WO2007032442A1 - 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池 - Google Patents

膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池 Download PDF

Info

Publication number
WO2007032442A1
WO2007032442A1 PCT/JP2006/318281 JP2006318281W WO2007032442A1 WO 2007032442 A1 WO2007032442 A1 WO 2007032442A1 JP 2006318281 W JP2006318281 W JP 2006318281W WO 2007032442 A1 WO2007032442 A1 WO 2007032442A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
reinforcing member
polymer electrolyte
catalyst layer
main surface
Prior art date
Application number
PCT/JP2006/318281
Other languages
English (en)
French (fr)
Inventor
Takeou Okanishi
Yoshihiro Hori
Kazuhito Hatoh
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/067,130 priority Critical patent/US8663872B2/en
Priority to CN2006800341620A priority patent/CN101268575B/zh
Publication of WO2007032442A1 publication Critical patent/WO2007032442A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • Membrane-membrane reinforcing member assembly membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
  • the present invention relates to a membrane / membrane reinforcing member assembly, a membrane / catalyst layer assembly, a membrane / electrode assembly, a polymer fuel cell, and methods for producing them.
  • a polymer electrolyte fuel cell is an electrochemical reaction between a fuel gas such as hydrogen and an acid gas such as air using a gas diffusion layer electrode having a catalyst layer such as platinum. Are generated simultaneously.
  • the structure is a mixture of a carbon powder carrying a platinum-based metal catalyst on both sides of a polymer electrolyte membrane that selectively transports hydrogen ions, and a mixture of a hydrogen ion conductive polymer electrolyte.
  • a catalyst layer is formed.
  • a gas diffusion layer is formed on the outer surface of the catalyst layer with carbon paper that has both air permeability and electronic conductivity, for example, water repellent treatment.
  • the catalyst layer and the gas diffusion layer are collectively referred to as a gas diffusion electrode.
  • a gas sealant is sandwiched around the electrode so that the fuel gas for supplying the fuel does not leak to the outside or the fuel gas and the oxidant gas are mixed with each other. And place gaskets.
  • This sealant and gasket are integrated with the electrode and polymer electrolyte membrane, and this is called MEA (membrane-electrode assembly).
  • MEA membrane-electrode assembly
  • a conductive separator is arranged to mechanically fix it and to connect adjacent MEAs electrically in series with each other.
  • a reactive gas is supplied to the electrode surface to form a gas flow path to carry away the product gas and surplus gas.
  • the gas flow path can be provided separately from the separator.
  • a gas flow path is formed by providing a groove on the surface of the separator.
  • the polymer electrolyte membrane When the stack is manufactured, the polymer electrolyte membrane is sandwiched between electrodes and a separator, and is tightened with an end plate and a bolt.
  • the polymer electrolyte membrane must have sufficient strength so that it can withstand the tightening pressure and so that physical damage due to wear or the like does not occur during long-term use.
  • Patent Document 1 proposes a polymer electrolyte fuel cell intended to prevent damage to the polymer electrolyte membrane by attaching a frame-shaped protective membrane to the peripheral portion of the polymer electrolyte membrane.
  • FIG. 13 is an exploded perspective view of the main part for explaining the positional relationship between the solid polymer electrolyte membrane and the fluorocarbon resin sheet (protective membrane) in the polymer electrolyte fuel cell described in Patent Document 1. It is. As shown in FIG.
  • a fluoropolymer sheet is formed so as to cover all of the peripheral portion of the substantially rectangular main surface of the solid polymer electrolyte membrane 1000.
  • the (protective film) 220 and the fluorine-containing resin sheet (protective film) 240 are disposed on the front main surface and the back main surface of the solid polymer electrolyte membrane 1000, respectively.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-21077
  • the polymer electrolyte fuel cell according to the above-described prior art has a configuration (structure) that can be easily mass-produced at low cost, particularly in the joined portion of the polymer electrolyte membrane and the protective membrane.
  • a configuration that can be easily mass-produced at low cost, particularly in the joined portion of the polymer electrolyte membrane and the protective membrane.
  • there was still room for improvement when it was intended to further reduce the cost of polymer electrolyte fuel cells and further increase productivity (intended for efficient mass production). .
  • the present invention has been made in view of the above viewpoints, and has a configuration suitable for low-cost and mass production of polymer electrolyte fuel cells, capable of ensuring sufficient durability.
  • An object of the present invention is to provide a membrane reinforcing member assembly and a method for producing the same.
  • An object of the present invention is to provide a membrane-catalyst layer assembly comprising the membrane-membrane reinforcing member assembly of the present invention, and further having a catalyst layer disposed thereon, and a method for producing the membrane-catalyst layer assembly.
  • an object of the present invention is to provide a membrane-electrode assembly including the membrane-catalyst layer assembly of the present invention described above, and further including a gas diffusion layer, and a method for producing the same.
  • Another object of the present invention is to provide a polymer electrolyte fuel cell comprising the membrane electrode assembly of the present invention.
  • the polymer electrolyte fuel cell according to the above-described prior art has a configuration that can be easily mass-produced at low cost, particularly in the joined portion of the polymer electrolyte membrane and the protective membrane. The reason why there is no such error will be described more specifically with reference to the drawings.
  • FIG. 14 shows an example of a manufacturing method generally assumed when the polymer electrolyte fuel cell described in Patent Document 1 is intended to be mass-produced by using a known thin film laminate manufacturing technique. It is explanatory drawing which shows.
  • a tape-shaped solid polymer electrolyte membrane 260 is manufactured and rolled to roll.
  • a tape-shaped protective film 250 (a tape-shaped film in which the protective film 220 shown in FIG. 14 is continuously formed) is manufactured, and this is wound to form a roll 252.
  • a laminate in which a tape-like protective film 250 is laminated on at least one of the main surfaces of the tape-like solid polymer electrolyte membrane 260 is produced.
  • a tape-shaped protective film 250 and a tape-shaped solid polymer electrolyte membrane 260 are pulled out from the rolls 252 and 262, respectively, and sandwiched between a pair of rollers 290 and integrally laminated.
  • To roll 280 when integrated by sandwiching between the rollers 290, heat treatment, pressure treatment, and pressure heat treatment may be performed.
  • an adhesive is applied to at least one main surface (adhesion surface) of the polymer electrolyte membrane 260.
  • the present invention provides a polymer electrolyte membrane having a pair of first main surface and second main surface facing each other and having a substantially rectangular shape
  • the membrane reinforcing member and the four sides of the second main surface are arranged along a pair of opposing sides, and have a main surface smaller than the second main surface and have a film-like shape
  • the pair of first membrane reinforcing members and the pair of second membrane reinforcing members generally extend along the four sides of the polymer electrolyte membrane and sandwich the four corner portions of the polymer electrolyte membrane.
  • the membrane / membrane reinforcing member assembly is provided.
  • the membrane / membrane reinforcing member assembly of the present invention has only one pair of sides facing each other out of the four sides of the main surface (first main surface or second main surface).
  • the reinforcing member (the first membrane reinforcing member or the second membrane reinforcing member) is arranged. Therefore, there is no R200 portion in the protective film 250 of the fuel cell described above with reference to FIG.
  • the membrane-membrane reinforcing member assembly of the present invention is obtained by laminating a tape-like reinforcing member (first membrane reinforcing member or second membrane reinforcing member) on a tape-like polymer electrolyte membrane, and the polymer electrolyte membrane and When a roll that also has a stacking strength of a reinforcing member is manufactured, it is possible to easily apply a mass production technique of a known thin film laminate. Therefore, the membrane-membrane reinforcing member assembly of the present invention is attached by positioning the protective membranes one by one on the solid electrolyte membrane by the batch method described above. Therefore, mass production can be easily performed at low cost without the need for a complicated and expensive manufacturing method.
  • the membrane-membrane reinforcing member assembly of the present invention includes a pair of first membrane reinforcing members and a pair of second membrane reinforcing members as a whole of the polymer electrolyte membrane 4. It extends along the side and is arranged so as to sandwich the four corners of the polymer electrolyte membrane.
  • the membrane-membrane reinforcing member assembly of the present invention has sufficient mechanical strength to sufficiently prevent damage to the polymer electrolyte membrane. That is, in the membrane / membrane reinforcing member assembly of the present invention, sufficient durability is ensured by the pair of first membrane reinforcing members and the pair of second membrane reinforcing members.
  • the pair of first membrane reinforcing members and the pair of second membrane reinforcing members are arranged via the polymer electrolyte membrane. Therefore, if a polymer electrolyte fuel cell is constructed using the membrane / membrane reinforcing member assembly of the present invention, the polymer electrolyte fuel cell can be secured while ensuring sufficient durability. Further cost reduction and further productivity improvement can be easily achieved.
  • the membrane / membrane reinforcing member assembly of the present invention has the first membrane reinforcing member (or the first membrane) only on one set of opposite sides of the four sides of the first principal surface (or the second principal surface).
  • the polymer electrolyte fuel described in Patent Document 1 has a configuration in which the protective membranes 220 and 240 shown in FIG. 14 are arranged on all peripheral portions of the main surface. Material costs can be reduced compared to batteries.
  • the present invention provides a membrane-membrane reinforcing member assembly of the present invention described above,
  • a first catalyst layer disposed in at least a part of a region of the first main surface of the polymer electrolyte of the membrane / membrane reinforcing member assembly where the first membrane reinforcing member is not disposed;
  • a second catalyst layer disposed on at least a part of a large region where the second membrane reinforcing member of the second main surface of the polymer electrolyte of the membrane-reinforcing member assembly is disposed;
  • a membrane-catalyst layer assembly is provided.
  • the membrane-catalyst layer assembly of the present invention has a configuration including the membrane-membrane reinforcing member assembly of the present invention
  • the membrane-catalyst layer assembly of the present invention is used.
  • a polymer electrolyte fuel cell it is possible to easily further reduce the cost of the polymer electrolyte fuel cell and further improve the productivity.
  • the present invention provides the membrane-catalyst layer assembly of the present invention described above,
  • a first gas diffusion layer arranged to cover the first catalyst layer of the membrane-catalyst layer assembly, a second gas diffusion layer arranged to cover the second catalyst layer of the membrane-catalyst layer assembly, A membrane-electrode assembly is provided.
  • the membrane-electrode assembly of the present invention has a configuration including the membrane-membrane reinforcing member assembly of the present invention and the membrane-catalyst layer assembly. If a polymer electrolyte fuel cell is constructed using this membrane-electrode assembly, it is possible to easily further reduce the cost and further improve the productivity of the polymer electrolyte fuel cell.
  • the present invention also provides a polymer electrolyte fuel cell comprising the membrane-electrode assembly of the present invention described above.
  • the polymer electrolyte fuel cell of the present invention has a configuration including the membrane-membrane reinforcing member assembly of the present invention, the membrane-catalyst layer assembly, and the membrane-electrode assembly of the present invention. Therefore, according to the polymer electrolyte fuel cell of the present invention, further cost reduction and further improvement in productivity can be easily achieved.
  • the present invention provides a pair of first main surfaces and first shapes that are opposed to each other and have a substantially rectangular shape.
  • the polymer electrolyte membrane having two main surfaces has a main surface smaller than the first main surface at a portion along one pair of opposite sides of the four sides of the first main surface and is membrane-shaped.
  • a pair of second membrane reinforcements having a main surface smaller than the second main surface and exhibiting a film-like shape at a portion along one pair of opposite sides of the four sides of the second main surface
  • B for arranging the members
  • the pair of first membrane reinforcing members and the pair of second membrane reinforcing members extend as a whole along four sides of the polymer membrane and the polymer
  • a method for producing a membrane-membrane reinforcing member assembly which is arranged so as to sandwich the four corner portions of the membrane.
  • the present invention provides a process for producing a membrane-membrane reinforcing member assembly by the membrane-membrane reinforcing member assembly method described above,
  • the first catalyst layer is disposed in at least a part of the region of the first main surface of the polymer electrolyte membrane of the membrane / membrane reinforcing member assembly where the first membrane reinforcing member is not disposed.
  • a method for producing a membrane / catalyst layer assembly is provided.
  • the present invention includes a process for producing a membrane catalyst layer assembly by the method for producing a membrane catalyst layer assembly described above,
  • the present invention also provides a method for producing a polymer electrolyte fuel cell, comprising the step of producing a membrane-electrode assembly by the method for producing a membrane-electrode assembly described above.
  • a membrane-reinforcement-member assembly and a method for producing the same that can secure sufficient durability and have a configuration suitable for low cost and mass production of a polymer electrolyte fuel cell Can be provided.
  • a membrane-catalyst layer assembly suitable for production and a production method thereof can be provided.
  • the polymer electrolyte fuel cell comprising the membrane-catalyst layer assembly of the present invention described above and further having a gas diffusion layer disposed.
  • a suitable membrane-electrode assembly and a manufacturing method thereof can be provided.
  • a polymer electrolyte fuel cell comprising the membrane-electrode assembly of the present invention described above, suitable for cost reduction and mass production, and a method for producing the same. Togashi.
  • FIG. 1 is a perspective view showing an example of a basic configuration of a first embodiment of a membrane reinforcing member assembly of the present invention.
  • FIG. 2 shows a membrane-catalyst layer assembly (first embodiment of the membrane-catalyst layer assembly of the present invention) in which a catalyst layer is further arranged on the membrane-membrane reinforcing member assembly 1 shown in FIG. It is a perspective view which shows an example of a basic composition.
  • FIG. 3 is an example of a basic configuration of a membrane / electrode assembly (first embodiment of the membrane / electrode assembly of the present invention) in which a gas diffusion layer is further arranged on the membrane / catalyst layer assembly 2 shown in FIG. FIG.
  • FIG. 4 is an example of a basic configuration of a fuel cell (the first embodiment of the polymer electrolyte fuel cell of the present invention) provided with the membrane electrode assembly 3 shown in FIG. 3 (part of a single cell) FIG.
  • FIG. 5 is a view for producing the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. It is explanatory drawing which shows a part of a series of processes roughly.
  • FIG. 6 is an explanatory diagram for explaining the operation of the first step P 1 in FIG. 5.
  • FIG. 7 is an explanatory diagram for explaining the operation of the second step P 2 in FIG. 5.
  • FIG. 8 is an explanatory diagram for explaining the operation of the third step P 3 in FIG. 5.
  • Fig. 9 is an explanatory diagram for explaining a method of manufacturing a membrane reinforcing member laminate as a constituent member of the membrane reinforcing member assembly 1.
  • FIG. 10 is an explanatory diagram for explaining the operation of joining the membrane-membrane reinforcing member laminate.
  • FIG. 11 is a perspective view showing an example of a basic configuration of a second embodiment of the membrane-membrane reinforcing member assembly of the present invention.
  • FIG. 12 shows an inner reinforcing membrane 8 provided in the membrane-membrane reinforcing member assembly 1A shown in FIG.
  • FIG. 3 is an enlarged front view of a main part showing an example of a basic configuration of 0.
  • FIG. 13 is a view for explaining the positional relationship between a solid polymer electrolyte membrane and a fluorine resin sheet (protective membrane) in the polymer electrolyte fuel cell described in Patent Document 1. It is a principal part disassembled perspective view.
  • FIG. 14 shows a production method generally assumed when the polymer electrolyte fuel cell described in Patent Document 1 is intended to be mass-produced using a known thin film laminate production technology. It is explanatory drawing which shows an example.
  • membrane reinforcing member 137A, 137B ... base material, 138 ⁇ Membrane reinforcement Material cut surface, 140 ⁇ Polyelectrolyte membrane, 141 ⁇ Membrane—membrane reinforcing member stack, 142 ⁇ , 142 ⁇ ⁇ Membrane reinforcing member, 143, 144, 145 ⁇ Laminated body, 186 ⁇ ⁇ Mask, 1 86 ⁇ ⁇ Opening portion, 190 ⁇ Catalyst layer, Dl, D2, D3 ',' Direction of travel, Fl ⁇ ⁇ l main surface, F2-- 'Second main surface, F3-- 'Main surface of the first catalyst layer, F4- ⁇ ' Main surface of the second catalyst layer, F5-- 'Main surface of the first gas diffusion layer, F6-- ⁇ Main surface of the second gas diffusion layer, F1A, F22 , F24, F26, F28... Main surface, P1 • ⁇ 'First step, P2- ⁇ '
  • FIG. 1 is a perspective view showing an example of the basic configuration of the first embodiment of the membrane-membrane reinforcing member assembly of the present invention.
  • FIG. 2 shows an example of the basic configuration of the membrane-catalyst layer assembly (first embodiment of the membrane-catalyst layer assembly of the present invention) in which a catalyst layer is further arranged on the membrane-membrane reinforcing member assembly 1 shown in FIG.
  • FIG. 3 shows the basic configuration of the membrane-electrode assembly (first embodiment of the membrane-electrode assembly of the present invention) in which a gas diffusion layer is further arranged on the membrane-catalyst layer assembly 2 shown in FIG. It is a perspective view which shows an example.
  • FIG. 2 shows an example of the basic configuration of the membrane-catalyst layer assembly (first embodiment of the membrane-catalyst layer assembly of the present invention) in which a catalyst layer is further arranged on the membrane-membrane reinforcing member assembly 1 shown in FIG.
  • FIG. 4 shows an example of the basic configuration of a polymer electrolyte fuel cell (the first embodiment of the polymer electrolyte fuel cell of the present invention) provided with the membrane-electrode assembly 3 shown in FIG. It is sectional drawing which shows (the part of a cell).
  • the membrane reinforcing member assembly 1 includes a first membrane reinforcing member 22 and 24 and a second membrane reinforcing member 26 and 28 as a whole.
  • the polymer electrolyte membrane 10 is arranged so as to sandwich the four corners of the polymer electrolyte membrane 10 (hereinafter referred to as a “cross-beam pattern”).
  • the membrane-membrane reinforcing member assembly 1 has a pair of first main surface F1 and second main surface F2 facing each other and having a substantially rectangular shape.
  • the molecular electrolyte membrane 10 and the first main surface F1 are arranged in a portion along a pair of opposite sides of the four sides of the first main surface F1, and have a main surface smaller than the first main surface F1 and have a membrane shape.
  • a pair of first membrane reinforcing members 22 and 24 having a shape and the four main sides of the second main surface F2 are arranged in a portion along a pair of opposite sides from the second main surface F2.
  • it has a configuration mainly comprising a pair of second membrane reinforcing members 26 and 28 having a small main surface and exhibiting a membrane shape.
  • the membrane-membrane reinforcing member assembly 1 is provided with a pair of reinforcing members (the first member) only on one set of sides facing each other among the four sides of the first main surface F1.
  • the membrane reinforcing members 22 and 24) are arranged.
  • the membrane-membrane reinforcing member assembly 1 includes a pair of sides facing each other among the four sides of the second main surface F2 (the first membrane reinforcing members 22 and 24 among the four sides of the second main surface F2).
  • a pair of reinforcing members (second membrane reinforcing members 26 and 28) is disposed only on a pair of sides substantially orthogonal to a pair of sides of the first main surface F1 where /!
  • the membrane-membrane reinforcing member assembly 1 is obtained by attaching a reinforcing member (first membrane reinforcing member 22 and 24 or second membrane reinforcing member 26 and 28) to the solid electrolyte membrane 10 by a batch method. It is possible to easily mass-produce at a low cost without the need for a complicated and expensive manufacturing method that requires the labor of positioning and sticking one by one.
  • the membrane-membrane reinforcing member assembly 1 includes the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 as a whole. It has a configuration that extends along the side and is arranged so as to sandwich the four corners of the polymer electrolyte membrane 10 (in a cross-beam pattern). As a result, the membrane-membrane reinforcing member assembly 1 has sufficient mechanical strength to sufficiently prevent the polymer electrolyte membrane 10 from being damaged.
  • the membrane reinforcing member assembly 1 can be used for mass production in which the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 are disposed via the polymer electrolyte membrane 10. If this polymer membrane fuel cell is constructed using this membrane reinforcing member assembly 1 because it has a suitable structure, it will be possible to further reduce the cost of the polymer electrolyte fuel cell while ensuring sufficient durability. And further improving productivity can be easily achieved.
  • the outer edges of the first membrane reinforcing members 22 and 24 and the outer edge of the polymer electrolyte membrane 10 are aligned, and the second Although the embodiment in which the membrane reinforcing members 26 and 28 are aligned with the outer edge of the polymer electrolyte membrane 10 has been described, the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 are generally high.
  • the positions of the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 on the polymer electrolyte membrane 10 that should extend along the four sides of the molecular electrolyte membrane 10 It is not limited to the embodiment.
  • the first membrane reinforcing member 22 may be disposed on the polymer electrolyte membrane 10 such that the outer edge of the polymer electrolyte membrane 10 protrudes outside the outer edge of the first membrane reinforcing member 22. . Further, for example, the outer edge of the first membrane reinforcing member 22 protrudes outside the outer edge of the polymer electrolyte membrane 10. Thus, the first membrane reinforcing member 22 may be disposed on the polymer electrolyte membrane 10. Further, the position of the first membrane reinforcing member 24 on the polymer electrolyte membrane 10, the position of the second membrane reinforcing member 26 on the polymer electrolyte membrane 10, and the second position on the polymer electrolyte membrane 10. The arrangement position of the membrane reinforcing member 28 may be the same as the arrangement position of the first membrane reinforcing member 22 on the polymer electrolyte membrane 10 described above.
  • the membrane-membrane reinforcing member assembly of the present invention has a first membrane reinforcing member (or first member) only on one set of sides facing each other among the four sides of the first principal surface (or second principal surface). From the polymer electrolyte fuel cell described in Patent Document 1 having the configuration in which the protective membranes 220 and 240 shown in FIG. 14 are arranged on all the peripheral portions of the main surface. However, material costs can be reduced.
  • the polymer electrolyte membrane 10 has proton conductivity.
  • Preferred examples of the polymer electrolyte membrane 10 include those having sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, and sulfonimide groups as cation exchange groups. From the viewpoint of proton conductivity, the polymer electrolyte membrane 10 is particularly preferred to have a sulfonic acid group!
  • the resin constituting the polymer electrolyte membrane having a sulfonic acid group is preferably a dry resin having an ion exchange capacity of 0.5 to 1.5 meqZg.
  • the ion exchange capacity of the polymer electrolyte membrane is 0.5 meqZg or higher, the increase in the resistance value of the polymer electrolyte membrane during power generation can be more sufficiently reduced, so the preferred ion exchange capacity is 1.5 meq.
  • the water content is less than / g dry resin because the water content of the polymer electrolyte membrane does not increase and the polymer electrolyte membrane does not easily swell and the pores in the catalyst layer are not likely to be clogged.
  • the ion exchange capacity is particularly preferably 0.8 to 1.2 meqZg dry resin.
  • CF CF- (OCF CFX) m—Op— (CF) n—SO 2 H
  • n represents an integer of 1 to 12
  • p represents 0 or 1
  • X represents a fluorine atom or a trifluoromethyl group
  • a copolymer containing a polymer unit based on) and a polymer unit based on tetrafluoroethylene is preferred.
  • fluorovinyl compound examples include compounds represented by the following formulas (4) to (6). Compound may be mentioned. In the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.
  • the first membrane reinforcing member 22 and the first membrane reinforcing member 24 are arranged in a portion along one set of opposite sides of the four sides of the first main surface F1 of the polymer electrolyte membrane 10. Further, the first membrane reinforcing member 22 and the first membrane reinforcing member 24 have substantially rectangular main surfaces F22 and F24 smaller than the first main surface F1.
  • the first membrane reinforcing member 22 and the first membrane reinforcing member 24 are arranged on the polymer electrolyte membrane 10 to be fastened when the polymer electrolyte fuel cell 4 (see FIG. 4 described later) is configured. Damage to the polymer electrolyte membrane 10 due to increased pressure is sufficiently prevented.
  • the second membrane reinforcing member 26 and the second membrane reinforcing member 28 are arranged in a portion along one set of opposite sides of the four sides of the second main surface F2 of the polymer electrolyte membrane 10. . Further, the second membrane reinforcing member 26 and the first membrane reinforcing member 28 have substantially rectangular main surfaces F26 and F28 smaller than the second main surface F2. When the second membrane reinforcing member 26 and the second membrane reinforcing member 28 are arranged on the polymer electrolyte membrane 10, the fastening pressure is applied when the polymer electrolyte fuel cell 4 is configured. Damage to the polymer electrolyte membrane 10 is sufficiently prevented.
  • a pair of first membrane reinforcing members 22 and 24 and a pair of second membrane reinforcing members 26 and 28 are composed of a polymer electrolyte.
  • the membranes 10 are arranged so as to form a grid pattern through the membrane 10. The positional relationship between the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 will be described more specifically.
  • the membrane-membrane reinforcing member assembly 1 is viewed from the normal direction of the first main surface.
  • first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 are the longitudinal direction (long side direction) of the main surface F22 of the first membrane reinforcing member 22 and the first membrane reinforcing member.
  • 24 main surface F24 longitudinal direction (long side direction), second membrane reinforcing member 26 main surface F26 longitudinal direction (long side direction) and second membrane reinforcing member 28 major surface F28 longitudinal direction (long side) are arranged so that the polymer electrolyte membranes 10 are substantially perpendicular to each other with the polymer electrolyte membranes 10 being disposed between each other.
  • polyethylene naphthalene is used as a material constituting the first membrane reinforcing member 22 and the first membrane reinforcing member 24, or the second membrane reinforcing member 26 and the second membrane reinforcing member 28 from the viewpoint of durability.
  • Polytetrafluoroethylene Polyethylene terephthalate, fluoroethylene-propylene copolymer, tetrafluoroethylene perfluoroalkoxyethylene copolymer, polyethylene, polypropylene, polyetheramide, polyetherimide
  • at least one synthetic resin selected from the group consisting of polyetheretherketone, polyethersulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, and polyimide amide force.
  • the thickness of the first membrane reinforcing member 22, the thickness of the first membrane reinforcing member 24, the thickness of the second membrane reinforcing member 26, and the thickness of the second membrane reinforcing member 28 are Although it is not particularly limited as long as the effect can be obtained, it is preferable that the thickness of the first membrane reinforcing member 22 and the thickness of the first membrane reinforcing member 24 are also equal in terms of viewpoint power for obtaining the effect of the present invention more reliably. . From the same viewpoint, the thickness of the second membrane reinforcing member 26 and the thickness of the second membrane reinforcing member 28 are preferably equal.
  • the first catalyst layer 31 is disposed approximately at the center of the first main surface F1
  • the second catalyst layer 32 is approximately at the center of the second main surface F2. 1 is arranged except that the membrane-membrane reinforcing member assembly 1 shown in FIG.
  • the thickness of the first catalyst layer 31 is preferably equal to or less than the thickness of the first membrane reinforcing member 22 and the thickness of the first membrane reinforcing member 24. Is more preferable. Further, from the same viewpoint, it is preferable that the thickness of the second catalyst layer 32 is equal to or less than the thickness of the second membrane reinforcing member 26 and the second membrane reinforcing member 28. ,.
  • the configuration of the first catalyst layer 31 and the configuration of the second catalyst layer 32 are not particularly limited as long as the effects of the present invention can be obtained, and the catalyst of the gas diffusion electrode mounted in a known fuel cell. It may have the same structure as the layer. Further, the configuration of the first catalyst layer 31 and the configuration of the second catalyst layer 32 may be the same or different.
  • the configuration of the first catalyst layer 31 and the configuration of the second catalyst layer 32 include conductive carbon particles carrying an electrode catalyst and a polymer electrolyte having cation (hydrogen ion) conductivity.
  • a water repellent material such as polytetrafluoroethylene may be further added. You may have the structure included in.
  • the polymer electrolyte the same kind as the constituent material of the polymer electrolyte membrane 10 described above may be used, or a different kind may be used.
  • the polymer electrolyte those described as the constituent materials of the polymer electrolyte membrane 10 can be used.
  • the electrode catalyst is made of metal particles (for example, metal particles made of a noble metal), and is used by being supported on conductive carbon particles (powder).
  • the metal particles are not particularly limited, and various metals can be used. From the viewpoint of electrode reaction activity, platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, chromium, iron, titanium, Preference is given to at least one selected from the group consisting of manganese, cobalt, nickel, molybdenum, tungsten, ano- mium, potassium, zinc and tin. Of these, platinum and the alloy of platinum are preferred, and the alloy power of platinum and ruthenium is particularly preferred at the anode because the activity of the catalyst is stable.
  • the electrode catalyst particles preferably have an average particle diameter of 1 to 5 nm. Electrocatalysts with an average particle size of In m or more are preferred because they are industrially easy to prepare, and if they are 5 nm or less, it is easier to ensure sufficient activity per mass of the electrode catalyst. This leads to cost reduction and is preferable.
  • the above conductive carbon particles specific surface area is preferably 50 ⁇ 1500m 2 / g.
  • the specific surface area is 50 m 2 Zg or more, it is easy to increase the loading ratio of the electrode catalyst, and it is preferable because the output characteristics of the obtained first catalyst layer 31 and second catalyst layer 32 can be sufficiently secured.
  • the specific surface area is 1500 m 2 / g or less, sufficiently large pores can be secured more easily and coating with the polymer electrolyte becomes easier, and the first catalyst layer 31 and the second catalyst This is preferable because the output characteristics of the layer 32 can be more sufficiently secured.
  • the specific surface area is particularly preferably 200 to 900 m 2 Zg.
  • the conductive carbon particles preferably have an average particle diameter of 0.1 to 1.0 ⁇ m.
  • L m or more is preferable because gas diffusibility in the first catalyst layer 31 and the second catalyst layer 32 can be more easily secured and flooding can be prevented more reliably. Further, if the average particle diameter of the conductive carbon particles is 1.0 m or less, the coating state of the electrode catalyst with the polymer electrolyte is easily made good, and the electrode catalyst of the polymer electrolyte is easily made. Since it becomes easy to secure a sufficient covering area, it is preferable because sufficient electrode performance can be easily secured.
  • the first catalyst layer 31 and the second catalyst layer 32 can be formed using, for example, a known method for producing a catalyst layer of a gas diffusion electrode of a fuel cell.
  • a liquid (for catalyst layer formation) containing at least a constituent material of the first catalyst layer 31 and the second catalyst layer 32 (for example, conductive carbon particles supporting an electrode catalyst and a polymer electrolyte) and a dispersion medium. Ink) can be prepared and used.
  • a first gas diffusion layer 41 having a substantially rectangular main surface F5 is disposed so as to cover the first catalyst layer 31, and further, the second catalyst layer 32 is covered.
  • the membrane-catalyst layer assembly 2 shown in FIG. 2 has the same configuration except that the second gas diffusion layer 42 having a substantially rectangular main surface F6 is disposed.
  • the area of the main surface F5 of the first gas diffusion layer is preferably larger than the area of the main surface F3 of the first catalyst layer, which is preferably equal to or larger than the area of the main surface F3 of the first catalyst layer.
  • the area of the main surface F6 of the second gas diffusion layer is preferably equal to or larger than the area of the main surface F4 of the second catalyst layer, and more preferably larger than the area of the main surface F4 of the second catalyst layer.
  • the area of the main surface F5 of the first gas diffusion layer is larger than the area of the main surface F3 of the first catalyst layer, and the area of the main surface F6 of the second gas diffusion layer is larger than that of the second catalyst layer.
  • it is a pair of sides facing each other out of the four sides of the substantially rectangular main surface F5, and is closest to the first membrane reinforcing member 22 and the first membrane reinforcing member 24
  • the ends of the first gas diffusion layer including a pair of sides arranged at positions are placed on the main surface F22 of the first membrane reinforcing member 22 and the main surface F24 of the first membrane reinforcing member 24.
  • one set of sides of the four sides of the substantially rectangular main surface F6 facing each other, the set of sides arranged closest to the second membrane reinforcing member 26 and the second membrane reinforcing member 28 It is preferable that the end portion of the second gas diffusion layer including be placed on the main surface F26 of the second membrane reinforcing member 26 and the main surface F28 of the second membrane reinforcing member 28.
  • the configuration of the first gas diffusion layer 41 and the configuration of the second gas diffusion layer 42 are not particularly limited as long as the effects of the present invention can be obtained, and a gas that can be mounted in a known fuel cell. It may have the same configuration as the gas diffusion layer of the diffusion electrode. Further, the configuration of the first gas diffusion layer 41 and the configuration of the second gas diffusion layer 42 may be the same or different.
  • the first gas diffusion layer 41 and the second gas diffusion layer 42 a high surface area carbon fine powder, a pore former, carbon paper, carbon cloth, or the like is used in order to provide gas permeability.
  • a conductive base material having a porous structure manufactured in this manner may be used.
  • a water repellent polymer such as fluorine resin may be dispersed in the first gas diffusion layer and the second gas diffusion layer 42.
  • the first gas diffusion layer 41 and the second gas diffusion layer 42 may be made of an electron conductive material such as carbon fiber, metal fiber, or carbon fine powder.
  • a water-repellent polymer and carbon powder are provided between the first gas diffusion layer 41 and the first catalyst layer 31, and between the second gas diffusion layer 42 and the second catalyst layer 32.
  • a water-repellent carbon layer composed of This makes it easier and more reliable to perform water management in the membrane-electrode assembly (water retention necessary for maintaining good characteristics of the membrane-electrode assembly and rapid drainage of unnecessary water). it can.
  • the polymer electrolyte fuel cell 4 is mainly composed of the membrane / electrode assembly 3 shown in FIG. 3, a gasket 60 and a gasket 62, and a separator 50 and a separator 52.
  • the gasket 60 and the gasket 62 are arranged around the membrane-electrode assembly 3 in order to prevent leakage and mixing of the fuel gas and the oxidant gas supplied to the membrane-electrode assembly 3 to the outside.
  • a pair of separator 50 and separator 52 for mechanically fixing the membrane-electrode assembly 3 is disposed outside the membrane-electrode assembly 3.
  • the inner surface of the separator 52 that contacts the second gas diffusion layer 42 of the membrane-electrode assembly 3 (the main surface F6 on the outer side of the second gas diffusion layer 42) is supplied to the membrane electrode assembly 3, and
  • a gas flow path 78 is formed to carry the gas containing the electrode reaction product and the unreacted reaction gas to the outside of the membrane-electrode assembly 3 from the reaction field.
  • the gas flow path 78 can be provided separately from the separator 50 and the separator 52.
  • the inner surface of the separator 50 (the surface in contact with the main surface F5 on the outer side of the first gas diffusion layer 41).
  • an inner surface of the separator 52 (a surface in contact with the main surface F6 on the outer side of the second gas diffusion layer 42) having a gas flow path 78 having a groove force.
  • the separator 50 has a configuration in which a cooling water flow path (not shown) having a groove force provided by cutting or the like is formed on the outer surface on the side opposite to the membrane electrode assembly 3. Also good. Further, the separator 52 may have a configuration in which a cooling water flow path (not shown) including a groove provided by cutting or the like is formed on the outer surface opposite to the membrane electrode assembly 3.
  • the membrane electrode assembly 3 is fixed between the pair of separators 50 and 52, and for example, the fuel gas is supplied to the gas flow path 78 of the separator 50, and the gas flow path of the separator 52 is By supplying oxidant gas to 78, an electromotive force of about 0.7 to 0.8 V can be generated in one fuel cell 4 when a current density of tens to hundreds of mAZcm 2 is applied.
  • a polymer electrolyte fuel cell is normally used as a power source, a voltage of several volts to several hundred volts is required, so in practice, the required number of fuel cells 4 are connected in series, It is used as a so-called stack (not shown).
  • a stacked body in which a plurality of fuel cells 4 are stacked is disposed between two end plates that are opposed to each other, and used as a stack in a hoofed state.
  • FIG. 5 shows a series of steps for manufacturing the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. It is explanatory drawing which shows a part of FIG.
  • the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. 3 are a series of first steps shown in FIG. Pl, the second process P2, the third process P3, the fourth process P4 and the fifth process P5 can be easily mass-produced at low cost.
  • a polymer electrolyte roll 122 obtained by winding a tape-shaped polymer electrolyte membrane 140 (a member that becomes the polymer electrolyte membrane 10 in Fig. 1 after cutting), a tape, A membrane-reinforcing member roll 120A, which is wound around the membrane-shaped reinforcing member 142A (the member that becomes the first membrane-reinforcing member 22 in FIG. 1 after cutting), and a tape-like membrane-reinforcing member 142B (after cutting, the 1) A membrane reinforcing member roll 120B in which the membrane reinforcing member 24) is wound is manufactured.
  • FIG. 6 is an explanatory diagram for explaining the operation of the first step P1 in FIG.
  • the roll 120A force also pulls out the membrane reinforcing member 142A, pulls out the membrane reinforcing member 142B from the roll 120B, pulls out the polymer electrolyte membrane 140 from the roll 122, and these are paired with rollers.
  • the membrane reinforcing member 142A and the membrane reinforcing member 142B are guided so as to be placed on the side end portions of the polymer electrolyte membrane 140 in a thermocompression bonding machine (not shown) having 124 and a roller 126. As shown in FIG.
  • the polymer electrolyte membrane 140, the membrane reinforcing member 142A, and the membrane reinforcing member 142B are polymer electrolytes in the process of moving in the traveling direction D1 between the rollers 124 and 126 in the thermocompression bonding machine.
  • the membrane reinforcing member 142A and the membrane reinforcing member 142B are joined to the side end portions of the membrane 140 in a state where they are placed, so that a tape-like membrane-membrane reinforcing member stack 141 is obtained.
  • the width between the roll 120A and the roll 120B is adjusted so as to correspond to the size of the first catalyst layer 31.
  • this first step P 1 the R200 portion of the protective film 250 of the fuel cell described above using FIG. 14 (which tends to float when tension is applied, and substantially perpendicular to the direction in which tension is applied).
  • the polymer electrolyte membrane 140, the membrane reinforcing member 142A, and the membrane reinforcing member 142B move in the direction of travel D1 between the rollers 124 and 126 in the thermocompression bonding machine, Generation
  • FIG. 7 is an explanatory diagram for explaining the operation of the second step P2 in FIG.
  • the laminate 141 obtained in the first step P1 further proceeds in the traveling direction D1 to the area of the second step P2 by driving the roller 128 and the roller 130, -And stop.
  • a base material-reinforcing member in which a tape-like membrane reinforcing member 136A is laminated on a tape-like base material 137A on the back surface of the laminate 141 in the area where the second step P2 is performed, a base material-reinforcing member in which a tape-like membrane reinforcing member 136A is laminated on a tape-like base material 137A on the back surface of the laminate 141.
  • a roll 134A in which a laminate 135A is wound and a roll 134B in which a tape-like membrane reinforcing member 136B is laminated on a tape-like substrate 137B—a roll 134B in which a reinforcing member laminate 135B is wound are arranged.
  • the traveling direction D2 of the laminated body 135A drawn from the roll 134A and the traveling direction D1 of the laminated body 141 are substantially perpendicular, and the tape-shaped membrane reinforcing member 136A is The laminated body 141 is disposed so as to be in contact with the back surface of the polymer electrolyte membrane 140 (the surface on which the membrane reinforcing member 142A and the membrane reinforcing member 142B are disposed).
  • the traveling direction D3 of the laminated body 135B drawn from the roll 134B is substantially perpendicular to the traveling direction D1 of the laminated body 141, and the tape-shaped membrane reinforcing member 136B is a polymer of the laminated body 141.
  • the electrolyte membrane 140 is placed in contact with the back surface (the surface where the membrane reinforcing member 142A and the membrane reinforcing member 142B are arranged).
  • the substrate membrane-membrane reinforcing member laminate 135A drawn from the roll 134A and the substrate membrane-membrane reinforcing member laminate 135B drawn from the roll 134B are Then, the membrane reinforcing member 136A and the membrane reinforcing member 136B are stopped so as to come into contact with the back surface of the polymer electrolyte membrane 140.
  • the contact portion between the polymer electrolyte membrane 140 and the membrane reinforcing member 136A, and the polymer electrolyte membrane 140 and the membrane complement The base film-membrane reinforcing member laminate 135A, the base membrane-membrane reinforcing member laminate 135B, and the laminate 141 are fixed so that the contact portion with the strong member 136B does not shift in position.
  • the cutting depth of the two cutters is a depth at which the base material 137A in the base material membrane-membrane reinforcing member laminate 135A and the base material 137B in the base material membrane-membrane reinforcing member laminate 135B are not cut. It is adjusted to.
  • the base material 137A and the base material 137B also have sufficient mechanical strength (hardness and flexibility) that cannot be cut by the two cutters. In this way, a laminate 143 in which the second membrane reinforcing member 26 and the second membrane reinforcing member 28 are joined to the back surface of the laminate 141 is obtained.
  • the width between the roll 134A and the roll 134B is adjusted to correspond to the size of the second catalyst layer 32. It is also possible to cut with one cutter instead of two cutters!
  • a process for sufficiently integrating 136A and 136B with the polymer electrolyte membrane 140 is performed.
  • a heat treatment may be further performed by a pressing means, and a process of fusing 136A and 136B to the polymer electrolyte membrane 140 may be performed.
  • a pretreatment may be performed in which an adhesive is applied to the surfaces of 136A and 136B (parts to be contact surfaces) before being brought into contact with the polymer electrolyte membrane 140.
  • the adhesive does not deteriorate the battery characteristics.
  • a polymer electrolyte material of the same type or different type from the polymer electrolyte membrane 140 (however, it has an affinity that can be sufficiently integrated with the polymer electrolyte membrane 140) (for example, the constituent material of the polymer electrolyte membrane 10 first) Or a liquid containing a dispersion medium or a solvent contained therein.
  • the portion of R200 in the protective film 250 of the fuel cell described above with reference to FIG. 14 (which tends to float when tension is applied, is substantially perpendicular to the direction in which tension is applied) Part) does not exist.
  • the laminate 141 The second membrane reinforcing member 26 and the second membrane reinforcing member 28 joined to the back surface of the second membrane reinforcing member 26 and the second membrane reinforcing member 28 are substantially perpendicular to the direction in which the tension is applied.
  • the two 8s are not directly connected to each other and do not easily lift even when tension is applied.
  • FIG. 8 is an explanatory diagram for explaining the operation of the third step P3 in FIG.
  • the laminated body 143 obtained in the second step P2 further advances to the area of the third step P3 in the traveling direction D1 by driving the roller 128 and the roller 130, and then stops. .
  • the stack 143 stopped in this area is supported by the back surface (the surface opposite to the main surface F1A of the polymer electrolyte membrane 140).
  • a mask 186 for forming the catalyst layer 190 is disposed between the supporting means (not shown) (for example, a supporting base) and the membrane reinforcing member 142A of the main surface F1A of the polymer electrolyte membrane 140 and the membrane reinforcing member 142B. Yes.
  • the mask 186 is provided with an opening 186A.
  • the shape and area of the opening 186A are set so as to correspond to the shape and area of the catalyst layer 190.
  • a catalyst layer forming device 130C is arranged above the area of the third step.
  • the catalyst layer 190 is formed on the principal surface F1A portion of the polymer electrolyte membrane 140 corresponding to the opening 186A of the mask 186A by applying or spraying ink for forming the catalyst layer.
  • a mechanism is provided for this purpose.
  • a mechanism that is employed for forming a catalyst layer of a gas diffusion layer of a known fuel cell can be employed. For example, based on spray method, spin coating method, doctor blade method, die coating method, screen printing method Designed mechanisms can be employed.
  • the laminated body 143 stopped in the area of the third step P3 is fixed so as to be sandwiched between the mask 186A and a support base (not shown).
  • the catalyst layer forming device 130C is activated, and the upward force of the opening 186A of the mask 186 is also applied or sprayed with the ink for forming the catalyst layer, so that the polymer electrolyte membrane corresponding to the opening 186A of the mask 186A
  • a catalyst layer 190 is formed on the main surface F1A of 140, and a laminate 144 in which the catalyst layer 190 is formed is obtained.
  • the mask 186A and the support base (not shown) are separated from the laminate 144.
  • the laminate 144 moves along the traveling direction D1.
  • the main surface of the polymer electrolyte membrane 140 of the laminate 144 on the side where the catalyst layer 190 is not formed (the surface to be the second main surface F2 in FIG.
  • a catalyst layer (which will become the second catalyst layer 32 in FIG. 4 after cutting, hereinafter referred to as the second catalyst layer 32 for convenience of explanation) is formed (not shown) (fourth step P4).
  • the fourth step P4 will be described with reference to FIG.
  • the laminate 144 obtained in the third step P3 further advances to the area of the fourth step P4 in the traveling direction D1 by driving the roller 128 and the roller 130, and then stops.
  • the laminate 144 is folded back at the roller 128 to form the catalyst layer 190 of the polymer electrolyte membrane 140, and the side main surface F1B (not shown) Is inverted so that the main surface F1A on the side where the catalyst layer 190 of the polymer electrolyte membrane 140 is formed faces downward.
  • the laminated body 144 stopped in this area is supported by the back surface (main surface F1A of the above-mentioned polymer electrolyte membrane 140) and supporting means (for example, a support base).
  • a mask (not shown) for forming the second catalyst layer 32 is disposed between the second membrane reinforcing member 26 and the second membrane reinforcing member 28 on the main surface F1B of the polymer electrolyte membrane 140.
  • This mask is provided with an opening (not shown) similar to the opening 186A of the mask 186 described above.
  • the shape and area of the opening are set so as to correspond to the shape and area of the second catalyst layer 32.
  • a catalyst layer forming apparatus 130B having the same mechanism as the catalyst layer forming apparatus 130C described above is arranged above the area of the fourth step. Is placed.
  • the work flow of the fourth step P4 is the same as that of the third step P3 described above.
  • a laminate 145 in which the second catalyst layer 32 is further formed on the laminate 144 is obtained.
  • the stacked body 145 moves along the traveling direction D1.
  • the laminated body 145 is introduced into a cutting apparatus having a cutting mechanism 132, and cut at a preset size to obtain the membrane-catalyst layer assembly 2 shown in FIG. 5 process P5).
  • the catalyst layer 190 and the second catalyst layer 32 are adjusted in composition so that they have appropriate flexibility, the degree of drying, etc., and when they are folded at the roller 128 and the roller 130, the polymer electrolyte membrane 140 Measures are taken to prevent it from peeling off. Further, each time the catalyst layer 190 and the second catalyst layer 32 are formed on the polymer electrolyte membrane 140, a drying process (for example, at least one of a heating process, a blowing process, and a degassing process) is appropriately performed. May be.
  • first gas diffusion layer 41 and the second gas diffusion layer 42 are bonded to the membrane-catalyst layer assembly 2 to obtain the membrane-electrode assembly 3 shown in FIG. More specifically, a first gas diffusion layer 41 and a second gas diffusion layer 42 having an appropriate size corresponding to the size of the membrane-catalyst layer assembly 2 obtained after cutting the laminate 145 are prepared. Alternatively, the first gas diffusion layer 41 and the second gas diffusion layer 42 may be bonded to the membrane-catalyst layer assembly 2.
  • a gas diffusion layer winding roll (not shown) in which a tape-like gas diffusion layer (for example, carbon cloth) is wound is prepared, and a bonding mechanism similar to the first step shown in FIG. 6 is prepared.
  • the gas diffusion layer winding roll force is integrated into the strip-shaped laminate 145 obtained after P4, and then the tape-like gas diffusion layer is integrated, and then the fifth step
  • the membrane electrode assembly 3 may be formed continuously by performing the same cutting operation as P5.
  • the water repellent power having the same mechanism as the catalyst layer forming apparatus 130C used in the third step P3 is used except that the water repellent carbon layer forming ink is used.
  • a layer forming apparatus (not shown) may be used.
  • the water repellent carbon layer forming device is applied to the band-shaped laminate 145 or the gas diffusion layer in a tape shape before bonding. What is necessary is just to arrange
  • a tape-shaped gas diffusion layer roll formed continuously in advance at a set position may be used!
  • the manufacturing process may be designed so that the operation of the second step P2 described above is performed after the operation of the third step P3.
  • the work of the third process P3 may be continuously performed after the work of the second process P2 is completed in the area of the second process P2.
  • FIG. 9 is an explanatory diagram for explaining a method for manufacturing a membrane-membrane reinforcing member laminate that is a constituent member of the membrane-membrane reinforcing member assembly 1.
  • FIG. 10 is an explanatory diagram for explaining an operation of joining two membrane-membrane reinforcing member laminates.
  • a membrane-membrane reinforcing member laminate 100A having a configuration in which the main surface of one of the electrolyte membranes 110 is arranged at regular intervals so as to be substantially parallel to each other is created.
  • the membrane-membrane reinforcing member laminate 100A can be produced, for example, by the same method as in the first step described above with reference to FIG.
  • the interval between two adjacent ones of three or more tape-shaped membrane reinforcing members 100, 102, 104, 106 corresponds to the size of the catalyst layer (second catalyst layer 32) to be formed later. It is adjusted to
  • the membrane-membrane reinforcing member laminate 100A is cut from a direction substantially perpendicular to the longitudinal direction of the tape-like membrane reinforcing member 100 (for example, in FIG. 9, a cutting line cut from such a direction is indicated by a dotted line 110A, 110B, 110C).
  • a plurality of tape-like membrane-membrane reinforcing member laminates 108B are obtained.
  • the plurality of membrane reinforcing members in the tape-like membrane-membrane reinforcing member laminate 108B (members that become the second membrane reinforcing members 26 and 28 in FIG.
  • the longitudinal direction is arranged so as to be substantially perpendicular to the longitudinal direction of the tape-like membrane reinforcing member laminate 108B of the main body.
  • the tape-like membrane-membrane reinforcing member laminate 108B thus obtained is wound into a roll (not shown).
  • the membrane-reinforcing membrane 142A and the membrane-reinforcing member 142B are placed on the side ends of the tape-shaped polymer electrolyte membrane 140A.
  • a membrane reinforcing member laminate 108A (see FIG. 10) is produced.
  • the obtained membrane-membrane reinforcing member laminate 108A is wound into a roll (not shown).
  • the width of the membrane-membrane reinforcing member laminate 108A (width in the short direction) and the width of the membrane-membrane reinforcing member laminate 108B (width in the short direction) are adjusted so as to match.
  • the membrane-membrane reinforcing member laminate 108A and the membrane-membrane reinforcing member laminate 108B are joined. More specifically, each roll force membrane-membrane reinforcing member laminate 108A and membrane-membrane reinforcing member laminate 108B are pulled out, and these are thermocompression bonding machines (not shown) having a pair of rollers 170 and 172. ) Guide it so that it overlaps.
  • the back surface of the polymer electrolyte membrane 140A of the membrane-membrane reinforcing member laminate 108A (the surface on the side where the membrane reinforcing member is not disposed) and the polymer electrolyte membrane 140A of the membrane-membrane reinforcing member laminate 108B.
  • the back surface (the surface on the side where the membrane reinforcing member is disposed) is joined to the surface.
  • the membrane-membrane reinforcing member laminate 108A and the membrane-membrane reinforcing member laminate 108B are viewed from the normal direction of the main surface of the membrane-membrane reinforcing member laminate 108A, the membrane-membrane reinforcing member laminate 108 The two layers are overlapped so that a part of the membrane-membrane reinforcing member laminate 108B protrudes from 108A and cannot be seen.
  • the membrane-membrane reinforcing member laminate 108A and the membrane-membrane reinforcing member laminate 108 are in the state described above in the process of moving in the traveling direction D1 between the rollers 170 and 172 in the thermocompression bonding machine.
  • the membrane-catalyst layer assembly 2 shown in FIG. 2 and the membrane electrode contact shown in FIG. 3 are formed by the same method as described above. Combine 3 can be produced.
  • the method for producing the polymer electrolyte fuel cell 4 shown in FIG. 4 using the membrane electrode assembly 3 is not particularly limited, and a known polymer electrolyte fuel cell manufacturing technique can be employed. .
  • FIG. 11 is a perspective view showing an example of the basic configuration of the second embodiment of the membrane-membrane reinforcing member assembly of the present invention.
  • the membrane-reinforcing-member assembly 1A of the second embodiment shown in FIG. 11 has the membrane of FIG. 1 shown in the first embodiment except that a polymer electrolyte membrane 10A described later is mounted. It has the same configuration as the membrane reinforcing member assembly 1.
  • FIG. 11 is an enlarged front view of an essential part showing an example of the basic configuration of the internal reinforcing membrane 80 provided in the membrane-membrane reinforcing member assembly 1A shown in FIG.
  • the internal reinforcing film 80 is made of a resin film, and has a plurality of openings (through holes) 82 penetrating in the thickness direction as shown in FIG.
  • the opening 82 is filled with a polymer electrolyte having the same or different component as the polymer electrolyte membrane 11 and the polymer electrolyte membrane 12.
  • the area ratio (opening degree) of the opening 82 to the main surface of the inner reinforcing membrane 80 is preferably 50% to 90%. When the opening degree is 50% or more, sufficient ionic conductivity can be easily obtained. On the other hand, when the opening degree is 90% or less, sufficient mechanical strength of the inner reinforcing membrane 80 can be easily obtained.
  • the inner reinforcing membrane 80 may be a stretched porous film (not shown: “trade name“ GOA SELECT (11) ”manufactured by Japan Gore-Tech Step Co., Ltd.).
  • the opening 82 of the inner reinforcing membrane 80 may be very fine pores (for example, the pore diameter is several tens of meters). Even in this case, the opening degree (porosity) is preferably 50% to 90% for the same reason as described above.
  • polytetrafluoroethylene fluoroethylene propylene copolymer, tetrafluoroethylene perfluoroalkoxy is used.
  • Ethylene copolymer, polyethylene, polypropylene, polyetheramide, polyetherimide, polyetheretherketone, U which is preferably at least one synthetic resin selected from the group consisting of polyethersulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, polyethylene naphthalate, polyethylene terephthalate, and polyimide amide force.
  • the polymer electrolyte membrane 10 described above contains at least one of fibrous reinforcing particles and spherical reinforcing particles.
  • the above-described opening may be provided.
  • the constituent material of the reinforcing body particles include the resin constituting the internal reinforcing film 80.
  • the method for producing the polymer electrolyte membrane 10A is not particularly limited, and can be produced using a known thin film production technique.
  • the membrane-membrane reinforcing member assembly 1A can be manufactured by the same method as the membrane-membrane reinforcing member assembly 1 described above except that this polymer electrolyte membrane 10A is used.
  • the third embodiment of the present invention involves manually performing the second step P2 shown in FIG. 7 in the method for manufacturing the membrane reinforcing member assembly 1 of the first embodiment. That is, in the present embodiment, in FIG. 7, on the other main surface of the laminate 141 formed by attaching the membrane reinforcing member 142A and the membrane reinforcing member 142B to the side end portion of one main surface of the polymer electrolyte membrane 140, The tape-like membrane reinforcing member 136A and the tape-like membrane reinforcing member 136B are manually cut and pasted to a predetermined length. Others are the same as in the first embodiment. Further, instead of the polymer electrolyte membrane 10 of the first embodiment, the polymer electrolyte membrane-inner reinforcing membrane complex 10A of the second embodiment is used.
  • At least the laminate 141, the membrane-catalyst layer assembly 2, and the membrane / electrode assembly 3 can be mass-produced, and the manufacturing cost can be reduced as compared with the prior art. Can do.
  • the membrane-membrane reinforcing member assembly of the present invention having the structure shown in FIG. was made.
  • first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 were tape-like thin films (thickness: 20 m) having PEN (polyethylene naphthalate) force.
  • a catalyst-supported carbon (TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 50% by mass is 1 ⁇ ) formed by supporting platinum particles as an electrode catalyst on carbon powder, and a polymer electrolyte having hydrogen ion conductivity
  • a solution (Flemion manufactured by Asahi Glass Co., Ltd.) was dispersed in a mixed dispersion medium (mass ratio 1: 1) of ethanol and water to prepare a force sword forming ink.
  • the obtained force sword catalyst layer forming ink was applied to one side of the above-described polymer electrolyte membrane by a spray method, and a force sword catalyst layer having a platinum loading of 0.6 mgZcm 2 and dimensions of 140 mm X 140 mm. was formed so as to be arranged at a position similar to the position shown in FIG.
  • anode catalyst layer forming ink was applied by spraying to the surface of the polymer electrolyte membrane opposite to the surface on which the force sword catalyst layer was formed, and the amount of platinum supported was 0.
  • An anode catalyst layer having a size of 35 mgZcm 2 and a size of 140 mm ⁇ 140 mm was formed so as to be arranged at a position similar to the position shown in FIG.
  • a carbon paper having a size of 200 mm x 200 mm and a thickness of 100 ⁇ m was impregnated with an aqueous dispersion containing fluorine resin, and then dried to dry the carbon cloth. Water repellency was given to (water repellent treatment).
  • a water repellent carbon layer was formed on one surface (entire surface) of the carbon paper after the water repellent treatment.
  • Conductive carbon powder (Denka Black (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd.) and an aqueous solution in which fine powder of polytetrafluoroethylene (PTFE) is dispersed (D—1 manufactured by Daikin Industries, Ltd.)
  • PTFE polytetrafluoroethylene
  • the carbon paper after the water repellent treatment and the formation of the water repellent carbon layer was fired at 350 ° C, which is a temperature equal to or higher than the melting point of PTFE, for 30 minutes. Finally, the central part of the carbon paper was cut with a punching die to obtain a gas diffusion layer with dimensions of 142.5 mm X 142.5 mm.
  • the above-described membrane catalyst layer is composed of two gas diffusion layers so that the central portion of the water-repellent carbon layer of the gas diffusion layer obtained as described above is in contact with the force sword catalyst layer and the anode catalyst layer.
  • a hot press machine 120 ° C, 30 minutes, lOkgfZcm 2
  • each of the two gas diffusion layers is placed at the same position as shown in Fig. 3.
  • the membrane-electrode assembly of the present invention was obtained.
  • the membrane electrode assembly is sandwiched between a separator plate having a gas flow path for supplying fuel gas and a cooling water flow path, and a separator plate having a gas flow path for supplying oxidant gas and a cooling water flow path.
  • a unit cell polymer electrolyte of the present invention in which a fluororubber gasket is placed around the force sword and anode between the separator plates and the effective electrode area (effective electrode area of the anode or force sword) is 196 cm 2 Type fuel cell).
  • the unit cell 1 and the unit cell 2 obtained in Example 1 and Comparative Example 1 were controlled at 64 ° C, hydrogen gas was supplied as fuel gas to the anode side gas flow path, and Air was supplied to each gas flow path. At this time, the hydrogen gas utilization rate was set to 70%, the air utilization rate was set to 55%, and the dew points of hydrogen gas and air were each humidified to be about 64 ° C before being supplied to the cell. Then, the cells were operated for 12 hours at a current density of 0.2 AZcm 2 for aging.
  • Example 1 For the single cells of Example 1 and Comparative Example 1, a rated durability test was performed under conditions close to actual operation of the fuel cell.
  • Example 1 For the single cells of Example 1 and Comparative Example 1, accelerated durability tests were performed in which the deterioration of the membrane electrode assembly was accelerated and the life could be judged in a shorter time.
  • the battery output characteristic evaluation test 1 (rated endurance test) was performed except that the unit cell 1 and the unit cell 2 obtained in Example 1 and Comparative Example 1 were controlled at 90 ° C. ) Each cell was operated under the same conditions as in), and the output voltage after 12 hours was recorded. The unit cell 1 and the unit cell 2 were controlled at 90 ° C. using a heater for heating.
  • Example 1 had the same battery output characteristics as Comparative Example 1.
  • the outer peripheral edge (edge) of the membrane reinforcing member (for example, the first membrane reinforcing members 22 and 24 shown in FIG. 1) is a polymer electrolyte membrane (for example, 1 and the peripheral edge (edge) of the polymer electrolyte membrane 10) shown in FIG. 1 is aligned!
  • the edge of the polymer electrolyte membrane and the edge of the polymer electrolyte membrane overlap, and the edge of the polymer electrolyte membrane protrudes and becomes invisible.
  • the polymer electrolyte may have a configuration in which the edge of the membrane reinforcing member protrudes entirely or partially from the edge of the polymer electrolyte membrane within a range where the effects of the present invention can be obtained.
  • the edge of the membrane is entirely or more than the edge of the membrane reinforcing member And minute to squeeze-out, has a configuration Ru, even if,.
  • membrane-reinforcing member assembly, membrane-catalyst layer assembly, and membrane-electrode assembly of the present invention are useful as parts of a polymer electrolyte fuel cell capable of mass production.
  • the polymer electrolyte fuel cell of the present invention is a mobile body such as an automobile, a distributed type (onsite It is expected to be suitably used as a main power source or auxiliary power source for power generation systems (household cogeneration systems).
  • the method for producing a membrane-reinforcing member assembly, the method for producing a membrane-catalyst layer assembly, and the method for producing a membrane-electrode assembly are used in a method for producing a polymer electrolyte fuel cell capable of mass production. Useful as.
  • the method for producing a polymer electrolyte fuel cell according to the present invention can be suitably used as a main power source or an auxiliary power source for a mobile object such as an automobile, a distributed (on-site) power generation system (household cogeneration system), etc. It is useful as a method for manufacturing a molecular electrolyte fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の膜-膜補強部材接合体(1)は、互いに対向しておりかつ略矩形状を呈する1対の第1主面(F1)及び第2主面(F2)を有する高分子電解質膜(10)と、第1主面( F1)の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、第1主面(F1)よりも小さな主面を有しかつ膜状の形状を呈する1対の第1膜補強部材22及び24と、第2主面(F2)の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、第2主面(F2)よりも小さな主面を有しかつ膜状の形状を呈する1対の第2膜補強部材(26)及び(28)とを有しており、1対の第1膜補強部材(22)及び(24)と1対の第2膜補強部材(26)及び(28)とは、全体として高分子電解質膜(10)の4辺に沿って延在しかつ高分子電解質膜(10)の4隅の部分を挟むように配置されている。

Description

明 細 書
膜一膜補強部材接合体、膜一触媒層接合体、膜一電極接合体、及び高 分子電解質形燃料電池
技術分野
[0001] 本発明は、膜 膜補強部材接合体、膜 触媒層接合体、膜 電極接合体、及び 高分子形燃料電池、並びにこれらの製造法に関する。
背景技術
[0002] 高分子電解質形燃料電池は、水素などの燃料ガスと空気などの酸ィ匕ガスを白金な どの触媒層を有するガス拡散層電極によって電気化学的に反応させるもので、電気 と熱とを同時に発生させるものである。その構造は、まず水素イオンを選択的に輸送 する高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を触媒 体とし、これに水素イオン伝導性高分子電解質を混合したもので触媒層を形成する。 次に、この触媒層の外面に、燃料ガスの通気性を、電子伝導性を併せ持つ、例えば 撥水処理を施したカーボンペーパーでガス拡散層を形成する。この触媒層とガス拡 散層とを合わせてガス拡散電極と呼ぶ。
[0003] 次に、燃料を供給する燃料ガスが外部に漏れたり、燃料ガスと酸化剤ガスとが互い に混合したりしないように、電極の周囲には高分子電解質膜を挟んでガスシール剤 やガスケットを配置する。このシール剤やガスケットは、電極及び高分子電解質膜と 一体化し、これを MEA (膜—電極接合体)と呼ぶ。 MEAの外側には、これを機械的 に固定するとともに、隣接した MEAを互 ヽに電気的に直列に接続するための導電 性セパレーターを配置する。セパレーターの MEAと接触する部分には、電極面に反 応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流 路はセパレーターと別に設けることもできる力 セパレーターの表面に溝を設けてガ ス流路とする方式が一般的である。
[0004] 多くの燃料電池は、上記のような構造の単電池を数多く重ねた積層構造をとつてい る。燃料電池の運転時には、電力発生と共に発熱が起こる。積層電池では単電池 1 〜3セル毎に冷却水路等を設けることにより、電池温度を一定に保つと同時に発生し た熱エネルギーを温水などの形で利用することができる。
[0005] スタックを製造する際、高分子電解質膜は電極ゃセパレーターに挟持され、端板と ボルトにより締め付けられる。締め付けの圧力に耐えられるように、また、長期間の使 用において磨耗等による物理的な破損が生じないように、高分子電解質膜には十分 な強度を持たせる必要がある。一方、プロトン伝導性を向上させる等の理由からは、 高分子電解質膜をできるだけ薄くする必要がある。これらの理由から、厚さを増すこと なく高分子電解質の強度を上げるための様々な検討がなされている。
[0006] 例えば、特許文献 1において、高分子電解質膜の周縁部に額縁状の保護膜を取り 付けることで、高分子電解質膜の破損の防止を意図した高分子電解質形燃料電池 が提案されている (例えば、特許文献 1の図 1参照)。以下、この高分子電解質形燃 料電池の構造について、図面を用いて説明する。図 13は、特許文献 1に記載の高 分子電解質形燃料電池のうちの、固体高分子電解質膜と、ふつ素榭脂シート (保護 膜)との位置関係を説明するための要部分解斜視図である。図 13に示すように、特 許文献 1の高分子電解質形燃料電池では、固体高分子電解質膜 1000の略矩形状 を呈する主面の周縁部分のすべてを覆うようにして、ふつ素榭脂シート (保護膜) 220 及びふつ素榭脂シート (保護膜) 240が固体高分子電解質膜 1000の表の主面と裏 の主面のそれぞれに配置されて 、る。
特許文献 1:特開平 5 - 21077号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、上述の従来技術における高分子電解質形燃料電池は、特に高分子 電解質膜と保護膜の接合体の部分にぉ 、て、低コストで容易に大量生産ができる構 成 (構造)を有していないため、高分子電解質形燃料電池の更なる低コスト化、及び 更なる生産性の向上を意図 (効率的な大量生産を意図)した場合に、未だ改善の余 地があった。
[0008] 本発明は、以上の観点に鑑みてなされたものであり、十分な耐久性を確保でき、か つ高分子電解質形燃料電池の低コスト化、及び大量生産に適した構成を有する、膜 膜補強部材接合体及びその製造方法を提供することを目的とする。また、本発明 は、上記の本発明の膜—膜補強部材接合体を備えており、さらに触媒層が配置され た、膜 触媒層接合体及びその製造方法を提供することを目的とする。さらに、本発 明は、上記の本発明の膜—触媒層接合体を備えており、さらにガス拡散層が配置さ れた、膜-電極接合体及びその製造方法を提供することを目的とする。また、本発明 は、上記の本発明の膜 電極接合体を備えている、高分子電解質形燃料電池を提 供することを目的とする。
課題を解決するための手段
[0009] 上述の従来技術における高分子電解質形燃料電池が、特に高分子電解質膜と保 護膜の接合体の部分にぉ 、て、低コストで容易に大量生産ができる構成を有して ヽ ないという理由を、以下、図面を用いてより具体的に説明する。
[0010] 図 14は特許文献 1に記載の高分子電解質形燃料電池を、公知の薄膜積層体の製 造技術を用いて大量生産しょうと意図する場合に一般的に想定される製造法の一例 を示す説明図である。例えば、特許文献 1に記載の高分子電解質形燃料電池を、大 量生産する場合、まず、図 14に示すように、テープ状の固体高分子電解質膜 260を 製造してこれを卷回してロール 262とし、テープ状の保護膜 250 (図 14に示した保護 膜 220を連続的に形成したテープ状のもの)を製造してこれを卷回してロール 252と する。次に、図 14に示すような構成の製造機構を有する装置を用いて、テープ状の 固体高分子電解質膜 260の主面の少なくとも一方にテープ状の保護膜 250を積層 した積層体を製造する。例えば、ロール 252及びロール 262からそれぞれ、テープ状 の保護膜 250とテープ状の固体高分子電解質膜 260とを引っ張り出して、一対の口 ーラ 290の間に挟んで一体ィ匕して積層体として卷回し、ロール 280とする。なお、口 ーラ 290の間に挟んで一体化する際に、熱処理、加圧処理、加圧熱処理を施す場 合もあり、一体化する直前に、テープ状の保護膜 250とテープ状の固体高分子電解 質膜 260の少なくとも一方の主面 (接着面)に接着剤を塗工する場合もある。
[0011] このロール 280を製造するときに、保護膜 250には、当該保護膜 250が進行する方 向(テープ状の保護膜 250の長手方向) D10に張力がかかる。このとき、保護膜 250 は非常に薄い膜 (例えば、 以下)でありかつ主面の内部に開口部 222が形成 されているため、張力がかかると、保護膜 250において張力の力かる方向と略垂直と なる部分 R200が浮き上がるようになる。これ〖こより、ローラ 290とロール 252との間で は、ローラ 290により保護膜 250を押えるときに上記 R200の部分にしわがよる可能 性が高くなる。また、ローラ 290とロール 280との間では張力により固体高分子電解 質膜 260から保護膜 250の R200の部分が剥がれる可能性が高くなる。
[0012] 以上の理由により、図 13に示した従来の構成を有する高分子電解質形燃料電池 では、不良品を出さずに確実に製造する観点から、 MEAを 1つ 1つ製造する手間の 力かる複雑な製造方法を採用することしかできな力つた。すなわち、バッチ式の方法 で、固体電解質膜 1000に保護膜 220及び 240を 1つひとつ位置決めして貼り付ける という手間の力かる複雑で高コストな製造方法を採用することしかできな力つた。
[0013] このような課題を解決するために、本発明は、互いに対向しておりかつ略矩形状を 呈する 1対の第 1主面及び第 2主面を有する高分子電解質膜と、
第 1主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されており、第 1 主面よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 1膜補強部材と、 第 2主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されており、第 2 主面よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 2膜補強部材と、 を有しており、
1対の第 1膜補強部材と 1対の第 2膜補強部材とは、全体として前記高分子電解質 膜の 4辺に沿って延在しかつ前記高分子電解質膜の 4隅の部分を挟むように配置さ れている、膜 膜補強部材接合体を提供する。
[0014] 本発明の膜 膜補強部材接合体は、上述のように、主面 (第 1主面又は第 2主面) の 4辺のうちの互いに対向する 1組の辺のみに 1対の補強部材 (第 1膜補強部材又は 第 2膜補強部材)が配置された構成を有している。そのため、図 14を用いて先に説明 した燃料電池の保護膜 250における R200の部分が存在しない。従って、本発明の 膜—膜補強部材接合体は、テープ状の高分子電解質膜にテープ状の補強部材 (第 1膜補強部材又は第 2膜補強部材)を積層して、高分子電解質膜及び補強部材の積 層体力もなるロールを製造すると 、つた、公知の薄膜積層体の大量生産技術を容易 に適用することが可能となる。従って、本発明の膜—膜補強部材接合体は、先に述 ベたバッチ式の方法で、固体電解質膜に保護膜を 1つひとつ位置決めして貼り付け るという手間の力かる複雑で高コストな製造方法を採用する必要がなぐ低コストで容 易に大量生産することが可能となる。また、本発明の膜-膜補強部材接合体は、上 述のように、 1対の第 1膜補強部材と 1対の第 2膜補強部材とは、全体として前記高分 子電解質膜の 4辺に沿って延在しかつ前記高分子電解質膜の 4隅の部分を挟むよう に配置された構成を有している。これにより、本発明の膜—膜補強部材接合体は高 分子電解質膜の破損を十分に防止できる十分な機械的強度を有する。すなわち、本 発明の膜 膜補強部材接合体は、 1対の第 1膜補強部材と、 1対の第 2膜補強部材 とにより十分な耐久性が確保される。
[0015] したがって、本発明の膜—膜補強部材接合体は、上述したように 1対の第 1膜補強 部材と、 1対の第 2膜補強部材とを高分子電解質膜を介して配置させた大量生産に 適した構造を有するため、本発明の膜 膜補強部材接合体を用いて高分子電解質 形燃料電池を構成すれば、十分な耐久性を確保しつつ、高分子電解質形燃料電池 の更なる低コスト化、及び更なる生産性の向上を容易に図ることができる。
[0016] 更に、本発明の膜 膜補強部材接合体は、第 1主面 (又は第 2主面)の 4辺のうち の互いに対向する 1組の辺のみに第 1膜補強部材 (又は第 2膜補強部材)を配置す る構成を有するため、図 14に示した保護膜 220及び 240を主面の周縁部分のすべ てに配置する構成を有する特許文献 1に記載の高分子電解質形燃料電池よりも材 料コストを低減できる。
[0017] また、本発明は、先に述べた本発明の膜—膜補強部材接合体と、
膜 膜補強部材接合体の高分子電解質の第 1主面のうちの第 1膜補強部材が配 置されてない領域の少なくとも一部に配置される第 1触媒層と、
膜 膜補強部材接合体の高分子電解質の第 2主面のうちの第 2膜補強部材が配 置されて ヽな ヽ領域の少なくとも一部に配置されて ヽる第 2触媒層と、
を有する、膜—触媒層接合体を提供する。
[0018] 以上のように、本発明の膜—触媒層接合体は、本発明の膜—膜補強部材接合体 を備える構成を有しているので、本発明の膜一触媒層接合体を用いて高分子電解 質形燃料電池を構成すれば、高分子電解質形燃料電池の更なる低コスト化、及び 更なる生産性の向上を容易に図ることができる。 [0019] 更に、本発明は、先に述べた本発明の膜 触媒層接合体と、
膜 触媒層接合体の第 1触媒層を被覆するように配置される第 1ガス拡散層と、 膜 触媒層接合体の第 2触媒層を被覆するように配置される第 2ガス拡散層と、 を有する、膜—電極接合体を提供する。
[0020] 以上のように、本発明の膜—電極接合体は、本発明の膜—膜補強部材接合体、お よび、膜—触媒層接合体を備える構成を有しているので、本発明の膜—電極接合体 を用いて高分子電解質形燃料電池を構成すれば、高分子電解質形燃料電池の更 なる低コスト化、及び更なる生産性の向上を容易に図ることができる。
[0021] また、本発明は、先に述べた本発明の膜—電極接合体を具備している、高分子電 解質形燃料電池を提供する。
[0022] 以上のように、本発明の高分子電解質形燃料電池は、本発明の膜 膜補強部材 接合体、膜—触媒層接合体、および、本発明の膜—電極接合体を備える構成を有し ているので、本発明の高分子電解質形燃料電池によれば、更なる低コスト化、及び、 更なる生産性の向上を容易に図ることができる。
また、本発明は、互いに対向しておりかつ略矩形状を呈する 1対の第 1主面及び第
2主面を有する高分子電解質膜の前記第 1主面の 4辺のうちの互いに対向する 1組 の辺に沿う部分に、前記第 1主面よりも小さな主面を有しかつ膜状の形状を呈する 1 対の第 1膜補強部材を配置する工程 Aと、
前記第 2主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に、前記第 2主面 よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 2膜補強部材を配置するェ 程 Bと、を含み、
前記工程 A及び工程 Bにおいて、前記 1対の第 1膜補強部材と前記 1対の第 2膜補 強部材とは、全体として前記高分子膜の 4辺に沿って延在しかつ前記高分子膜の 4 隅の部分を挟むように配置される、膜—膜補強部材接合体の製造方法を提供する。
[0023] また、本発明は、先に述べた膜-膜補強部材接合体方法によって膜-膜補強部 材接合体を製造する工程と、
前記膜 膜補強部材接合体の前記高分子電解質膜の前記第 1主面のうちの前記 第 1膜補強部材が配置されてない領域の少なくとも一部に第 1触媒層を配置するェ 程 cと、
前記膜 膜補強部材接合体の前記高分子電解質膜の前記第 2主面のうちの前記 第 2膜補強部材が配置されていない領域の少なくとも一部に第 2触媒層を配置する 工程 Dと、を含む、膜 触媒層接合体の製造方法を提供する。
また、本発明は、先に述べた膜 触媒層接合体の製造方法によって膜 触媒層 接合体を製造する工程と、
前記膜 触媒層接合体の前記第 1触媒層を被覆するように第 1ガス拡散層を配置 する工程 Eと、
前記膜 触媒層接合体の前記第 2触媒層を被覆するように第 2ガス拡散層を配置 する工程 Fと、を有する、膜 電極接合体の製造方法を提供する。
[0024] また、本発明は、先に述べた膜—電極接合体の製造方法によって膜—電極接合 体製造する工程を含む、高分子電解質形燃料電池の製造方法を提供する。
[0025] 以上の、膜 補強部材接合体の製造方法、膜 触媒層接合体の製造方法、膜 電極接合体の製造方法、及び高分子電解質形燃料電池の製造方法によれば、それ ぞれ、上述の膜 補強部材接合体、膜 触媒層接合体、膜 電極接合体、及び高 分子電解質形燃料電池について得られる効果を得ることができる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0026] 本発明によれば、十分な耐久性を確保でき、かつ高分子電解質形燃料電池の低コ スト化、及び大量生産に適した構成を有する、膜 膜補強部材接合体及びその製造 方法を提供することができる。
[0027] また、本発明によれば、上記の本発明の膜一膜補強部材接合体を備えており、さら に触媒層が配置された、高分子電解質形燃料電池の低コスト化、及び大量生産に 適した膜—触媒層接合体及びその製造方法を提供することができる。
[0028] さらに、本発明によれば、上記の本発明の膜 触媒層接合体を備えており、さらに ガス拡散層が配置された、高分子電解質形燃料電池の低コスト化、及び大量生産に 適した膜—電極接合体及びその製造方法を提供することができる。 [0029] また、本発明によれば、上記の本発明の膜—電極接合体を備えている、低コスト化 、及び大量生産に適した高分子電解質形燃料電池及びその製造方法を提供するこ とがでさる。
図面の簡単な説明
[0030] [図 1]図 1は本発明の膜 膜補強部材接合体の第 1実施形態の基本構成の一例を 示す斜視図である。
[図 2]図 2は、図 1に示す膜—膜補強部材接合体 1にさらに触媒層が配置された膜— 触媒層接合体 (本発明の膜 触媒層接合体の第 1実施形態)の基本構成の一例を 示す斜視図である。
[図 3]図 3は、図 2に示す膜 触媒層接合体 2にさらにガス拡散層が配置された膜 電極接合体 (本発明の膜 電極接合体の第 1実施形態)の基本構成の一例を示す 斜視図である。
[図 4]図 4は、図 3に示す膜 電極接合体 3を具備する燃料電池 (本発明の高分子電 解質形燃料電池の第 1実施形態)の基本構成の一例 (単電池の部分)を示す断面図 である。
[図 5]図 5は、図 1に示した膜—膜補強部材接合体 1、図 2に示した膜—触媒層接合 体 2及び図 3に示した膜 電極接合体 3を製造するための一連の工程の一部を概略 的に示す説明図である。
[図 6]図 6は、図 5における第 1工程 P1の作業を説明するための説明図である。
[図 7]図 7は、図 5における第 2工程 P2の作業を説明するための説明図である。
[図 8]図 8は、図 5における第 3工程 P3の作業を説明するための説明図である。
[図 9]図 9は膜 膜補強部材接合体 1の構成部材となる膜 膜補強部材積層体の製 造方法を説明するための説明図である。
[図 10]図 10は膜-膜補強部材積層体を接合する作業を説明するための説明図であ る。
[図 11]図 11は本発明の膜—膜補強部材接合体の第 2実施形態の基本構成の一例 を示す斜視図である。
[図 12]図 12は、図 11に示した膜—膜補強部材接合体 1Aに備えられる内部補強膜 8 0の基本構成の一例を示す要部拡大正面図である。
[図 13]図 13は、特許文献 1に記載の高分子電解質形燃料電池のうちの、固体高分 子電解質膜と、ふつ素榭脂シート (保護膜)との位置関係を説明するための要部分解 斜視図である。
[図 14]図 14は、特許文献 1に記載の高分子電解質形燃料電池を、公知の薄膜積層 体の製造技術を用いて大量生産しょうと意図する場合に一般的に想定される製造法 の一例を示す説明図である。
符号の説明
[0031] 1、 1A- · '膜—膜補強部材接合体、 2、膜—触媒層接合体、 3·· '膜—電極接合体 、 4· · ·燃料電池、 10· ··高分子電解質膜、 10A- ··高分子電解質 内部補強膜複 合体、 11···第 1高分子電解質膜、 12···第 2高分子電解質膜、 22、 24···第 1膜 補強部材、 26、 28·· '第 2膜補強部材、 31· · '第 1触媒層、 32· · '第 2触媒層、 41·· '第 1ガス拡散層、 42· · '第 2ガス拡散層、 50、 52· · 'セパレーター、 60、 62· · 'ガス ケット、 70、 72、 74、 76···隙間、 78···ガス流路、 80···内部補強膜、 82···開口 部、 120A、 120B、 122、 134A、 134B…ロール、 124、 126…熱圧着機、 128、 1 30···ローラ、 130B、 130C- · ·触媒層塗工機、 132· · ·裁断機、 135A、 135B- · · 基材—膜補強部材積層体、 136A、 136B…膜補強部材、 137A、 137B…基材、 138·· ·膜補強部材切断面、 140· ··高分子電解質膜、 141·· ·膜—膜補強部材積 層体、 142Α、 142Β···膜補強部材、 143、 144、 145···積層体、 186···マスク、 1 86Α···開口部、 190···触媒層、 Dl、 D2、 D3','進行方向、 Fl···第l主面、 F2-- '第 2主面、 F3-- '第 1触媒層の主面、 F4- · '第 2触媒層の主面、 F5-- '第 1ガス拡散 層の主面、 F6-- ·第 2ガス拡散層の主面、 F1A、 F22, F24, F26, F28…主面、 P1 • · '第 1工程、 P2- · '第 2工程、 Ρ3· · '第 3工程、 Ρ4- · '第 4工程、 Ρ5· · '第 5工程。 発明を実施するための最良の形態
[0032] 以下、本発明を実施するための最良の形態について、図面を参照しながら説明す る。なお、同一または相当部分には同一符号を付し、重複する説明は省略することも ある。
[第 1実施形態] 図 1は、本発明の膜—膜補強部材接合体の第 1実施形態の基本構成の一例を示 す斜視図である。図 2は、図 1に示す膜—膜補強部材接合体 1にさらに触媒層が配 置された膜 触媒層接合体 (本発明の膜 触媒層接合体の第 1実施形態)の基本 構成の一例を示す斜視図である。また、図 3は、図 2に示す膜—触媒層接合体 2にさ らにガス拡散層が配置された膜 電極接合体 (本発明の膜 電極接合体の第 1実 施形態)の基本構成の一例を示す斜視図である。さら〖こ、図 4は、図 3に示す膜ー電 極接合体 3を具備する高分子電解質形燃料電池 (本発明の高分子電解質形燃料電 池の第 1実施形態)の基本構成の一例(単電池の部分)を示す断面図である。
[0033] まず図 1に示す第 1実施形態の膜—膜補強部材接合体 1について説明する。
[0034] 図 1に示すように、膜 膜補強部材接合体 1は、第 1膜補強部材 22及び 24と、第 2 膜補強部材 26及び 28とが、全体として高分子電解質膜 10の 4辺に沿って延在しか つ高分子電解質膜 10の 4隅の部分を挟むように(以下、「井桁組状に」という)配置さ れた構成を有している。
[0035] 即ち、図 1に示すように、膜—膜補強部材接合体 1は、互いに対向しておりかつ略 矩形状を呈する 1対の第 1主面 F1及び第 2主面 F2を有する高分子電解質膜 10と、 第 1主面 F1の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されており、第 1主面 F1よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 1膜補強部材 22 及び 24と、第 2主面 F2の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置さ れており、第 2主面 F2よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 2膜 補強部材 26及び 28とを、主として具備する構成を有して 、る。
[0036] そして、第 1実施形態の膜—膜補強部材接合体 1は、第 1主面 F1の 4辺のうちの互 いに対向する 1組の辺のみに 1対の補強部材 (第 1膜補強部材 22及び 24)が配置さ れた構成を有している。更に、膜-膜補強部材接合体 1は、第 2主面 F2の 4辺のうち の互いに対向する 1組の辺(第 2主面 F2の 4辺のうち、第 1膜補強部材 22及び 24が 配置されている第 1主面 F1の 1組の辺と略直交する一組の辺)のみに 1対の補強部 材 (第 2膜補強部材 26及び 28)が配置された構成を有して!/、る。
[0037] そのため、図 14を用いて先に説明した燃料電池の保護膜 250における R200の部 分が存在しない。従って、膜—膜補強部材接合体 1は、図 5〜図 10を用いて後述す るように、テープ状の高分子電解質膜 140にテープ状の補強部材 (第 1膜補強部材 1 42A及び 142B等)を積層して、高分子電解質膜及び補強部材の積層体 143を製 造するといつた、公知の薄膜積層体の大量生産技術を容易に適用することが可能と なる。
[0038] 従って、膜—膜補強部材接合体 1は、バッチ式の方法で、固体電解質膜 10に補強 部材 (第 1膜補強部材 22及び 24、又は、第 2膜補強部材 26及び 28)を 1つひとつ位 置決めして貼り付けるという手間の力かる複雑で高コストな製造方法を採用する必要 がなぐ低コストで容易に大量生産することが可能となる。
[0039] また、膜-膜補強部材接合体 1は、上述のように、第 1膜補強部材 22及び 24と、第 2膜補強部材 26及び 28とが、全体として高分子電解質膜 10の 4辺に沿って延在し かつ高分子電解質膜 10の 4隅の部分を挟むように (井桁組状に)配置された構成を 有している。これにより、膜—膜補強部材接合体 1は高分子電解質膜 10の破損を十 分に防止できる十分な機械的強度を有する。
[0040] 以上により、膜 膜補強部材接合体 1は、第 1膜補強部材 22及び 24と、第 2膜補 強部材 26及び 28とを高分子電解質膜 10を介して配置させた大量生産に適した構 造を有するため、この膜 膜補強部材接合体 1を用いて高分子電解質形燃料電池 を構成すれば、十分な耐久性を確保しつつ、高分子電解質形燃料電池の更なる低 コスト化、及び更なる生産性の向上を容易に図ることができる。
[0041] なお、図 1に示した膜—膜補強部材接合体 1においては、第 1膜補強部材 22及び 24の外縁と高分子電解質膜 10の外縁とがー致しており、かつ、第 2膜補強部材 26 及び 28と高分子電解質膜 10の外縁とがー致している態様について説明したが、第 1 膜補強部材 22及び 24と、第 2膜補強部材 26及び 28とは、全体として高分子電解質 膜 10の 4辺に沿って延在していればよぐ第 1膜補強部材 22及び 24、並びに、第 2 膜補強部材 26及び 28の高分子電解質膜 10上の配置位置は、この態様に限定され るものではない。
[0042] 例えば、高分子電解質膜 10の外縁が第 1膜補強部材 22の外縁よりも外に突出す るように第 1膜補強部材 22が高分子電解質膜 10上に配置されていてもよい。また、 例えば、第 1膜補強部材 22の外縁が高分子電解質膜 10の外縁よりも外に突出する ように第 1膜補強部材 22が高分子電解質膜 10上に配置されていてもよい。更に、高 分子電解質膜 10上での第 1膜補強部材 24の配置位置、高分子電解質膜 10上での 第 2膜補強部材 26の配置位置、及び、高分子電解質膜 10上での第 2膜補強部材 2 8の配置位置も、上記の高分子電解質膜 10上での第 1膜補強部材 22の配置位置と 同様にしてもよい。
[0043] 次に、膜-膜補強部材接合体 1の各構成要素について説明する。
[0044] 本発明の膜—膜補強部材接合体は、第 1主面 (又は第 2主面)の 4辺のうちの互い に対向する 1組の辺のみに第 1膜補強部材 (又は第 2膜補強部材)を配置する構成を 有するため、図 14に示した保護膜 220及び 240を主面の周縁部分のすべてに配置 する構成を有する特許文献 1に記載の高分子電解質形燃料電池よりも材料コストを 低減できる。
[0045] 高分子電解質膜 10は、プロトン伝導性を有して ヽる。高分子電解質膜 10としては、 陽イオン交換基として、スルホン酸基、カルボン酸基、ホスホン酸基、及びスルホンィ ミド基を有するものが好ましくあげられる。プロトン伝導性の観点から、高分子電解質 膜 10はスルホン酸基を有するものが特に好まし!/、。
[0046] スルホン酸基を有する高分子電解質膜を構成する榭脂としては、イオン交換容量 が 0. 5〜1. 5meqZg乾燥榭脂であることが好ましい。高分子電解質膜のイオン交 換容量が 0. 5meqZg乾燥榭脂以上であると、発電時における高分子電解質膜の 抵抗値の上昇をより十分に低減できるので好ましぐイオン交換容量が 1. 5meq/g 乾燥榭脂以下であると、高分子電解質膜の含水率が増大せず、膨潤しにくくなり、触 媒層中の細孔が閉塞するおそれがないため好ましい。以上と同様の観点から、ィォ ン交換容量は 0. 8〜1. 2meqZg乾燥樹脂が特に好ましい。
[0047] 高分子電解質としては、 CF =CF-(OCF CFX)m—Op— (CF )n—SO Hで表さ
2 2 2 3 れるパーフルォロビュル化合物(mは 0〜3の整数を示し、 nは 1〜12の整数を示し、 pは 0または 1を示し、 Xはフッ素原子またはトリフルォロメチル基を示す。 )に基づく重 合単位と、テトラフルォロエチレンに基づく重合単位とを含む共重合体であることが好 ましい。
[0048] 上記フルォロビニル化合物の好ま 、例としては、下記式 (4)〜(6)で表される化 合物が挙げられる。ただし、下記式中、 qは 1〜8の整数、 rは 1〜8の整数、 tは 1〜 3の整数を示す。
[0049] CF =CFO (CF ) q-SO H · · · (4)
2 2 3
CF =CFOCF CF (CF ) 0 (CF )r— SO H
2 2 3 2 3 …(5)
CF =CF (OCF CF (CF ) )tO (CF ) -SO H
2 2 3 2 2 3 …(6)
第 1膜補強部材 22及び第 1膜補強部材 24は、高分子電解質膜 10の第 1主面 F1 の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されている。また、第 1膜補 強部材 22及び第 1膜補強部材 24は、第 1主面 F1よりも小さい略長方形の主面 F22 及び F24を有している。これらの第 1膜補強部材 22及び第 1膜補強部材 24が高分 子電解質膜 10に配置されることにより、高分子電解質形燃料電池 4 (後述の図 4参照 )を構成した際に、締結圧力が力かることなどによる高分子電解質膜 10の破損が十 分に防止される。
[0050] 第 2膜補強部材 26及び第 2膜補強部材 28は、高分子電解質膜 10の第 2主面 F2 の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されている。また、第 2膜補 強部材 26及び第 1膜補強部材 28は、第 2主面 F2よりも小さい略長方形の主面 F26 及び F28を有して 、る。これらの第 2膜補強部材 26及び第 2膜補強部材 28が高分 子電解質膜 10に配置されることにより、高分子電解質形燃料電池 4を構成した際に 、締結圧力が力かることなどによる高分子電解質膜 10の破損が十分に防止される。
[0051] そして、図 1に膜-膜補強部材接合体 1においては、 1対の第 1膜補強部材 22及 び 24と、 1対の第 2膜補強部材 26及び 28とが、高分子電解質膜 10を介して井桁組 み状となるように互いに配置されている。第 1膜補強部材 22及び 24と、第 2膜補強部 材 26及び 28との位置関係をより具体的に説明すると、膜—膜補強部材接合体 1を 第 1主面の法線方向から見た場合、第 1膜補強部材 22及び 24と、第 2膜補強部材 2 6及び 28とは、第 1膜補強部材 22の主面 F22の長手方向 (長辺方向)及び第 1膜補 強部材 24の主面 F24の長手方向(長辺方向)と、第 2膜補強部材 26の主面の F26 の長手方向(長辺方向)及び第 2膜補強部材 28の主面 F28の長手方向(長辺方向) とが、互いに略垂直となるように配置 (高分子電解質膜 10が互いの間に配置された 状態で互いに略垂直となるように配置)されて 、る。 [0052] また、第 1膜補強部材 22及び第 1膜補強部材 24、又は、第 2膜補強部材 26及び第 2膜補強部材 28を構成する材料としては、耐久性の観点から、ポリエチレンナフタレ ート、ポリテトラフルォロエチレン、ポリエチレンテレフタレート、フルォロエチレンープ ロピレン共重合体、テトラフルォロエチレン パーフルォロアルコキシエチレン共重 合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエー テルエーテルケトン、ポリエーテルスルフォン、ポリフエ-レンスルフイド、ポリアリレート 、ポリスルフイド、ポリイミド、及び、ポリイミドアミド力 なる群より選択される少なくとも 1 種の合成樹脂であることが好まし 、。
[0053] さらに、第 1膜補強部材 22の厚さ、第 1膜補強部材 24の厚さ、第 2膜補強部材 26 の厚さ、及び第 2膜補強部材 28の厚さは、本発明の効果を得られる範囲であれば特 に限定されないが、本発明の効果をより確実に得る観点力もは、第 1膜補強部材 22 の厚さと第 1膜補強部材 24の厚さとは等しいことが好ましい。同様の観点から、第 2膜 補強部材 26の厚さと第 2膜補強部材 28の厚さとは等しいことが好ましい。
[0054] 次に、図 2に示す第 1実施形態の膜—触媒層接合体 2について説明する。
[0055] 膜-触媒層接合体 2は、第 1主面 F1の略中央に第 1触媒層 31が配置され、さらに 第 2主面 F2の略中央に第 2触媒層 32 (図 4参照)が配置されていること以外は、図 1 に示した膜—膜補強部材接合体 1と同様の構成を有している。
[0056] 製造の容易さの観点から、第 1触媒層 31の厚さは、第 1膜補強部材 22の厚さ及び 第 1膜補強部材 24の厚さ以下であることが好ましぐ等しいことがより好ましい。また、 同様の観点から、第 2触媒層 32の厚さは、第 2膜補強部材 26及び第 2膜補強部材 2 8の厚さ以下であることが好ましぐ等し 、ことがより好まし 、。
[0057] 第 1触媒層 31の構成及び第 2触媒層 32の構成は、本発明の効果を得られるもので あれば特に限定されず、公知の燃料電池に搭載されているガス拡散電極の触媒層と 同様の構成を有していてもよい。また、第 1触媒層 31の構成及び第 2触媒層 32の構 成は、同一であってもよぐ異なっていてもよい。
[0058] 例えば、第 1触媒層 31の構成及び第 2触媒層 32の構成としては、電極触媒が担持 された導電性炭素粒子と、陽イオン (水素イオン)伝導性を有する高分子電解質とを 含む構成を有していてもよぐ更に、ポリテトラフルォロエチレンなどの撥水材料を更 に含む構成を有していてもよい。尚、高分子電解質としては、上述した高分子電解質 膜 10の構成材料と同種のものを使用してもよく異なる種類のものを使用してもよい。 高分子電解質としては、高分子電解質膜 10の構成材料として記載したものを使用す ることがでさる。
[0059] 上記の電極触媒は、金属粒子 (例えば貴金属からなる金属粒子)からなり、導電性 炭素粒子 (粉末)に担持されて用いられる。当該金属粒子は、特に限定されず種々 の金属を使用することができるが、電極反応活性の観点ら、白金、金、銀、ルテユウ ム、ロジウム、パラジウム、オスミウム、イリジウム、クロム、鉄、チタン、マンガン、コバル ト、ニッケル、モリブデン、タングステン、ァノレミ-ゥム、ケィ素、亜鉛およびスズからな る群より選択される少なくとも 1種であることが好ましい。なかでも、白金および白金と の合金が好ましぐ白金とルテニウムの合金力 アノードにおいては触媒の活性が安 定することから特に好ま 、。
[0060] また、電極触媒の粒子は平均粒径 l〜5nmであることがより好ましい。平均粒径 In m以上の電極触媒は工業的に調製が容易であるため好ましぐまた、 5nm以下であ ると、電極触媒質量あたりの活性をより十分に確保しやすくなるため、燃料電池のコ ストダウンにつながり好ましい。
[0061] 上記の導電性炭素粒子は比表面積が 50〜1500m2/gであることが好ましい。比 表面積が 50m2Zg以上であると、電極触媒の担持率を上げることが容易であり、得ら れた第 1触媒層 31及び第 2触媒層 32の出力特性をより十分に確保できることから好 ましぐ比表面積が 1500m2/g以下であると、十分な大きさの細孔をより容易に確保 できるようになりかつ高分子電解質による被覆がより容易となり、第 1触媒層 31及び 第 2触媒層 32の出力特性をより十分に確保できることから好ましい。上記と同様の観 点から、比表面積は 200〜900m2Zgが特に好まし 、。
[0062] また、導電性炭素粒子は、その平均粒径が 0. 1〜1. 0 μ mであることが好ましい。
0.: L m以上であると、第 1触媒層 31及び第 2触媒層 32中のガス拡散性をより十分 に確保し易くなり、フラッデイングをより確実に防止できるようになるため好ましい。また 、導電性炭素粒子の平均粒径が 1. 0 m以下であると、高分子電解質による電極触 媒の被覆状態をより容易に良好な状態とし易くなり、高分子電解質による電極触媒の 被覆面積をより十分に確保し易くなるため、十分な電極性能をより確保し易くなり好ま しい。
[0063] 第 1触媒層 31及び第 2触媒層 32は、例えば、公知の燃料電池のガス拡散電極の 触媒層の製造方法を用いて形成することができる。例えば、第 1触媒層 31及び第 2 触媒層 32の構成材料 (例えば、電極触媒が担持された導電性炭素粒子と、高分子 電解質)と、分散媒と、を少なくとも含む液 (触媒層形成用インク)を調製し、これを用 いて作製することができる。
[0064] 次に、図 3に示す第 1実施形態の膜—電極接合体 3について説明する。
[0065] 膜—電極接合体 3は、第 1触媒層 31を覆うようにして略矩形状の主面 F5を有する 第 1ガス拡散層 41が配置され、さらに第 2触媒層 32を覆うようにして略矩形状の主面 F6を有する第 2ガス拡散層 42が配置されていること以外は、図 2に示した膜—触媒 層接合体 2と同様の構成を有している。
[0066] 第 1ガス拡散層の主面 F5の面積は、第 1触媒層の主面 F3の面積以上であることが 好ましぐ第 1触媒層の主面 F3の面積よりも大きいことがより好ましい。さらに、第 2ガ ス拡散層の主面 F6の面積は、第 2触媒層の主面 F4の面積以上であることが好ましく 、第 2触媒層の主面 F4の面積よりも大き 、ことがより好ま 、。
[0067] さらに、第 1ガス拡散層の主面 F5の面積が第 1触媒層の主面 F3の面積よりも大きく 、かつ、第 2ガス拡散層の主面 F6の面積が第 2触媒層の主面 F4の面積よりも大きい 場合、略矩形の主面 F5の 4辺のうちの互いに対向する 1組の辺であって、第 1膜補 強部材 22及び第 1膜補強部材 24に最も近い位置に配置される 1組の辺を含む第 1 ガス拡散層の端部は、第 1膜補強部材 22の主面 F22及び第 1膜補強部材 24の主面 F24上に載置された状態となっていることが好ましい。また、略矩形の主面 F6の 4辺 のうちの互いに対向する 1組の辺であって、第 2膜補強部材 26及び第 2膜補強部材 28に最も近い位置に配置される 1組の辺を含む第 2ガス拡散層の端部は、第 2膜補 強部材 26の主面 F26及び第 2膜補強部材 28の主面 F28上に載置された状態となつ ていることが好ましい。第 1ガス拡散層 41及び第 2ガス拡散層 42を上記の様に配置 することにより、膜—電極接合体 3の締結時において、ガス拡散層 41の端部及びガ ス拡散層 42の端部が、高分子電解質膜 10に直接接触することがなぐ高い耐久性 をより確実に得ることができる。
[0068] 第 1ガス拡散層 41の構成及び第 2ガス拡散層 42の構成は、本発明の効果を得ら れるものであれば特に限定されず、公知の燃料電池に搭載されて ヽるガス拡散電極 のガス拡散層と同様の構成を有していてもよい。また、第 1ガス拡散層 41の構成及び 第 2ガス拡散層 42の構成は、同一であってもよぐ異なっていてもよい。
[0069] 例えば、第 1ガス拡散層 41及び第 2ガス拡散層 42としては、ガス透過性を持たせる ために、高表面積のカーボン微粉末、造孔材、カーボンペーパーまたはカーボンクロ スなどを用いて作製された、多孔質構造を有する導電性基材を用いてもよい。また、 十分な排水性を得る観点から、フッ素榭脂を代表とする撥水性高分子などを第 1ガス 拡散層及び第 2ガス拡散層 42の中に分散させてもよい。さらに、十分な電子伝導性 を得る観点から、カーボン繊維、金属繊維またはカーボン微粉末などの電子伝導性 材料で第 1ガス拡散層 41及び第 2ガス拡散層 42を構成してもよい。
[0070] また、第 1ガス拡散層 41と第 1触媒層 31との間、及び、第 2ガス拡散層 42と第 2触 媒層 32との間には、撥水性高分子とカーボン粉末とで構成される撥水カーボン層を 設けてもよい。これにより、膜—電極接合体における水管理 (膜—電極接合体の良好 な特性維持に必要な水の保持、及び、不必要な水の迅速な排水)をより容易かつより 確実に行うことができる。
[0071] 次に、図 4に示す第 1実施形態の燃料電池 4について説明する。
[0072] 高分子電解質形燃料電池 4は、主として、図 3に示した膜 電極接合体 3と、ガスケ ット 60及びガスケット 62と、セパレーター 50及びセパレーター 52とから構成されて!ヽ る。
[0073] ガスケット 60及びガスケット 62は、膜—電極接合体 3に供給される燃料ガスおよび 酸化剤ガスの外部へのリーク防止や混合を防止するため、膜—電極接合体 3の周囲 に配置される。
[0074] 膜—電極接合体 3の外側には、膜—電極接合体 3を機械的に固定するための一対 のセパレーター 50及びセパレーター 52が配置されている。セパレーター 50の、膜一 電極接合体 3の第 1ガス拡散層 41 (第 1ガス拡散層 41の外側の主面 F5)に接触する 内面には、酸化剤ガス又は燃料ガスを膜—電極接合体 3に供給し、かつ、電極反応 生成物、未反応の反応ガスを含むガスを反応場から膜 電極接合体 3の外部に運 び去るためのガス流路 78が形成されている。また、セパレーター 52の、膜一電極接 合体 3の第 2ガス拡散層 42 (第 2ガス拡散層 42の外側の主面 F6)に接触する内面に は、膜 電極接合体 3に供給し、かつ、電極反応生成物、未反応の反応ガスを含む ガスを反応場カゝら膜—電極接合体 3の外部に運び去るためのガス流路 78が形成さ れている。
[0075] ガス流路 78はセパレーター 50及びセパレーター 52とは別に設けることもできる力 図 4の燃料電池 4においては、セパレーター 50の内面(第 1ガス拡散層 41の外側の 主面 F5に接する面)及びセパレーター 52の内面(第 2ガス拡散層 42の外側の主面 F 6に接する面)に設けられた溝力もなるガス流路 78を有する構成が採用されている。
[0076] また、セパレーター 50は、膜 電極接合体 3と反対の側の外面に、切削加工など により設けられた溝力 なる冷却水流路(図示せず)が形成された構成を有していて もよい。更に、セパレーター 52も、膜 電極接合体 3と反対の側の外面に、切削加工 などにより設けられた溝からなる冷却水流路(図示せず)が形成された構成を有して いてもよい。
[0077] このように、 1対のセパレーター 50及びセパレーター 52の間に膜 電極接合体 3を 固定し、例えば、セパレーター 50のガス流路 78に燃料ガスを供給し、セパレーター 5 2のガス流路 78に酸化剤ガスを供給することで、数十から数百 mAZcm2の実用電 流密度通電時において一つの燃料電池 4で 0. 7〜0. 8V程度の起電力を発生させ ることができる。ただし、通常、高分子電解質形燃料電池を電源として使うときは、数 ボルトから数百ボルトの電圧が必要とされるため、実際には、燃料電池 4を必要とする 個数だけ直列に連結し、いわゆるスタック(図示せず)として使用する。例えば、複数 の燃料電池 4を積層した積層体を、対向配置された 2枚のエンドプレートの間に配置 し、蹄結した状態をしたスタックとして使用する。
[0078] 次に、図 1に示した膜 膜補強部材接合体 1、図 2に示した膜 触媒層接合体 2及 び図 3に示した膜 電極接合体 3の製造方法の一例 (本発明の膜 膜補強部材接 合体の製造方法の好適な実施形態、本発明の膜 触媒層接合体の製造方法の好 適な実施形態、本発明の膜 電極接合体の製造方法の好適な実施形態)について 図面を用いて説明する。
[0079] 図 5は、図 1に示した膜 膜補強部材接合体 1、図 2に示した膜 触媒層接合体 2 及び図 3に示した膜 電極接合体 3を製造するための一連の工程の一部を概略的 に示す説明図である。
[0080] 図 1に示した膜 膜補強部材接合体 1、図 2に示した膜 触媒層接合体 2及び図 3 に示した膜—電極接合体 3は、図 5に示す一連の第 1工程 Pl、第 2工程 P2、第 3ェ 程 P3、第 4工程 P4及び第 5工程 P5を経て低コストで容易に大量生産することができ る。
[0081] まず、公知の薄膜製造技術を用いて、テープ状の高分子電解質膜 140 (切断後、 図 1の高分子電解質膜 10となる部材)を卷回した高分子電解質ロール 122と、テー プ状の膜補強部材 142A (切断後、図 1の第 1膜補強部材 22となる部材)を卷回した 膜補強部材ロール 120Aと、テープ状の膜補強部材 142B (切断後、図 1の第 1膜補 強部材 24となる部材)を卷回した膜補強部材ロール 120Bとを製造する。
次に、高分子電解質膜 140の側端部に膜補強部材 142Aと膜補強部材 142Bとを 接合する(第 1工程 Pl)。この第 1工程 PIについて図面を用いて説明する。図 6は、 図 5における第 1工程 P1の作業を説明するための説明図である。
[0082] 図 5及び図 6に示すように、ロール 120A力も膜補強部材 142Aを引き出し、ロール 120Bから膜補強部材 142Bを引き出し、ロール 122から高分子電解質膜 140を引き 出し、これらを一対のローラ 124及びローラ 126を有する熱圧着機(図示せず)内に 高分子電解質膜 140の側端部に膜補強部材 142A及び膜補強部材 142Bが載置さ れるようにして誘導する。図 6に示すように、高分子電解質膜 140、膜補強部材 142 A及び膜補強部材 142Bは、熱圧着機内のローラ 124とローラ 126との間を進行方 向 D1に進む過程において、高分子電解質膜 140の側端部に膜補強部材 142A及 び膜補強部材 142Bが載置された状態で接合され、テープ状の膜-膜補強部材積 層体 141となる。ここで、ロール 120Aとロール 120Bとの間の幅は、第 1触媒層 31の 大きさに対応するように調節されて ヽる。
この第 1工程 P 1においては、図 14を用 、て先に説明した燃料電池の保護膜 250 における R200の部分(張力が力かると浮き上がりやすい、張力が力かる方向と略垂 直となる部分)が存在しないため、高分子電解質膜 140、膜補強部材 142A及び膜 補強部材 142Bは、熱圧着機内のローラ 124とローラ 126との間を進行方向 D1に進 む過程で、高分子電解質膜 140に対する膜補強部材 142A及び膜補強部材 142B の位置ずれやはがれの発生を十分に抑制することができる。
次に、積層体 141の裏面に膜補強部材 136A (切断後、図 1の第 2膜補強部材 26 となる部材)及び膜補強部材 136B (切断後、図 1の第 2膜補強部材 28となる部材)を 接合する(第 2工程 P2)。この第 2工程 P2について図面を用いて説明する。図 7は、 図 5における第 2工程 P2の作業を説明するための説明図である。
[0083] 図 5及び図 7に示すように、第 1工程 P1で得られた積層体 141はローラ 128及び口 ーラ 130の駆動によりさらに第 2工程 P2のエリアまで進行方向 D1に進んで、ー且停 止する。図 7に示すように、第 2工程 P2の行われるエリアには、積層体 141の裏面に 、テープ状の基材 137A上にテープ状の膜補強部材 136Aが積層された基材—補 強部材積層体 135Aが卷回されたロール 134Aと、テープ状の基材 137B上にテー プ状の膜補強部材 136Bが積層された基材—補強部材積層体 135Bが卷回された ロール 134Bとが配置されている。
[0084] より具体的に説明すると、ロール 134Aは、当該ロール 134Aから引き出される積層 体 135Aの進行方向 D2と積層体 141の進行方向 D1とが略垂直となり、かつテープ 状の膜補強部材 136Aが積層体 141の高分子電解質膜 140の裏面 (膜補強部材 14 2A及び膜補強部材 142Bが配置されて ヽな 、面)に接触するように配置されて!ヽる 。さらに、ロール 134Bは、当該ロール 134Bから引き出される積層体 135Bの進行方 向 D3と積層体 141の進行方向 D1とが略垂直となり、かつテープ状の膜補強部材 13 6Bが積層体 141の高分子電解質膜 140の裏面 (膜補強部材 142A及び膜補強部 材 142Bが配置されて ヽな 、面)に接触するように配置されて!、る。
[0085] このエリアにおいて、積層体 141が停止すると同時に、ロール 134Aから引き出され た基材膜—膜補強部材積層体 135Aとロール 134Bから引き出された基材膜—膜補 強部材積層体 135Bは、膜補強部材 136Aと膜補強部材 136Bが高分子電解質膜 1 40の裏面に接触するようにして停止する。次に、図示しない押圧手段により、高分子 電解質膜 140と膜補強部材 136Aとの接触部分、及び高分子電解質膜 140と膜補 強部材 136Bとの接触部分が位置ずれを起こさないようにして、基材膜—膜補強部 材積層体 135Aと基材膜—膜補強部材積層体 135Bと積層体 141とが固定される。
[0086] 次に、図示しない二つのカッターにより、積層体 141の幅にあわせて(高分子電解 質膜 140に接触する膜補強部材 136Aの部分、及び、高分子電解質膜 140に接触 する膜補強部材 136Bの部分が残るようにして)、基材—膜補強部材積層体 135Aの うちの膜補強部材 136A及び基材膜—膜補強部材積層体 135Bのうちの膜補強部 材 136Bが切断される。このとき、二つのカッターの切り込み深さは、基材膜—膜補強 部材積層体 135Aのうちの基材 137A及び基材膜—膜補強部材積層体 135Bのうち の基材 137Bが切断されない深さに調節されている。また、基材 137A及び基材 137 Bも、この 2つのカッターにより切断されない十分な機械的強度 (硬さ、柔軟性)を有し ている。このようにして、積層体 141の裏面に第 2膜補強部材 26及び第 2膜補強部材 28が接合された積層体 143が得られる。ここで、ロール 134Aとロール 134Bとの間 の幅は、第 2触媒層 32の大きさに対応するように調節されている。なお、 2つのカツタ 一でなく 1つのカッターで切断する構成としてもよ!、。
[0087] さらに、第 2工程 P2では 136Aと 136Bを高分子電解質膜 140に十分に一体ィ匕させ るための処理が施される。例えば、二つのカッターで切断する際に、押圧手段により さらに加熱処理し、 136Aと 136Bを高分子電解質膜 140に融着させる処理を行って もよい。また、例えば高分子電解質膜 140に接触させる前の 136Aと 136Bの表面( 接触面となる部分)に、接着剤を塗工する前処理を行ってもよい。この前処理をする 場合、上記の融着させる処理を行ってもよぐ融着させる処理を行わずに、押圧手段 による加圧処理のみ行ってもよい。さらに、接着剤としては、電池特性を低下させな いものであることが好ましい。例えば、高分子電解質膜 140と同種または異種 (但し、 高分子電解質膜 140と十分に一体化可能な親和性を有するもの)の高分子電解質 材料 (例えば、先に高分子電解質膜 10の構成材料として例示したもの)を分散媒又 は溶媒に含有させた液を用いてもょ 、。
[0088] この第 2工程 P1においては、図 14を用いて先に説明した燃料電池の保護膜 250 における R200の部分(張力が力かると浮き上がりやすい、張力が力かる方向と略垂 直となる部分)が存在しない。具体的に説明すると、第 2工程 P1において積層体 141 の裏面に接合される第 2膜補強部材 26及び第 2膜補強部材 28は、張力がかかる方 向と略垂直となる部分ではあるが、隣り合う第 2膜補強部材 26及び第 2膜補強部材 2 8同士は上記 R200の部分と異なり互いに直接結合しておらず、張力が力かっても浮 き上がりにくい。そのため、第 2工程 P1においても、進行方向 D1に進む過程で、高 分子電解質膜 140に対する第 2膜補強部材 26及び第 2膜補強部材 28の位置ずれ やはがれの発生を十分に抑制することができる。図 14に示した R200の部分は、隣り 合う R200の部分同士が同一の保護膜 250の一部として直接結合した構成となって いるため浮き上がりやすい。
次に、積層体 143の形成後、積層体 143の膜補強部材 142A及び膜補強部材 142 Bの形成されている側の高分子電解質膜 140の主面 F1A (切断後、図 1の第 1主面 F 1となる面)に触媒層 190 (切断後、図 2の第 1触媒層 31となるもの)を形成する(第 3 工程 P3)。この第 3工程 P3について図面を用いて説明する。図 8は、図 5における第 3工程 P3の作業を説明するための説明図である。
図 5及び図 8に示すように、第 2工程 P2で得られた積層体 143はローラ 128及びロー ラ 130の駆動によりさらに第 3工程 P3のエリアまで進行方向 D1に進んで、ー且停止 する。図 8に示すように、第 3工程 P3の行われるエリアには、このエリアで停止した積 層体 143を、その裏面(上記高分子電解質膜 140の主面 F1Aの反対側の面)力も支 える図示しない支持手段 (例えば支持台)と、高分子電解質膜 140の主面 F1Aの膜 補強部材 142Aと膜補強部材 142Bとの間に触媒層 190を形成するためのマスク 18 6が配置されている。
このマスク 186には、開口部 186Aが設けられている。この開口部 186Aの形状と面 積は、触媒層 190の形状と面積に対応するように設定されている。更に、第 3工程の エリアの上方には触媒層形成装置 130Cが配置されている。この触媒層形成装置 13 0Cには触媒層形成用インクを塗工又はスプレーするなどして、マスク 186Aの開口 部 186Aに対応する高分子電解質膜 140の主面 F1Aの部分に触媒層 190を形成す るための機構が備えられている。この機構は、公知の燃料電池のガス拡散層の触媒 層を形成するために採用されている機構を採用することができる。例えば、スプレー 法、スピンコート法、ドクターブレード法、ダイコート法、スクリーン印刷法に基づいて 設計された機構を採用することができる。
次にこの第 3工程 P3の作業の流れの一例について詳細に説明する。まず、この第 3 工程 P3のエリアで停止した積層体 143が、マスク 186Aと支持台(図示せず)との間 に挟持されるようにして固定される。次に、触媒層形成装置 130Cが作動し、マスク 1 86の開口部 186Aの上方力も触媒層形成用インクを塗工又はスプレーするなどして 、マスク 186Aの開口部 186Aに対応する高分子電解質膜 140の主面 F1Aの部分 に触媒層 190が形成され、触媒層 190が形成された積層体 144が得られる。次に、 触媒層 190の形成後、マスク 186Aと支持台(図示せず)とが積層体 144からはなれ る。次に、ローラ 128及びローラ 130の駆動により、積層体 144は進行方向 D1に沿つ て移動する。
次に、積層体 144の形成後、積層体 144の高分子電解質膜 140の触媒層 190が形 成されていない側の主面 (切断後、図 1の第 2主面 F2となる面,図示せず)に触媒層 (切断後、図 4の第 2触媒層 32となるもの,説明の便宜上以下、第 2触媒層 32という) を形成する(第 4工程 P4)。この第 4工程 P4について図 5を用いて説明する。
図 5に示すように、第 3工程 P3で得られた積層体 144はローラ 128及びローラ 130の 駆動によりさらに第 4工程 P4のエリアまで進行方向 D1に進んで、ー且停止する。ここ で、図 5に示すように、積層体 144はローラ 128のところで折り返えされ、高分子電解 質膜 140の触媒層 190が形成されて 、な 、側の主面 F1B (図示せず)が上方を向き 、高分子電解質膜 140の触媒層 190が形成されている側の主面 F1Aとが下方を向く ように反転される。
第 4工程 P4の行われるエリアには、このエリアで停止した積層体 144を、その裏面( 上記高分子電解質膜 140の主面 F1A)力 支える図示しな!、支持手段 (例えば支持 台)と、高分子電解質膜 140の主面 F1Bの第 2膜補強部材 26と第 2膜補強部材 28と の間に第 2触媒層 32を形成するためのマスク(図示せず)が配置されている。
このマスクには、先に述べたマスク 186の開口部 186Aと同様の開口部(図示せず) が設けられている。この開口部の形状と面積は、第 2触媒層 32の形状と面積に対応 するように設定されている。更に、図 5に示すように、第 4工程のエリアの上方には先 に述べた触媒層形成装置 130Cと同様の機構を有する触媒層形成装置 130Bが配 置されている。
次にこの第 4工程 P4の作業の流れも先に述べた第 3工程 P3と同様である。第 4工程 P4により、積層体 144上に第 2触媒層 32が更に形成された積層体 145が得られる。 次に、ローラ 128及びローラ 130の駆動により、積層体 145は進行方向 D1に沿って 移動する。
次に、図 5に示すように、積層体 145を裁断機構 132を有する裁断装置内に導入し、 予め設定されたサイズで切断し、図 2に示す膜—触媒層接合体 2を得る (第 5工程 P5 )。
なお、触媒層 190及び第 2触媒層 32は適度な柔軟性を有するようにその成分組成、 乾燥の度合いなどを調節し、ローラ 128及びローラ 130のところで折り返される際にも 、高分子電解質膜 140から剥がれ落ちないための処置が施されている。また、触媒 層 190及び第 2触媒層 32をそれぞれ高分子電解質膜 140上に形成するごとに、乾 燥処理 (例えば加熱処理、送風処理及び脱気処理のうちの少なくとも 1つの処理)を 適宜行ってもよい。
次に、膜—触媒層接合体 2に第 1ガス拡散層 41と第 2ガス拡散層 42とを接合させ、 図 3に示した膜—電極接合体 3を得る。より具体的には、積層体 145を裁断した後に 得られる膜 触媒層接合体 2の大きさに対応する適度な大きさの第 1ガス拡散層 41 及び第 2ガス拡散層 42を用意しておき、膜-触媒層接合体 2に第 1ガス拡散層 41及 び第 2ガス拡散層 42を接合してもよ ヽ。
また、テープ状のガス拡散層(例えばカーボンクロスなど)を卷回したガス拡散層卷回 ロール(図示せず)を準備しておき、図 6に示した第 1工程と同様のはり合わせ機構を 有する装置を用いて第 4工程 P4後に得られる帯状の積層体 145に対してガス拡散 層卷回ロール力 引き出したテープ状のガス拡散層を一体化させ、その後、第 5工程
P5と同様の裁断作業を行い、膜電極接合体 3を連続的に形成してもよい。この場合 、更に、撥水カーボン層を形成する場合には、撥水カーボン層形成用インクを用いる こと以外は第 3工程 P3に用いた触媒層形成装置 130Cと同様の機構を有する撥水力 一ボン層形成装置(図示せず)を用いてもよい。この場合、撥水カーボン層形成装置 を、はり合わせる前の帯状の積層体 145又はテープ状のガス拡散層に撥水カーボン 層形成用インクを塗工又はスプレーできるような位置に配置すればよい。また、撥水 カーボン層を形成する場合には、撥水カーボン層を設定された位置に連続的に予め 形成したテープ状のガス拡散層のロールを用いてもよ!、。
なお、先に述べた第 2工程 P2の作業を、第 3工程 P3の作業の後に行うように製造 プロセスを設計してもよい。また、第 2工程 P2のエリア内で、第 2工程 P2の作業を終 了後、連続的に第 3工程 P3の作業を行ってもよい。
次に、図 1に示した膜—膜補強部材接合体 1、図 2に示した膜—触媒層接合体 2及 び図 3に示した膜 電極接合体 3の製造方法の他の一例について図面を用いて説 明する。
図 9は、膜—膜補強部材接合体 1の構成部材となる膜—膜補強部材積層体の製造 方法を説明するための説明図である。図 10は、 2つの膜—膜補強部材積層体を接 合する作業を説明するための説明図である。
まず、図 9に示すように、 3本以上のテープ状の膜補強部材 (切断後、図 1の第 2膜補 強部材 26及び 28となる部材) 100, 102, 104, 106…が高分子電解質膜 110の一 方の主面状に、互いが略平行となるように一定の間隔で配置された構成を有する膜 —膜補強部材積層体 100Aを作成する。膜-膜補強部材積層体 100Aは、例えば、 図 6を用いて先に説明した第 1工程と同様の方法により作成することができる。なお、 3本以上のテープ状の膜補強部材 100, 102, 104, 106· ··のうちの隣り合う 2本の 間隔は、後に形成する触媒層 (第 2触媒層 32)の大きさに対応するように調節されて いる。
次に、膜-膜補強部材積層体 100Aをテープ状の膜補強部材 100の長手方向に略 垂直な方向から切断する(例えば、図 9では、このような方向から切断する切断線を 点線 110A、 110B、 110Cとして例示する)。これにより、複数のテープ状の膜—膜 補強部材積層体 108Bが得られる。図 9に示すように、このテープ状の膜—膜補強部 材積層体 108Bにある複数の膜補強部材 (切断後、図 1の第 2膜補強部材 26及び 2 8となる部材)はそれぞれの長手方向が、本体のテープ状の膜 膜補強部材積層体 108Bの長手方向と略垂直となるように配置されて 、る。次にこのようにして得られた テープ状の膜-膜補強部材積層体 108Bを卷回しロール(図示せず)にする。 一方、図 6に示した第 1工程と同様の方法により、テープ状の高分子電解質膜 140A の側端部に膜補強部材 142A及び膜補強部材 142Bが載置された状態で接合され た膜-膜補強部材積層体 108A (図 10参照)を作製する。そして、得られた、膜-膜 補強部材積層体 108Aを卷回しロール(図示せず)にする。なお、膜-膜補強部材 積層体 108Aの幅 (短手方向の幅)と膜-膜補強部材積層体 108Bの幅 (短手方向 の幅)は一致するように調節しておく。
次に、図 10に示すように、膜-膜補強部材積層体 108Aと、膜-膜補強部材積層体 108Bとを接合する。より具体的説明すると、それぞれのロール力 膜—膜補強部材 積層体 108Aと膜—膜補強部材積層体 108Bとを引き出し、これらを一対のローラ 17 0及びローラ 172を有する熱圧着機(図示せず)内に、重ね合わせるようにして誘導 する。このとき、膜—膜補強部材積層体 108Aの高分子電解質膜 140Aの裏面 (膜 補強部材の配置されていない側の面)と、膜-膜補強部材積層体 108Bの高分子電 解質膜 140Aの裏面 (膜補強部材の配置されて 、な 、側の面)とが接合されるように する。更にこのとき、膜—膜補強部材積層体 108Aの主面の法線方向から膜—膜補 強部材積層体 108A及び膜-膜補強部材積層体 108Bをみたときに、膜-膜補強 部材積層体 108Aから膜—膜補強部材積層体 108Bの一部がはみ出して見えない ように、両者を重ね合わせる。
図 10に示すように、膜—膜補強部材積層体 108A及び膜—膜補強部材積層体 108 は、熱圧着機内のローラ 170とローラ 172との間を進行方向 D1に進む過程において 、上述した状態で接合され、テープ状の膜-膜補強部材積層体 141となる。
テープ状の膜-膜補強部材積層体 141を製造した後は、例えば、先に述べた方法と 同様の方法により、図 2に示した膜 触媒層接合体 2及び図 3に示した膜 電極接 合体 3を製造することができる。
更に、膜 電極接合体 3を用いて図 4に示した高分子電解質形燃料電池 4を作製す る方法は特に限定されず、公知の高分子電解質形燃料電池の製造技術を採用する ことができる。
[第 2実施形態]
次に、本発明の膜—膜補強部材接合体の第 2実施形態について図面を参照しなが ら説明する。図 11は、本発明の膜—膜補強部材接合体の第 2実施形態の基本構成 の一例を示す斜視図である。
[0090] 図 11に示す第 2実施形態の膜 膜補強部材接合体 1 Aは、後述する高分子電解 質膜 10Aを搭載していること以外は、第 1実施形態に示す図 1の膜—膜補強部材接 合体 1と同様の構成を有して 、る。
[0091] 次に、高分子電解質膜 10Aについて説明する。図 11に示すように、高分子電解質 膜-内部補強膜複合体 10Aは、互いに対向配置される第 1高分子電解質膜 11と第 2高分子電解質膜 12の間に内部補強膜 80が配置された 3層構造を有する膜である 。第 1高分子電解質膜 11と第 2高分子電解質膜 12は図 1に示した高分子電解質膜 1 0と同じ構成を有する膜である。次に、図 11に示す内部補強膜 80について図 12を 用いて詳しく説明する。図 12は、図 11に示した膜—膜補強部材接合体 1Aに備えら れる内部補強膜 80の基本構成の一例を示す要部拡大正面図である。
内部補強膜 80は榭脂製のフィルムで構成され、図 12に示すように、厚み方向に貫 通する複数の開口部(貫通孔) 82を有する。開口部 82の中には高分子電解質膜 11 及び高分子電解質膜 12と同成分又は異成分の高分子電解質が充填されている。内 部補強膜 80の主面に対する開口部 82の面積の割合(開口度)は、 50%〜90%で あることが好ましい。開口度を 50%以上とすると、十分なイオン導電性を容易に得る ことができるようになる。一方、開口度を 90%以下とすると、内部補強膜 80の十分な 機械的強度を容易に得ることができる。
[0092] さらに、内部補強膜 80としては、延伸加工された多孔質フィルム(図示せず:例えば 、ジャパンゴァテックステップ社製'商品名「ゴァセレクト(11)」)であってもよい。このよ うに、内部補強膜 80の開口部 82としては、非常に微細な細孔 (例えば細孔径が数十 m)であってもよい。この場合であっても、上述と同様の理由により、開口度(多孔 度)は 50%〜90%であることが好ましい。
上述の内部補強膜 80を構成する榭脂としては、化学的安定性および機械的安定性 の観点から、ポリテトラフルォロエチレン、フルォロエチレン プロピレン共重合体、テ トラフルォロエチレン パーフルォロアルコキシエチレン共重合体、ポリエチレン、ポ リプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、 ポリエーテルスルフォン、ポリフエ-レンスルフイド、ポリアリレート、ポリスルフイド、ポリ イミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、及び、ポリイミドアミド力 らなる群より選択される少なくとも 1種の合成樹脂であることが好ま U、。
[0093] また、内部補強膜 80の構成としては、先に述べた高分子電解質膜 10の内部に、繊 維状の補強体粒子及び球状の補強体粒子のうちの少なくとも一方を含有させること により、上述の開口部を設けた構成としてもよい。上記の補強体粒子の構成材料とし ては、内部補強膜 80を構成する榭脂が挙げられる。
[0094] 高分子電解質膜 10Aの製造方法は特に限定されるものではなぐ公知の薄膜製造 技術を用いて製造することができる。膜—膜補強部材接合体 1Aは、この高分子電解 質膜 10Aを用いること以外は先に述べた膜-膜補強部材接合体 1と同様の方法によ り製造することがでさる。
[第 3実施形態]
本発明の第 3実施形態は、第 1実施形態の膜 膜補強部材接合体 1の製造方法に おいて、図 7に示す第 2工程 P2を手作業で行うものである。つまり、本実施形態では 、図 7において、高分子電解質膜 140の一方の主面の側端部に膜補強部材 142A 及び膜補強部材 142Bをはり付けてなる積層体 141の他方の主面に、テープ状の膜 補強部材 136A及びテープ状の膜補強部材 136Bが人手により所定長に切断しては り付けられる。その他は実施形態 1と同様である。また、第 1実施形態の高分子電解 質膜 10に代えて、第 2実施形態の高分子電解質膜—内部補強膜複合体 10Aを用 いることちでさる。
このような、本実施形態によれば、少なくとも、積層体 141、膜—触媒層接合体 2、及 び膜 電極接合体 3を大量生産することができ、従来に比べて製造コストを低減する ことができる。
実施例
[0095] 以下、実施例および比較例を挙げて本発明についてさらに詳しく説明する力 本発 明は以下の実施例に何ら限定されるものではない。
《実施例 1》
本実施例では、まず、図 1に示した構造を有する本発明の膜—膜補強部材接合体 を作製した。
[0096] 高分子電解質膜 10 (市販のパーフルォロカーボンスルホン酸カゝらなる高分子電解 質膜、 150mmX 150mm,厚さ:40 m)の両面に、第 1膜補強部材 22及び 24並 びに第 2膜補強部材 26及び 28を、それぞれ図 1に示した位置と同様の位置に配置 した。
[0097] なお、第 1膜補強部材 22及び 24並びに第 2膜補強部材 26及び 28は、 PEN (ポリ エチレンナフタレート)力もなるテープ状の薄膜 (厚さ: 20 m)を使用した。
[0098] 次に、上記のようにして得た膜—膜補強部材接合体を用い、図 2に示した構造を有 する本発明の膜 触媒層接合体を作製した。
[0099] 電極触媒である白金粒子をカーボン粉末上に担持させてなる触媒担持カーボン( 田中貴金属工業 (株)製の TEC10E50E、 50質量%が1^)と、水素イオン伝導性を 有する高分子電解質溶液 (旭硝子 (株)製の Flemion)とを、エタノールと水との混合 分散媒 (質量比 1: 1)に分散させて力ソード形成用インクを調製した。
[0100] また、電極触媒である白金ルテニウム合金(白金:ルテニウム = 1 : 1. 5モル比(物 質量比) )粒子をカーボン粉末上に担持させてなる触媒担持カーボン(田中貴金属 工業 (株)製の TEC61E54、 50質量%が1^— Ru合金)と、水素イオン伝導性を有す る高分子電解質溶液 (旭硝子 (株)製の Flemion)とを、エタノールと水との混合分散 媒 (質量比 1: 1)に分散させてアノード触媒層形成用インクを調製した。
[0101] 得られた力ソード触媒層形成用インクを、上述の高分子電解質膜の片面にスプレ 一法によって塗布し、白金担持量が 0. 6mgZcm2で寸法が 140mm X 140mmの力 ソード触媒層を、図 2に示した位置と同様の位置に配置されるように形成した。
[0102] さらに、得られたアノード触媒層形成用インクを、上述の高分子電解質膜の力ソード 触媒層が形成された面とは反対の面にスプレー法によって塗布し、白金担持量が 0. 35mgZcm2で寸法が 140mmX 140mmのアノード触媒層を、図 2に示した位置と 同様の位置に配置されるように形成した。
[0103] このようにしてアノード触媒層及び力ソード触媒層を形成することにより、膜一触媒 層接合体を形成した。
[0104] つぎに、上記のようにして得た膜 触媒層接合体を用い、図 3に示した構造を有す る膜—電極接合体を作製した。
[0105] ガス拡散層を形成するために、寸法が 200mm X 200mmで厚みが 100 μ mの力 一ボンペーパーを、フッ素榭脂含有の水性ディスパージヨンに含浸した後、乾燥する ことで上記カーボンクロスに撥水性を付与した (撥水処理)。
[0106] 続!、て、撥水処理後のカーボンペーパーの一方の面(全面)に撥水カーボン層を 形成した。導電性カーボン粉末 (電気化学工業 (株)製のデンカブラック (商品名) )と 、ポリテトラフルォロエチレン (PTFE)微粉末を分散させた水溶液 (ダイキン工業 (株) 製の D— 1)とを混合し、撥水カーボン層形成用インクを調製した。この撥水カーボン 層形成用インクを、ドクターブレード法によって、上記撥水処理後のカーボンぺーパ 一の一方の面に塗布し、撥水カーボン層を形成した。このとき、撥水カーボン層の一 部は、上記カーボンペーパーの中に埋めこまれて!/、た。
[0107] その後、撥水処理および撥水カーボン層形成後のカーボンペーパーを、 PTFEの 融点以上の温度である 350°Cで 30分間焼成した。最後に上記カーボンペーパーの 中央部分を抜き型にて切断し、寸法が 142. 5mm X 142. 5mmのガス拡散層を得 た。
[0108] つぎに、上記のようにして得たガス拡散層の撥水カーボン層の中央部分が力ソード 触媒層およびアノード触媒層に接するように、 2枚のガス拡散層で上述の膜 触媒 層接合体を挟み、全体をホットプレス機で熱圧着(120°C、 30分、 lOkgfZcm2)する ことにより、 2枚のガス拡散層のそれぞれが図 3に示した位置と同様の位置に配置さ れるようにして本発明の膜一電極接合体を得た。
[0109] 最後に、上記のようにして得た本発明の膜 電極接合体を用い、図 4に示す構造 を有する本発明の高分子電解質型燃料電池 (単電池 1)を作製した。
[0110] 上記膜電極接合体を、燃料ガス供給用のガス流路および冷却水流路を有するセパ レータ板と、酸化剤ガス供給用のガス流路および冷却水流路を有するセパレータ板 とで挟持し、両セパレータ板間で力ソードおよびアノードの周囲にフッ素ゴム製のガス ケットを配置し、有効電極面積 (アノードまたは力ソードの有効電極面積)が 196cm2 である単電池 (本発明の高分子電解質型燃料電池)を得た。
《比較例 1》 第 1膜補強部材 22及び 24並びに第 2膜補強部材 26及び 28の代わりに、図 13に 示した額縁状の保護膜 220及び保護膜 240 (ここでは、何れも実施例 1と同じ PEN 製のもの)を配置したこと以外は、実施例 1と同様にして膜—補強部材接合体、膜— 触媒層接合体、膜 電極接合体および単電池 (単電池 2)を作製した。
[評価試験]
(1)エージング処理 (活性化処理)
実施例 1および比較例 1で得られた単電池 1及び単電池 2を、 64°Cに制御し、ァノ ード側のガス流路に燃料ガスとして水素ガスを供給し、力ソード側のガス流路に空気 をそれぞれ供給した。この際、水素ガス利用率を 70%に設定し、空気利用率を 55% に設定し、水素ガスおよび空気の露点がそれぞれ約 64°Cとなるように加湿してから 単電池に供給した。そして、電流密度 0. 2AZcm2で 12時間、単電池を運転してェ 一ジングを行った。
(2)電池出力特性評価試験 1
実施例 1及び比較例 1の単電池について、燃料電池の実運転に近い条件で行う定 格耐久試験を行った。
[0111] 定格耐久試験においては、電流密度を 0. 16AZcm2とし、アノード側のガス流路 に、水素ガス利用率が 75%となるように、水素および二酸化炭素の混合ガス (体積比 3 : 1)を供給した以外は、上記エージングと同じ条件下で各単電池を運転し、 12時間 経過後の出力電圧を記録した。
(3)電池出力特性評価試験 2
実施例 1及び比較例 1の単電池について、膜電極接合体の劣化を加速して、より短 時間で寿命の判断が可能な加速耐久試験を行った。
[0112] 加速耐久試験においては、実施例 1および比較例 1で得られた単電池 1及び単電 池 2を、 90°Cに制御した以外は、上記電池出力特性評価試験 1 (定格耐久試験)と 同じ条件下で各単電池を運転し、 12時間経過後の出力電圧を記録した。なお、単 電池 1及び単電池 2の 90°Cの制御は加熱用のヒータを用いて行った。
[0113] [表 1]
Figure imgf000033_0001
表 1に示した結果から明らかなように、実施例 1は、比較例 1と同等の電池出力特性 を有することが確認できた。
[0114] 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に 限定されるものではない。
[0115] 例えば、上述した本発明の実施形態については、膜補強部材 (例えば、図 1に示し た第 1膜補強部材 22及び 24)の外側の周縁部 (エッジ)が高分子電解質膜 (例えば 、図 1に示した高分子電解質膜 10)の周縁部 (エッジ)がー致して!/、る態様 (高分子 電解質膜の主面の略法線方向から見た場合に膜補強部材の外側のエッジと高分子 電解質膜のエッジが重なり、高分子電解質膜のエッジがはみ出て見えない状態とな つている態様)について説明した力 本発明はこれに限定されるものではなぐ本発 明においては、例えば、本発明の効果を得られる範囲において、膜補強部材のエツ ジが高分子電解質膜のエッジよりも全体的に又は部分的にはみ出している構成を有 していてもよぐ高分子電解質膜のエッジが膜補強部材のエッジよりも全体的に又は 部分的にはみ出して 、る構成を有して 、てもよ 、。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。
産業上の利用可能性
[0116] 本発明の膜 補強部材接合体、膜 触媒層接合体、及び膜 電極接合体は、大 量生産が可能な高分子電解質形燃料電池の部品として有用である。
[0117] 本発明の高分子電解質形燃料電池は、自動車などの移動体、分散型 (オンサイト 型)発電システム (家庭用コジェネレーションシステム)などの主電源又は補助電源と して好適に利用されることが期待される。
本発明の膜 補強部材接合体の製造方法、膜 触媒層接合体の製造方法、及び 膜 電極接合体の製造方法は、大量生産が可能な高分子電解質形燃料電池の製 造方法に用いられるものとして有用である。
本発明の高分子電解質形燃料電池の製造方法は、自動車などの移動体、分散型 (オンサイト型)発電システム(家庭用コジェネレーションシステム)などの主電源又は 補助電源として好適に利用される高分子電解質形燃料電池の製造方法として有用 である。

Claims

請求の範囲
[1] 互いに対向しておりかつ略矩形状を呈する 1対の第 1主面及び第 2主面を有する高 分子電解質膜と、
前記第 1主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されており 、前記第 1主面よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 1膜補強部 材と、
前記第 2主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に配置されており 、前記第 2主面よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 2膜補強部 材と、
を有しており、
前記 1対の第 1膜補強部材と前記 1対の第 2膜補強部材とは、全体として前記高分 子電解質膜の 4辺に沿って延在しかつ前記高分子電解質膜の 4隅の部分を挟むよう に配置されている、膜—膜補強部材接合体。
[2] 前記高分子電解質膜中に配置されておりイオン伝導パスとなる貫通孔を有する内 部補強膜を更に具備して ヽる、請求項 1に記載の膜 膜補強部材接合体。
[3] 請求項 1又は 2に記載の膜 膜補強部材接合体と、
前記膜 膜補強部材接合体の前記高分子電解質膜の前記第 1主面のうちの前記 第 1膜補強部材が配置されてない領域の少なくとも一部に配置されている第 1触媒 層と、
前記膜 膜補強部材接合体の前記高分子電解質膜の前記第 2主面のうちの前記 第 2膜補強部材が配置されていない領域の少なくとも一部に配置されている第 2触媒 層と、を有する、膜 触媒層接合体。
[4] 請求項 3に記載の膜 触媒層接合体と、
前記膜—触媒層接合体の前記第 1触媒層を被覆するように配置されている第 1ガ ス拡散層と、
前記膜—触媒層接合体の前記第 2触媒層を被覆するように配置されている第 2ガ ス拡散層と、を有する、膜 電極接合体。
[5] 前記第 1ガス拡散層は、前記第 1触媒層と前記第 1膜補強部材の少なくとも一部と を被覆するように配置されており、
前記第 2ガス拡散層は、前記第 2触媒層と前記第 2膜補強部材の少なくとも一部と を被覆するように配置されている、請求項 4に記載の膜—電極接合体。
[6] 請求項 4又は 5に記載の膜 電極接合体を具備している、高分子電解質形燃料電 池。
[7] 互いに対向しておりかつ略矩形状を呈する 1対の第 1主面及び第 2主面を有する高 分子電解質膜の前記第 1主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に 、前記第 1主面よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 1膜補強部 材を配置する工程 Aと、
前記第 2主面の 4辺のうちの互いに対向する 1組の辺に沿う部分に、前記第 2主面 よりも小さな主面を有しかつ膜状の形状を呈する 1対の第 2膜補強部材を配置するェ 程 Bと、を含み、
前記工程 A及び工程 Bにおいて、前記 1対の第 1膜補強部材と前記 1対の第 2膜補 強部材とは、全体として前記高分子電解質膜の 4辺に沿って延在しかつ前記高分子 電解質膜の 4隅の部分を挟むように配置される、膜—膜補強部材接合体の製造方法
[8] 前記工程 Aは、テープ状の前記高分子電解質膜のロールと 2つのテープ状の前記 第 1膜補強部材のロールとを準備する工程と、各々のロールからテープ状の前記高 分子電解質膜と 2つのテープ状の第 1膜補強部材とを引き出して、該テープ状の高 分子電解質膜の第 1主面の両側端部に前記 2つの第 1膜補強部材を接合する工程 と、前記 2つのテープ状の第 1膜補強部材がその両側端部に接合されたテープ状の 高分子電解質膜を所定の長さに切断する工程と、を含むものである、請求項 7に記 載の膜 膜補強部材接合体の製造方法。
[9] 前記高分子電解質膜中にイオン伝導パスとなる貫通孔を有する内部補強膜が配 置されている、請求項 7又は 8に記載の膜-膜補強部材接合体の製造方法。
[10] 請求項 7乃至 9のいずれかに記載の膜 膜補強部材接合体方法によって膜 膜 補強部材接合体を製造する工程と、
前記膜 膜補強部材接合体の前記高分子電解質膜の前記第 1主面のうちの前記 第 1膜補強部材が配置されてない領域の少なくとも一部に第 1触媒層を配置するェ 程 cと、
前記膜 膜補強部材接合体の前記高分子電解質膜の前記第 2主面のうちの前記 第 2膜補強部材が配置されていない領域の少なくとも一部に第 2触媒層を配置する 工程 Dと、を含む、膜 触媒層接合体の製造方法。
[11] 請求項 10に記載の膜 触媒層接合体の製造方法によって膜 触媒層接合体を 製造する工程と、
前記膜 触媒層接合体の前記第 1触媒層を被覆するように第 1ガス拡散層を配置 する工程 Eと、
前記膜 触媒層接合体の前記第 2触媒層を被覆するように第 2ガス拡散層を配置 する工程 Fと、を有する、膜 電極接合体の製造方法。
[12] 前記工程 Eにおいて、前記第 1ガス拡散層は、前記第 1触媒層と前記第 1膜補強部 材の少なくとも一部とを被覆するように配置され、
前記工程 Fにおいて、前記第 2ガス拡散層は、前記第 2触媒層と前記第 2膜補強部 材の少なくとも一部とを被覆するように配置される、請求項 11に記載の膜 電極接 合体の製造方法。
[13] 請求項 11又は 12に記載の膜 電極接合体の製造方法によって膜 電極接合体 製造する工程を含む、高分子電解質形燃料電池の製造方法。
PCT/JP2006/318281 2005-09-15 2006-09-14 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池 WO2007032442A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/067,130 US8663872B2 (en) 2005-09-15 2006-09-14 Method for manufacturing membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
CN2006800341620A CN101268575B (zh) 2005-09-15 2006-09-14 膜-膜增强部件组件、膜-催化剂层组件、膜-电极组件以及高分子电解质型燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-268895 2005-09-15
JP2005268895 2005-09-15

Publications (1)

Publication Number Publication Date
WO2007032442A1 true WO2007032442A1 (ja) 2007-03-22

Family

ID=37865026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318281 WO2007032442A1 (ja) 2005-09-15 2006-09-14 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池

Country Status (3)

Country Link
US (1) US8663872B2 (ja)
CN (2) CN101268575B (ja)
WO (1) WO2007032442A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056661A1 (fr) * 2006-11-07 2008-05-15 Panasonic Corporation Film double de renfort, couche de catalyseur de film, film électrode, et pile à combustible à électrolyte de polymérique
WO2008072550A1 (ja) * 2006-12-07 2008-06-19 Panasonic Corporation 膜-電極接合体、及びこれを備えた高分子電解質形燃料電池
WO2008090778A1 (ja) * 2007-01-22 2008-07-31 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
WO2008093658A1 (ja) * 2007-01-29 2008-08-07 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
WO2008126350A1 (ja) * 2007-03-14 2008-10-23 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、高分子電解質形燃料電池、及び膜-電極接合体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060209A1 (fr) 2016-12-12 2018-06-15 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'assemblage membrane-electrode pour pile a combustible
FR3060210A1 (fr) * 2016-12-12 2018-06-15 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'assemblage membrane-electrode pour pile a combustible

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625569A (ja) * 1985-06-28 1987-01-12 Toshiba Corp 溶融炭酸塩型燃料電池積層体
JP2003068318A (ja) * 2001-08-23 2003-03-07 Osaka Gas Co Ltd 固体高分子型燃料電池のセル及び固体高分子型燃料電池
JP2004247123A (ja) * 2003-02-13 2004-09-02 Toray Ind Inc 高分子電解質膜の製造方法、およびそれを用いた高分子型燃料電池
JP2004303627A (ja) * 2003-03-31 2004-10-28 Yuasa Corp 直接メタノール形燃料電池用電解質膜−電極積層体の作製方法
JP2005216769A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 固体高分子電解質膜、その製造方法、及び固体高分子電解質膜を有する膜電極接合体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368907B2 (ja) 1991-07-17 2003-01-20 富士電機株式会社 固体高分子電解質型燃料電池のシ−ル構造
JP3052536B2 (ja) * 1992-02-26 2000-06-12 富士電機株式会社 固体高分子電解質型燃料電池
DE19548421B4 (de) * 1995-12-22 2004-06-03 Celanese Ventures Gmbh Verfahren zur kontinuierlichen Herstellung von Membranelektrodeneinheiten
JP3805495B2 (ja) * 1996-09-24 2006-08-02 松下電器産業株式会社 固体高分子型燃料電池
JP3940920B2 (ja) * 2000-11-21 2007-07-04 Nok株式会社 燃料電池用構成部品
US7435502B2 (en) * 2003-09-22 2008-10-14 Utc Power Corporation Internal PEM fuel cell water management
KR100599690B1 (ko) * 2004-06-29 2006-07-13 삼성에스디아이 주식회사 연료전지 시스템 및 그 스택

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625569A (ja) * 1985-06-28 1987-01-12 Toshiba Corp 溶融炭酸塩型燃料電池積層体
JP2003068318A (ja) * 2001-08-23 2003-03-07 Osaka Gas Co Ltd 固体高分子型燃料電池のセル及び固体高分子型燃料電池
JP2004247123A (ja) * 2003-02-13 2004-09-02 Toray Ind Inc 高分子電解質膜の製造方法、およびそれを用いた高分子型燃料電池
JP2004303627A (ja) * 2003-03-31 2004-10-28 Yuasa Corp 直接メタノール形燃料電池用電解質膜−電極積層体の作製方法
JP2005216769A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 固体高分子電解質膜、その製造方法、及び固体高分子電解質膜を有する膜電極接合体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056661A1 (fr) * 2006-11-07 2008-05-15 Panasonic Corporation Film double de renfort, couche de catalyseur de film, film électrode, et pile à combustible à électrolyte de polymérique
US8192893B2 (en) 2006-11-07 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing membrane assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2008072550A1 (ja) * 2006-12-07 2008-06-19 Panasonic Corporation 膜-電極接合体、及びこれを備えた高分子電解質形燃料電池
WO2008090778A1 (ja) * 2007-01-22 2008-07-31 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
US8192895B2 (en) 2007-01-22 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2008093658A1 (ja) * 2007-01-29 2008-08-07 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
US8182958B2 (en) 2007-01-29 2012-05-22 Panasonic Corporation Membrane membrane-reinforcement-member assembly, membrane catalyst-layer assembly, membrane electrode assembly and polymer electrolyte fuel cell
WO2008126350A1 (ja) * 2007-03-14 2008-10-23 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、高分子電解質形燃料電池、及び膜-電極接合体の製造方法
US8192896B2 (en) 2007-03-14 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and method for manufacturing membrane-electrode assembly

Also Published As

Publication number Publication date
CN101714641B (zh) 2012-08-22
CN101268575A (zh) 2008-09-17
US20090181277A1 (en) 2009-07-16
US8663872B2 (en) 2014-03-04
CN101268575B (zh) 2010-05-26
CN101714641A (zh) 2010-05-26

Similar Documents

Publication Publication Date Title
JP5124273B2 (ja) メンブラン電極アセンブリー
US8192896B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and method for manufacturing membrane-electrode assembly
KR100995480B1 (ko) 보호 필름층을 갖는 촉매-피복된 이오노머 막 및 이로부터제조된 막-전극-어셈블리
US7622215B2 (en) Composite electrolyte membrane, catalyst-coated membrane assembly, membrane-electrode assembly and polymer electrolyte fuel cell
US8192893B2 (en) Membrane-membrane reinforcing membrane assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
US9692071B2 (en) Membrane structure
JP5214471B2 (ja) 膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子電解質形燃料電池
US9496562B2 (en) Electrode assembly for solid polymer fuel cell
US8192895B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2007032442A1 (ja) 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
JP4015677B2 (ja) 膜−膜補強部材接合体の製造方法、膜−触媒層接合体の製造方法、膜−電極接合体の製造方法、及び高分子電解質形燃料電池の製造方法
US20230411660A1 (en) Membrane electrode assembly combined roll, membrane electrode assembly, and polymer electrolyte fuel cell
JP5101185B2 (ja) 膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子電解質形燃料電池
JP7307109B2 (ja) ガス拡散層付膜電極接合体およびその製造方法
US10109877B2 (en) Method for producing fuel cell electrode sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034162.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12067130

Country of ref document: US