WO2008072550A1 - 膜-電極接合体、及びこれを備えた高分子電解質形燃料電池 - Google Patents

膜-電極接合体、及びこれを備えた高分子電解質形燃料電池 Download PDF

Info

Publication number
WO2008072550A1
WO2008072550A1 PCT/JP2007/073600 JP2007073600W WO2008072550A1 WO 2008072550 A1 WO2008072550 A1 WO 2008072550A1 JP 2007073600 W JP2007073600 W JP 2007073600W WO 2008072550 A1 WO2008072550 A1 WO 2008072550A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
gas
diffusion layer
catalyst layer
polymer electrolyte
Prior art date
Application number
PCT/JP2007/073600
Other languages
English (en)
French (fr)
Inventor
Yasuo Takebe
Yasuhiro Seki
Eiichi Yasumoto
Yusuke Mochizuki
Original Assignee
Panasonic Corporation
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation, Asahi Glass Co., Ltd. filed Critical Panasonic Corporation
Publication of WO2008072550A1 publication Critical patent/WO2008072550A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane-electrode assembly provided with a polymer electrolyte membrane and a polymer electrolyte fuel cell provided with the membrane-electrode assembly used in a polymer electrolyte fuel cell, and in particular, damage to the polymer electrolyte membrane.
  • the present invention relates to a membrane / electrode assembly capable of preventing the occurrence of the problem.
  • the membrane-electrode assembly includes a polymer electrolyte membrane and a pair of electrodes (gas diffusion electrodes) disposed on both sides of the polymer electrolyte membrane.
  • a frame-shaped protective film that is arranged in close contact with the peripheral portion of the polymer electrolyte membrane and overlaps the electrode is used.
  • a seal structure provided on at least one main surface side of the polymer electrolyte membrane is disclosed.
  • Patent Document 1 JP-A-5-21077
  • the present invention has been made to solve the above-described problems.
  • a membrane / electrode assembly in which damage to the outer peripheral edge of a polymer electrolyte membrane is sufficiently suppressed, and a polymer electrode including the membrane / electrode assembly are provided.
  • An object is to provide a denatured fuel cell.
  • the membrane-electrode assembly of the present invention is laminated with the first gas diffusion layer having gas diffusivity and the first gas diffusion layer.
  • a flat plate including a first catalyst layer having a main surface with a larger area than the main surface of the gas diffusion layer and having an outer peripheral edge protruding outside the first gas diffusion layer.
  • a frame body and an outer peripheral edge portion of a main surface far from the first catalyst layer of the first frame body, and the periphery of the first gas diffusion layer and the first gas And a frame-shaped first gas seal member disposed so as not to overlap the diffusion layer (claim 1).
  • the outer peripheral edge portion of the first catalyst layer is equivalent to the central portion of the first catalyst layer.
  • the amount of reaction product water can be increased. For this reason, damage to the outer peripheral edge of the polymer electrolyte membrane due to the heat of combustion reaction is suppressed.
  • the outer peripheral edge portion of the first catalyst layer protruding from the first catalyst layer is covered with the first frame body, and the gas is formed on the first frame body.
  • a seal member is arranged. Therefore, unlike the configuration of Patent Document 1, the membrane / electrode assembly of the present invention has no gap between the first gas diffusion electrode and the gas seal member.
  • first frame and the first catalyst layer are interposed between the first gas diffusion layer and the first gas seal member and the polymer electrolyte membrane, the outside of the first gas diffusion layer.
  • the end and the inner end of the first gas seal member are prevented from damaging the polymer electrolyte membrane.
  • breakage of the polymer electrolyte membrane due to mechanical stress is further suppressed.
  • It further has a frame-shaped second gas seal member arranged so as to face the first gas seal member around the second gas diffusion electrode! Claim 2).
  • the second gas diffusion electrode comprises: a second gas diffusion layer having gas diffusivity; and a second catalyst layer disposed between the second gas diffusion layer and the polymer electrolyte membrane.
  • the outer edge of the second catalyst layer may be located between the inner edge and the outer edge of the first frame body! / ! /, (Claim 3).
  • the second catalyst layer has a major surface larger than the major surface of the second gas diffusion layer, and is arranged such that an outer peripheral edge thereof protrudes outside the second gas diffusion layer. (Claim 4).
  • the second catalyst layer extends along the outer peripheral edge portion of the main surface on the second gas diffusion layer side, and the inner peripheral edge portion is located outside the second catalyst layer and the second gas diffusion layer.
  • a frame-shaped second frame disposed so as to be inserted between the peripheral edge, and an outer peripheral edge of the main surface of the second frame farther from the second catalyst layer.
  • a frame-shaped second gas seal member arranged around the second gas diffusion layer so as not to overlap the second gas diffusion layer (Claim 5). ).
  • the first gas diffusion electrode is an anode (claim 6).
  • the operation system of the polymer electrolyte fuel cell using the membrane electrode assembly of the present invention adopts an operation system in which power generation is repeatedly stopped and started like the so-called DSS operation.
  • a part of the oxidant gas (for example, oxygen) of the power sword moves from the power generation stop to the next start in the polymer electrolyte membrane to the anode, and the above-described combustion reaction occurs on the catalyst at the anode. Even when it becomes wet, damage to the polymer electrolyte membrane can be sufficiently suppressed.
  • the polymer electrolyte membrane is damaged by adopting the above-described configuration of the present invention for the anode. Is fully talented.
  • the first frame and the first gas seal member are disposed on the outer peripheral edge of the polymer electrolyte membrane, so that the gas sealability when fastened with the separator is further improved. To do.
  • the second frame and the second seal member are disposed on the outer peripheral edge of the polymer electrolyte membrane, the gas sealability when fastened with the separator is further improved.
  • a gap may be provided between an outer edge of the first gas diffusion layer and an inner edge of the first gas seal member (claim 8).
  • a gap may be provided between an outer edge of the second gas diffusion layer and an inner edge of the second gas seal member (claim 9).
  • the outer edge of the first gas diffusion layer and the inner edge of the first gas seal member may be in contact with each other so as not to overlap each other!
  • the outer edge of the second gas diffusion layer and the inner edge of the second gas seal member may be in contact with each other so as not to overlap each other!
  • the polymer electrolyte fuel cell of the present invention is disposed so as to face any one of the membrane electrode assembly and the membrane electrode assembly, and supplies a reaction gas to the membrane electrode assembly. And a pair of separators in which reaction gas flow paths are formed (claim 12).
  • the membrane / electrode assembly and the polymer electrolyte fuel cell of the present invention have the above-described configuration, and therefore have an effect of suppressing damage at the outer peripheral edge of the polymer electrolyte membrane.
  • FIG. 1 is a cross-sectional view showing a configuration of a membrane electrode assembly according to a first embodiment of the present invention and a polymer electrolyte fuel cell including the membrane electrode assembly, wherein (a) is a polymer Sectional view before assembling the electrolyte fuel cell, (b) is a sectional view after assembling the polymer electrolyte fuel cell.
  • FIG. 2 is a cross-sectional view showing a configuration of a first modification of the membrane electrode assembly of the present invention and a polymer electrolyte fuel cell including the membrane electrode assembly, wherein (a) is a polymer electrolyte fuel cell.
  • FIG. 2B is a cross-sectional view after assembling the polymer electrolyte fuel cell.
  • FIG. 3 is a cross-sectional view showing a configuration of a membrane electrode assembly according to a second embodiment of the present invention and a polymer electrolyte fuel cell including the same, wherein (a) is a polymer electrolyte fuel. A cross-sectional view before assembling the battery, (b) is a cross-sectional view after assembling the polymer electrolyte fuel cell.
  • FIG. 4 is a cross-sectional view showing a configuration of a second modification of the membrane electrode assembly of the present invention and a polymer electrolyte fuel cell including the same, wherein (a) is a polymer electrolyte fuel cell
  • FIG. 2B is a cross-sectional view after assembling the polymer electrolyte fuel cell.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a membrane electrode assembly according to a first embodiment of the present invention and a polymer electrolyte fuel cell including the membrane electrode assembly, wherein (a) assembles a polymer electrolyte fuel cell.
  • the previous cross-sectional view and (b) are cross-sectional views after assembling the polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell and the membrane-electrode assembly according to this embodiment will be described with reference to FIG.
  • the polymer electrolyte fuel cell 100 of this embodiment includes a first separator 15 and a second separator 17, and a first gas seal member 11 and a second gas seal member.
  • a gas seal member 13 and a membrane electrode assembly 10 are provided.
  • the first separator 15 and the second separator 17 are disposed so as to sandwich a membrane-electrode assembly 10 described later.
  • the first separator 15 and the second separator 17 are formed in a flat plate shape.
  • reaction gas flow paths 15 a and 17 a are formed on the main surface facing the membrane-electrode assembly 10.
  • the first separator 15 and the first separator 2 A cooling water passage (not shown) is formed on the main surface opposite to the main surface on which the reaction gas passages 15a, 17a of the separator 17 are formed.
  • the first separator 15 and the second separator 17 are made of a conductive material such as a graphite material or a metal material.
  • a membrane-electrode assembly 10 is disposed between the first separator 15 and the second separator 17.
  • the membrane / electrode assembly 10 includes a polymer electrolyte membrane 1, a first catalyst layer 2 and a second catalyst layer 3 disposed on both main surfaces of the polymer electrolyte membrane 1, a first catalyst layer 2 and a first catalyst layer 2. 2
  • the first gas diffusion layer 4 and the second gas diffusion layer 5 laminated on the catalyst layer 3, respectively, between the first catalyst layer 2 and the first gas diffusion layer 4, and between the second catalyst layer 3 and the first gas diffusion layer 5.
  • a first frame body 6 and a second frame body 7 inserted between the two gas diffusion layers 5 are provided.
  • the polymer electrolyte membrane 1 is formed in a rectangular sheet shape. In the present embodiment, the polymer electrolyte membrane 1 is formed so that its thickness is 30 m. The thickness of the polymer electrolyte membrane 1 is not particularly limited to 30 m. The thickness of the polymer electrolyte membrane 1 is preferably 20 m to 50 m from the viewpoint of sufficiently reducing ohmic loss and ensuring sufficient mechanical strength.
  • the polymer electrolyte membrane 1 has proton conductivity. Preferred examples of the polymer electrolyte membrane 1 include those having a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a sulfonimide group as cation exchange groups.
  • the polymer electrolyte membrane 1 is more preferably one having a sulfonic acid group.
  • CF CF— (OCF C FX) O — (CF) —
  • a membrane containing a perfluorocarbon copolymer containing a repeating unit as a polymer electrolyte as a constituent material is particularly preferable.
  • the polymer electrolyte membrane a Nafion membrane (registered trademark; manufactured by DuPont, USA) is used in this embodiment.
  • a first catalyst layer 2 and a second catalyst layer 3 are formed on both main surfaces of the polymer electrolyte membrane 1.
  • the first catalyst layer 2 and the second catalyst layer 3 are formed so that the area of the main surface thereof is smaller than the area of the main surface of the polymer electrolyte membrane 1.
  • the polymer electrolyte membrane 1 and the first catalyst layer 2 and the second catalyst layer 3 overlap each other.
  • the configuration of the first catalyst layer 2 and the configuration of the second catalyst layer 3 have a configuration including conductive carbon particles carrying an electrode catalyst and a polymer electrolyte having cation (hydrogen ion) conductivity. Further, it may have a configuration further including a water repellent material such as polytetrafluoroethylene.
  • the polymer electrolyte the same kind as the constituent material of the polymer electrolyte membrane 1 described above may be used, or a different kind may be used.
  • the electrode catalyst is made of metal particles (for example, metal particles made of a noble metal) and used by being supported on conductive carbon particles (powder).
  • the metal particles are not particularly limited and can use various metals. From the viewpoint of electrode reaction activity, platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, chromium, iron, titanium, Preference is given to at least one selected from the group consisting of manganese, cobalt, nickel, molybdenum, tungsten, ano-remium, kaen, zinc and tin.
  • platinum and ruthenium alloys which are preferred to platinum and alloys with platinum, are particularly preferred because of the stable activity of the catalyst at the anode!
  • a first gas diffusion layer 4 is disposed on the main surface of the first catalyst layer 2 remote from the polymer electrolyte membrane 1.
  • a second gas diffusion layer 5 is disposed on the main surface of the second catalyst layer 3 remote from the polymer electrolyte membrane 1.
  • the area of the main surface of the first gas diffusion layer 4 is formed to be larger than the area of the inner peripheral edge of the first frame 6 described later and smaller than the area of the main surface of the first catalyst layer 2. Yes.
  • the area of the main surface of the second gas diffusion layer 5 is formed so as to be larger than the area of the inner peripheral edge of the second frame 7 described later and smaller than the area of the main surface of the second catalyst layer 3. ing.
  • the first gas diffusion layer 4 and the second gas diffusion layer 5 are formed to have a thickness of 300 m.
  • the thickness of the first gas diffusion layer 4 and the second gas diffusion layer 5 is not particularly limited to 300 m.
  • the thicknesses of the first gas diffusion layer 4 and the second gas diffusion layer 5 are preferably ⁇ m to 400 from the viewpoint of sufficiently reducing the core loss and ensuring sufficient mechanical strength.
  • the first gas diffusion layer 4 and the second gas diffusion layer 5 are made of carbon woven It consists of cloth, carbon non-woven fabric, carbon paper, carbon powder sheet and the like.
  • the first catalyst layer 2 and the first gas diffusion layer 4 are laminated together to constitute a flat plate-like first gas diffusion electrode 8.
  • the second catalyst layer 3 and the second gas diffusion layer 5 are laminated together to constitute a flat plate-like second gas diffusion electrode 9.
  • the first gas diffusion electrode 8 and the second gas diffusion electrode 9 are disposed so as to face each other with the polymer electrolyte membrane 1 interposed therebetween.
  • the outer peripheral edge of the main surface of the first catalyst layer 2 far from the polymer electrolyte membrane 1 and the outer peripheral edge of the main surface of the first gas diffusion layer 4 closer to the polymer electrolyte membrane 1 A first frame 6 is disposed between them.
  • the first frame body 6 is formed in a rectangular ring shape (frame shape), extends along the outer peripheral edge of the main surface of the first catalyst layer 2 on the first gas diffusion layer 4 side, and The inner peripheral edge is disposed so as to be inserted between the first catalyst layer 2 and the outer peripheral edge of the first gas diffusion layer 4.
  • a second frame 7 is provided between the outer peripheral edge of the main surface of the second catalyst layer 3 far from the polymer electrolyte membrane 1 and the outer peripheral edge of the main surface of the second gas diffusion layer 5 closer to the polymer electrolyte membrane 1 .
  • the second frame body 7 is formed in a rectangular ring shape (frame shape), extends along the outer peripheral edge of the main surface of the second catalyst layer 3 on the second gas diffusion layer 5 side, and The inner peripheral edge portion is disposed so as to be inserted between the second catalyst layer 3 and the outer peripheral edge portion of the second gas diffusion layer 5.
  • the first frame body 6 and the second frame body 7 are formed so as to protrude from the outer periphery of the first catalyst layer 2 and the second catalyst layer 3, respectively.
  • the first frame body 6 and the second frame body 7 are formed to have a thickness of 15 m.
  • the thicknesses of the first frame body 6 and the second frame body 7 are not particularly limited to 15 m.
  • the thicknesses of the first frame body 6 and the second frame body 7 are preferably ⁇ ⁇ 50111 from the viewpoint of obtaining the effect of the present invention more reliably.
  • the materials constituting the first frame body 6 and the second frame body 7 are polyethylene naphthalate, polytetrafluoroethylene, polyethylene terephthalate, fluoroethylene propylene copolymer, tetrafluoroethylene perfluoroalkoxy.
  • a first gas seal member 11 and a second gas seal member 13 are disposed between the first separator 15 and the second separator 17 and the membrane-electrode assembly 10.
  • the first gas seal member 11 extends along the outer peripheral edge of the main surface of the first frame body 6 far from the first catalyst layer 2 and is around the first gas diffusion layer 4 1 Arranged so as not to overlap the gas diffusion layer 4.
  • the second gas seal member 13 extends along the outer peripheral edge of the main surface of the second frame 7 far from the second catalyst layer 3, and is around the second gas diffusion layer 5 and 2 Arranged so as not to overlap the gas diffusion layer 5.
  • the first gas seal member 11 and the second gas seal member 13 are formed in a frame shape, that is, a rectangular ring shape.
  • a gap 21 having a predetermined interval is provided between the inner peripheral edge of the first gas seal member 11 and the outer edge of the first gas diffusion layer 4.
  • a gap 23 having a predetermined interval is provided between the inner peripheral edge of the second gas seal member 13 and the outer edge of the second gas diffusion layer 5.
  • the first gas seal member 11 and the second gas seal member 13 are made of fluoro rubber, silicon rubber, natural rubber, ethylene-propylene rubber (EPDM), butyl rubber, butyl chloride rubber, butyl bromide rubber, butadiene rubber, styrene butadiene copolymer.
  • Ethylene acetate rubber acrylic rubber, polyisopropylene polymer, norfluorocarbon, thermoplastic elastomer (polystyrene elastomer, polyolefin elastomer, polyester elastomer, polyamide elastomer, etc.), latex (isoprene rubber, butadiene) It is composed of adhesives using rubber, etc., liquid adhesives (adhesives using polybutadiene, polyisoprene, polychloroprene, silicon rubber, fluororubber, attalononitrile butadiene rubber, etc.), etc.! / RU .
  • the first catalyst layer 2 is applied to one main surface of the polymer electrolyte membrane 1.
  • the first catalyst layer 2 is applied such that the outer peripheral edge of the polymer electrolyte membrane 1 remains in a rectangular shape.
  • the first frame 6 is arranged so that the inner peripheral edge of the first catalyst layer 2 overlaps the outer edge.
  • the first gas diffusion layer 4 is disposed so as to overlap the inner peripheral edge of the first frame 6.
  • the second catalyst layer 3 is applied to the other main surface of the polymer electrolyte membrane 1, and the second frame body 7 and the second gas diffusion layer 5 are disposed.
  • the second catalyst layer 3 is applied to the other main surface of the polymer electrolyte membrane 1. Second touch The medium layer 3 is applied so that the outer peripheral edge of the polymer electrolyte membrane 1 remains in a rectangular shape. Next, the second frame 7 is arranged so that the inner peripheral edge of the second catalyst layer 3 overlaps the outer edge. Then, the second gas diffusion layer 5 is disposed so as to overlap the inner peripheral edge of the second frame body 7.
  • the membrane electrode assembly 10 is formed by hot pressing the one arranged as described above.
  • first gas seal member 11 is disposed so as to overlap the outer edge of the first catalyst layer 2 and the outer peripheral edge portion of the first frame body 6. Further, the second gas seal member 13 is disposed so as to overlap the outer edge of the second catalyst layer 3 and the outer peripheral edge of the second frame 7.
  • the polymer electrolyte fuel cell 100 is manufactured by fastening. Since one polymer electrolyte fuel cell (cell) has a low electromotive force, it is preferable to stack a plurality of polymer electrolyte fuel cells (cells) and fasten them together to form a cell stack. Les.
  • the inner peripheral edges of the first frame body 6 and the second frame body 7 are the first gas diffusion layer 4 and the second gas diffusion layer 5 respectively.
  • the bump is absorbed.
  • the outer peripheral edge portions of the first frame body 6 and the second frame body 7 follow the steps formed between the outer edges of the first catalyst layer 2 and the second catalyst layer 3 and the polymer electrolyte membrane 1, respectively. Is transformed.
  • the step formed by the outer edge of the first catalyst layer 2 and the outer edge of the first frame 6 is absorbed by the first seal member 11.
  • the step formed by the outer edge of the second catalyst layer 3 and the outer edge of the second frame 7 is absorbed by the second seal member 13.
  • the membrane electrode assembly 10 and the polymer electrolyte fuel cell 100 of the present embodiment are configured as described above, the generated water generated by the reaction between the fuel gas and the oxidant gas is the first frame 6 Further, the polymer electrolyte membrane 1 can be reached through the first catalyst layer 2 and the second catalyst layer 3 without being blocked by the second frame 7. As a result, drying of the outer edge of the polymer electrolyte membrane 1 is suppressed, and thermal damage to the outer edge of the polymer electrolyte membrane 1 hardly occurs.
  • the membrane electrode assembly 10 of the present embodiment the outer peripheral edge portion of the first catalyst layer 2 protruding outside the first catalyst layer 2 is covered with the first frame body 6, and the first electrode A first gas seal member 11 is disposed on the frame 6. Therefore, the membrane electrode assembly 10 of the present embodiment is patented. Unlike the configuration of Document 1, there is no gap between the first gas diffusion electrode 8 and the first gas seal member 11. By arranging the first frame 6 as described above, it is possible to sufficiently prevent the reaction gas from directly flowing into the first catalyst layer 2 from between the first gas diffusion layer 4 and the first gas seal member 11. Therefore, also from this viewpoint, the outer peripheral edge of the polymer electrolyte membrane 1 is damaged by the heat of combustion reaction.
  • the membrane electrode assembly 10 of the present embodiment has no gap between the second gas diffusion electrode 9 and the second gas seal member 13.
  • first frame 6 and the first catalyst layer 2 are interposed between the first gas diffusion layer 4 and the first gas seal member 11 and the polymer electrolyte membrane 1, The outer end of the gas diffusion layer 4 and the inner end of the first gas seal member 11 are prevented from damaging the polymer electrolyte membrane 1.
  • second frame 7 and the second catalyst layer 3 are interposed between the second gas diffusion layer 5 and the second gas seal member 13 and the polymer electrolyte membrane 1, the second gas diffusion layer The outer end of 5 and the inner end of the second gas seal member 13 are prevented from damaging the polymer electrolyte membrane 1.
  • FIG. 2 is a cross-sectional view showing a configuration of a first modification of the membrane electrode assembly of the present invention and a polymer electrolyte fuel cell having the same, wherein (a) assembles the polymer electrolyte fuel cell.
  • Front cross-sectional view, (b) is a cross-sectional view after assembling the polymer electrolyte fuel cell
  • the frame is disposed on both the first gas diffusion electrode 8 side and the second gas diffusion electrode 9 side.
  • Gas diffusion electrode 8 side and second gas diffusion A frame 6 is disposed on one side of the electrode 9 side.
  • the gas diffusion electrode on which the frame body 6 is disposed is preferably an anode. That is, it is preferable that the frame 6 is disposed on the anode side.
  • Other configurations are the same as those of the membrane electrode assembly of the first embodiment.
  • the manufacturing method of the membrane electrode assembly 10 and the polymer electrolyte fuel cell 100 is the same as that in the first embodiment.
  • the internal pressure of the polymer electrolyte fuel cell 100 becomes negative due to the temperature drop after the polymer electrolyte fuel cell 100 is stopped. Then, regardless of whether or not the polymer electrolyte fuel cell 100 is purged, air enters the polymer electrolyte fuel cell 100 from the outside when the polymer electrolyte fuel cell 100 is stopped.
  • the force S can be used to suppress damage to the polymer electrolyte membrane 1 due to the combustion reaction between the air and fuel gas that has entered when the polymer electrolyte fuel cell 100 is stopped.
  • Air bleeding refers to mixing a small amount of air or the like into the fuel gas supplied to the anode side. If it does in this way, the mixed air and fuel gas will raise
  • FIG. 3 is a cross-sectional view showing a configuration of a membrane electrode assembly according to a second embodiment of the present invention and a polymer electrolyte fuel cell having the same, wherein (a) assembles a polymer electrolyte fuel cell.
  • the previous cross-sectional view and (b) are cross-sectional views after assembling the polymer electrolyte fuel cell.
  • the membrane electrode assembly and the polymer electrolyte fuel cell of this embodiment will be described with reference to FIG.
  • the inner peripheral edge portion of the second gas seal member 13 and the outer edge of the second gas diffusion layer 5 are in contact with each other.
  • Other configurations are the same as those of the membrane electrode assembly of the first embodiment described above.
  • the manufacturing method of the membrane electrode assembly 10 and the polymer electrolyte fuel cell 100 is the same as that of the first embodiment described above.
  • the membrane electrode assembly 10 and the polymer electrolyte fuel cell 100 of the present embodiment are configured as described above, the first electrode gas diffusion layer 4 and the first gas seal member 11 and the second gas diffusion layer 4 The reaction gas is prevented from entering from between the gas diffusion layer 5 and the second gas seal member 13. Thus, the reaction reaction of the reaction gas on the catalyst is suppressed, and the thermal damage of the polymer electrolyte membrane 1 is further less likely to occur.
  • FIG. 4 is a cross-sectional view showing a configuration of a second modification of the membrane electrode assembly of the present invention and a polymer electrolyte fuel cell including the membrane electrode assembly, wherein (a) assembles the polymer electrolyte fuel cell.
  • Front cross-sectional view, (b) is a cross-sectional view after assembling the polymer electrolyte fuel cell
  • the membrane / electrode assembly 10 of the present modification is the same as the membrane / electrode assembly of the second embodiment. Similarly, there are gaps between the inner peripheral edge of the first gas seal member 11 and the first gas diffusion layer 4 and between the inner peripheral edge of the second gas seal member 13 and the second gas diffusion layer 5. It is not done.
  • the frame body 6 is disposed on one side of the first gas diffusion electrode 8 side and the second gas diffusion electrode 9 side.
  • the gas diffusion electrode on which the frame 6 is disposed is preferably an anode. That is, it is preferable that the frame 6 is disposed on the anode side.
  • Other configurations are the same as those of the membrane-electrode assembly of the second embodiment.
  • the manufacturing method of the membrane electrode assembly 10 and the polymer electrolyte fuel cell 100 is the same as that of the first embodiment described above.
  • reaction gas is prevented from entering between the first gas diffusion layer 4 and the first gas seal member 11 and between the second gas diffusion layer 5 and the second gas seal member 13.
  • reaction reaction of the reaction gas on the catalyst is suppressed, and the thermal damage of the polymer electrolyte membrane 1 is further less likely to occur.
  • the membrane / electrode assembly and polymer electrolyte fuel cell of the present invention are useful as a membrane / electrode assembly and polymer electrolyte fuel cell capable of suppressing damage at the outer peripheral edge of the polymer electrolyte membrane.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の膜-電極接合体(10)は、ガス拡散性を有する第1ガス拡散層(4)と、第1ガス拡散層(4)と互いに積層されており第1ガス拡散層(4)の主面よりも大きな面積の主面を有しておりその外周縁部が前記第1ガス拡散層よりも外側にはみ出すように配置された第1触媒層(2)と、を含む平板状の第1ガス拡散電極(8)と、第1ガス拡散電極(8)に対向配置される平板状の第2ガス拡散電極(9)と、第1触媒層(2)と第2ガス拡散電極(9)との間に配置されており、第1触媒層(2)の主面以上の面積の主面を有する高分子電解質膜(1)と、第1触媒層(2)の第1ガス拡散層(4)側の主面の外周縁部に沿って延在し、かつ、その内周縁部が第1触媒層(2)と第1ガス拡散層(4)の外周縁部との間に挿入されるように配置された額縁状の第1枠体(6)と、第1枠体(6)の第1触媒層(2)から遠い方の主面の外周縁部に沿って延在し、かつ、第1ガス拡散層(4)の周囲であって当該第1ガス拡散層(4)に重ならないように配置された額縁状の第1ガスシール部材(13)と、を有している。

Description

明 細 書
膜一電極接合体、及びこれを備えた高分子電解質形燃料電池 技術分野
[0001] 本発明は、高分子電解質形燃料電池に用いる、高分子電解質膜を備えた膜ー電 極接合体及びこれを備えた高分子電解質形燃料電池に関し、特に、高分子電解質 膜の破損が防止可能な膜 電極接合体に関する。
背景技術
[0002] 従来、高分子電解質形燃料電池には、膜 電極接合体が用いられている。膜ー電 極接合体は、高分子電解質膜と、この高分子電解質膜の両側に配設された一対の 電極 (ガス拡散電極)とを備えている。ここで、高分子電解質膜の破損を防止する技 術として、特許文献 1に示すように、高分子電解質膜の周縁部分に密着して配され前 記電極に重なりを有する額縁状の保護膜を、前記高分子電解質膜の少なくとも一方 の主面側に備えるシール構造が開示されている。
特許文献 1 :特開平 5— 21077号公報
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、特許文献 1の構成においては、高分子電解質膜の外周縁部の破損 を十分に抑制することができな!/、と!/、う問題を有して!/、た。
[0004] 本発明は上記のような課題を解決するためになされたもので、高分子電解質膜の 外周縁部の破損が十分に抑制された膜 電極接合体、及びこれを備えた高分子電 解質形燃料電池を提供することを目的とする。
課題を解決するための手段
[0005] 本件発明者らは、上記課題を解決するため、鋭意検討した。
[0006] その結果、特許文献 1の構成においては、ガス拡散電極において、中央部に比較 して外周縁部の発熱による破損の進行が大きくなり、外周縁部付近の保護膜と高分 子電解質膜の破損が進行しやすくなつて、 V、まだ改善の余地があった。
[0007] すなわち、保護膜をガス拡散電極の周縁部に重なりを有するようにして高分子電解 質膜に配設した場合には、保護膜が存在するガス拡散電極の周縁部は、保護膜が 存在しない中央部に比較して、電池反応により生成した生成水が供給されにくい。そ のため、ガス拡散電極の周縁部は中央部に比べて乾燥しやすい。その結果、ガス拡 散電極の周縁部で、反応ガスの電気化学反応のほ力、に、反応ガスの触媒上での燃 焼反応(高分子電解質膜中をクロスオーバーして互いに交じり合う燃料ガスと酸化剤 ガスとの燃焼反応)が起こった場合、生成水が十分に存在するガス拡散電極の中央 部に比較して、燃焼反応による反応熱がガス拡散電極の周縁部付近の高分子電解 質膜に伝わりやすぐ高分子電解質膜の熱破損が起こりやすかつた。
[0008] 特に、特許文献 1の膜 電極接合体の場合、ガス拡散電極の外縁と、その周囲に 配設されるガスシール部材の内縁との間に隙間(特許文献 1、図 1中の隙間 8)が形 成されているため、この隙間を通る反応ガスによって、ガス拡散電極の周縁部での燃 焼反応の影響がより顕著になる傾向があると考えられる。
そこで、上記課題を解決するために、本発明の膜—電極接合体は、ガス拡散性を有 する第 1ガス拡散層と、前記第 1ガス拡散層と互レ、に積層されており前記第 1ガス拡 散層の主面よりも大きな面積の主面を有しておりその外周縁部が前記第 1ガス拡散 層よりも外側にはみ出すように配置された第 1触媒層と、を含む平板状の第 1ガス拡 散電極と、前記第 1ガス拡散電極に対向配置される平板状の第 2ガス拡散電極と、前 記第 1触媒層と前記第 2ガス拡散電極との間に配置されており、前記第 1触媒層の主 面以上の面積の主面を有する高分子電解質膜と、前記第 1触媒層の前記第 1ガス拡 散層側の主面の外周縁部に沿って延在し、かつ、その内周縁部が前記第 1触媒層と 第 1ガス拡散層の外周縁部との間に挿入されるように配置された額縁状の第 1枠体と 、前記第 1枠体の前記第 1触媒層から遠い方の主面の外周縁部に沿って延在し、か つ、前記第 1ガス拡散層の周囲であって当該第 1ガス拡散層に重ならないように配置 された額縁状の第 1ガスシール部材と、を有している(請求項 1)。
[0009] このような構成によれば、第 1触媒層全体が高分子電解質膜上に配置されているの で、第 1触媒層の外周縁部にも第 1触媒層の中央部と同等の量の反応生成水をレ、き わたらせること力 Sできる。このため、燃焼反応熱による高分子電解質膜の外周縁部の 破損が抑制される。 [0010] また、本発明の膜 電極接合体は、第 1触媒層から外にはみ出した第 1触媒層の 外周縁部が第 1枠体で覆われており、当該第 1枠体上にガスシール部材が配置され ている。そのため、本発明の膜 電極接合体は、特許文献 1の構成と異なり、第 1ガ ス拡散電極とガスシール部材との間には隙間がない。第 1枠体を上述のように配置 することにより、第 1ガス拡散層とガスシール部材との間から反応ガスが第 1触媒層に 直接流入することが十分に防がれるので、この観点からも燃焼反応熱による高分子 電解質膜の外周縁部の破損が起こりに《なる。
[0011] さらに、第 1ガス拡散層及び第 1ガスシール部材と高分子電解質膜との間に、第 1 枠体と第 1触媒層とが介在しているため、第 1ガス拡散層の外端及び第 1ガスシール 部材の内端とが高分子電解質膜を傷つけることが防止される。これにより、膜 電極 接合体をセパレータと共に締結する際に機械的ストレスによる高分子電解質膜の破 損がさらに抑制される。
[0012] 前記第 2ガス拡散電極の周囲に前記第 1ガスシール部材に対向するように配置さ れた額縁状の第 2ガスシール部材を更に有して!/、てもよ!/、(請求項 2)。
[0013] 前記第 2ガス拡散電極が、ガス拡散性を有する第 2ガス拡散層と、前記第 2ガス拡 散層と前記高分子電解質膜との間に配置された第 2触媒層と、を含むよう構成されて おり、前記第 2触媒層の厚み方向から見た場合、前記第 2触媒層の外縁が前記第 1 枠体の内縁と外縁との間に位置して!/、てもよ!/、(請求項 3)。
[0014] 前記第 2触媒層は、前記第 2ガス拡散層の主面よりも大きな主面を有しており、その 外周縁部が前記第 2ガス拡散層よりも外側にはみ出すように配置されていてもよい( 請求項 4)。
[0015] 前記第 2触媒層の前記第 2ガス拡散層側の主面の外周縁部に沿って延在し、かつ 、その内周縁部が前記第 2触媒層と第 2ガス拡散層の外周縁部との間に挿入される ように配置された額縁状の第 2枠体と、前記第 2枠体の前記第 2触媒層から遠い方の 主面の外周縁部に沿って延在し、かつ、前記第 2ガス拡散層の周囲であって当該第 2ガス拡散層に重ならないように配置された額縁状の第 2ガスシール部材と、を更に 有していてもよい(請求項 5)。
[0016] 前記第 1ガス拡散電極がアノードであると好ましい(請求項 6)。このようにアノード側 に本発明における上記構成を採用することにより、本発明の膜 電極接合体を用い た高分子電解質形燃料電池の運転方式として、いわゆる DSS運転のように発電の 停止と起動を繰り返す運転方式を採用する際に、発電停止から次の起動までの間に 力ソードの酸化剤ガス(例えば酸素)の一部が高分子電解質膜中をアノードへ移動し 、アノードにおいて触媒上で上述の燃焼反応が起こりうる状態になった場合でも、高 分子電解質膜の破損を十分に抑制できるようになる。また、アノード側をェアブリード する運転方式を採用し、触媒上での燃焼反応が起こりうる状態となる場合でも、ァノ 一ドに本発明における上記構成を採用することで、高分子電解質膜の破損を十分に 才卬制でさるようになる。
[0017] 前記高分子電解質膜の外周縁部が、前記第 1触媒層及び前記第 2ガス拡散電極 よりも外側にはみだして!/、てもよ!/ヽ (請求項 7)。
[0018] このような構成とすると、第 1枠体と第 1ガスシール部材とが高分子電解質膜の外周 縁部の上に配置されるので、セパレータで締結したときのガスシール性がさらに向上 する。また、第 2枠体と第 2シール部材とが高分子電解質膜の外周縁部の上に配置さ れるので、セパレータで締結したときのガスシール性がさらに向上する。
[0019] 前記第 1ガス拡散層の外縁と前記第 1ガスシール部材の内縁との間に隙間が設け られていてもよい(請求項 8)。
[0020] 前記第 2ガス拡散層の外縁と前記第 2ガスシール部材の内縁との間に隙間が設け られていてもよい(請求項 9)。
[0021] 前記第 1ガス拡散層の外縁と前記第 1ガスシール部材の内縁とが互いに重ならない ように接触して!/、てもよ!/ヽ(請求項 10)。
[0022] 前記第 2ガス拡散層の外縁と前記第 2ガスシール部材の内縁とが互いに重ならない ように接触して!/、てもよ!/ヽ (請求項 11 )。
[0023] 本発明の高分子電解質形燃料電池は、上記いずれかの膜 電極接合体と、前記 膜 電極接合体を挟むように互いに対向配置されており、前記膜 電極接合体へ 反応ガスを供給する反応ガス流路が形成されている一対のセパレータと、を有してい る(請求項 12)。
[0024] 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0025] 本発明の膜 電極接合体及び高分子電解質形燃料電池は、上記のような構成と したため、高分子電解質膜の外周縁部における破損が抑制されるという効果を奏す 図面の簡単な説明
[0026] [図 1]図 1は本発明の第 1実施形態の膜 電極接合体及びこれを備えた高分子電解 質形燃料電池の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組 み立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図で ある。
[図 2]図 2は本発明の膜 電極接合体及びこれを備えた高分子電解質形燃料電池 の第 1変形例の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組 み立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図で ある。
[図 3]図 3は本発明の第 2実施形態の膜 電極接合体及びこれを備えた高分子電解 質形燃料電池の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組 み立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図で ある。
[図 4]図 4は本発明の膜 電極接合体及びこれを備えた高分子電解質形燃料電池 の第 2変形例の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組 み立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図で ある。
符号の説明
[0027] 1 高分子電解質膜
2 第 1触媒層
3 第 2触媒層
4 第 1ガス拡散層
5 第 2ガス拡散層 7 第 2枠体
8 第 1ガス拡散電極
9 第 2ガス拡散電極
10 膜 電極接合体
11 第 1ガスシール部材
13 第 2ガスシール部材
15 第 1セパレータ
15a 反応ガス流路
17 第 2セパレータ
17a 反応ガス流路
21 , 23 隙間
100 高分子電解質形燃料電池
発明を実施するための最良の形態
[0028] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
[0029] (第 1実施形態)
図 1は、本発明の第 1実施形態の膜 電極接合体及びこれを備えた高分子電解質 形燃料電池の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組み 立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図であ る。以下、図 1を参照しながら、本実施形態の高分子電解質形燃料電池及び膜ー電 極接合体にっレ、て説明する。
[0030] 図 1 (a)、 (b)に示すように、本実施形態の高分子電解質形燃料電池 100は、第 1 セパレータ 15及び第 2セパレータ 17と、第 1ガスシール部材 11及び第 2ガスシール 部材 13と、膜 電極接合体 10と、を備えている。
[0031] 第 1セパレータ 15と第 2セパレータ 17とは、後述する膜—電極接合体 10を挟むよう に配設されている。第 1セパレータ 15及び第 2セパレータ 17は、平板状に形成され ている。第 1セパレータ 15及び第 2セパレータ 17には、膜—電極接合体 10に対向す る主面に反応ガス流路 15a, 17aが形成されている。なお、第 1セパレータ 15及び第 2セパレータ 17の反応ガス流路 15a, 17aが形成された主面の反対側の主面には、 冷却水流路(図示せず)が形成されて!、てもよ!/、。第 1セパレータ 15及び第 2セパレ ータ 17は、導電性の材料、例えば、黒鉛材料、金属材料等で構成されている。
[0032] 第 1セパレータ 15と第 2セパレータ 17との間には、膜—電極接合体 10が配設され る。膜 電極接合体 10は、高分子電解質膜 1と、この高分子電解質膜 1の両側の主 面に配設された第 1触媒層 2及び第 2触媒層 3と、第 1触媒層 2及び第 2触媒層 3にそ れぞれ積層された第 1ガス拡散層 4及び第 2ガス拡散層 5と、第 1触媒層 2と第 1ガス 拡散層 4との間及び第 2触媒層 3と第 2ガス拡散層 5との間にそれぞれ揷入された第 1 枠体 6及び第 2枠体 7と、を備えている。
[0033] 高分子電解質膜 1は、矩形のシート状に形成されている。高分子電解質膜 1は、本 実施形態では、その厚みが 30 mになるよう形成されている。なお、高分子電解質 膜 1の厚みは特に 30 mに限定されない。高分子電解質膜 1の厚みは、オーム損を 十分に低減する観点と十分な機械的強度を確保する観点から、 20 m〜50 mで あること力 S好ましい。高分子電解質膜 1は、プロトン伝導性を有している。高分子電解 質膜 1としては、陽イオン交換基として、スルホン酸基、カルボン酸基、ホスホン酸基、 及びスルホンイミド基を有するものが好ましくあげられる。プロトン伝導性の観点から、 高分子電解質膜 1はスルホン酸基を有するものがより好ましぐ CF = CF— (OCF C FX) O — (CF ) — SO Hで表されるパーフルォロビニル化合物(mは 0〜3の整数 m p 2 n 3
を示し、 nは 1〜; 12の整数を示し、 pは 0または 1を示し、 Xはフッ素原子またはトリフル ォロメチル基を示す)に基づく繰返し単位と、 CF = CFで表されるテトラフルォロェ チレンに基づく繰返し単位と、を含むパーフルォロカーボン共重合体を構成材料とな る高分子電解質として含む膜であることが特に好ましい。高分子電解質膜 1としては 、本実施形態では、 Nafion膜 (登録商標;米国 DuPont社製)が用いられる。
[0034] 高分子電解質膜 1の両方の主面には、第 1触媒層 2及び第 2触媒層 3が形成されて いる。第 1触媒層 2及び第 2触媒層 3は、その主面の面積が高分子電解質膜 1の主面 の面積よりも小さくなるよう形成されている。具体的には、第 1触媒層 2及び第 2触媒 層 3が高分子電解質膜 1に配設された状態において、高分子電解質膜 1と第 1触媒 層 2及び第 2触媒層 3とが重なっていない部分である高分子電解質膜 1の外周縁部 が平面視において矩形の環状 (額縁状)になるよう形成されている。換言すると、第 1 触媒層 2の外周縁部が、後述する第 1ガス拡散層 4の外周縁部の外側にはみ出した 構成となっている。また、第 2触媒層 3の外周縁部が、後述する第 2ガス拡散層 5の外 周縁部の外側にはみ出した構成となっている。第 1触媒層 2の構成及び第 2触媒層 3 の構成としては、電極触媒が担持された導電性炭素粒子と、陽イオン (水素イオン) 伝導性を有する高分子電解質とを含む構成を有していてもよぐ更に、ポリテトラフル ォロエチレンなどの撥水材料を更に含む構成を有していてもよい。なお、高分子電解 質としては、上述した高分子電解質膜 1の構成材料と同種のものを使用してもよく異 なる種類のものを使用してもよい。高分子電解質としては、高分子電解質膜 1の構成 材料として記載したものを使用すること力 Sできる。電極触媒は、金属粒子(例えば貴 金属からなる金属粒子)からなり、導電性炭素粒子(粉末)に担持されて用いられる。 当該金属粒子は、特に限定されず種々の金属を使用することができる力 電極反応 活性の観点から、白金、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジ ゥム、クロム、鉄、チタン、マンガン、コバルト、ニッケル、モリブデン、タングステン、ァ ノレミニゥム、ケィ素、亜鉛及びスズからなる群より選択される少なくとも 1種であることが 好ましい。な力、でも、白金及び白金との合金が好ましぐ白金とルテニウムの合金が、 アノードにおレ、ては触媒の活性が安定することから特に好まし!/、。
[0035] 第 1触媒層 2の高分子電解質膜 1から遠い方の主面には、第 1ガス拡散層 4が配設 されている。第 2触媒層 3の高分子電解質膜 1から遠い方の主面には、第 2ガス拡散 層 5が配設されている。第 1ガス拡散層 4の主面の面積は、後述する第 1枠体 6の内 周縁部の面積よりも大きぐかつ、第 1触媒層 2の主面の面積よりも小さくなるよう形成 されている。第 2ガス拡散層 5の主面の面積は、後述する第 2枠体 7の内周縁部の面 積よりも大きく、かつ、第 2触媒層 3の主面の面積よりも小さくなるよう形成されている。
[0036] 第 1ガス拡散層 4及び第 2ガス拡散層 5は、本実施形態では、その厚みが 300 m になるよう形成されている。なお、第 1ガス拡散層 4及び第 2ガス拡散層 5の厚みは特 に 300 mに限定されない。第 1ガス拡散層 4及び第 2ガス拡散層 5の厚みは、ォー ム損を十分に低減する観点と十分な機械的強度を確保する観点から、 ΙΟΟ m〜4 00 であることが好ましい。第 1ガス拡散層 4及び第 2ガス拡散層 5は、カーボン織 布、カーボン不織布、カーボンペーパー、カーボン粉末シート等で構成されている。 第 1触媒層 2と第 1ガス拡散層 4とは、互いに積層されることによって平板状の第 1ガス 拡散電極 8を構成している。また、第 2触媒層 3と第 2ガス拡散層 5とは、互いに積層さ れることによって平板状の第 2ガス拡散電極 9を構成している。力、くして、第 1ガス拡散 電極 8と第 2ガス拡散電極 9とは、高分子電解質膜 1を挟んで対向するように配置され ている。
[0037] 第 1触媒層 2の高分子電解質膜 1から遠い方の主面の外周縁部と、第 1ガス拡散層 4の高分子電解質膜 1に近い方の主面の外周縁部との間には、第 1枠体 6が配設さ れている。第 1枠体 6は、矩形の環状 (額縁状)に形成されていて、第 1触媒層 2の第 1ガス拡散層 4側の主面にその外周縁部に沿って延在し、かつ、その内周縁部が第 1 触媒層 2と第 1ガス拡散層 4の外周縁部との間に挿入されるように配置されている。第 2触媒層 3の高分子電解質膜 1から遠い方の主面の外周縁部と、第 2ガス拡散層 5の 高分子電解質膜 1に近い方の主面の外周縁部との間には、第 2枠体 7が配設されて いる。第 2枠体 7は、矩形の環状 (額縁状)に形成されていて、第 2触媒層 3の第 2ガス 拡散層 5側の主面にその外周縁部に沿って延在し、かつ、その内周縁部が第 2触媒 層 3と第 2ガス拡散層 5の外周縁部との間に挿入されるように配置されている。第 1枠 体 6及び第 2枠体 7は、それぞれ、第 1触媒層 2及び第 2触媒層 3の外周からはみ出 すよう形成されている。
[0038] 第 1枠体 6及び第 2枠体 7は、本実施形態では、その厚みが 15 mになるよう形成 されている。なお、第 1枠体 6及び第 2枠体 7の厚みは特に 15 mに限定されない。 第 1枠体 6及び第 2枠体 7の厚みは、本発明の効果をより確実に得る観点から、 δ μ ΐη 〜50 111であることが好ましい。第 1枠体 6及び第 2枠体 7を構成する材料は、ポリエ チレンナフタレート、ポリテトラフルォロエチレン、ポリエチレンテレフタレート、フルォ 口エチレン プロピレン共重合体、テトラフルォロエチレン パーフルォロアルコキシ エチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルィ ミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフエ二レンスルフイド、 ポリアリレート、ポリスルフイド、ポリイミド、及び、ポリイミドアミドからなる群より選択され る少なくとも 1種の合成樹脂であることが好ましい。 [0039] 第 1セパレータ 15及び第 2セパレータ 17と膜—電極接合体 10との間には、第 1ガ スシール部材 11及び第 2ガスシール部材 13が配設されて!/、る。第 1ガスシール部材 11は、第 1枠体 6の第 1触媒層 2から遠い方の主面の外周縁部に沿って延在し、かつ 、第 1ガス拡散層 4の周囲であって第 1ガス拡散層 4に重ならないように配置されてい る。第 2ガスシール部材 13は、第 2枠体 7の第 2触媒層 3から遠い方の主面の外周縁 部に沿って延在し、かつ、第 2ガス拡散層 5の周囲であって第 2ガス拡散層 5に重なら ないように配置されている。第 1ガスシール部材 11及び第 2ガスシール部材 13は、額 縁状、すなわち、矩形の環状に形成されている。第 1ガスシール部材 11の内周縁部 と、第 1ガス拡散層 4の外縁との間には、所定の間隔の隙間 21が設けられている。第 2ガスシール部材 13の内周縁部と、第 2ガス拡散層 5の外縁との間には、所定の間隔 の隙間 23が設けられている。第 1ガスシール部材 11及び第 2ガスシール部材 13は、 フッ素ゴム、シリコンゴム、天然ゴム、エチレン一プロピレンゴム(EPDM)、ブチルゴ ム、塩化ブチルゴム、臭化ブチルゴム、ブタジエンゴム、スチレン ブタジエン共重合 体、エチレン 酢酸ビュルゴム、アクリルゴム、ポリイソプロピレンポリマー、ノ ーフノレ ォロカーボン、熱可塑性エラストマ一(ポリスチレン系エラストマ一、ポリオレフイン系ェ ラストマー、ポリエステル系エラストマ一、ポリアミド系エラストマ一など)、ラテックス(ィ ソプレンゴム、ブタジエンゴムなど)を用いた接着剤、液状の接着剤(ポリブタジエン、 ポリイソプレン、ポリクロ口プレン、シリコンゴム、フッ素ゴム、アタリロニトリノレーブタジェ ンゴムなどを用いた接着剤)等で構成されて!/、る。
[0040] 次に、本実施形態の膜 電極接合体 10及びこれを備えた高分子電解質形燃料電 池 100の製造方法について、簡単に説明する。
[0041] 高分子電解質膜 1の一方の主面に、第 1触媒層 2が塗布される。第 1触媒層 2は、 高分子電解質膜 1の外周縁部が矩形状に残存するようにして塗布される。次に、第 1 触媒層 2の外縁にその内周縁部が重なるようにして第 1枠体 6を配置する。そして、第 1枠体 6の内周縁部に重なるようにして第 1ガス拡散層 4を配置する。
[0042] 次に、上記と同様にして、高分子電解質膜 1の他方の主面に、第 2触媒層 3を塗布 し、第 2枠体 7及び第 2ガス拡散層 5を配置する。
[0043] すなわち、高分子電解質膜 1の他方の主面に、第 2触媒層 3が塗布される。第 2触 媒層 3は、高分子電解質膜 1の外周縁部が矩形状に残存するようにして塗布される。 次に、第 2触媒層 3の外縁にその内周縁部が重なるようにして第 2枠体 7を配置する。 そして、第 2枠体 7の内周縁部に重なるようにして第 2ガス拡散層 5を配置する。
[0044] 上記のように配置されたものを熱圧加工することにより、膜 電極接合体 10が形成 される。
[0045] 次に、第 1触媒層 2の外縁及び第 1枠体 6の外周縁部に重なるようにして第 1ガスシ 一ル部材 11を配置する。また、第 2触媒層 3の外縁及び第 2枠体 7の外周縁部に重 なるようにして第 2ガスシール部材 13を配置する。
[0046] そして、図 1 (b)に示すように、膜 電極接合体 10と、第 1ガスシール部材 11及び 第 2ガスシール部材 13と、第 1セパレータ 15及び第 2セパレータ 17とを積層し、締結 することにより高分子電解質形燃料電池 100を製造する。なお、ひとつの高分子電 解質形燃料電池 (セル)は起電力が小さいため、複数個の高分子電解質形燃料電 池(セル)を積層し、締結してセルスタックとすることが好ましレ、。
[0047] なお、高分子電解質形燃料電池 100を締結した場合において、第 1枠体 6及び第 2枠体 7の内周縁部は、それぞれ、第 1ガス拡散層 4及び第 2ガス拡散層 5により、そ の隆起が吸収される。また、第 1枠体 6及び第 2枠体 7の外周縁部が、それぞれ、第 1 触媒層 2及び第 2触媒層 3の外縁と高分子電解質膜 1との間に形成される段差に沿 つて変形される。第 1触媒層 2の外縁及び第 1枠体 6の外縁により形成された段差は 、第 1シール部材 11によって吸収される。第 2触媒層 3の外縁及び第 2枠体 7の外縁 により形成された段差は、第 2シール部材 13によって吸収される。
[0048] 本実施形態の膜 電極接合体 10及び高分子電解質形燃料電池 100は、上記の ような構成としたため、燃料ガスと酸化剤ガスとの反応により生成した生成水が第 1枠 体 6及び第 2枠体 7に遮断されることなく第 1触媒層 2及び第 2触媒層 3を通って高分 子電解質膜 1に到達することができる。これにより、高分子電解質膜 1の外縁の乾燥 が抑制され、高分子電解質膜 1の外縁の熱破損が起こりにくくなる。
[0049] また、本実施形態の膜 電極接合体 10は、第 1触媒層 2から外にはみ出した第 1 触媒層 2の外周縁部が第 1枠体 6で覆われており、当該第 1枠体 6上に第 1ガスシー ル部材 11が配置されている。そのため、本実施形態の膜 電極接合体 10は、特許 文献 1の構成と異なり、第 1ガス拡散電極 8と第 1ガスシール部材 11との間には隙間 がない。第 1枠体 6を上述のように配置することにより、第 1ガス拡散層 4と第 1ガスシ 一ル部材 11との間から反応ガスが第 1触媒層 2に直接流入することが十分に防がれ るので、この観点からも燃焼反応熱による高分子電解質膜 1の外周縁部の破損が起 こりに《なる。
[0050] 同様に、本実施形態の膜 電極接合体 10は、第 2触媒層 3から外にはみ出した第 2触媒層 3の外周縁部が第 2枠体 7で覆われており、当該第 2枠体 7上に第 2ガスシー ル部材 13が配置されている。そのため、本実施形態の膜 電極接合体 10は、特許 文献 1の構成と異なり、第 2ガス拡散電極 9と第 2ガスシール部材 13との間には隙間 がない。第 2枠体 7を上述のように配置することにより、第 2ガス拡散層 5と第 2ガスシ 一ル部材 13との間から反応ガスが第 2触媒層 3に直接流入することが十分に防がれ るので、この観点からも燃焼反応熱による高分子電解質膜 1の外周縁部の破損が起 こりに《なる。
[0051] さらに、第 1ガス拡散層 4及び第 1ガスシール部材 11と高分子電解質膜 1との間に、 第 1枠体 6と第 1触媒層 2とが介在しているため、第 1ガス拡散層 4の外端及び第 1ガ スシール部材 11の内端とが高分子電解質膜 1を傷つけることが防止される。また、第 2ガス拡散層 5及び第 2ガスシール部材 13と高分子電解質膜 1との間に、第 2枠体 7 と第 2触媒層 3とが介在しているため、第 2ガス拡散層 5の外端及び第 2ガスシール部 材 13の内端とが高分子電解質膜 1を傷つけることが防止される。これにより、膜一電 極接合体 10をセパレータ 15, 17と共に締結する際に機械的ストレスによる高分子電 解質膜 1の破損がさらに抑制される。
[0052] [第 1変形例] (第 1実施形態の変形例)
図 2は、本発明の膜 電極接合体及びこれを備えた高分子電解質形燃料電池の 第 1変形例の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組み 立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図であ
[0053] 上記の第 1実施形態にお!/、ては、第 1ガス拡散電極 8側及び第 2ガス拡散電極 9側 の双方に枠体が配設されたが、本変形例では第 1ガス拡散電極 8側と第 2ガス拡散 電極 9側とのうちの一方の側に枠体 6が配設されている。この場合においては、枠体 6が配設されるガス拡散電極がアノードであることが好ましい。すなわち、アノード側 に枠体 6が配設されることが好ましい。それ以外の構成は、第 1実施形態の膜 電極 接合体と同様である。また、膜 電極接合体 10及び高分子電解質形燃料電池 100 の製造方法については、第 1実施形態の場合と同様である。
[0054] このような構成とすると、高分子電解質形燃料電池 100を停止する際に、高分子電 解質膜 1の破損がさらに抑制される。また、アノード側をェアブリードする際にも、高 分子電解質膜 1の破損がさらに抑制される。以下、その理由を説明する。
[0055] まず、高分子電解質形燃料電池 100を停止する場合について説明する。
[0056] 高分子電解質形燃料電池 100を停止する場合にお!/、て、パージを行わな!/、場合 には、アノード側に燃料ガスを封止し、力ソード側に酸化剤ガスを封止することになる 。この場合には、高分子電解質形燃料電池 100の停止中においても、高分子電解 質膜 1を透過した燃料ガス及び酸化剤ガスにより燃焼反応が起こり、高分子電解質 形燃料電池 100の内部が負圧になる。一方、高分子電解質形燃料電池 100を停止 する場合において、アノード側及び力ソード側を原料ガス(例えば、燃料ガスに改質 する前の都市ガス)でパージすることがある。この場合には、高分子電解質形燃料電 池 100を停止した後の温度低下により、高分子電解質形燃料電池 100の内部が負 圧になる。そうすると、高分子電解質形燃料電池 100をパージするか否かにかかわら ず、高分子電解質形燃料電池 100を停止する場合において、外部から高分子電解 質形燃料電池 100の内部に空気が侵入する。この状態で高分子電解質形燃料電池 100を起動すると、アノード側に侵入した空気と供給された燃料ガスとが燃焼反応を 起こす。したがって、上記のような構成とすると、高分子電解質形燃料電池 100の停 止時に侵入した空気と燃料ガスとの燃焼反応による高分子電解質膜 1の破損を抑制 すること力 Sでさる。
[0057] 次に、アノード側にエアブリードする場合について説明する。
[0058] エアブリードとは、アノード側に供給される燃料ガスに少量の空気等を混入させるこ とをいう。このようにすると、混入された空気と燃料ガスとが燃焼反応を起こす。したが つて、上記のような構成とすると、エアブリードによる空気と燃料ガスとの燃焼反応に よる高分子電解質膜 1の破損を抑制することができる。
[0059] (第 2実施形態)
図 3は、本発明の第 2実施形態の膜 電極接合体及びこれを備えた高分子電解質 形燃料電池の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組み 立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図であ る。以下、図 3を参照しながら、本実施形態の膜 電極接合体及び高分子電解質形 燃料電池につ!/、て説明する。
[0060] 前述の第 1実施形態の膜-電極接合体 10においては、第 1ガスシール部材 11の 内周縁部と第 1ガス拡散層 4との間、及び第 2ガスシール部材 13の内周縁部と第 2ガ ス拡散層 5との間には、それぞれ、所定の間隔の隙間 21 , 23が設けられていた。本 実施形態の膜 電極接合体 10においては、第 1ガスシール部材 11の内周縁部と第 1ガス拡散層 4との間、及び第 2ガスシール部材 13の内周縁部と第 2ガス拡散層 5と の間に隙間が設けられていない。すなわち、第 1ガスシール部材 11の内周縁部と、 第 1ガス拡散層 4の外縁とが接触している。また、第 2ガスシール部材 13の内周縁部 と、第 2ガス拡散層 5の外縁とが接触している。それ以外の構成は前述の第 1実施形 態の膜 電極接合体と同様である。また、膜 電極接合体 10及び高分子電解質形 燃料電池 100の製造方法については、前述の第 1実施形態の場合と同様である。
[0061] 本実施形態の膜 電極接合体 10及び高分子電解質形燃料電池 100は、上記の ような構成としたため、第 1ガス拡散層 4と第 1ガスシール部材 11との間、及び第 2ガ ス拡散層 5と第 2ガスシール部材 13との間から反応ガスが入り込むことが防止される。 これにより、反応ガスが触媒上で燃焼反応することが抑制され、高分子電解質膜 1の 熱破損がさらに起こりにくくなる。
[0062] [第 2変形例] (第 2実施形態の変形例)
図 4は、本発明の膜 電極接合体及びこれを備えた高分子電解質形燃料電池の 第 2変形例の構成を示す断面図であって、 (a)は高分子電解質形燃料電池を組み 立てる前の断面図、(b)は高分子電解質形燃料電池を組み立てた後の断面図であ
[0063] 本変形例の膜 電極接合体 10においては、第 2実施形態の膜 電極接合体と同 様に、第 1ガスシール部材 11の内周縁部と第 1ガス拡散層 4との間、及び第 2ガスシ 一ル部材 13の内周縁部と第 2ガス拡散層 5との間に隙間が設けられていない。そし て、本変形例の膜 電極接合体 10においては、第 1ガス拡散電極 8側と第 2ガス拡 散電極 9側とのうちの一方の側に枠体 6が配設されている。この場合においては、枠 体 6が配設されるガス拡散電極がアノードであることが好ましい。すなわち、アノード 側に枠体 6が配設されることが好ましい。それ以外の構成は、第 2実施形態の膜ー電 極接合体と同様である。また、膜 電極接合体 10及び高分子電解質形燃料電池 10 0の製造方法については、前述の第 1実施形態の場合と同様である。
[0064] このような構成とすると、高分子電解質形燃料電池 100を停止する際に、高分子電 解質膜 1の破損が抑制される。また、アノード側をェアブリードする際にも、高分子電 解質膜 1の破損が抑制される。
[0065] また、第 1ガス拡散層 4と第 1ガスシール部材 11との間、及び第 2ガス拡散層 5と第 2 ガスシール部材 13との間から反応ガスが入り込むことが防止される。これにより、反応 ガスが触媒上で燃焼反応することが抑制され、高分子電解質膜 1の熱破損がさらに 起こりにくくなる。
[0066] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び/又は機能の詳細を実質的に変更できる。
産業上の利用可能性
[0067] 本発明の膜 電極接合体及び高分子電解質形燃料電池は、高分子電解質膜の 外周縁部における破損が抑制可能な膜 電極接合体及び高分子電解質形燃料電 池として有用である。

Claims

請求の範囲
[1] ガス拡散性を有する第 1ガス拡散層と、前記第 1ガス拡散層と互いに積層されてお り前記第 1ガス拡散層の主面よりも大きな面積の主面を有しておりその外周縁部が前 記第 1ガス拡散層よりも外側にはみ出すように配置された第 1触媒層と、を含む平板 状の第 1ガス拡散電極と、
前記第 1ガス拡散電極に対向配置される平板状の第 2ガス拡散電極と、 前記第 1触媒層と前記第 2ガス拡散電極との間に配置されており、前記第 1触媒層 の主面以上の面積の主面を有する高分子電解質膜と、
前記第 1触媒層の前記第 1ガス拡散層側の主面の外周縁部に沿って延在し、かつ 、その内周縁部が前記第 1触媒層と第 1ガス拡散層の外周縁部との間に挿入される ように配置された額縁状の第 1枠体と、
前記第 1枠体の前記第 1触媒層から遠い方の主面の外周縁部に沿って延在し、か つ、前記第 1ガス拡散層の周囲であって当該第 1ガス拡散層に重ならないように配置 された額縁状の第 1ガスシール部材と、
を有している、膜 電極接合体。
[2] 前記第 2ガス拡散電極の周囲に前記第 1ガスシール部材に対向するように配置さ れた額縁状の第 2ガスシール部材を更に有している、
請求項 1に記載の膜 電極接合体。
[3] 前記第 2ガス拡散電極が、ガス拡散性を有する第 2ガス拡散層と、前記第 2ガス拡 散層と前記高分子電解質膜との間に配置された第 2触媒層と、を含むよう構成されて おり、
前記第 2触媒層の厚み方向から見た場合、前記第 2触媒層の外縁が前記第 1枠体 の内縁と外縁との間に位置している、
請求項 1に記載の膜 電極接合体。
[4] 前記第 2触媒層は、前記第 2ガス拡散層の主面よりも大きな主面を有しており、その 外周縁部が前記第 2ガス拡散層よりも外側にはみ出すように配置されている、請求項
3に記載の膜 電極接合体。
[5] 前記第 2触媒層の前記第 2ガス拡散層側の主面の外周縁部に沿って延在し、かつ 、その内周縁部が前記第 2触媒層と第 2ガス拡散層の外周縁部との間に挿入される ように配置された額縁状の第 2枠体と、
前記第 2枠体の前記第 2触媒層から遠い方の主面の外周縁部に沿って延在し、か つ、前記第 2ガス拡散層の周囲であって当該第 2ガス拡散層に重ならないように配置 された額縁状の第 2ガスシール部材と、
を更に有している、請求項 4に記載の膜 電極接合体。
[6] 前記第 1ガス拡散電極がアノードである、請求項 1に記載の膜 電極接合体。
[7] 前記高分子電解質膜の外周縁部が、前記第 1触媒層及び前記第 2ガス拡散電極 よりも外側にはみだしている、請求項 1〜6のうちのいずれ力、 1項に記載の膜 電極 接合体。
[8] 前記第 1ガス拡散層の外縁と前記第 1ガスシール部材の内縁との間に隙間が設け られている、請求項 1〜7のうちのいずれ力、 1項に記載の膜 電極接合体。
[9] 前記第 2ガス拡散層の外縁と前記第 2ガスシール部材の内縁との間に隙間が設け られている、請求項 2〜8のうちのいずれか 1項に記載の膜 電極接合体。
[10] 前記第 1ガス拡散層の外縁と前記第 1ガスシール部材の内縁とが互いに重ならない ように接触している、請求項 1〜7のうちのいずれ力、 1項に記載の膜 電極接合体。
[11] 前記第 2ガス拡散層の外縁と前記第 2ガスシール部材の内縁とが互いに重ならない ように接触している、請求項 2〜8のうちのいずれ力、 1項に記載の膜 電極接合体。
[12] 請求項;!〜 11のうちの何れか 1項に記載の膜 電極接合体と、
前記膜 電極接合体を挟むように互いに対向配置されており、前記膜 電極接合 体へ反応ガスを供給する反応ガス流路が形成されている一対のセパレータと、 を有している、高分子電解質形燃料電池。
PCT/JP2007/073600 2006-12-07 2007-12-06 膜-電極接合体、及びこれを備えた高分子電解質形燃料電池 WO2008072550A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006330542A JP2008146915A (ja) 2006-12-07 2006-12-07 膜−電極接合体、及びこれを備えた高分子電解質形燃料電池
JP2006-330542 2006-12-07

Publications (1)

Publication Number Publication Date
WO2008072550A1 true WO2008072550A1 (ja) 2008-06-19

Family

ID=39511570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073600 WO2008072550A1 (ja) 2006-12-07 2007-12-06 膜-電極接合体、及びこれを備えた高分子電解質形燃料電池

Country Status (2)

Country Link
JP (1) JP2008146915A (ja)
WO (1) WO2008072550A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028852A (ja) * 2009-07-21 2011-02-10 Dainippon Printing Co Ltd エッジシール付き触媒層−電解質膜積層体、電極−電解質膜接合体、固体高分子形燃料電池、及びこれらの製造方法
WO2012080245A1 (de) * 2010-12-16 2012-06-21 FuMA-Tech Gesellschaft für funktionelle Membranen und Anlagentechnologie mbH Membran-elektroden-anordnung mit zwei deckschichten
EP2744027A1 (en) * 2011-08-10 2014-06-18 Panasonic Corporation Fuel cell
EP2873106A4 (en) * 2012-07-10 2016-02-24 Audi Ag FUEL CELL ELECTRODE ASSEMBLY
JP2019140028A (ja) * 2018-02-14 2019-08-22 Nok株式会社 ガス拡散層一体ガスケット及び燃料電池セル用部材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512907B2 (en) 2007-09-27 2013-08-20 Dai Nippon Printing Co., Ltd. Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP2010170892A (ja) * 2009-01-23 2010-08-05 Panasonic Corp 燃料電池
JP5778044B2 (ja) * 2012-01-13 2015-09-16 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521077A (ja) * 1991-07-17 1993-01-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のシ−ル構造
JPH05242897A (ja) * 1992-02-26 1993-09-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH07220742A (ja) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池及び該燃料電池の電極−イオン交換膜接合体の製造方法
JPH10154521A (ja) * 1996-09-24 1998-06-09 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JPH10172587A (ja) * 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2003082488A (ja) * 2001-09-10 2003-03-19 Fuji Electric Co Ltd 膜電極接合体とその製造方法
WO2005035247A2 (en) * 2003-08-29 2005-04-21 E.I. Dupont De Nemours And Company Unitized membrane electrode assembly and process for its preparation
WO2005081343A1 (ja) * 2004-02-24 2005-09-01 Nissan Motor Co., Ltd. 燃料電池用の、固体高分子電解質膜およびセパレータ
WO2006137203A1 (ja) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 膜-電極接合体製造方法
JP2007042348A (ja) * 2005-08-02 2007-02-15 Nissan Motor Co Ltd 膜電極接合体及びその製造方法
WO2007032442A1 (ja) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521077A (ja) * 1991-07-17 1993-01-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のシ−ル構造
JPH05242897A (ja) * 1992-02-26 1993-09-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH07220742A (ja) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池及び該燃料電池の電極−イオン交換膜接合体の製造方法
JPH10154521A (ja) * 1996-09-24 1998-06-09 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JPH10172587A (ja) * 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2003082488A (ja) * 2001-09-10 2003-03-19 Fuji Electric Co Ltd 膜電極接合体とその製造方法
WO2005035247A2 (en) * 2003-08-29 2005-04-21 E.I. Dupont De Nemours And Company Unitized membrane electrode assembly and process for its preparation
WO2005081343A1 (ja) * 2004-02-24 2005-09-01 Nissan Motor Co., Ltd. 燃料電池用の、固体高分子電解質膜およびセパレータ
WO2006137203A1 (ja) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 膜-電極接合体製造方法
JP2007042348A (ja) * 2005-08-02 2007-02-15 Nissan Motor Co Ltd 膜電極接合体及びその製造方法
WO2007032442A1 (ja) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028852A (ja) * 2009-07-21 2011-02-10 Dainippon Printing Co Ltd エッジシール付き触媒層−電解質膜積層体、電極−電解質膜接合体、固体高分子形燃料電池、及びこれらの製造方法
WO2012080245A1 (de) * 2010-12-16 2012-06-21 FuMA-Tech Gesellschaft für funktionelle Membranen und Anlagentechnologie mbH Membran-elektroden-anordnung mit zwei deckschichten
EP2744027A1 (en) * 2011-08-10 2014-06-18 Panasonic Corporation Fuel cell
EP2744027A4 (en) * 2011-08-10 2015-01-07 Panasonic Corp FUEL CELL
US9196910B2 (en) 2011-08-10 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Fuel cell
EP2873106A4 (en) * 2012-07-10 2016-02-24 Audi Ag FUEL CELL ELECTRODE ASSEMBLY
US10205186B2 (en) 2012-07-10 2019-02-12 Audi Ag Fuel cell electrode assembly
JP2019140028A (ja) * 2018-02-14 2019-08-22 Nok株式会社 ガス拡散層一体ガスケット及び燃料電池セル用部材
JP7053298B2 (ja) 2018-02-14 2022-04-12 Nok株式会社 ガス拡散層一体ガスケット及び燃料電池セル用部材

Also Published As

Publication number Publication date
JP2008146915A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5124273B2 (ja) メンブラン電極アセンブリー
WO2008072550A1 (ja) 膜-電極接合体、及びこれを備えた高分子電解質形燃料電池
JP2007109576A (ja) 膜電極接合体および固体高分子形燃料電池
US9496562B2 (en) Electrode assembly for solid polymer fuel cell
JPWO2011013313A1 (ja) 高分子型燃料電池スタック
JP2003068318A (ja) 固体高分子型燃料電池のセル及び固体高分子型燃料電池
JP2008508679A (ja) 端部が保護された触媒被覆した拡散媒体と膜電極集成体
JP2019153585A (ja) 枠付き電解質膜・電極構造体及びその製造方法並びに燃料電池
JP2008171613A (ja) 燃料電池
JP5095190B2 (ja) 膜−電極接合体、及びこれを備えた高分子電解質形燃料電池
JP2008300131A (ja) 燃料電池スタック
WO2007032442A1 (ja) 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
JP5132203B2 (ja) 燃料電池、膜−電極接合体、及び膜−触媒層接合体
JP2007109644A (ja) 膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子電解質形燃料電池
JP3816369B2 (ja) 電解質膜・電極構造体及び燃料電池
JP2013012324A (ja) 燃料電池
JP5101185B2 (ja) 膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子電解質形燃料電池
JP2010003470A (ja) 燃料電池
JP4028352B2 (ja) 電解質膜・電極構造体
JP2010015939A (ja) 燃料電池
JP2008243799A (ja) 燃料電池
JP7307109B2 (ja) ガス拡散層付膜電極接合体およびその製造方法
US20230411660A1 (en) Membrane electrode assembly combined roll, membrane electrode assembly, and polymer electrolyte fuel cell
JP2009277465A (ja) 高分子電解質形燃料電池スタック
JP2010108803A (ja) 膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子電解質形燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850209

Country of ref document: EP

Kind code of ref document: A1