a separator, a carbon plate with a narrow groove for gas passage cut into a zigzag shape ( Groove width lmm, land lmm).
  • a separator was placed on both sides of the membrane electrode assembly, and a heater was placed on the outside of the separator to assemble a polymer electrolyte fuel cell having an effective membrane area of 25 cm 2 .
  • the temperature of the polymer electrolyte fuel cell was maintained at 80 ° C, and air was supplied to the force sword and hydrogen was supplied to the anode at 0.15 MPa. Each gas was supplied to each electrode while being humidified to a relative humidity of 50% using a humidifier. The cell voltages at current densities of 0. lA / cm 2 and lA / cm 2 were measured, respectively.
  • a compound (ml 1) was synthesized by the synthetic route shown below.
  • a 300cm 3 4-neck round bottom flask equipped with a Dimroth condenser, thermometer, dropping funnel and glass rod with stirrer was added to potassium fluoride (Morita Chemical Co., Ltd., trade name: Crocat F) under a nitrogen atmosphere. 6 g and 15.9 g dimethoxyethane were added. Subsequently, the round bottom flask was cooled in an ice bath, and 49.lg of Compound (M) was dropped from the dropping funnel over 32 minutes at an internal temperature of 10 ° C or lower. After completion of the dropwise addition, Compound (al) 82. Og was added dropwise over 15 minutes from the dropping funnel. The rise in internal temperature was almost unobservable.
  • potassium fluoride Morita Chemical Co., Ltd., trade name: Crocat F
  • Potassium fluoride (Morita Chemical Co., Ltd., trade name: Crocat F) 1. lg was placed in a 200 cm 3 stainless steel autoclave. After deaeration, 5.3 g of dimethoxyethane, 5.3 g of acetonitrile and 95.8 g of compound (cl) were placed in an autoclave under reduced pressure. Next, after cooling the autotarb in an ice bath and adding 27.2 g of hexafluoropropenoxide over 27 minutes at an internal temperature of 0-5 ° C, the internal temperature was kept at room temperature while stirring. And stirred overnight. The lower layer was collected with a separatory funnel. The recovered amount was 121.9 g, and the GC purity was 63%.
  • a U-shaped tube with a length of 40 cm was prepared.
  • One side of the U-shaped tube was filled with glass wool, and the other side was filled with glass beads using a stainless steel sintered metal as an eye plate to prepare a fluidized bed reactor.
  • Nitrogen gas was used as the fluidizing gas so that the raw material could be supplied continuously using a metering pump.
  • the outlet gas was collected with liquid nitrogen using a trap tube.
  • the autoclave (inner volume: 2575 cm 3 , made of stainless steel) was replaced with nitrogen and thoroughly deaerated. Under reduced pressure, compound (ml 1) 945 3g, solvent compound (2-1) 425-7g, compound (nll) 164.3g, and initiator compound (3-1) (manufactured by NOF Corporation) , Parroll I PP) 654.2 mg was added, and the inside of the autoclave was deaerated to the vapor pressure.
  • reaction solution was diluted with compound (21), then compound (2-2) was added, the polymer was agglomerated and filtered.
  • the autoclave (inner volume: 2575 cm 3 , made of stainless steel) was replaced with nitrogen and thoroughly deaerated. Under reduced pressure, compound (ml 1) 1035 ⁇ Og, solvent compound (2-1) 414 ⁇ 0 g, compound (nl l) 80. lg, methanol 122. lmg, and initiator compound (3 — 1) 616.5 mg was added and the inside of the autoclave was deaerated to the vapor pressure.
  • the autoclave (inner volume: 2575 cm 3 , made of stainless steel) was replaced with nitrogen and thoroughly deaerated. Under reduced pressure, add compound (ml 1) 1127 ⁇ 9g, solvent compound (2-1) 403 ⁇ 5g, and initiator compound (3-1) 535. 8mg. I was degassed.
  • the autoclave (inner volume: 2575 cm 3 , made of stainless steel) was replaced with nitrogen and thoroughly deaerated. Under reduced pressure, the compound (mi l) 1047 ⁇ lg, the solvent compound (2-1) 123 ⁇ 5g, the compound (n41) 614.3 g, and the initiator compound (3-2) 358.3 mg And the inside of the autoclave was evacuated to the vapor pressure.
  • the internal temperature was raised to 65 ° C, TFE was introduced into the autoclave, and the pressure was adjusted to 1. lMPaG (gauge pressure). Polymerization was carried out for 11.0 hours while keeping the temperature and pressure constant. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the gas in the system was purged.
  • reaction solution was diluted with compound (21), then compound (2-2) was added, the polymer was agglomerated and filtered.
  • the internal temperature was raised to 65 ° C, TFE was introduced into the autoclave, and the pressure was adjusted to 1.28 MPaG (gauge pressure). Polymerization was carried out for 4.5 hours while keeping the temperature and pressure constant. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the gas in the system was purged. After the reaction solution was diluted with compound (2-1), compound (2-2) was added, the polymer was aggregated and filtered.
  • the autoclave (with an internal volume of 1006 cm 3 , made of stainless steel) was replaced with nitrogen and thoroughly deaerated. Under reduced pressure, compound (ml 1) 334 ⁇ 5g, compound (2-1) 103 ⁇ 2g as solvent, compound (n41) 239.4g, and compound (3-2) 542 ⁇ 6mg as initiator The autoclave was evacuated to the vapor pressure.
  • the internal temperature was raised to 65 ° C, TFE was introduced into the autoclave, and the pressure was adjusted to 1.20 MPaG (gauge pressure). Polymerization was carried out for 6.5 hours while keeping the temperature and pressure constant. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the gas in the system was purged.
  • the autoclave (inner volume: 2575 cm 3 , made of stainless steel) was replaced with nitrogen and thoroughly deaerated. Under reduced pressure, 180.17 g of compound (n41) was added, and a solution containing 4.9% by mass of compound (3-3) as a radical initiator in compound (n41) (A) 157.2 mg was added and liquid The autoclave freeze-deaeration was repeated twice with nitrogen.
  • Polymer P1 was treated by the following method to obtain a film of acid type polymer Q1.
  • the polymer PI was processed into a film having a thickness of 100 to 200 ⁇ m by pressure press molding at the TQ temperature of the polymer PI.
  • the SOF group in the film was hydrolyzed by immersing the film in an aqueous solution containing 30% by mass of dimethyl sulfoxide and 15% by mass of potassium hydroxide at 80 ° C for 16 hours. , Converted to SO K group.
  • the film was immersed in a 3 mol / L hydrochloric acid aqueous solution at 50 ° C for 2 hours.
  • the hydrochloric acid aqueous solution was changed, and the same treatment was repeated four more times.
  • the film was washed thoroughly with ion-exchanged water, and the polymer Q1 fluorinated polymer Q1 in which SO K groups in the film were converted to sulfonic acid groups.
  • An acid polymer film Q2 was obtained in the same manner as in Example 9, except that polymer P2 was used instead of polymer P1.
  • the softening temperature, glass transition temperature and proton conductivity of the polymer Q 2 film were measured. The results are shown in Table 2.
  • a film of acid-type polymer Q3 was obtained in the same manner as in Example 9 except that polymer P3 was used instead of polymer P1.
  • a film of acid type polymer Q4 was obtained in the same manner as in Example 9 except that polymer P4 was used instead of polymer P1.
  • a film of acid type polymer Q5 was obtained in the same manner as in Example 9 except that polymer P5 was used instead of polymer P1.
  • the softening temperature, glass transition temperature and proton conductivity of the polymer Q5 film were measured. The results are shown in Table 2.
  • An acid polymer film Q5 was obtained in the same manner as in Example 9 except that polymer P6 was used instead of polymer P1.
  • the softening temperature, glass transition temperature and proton conductivity of the polymer Q6 film were measured. The results are shown in Table 2.
  • the polymers Q1 to Q6 have repeating units based on butyl ether type monomers having sulfonic acid groups, derived from repeating units based on monomers (mi l).
  • the EW of the vinyl ether type monomer is 313.
  • a film of acid type polymer Q 7 was obtained in the same manner as in Example 9 except that polymer P7 was used instead of polymer P1.
  • a film was obtained by a casting method using a solution (solid content: 20% by mass) of a commercially available fluorine-based proton conductive polymer (manufactured by Dupont, Nafion R).
  • the fluorine-based proton conductive polymer constituting Nafion R is based on the compound (11). Has repeating units.
  • the EW of compound (11) is 446.
  • the fluorine-based proton conductive polymer constituting Q7 and Nafion R has a repeating unit based on the compound (11).
  • the EW of compound (1-1) is 446.
  • melt blown non-woven fabric manufacturing equipment manufactured by Nippon Nozzle Co., Ltd.
  • PFA manufactured by Asahi Glass Co., Ltd., Full-on PFA P-61XP, MFR: 40g / 10min
  • spinning nozzle temperature 390 ° C stretching hot air temperature 400 ° Under the condition of C, a nonwoven fabric was formed on a conveyor having suction capability.
  • PFA constituting the non-woven fabric was a continuous fiber, and the aspect ratio was all 10000 or more.
  • the area of 2.6 cm ⁇ 2.6 cm of the nonwoven fabric was observed with a microscope, fibers with a fiber length of 13 mm or less were not observed.
  • a solution of a solvent-soluble fluoropolymer (Asahi Glass Co., Cytop, a fluoropolymer having an aliphatic ring structure in the main chain) (solvent: Asahi Glass Co., Ltd., CT-solv. 100, solid concentration) : 2% by mass) was sprayed using a hand spray container to fix the intersections between the fibers forming the nonwoven fabric.
  • the fiber diameter of the continuous fiber was 7 m
  • the thickness of the nonwoven fabric was 20 am
  • the basis weight was 10 g / m 2 (5 cc / m 2 ).
  • the nonwoven fabric With the edges of the nonwoven fabric restrained, the nonwoven fabric was dipped in the liquid composition S1 ′, pulled up at a rate of 100 mm per minute, and impregnated with the liquid composition S1 ′. After the impregnation operation was repeated three times, the nonwoven fabric was restrained and dried at 55 ° C for 1 hour to obtain a reinforcing layer film.
  • the liquid composition S1 ' was applied on a polyethylene terephthalate film by a die coating method and dried at 140 ° C for 1 hour to obtain a film for 1 non-reinforcing layer having a thickness of 10 m.
  • a non-reinforcing layer film was placed on both sides of the reinforcing layer film, and a solid polymer electrolyte membrane R1 having a thickness of SC ⁇ m was obtained by hot pressing (180 ° C, 5 Pa, 15 minutes).
  • the thickness of the unreinforced layer was 5 m per side.
  • a solid polymer electrolyte membrane R2 was obtained in the same manner as in Example 18 except that polymer Q2 was used instead of polymer Q1.
  • a solid polymer electrolyte membrane R3 was obtained in the same manner as in Example 18 except that polymer Q3 was used instead of polymer Q1.
  • a solid polymer electrolyte membrane R4 was obtained in the same manner as in Example 20 except that a stretched PTFE porous material (product codel 316, manufactured by Donaldson) was used instead of the nonwoven fabric.
  • a solid polymer electrolyte membrane R5 was obtained in the same manner as in Example 18 except that polymer Q4 was used instead of polymer Q1.
  • a solid polymer electrolyte membrane R6 was obtained in the same manner as in Example 21 except that polymer Q4 was used instead of polymer Q3.
  • a solid polymer electrolyte membrane R7 was obtained in the same manner as in Example 18 except that polymer Q5 was used instead of polymer Q1.
  • a solid polymer electrolyte membrane R8 was obtained in the same manner as in Example 18 except that polymer Q6 was used instead of polymer Q1.
  • a solid polymer electrolyte membrane R9 was obtained in the same manner as in Example 21 except that polymer Q6 was used instead of polymer Q3.
  • the liquid composition S1 ' was applied on the ETFE sheet (Asahi Glass Co., Ltd., trade name: Aflex 100N, thickness 1 OO ⁇ m) by die coating, dried at 80 ° C for 30 minutes, and further 150 ° C Then, annealing was performed for 30 minutes to form a solid polymer electrolyte membrane R11 having a thickness of 25 m.
  • ETFE sheet Asahi Glass Co., Ltd., trade name: Aflex 100N, thickness 1 OO ⁇ m
  • a solid polymer electrolyte membrane R12 was obtained in the same manner as in Example 18 except that polymer Q7 was used instead of polymer Q1.
  • Example 1 S Example 1 9 Example 2 ⁇ Example 2 1 Example 2 2 Example 2 3 Example 2 4 Example 2 b Solid polymer electrolyte R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 Membrane
  • the catalyst layer forming solution is applied to both sides of the solid polymer electrolyte membrane R1 by die coating and dried. Thus, a catalyst layer having a thickness of 10 111 and a platinum loading of 0.2 mg / cm 2 was formed.
  • a membrane cloth assembly was obtained by disposing carbon cloth as a gas diffusion layer on both outer sides of the catalyst layer. Using the membrane electrode assembly, a polymer electrolyte fuel cell was fabricated and the initial cell voltage was measured. The results are shown in Table 4.
  • a membrane / electrode assembly was obtained in the same manner as in Example 30, except that the polymer Q1 used to form the catalyst layer was changed to the polymer Q2 and the solid polymer electrolyte membrane R1 was changed to the solid polymer electrolyte membrane R2. It was.
  • a membrane / electrode assembly was obtained in the same manner as in Example 30, except that the polymer Q1 used to form the catalyst layer was changed to the polymer Q3, and the solid polymer electrolyte membrane R1 was changed to the solid polymer electrolyte membrane R3. It was.
  • a membrane / electrode assembly was obtained in the same manner as in Example 32 except that the solid polymer electrolyte membrane R3 was changed to the solid polymer electrolyte membrane R4.
  • a membrane / electrode assembly was obtained in the same manner as in Example 30, except that the polymer Q1 used to form the catalyst layer was changed to the polymer Q4 and the solid polymer electrolyte membrane R1 was changed to the solid polymer electrolyte membrane R5. It was.
  • Example 15 A membrane / electrode assembly was obtained in the same manner as in Example 34, except that the solid polymer electrolyte membrane R5 was changed to the solid polymer electrolyte membrane R6.
  • a membrane / electrode assembly was obtained in the same manner as in Example 30, except that the solid polymer electrolyte membrane R1 was changed to the solid polymer electrolyte membrane R7.
  • a membrane / electrode assembly was obtained in the same manner as in Example 30, except that the polymer Q1 used to form the catalyst layer was changed to the polymer Q6, and the solid polymer electrolyte membrane R1 was changed to the solid polymer electrolyte membrane R8. It was.
  • a membrane / electrode assembly was obtained in the same manner as in Example 37 except that the solid polymer electrolyte membrane R8 was changed to the solid polymer electrolyte membrane R9.
  • the polymer Q1 used to form the catalyst layer was changed to a commercially available fluorine-based proton-conductive polymer (Dupont Nafion R), and the solid polymer electrolyte membrane R1 was changed to the solid polymer electrolyte membrane R10.
  • a membrane / electrode assembly was obtained in the same manner as Example 30 except for the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 電気抵抗を低くするために、厚さを薄くかつイオン性基の濃度を高くしても、機械的強度が高く、含水時の寸法安定性に優れる固体分子形燃料電池用固体高分子電解質膜および出力が高くかつ耐久性に優れる膜電極接合体を提供する。  (i)温度80°C、相対湿度50%の雰囲気下におけるプロトン伝導率が0.06S/cm以上であり、(ii)イオン性基1モルあたりの質量(Equivalent Weight)が400以下であるビニルエーテル型モノマーに基づく繰り返し単位とパーフルオロモノマー(ただし、前記ビニルエーテル型モノマーを除く。)に基づく繰り返し単位とを有するフッ素系プロトン伝導性ポリマーと、フッ素系補強材とを含む固体高分子電解質膜15;および該固体高分子電解質膜15がアノード13とカソード14との間に配置された膜電極接合体10。

Description

明 細 書
固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 技術分野
[0001] 本発明は、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 に関する。
背景技術
[0002] 固体高分子形燃料電池は、たとえば、 2つのセパレータの間に膜電極接合体を挟 んでセルを形成し、複数のセルをスタックしたものである。膜電極接合体は、触媒層 を有するアノードおよび力ソードと、アノードと力ソードとの間に配置される固体高分子 電解質膜とから構成される。固体高分子電解質膜には、通常、スルホン酸基を有す るパーフルォロカーボンポリマー等のフッ素系プロトン伝導性ポリマーが用いられる。 そして、該固体高分子電解質膜には、電気抵抗が低いことが求められている。
[0003] 固体高分子電解質膜の電気抵抗を低減させるためには、固体高分子電解質膜を 薄くすればよい。しかし、固体高分子電解質膜を薄くすると、該膜の機械的強度が低 下し、膜電極接合体を製造する際に、加工しに《なったり、取り扱いに《なったりす
[0004] また、固体高分子電解質膜は、含水時に該膜の長さ方向に寸法が増大しやすぐ さまざまな弊害を生じやすい。たとえば、反応により生成した水、燃料ガスとともに供 給される水蒸気等により固体高分子電解質膜が膨潤し、寸法が増大すると、電極も 固体高分子電解質膜の寸法変化に追従する。しかし、膜電極接合体は、セパレータ 等で拘束されているため、固体高分子電解質膜の寸法増大分は「しわ」となる。そし て、該しわが、セパレータの溝を埋めてガスの流れを阻害することがある。
[0005] 固体高分子電解質膜が薄くても機械的強度が高ぐかつ含水時の寸法安定性に 優れた固体高分子電解質膜としては、補強材(多孔体、フィブリル、織布、不織布等 。)で補強された固体高分子電解質膜が提案されている(特許文献 1〜5参照)。
[0006] ところで、最近では、さらなる固体高分子電解質膜の電気抵抗の低減が求められて いる。固体高分子電解質膜の電気抵抗をさらに低減させるためには、フッ素系プロト ン伝導性ポリマーに含まれるスルホン酸基等のイオン性基の濃度を高くすればよい。 しかし、イオン性基の濃度が著しく増加すると、固体高分子電解質膜の固体高分子 電解質膜の単位体積あたりの含水量が著しく増加する。これは実際の燃料電池運転 で想定されている水素ガス ·空気の湿度変化に対し、電解質膜そのものの体積変化 が大きくなることを意味し、その結果、耐久性が低下する。この特徴は運転温度が上 昇するに従い、顕著になる傾向があり、最近の運転温度高温化の志向に対し、致命 的な問題となっている。
[0007] よって、従来のフッ素系プロトン伝導性ポリマーを用いる限り、補強材で補強したと しても、固体高分子電解質膜の機械的強度および寸法安定性を維持しつつ、電気 抵抗を低くするために、固体高分子電解質膜を薄くし、かつフッ素系プロトン伝導性 ポリマーに含まれるイオン性基の濃度を高くすることにはおのずと限界があった。 特許文献 1:特公平 5— 75835号公報(特許請求の範囲)
特許文献 2:特公平 7— 68377号公報 (特許請求の範囲)
特許文献 3:特開平 6— 231779号公報 (特許請求の範囲)
特許文献 4:国際公開第 04/011535号パンフレット(請求の範囲)
特許文献 5 :特開 2003— 297394号公報(特許請求の範囲、段落 0012、段落 0026 )
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、電気抵抗を低くするために、厚さを薄ぐかつフッ素系プロトン伝導性ポ リマーに含まれるイオン性基の濃度を高くしても、機械的強度が高ぐ含水時の寸法 安定性に優れる固体分子形燃料電池用固体高分子電解質膜、および出力が高ぐ かつ耐久性に優れる膜電極接合体を提供する。
課題を解決するための手段
[0009] 本発明の固体高分子形燃料電池用固体高分子電解質膜は、フッ素系プロトン伝 導性ポリマーと、フッ素系補強材とを含み、前記フッ素系プロトン伝導性ポリマーが、 下記条件 ωおよび条件 (ϋ)を満足することを特徴とする。
(i)温度 80°C、相対湿度 50%の雰囲気下におけるプロトン伝導率力 0. 06S/c m以上である。
(ii)イオン性基 1モルあたりの質量(Equivalent Weight)が 400以下であるビニ ルエーテル型モノマーに基づく繰り返し単位と、パーフルォロモノマー(ただし、前記 ビュルエーテル型モノマーを除く)に基づく繰り返し単位とを有するポリマーである。
[0010] 本発明の固体高分子形燃料電池用膜電極接合体は、本発明の固体高分子形燃 料電池用固体高分子電解質膜力、アノードと力ソードとの間に配置されたものである 発明の効果
[0011] 本発明の固体分子形燃料電池用固体高分子電解質膜は、電気抵抗を低くするた めに、厚さを薄ぐかつフッ素系プロトン伝導性ポリマーに含まれるイオン性基の濃度 を高くしても、機械的強度が高ぐ含水時の寸法安定性に優れる。
本発明の固体分子形燃料電池用膜電極接合体は、出力が高ぐかつ耐久性に優 れる。
図面の簡単な説明
[0012] [図 1]本発明の膜電極接合体の一例を示す断面図である。
[図 2]本発明の膜電極接合体の他の例を示す断面図である。
符号の説明
[0013] 10 膜電極接合体
11 触媒層
13 アノード
14 力ソード
15 固体高分子電解質膜
発明を実施するための最良の形態
[0014] 本明細書においては、式(α )で表される基を基 )と記す。他の式で表される基 も同様に記す。また、式(1)で表される化合物を化合物(1)と記す。他の式で表され る化合物も同様に記す。
[0015] <固体高分子電解質膜〉 本発明の固体高分子形燃料電池用固体高分子電解質膜 (以下、固体高分子電解 質膜と記す。)は、フッ素系プロトン伝導性ポリマーとフッ素系補強材とを含む膜であ
[0016] 固体高分子電解質膜の厚さは、 100 m以下が好ましぐ 50 m以下がより好まし ぐ 30 m以下が特に好ましい。また、固体高分子電解質膜の厚さは、 5 m以上が 好ましぐ 20 m以上がより好ましい。固体高分子電解質膜の厚さが 100 m以下で あれば、固体高分子電解質膜の電気抵抗を充分に低くできる。また、力ソード側で生 成する生成水の逆拡散を起こしやす V、。固体高分子電解質膜の厚さが 20 m以上 であれば、機械的強度が高くなり、ガス漏れ等の障害が起こりにくい。
[0017] 固体高分子電解質膜は、固体高分子電解質膜と電極との接合部における電気抵 抗を低下できる点から、フッ素系補強材で補強された層(以下、補強層と記す。)の少 なくとも片面にフッ素系補強材で補強されていない層(以下、非補強層と記す。)を有 することが好ましぐ補強層の両面に非補強層を有することがより好ましい。
[0018] 非補強層のフッ素系プロトン伝導性ポリマーは、補強層のフッ素系プロトン伝導性 ポリマーと同じであってもよぐ異なっていてもよい。
非補強層は、電気抵抗を上昇させない範囲で、フッ素系補強材を除く他の成分を 含んでいてもよい。
[0019] 非補強層の厚さは、燃料ガスのバリアー性に優れ、かつ電気抵抗を抑えることがで きる点、力、ら、片佃 Jにっき;!〜 20〃 m力《好ましく、 2〜; 15〃 m力より好ましく、 2〜; 10〃 mが特に好ましい。
非補強層の厚さは、固体高分子電解質膜表面からフッ素系補強材までの最短距 離であり、光学顕微鏡、レーザー顕微鏡、 SEM等による断面観察より測定できる。
[0020] 固体高分子電解質膜におけるプロトンの移動は、フッ素系補強材によって遮蔽され る。非補強層が薄すぎると、電流がフッ素系補強材を回避して迂回するための距離 が大きくなり、不要な電気抵抗の上昇の要因となりうる。特に、フッ素系補強材として 不織布を用いる場合には、非補強層の厚さが、不織布の繊維径の半分より小さい場 合は、電気抵抗の上昇が著しい。非補強層の厚さが、不織布の繊維径の半分以上 であれば、電流の迂回距離が小さく済み、結果として電気抵抗の不要な上昇が避け られる。
[0021] (フッ素系プロトン伝導性ポリマー)
固体高分子電解質膜は、化学的な耐久性に優れ、長期的に安定した性能を確保 できる点から、プロトン伝導性ポリマーとしてフッ素系プロトン伝導性ポリマーを含む。 フッ素系プロトン伝導性ポリマーの割合は、プロトン伝導性ポリマー(100質量%)のう ち、 100質量%が好ましい。
[0022] フッ素系プロトン伝導性ポリマーは、フッ素原子およびイオン性基を有するポリマー であり、下記条件 (i)および条件 (ii)を満足する。
(i)温度 80°C、相対湿度 50%の雰囲気下におけるプロトン伝導率力 0. 06S/c m^A上である。
(ii)イオン性基 1モルあたりの質量 [g] (Equivalent Weight,以下、 EWと記す。 ) 力 00以下であるビュルエーテル型モノマーに基づく繰り返し単位と、パーフルォロ モノマー(ただし、前記ビュルエーテル型モノマーを除く。)に基づく繰り返し単位とを 有するポリマーである。なお、通常イオン性基を有するビュルエーテル型モノマーは 、加水分解、酸型化処理によりイオン性基(例えば— SO H基)となる「イオン性基の
3
前駆体基 (例えば SO F基)」を有する前駆体モノマーの形で重合され、重合後に
2
イオン性基に変換される。したがって、本明細書においては、イオン性基を有するビ ニルエーテル型モノマーに基づく繰り返し単位を含むポリマーとは、このような前駆体 基を有するモノマーを用いて重合した後にイオン性基に変換して得られるポリマーを 含む。
[0023] フッ素系プロトン伝導性ポリマーのプロトン伝導率が 0. 06S/cm以上であれば、 固体燃料電池用電解質膜として使用したときに電解質膜としての Ω損が小さぐ発電 電圧の著しい低下を招かず、広い電流密度範囲での使用が可能となる。フッ素系プ 口トン伝導性ポリマーのプロトン伝導率は、 0. 07S/cm以上が好ましぐ 0. 08S/c m以上がより好ましい。
[0024] ビュルエーテル型モノマーの EWが 400以下であれば、該ビュルエーテル型モノマ 一に基づく繰り返し単位とパーフルォロモノマーに基づく繰り返し単位とを有するポリ マーは、該ビュルエーテル型モノマーに基づく繰り返し単位を少なくしなくても、充分 に高いイオン性基濃度を得ることができる。その結果、該ポリマーは、電気抵抗を低く できるとともに機械的強度も充分に高くできる。一方、 EWが低すぎると、ポリマーの親 水性が増加し、水に溶解しやすくなる。該ビュルエーテル型モノマーの EWは、 230 〜330が好ましい。イオン性基としては、スルホン酸基、スルホンイミド基、スルホンメ チド基等が挙げられる。
[0025] 該ビュルエーテル型モノマーに基づく繰り返し単位としては、基( α )を有するモノ マーに基づく繰り返し単位が好ましい。以下、基 )を有するモノマーに基づく繰り 返し単位とパーフルォロモノマーに基づく繰り返し単位を有するフッ素系プロトン伝 導性ポリマーを、ポリマー Qと記す。
[0026] [化 1]
/Q -S02X (S02Rf1)a-H+
― CY1 (α)
[0027] ただし、 Q1は、エーテル性の酸素原子を有して!/、てもよ!/、パーフルォロアルキレン 基であり、 Q2は、単結合またはエーテル性の酸素原子を有していてもよいパーフル ォロアルキレン基であり、 Rflは、エーテル性の酸素原子を有していてもよいパーフル ォロアルキル基であり、 X1は、酸素原子、窒素原子または炭素原子であり、 aは、 X1 が酸素原子の場合 0であり、 X1が窒素原子の場合 1であり、 X1が炭素原子の場合 2で あり、 Y1は、フッ素原子または 1価のパーフルォロ有機基である。
[0028] Q\ Q2のパーフルォロアルキレン基がエーテル性の酸素原子を有する場合、該酸 素原子は、 1個であってもよぐ 2個以上であってもよい。また、該酸素原子は、パーフ ノレォロアルキレン基の炭素原子 炭素原子結合間に挿入されていてもよぐ炭素原 子結合末端に揷入されてレ、てもよレ、。
パーフルォロアルキレン基は、直鎖状であってもよぐ分岐状であってもよぐ直鎖 状であることが好ましい。
パーフノレオ口アルキレン基の炭素数は、 1〜6が好ましぐ;!〜 4がより好ましい。炭 素数が多すぎると、含フッ素モノマーの沸点が高くなり、蒸留精製が難しくなる。また 、炭素数が多すぎると、ポリマー Qのイオン交換容量が低下し、プロトン伝導率が低 下する。
[0029] Q2は、エーテル性の酸素原子を有していてもよい炭素数 1〜6のパーフルォロアル キレン基であることが好ましレ、。 Q2がエーテル性の酸素原子を有して!/、てもよ!/、炭素 数 1〜6のパーフルォロアルキレン基であれば、 Q2が単結合である場合に比べ、長 期にわたって固体高分子形燃料電池を運転した際に、発電性能の安定性に優れる
Q Q2の少なくとも一方は、エーテル性の酸素原子を有する炭素数 1〜6のパーフ ルォロアルキレン基であることが好ましレ、。エーテル性の酸素原子を有する炭素数 1 〜6のパーフルォロアルキレン基を有する含フッ素モノマーは、フッ素ガスによるフッ 素化反応を経ずに合成できるため、収率が良好で、製造が容易である。
[0030] - SO X' CSO Rfl) — H+基としては、スルホン酸基(一SO—H+基)、スルホンイミド
2 2 a 3
基(— SO N (SO Rfl)— H+基)、スルホンメチド基(— SO C (SO Rfl) — H+基)が挙
2 2 2 2 2
げられる。
Rflのパーフルォロアルキル基は、直鎖状であってもよぐ分岐状であってもよぐ直 鎖状であることが好ましい。 の炭素数は、 1〜6が好ましぐ;!〜 4がより好ましい。 R flとしては、パーフルォロメチル基、パーフルォロェチル基等が好ましい。
スルホンメチド基の場合、 2つの Rflは、同じ基であってもよく、異なる基であってもよ い。
Y1としては、フッ素原子、またはエーテル性の酸素原子を有していてもよい炭素数 ;!〜 6の直鎖状のパーフルォロアルキル基が好ましい。
[0031] パーフルォロモノマーに基づく繰り返し単位としては、固体高分子電解質膜の機械 的強度および化学的な耐久性の点から、テトラフルォロエチレン (以下、 TFEと記す 。)に基づく繰り返し単位が好ましい。また、 TFEを含む 2種以上のパーフノレオ口モノ マーに基づく繰り返し単位からなることも好ましい。さらに、ポリマー Qはパーフノレオ口 モノマーではな V、モノマーに基づく繰り返し単位を含んで V、てもよ!/、。
ポリマー Qに含まれてもよい TFE以外のパーフルォロモノマーに基づく繰り返し単 位およびパーフルォロモノマーではないモノマーに基づく繰り返し単位については、 以下、まとめて「他のモノマーに基づく繰り返し単位」という。 他のモノマーに基づく繰り返し単位としては、イオン性基を有しないモノマーに基づ く繰り返し単位と、イオン性基を有するモノマーに基づく繰り返し単位が挙げられる。 イオン性基を有しないモノマーとしては、クロ口トリフルォロエチレン、フッ化ビニリデ ン、へキサフルォロプロピレン、トリフルォロエチレン、フッ化ビュル、エチレン、化合 物 (nl)〜(n3)等が挙げられる。
CF =CFORf2 …(nl)、
2
CH =CHRf3 . · ·(
2 、 n2)、
CH =CHCH Rf3 · · · (n3) 0
2 2
ただし、 Rf2は、エーテル性の酸素原子を 1つ以上含んでもよい炭素数 1〜; 12のパ 一フルォロアルキル基であり、 Rf3は、炭素数 1〜 12のパーフルォロアルキル基であ イオン性基を有するモノマーとしては、たとえば、化合物 (n4)が挙げられる。
CF =CFOCF CFY2Q3SO X2 (SO Rf4)— Η+· . . (n4)
2 2 2 2 b
ただし、 Q3は、単結合、またはエーテル性の酸素原子を有していてもよいパーフル ォロアルキレン基であり、 Rf4は、エーテル性の酸素原子を有していてもよいパーフル ォロアルキル基であり、 X2は、酸素原子、窒素原子または炭素原子であり、 bは、 X2 が酸素原子の場合 0であり、 X2が窒素原子の場合 1であり、 X2が炭素原子の場合 2で あり、 Y2は、フッ素原子または 1価のパーフルォロ有機基である。
他のモノマーに基づく繰り返し単位としては、固体高分子電解質膜が湿潤状態に おける膨潤と乾燥状態における収縮とを繰り返しても破損しにくい点から、化合物 (n 1)に基づく繰り返し単位、及び、化合物 (n4)に基づく繰り返し単位が好ましい。 ポリマー Qとしては、固体高分子電解質膜の化学的な耐久性の点から、パーフルォ 口ポリマーが好ましいため、他のモノマーに基づく繰り返し単位を含む場合は、当該 他のモノマーはパーフルォロモノマーであることが好ましい。
[0032] ポリマー Qとしては、ポリマー Q (100モル%)中、基(α )を有するモノマーに基づく 繰り返し単位 5〜25モノレ0 /0、 TFEに基づく繰り返し単位 50〜95モル0 /0、他のモノマ 一に基づく繰り返し単位 0〜25モル%からなるポリマーが好ましい。
[0033] ポリマー Qは、たとえば、下記工程を経て製造できる。 (I)基( /3 )を有するモノマー(以下、化合物 (ml)と記す。 )、パーフルォロモノマー および必要に応じて他のモノマーを重合し、 SO F基を有する前駆体ポリマー(以
2
下、ポリマー Pと記す。)を得る工程。
[0034] [化 2] —
Figure imgf000011_0001
ただし、 Q Q2および Y1は、前記基( α )におけると同義である。
なお、他のモノマーがイオン性基を有するモノマーの場合には、イオン性基の前駆 体である SO F基を有する前駆体モノマーの形で用いられる。
2
[0035] (II)必要に応じて、ポリマー Pとフッ素ガスとを接触させ、ポリマー Pの不安定末端基 をフッ素化する工程。
(III)ポリマー Pの SO F基をスルホン酸基、スルホンイミド基、またはスルホンメチ
2
ド基に変換し、ポリマー Qを得る工程。
[0036] (I)工程:
化合物 (ml)は、たとえば、後述する例 1に示す合成例によって得ることができる。
[0037] 重合法としては、バルタ重合法、溶液重合法、懸濁重合法、乳化重合法等の公知 の重合法が挙げられる。
重合は、ラジカルが生起する条件で行われる。ラジカルを生起させる方法としては、 紫外線、 Ί線、電子線等の放射線を照射する方法、開始剤を添加する方法等が挙 げられる。
[0038] 重合温度は、通常、 20〜; 150°Cである。
開始剤としては、ビス(フルォロアシル)バーオキシド類、ビス(クロ口フルォロアシル )バーオキシド類、ジアルキルパーォキシジカーボネート類、ジァシルバーォキシド類 、パーォキシエステル類、ァゾ化合物類、過硫酸塩類等が挙げられ、不安定末端基 が少ない前駆体ポリマー Pが得られる点から、ビス(フルォロアシル)パーォキシド類 等のパーフルォロ化合物が好ましレ、。
[0039] 溶液重合法にて用いる溶媒としては、ポリフルォロトリアルキルァミン化合物、パー フルォロアルカン、ハイド口フルォロアルカン、クロ口フルォロアルカン、分子鎖末端 に二重結合を有しないフルォロォレフイン、ポリフルォロシクロアルカン、ポリフルォロ 環状エーテル化合物、ヒドロフルォロエーテル類、フッ素含有低分子量ポリエーテル 、 tーブタノール等が挙げられる。
[0040] (II)工程:
不安定末端基とは、連鎖移動反応によって形成される基、ラジカル開始剤に基づく 基等であり、具体的には、カルボキシ基、 -CF = CF基、—COF基、 -CF H基等
2 2 である。不安定末端基をフッ素化することにより、ポリマー Qの分解が抑えられる。
[0041] フッ素ガスは、窒素、ヘリウム、二酸化炭素等の不活性ガスで希釈して用いてもよく 、希釈せずにそのまま用いてもよい。
ポリマー Pとフッ素ガスとを接触させる際の温度は、室温〜 300°Cが好ましぐ 50〜 250°Cがより好ましぐ 100〜220°Cがさらに好ましぐ 150〜200°Cが特に好ましい ポリマー Pとフッ素ガスとの接触時間は、 1分〜 1週間が好ましぐ;!〜 50時間がより 好ましい。
[0042] (III)工程:
たとえば、 SO F基をスルホン酸基に変換する場合は、(III 1)工程を行い、 S
2
O F基をスルホンイミド基に変換する場合は、(III 2)工程を行う。
2
(III— 1)ポリマー Pの S〇 F基を加水分解してスルホン酸塩とし、スルホン酸塩を
2
酸型化してスルホン酸基に変換する工程。
(III— 2)ポリマー Pの SO F基をスルホンイミド化してスルホンイミド基に変換する
2
工程。
[0043] (ΙΠ— 1)工程:
加水分解は、たとえば、溶媒中にてポリマー Pと塩基性化合物とを接触させて行う。 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。溶媒とし ては、水、水と極性溶媒との混合溶媒等が挙げられる。極性溶媒としては、アルコー ノレ類 (メタノール、エタノール等。)、ジメチルスルホキシド等が挙げられる。
酸型化は、たとえば、 SO F基が加水分解されたポリマー Pを、塩酸、硫酸等の水 溶液に接触させて行う。
加水分解および酸型化は、通常、 0〜; 120°Cにて行う。
[0044] (ΙΠ— 2)工程:
スルホンイミド化としては、米国特許第 5463005号明細書に記載の方法、 Inorg. Chem. 32 (23)、 5007頁(1993年)に記載の方法等、公知の方法が挙げられる。
[0045] フッ素系プロトン伝導性ポリマーのイオン交換容量は、 0. 5〜2. 0ミリ当量/グラム 乾燥樹脂が好ましぐ 0. 7〜; 1. 6ミリ当量/グラム乾燥樹脂がより好ましい。イオン交 換容量が 0. 5ミリ当量/グラム乾燥樹脂以上であれば、固体高分子電解質膜の電 気抵抗を充分に低くできる。イオン交換容量が 2. 0ミリ当量/グラム乾燥樹脂以下で あれば、ポリマーの親水性が抑えられ、発電時に固体高分子電解質膜が溶解するこ とがない。
[0046] また、フッ素系プロトン伝導性ポリマーは、ガラス転移点が 120°C以上であることが 好ましい。 120°C以上のガラス転移点を有すると、特に 100°C以上の電池運転にお V、ても優れた機械的強度を有する。
[0047] (フッ素系補強材)
フッ素系補強材としては、含フッ素ポリマーからなる多孔体、フィブリル、織布、不織 布等が挙げられる力 織布の場合は製法が複雑であることから比較的コストが高ぐ また、当該用途における薄膜化に対する要求を満足することが難しい。また、フイブリ ル等の短繊維形態のものの添加では補強効果が他の系に比べ弱い。以上のことか ら、多孔体形態や、不織布形態をもつフッ素系補強材が特に望ましい。
[0048] 該不織布としては、その補強材としての強度発現という点から、含フッ素ポリマーの 連続繊維からなり、繊維間の交点の少なくとも一部が固定化された不織布が好ましい
不織布の厚さは、固体高分子電解質膜の厚さを考慮すると、 50 111以下が好まし く、 30〃m以下カより好ましく、 20〃m以下カ特に好ましい。
不織布の目付け量は、補強効果および電気抵抗低減の点から、 5〜50g/m2 (2. 5〜25cc/m2)が好ましい。
[0049] 連続繊維とは、アスペクト比が 10000以上の繊維を意味する。繊維長は、 20mm 以上が好ましい。
連続繊維の繊維径(直径)は、 0. 01〜; 13 m力 S好ましく、 0. 01〜5 111カょり好 ましぐ 0. 01〜3 111カ特に好ましぃ。繊維径が 0· 01 m以上であれば、繊維 1本 あたりの引張強度が充分となり、ハンドリング性が良好となる。繊維径が 13 111以下 であれば、プロトン移動が円滑に行われるため、補強による電気抵抗の上昇を抑制 できる。また、厚さあたりの繊維間の交点が増えるため、不織布の強度を増強でき、 固体高分子電解質膜の寸法安定性が向上する。不織布の連続繊維の繊維径(直径 )力 0. 01〜; 13 mであり、かつ目付け量が 5〜50g/m2であるのがさらに好ましい
[0050] 含フッ素ポリマーとしては、パーフルォロォレフイン (TFE、へキサフルォロプロピレ ン等。)、クロ口トリフルォロエチレン、パーフルォロ(アルキルビュルエーテル)等の含 フッ素モノマーに基づく繰り返し単位を 1種以上有する単独重合体または共重合体 が好ましい。
[0051] 該単独重合体または共重合体としては、 TFE/パーフルォロ(アルキルビュルエー テノレ)共重合体(PFA)、エチレン/ TFE共重合体(ETFE)、 TFE/へキサフルォロ プロピレン共重合体(FEP)、ポリクロ口トリフルォロエチレン(PCTFE)、エチレン/ク ロロトリフルォロエチレン共重合体(ECTFE)、ポリビニリデンフルオライド重合体(PV dF)、ポリビュルフルオライド重合体(PVF)等が挙げられる。
[0052] 含フッ素ポリマーのうち、溶融成形可能な点から、 ETFE、 PFA、 FEP、 PVdF等が 好ましぐ機械的強度、成形性に優れている点から、 PFA、 ETFEが特に好ましい。
ETFEとしては、 TFEに基づく繰り返し単位/エチレンに基づく繰り返し単位のモ ノレ匕力 70/30〜30/70のものカ好ましく、 65/35〜40/60のものカより好まし い。
[0053] ETFE, PFA、 FEP、 PVdFは、少量のコモノマーに基づく繰り返し単位を含んで いてもよい。該コモノマーとしては、下記化合物が挙げられる。
フルォロエチレン類(ただし、 TFEを除く。 ): CF =CFC1等、
2
フノレ才ロプロピレン類: CF =CFCF 、 CF =CHCF等、
2 3 2 3
炭素数が 2〜 12のパーフルォロアルキル基を有するフルォロエチレン類: CF CF CF CF CH = CH、 CF CF CF CF CF = CH等、
2 2 2 3 2 2 2 2
パーフルォロビニルエーテル類: Rf5 (OCFX3CF ) OCF = CF (ただし、 Rf5は、炭
2 k 2
素数 1〜6のパーフルォロアルキル基であり、 X3は、フッ素原子またはトリフルォロメ チル基であり、 kは、 0〜5の整数である。)等、
容易にカルボキシ基またはスルホン酸基に変換可能な基を有するパーフルォロビ ニノレエーテノレ類: CH OC ( = 0) CF CF CF OCF = CF、 FSO CF CF OCF (C
3 2 2 2 2 2 2 2
F ) CF OCF = CF等、
3 2 2
ォレフィン類 (ただし、エチレンを除く。 ): C3ォレフィン (プロピレン等。)、 C4ォレフ イン (ブチレン、イソブチレン等。)等である。
[0054] ETFEのコモノマーとしては、 CF CF CF CF CH = CHが好ましい。
3 2 2 2 2
PFAのコモノマーとしては、 CF CF OCF = CF、 CF CF CF OCF = CF、 CF
3 2 2 3 2 2 2 3
CF CF OCF (CF ) CF OCF = CFが好ましい。
2 2 3 2 2
[0055] コモノマーに基づく繰り返し単位の割合は、含フッ素ポリマー(ETFE、 PFA、 FEP 、 PVdF)を構成する、すべてのモノマーに基づく繰り返し単位(100モル0 /0)のうち、 30モル%以下が好ましぐ 0. ;!〜 15モル%がより好ましぐ 0· 2〜; 10モル%がさらに 好ましい。
[0056] PFAのメルトフローレート(以下、 MFRと記す。 )は、 40〜300g/10分力 S好まし!/ヽ 。極細繊維を成形する場合、紡糸ノズルの圧力損失が低い方が生産性が向上する ため、 60g/10分以上がより好ましい。また、 MFRが大きいと得られる繊維の強度が 低下するため、 150g/10分以下力 Sより好ましい。 PFAの MFRは、 ASTM D3307 にしたがって測定する。
ETFEの MFRは、 40g/10分以上力 S好まし!/、。 ETFEの MFRは、 ASTM D31 59にしたがって測定する。
[0057] 含フッ素ポリマーが PFA、 ETFE等の溶融成形可能な含フッ素ポリマーである場合 の不織布の製造方法としては、メルトブローン法を採用することが好ましい。ポリマー から繊維を形成した後、それを原料として布状に不織布化する他の不織布の製造方 法に比べ、メルトブローン法は、繊維の形成と布状物の形成とをほぼ同時に実施でき ることから生産性が高い。また、不織布を構成する繊維を非常に細くすることができ、 補強に固体高分子電解質膜の電気抵抗の上昇を抑制できる。
[0058] メルトブローン法による不織布の製造は、たとえば、下記のように行う。
メルトブローン不織布製造装置を用い、溶融成形可能な含フッ素ポリマーを溶融状 態で紡糸ノズルの吐出孔より吐出し、紡糸ノズル近傍に配設された気体放出ノズル の吐出孔から放出される気体によって延伸、紡糸することにより連続繊維を得る。つ いで、連続繊維を吸着能力を有する面上に捕集して、不織布を形成する。
吸着機能を有する面としては、たとえば、コンベア一に載せた金属メッシュ等が挙げ られる。
[0059] 不織布の繊維間の交点が固定化されていない場合、巻き取り等の操作、ハンドリン グが困難である。繊維間の交点の少なくとも一部が固定化されているとき、不織布単 体として弾性率、強度を発現できる。その結果、不織布自体に自立性が発現し、ハン ドリング性が向上し、不織布を有する固体高分子電解質膜の製造が容易となる。 繊維間の交点の少なくとも一部が固定化された態様としては、下記態様が挙げられ
(態様 1)連続繊維を捕集して不織布が形成された時点で繊維同士が融着してレ、る 態様。
(態様 2)不織布を熱プレスすることにより繊維同士が融着している態様。 (態様 3)不織布に結着剤を含む溶液を塗布することにより、繊維間の交点を結着さ せた態様。
[0060] 結着剤を含む溶液の塗布方法としては、スプレーコート法が好ましい。
結着剤としては、化学的な耐久性に優れる点から、溶媒可溶性含フッ素ポリマーが 好ましい。溶媒可溶性含フッ素ポリマーとは、これを溶解できる溶媒が存在する含フ ッ素ポリマーを意味し、室温で 0. 1 %以上の濃度の溶液として存在しうるものである。 また、溶液には、微視的には含フッ素ポリマーが分散または膨潤状態で存在するが、 巨視的には溶液状に認められる液も含める。
[0061] 溶媒可溶性含フッ素ポリマーとしては、化学的な耐久性に優れる点から、パーフル ォロポリマーが好ましい。
溶媒可溶性含フッ素ポリマーとしては、下記 (A)〜(C)のポリマーが挙げられる。 [0062] (A)分子内にイオン性基またはその前駆体基を有する含フッ素ポリマー: イオン性基としては、スルホン酸基、スルホンイミド基等が挙げられる。
イオン性基の前駆体基としては、 SO F基等が挙げられる。
2
(A)のポリマーは、電解質となり、不織布の開口率を下げることなぐ固体高分子電 解質膜の電気抵抗の上昇を招かない。 (A)のポリマーは、固体高分子電解質膜を構 成するフッ素系プロトン伝導性ポリマーと同じであってもよい。
[0063] SO F基を有する含フッ素ポリマーとしては、化合物(1 ' )に基づく繰り返し単位と
2
、 TFEに基づく繰り返し単位とを有する共重合体が挙げられる。
CF =CF (OCF CFY3) —0—(CF ) —SO F · · · (l ' ) 0
2 2 m ¾ 2 n 2
ただし、 Y3はフッ素原子またはトリフルォロメチル基であり、 mは 0〜3の整数であり 、 nは 1〜 12の整数であり、 qは 0または 1である。
スルホン酸基を有する含フッ素ポリマーとしては、加水分解および酸型化によって 前記共重合体の SO F基をスルホン酸基に変換した共重合体が挙げられる。
2
- SO F基を有する含フッ素ポリマーは、アサヒクリン AK— 225 (旭硝子社製)等の
2
代替フロン系溶媒に可溶であり、スルホン酸基を有する含フッ素ポリマーは、エタノー ルに可溶である。
[0064] (B)イオン性基を実質上有しない、主鎖に脂肪族環構造を有する含フッ素ポリマー:
(B)のポリマーとしては、下記式(Bl)、(B2)、(B3)のいずれかで表される繰り返し 単位を有するポリマーが挙げられる。該重合体は、パーフルォロベンゼン、トリフルォ ロェタン、パーフルォロ(2 ブチルテトラヒドロフラン)、フロリナート FC— 77 (3M社 製)等に可溶である。
[0065] [化 3]
Figure imgf000018_0001
[0066] (C)イオン交換基を実質上有しない、フルォロォレフイン系の含フッ素ポリマー:
(C)のポリマーとしては、 TFE/へキサフルォロプロピレン/フッ化ビニリデン共重 合体; TFE、へキサフルォロプロピレン、フッ化ビニリデン、クロ口トリフルォロエチレン 力もなる群から選ばれるフルォロォレフインの少なくとも 1種のモノマーに基づく繰り返 し単位と、ビュルエーテル、ビュルエステル、ァリルエーテノレ、 ァリノレエステノレ、イソプ ロぺニノレエーテノレ、イソプロぺニノレエステノレ、メタクリノレエーテノレ、メタクリノレエステノレ
、アクリル酸エステル、メタクリル酸エステルからなる群から選ばれる少なくとも 1種の モノマーに基づく繰り返し単位との共重合体等が挙げられる。
(C)のポリマーは、ケトン類、エステル類、クロロェタン類、ベンゼン誘導体等に可 溶である。
[0067] (固体高分子電解質膜の製造方法)
固体高分子電解質膜の製造方法としては、たとえば、下記方法が挙げられる。
(a— 1)フッ素系補強材に、フッ素系プロトン伝導性ポリマーを含む溶液または分散 液を塗布または含浸させた後、乾燥し、造膜するキャスト法。
(a— 2)フッ素系補強材に、あらかじめ成形したフッ素系プロトン伝導性ポリマーを 含む膜状物を積層して一体化する方法。 必要に応じて、延伸処理等によって固体高分子電解質膜を強化してもよい。
[0068] 補強層の少なくとも片面に非補強層を有する場合、固体高分子電解質膜の製造方 法としては、たとえば、下記方法が挙げられる。
(b— 1)前記 (a— 1)または(a— 2)の方法によって固体高分子電解質膜を形成した 時点で、非補強層を同時に形成させる方法。
(b- 2)前記 (a— 1)または(a— 2)の方法によって得られた固体高分子電解質膜( 補強層)の表面に、フッ素系プロトン伝導性ポリマーを含む溶液または分散液を塗布 する方法。
(b- 3)前記 (a— 1)または(a— 2)の方法によって得られた固体高分子電解質膜( 補強層)の表面に、あらかじめ成形したフッ素系プロトン伝導性ポリマーを含む膜状 物 (非補強層)を積層して一体化する方法。
[0069] <膜電極接合体〉
図 1は、本発明の固体高分子形燃料電池用膜電極接合体 (以下、膜電極接合体と 記す。)の一例を示す断面図である。膜電極接合体 10は、触媒層 1 1およびガス拡散 層 12を有するアノード 13と、触媒層 11およびガス拡散層 12を有する力ソード 14と、 アノード 13と力ソード 14との間に、触媒層 11に接した状態で配置される固体高分子 電解質膜 15とを具備する。
[0070] (固体高分子電解質膜)
固体高分子電解質膜 15は、上述した、フッ素系プロトン伝導性ポリマーとフッ素系 補強材とを含む膜である。
[0071] (触媒層)
触媒層 11は、触媒とプロトン伝導性ポリマーとを含む層である。
触媒としては、カーボン担体に白金または白金合金を担持した担持触媒が挙げら れる。力ソード 14の触媒としては、耐久性の点から、カーボン担体に白金—コバルト 系合金を担持した担持触媒が好まし!/、。
カーボン担体としては、カーボンブラック粉末が挙げられ、耐久性の点から、熱処理 等でグラフアイト化したカーボンブラック粉末が好ましい。
[0072] プロトン伝導性ポリマーとしては、ポリマー Q、該ポリマー Qを除く他のプロトン伝導 性ポリマー等が挙げられ、ポリマー Qが好ましい。
他のプロトン伝導性ポリマーとしては、ポリマー Qを除く他のフッ素系プロトン伝導性 ポリマー、炭化水素系重合体等が挙げられ、耐久性の点から、他のフッ素系プロトン 伝導性ポリマーが好ましい。
[0073] 他の含フッ素プロトン伝導性ポリマーとしては、 TFEに基づく繰り返し単位と、スル ホン酸基を有する含フッ素モノマーに基づく繰り返し単位とを有する共重合体が特に 好ましい。
[0074] スルホン酸基を有する含フッ素モノマーとしては、化合物(1)が好ましレ、。
CF =CF (OCF CFY4) O—(CF ) - SO H · · · (1) 0
2 2 m ¾ 2 n 3
ただし、 Y4はフッ素原子またはトリフルォロメチル基であり、 mは 0〜3の整数であり 、 nは 1〜 12の整数であり、 qは 0または 1である。
[0075] 炭化水素系重合体としては、スルホン化ポリアリーレン、スルホン化ポリベンゾォキ サゾール、スルホン化ポリべンゾチアゾール、スルホン化ポリべンゾイミダゾール、ス ノレホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエ ーテノレスノレホン、スノレホン化ポリフエ二レンスノレホン、スノレホン化ポリフエ二レンォキシ ド、スルホン化ポリフエ二レンスルホキシド、スルホン化ポリフエ二レンサルファイド、ス ノレホン化ポリフエ二レンスルフイドスルホン、スルホン化ポリエーテルケトン、スルホン 化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトンケトン、スルホン化ポリ イミド等が挙げられる。
[0076] 触媒層 11は、フラッデイングの抑制効果が高まる点から、撥水化剤を含んでいても よい。撥水化剤としては、 TFEとへキサフノレオ口プロピレンとの共重合体、 TFEとパ 一フルォロ(アルキルビュルエーテル)との共重合体、ポリテトラフルォロエチレン(以 下、 PTFEと記す。)等が挙げられる。撥水化剤としては、触媒層 11を撥水化処理し やすい点から、溶媒に溶解できる含フッ素ポリマーが好ましい。撥水化剤の割合は、 触媒層 11 (100質量%)のうち、 0. 0;!〜 30質量%が好ましい。
[0077] (ガス拡散層)
ガス拡散層 12としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が 挙げられる。 ガス拡散層 12は、 PTFE等によって撥水化処理されていることが好ましい。
[0078] (カーボン層)
膜電極接合体 10は、図 2に示すように、触媒層 11とガス拡散層 12との間にカーボ ン層 16を有していてもよい。カーボン層 16を配置することにより、触媒層 11の表面の ガス拡散性が向上し、固体高分子形燃料電池の発電性能が大きく向上する。
[0079] カーボン層 16は、カーボンと非イオン性含フッ素ポリマーとを含む層である。
カーボンとしては、繊,锥径 1〜; 1000nm、繊維長 1000 μ m以下のカーボンナノファ ィバーが好ましい。
非イオン性含フッ素ポリマーとしては、 PTFE等が挙げられる。
[0080] (膜電極接合体の製造方法)
膜電極接合体 10は、たとえば、下記方法にて製造される。
(X— 1)固体高分子電解質膜 15上に触媒層 11を形成して膜触媒層接合体とし、 該膜触媒層接合体をガス拡散層 12で挟み込む方法。
(X— 2)ガス拡散層 12上に触媒層 11を形成して電極(アノード 13、力ソード 14)とし 、固体高分子電解質膜 15を該電極で挟み込む方法。
[0081] 膜電極接合体 10がカーボン層 16を有する場合、膜電極接合体 10は、たとえば、 下記方法にて製造される。
(y— 1)基材フィルム上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散 液を塗布し、乾燥させてカーボン層 16を形成し、カーボン層 16上に触媒層 11を形 成し、触媒層 11と固体高分子電解質膜 15とを貼り合わせ、基材フィルムを剥離して 、カーボン層 16を有する膜触媒層接合体とし、該膜触媒層接合体をガス拡散層 12 で挟み込む方法。
(y— 2)ガス拡散層 12上に、カーボンおよび非イオン性含フッ素ポリマーを含む分 散液を塗布し、乾燥させてカーボン層 16を形成し、前記 (X— 1)の方法における膜触 媒層接合体を、カーボン層 16を有するガス拡散層 12で挟み込む方法。
[0082] 触媒層 11の形成方法としては、下記方法が挙げられる。
(z— 1)触媒層形成用液を、固体高分子電解質膜 15、ガス拡散層 12、またはカー ボン層 16上に塗布し、乾燥させる方法。 (z 2)触媒層形成用液を基材フィルム上に塗布し、乾燥させ触媒層 11を形成し、 該触媒層 11を固体高分子電解質膜 15上に転写する方法。
[0083] 触媒層形成用液は、プロトン伝導性ポリマーおよび触媒を分散媒に分散させた液 である。触媒層形成用液は、たとえば、後述する液状組成物と、触媒の分散液とを混 合することにより調製でさる。
触媒層形成用液は、触媒層 11の形成方法によって粘度が異なるため、数十 cP程 度の分散液であってもよぐ 20000cP程度のペーストであってもよい。
触媒層形成用液は、粘度を調節するために、増粘剤を含んでいてもよい。増粘剤と しては、ェチルセルロース、メチルセルロース、セロソルブ系増粘剤、フッ素系溶媒(5 フッ化プロパノール、フロン等。)が挙げられる。
[0084] 液状組成物は、プロトン伝導性ポリマーを、水酸基を有する有機溶媒および水を含 む分散媒に分散させた分散液である。
水酸基を有する有機溶媒としては、主鎖の炭素数が;!〜 4の有機溶媒が好ましぐ たとえば、メタノール、エタノール、 n プロパノール、イソプロパノール、 tert ブタノ ール、 n ブタノール等が挙げられる。水酸基を有する有機溶媒は、 1種を単独で用 いてもよぐ 2種以上を混合して用いてもよい。
[0085] 水の割合は、分散媒(100質量%)のうち、 10〜99質量%が好ましぐ 40〜99質 量%がより好ましい。水の割合を増やすことにより、分散媒に対するプロトン伝導性ポ リマーの分散性を向上できる。
水酸基を有する有機溶媒の割合は、分散媒(100質量%)のうち、;!〜 90質量%が 好ましく、;!〜 60質量%がより好ましい。
分散媒は、含フッ素溶媒を含んでいてもよい。含フッ素溶媒としては、たとえば、ヒド ロフノレオロカ一ボン、フノレオ口カーボン、ヒドロタロロフノレォロカーボン、フノレオ口エー テル、含フッ素アルコール等が挙げられる。
プロトン伝導性ポリマーの割合は、液状組成物(100質量%)のうち、;!〜 50質量% が好ましぐ 3〜30質量%がより好ましい。
[0086] <固体高分子形燃料電池〉
本発明の膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形 燃料電池は、たとえば、 2つのセパレータの間に膜電極接合体を挟んでセルを形成 し、複数のセルをスタックすることにより製造される。
セパレータとしては、燃料ガスまたは酸素を含む酸化剤ガス(空気、酸素等。)の通 路となる溝が形成された導電性カーボン板等が挙げられる。
固体高分子形燃料電池の種類としては、水素/酸素型燃料電池、直接メタノール 型燃料電池 (DMFC)等が挙げられる。
[0087] 以上説明した固体高分子電解質膜 15は、前記条件 (i)および条件 (ii)を満足する フッ素系プロトン伝導性ポリマーと、フッ素系補強材とを含むため、電気抵抗を低くす るために、厚さを薄ぐかつフッ素系プロトン伝導性ポリマーに含まれるイオン性基の 濃度を高くしても、含水時の寸法安定性に優れる。該理由は以下の通りである。
[0088] 従来のフッ素系プロトン伝導性ポリマーを用いた場合、補強材で補強することにより 、固体高分子電解質膜を薄くし、固体高分子電解質膜の寸法安定性を維持しつつ、 ある程度まで電気抵抗を低くできる。しかし、固体高分子電解質膜の電気抵抗をさら に低くするために、フッ素系プロトン伝導性ポリマーに含まれるイオン性基の濃度を 高くすると、補強材で補強しているにも関わらず、固体高分子電解質膜の寸法安定 性を維持できない。
[0089] 一方、本発明にお!/、ては、フッ素系プロトン伝導性ポリマー力 EWが 400以下であ るビュルエーテル型モノマーに基づく繰り返し単位を有するため、ビュルエーテル型 モノマーに基づく繰り返し単位を少なくしても、充分に高いイオン性基濃度を得ること 力 Sできる。よって、パーフノレオ口モノマーに基づく繰り返し単位を増やすことができ、 その結果、厚さを薄ぐかつフッ素系プロトン伝導性ポリマーに含まれるイオン性基の 濃度を高くしているにも関わらず、含水時の寸法安定性に優れる固体高分子電解質 膜 15を形成できる。
また、ビュルエーテル型モノマーに基づく繰り返し単位を少なくしても、充分に高い イオン性基濃度を得ることができるため、フッ素系プロトン伝導性ポリマーの、温度 80 °C、相対湿度 50%の雰囲気下におけるプロトン伝導率を 0. 06S/cm以上にするこ とができ、その結果、固体高分子電解質膜 15の電気抵抗を低くできる。
[0090] また、以上説明した膜電極接合体 10は、固体高分子電解質膜として、電気抵抗を 低くするために、厚さを薄ぐかつフッ素系プロトン伝導性ポリマーに含まれるイオン 性基の濃度を高くしても、機械的強度が高ぐ含水時の寸法安定性に優れる固体高 分子電解質膜 15を備えているため、出力が高ぐかつ耐久性に優れる。
実施例
[0091] 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によ つて限定されない。
例;!〜 8は合成例であり、例 9〜; 17は製造例であり、例 18〜25、 30〜38は実施例 であり、例 26〜29、 39、 40は比較例である。
[0092] (イオン交換容量)
ポリマー Pのイオン交換容量 (AR)は、下記方法により求めた。
滴定によりあらかじめ ARがわかっている 2種のポリマー(ARが 1 · 0のものと 1. 1の もの)からなる 200 mの膜それぞれについて、蛍光 X線(リガク社製、 RIX3000)を 用いてィォゥ原子に基づくピーク強度を測定し、該ピーク強度と ARとの関係を示す 検量線を作成した。ポリマー Pを、後述する TQ値の温度でプレスして 200 mの膜を 作製し、蛍光 X線でィォゥ原子に基づくピーク強度を測定し、前記検量線にて ARを 求めた。
[0093] (TQ値)
TQ値(単位:。 C)は、ポリマーの分子量の指標であり、長さ lmm、内径 lmmのノズ ルを用い、 2. 94MPaの押出し圧力の条件でポリマーの溶融押出しを行った際の押 出し量が 100mm3/秒となる温度である。
フローテスタ CFT—500A (島津製作所社製)を用い、温度を変えてポリマー Pの押 出し量を測定し、押出し量が 100mm3/秒となる TQ値を求めた。
[0094] (繰り返し単位のモル比)
ポリマー Pを構成する繰り返し単位のモル比を、溶融19 F— NMRにより求めた。
[0095] (プロトン伝導率)
ポリマー Qのプロトン伝導率は、下記方法により求めた。
5mm幅のポリマー Qのフィルムに、 5mm間隔で 4端子電極が配置された基板を密 着させ、公知の 4端子法により、温度 80°C、相対湿度 50%の恒温恒湿条件下にて 交流 10kHz IVの電圧でフィルムの抵抗を測定し、該結果からプロトン伝導率を算 し/
[0096] (軟化温度、ガラス転移温度)
ポリマー Qの軟化温度およびガラス転移温度は、下記方法により求めた。 動的粘弾性測定装置 (アイティー計測社製、 DVA200)を用い、試料幅 0. 5cm つかみ間長 2cm、測定周波数 1Ηζ、昇温速度 2°C/分の条件にて、ポリマー Qのフ イルムの動的粘弾性測定を行い、貯蔵弾性率が 50°Cにおける値の半分になる値を 軟化温度とした。また、 tan δのピーク値からガラス転移温度 (Tg)を求めた。
[0097] (不織布の目付量、開口率、繊維直径)
不織布に粘着剤付きの PET製フィルムを押し付け、不織布を移しとり、その移しとつ た面積とその質量増加量とから不織布の目付量を測定した。また、断面顕微鏡写真 力、ら不織布の厚みと繊維の直径を測定した。開口率を次式により算出した。
開口率(%) = 100—八 100/ (8 じ)
A:不織布を構成する材料のうち、電解質でない材料からなる部分の目付量 (g/m 2)、
B:不織布を構成する材料のうち、電解質でな!/、材料の密度(g/m3)
C :不織布の厚み(m)。
[0098] (非補強層の厚さ)
レーザー顕微鏡によって、固体高分子電解質膜の断面を観察し、固体高分子電解 質膜表面からフッ素系補強材までの最短距離を測定した。
[0099] (含水時の寸法変化率)
固体高分子電解質膜から、 200mm角のサンプルを切り出した。サンプルを温度 2 5°C、相対湿度 50%の雰囲気に 16時間さらし、サンプルの縦と横の長さを測定した。 ついで、 90°Cのイオン交換水にサンプルを 16時間浸漬した後、同様にして長さを測 定した。サンプルの縦方向の伸びおよび横方向の伸びの平均値を求め、寸法変化 率とした。
[0100] (初期セル電圧)
セパレータとして、ガス通路用の細溝がジグザグ状に切削加工されたカーボン板( 溝幅 lmm、ランド部 lmm)を用意した。
膜電極接合体の両外側にセパレータを配置し、さらにセパレータの外側にヒータを 配置して、有効膜面積 25cm2の固体高分子形燃料電池を組み立てた。
[0101] 固体高分子形燃料電池の温度を 80°Cに保ち、力ソードに空気、アノードに水素を、 それぞれ 0. 15MPaで供給した。各ガスは、加湿器を用いて相対湿度 50%に加湿し た状態で各電極へ供給した。電流密度 0. lA/cm2および lA/cm2のときのセル電 圧をそれぞれ測定した。
[0102] 〔例 1〕
以下に示す合成ルートにより化合物 (ml 1)を合成した。
[0103] [化 4]
Figure imgf000026_0001
(c1)
CF2OCF2CF2— S02F
FOC— CFOCF2— CF\
CF3 OCF2CF2-S02F Δ
(d1)
CF2OCF2CF2— S02F
CF2=CFOCF2— Cく
OCF2CF2— S02F
(m11)
[0104] (i)化合物(al)の合成:
特開昭 57— 176973号公報の実施例 2に記載の方法と同様にして、化合物(al ) を合成した。
[0105] (ii)化合物(cl)の合成:
ジムロート冷却管、温度計、滴下ロートおよび撹拌翼付きガラス棒を備えた 300cm3 の 4口丸底フラスコに、窒素雰囲気下、フッ化カリウム (森田化学社製、商品名:クロキ ャット F) l . 6gおよびジメトキシェタン 15. 9gを入れた。ついで、丸底フラスコを氷浴 で冷却して、滴下ロートより化合物(M) 49. lgを 32分かけて、内温 10°C以下で滴 下した。滴下終了後、滴下ロートより化合物(al) 82. Ogを 15分かけて滴下した。内 温上昇はほとんど観測されな力 た。滴下終了後、内温を室温に戻して約 90時間撹 拌した。分液ロートで下層を回収した。回収量は 127. 6gであった。回収液を 200cm 3の 4口丸底フラスコに移して、蒸留を実施した。減圧度 1. 0〜; 1. lkPa (絶対圧)の 留分として化合物(cl) 97· 7gを得た。ガスクロマトグラフィー(以下、 GCと記す。)純 度は 98%であり、収率は 80%であった。
[0106] (iii)化合物(dl)の合成:
200cm3のステンレス製オートクレーブに、フッ化カリウム(森田化学社製、商品名: クロキャット F) 1. lgを入れた。脱気後、減圧下で、オートクレーブにジメトキシェタン 5. 3g、ァセトニトリル 5. 3gおよび化合物(cl) 95. 8gを入れた。ついで、オートタレ 一ブを氷浴で冷却して、内温 0〜5°Cにて、へキサフルォロプロペンォキシド 27. 2g を 27分かけて加えた後、撹拌しながら内温を室温に戻して一晩撹拌した。分液ロート で下層を回収した。回収量は 121. 9gであり、 GC純度は 63%であった。回収液の蒸 留により沸点 80〜84°C/0. 67—0. 80kPa (絶対圧)の留分として化合物(dl) 72 . Ogを得た。 GC純度は 98%であり、収率は 56%であった。
[0107] (iv)化合物(mi l)の合成:
内径 1. 6cmのステンレス製管を用いて、長さ 40cmの U字管を作製した。該 U字管 の一方にガラスウールを充填し、他方にステンレス製焼結金属を目皿としてガラスビ ーズを充填し、流動層型反応器を作製した。流動化ガスとして窒素ガスを用い、原料 を定量ポンプを用いて連続的に供給できるようにした。出口ガスはトラップ管を用いて 液体窒素で捕集した。
[0108] 流動層型反応器を塩浴に入れ、反応温度を 340°Cに保持しながら、化合物(dl) /Nのモル比力 となるように、流動層型反応器に化合物(dl) 34· 6gを 1· 5
2
時間かけて供給した。反応終了後、液体窒素トラップより 27gの液体を得た。 GC純 度は 84%であった。該液体の蒸留により沸点 69°C/0.40kPa (絶対圧)の留分とし て化合物(ml 1)を得た。 GC純度は 98%であった。
[0109] 化合物(mil)の19 F— NMR(282.7MHz、溶媒 CDC1、基準: CFC1 )。
3 3 δ (ppm) :45.5 (IF), 45.2 (IF), —79.5(2F), —82.4(4F), —84.1 (2F ), -112.4(2F), -112.6(2F), -112.9(dd, J = 82.4Hz, 67.1Hz, IF), -121.6(dd, J=112.9Hz, 82.4Hz, IF), -136.0(ddt, J=112.9Hz, 67 . 1Hz, 6.1Hz, IF), -144.9(1F)。
[0110] 〔例 2〕
ポリマー PIの合成:
オートクレープ(内容積 2575cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(ml 1)945· 3g、溶媒である化合物(2— 1)425· 7g、化合 物 (nll)164.3g、および開始剤である化合物(3— 1) (日本油脂社製、パーロィル I PP)654.2mgを入れ、オートクレーブ内を蒸気圧まで脱気した。
CC1F CF CHC1F ·'·(2— 1)、
2 2
CF =CFOCF CF(CF )OCF CF CF ··· (nil),
2 2 3 2 2 3
(CH ) CHOC( = 0)OOC( = 0)OCH(CH ) … 1)。
3 2 3 2
[0111] 内温を 40°Cに昇温し、オートクレーブに TFEを導入し、圧力を 0.42MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 7.0時間重合を行った。ついで、オート クレーブ内を冷却して重合を停止し、系内のガスをパージした。
反応液を化合物(2 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
CH CC1 F
3 2 …(2— 2)。
[0112] 化合物(2— 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物 (mil)と化合物 (nil)との共重合体であるポリマー P1を得た。収量、ィォ ン交換容量、 TQ値およびポリマーを構成する繰り返し単位の比を表 1に示す。 [0113] 〔例 3〕
ポリマー P2の合成:
オートクレープ(内容積 2575cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(ml 1) 1035· Og、溶媒である化合物(2— 1) 414· 0g、化 合物(nl l) 80. lg、メタノール 122. lmg、および開始剤である化合物(3— 1) 616 . 5mgを入れ、オートクレーブ内を蒸気圧まで脱気した。
[0114] 内温を 40°Cに昇温し、オートクレーブに TFEを導入し、圧力を 0. 46MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 5. 75時間重合を行った。ついで、ォー トクレーブ内を冷却して重合を停止し、系内のガスをパージした。
反応液を化合物(2— 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
[0115] 化合物(2— 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物 (mi l)と化合物 (ni l)との共重合体であるポリマー P2を得た。収量、ィォ ン交換容量、 TQ値およびポリマーを構成する繰り返し単位の比を表 1に示す。
[0116] 〔例 4〕
ポリマー P3の合成:
オートクレープ(内容積 2575cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(ml 1) 1127· 9g、溶媒である化合物(2— 1) 403· 5g、お よび開始剤である化合物(3— 1) 535. 8mgを入れ、オートクレーブ内を蒸気圧まで 脱気した。
[0117] 内温を 40°Cに昇温し、オートクレーブに TFEを導入し、圧力を 0. 41MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 7. 2時間重合を行った。ついで、オート クレーブ内を冷却して重合を停止し、系内のガスをパージした。
反応液を化合物(2— 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
[0118] 化合物(2— 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物(mi l)との共重合体であるポリマー P3を得た。収量、イオン交換容量、 T Q値およびポリマーを構成する繰り返し単位の比を表 1に示す。
[0119] 〔例 5〕
ポリマー P4の合成:
オートクレープ(内容積 2575cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(mi l) 1047· lg、溶媒である化合物(2— 1) 123· 5g、化 合物(n41) 614. 3g、および開始剤である化合物(3— 2) 358. 3mgを入れ、オート クレープ内を蒸気圧まで脱気した。
CF =CFOCF CF (CF ) OCF CF SO F · · · (n41) .
2 2 3 2 2 2
(CH ) C (CN) N = NC (CH ) (CN) … 2)。
3 2 3 2
内温を 65°Cに昇温し、オートクレーブに TFEを導入し、圧力を 1. l lMPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 11. 0時間重合を行った。ついで、ォー トクレーブ内を冷却して重合を停止し、系内のガスをパージした。
反応液を化合物(2 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
化合物(2 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物 (mi l)と化合物 (n41)との共重合体であるポリマー P4を得た。収量、ィォ ン交換容量、 TQ値およびポリマーを構成する繰り返し単位の比を表 1に示す。
[0120] 〔例 6〕
ポリマー P5の合成:
オートクレーブ(内容積 1006cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(ml 1) 561. 3g、溶媒である化合物(2 1) 96. 0g、化合 物(nl l) 43. 3g、および開始剤である化合物(3— 2) 476. 5mgを入れ、オートタレ 一ブ内を蒸気圧まで脱気した。
内温を 65°Cに昇温し、オートクレーブに TFEを導入し、圧力を 1. 28MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 4. 5時間重合を行った。ついで、オート クレーブ内を冷却して重合を停止し、系内のガスをパージした。 反応液を化合物(2— 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
化合物(2— 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物 (mi l)と化合物 (ni l)との共重合体であるポリマー P5を得た。収量、ィォ ン交換容量、 TQ値およびポリマーを構成する繰り返し単位の比を表 1に示す。
[0121] 〔例 7〕
ポリマー P6の合成:
オートクレーブ(内容積 1006cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(ml 1) 334· 5g、溶媒である化合物(2— 1) 103· 2g、化合 物(n41) 239. 4g、および開始剤である化合物(3— 2) 542· 6mgを入れ、オートク レーブ内を蒸気圧まで脱気した。
内温を 65°Cに昇温し、オートクレーブに TFEを導入し、圧力を 1. 20MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 6. 5時間重合を行った。ついで、オート クレーブ内を冷却して重合を停止し、系内のガスをパージした。
反応液を化合物(2— 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
化合物(2— 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物(mi l)と化合物(n41)との共重合体であるポリマー P6を得た。収量、ィォ ン交換容量、 TQ値およびポリマーを構成する繰り返し単位の比を表 1に示す。
[0122] 〔例 8〕
ポリマー P7の合成:
オートクレープ(内容積 2575cm3、ステンレス製)を窒素で置換し、充分に脱気を行 つた。減圧下で、化合物(n41) 1810. 7gを入れ、さらに、化合物(n41)にラジカル 開始剤である化合物(3— 3)を 4. 9質量%含む溶液 (A) 157. 2mgを入れ、液体窒 素によってオートクレーブの凍結脱気を 2回繰り返した。
(CF CF CF OCF (CF ) CF OCF (CF ) COO) …(3— 3)。 [0123] 内温を 33°Cに昇温し、オートクレーブに TFEを導入し、圧力を 0. 34MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 30分ごとに、前記溶液 (A) 59.2mgと化 合物(n41) 150mgとの混合物を 15回添加した。 15回目の添加後、 30分反応を続 けて、 8. 0時間後にオートクレーブ内を冷却して重合を停止し、系内のガスをパージ した。
反応液を化合物(2— 1)で希釈した後、化合物(2— 2)を加え、ポリマーを凝集させ 、ろ過した。
[0124] 化合物(2— 1)中でポリマーを撹拌した後、化合物(2— 2)を加え、ポリマーを再凝 集し、ろ過した。該再凝集を 2回繰り返した。ポリマーを 80°Cで一晩減圧乾燥し、 TF Eと化合物 (n41)との共重合体であるポリマー P7を得た。収量、イオン交換容量、 T Q値およびポリマーを構成する繰り返し単位の比を表 1に示す。
[0125] [表 1]
Figure imgf000032_0001
Figure imgf000032_0002
〔例 9〕
ポリマー Q1のフイノレムの製造:
ポリマー P1を下記方法で処理し、酸型のポリマー Q1のフィルムを得た。 まず、ポリマー PIの TQ温度にて、加圧プレス成形によりポリマー PIを厚さ 100〜2 00 μ mのフィルムに加工した。
[0127] ついで、該フィルムを、ジメチルスルホキシドの 30質量%および水酸化カリウムの 1 5質量%を含む水溶液に、 80°Cで 16時間浸漬させることにより、該フィルム中の S O F基を加水分解し、 SO K基に変換した。
2 3
[0128] ついで、該フィルムを、 3モル/ L塩酸水溶液に、 50°Cで 2時間浸漬した。塩酸水 溶液を交換し、同様の処理をさらに 4回繰り返した。該フィルムをイオン交換水で充分 に水洗し、該フィルム中の SO K基がスルホン酸基に変換された、ポリマー Q1のフ
3
イノレムを得た。
ポリマー Q 1のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
[0129] 〔例 10〕
ポリマー Q2のフイノレムの製造:
ポリマー P1の代わりにポリマー P2を用いた以外は、例 9と同様にして酸型のポリマ 一 Q2のフィルムを得た。
ポリマー Q 2のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
[0130] 〔例 11〕
ポリマー Q3のフイノレムの製造:
ポリマー P1の代わりにポリマー P3を用いた以外は、例 9と同様にして酸型のポリマ 一 Q3のフィルムを得た。
ポリマー Q 3のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
[0131] 〔例 12〕
ポリマー Q4のフィルムの製造:
ポリマー P1の代わりにポリマー P4を用いた以外は、例 9と同様にして酸型のポリマ 一 Q4のフィルムを得た。
ポリマー Q4のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
[0132] 〔例 13〕
ポリマー Q5のフイノレムの製造:
ポリマー P1の代わりにボリマー P5を用いた以外は、例 9と同様にして酸型のポリマ 一 Q 5のフィルムを得た。
ボリマー Q5のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
[0133] 〔例 14〕
ポリマー Q6のフイノレムの製造:
ポリマー P1の代わりにボリマー P6を用いた以外は、例 9と同様にして酸型のポリマ 一 Q 5のフィルムを得た。
ボリマー Q6のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
ポリマー Q1〜Q6は、モノマー(mi l)に基づく繰り返し単位から誘導された、スル ホン酸基を有するビュルエーテル型モノマーに基づく繰り返し単位を有する。該ビニ ルエーテル型モノマーの EWは、 313である。
[0134] 〔例 15〕
ボリマー Q7のフィルムの製造:
ポリマー P1の代わりにボリマー P7を用いた以外は、例 9と同様にして酸型のポリマ 一 Q 7のフィルムを得た。
ポリマー Q 7のフィルムの軟化温度、ガラス転移温度およびプロトン伝導率を測定し た。結果を表 2に示す。
[0135] 〔例 16〕
他のフッ素系プロトン伝導性ボリマーのフィルムの製造:
市販のフッ素系プロトン伝導性ポリマー(Dupont社製、 Nafion R)の溶液(固形 分: 20質量%)を用い、キャスト法によってフィルムを得た。
該フィルムのプロトン伝導率を測定した。結果を表 2に示す。
[0136] Nafion Rを構成するフッ素系プロトン伝導性ポリマーは、化合物(1 1)に基づく 繰り返し単位を有する。化合物(1 1)の EWは、 446である。
CF =CFOCF CF (CF ) OCF CF SO H · · · (1 - 1) 0
2 2 3 2 2 3
Q7及び Nafion Rを構成するフッ素系プロトン伝導性ポリマーは、化合物(1 1)に 基づく繰り返し単位を有する。化合物(1— 1)の EWは、 446である。
[0137] [表 2]
Figure imgf000035_0001
[0138] 〔例 17〕
不織布の製造:
メルトブローン不織布製造装置(日本ノズル社製)を用い、 PFA (旭硝子社製、フル オン PFA P- 61XP, MFR : 40g/10分)を用い、紡糸ノズル温度 390°C、延伸用 ホットエアー温度 400°Cの条件で、吸引能力を有するコンベア一上に不織布を形成 した。
[0139] 不織布を構成する PFAは連続繊維であり、アスペクト比はすべて 10000以上であ つた。不織布の 2. 6cm X 2. 6cmの面積を顕微鏡にて観察したところ、繊維長 13m m以下の繊維は観察されな力 た。
ついで、該不織布に、溶媒可溶性含フッ素ポリマー(旭硝子社製、サイトップ、主鎖 に脂肪族環構造を有する含フッ素ポリマー)の溶液 (溶媒:旭硝子社製、 CT-solv. 100、固形分濃度:2質量%)をハンドスプレー容器を用いて吹き付け、不織布を形 成する繊維間の交点を固定化した。連続繊維の繊維径は 7 mであり、不織布の厚 さは 20 a mであり、 目付け量は 10g/m2 (5cc/m2)であった。
[0140] 〔例 18〕
固体高分子電解質膜の製造:
ポリマー Q1に、エタノール、水および 1ーブタノールの混合分散媒(エタノール/水 /1—ブタノール = 35/50/15質量比)を加え、固形分濃度を 15質量%に調整し 、オートクレープを用い 125°Cで 8時間、撹拌した。さらに水を加え、固形分濃度を 9 質量%に調製し、ポリマー Q1が分散媒に分散した液状組成物 S1を得た。分散媒の 組成は、エタノール/水 /1ーブタノール = 21/70/9 (質量比)であった。
[0141] 液状組成物 S1中のイオン性基の 5%に相当するモル数の Ce (CO ) · 8Η Oを加
2 3 3 2 え、室温で 4時間攪拌し、液状組成物 S1 'を得た。
不織布の縁を拘束した状態で、不織布を液状組成物 S1 'に浸漬し、毎分 100mm の速度で引き上げ、液状組成物 S1 'を不織布に含浸させた。該含浸の操作を 3回繰 り返した後、不織布を拘束した状態で 55°Cで 1時間乾燥し、補強層用フィルムを得た
[0142] 液状組成物 S1 'を、ダイコート法でポリエチレンテレフタレートフィルム上に塗布し、 140°Cで 1時間乾燥し、厚さ 10 mの 1非補強層用フィルムを得た。
補強層用フィルムの両側に非補強層用フィルムを配し、熱プレス法(180°C、 5Pa、 15分)により厚さ SC^ mの固体高分子電解質膜 R1を得た。非補強層の厚さは、片 側につき 5 mであった。
固体高分子電解質膜 R1の寸法変化率を測定した。結果を表 3に示す。
[0143] 〔例 19〕
固体高分子電解質膜の製造:
ポリマー Q1の代わりにポリマー Q2を用いた以外は、例 18と同様にして固体高分子 電解質膜 R2を得た。
固体高分子電解質膜 R2の寸法変化率を測定した。結果を表 3に示す。
[0144] 〔例 20〕
固体高分子電解質膜の製造:
ポリマー Q1の代わりにポリマー Q3を用いた以外は、例 18と同様にして固体高分子 電解質膜 R3を得た。
固体高分子電解質膜 R3の寸法変化率を測定した。結果を表 3に示す。
[0145] 〔例 21〕
固体高分子電解質膜の製造: 不織布の代わりに、延伸 PTFE多孔体(Donaldson社製、 product codel 316) を用いた以外は、例 20と同様にして固体高分子電解質膜 R4を得た。
固体高分子電解質膜 R4の寸法変化率を測定した。結果を表 3に示す。
〔例 22〕
固体高分子電解質膜の製造:
ポリマー Q1の代わりにポリマー Q4を用いた以外は、例 18と同様にして固体高分子 電解質膜 R5を得た。
固体高分子電解質膜 R5の寸法変化率を測定した。結果を表 3に示す。
〔例 23〕
固体高分子電解質膜の製造:
ポリマー Q3の代わりにポリマー Q4を用いた以外は、例 21と同様にして固体高分子 電解質膜 R6を得た。
固体高分子電解質膜 R6の寸法変化率を測定した。結果を表 3に示す。
〔例 24〕
固体高分子電解質膜の製造:
ポリマー Q1の代わりにポリマー Q5を用いた以外は、例 18と同様にして固体高分子 電解質膜 R7を得た。
固体高分子電解質膜 R7の寸法変化率を測定した。結果を表 3に示す。
〔例 25〕
固体高分子電解質膜の製造:
ポリマー Q1の代わりにポリマー Q6を用いた以外は、例 18と同様にして固体高分子 電解質膜 R8を得た。
固体高分子電解質膜 R8の寸法変化率を測定した。結果を表 3に示す。
〔例 26〕
固体高分子電解質膜の製造:
ポリマー Q3の代わりにポリマー Q6を用いた以外は、例 21と同様にして固体高分子 電解質膜 R9を得た。
固体高分子電解質膜 R9の寸法変化率を測定した。結果を表 3に示す。 〔例 27〕
固体高分子電解質膜の製造:
液状組成物 S1の代わりに、市販のフッ素系プロトン伝導性ポリマー(Dupont社製 、 Nafion R)の溶液(固形分: 20質量%)を用いた以外は、例 18と同様にして固体 高分子電解質膜 R10を得た。
固体高分子電解質膜 R10の寸法変化率を測定した。結果を表 3に示す。
[0147] 〔例 28〕
固体高分子電解質膜の製造:
液状組成物 S1 'を、 ETFEシート(旭硝子社製、商品名:ァフレックス 100N、厚さ 1 OO ^ m)上に、ダイコート法で塗布し、 80°Cで 30分乾燥し、さらに 150°Cで 30分のァ ニールを施し、厚さ 25 mの固体高分子電解質膜 R11を形成した。
固体高分子電解質膜 R11の寸法変化率を測定した。結果を表 3に示す。 〔例 29〕
固体高分子電解質膜の製造:
ポリマー Q1の代わりにポリマー Q7を用いた以外は、例 18と同様にして固体高分子 電解質膜 R12を得た。
固体高分子電解質膜 R12の寸法変化率を測定した。結果を表 3に示す。
[0148] [表 3]
例 1 S 例 1 9 例 2 ϋ 例 2 1 例 2 2 例 2 3 例 2 4 例 2 b 固体高分子電解質 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 膜
フッ素系プロ卜ン Q 1 Q 2 Q 3 Q 3 Q 4 Q 4 Q 5 Q 6 伝導性ボリマ一
ガラス転移温度 1 2 6 1 3 0 1 3 8 1 3 8 1 2 3 1 2 3 1 3 1 1 2 2 [ ]
フ 'ソ素系補強材 不織布 ィ、織布 不織布 多孔体 不織布 多孔体 不織布 不織布 連続繊維の繊維径 7 7 7 ― 7 ― 7 7 i n m]
補強材の厚さ 2 0 2 0 2 0 1 7 . 5 2 0 1 7 . 5 2 0 2 0 m ]
非補強材の厚さ 5 5 5 5 5 ο 5 5 i m]
電解質膜の厚さ 3 0 3 0 3 0 2 7 . 5 3 0 2 7 . 5 3 0 3 0 m]
寸法変化率 [% ] 1 1 1 2 1 2 1 2 1 1 1 1 9 1 0
Figure imgf000039_0001
[0149] 〔例 30〕
膜電極接合体の製造:
ポリマー Q1を、エタノールおよび水の混合溶媒(エタノール/水 = 1/1質量比)に 入れ、還流機能を備えたフラスコ内にて、 60°Cで 16時間撹拌して溶解し、固形分濃 度が 9質量%の液状組成物を得た。
これとは別に、白金担持カーボンに、水およびエタノールをこの順で加え、エタノー ルおよび水の混合分散媒 (エタノール/水 = 1/1質量比)に分散した触媒分散液( 固形分濃度 9質量%)を得た。
[0150] 液状組成物と触媒分散液とを、液状組成物/触媒分散液 = 1/2 (質量比)で混合 し、触媒層形成用液を調製した。
触媒層形成用液を固体高分子電解質膜 R1の両面にダイコート法で塗布し、乾燥 して、厚さ 10 111、白金担持量 0. 2mg/cm2の触媒層を形成した。該触媒層の両 外側にカーボンクロスをガス拡散層として配置することにより、膜電極接合体を得た。 膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
[0151] 〔例 31〕
触媒層を形成するために用いたポリマー Q1をポリマー Q2に変更し、固体高分子 電解質膜 R1を固体高分子電解質膜 R2に変更した以外は、例 30と同様にして膜電 極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
[0152] 〔例 32〕
触媒層を形成するために用いたポリマー Q1をポリマー Q3に変更し、固体高分子 電解質膜 R1を固体高分子電解質膜 R3に変更した以外は、例 30と同様にして膜電 極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
[0153] 〔例 33〕
固体高分子電解質膜 R3を固体高分子電解質膜 R4に変更した以外は、例 32と同 様にして膜電極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
〔例 34〕
触媒層を形成するために用いたポリマー Q1をポリマー Q4に変更し、固体高分子 電解質膜 R1を固体高分子電解質膜 R5に変更した以外は、例 30と同様にして膜電 極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
[0154] 〔例 35〕 固体高分子電解質膜 R5を固体高分子電解質膜 R6に変更した以外は、例 34と同 様にして膜電極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
〔例 36〕
固体高分子電解質膜 R1を固体高分子電解質膜 R7に変更した以外は、例 30と同 様にして膜電極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
〔例 37〕
触媒層を形成するために用いたポリマー Q1をポリマー Q6に変更し、固体高分子 電解質膜 R1を固体高分子電解質膜 R8に変更した以外は、例 30と同様にして膜電 極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
〔例 38〕
固体高分子電解質膜 R8を固体高分子電解質膜 R9に変更した以外は、例 37と同 様にして膜電極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
〔例 39〕
触媒層を形成するために用いたポリマー Q1を、市販のフッ素系プロトン伝導性ポリ マー(Dupont社製、 Nafion R)に変更し、固体高分子電解質膜 R1を固体高分子 電解質膜 R10に変更した以外は、例 30と同様にして膜電極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
〔例 40〕
固体高分子電解質膜 R1を固体高分子電解質膜 Rl 1に変更した以外は、例 30と 同様にして膜電極接合体を得た。
膜電極接合体を用いて、固体高分子形燃料電池を作製し、初期セル電圧の測定 を行った。結果を表 4に示す。
[0155] [表 4]
Figure imgf000042_0001
Figure imgf000042_0002
産業上の利用可能性
[0156] 本発明の固体高分子電解質膜および膜電極接合体を用いることにより、高出力、 かつ長寿命の固体分子形燃料電池が得られる。 なお、 2006年 12月 14曰に出願された曰本特許出願 2006— 336878号の明糸田書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] フッ素系プロトン伝導性ポリマーと、フッ素系補強材とを含み、
前記フッ素系プロトン伝導性ポリマーが、下記条件 ωおよび条件 (ϋ)を満足する、 固体高分子形燃料電池用固体高分子電解質膜。
(i)温度 80°C、相対湿度 50%の雰囲気下におけるプロトン伝導率力 0. 06S/c m^A上である。
(ii)イオン性基 1モルあたりの質量(Equivalent Weight)が 400以下であるビニ ルエーテル型モノマーに基づく繰り返し単位と、パーフルォロモノマー(ただし、前記 ビュルエーテル型モノマーを除く。 )に基づく繰り返し単位とを有するポリマーである。
[2] 前記温度 80°C、相対湿度 50%の雰囲気下におけるプロトン伝導率力 0. 08S/c m以上である請求項 1に記載の固体高分子形燃料電池用固体高分子電解質膜。
[3] 前記フッ素系プロトン伝導性ポリマーのイオン交換容量が 0. 5〜2. 0ミリ当量/グ ラム乾燥樹脂である、請求項 1又は 2に記載の固体高分子形燃料電池用固体高分 子電解質膜。
[4] 前記フッ素系プロトン伝導性ポリマーのガラス転移点が 120°C以上である、請求項
1〜3のいずれかに記載の固体高分子形燃料電池用固体高分子電解質膜。
[5] 請求項;!〜 4のいずれかに記載の固体高分子形燃料電池用固体高分子電解質膜 、アノードと力ソードとの間に配置された、固体高分子形燃料電池用膜電極接合体
PCT/JP2007/073970 2006-12-14 2007-12-12 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 WO2008072673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780045773XA CN101563802B (zh) 2006-12-14 2007-12-12 固体高分子型燃料电池用固体高分子电解质膜及膜电极接合体
JP2008549344A JP5251515B2 (ja) 2006-12-14 2007-12-12 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
EP07859790A EP2109171A4 (en) 2006-12-14 2007-12-12 FESTPOLYMER ELECTROLYTE MEMBRANE FOR A POLYMER ELECTROLYTE FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY
US12/483,315 US8673517B2 (en) 2006-12-14 2009-06-12 Polymer electrolyte membrane composed of a fluorinated proton conductive polymer and a fluorinated reinforcing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-336878 2006-12-14
JP2006336878 2006-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/483,315 Continuation US8673517B2 (en) 2006-12-14 2009-06-12 Polymer electrolyte membrane composed of a fluorinated proton conductive polymer and a fluorinated reinforcing material

Publications (1)

Publication Number Publication Date
WO2008072673A1 true WO2008072673A1 (ja) 2008-06-19

Family

ID=39511690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073970 WO2008072673A1 (ja) 2006-12-14 2007-12-12 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体

Country Status (5)

Country Link
US (1) US8673517B2 (ja)
EP (1) EP2109171A4 (ja)
JP (1) JP5251515B2 (ja)
CN (1) CN101563802B (ja)
WO (1) WO2008072673A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095825A (ja) * 2008-10-17 2010-04-30 Asahi Glass Co Ltd 繊維の製造方法および触媒層の製造方法
EP2190047A1 (en) * 2007-08-10 2010-05-26 Japan Gore-Tex Inc. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
WO2010101195A1 (ja) 2009-03-04 2010-09-10 旭化成イーマテリアルズ株式会社 フッ素系高分子電解質膜
JP2013026122A (ja) * 2011-07-25 2013-02-04 Toyota Motor Corp 燃料電池用電解質膜
WO2013021553A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 固体高分子型燃料電池用電解質膜およびその製造方法、並びに、固体高分子型燃料電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017257B2 (en) 2007-01-26 2011-09-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
JP6019686B2 (ja) * 2011-04-15 2016-11-02 セントラル硝子株式会社 プロトン伝導性高分子膜およびそれを用いた膜―電極接合体並びに高分子電解質型燃料電池
CN103107344B (zh) * 2013-01-28 2016-02-24 清华大学 催化剂浆料及制备催化剂浆料与膜电极组件的方法
JP6319311B2 (ja) * 2013-07-03 2018-05-09 旭硝子株式会社 含フッ素ポリマーの製造方法
KR101870064B1 (ko) * 2014-05-28 2018-06-22 다이킨 고교 가부시키가이샤 고산소 투과성 아이오노머
JP6947175B2 (ja) * 2016-06-22 2021-10-13 Agc株式会社 電解質材料、その製造方法およびその使用
US20220393214A1 (en) * 2019-12-26 2022-12-08 Kolon Industries, Inc. Polymer electrolyte membrane, membrane-electrode assembly including same, and method for measuring durability thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176973A (en) 1981-04-03 1982-10-30 Du Pont Perfluoroglycidyl ethers
JPH0575835B2 (ja) 1985-04-22 1993-10-21 Japan Gore Tex Inc
JPH06231779A (ja) 1993-01-29 1994-08-19 Asahi Glass Co Ltd 固体高分子電解質型の燃料電池
JPH0768377B2 (ja) 1987-07-20 1995-07-26 東燃株式会社 電解質薄膜
US5463005A (en) 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
JP2002352819A (ja) * 2001-02-07 2002-12-06 Asahi Kasei Corp フッ素系イオン交換樹脂膜
JP2003297394A (ja) 2002-03-29 2003-10-17 Masao Sudo 固体高分子形燃料電池用電解質膜及びその製造方法
WO2004011535A1 (ja) 2002-07-26 2004-02-05 Asahi Glass Company, Limited 高分子膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP2004067880A (ja) * 2002-08-06 2004-03-04 Asahi Kasei Corp フッ素系イオン交換膜
WO2005029624A1 (ja) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha 固体高分子型燃料電池用膜‐電極接合体
JP2005187629A (ja) * 2003-12-25 2005-07-14 Toyota Central Res & Dev Lab Inc 複合電解質、その製造方法、並びにそれを用いた電解質膜、膜電極接合体及び燃料電池
JP2006024389A (ja) * 2004-07-06 2006-01-26 Asahi Kasei Chemicals Corp 高温耐久性高分子固体電解質膜
JP2006155924A (ja) * 2004-11-25 2006-06-15 Asahi Kasei Chemicals Corp 高分子電解質積層膜
JP2006185832A (ja) * 2004-12-28 2006-07-13 Asahi Kasei Chemicals Corp 複合固体高分子電解質膜
JP2006336878A (ja) 2005-05-31 2006-12-14 Yamaha Livingtec Corp 自動湯張りシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575835A (ja) 1991-09-10 1993-03-26 Kobe Nippon Denki Software Kk イメージデータへの文字データ埋め込み印刷方式
JPH0768377A (ja) 1993-09-01 1995-03-14 Koike Sanso Kogyo Co Ltd ガス切断に於ける加工状況の検知方法及びその装置
ITMI20011745A1 (it) * 2001-08-09 2003-02-09 Ausimont Spa Processo per impregnare supporti
JP3561250B2 (ja) * 2001-09-21 2004-09-02 株式会社日立製作所 燃料電池
JP2005078895A (ja) * 2003-08-29 2005-03-24 Asahi Glass Co Ltd 陽イオン交換膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
EP1914824B1 (en) * 2005-07-27 2010-03-17 Asahi Glass Company, Limited Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
EP1916237B1 (en) * 2005-07-27 2010-05-05 Asahi Glass Company, Limited Compound containing fluorosulfonyl group, process for producing the same, and polymer thereof
JPWO2008066048A1 (ja) * 2006-11-28 2010-03-04 旭硝子株式会社 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
US8017257B2 (en) * 2007-01-26 2011-09-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
US8124295B2 (en) * 2007-01-26 2012-02-28 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176973A (en) 1981-04-03 1982-10-30 Du Pont Perfluoroglycidyl ethers
JPH0575835B2 (ja) 1985-04-22 1993-10-21 Japan Gore Tex Inc
JPH0768377B2 (ja) 1987-07-20 1995-07-26 東燃株式会社 電解質薄膜
US5463005A (en) 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
JPH06231779A (ja) 1993-01-29 1994-08-19 Asahi Glass Co Ltd 固体高分子電解質型の燃料電池
JP2002352819A (ja) * 2001-02-07 2002-12-06 Asahi Kasei Corp フッ素系イオン交換樹脂膜
JP2003297394A (ja) 2002-03-29 2003-10-17 Masao Sudo 固体高分子形燃料電池用電解質膜及びその製造方法
WO2004011535A1 (ja) 2002-07-26 2004-02-05 Asahi Glass Company, Limited 高分子膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP2004067880A (ja) * 2002-08-06 2004-03-04 Asahi Kasei Corp フッ素系イオン交換膜
WO2005029624A1 (ja) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha 固体高分子型燃料電池用膜‐電極接合体
JP2005187629A (ja) * 2003-12-25 2005-07-14 Toyota Central Res & Dev Lab Inc 複合電解質、その製造方法、並びにそれを用いた電解質膜、膜電極接合体及び燃料電池
JP2006024389A (ja) * 2004-07-06 2006-01-26 Asahi Kasei Chemicals Corp 高温耐久性高分子固体電解質膜
JP2006155924A (ja) * 2004-11-25 2006-06-15 Asahi Kasei Chemicals Corp 高分子電解質積層膜
JP2006185832A (ja) * 2004-12-28 2006-07-13 Asahi Kasei Chemicals Corp 複合固体高分子電解質膜
JP2006336878A (ja) 2005-05-31 2006-12-14 Yamaha Livingtec Corp 自動湯張りシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2109171A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2190047A1 (en) * 2007-08-10 2010-05-26 Japan Gore-Tex Inc. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
EP2190047A4 (en) * 2007-08-10 2011-09-07 Japan Gore Tex Inc REINFORCED FESTPOLYMER ELECTROLYTE COMPOUND MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY FOR A FESTPOLYMER FUEL CELL AND FESTPOLYMER FUEL CELL
JP2010095825A (ja) * 2008-10-17 2010-04-30 Asahi Glass Co Ltd 繊維の製造方法および触媒層の製造方法
WO2010101195A1 (ja) 2009-03-04 2010-09-10 旭化成イーマテリアルズ株式会社 フッ素系高分子電解質膜
EP2405517A1 (en) * 2009-03-04 2012-01-11 Asahi Kasei E-Materials Corporation Fluorine-containing polymer electrolyte membrane
EP2405517A4 (en) * 2009-03-04 2012-01-11 Asahi Kasei E Materials Corp POLYMERIC ELECTROLYTE MEMBRANE CONTAINING FLUORINE
EP2722921A1 (en) 2009-03-04 2014-04-23 Asahi Kasei E-materials Corporation Fluoropolymer electrolyte membrane
JP2013026122A (ja) * 2011-07-25 2013-02-04 Toyota Motor Corp 燃料電池用電解質膜
WO2013021553A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 固体高分子型燃料電池用電解質膜およびその製造方法、並びに、固体高分子型燃料電池
US10256494B2 (en) 2011-08-09 2019-04-09 Panasonic Intellectual Property Management Co. Ltd. Electrolyte membrane for solid polymer fuel cell, method for manufacturing same, and solid polymer fuel cell

Also Published As

Publication number Publication date
US20100009236A1 (en) 2010-01-14
US8673517B2 (en) 2014-03-18
CN101563802A (zh) 2009-10-21
EP2109171A1 (en) 2009-10-14
JPWO2008072673A1 (ja) 2010-04-02
JP5251515B2 (ja) 2013-07-31
CN101563802B (zh) 2012-07-18
EP2109171A4 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5251515B2 (ja) 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP5286797B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
KR101589323B1 (ko) 고체 고분자형 연료 전지용 막전극 접합체 및 고체 고분자형 연료 전지
JP5277740B2 (ja) 触媒層の形成方法および固体高分子形燃料電池用膜電極接合体の製造方法
JP6034200B2 (ja) レドックスフロー二次電池
JP5499478B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
WO2008066048A1 (fr) Membrane électrolytique polymère solide pour pile à combustible à électrolyte polymère et ensemble membrane-électrode
CN107108781B (zh) 电解质材料、液态组合物以及固体高分子型燃料电池用膜电极接合体
US8361677B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cell
US8178257B2 (en) Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell
US7883807B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell
JP5157211B2 (ja) フッ素系不織布の製造方法、フッ素系不織布、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP2008192328A (ja) 固体高分子形燃料電池およびその製造方法
JP5082470B2 (ja) 固体高分子形燃料電池用膜電極接合体
JP2008192329A (ja) 固体高分子形燃料電池用膜電極接合体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045773.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549344

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007859790

Country of ref document: EP