WO2008056747A1 - Circuit intégré semi-conducteur, module rf utilisant celui-ci et dispositif de terminal de communication radio utilisant celui-ci - Google Patents

Circuit intégré semi-conducteur, module rf utilisant celui-ci et dispositif de terminal de communication radio utilisant celui-ci Download PDF

Info

Publication number
WO2008056747A1
WO2008056747A1 PCT/JP2007/071733 JP2007071733W WO2008056747A1 WO 2008056747 A1 WO2008056747 A1 WO 2008056747A1 JP 2007071733 W JP2007071733 W JP 2007071733W WO 2008056747 A1 WO2008056747 A1 WO 2008056747A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
frequency
terminal
frequency switch
input
Prior art date
Application number
PCT/JP2007/071733
Other languages
English (en)
French (fr)
Inventor
Shigeki Koya
Shinichiro Takatani
Takashi Ogawa
Akishige Nakajima
Yasushi Shigeno
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to US12/513,280 priority Critical patent/US8200167B2/en
Priority to JP2008543125A priority patent/JP4524478B2/ja
Priority to CN2007800414039A priority patent/CN101536327B/zh
Publication of WO2008056747A1 publication Critical patent/WO2008056747A1/ja
Priority to US13/448,033 priority patent/US8335479B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to a semiconductor integrated circuit incorporating a transmission / reception switching circuit (antenna switch) for a wireless communication system, an RF (radio frequency) module incorporating the same, and a wireless communication terminal device incorporating the same.
  • the present invention relates to a technique useful for reducing intermodulation distortion, which is important in the WCDMA system, or harmonic distortion, which is important in the GSM system.
  • the present invention relates to a semiconductor integrated circuit including a DC boost circuit and an RF module incorporating the same, and is a technique that is particularly useful for improving the lifetime and operational reliability of a device.
  • GSM Global System for Mobile Communication ⁇ P, S (Personal communication system), D: 5 (Digital Cellular System), GPRS (General Packet Radio Service), EDGE (Enhanced Data for GSM Evolution; Enhanced Data for GPRS), WCDMA (Wideband Code Division Multiple Access), etc.
  • GSM Global System for Mobile Communication
  • S Personal communication system
  • D Digital Cellular System
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data for GSM Evolution
  • Enhanced Data for GPRS Enhanced Data for GPRS
  • WCDMA Wideband Code Division Multiple Access
  • Non-Patent Document 1 describes that the GSM, DCS, PCS, and WCDMA quad-band MMICs transmit and receive signals in the GSM, DCS, and PCS systems in a time-sharing manner. In addition to serial processing, WCDMA transmission and reception signals Can be processed in parallel by code division.
  • AlGaAs is used as the NOR layer
  • InGaAs is used as the channel layer
  • a HEMT High Electron Mobility Transistor
  • Non-Patent Document 1 below describes that the second-order harmonic distortion and the third-order harmonic distortion at the DCS and PCS2 transmission terminals are about -70 dBc.
  • Patent Document 1 describes a switch circuit for a transmission / reception switching circuit for a wireless communication system.
  • the high-voltage side of the FET connected in series in the switch circuit in the off-state due to the high voltage from the switch circuit in the on-state first turns on the FET on the high-voltage side from the high-voltage side. This is avoided by increasing the resistance to the voltage side in order. As a result, it is possible to provide electronic components for communication with low insertion loss and high harmonic distortion.
  • Patent Document 3 describes a switch circuit for a mobile communication device.
  • the switch circuit consists of a FET with two or more gates, and a drain additional capacitor is connected between the FET drain and the drain adjacent gate, and a source additional capacitance is connected between the FET source and the source adjacent gate. Is connected.
  • the drain additional capacitance between the drain of the FET in the off-state switch and the drain adjacent gate suppresses the phenomenon that the FET in the off-state switch is turned on due to the switch circuit force in the on state and the negative voltage fluctuation. I can press.
  • Patent Document 4 describes an antenna switch circuit for a wireless communication device such as a portable terminal.
  • the FET of the antenna switch circuit is a multi-gate transistor with multiple gates between the drain and source.
  • the gate-to-gate region between two or more adjacent gates is connected to the drain and source via a potential stabilization resistor, thereby suppressing signal leakage between the drain and source of the multi-gate FET. .
  • Ubiquitous coverage which is the ability of communication terminal devices such as mobile phone terminals to communicate wirelessly at any location in the world, is currently being developed, which is not a reality today.
  • GSM Global System for Mobile Communication 8 P, S (Personal communication system), D: 5 (Digital Cellular System), GPRS (General Packet Radio Service), Various types such as EDGE (bnhanced Data for GSM Evolution; Enhanced Data for GPRS), WCDMA (Wideband Code Division Multiple Access), etc., non-spring LAN (Local Area Network), WIMAX (Worldwide Inte roperability for Microwave Access), etc. System exists.
  • GSM Global System for Mobile Communication 8 P, S (Personal communication system)
  • D 5 (Digital Cellular System)
  • GPRS General Packet Radio Service
  • EDGE enhanced Data for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • non-spring LAN Local Area Network
  • WIMAX Worldwide Inte roperability for Microwave Access
  • the mopile terminal Since the mopile terminal is battery driven, low power consumption is required.
  • the power consumption of mobile communication terminals is the power amplifier that amplifies the power of the transmitted signal to a large power of several watts. Increasing the power conversion efficiency of this power amplifier is effective in reducing power consumption.
  • supplying the amplified signal to the antenna via a low-loss antenna switch and releasing it into the space also improves the power conversion efficiency of the entire mopile terminal. And effective in reducing power consumption. Therefore, the antenna switch connected between the power amplifier and the antenna is required to have a low loss.
  • radio resources are managed and operated by each country and each region, and the frequency of the radio waves that can be used in each system is defined for each country or region. ing.
  • the power intensity released into the space other than the frequencies used in the system such as harmonic power, must be controlled below the value determined by law.
  • the power emitted from the terminal is amplified by the power amplifier and radiated from the antenna via the antenna switch.
  • harmonics generated from the power amplifier can be sufficiently suppressed by the LPF (Low Pass Filter) of the output of the power amplifier.
  • the harmonic distortion generated in the antenna switch connected to the output of the LPF is directly released into the space through the antenna. Therefore, the antenna switch is required to suppress the generation of harmonic distortion, that is, to have a high linear performance.
  • the antenna switch force S using a PIN diode is common.
  • a GaAs switch FET Field Effect Transistor
  • Non-Patent Document 2 solves this defect by connecting a large number of FET cells in series in a GaAs microwave monolithic IC (MMIC) and reducing the voltage applied per FET stage. The technology is described
  • Non-Patent Document 3 describes a switch including a feed-forward circuit for solving the waveform distortion problem.
  • the drain and source paths of the first FET are connected between the RF signal input terminal and the ground potential
  • the source and drain paths of the second FET are connected between the RF signal input terminal and the RF signal output terminal.
  • the feed forward circuit includes a feed forward capacitor and a diode connected in series between the RF signal input terminal and the gate of the first FET.
  • Patent Document 5 described below describes connecting a plurality of DC boost circuits to an RF switch including a plurality of switch elements connected to a plurality of RF signal sources.
  • the multiple switch elements are composed of multiple FETs, and a DC control voltage for on / off control is applied to the gates of the FETs.
  • This DC control voltage is generally generated from the system power supply voltage, but when the DC control voltage drops below 2.5 volts, the harmonic signal component that distorts the RF output signal increases significantly.
  • a DC control voltage and an RF signal are supplied to a DC boost circuit composed of a plurality of diodes, a plurality of capacitors, and a plurality of resistors.
  • a DC output voltage greater than the DC control voltage is extracted from the DC boost circuit by charging and discharging operations with multiple diodes and multiple capacitors in response to the positive and negative voltages of the RF signal.
  • Multiple resistors make the DC boost circuit a high input impedance and prevent large currents from flowing from the RF signal source to the DC boost circuit!
  • Non-Patent Document 2 M. B. Shifrin at al, "Monolithic FET Structures for High-- Power Control Component Applications, IEEE TRANS ACTIO NS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO 12, DECEMBER 1989, PP. 2134-2141.
  • Non-Patent Document 3 K. Miyatsuji at al, "A GaAs High -Power RF Single-Pole Double—Throw Switch IC for Digital Mobile Communication System, 1994 IEEE International Solid—State Circuit Conference DIGEST OF TECHNICAL PAPERS, PP. 34— 35 .
  • Patent Document 1 JP-A-2005-072671
  • Patent Document 3 JP-A-8-70245
  • Patent Document 5 US Patent Application Publication US2004 / 0229577A1
  • MMIC microwave monolithic IC
  • FIG. 1 is a block diagram showing the configuration of a mobile phone equipped with an RF module incorporating an antenna switch MMIC and a baseband signal processing LSI developed prior to the present invention.
  • a common input / output terminal I / O of the RF module RF—ML antenna switch MMIC (ANT_SW) is connected to the transmitting / receiving antenna ANT of the mobile phone!
  • B— Cnt from the baseband signal processing LSI (BB—LSI) is routed through the RF analog signal processing semiconductor integrated circuit (RF—IC) to the high output power amplifier module (HPA—MU controller integrated circuit).
  • RF signal flow from the transmitting / receiving antenna ANT to the common input / output terminal I / O becomes the reception operation RX of the mobile phone, and transmission / reception is performed from the common input / output terminal I / O.
  • the RF signal flow to the antenna ANT is the mobile phone transmission operation TX.
  • RF IC is a transmission baseband signal from the baseband signal processing LSI (BB—LSI).
  • Tx— Performs frequency up-conversion from BBS to RF transmission signal!
  • the RF reception signal received in step 1 is frequency down-converted to the received baseband signal Rx—BBS and supplied to the baseband signal processing LSI (BB—LSI)
  • RF module RF—ML antenna switch MMIC (ANT_SW) is a common input / output terminal I / O and transmission terminal Txl, ⁇ 2, reception terminals Rx2, Rx3, Rx4, transmission / reception terminals TRxl, T Establish a signal path between Rx5! / And one of the terminals, and perform either receive operation RX or transmit operation TX.
  • This antenna switch MMIC (ANT—SW) is necessary by setting the impedance of the signal path other than the signal path established for the reception operation RX and transmission operation TX! Can be obtained.
  • FIG. 2 is a block diagram showing a configuration of a plurality of high-frequency switches of the antenna switch MMIC developed prior to the present invention.
  • the antenna switch MMIC in Fig. 2 is built in the RF module RF-ML installed in the mobile phone shown in Fig. 1.
  • the antenna switch MMIC includes a plurality of high-frequency switches Qa, Qb, and Qc.
  • the high-frequency switch Qa is a switch for establishing a signal path between the common input / output terminal I / O and the transmission terminal Tx2 (transmission terminal that outputs the RF transmission signal of GSM850 or GSM900).
  • the high-frequency switch Qb is a switch for establishing a signal path between the common input / output terminal I / O and the transmission terminal Txl (transmission terminal that outputs the RF transmission signal of DCS1800 or PCS 1900).
  • the high-frequency switch Qc is a switch for establishing a signal path between the common input / output terminal 1 / O and the transmission / reception terminal TRxl (transmission / reception terminal that outputs the WCDMA1900 RF transmission signal and inputs the WCDMA2100 RF reception signal). is there.
  • FIG. 2 shows a case where the high-frequency switch Qa is turned on and the other high-frequency switches Qb and Qc are turned off.
  • Each of the multiple high-frequency switches Qa, Qb, and Qc is composed of six N-channel field-effect transistors (hereinafter referred to as FETs) connected in series to increase the voltage to be handled and transmit and receive. Low on-resistance is ensured so that the insertion loss in both cases is minimized.
  • Each FET is a HEMT transistor!
  • Six gate resistors are connected to the gates of six series-connected HEMT transistors in each switch, and the six gate resistors control the on / off of the high-frequency switch through the other one resistor. Connected to the control input terminal.
  • the other high-frequency switches Qb and Qc are turned off by the zero-volt gate control voltages Vctrl—b and Vctr 1—c.
  • the RF transmission signal via the high-frequency switch Qa supplied to the common I / O terminal I / O causes the six HEMT transistors connected in series to the other high-frequency switches Qb and Qc. Drain 'Driven between sources. As is well known, the drain and source of a field effect transistor are not determined by the device structure; strictly speaking, it is the source that emits a carrier, and the carrier that collects carriers is the drain. . Therefore, as is well known, when the direction of the flowing current is reversed in a symmetric field effect transistor, the drain and source before the current reversal become the source and drain after the current reversal.
  • the switch Qb, Qc in the off state the switch Q in the on state by the source additional capacitance C12Txl, C12TRxl between the source of the FET Q6b, Q6c adjacent to the transmitter / receiver terminal TRxl and the source adjacent gate TRxl.
  • the phenomenon in which the proximity FETs Q6b and Q6c of the switches Qb and Qc in the off state are turned on by the fluctuation of the positive voltage of the RF transmission signal from the Qa can be suppressed.
  • FIG. 3 is a diagram showing an equivalent circuit of the switch Qb in the OFF state of the high-frequency switch shown in FIG.
  • switch Qb is connected to six series-connected N-channel HEMT transistors Qlb 'Q6b, six gate resistors Rglb' Rg6b, and on-off control input terminal Vc trl-b.
  • the other resistor Rg7b, six drain 'source-to-source resistors Rdlb' R d6b, a drain additional capacitor C1Txl, and a source additional capacitor C12Txl are included.
  • Six N-channel HEMT transistors Qlb 'Q6b connected in series include drain / gate parasitic capacitance Cgl lb, source'gate parasitic capacitance Cgl2b ... drain'gate parasitic capacitance Cg61b, and source / gate parasitic capacitance Cg62b.
  • Figure 4 shows the six gate resistances and six other resistances of the six HEMT transistors in the off-state switch due to the effect of the RF signal from the on-state switch of the high-frequency switch shown in Figure 2 It is a figure explaining distribution of RF leakage signal impressed to. It should be understood that the on-state switch Qk and the off-state switch Q1 in FIG. 4 correspond to the on-state switch Qa and the off-state switch Qb in FIG.
  • one on / off control input terminal Vctrl—k and the other on / off control input terminal Vctrl—1 are set to 4.5 ⁇ 0 and 0 ⁇ no respectively.
  • the switch Qk is turned on, and the other switch Q1 is turned off.
  • the six gate resistors Rglk 'Rg6k of one switch Qk are all 10 ⁇ , and the other resistor Rg7k connected to the ON / OFF control input terminal Vctrl—k is 20 ⁇ , and six drains 'Source-to-source resistance Rd lk- ⁇ ' Rd6k is all 15K ⁇ , and the drain-gate parasitic capacitance and source'gate parasitic capacitance of each HEMT transistor are 0 ⁇ 4pF, respectively. Further, the drain additional capacitance CllTxlk and the source additional capacitance C12Txlk are set to 0.8 ⁇ 8 pF, respectively.
  • the six gate resistors Rgll 'Rg61 of the other switch Q1 are all set to 10 ⁇ ⁇ , and the other resistor Rg71 connected to the on / off control input terminal Vctrl—1 is also set to 20 ⁇ ⁇ , and six drains
  • the 'source resistance Rdll' Rd61 is also all 15 ⁇ , and the drain 'gate parasitic capacitance and source' gate parasitic capacitance of each HEMT transistor are 0 ⁇ 4pF, respectively.
  • the drain additional capacitance Cl lTxll and the source additional capacitance C12Txll are each 0.8 pF.
  • Three FETQkl, Qk2, and Qk3 are composed of one FET with three gates Gkl, Gk2, and Gk3 in a multi-gate structure, and three FETQk4, Qk5, and Qk6 are three gates Gk4 , Gk5, Gk6 are composed of one FET with multi-gate structure.
  • three FETs Q11, Q12, and Q13 consist of one FET with three gates Gll, G12, and G13 in a multi-gate structure, and three FETs Q14, Q, and Q16 have three gates G14.
  • G and G16 are composed of one FET with multi-gate structure.
  • the inter-gate region (common connection node of FETQkl and Qk2) between the gate Gkl and the gate Gk2 of the multi-gate structure is connected to the FETQkl via the potential stabilization resistor Rdlk. Connected to the source.
  • the inter-gate region between the gates Gk2 and Gk3 of the multi-gate structure (common connection node of FETQk2 and Qk3) is connected to the source of FETQkl through potential stabilization resistors Rd2k and Rdlk.
  • the gate-to-gate region (common connection node of FETQk2 and Qk3) between gate Gk2 and gate Gk3 of the multi-gate structure is connected to the drain of FETQk3 via potential stabilization resistor Rd3k.
  • the inter-gate region (common connection node of FETQk4 and Qk5) between the gate Gk4 and gate Gk5 of the multi-gate structure is connected to the source of FETQk4 via the potential stabilization resistor Rd4k.
  • the inter-gate region (common connection node of FETQk5 and Qk6) between the gate Gk5 and gate Gk6 of the multi-gate structure is connected to the source of FETQk4 via potential stabilization resistors Rd5k and Rd4k.
  • the inter-gate region (common connection node of FETQk5 and Qk6) between the gates Gk5 and Gk6 of the multi-gate structure is connected to the drain of FETQk6 via the potential stabilization resistor Rd6k!
  • the gates Gk4 and Gk5 of the multi-gate structure The region between the gates (FETQ14 and Q common connection node) is connected to the source of FETQ14 via the potential stabilization resistor Rd41.
  • a gate-to-gate region (common connection node of FETQ and Q16) between the gate G and gate G16 of the multi-gate structure is connected to the source of FETQ14 via potential stabilization resistors Rd51 and Rd41.
  • the inter-gate region (common connection node of FETQ and Q16) between the gate G and gate G16 of the multi-gate structure is connected to the drain of FETQ16 via the potential stabilization resistor Rd61.
  • Antenna switch for mobile phone terminal The insertion loss of the MMIC on-state switch is extremely low! /, While the off-state switch requires high rela- tion, isolation and low distortion characteristics. Is required.
  • the off-state switch must insulate between the common input / output terminal I / O and the signal terminal, and reduce the distortion at the common input / output terminal I / O as much as possible.
  • GSM900 RF signal frequency 880MHz to 915MHz is twice the frequency PCS 1900 RF signal frequency 1850MHz to 1910MHz overlap Therefore, the second harmonic distortion of the off-state switch must be suppressed.
  • DC S 1800 RF signal frequency from 1710MHz; 1785 and PCS1900 RF signal frequency from 1 850MHz; 1910MHz twice the frequency force is also 3 times the frequency is 3.42GHz to 5.73G
  • the antenna switch for the W CDMA system that can process the RF transmission signal and the RF reception signal in parallel by code division MMIC transmission / reception terminals (for example, transmission / reception terminals TRxl and TRx5 in Fig. 1) It is necessary to reduce intermodulation distortion between the input / output terminal I / O. This is because the WCDMA RF transmission signal is transmitted from the transmission / reception terminal for WCDMA to the common input / output terminal 1 / O, while the common I / O terminal I / O is transmitted to the transmission / reception terminal for WCDMA. WCDMA RF received signal is transmitted.
  • the interfering signal received by the antenna is mixed with the WCDMA RF transmission signal.
  • an intermodulation distortion signal that overlaps the frequency band of the WCDMA RF reception signal appears as a jamming signal at the transmitting and receiving terminals for the WCDMA system.
  • the switch Q1 in the off state in FIG. 4 generates a large level of second harmonic distortion and third harmonic distortion in the RF signal from the switch Qk in the on state. It turns out that the capacitance of the heterojunction of the gate of the HEMT transistor in the off-state switch Q1 changes greatly. Common RF signal level of I / O terminal I / O 3. RF signal from on-state switch Qk is superimposed on clamp voltage of 8 volts. When the amplitude level of the RF signal from the on-state switch Qk is extremely low!
  • the threshold voltage Vth is approximately 1 volt
  • the heterojunction at the gate of the N-channel HEMT transistor is biased near the threshold voltage Vth, increasing the electron concentration in the channel near the heterojunction.
  • the HEMT transistor in this state has a large change in capacitance value due to the amplitude of the superimposed voltage, and the switch Q1 in the off state in FIG. 4 generates a large level of second-order harmonic distortion and third-order harmonic distortion. is there. Therefore, the inventors have increased the on / off control voltage Vctrl—k to turn on the switch Qk from the previous 3 volts to 4.5 volts, thereby increasing the RF signal from the on-state switch Qk.
  • the distortion improvement as expected by the simulation was not obtained.
  • the intermodulation distortion which is important in the WCDMA system, cannot be significantly reduced even if the on / off control voltage Vctrl-k for turning on the switch Q k is increased from 3 volts to 4.5 volts. found.
  • FIG. 7 shows an off-state switch obtained by increasing the on / off control voltage Vctrl—k from 3 volts to 4.5 volts for turning on the switch Qk in the high-frequency switch shown in FIG. It is a figure which shows the intermodulation distortion in Q1. Even when the on / off control voltage Vctrl—k is 4.5 volts, the intermodulation distortion Lc is only reduced to approximately 95 dBm. The target value of intermodulation distortion Lc set at the beginning of development—lOOdBm—is not far beyond.
  • the interference signal received by the antenna and the WCDMA RF transmission signal can be shared. It turns out that the capacitance of the heterojunction at the gate of the HEMT transistor of switch Q1 in the off state does not substantially contribute to the distortion caused by mixing (intermodulation) at the common I / O terminal I / O did. Based on this fact, the inventor began to think that the occurrence of intermodulation distortion might be related to the resistance of the gates of the HEMT transistors of the off-state switch Q1.
  • the lower right of FIG. 4 shows the six gate resistors Rgll, Rg2nl, Rg31, Rg41, Rg51 of the six HEMT transistors in the off-state switch Q1 due to the influence of the RF signal Pin from the on-state switch Qk.
  • the distribution of the RF leakage signal applied to Rg61 and one other resistor Rg71 is shown.
  • the distribution of the RF leakage signal in the lower right of Fig. 4 is the result of computer simulation.
  • the RF power of the RF signal pin is 20 dBm, and the frequency is 1880 MHz in the PCS 1900 frequency band.
  • L1 is 0.8pF of drain additional capacitance Cl This is the characteristic when lTxll is connected to the source additional capacitor C12Txl1, and the characteristic L2 is the characteristic when the 0.8pF drain additional capacitor CllTxll is not connected to the source additional capacitor C12Txll.
  • the standing wave of the U-shaped non-uniform RF leakage signal deformed in both characteristics L1 and L2 exists from the leftmost gate resistance to the rightmost gate resistance of switch Q1 in the off state.
  • Equation 1 when the applied voltage V is small, the current that flows through the nonlinear resistance given by Equation 1 is The 'is predominantly determined by V, when the applied voltage V is large, b of the second and third terms' first term of a is predominantly determined by the V 2 + c' V 3.
  • an object of the present invention is to reduce intermodulation distortion, which is important in the WCDMA system, or harmonic distortion, which is important in the GSM system, in the antenna switch mounted on the RF communication terminal apparatus.
  • the present inventors etc. Before the present invention, an antenna switch microwave monolithic IC (MMIC) mounted on a mobile phone capable of multi-band transmission of GSM850, GSM900, DCS1800, PCS1900
  • MMIC microwave monolithic IC
  • the present inventors have developed an antenna switch as described in Patent Document 5. It was investigated. However, as a result of examination, it was found that this antenna switch is not sufficiently reliable for long-term use. Furthermore, the present inventors have clarified the cause of the insufficient operational reliability.
  • the results of the cause elucidation performed by the present inventors will be described.
  • FIG. 11 is substantially the same as the DC boost circuit of the RF switch described in Patent Document 5, and shows the DC boost circuit of the RF switch studied by the present inventors prior to the present invention.
  • FIG. 11 is substantially the same as the DC boost circuit of the RF switch described in Patent Document 5, and shows the DC boost circuit of the RF switch studied by the present inventors prior to the present invention.
  • the DC boost circuit 200 of the RF switch in FIG. 11 rectifies a part of the RF input signal RFin of the antenna switch MMIC and superimposes it on the DC control voltage Vdc.
  • the output voltage Vout is generated.
  • the DC boost circuit 200 includes capacitive elements 206 (C1), 211 (C2), resistive elements 207 (R11), 208 (R12), 212 (R2), diodes 209 (Dl), and 210 (D2). .
  • the resistance values of the resistance elements 207 and 208 are set to a sufficiently large value (for example, 10 ⁇ ) compared to the impedance of the mobile phone antenna 50 ⁇ .
  • the input impedance of the DC boost circuit 200 is sufficiently higher than the impedance of the antenna 50 ⁇ . Therefore, most of the RF input signal RFin input to the high frequency input terminal 201 flows to the high frequency signal terminal 202 connected to the FET as a switch element, and the remaining slight RF signal power is input to the input terminal of the DC boost circuit 200. Supplied.
  • the boosting operation by the DC boost circuit 200 is described as follows. First, when the voltage amplitude at the high frequency input terminal 201 is negative, the diode 209 is biased in the forward direction and becomes conductive, and the diode 210 is biased in the reverse direction and becomes non-conductive. At this time, a current flows into the capacitive element 206 from the DC control input terminal 203 to which the DC control voltage Vdc is applied, via the diode 209 and the resistive element 207. By this inflow current, one terminal connected to the resistance elements 207 and 208 of the capacitive element 206 is charged to a positive voltage, and the other terminal connected to the high frequency input terminal 201 of the capacitive element 206 is charged to a negative voltage. .
  • both ends of the capacitive element 211 are charged to the charging voltage Vb.
  • a DC output voltage Vout that is larger by the charging voltage Vb than the DC control voltage Vdc of the DC control input terminal 203 is generated from the DC output terminal 204.
  • the DC output voltage Vout generated from the DC output terminal 204 is approximately 5 volts. .
  • a reverse voltage of approximately 13 volts is applied across the diode 210.
  • RF input signal RFin of high frequency input terminal 201 has a positive voltage amplitude
  • RF signal current power of approximately 1 mA DC output from high frequency input terminal 201 through capacitive element 206, resistance element 208 of 10 ⁇ and diode 210 It flows into terminal 204 and DC control input terminal 203.
  • a voltage drop of approximately 10 volts occurs across the 10 ⁇ resistor 208 and a voltage drop of approximately 1 volt occurs across the diode 210.
  • the voltage at the common connection point of the resistance elements 207 and 208 is less than the DC output voltage Vout of the DC output terminal 204 of about 5 volts by the diode 210. And about 16 volts, which is higher than the voltage drop of about 11 volts at the resistance element 208.
  • the anode voltage of the diode 209 is maintained at the DC control voltage Vdc3 volts of the DC control input terminal 203, and the voltage at the common connection point of the resistance elements 207 and 208 is approximately 16 volts. As a result, a reverse voltage of approximately 13 volts is applied across the diode 209.
  • An object of the present invention is to provide a semiconductor integrated circuit in which the life and operation reliability of a built-in DC boost circuit are improved.
  • One end of one high-frequency switch (Qm) of the plurality of high-frequency switches (Qm, Qn) and one end of the other high-frequency switch (Qm, Qn) are common inputs. Connected to the output terminal (I / O), the common input / output terminal (I / O) can be connected to the antenna (ANT) of the radio frequency communication terminal device.
  • the other end (Txm) of the one high-frequency switch (Qm) can be supplied with an RF transmission signal (WCDMA—Tx) and an RF reception signal (WCDMA—Rx) according to a predetermined communication method.
  • an RF transmission signal WCDMA—Tx
  • an RF reception signal WCDMA—Rx
  • other RF transmission signals RF Tx
  • RF Tx different from the RF transmission signal
  • WCDMA Rx RF reception signal
  • RF—Rx At least one of the RF reception signal
  • the one high-frequency switch (Qm) includes a plurality of field-effect transistors (Qml, ⁇ , Qm6) connected in series, and the other high-frequency switch (Qn) Includes field effect transistors (Qnl, ..., Qn6).
  • a plurality of gates (Gml, ..., Gm6) of the plurality of field effect transistors (Qml, ..., Qm6) of the one high-frequency switch (Qm) are connected to the one high-frequency switch (Qm).
  • the control voltage (Vctrl—m) for on / off control of this can be supplied.
  • the other high-frequency switch (Qn) has a plurality of other gates (Gnl,..., Gn6) of the other field effect transistors (Qnl,..., Qn6) of the other high-frequency switch (Qn).
  • Other control voltage (Vctrl—n) for on / off control of switch (Qn) can be supplied.
  • the plurality of gates (Gml, ⁇ , Gm6) of the plurality of field effect transistors (Qml, ⁇ , Qm6) of the one high-frequency switch (Qm) and the control voltage (Vctrl-m) A plurality of resistors (Rglm,..., Rg6m) are connected to the control terminal to which is supplied.
  • the other gates (Gnl,..., Gn6) of the other field effect transistors (Qnl,..., Qn6) of the other high-frequency switch (Qn) and the other control voltages ( Several other resistors (Rgln, ..., Rg6n) are connected to other control terminals to which Vctrl—n) is supplied.
  • the input / output proximity field effect transistor (Qnl) and the other plurality of field effect transistors (Qnl, ..., Qn6) are the other high frequency switch (Qn6).
  • the intermediate resistors (Rg3n, Rg4n) with the control terminal (Vctrl—n) have the second voltage-current characteristic.
  • the input / output proximity resistors (Rgln, Rg2n, Rg3n) by the other high-frequency switch (Qn) The linearity of the first voltage / current characteristic is set higher than the linearity of the second voltage / current characteristic of the intermediate resistance (Rg3n, Rg4n) (see FIG. 5).
  • the other high-frequency switch (Qn) driven by the RF transmission signal (WCDMA—Tx) according to the predetermined communication system is used to output the pre-written output proximity resistance ( Rgln, Rg2n, Rg3n) is set higher in linearity of the first voltage ′ current characteristic than the second voltage / current characteristic of the intermediate resistance (Rg3n, Rg4n).
  • the other high-frequency switch (Qn) of the other plurality of field effect transistors (Qnl, ..., Qn6) is used. Near the other end between the gate (Gn6) and the other control terminal (Vctrl-n) of the near-field proximity transistor (Qn6) closest to the other end (Txn) of the high-frequency switch (Qn)
  • the contact resistance (Rg4n, Rg5n, Rg6n) has the third voltage 'current characteristic.
  • the linearity of the third voltage / current characteristic of the other-end proximity resistor (Rg4n, Rg5n, Rg6n) is the second resistance of the intermediate portion resistor (Rg3n, Rg4n).
  • the voltage and current characteristics are set higher than the linearity! /, (See Fig. 5).
  • the other high-frequency switch (Qn) driven by the RF transmission signal (WCDMA-Tx) according to the predetermined communication method is used for the other end.
  • the linearity of the third voltage 'current characteristic of the proximity resistance (Rg4n, Rg5n, Rg6n) is set higher than the linearity of the second voltage / current characteristic of the intermediate resistance (Rg3n, Rg4n). Yes.
  • the input / output proximity resistance (Rgl n) is higher than the level of the intermediate RF leakage signal applied to the intermediate resistance (Rg3n, Rg4n).
  • Rg2n, Rg3n even if the input and output proximity RF leakage signal level is high, it is possible to reduce intermodulation distortion, which is important in the WCDMA system, for example.
  • the input / output proximity resistors (Rgln, Rg2n, Rg3n) having a resistance value larger than that of the intermediate resistors (Rg3n, Rg4n) are not affected even when a high level input / output proximity RF leakage signal is applied.
  • the current itself flowing through the proximity resistors (Rgln, Rg2n, Rg3n) is reduced, and the distortion of the signal current is also reduced.
  • the other end proximity resistance (Rg4n, Rg4n, Rg4n, Rg4n, Rg4n) Even when the level of the RF leakage signal near the other end applied to Rg5n and Rg6n) is high, it is possible to reduce intermodulation distortion, which is important in the W CDMA system, for example. This is because the other end proximity resistor (Rg4n, Rg5n, Rg6n) having a resistance value larger than that of the intermediate resistor (Rg3n, Rg4n) is close to the other end even if a high-level proximity RF leakage signal is applied to the other end proximity resistor (Rg4n, Rg5n, Rg6n). This is because the current itself flowing through the resistors (Rg4n, Rg5n, Rg6n) is reduced, and the distortion of the signal current is also reduced.
  • the input of the plurality of other field effect transistors is performed by the other high-frequency switch (Qn).
  • the gate (Gn2) of the input / output second proximity field effect transistor (Qn2) that is in proximity to the common input / output terminal (I / O) and the input / output proximity field effect
  • a first resistor (Rgln) is connected to the gate (Gnl) of the transistor (Qnl)! /.
  • a second A resistor (Rg2n) is connected between the gate (Gn3, 4) of the intermediate field effect transistor (Qn3, 4) and the other control terminal (Vctrl-n).
  • the pre-written output proximity resistors (Rgln, Rg2n, Rg3n) connected to the gate (Gnl) of the input / output proximity field effect transistor (Qnl) are the first resistor (Rgln) and the second resistor. (Rg2n) and the third resistor (Rg3n).
  • the input / output second proximity resistors (Rg2n, Rg3n) connected to the gate (Gn2) of the input / output second proximity field effect transistor (Qn2) do not include the first resistor (Rgln), and A resistor (Rg2n) and the third resistor (Rg3n).
  • the intermediate resistors (Rg3n, Rg4n) connected to the gates (Gn3, 4) of the intermediate field effect transistors (Qn3, 4) are the first resistor (Rgln) and the second resistor (R g2n). And the third resistor (Rg3n) is included (see FIG. 5).
  • the high resistance value of the input / output proximity resistance (R gin, Rg2n, Rg3n) is not realized by one high resistance.
  • the force S is realized by the sum of the first resistance (Rgln), the second resistance (Rg2n), and the third resistance (Rg3n).
  • the other high frequency switch (Qn) and the gate (Gn3, 4) of the intermediate field effect transistor (Qn3, 4) A fourth resistor (Rg4n) is connected to the other control terminal (Vctrl—n)! /.
  • the other high-frequency switch (Qn6) is followed by the other high-frequency switch (Qn6).
  • the other end proximity resistors (Rg4n, Rg5n, Rg6n) connected to the gate (Gn6) of the other end proximity field effect transistor (Qn6) are the fourth resistor (Rg4n) and the fifth resistor ( Rg 5n) and the sixth resistor (Rg6n).
  • the other end second proximity field effect transistor (Qn5 ) Of the other end of the second proximity resistor (Rg4n, Rg5n) connected to the gate (Gn5) does not include the sixth resistor (Rg6n), and the fourth resistor (Rg4n) and the fifth resistor (Rg5n). Including.
  • the intermediate resistors (Rg3n, Rg4n) connected to the gates (Gn3, 4) of the intermediate field effect transistors (Qn3, 4) are the fifth resistor (Rg5n) and the sixth resistor (Rg6n).
  • the fourth resistor (Rg4n) is included (see FIG. 5).
  • the high resistance value of the other end proximity resistance (Rg4n, Rg5n, Rg6n) is not realized by one high resistance.
  • the force S is realized by the sum of the fourth resistor (Rg4n), the fifth resistor (Rg5n), and the sixth resistor (Rg6n).
  • the other end of the one high-frequency switch (SW-T Rxl) of the plurality of high-frequency switches (SW-TRxl, SW_Txl, SW_TX2) TRxl) can be supplied with the RF transmission signal (WCDMA1900-Tx) and the RF reception signal (WCDMA2100-RX) according to the WCDMA system as the predetermined communication system.
  • the other RF transmission signal (Tx1, Tx2) is connected to the other high-frequency switch (SW-Txl, SW_TX2) of the other high-frequency switch (SW-Txl, SW_TX2).
  • One ground switch (GSW-TRxl) is connected between the other end (TRxl) and the ground node (GND) of the one high-frequency switch (SW-TRxl), and the other high-frequency switch (SW-TRxl) is connected.
  • the other ground switch (GSW-Txl, GSW-SW2) is connected between the other end (Txl, Tx2) of (SW-Txl, SW_TX2) and the ground node (GND).
  • the one high frequency switch (SW-TRxl) and the one ground switch (GSW-TRxl) are complementarily turned on / off.
  • the other high-frequency switch (SW—Txl SW— ⁇ 2) and the other ground switch (GSW—Txl GSW— ⁇ 2) are complementarily controlled on and off.
  • the input / output proximity field effect transistor (I / O) of the common input / output terminal (I / O) and the other high-frequency switch (Qn) (
  • An input / output additional capacitor (CI lTxln) is connected between the gate (Gnl) of Qnl) and the other end (Txn) of the other high-frequency switch (Qn) and the other high-frequency switch (Qn)
  • the other end additional capacitor (CI 2Txln) is connected between the other end proximity field effect transistor (Qn6) and the gate (Gn6) (see Fig. 5).
  • the one high frequency switch (Qm) and the other high frequency switch (Qn) are in an on state and an off state, respectively.
  • the input / output proximity FET (Qnl) of the other high-frequency switch (Qn) ) And the other end proximity FET (Qn6) can be suppressed.
  • the other high-frequency switch (SW — Txl SW— SW2) of the plurality of high-frequency switches (SW—TRxl SW_Txl, SW—TX2) The other RF transmission signal (GSM850—Tx / GSM900—Tx DCS 1800—Tx / PCS 1900— ⁇ ) supplied to the other end (Txl ⁇ 2) is the RF transmission of any power of GSM850, GSM900, DCS1800, and PCS1900 Signal (see Figure 6)
  • a typical semiconductor integrated circuit of the present invention includes a DC boost circuit (100).
  • the DC boost circuit includes a high frequency input terminal (101), a DC control input terminal (103), and a DC output terminal (104).
  • a high frequency input signal (RFin) is supplied to the high frequency input terminal, a DC control voltage (Vdc) is supplied to the DC control input terminal, and a DC output voltage (Vout) is generated from the DC output terminal. .
  • the high-frequency input terminal is connected to one terminal of the series connection of the first capacitor element (106; C1) and the first resistor element (107; R1).
  • the first diode (108; D1) and the second diode (109; D2) are connected in parallel in the reverse direction via the second capacitor element (110; C2).
  • a common connection point of the first diode and the second diode is connected to the other terminal of the series connection.
  • a common connection point of one terminal of the first diode and the second capacitor is connected to the DC control input terminal, and a common connection point of the other terminal of the second diode and the second capacitor is the second resistance element.
  • the resistance value of the first resistance element is set to be larger than the resistance value of the second series resistance (rs2) of the diode (see Fig. 10).
  • the power S can be reduced by reducing the intermodulation distortion important in the WCDMA system or the harmonic distortion important in the GSM system.
  • FIG. 1 is a block diagram showing the configuration of a mobile phone equipped with an RF module incorporating an antenna switch developed prior to the present invention and a baseband signal processing LSI.
  • FIG. 5 is a block diagram showing the configuration of a mobile phone equipped with an RF module incorporating an antenna switch MMIC and a baseband signal processing LSI according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing an equivalent circuit of the switch in the off state of the high-frequency switch shown in FIG. 2.
  • FIG. 4 shows the six gate resistors of the six HEMT transistors in the off-state switch and the other one in the off-state switch due to the influence of the RF signal from the on-state switch of the high-frequency switch shown in FIG. It is a figure explaining distribution of RF leak signal applied to resistance.
  • FIG. 5 is a block diagram showing a basic configuration of a high-frequency switch of the antenna switch MMIC according to one embodiment of the present invention shown in FIG. 1.
  • FIG. 6 is a block diagram showing a specific configuration of the high-frequency switch of the antenna switch MMIC according to one embodiment of the present invention shown in FIG. 1.
  • FIG. 7 shows an off-state switch Q1 when the on-off control voltage for turning on the switch Qk in the high-frequency switch shown in FIG. 4 is increased from 3 volts to 4.5 volts.
  • Fig. 6 is a diagram showing intermodulation distortion, and the control voltage for turning on one switch Qm for transmitting a WCDMA RF transmission signal with the high-frequency switch shown in Fig. 5 is set to 3 Boretoka, et al.
  • FIG. 10 is a diagram showing intermodulation distortion of the other switch Qn that is controlled to be turned off by a control voltage of 0 volt by increasing.
  • FIG. 8 shows a multi-gate structure of the high frequency switch for the DCS 1800 RF transmission signal of the high frequency switch of the antenna switch MMIC and the RF transmission signal of the PCS 1900 according to one embodiment of the present invention shown in FIG.
  • FIG. 6 is a plan view mainly showing a HEMT transistor and a gate resistance.
  • FIG. 9 is a block diagram showing another configuration of the high output power amplifier module including an antenna switch MMIC, a high output power amplifier, and a low pass filter.
  • FIG. 10 is a circuit diagram showing a DC boost circuit 100 incorporated in a semiconductor integrated circuit according to one embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing a DC boost circuit of an RF switch studied by the present inventors prior to the present invention.
  • FIG. 12 is a circuit diagram showing a DC boost circuit and a transmission high-frequency switch circuit built in a semiconductor integrated circuit according to one embodiment of the present invention.
  • FIG. 13 shows a high-frequency equivalent of a DC boost circuit that drives a high-frequency switch circuit for transmission incorporated in a semiconductor integrated circuit according to one embodiment of the present invention shown in FIG. 10 and FIG. It is a circuit diagram which shows a circuit.
  • FIG. 14 is a circuit diagram showing a high-frequency equivalent circuit of a DC boost circuit examined by the present inventors prior to the present invention shown in FIG. 11.
  • FIG. 15 is a circuit diagram showing an antenna switch microwave monolithic semiconductor integrated circuit according to another embodiment of the present invention.
  • FIG. 16 shows a first transmission DC boost circuit of the first transmission switch of the antenna switch M MIC and a second transmission DC boost circuit of the second transmission switch according to one embodiment of the present invention shown in FIG. It is a top view which shows the device structure.
  • Txl Tx2 transmission terminal
  • Tx—BBS transmit baseband signal
  • RF_Tx2 Second band high frequency transmission signal
  • RF_Rx2 Second band high frequency received signal
  • FIG. 1 is a block diagram showing a configuration of a mobile phone equipped with an RF module incorporating an antenna switch MMIC and a baseband signal processing LSI according to one embodiment of the present invention.
  • the common input / output terminal I / O of the RF module RF—ML antenna switch MMIC (ANT_SW) is connected to the antenna ANT for transmitting and receiving of the mobile phone!
  • B— Cnt from the baseband signal processing LSI (BB—LSI) is routed through the RF analog signal processing semiconductor integrated circuit (RF—IC) to the high output power amplifier module (HPA—MU controller integrated circuit).
  • RF signal flow from the transmitting / receiving antenna ANT to the common input / output terminal I / O becomes the reception operation RX of the mobile phone, and transmission / reception is performed from the common input / output terminal I / O.
  • the RF signal flow to the antenna ANT is the mobile phone transmission operation TX.
  • RF IC is a transmission baseband signal from the baseband signal processing LSI (BB_LSI) Tx—BBS is converted to RF transmission signal by frequency up-conversion! RF receive signal is received baseband signal Rx—BBS frequency down-converted and supplied to baseband signal processing LSI (BB—LSI)
  • RF module RF—ML antenna switch MMIC (ANT_SW) is a common input / output terminal I / O and transmission terminal Txl, ⁇ 2, reception terminals Rx2, Rx3, Rx4, transmission / reception terminals TRxl, T Establish a signal path between Rx5! / And one of the terminals, and perform either receive operation RX or transmit operation TX.
  • This antenna switch MMIC (ANT—SW) sets the impedance of the signal path other than the signal path established for the reception operation RX and transmission operation TX! Can be obtained.
  • the common input / output terminal I / O is called a single pole, which is a total of 7 terminals: transmission terminal Txl, ⁇ 2, reception terminals Rx2, Rx3, Rx4, transmission / reception terminals TRxl, T Rx5
  • the terminal of is called 7 throw. Therefore, the antenna switch MMIC (ANT—SW) in FIG. 1 is a single pole 7 throw (SP7T) type switch.
  • the baseband signal processing LSI (BB—LSI) is connected to an external nonvolatile memory (not shown) and connected to an application processor! /, Na! /.
  • the application processor is connected to a graphic display device shown in the figure and a liquid crystal display device, and executes various application programs including general-purpose programs and games. I can do it.
  • Phases related to reception baseband signals such as GSM system by the boot program (startup initialization program), operating system program (OS), baseband signal processing LSI of the mobile phone and other digital signal processor (DSP)
  • Programs for phase modulation related to demodulation and transmission baseband signals and various application programs can be stored in external non-volatile memory.
  • BB Transmission baseband signal from LSI Tx—When BBS should be frequency up-converted to GSM850 band, RF IC transmission signal processing unit Tx—SPU converts transmission baseband signal Tx—BBS to GSM850 The GSM850 RF transmission signal GSM850—Tx (824MHz to 849MHz) is generated by frequency up-conversion to the band.
  • BB Transmit baseband signal from LSI Tx— When BBS should be frequency up-converted to GSM900 band, RF IC transmit signal processing unit Tx—SPU converts transmit baseband signal Tx—BBS to GSM900 GSM900 RF transmission signal GSM900 Tx (880 MHz) ⁇ 915MHz) is generated.
  • GSM850 RF transmit signal GSM850—Tx and GSM900 RF transmit signal GSM900— ⁇ are amplified by the high output power amplifier HPA2 of the high output power amplifier module (HPA—ML) and passed through the low pass filter LPF2 to the antenna switch. Supplied to the transmission terminal Tx2 of MMIC (ANT_SW).
  • GSM850—Tx and GSM900 RF transmit signal GS M900—TX are transmitted from the transmitting / receiving antenna ANT via the common input / output terminal I / O. Monkey.
  • GSM850 RF reception signal GSM850—Rx (869 MHz to 894 MHz) and GSM900 RF reception signal GSM900—Rx (925 MHz to 960 MHz) received by the transmitting / receiving antenna ANT are the same as those of the antenna switch MMIC (ANT_SW). Supplied to common I / O terminal I / O.
  • GSM850—Rx and RF reception signal of GSM900 GSM900—Rx is a low-frequency IC (RF—IC) through surface acoustic wave filter SAW3 After being amplified by the noise amplifier LNA5, it is supplied to the received signal processing unit Rx—SPU.
  • Received signal processing unit Rx—SPU performs frequency down-conversion from GSM850 RF received signal GSM850—Rx or GSM900 RF received signal GSM900—Rx to received baseband signal Rx—BBS.
  • the antenna switch MMIC (ANT_SW) responds to the control signal B.
  • GSM850—Rx reception by connection with I / O reception terminal R x2 is performed in a time-sharing manner.
  • the antenna switch MMIC (ANT—SW) responds to the control signal ⁇ ⁇ B—Cnt in response to the RF transmission signal GSM900—by connecting the input / output terminal I / O and the transmission terminal ⁇ 2.
  • RF reception signal GSM900—Rx reception by connection with Tx transmission and input / output terminal I / O reception terminal Rx2 is performed in a time-sharing manner.
  • BB Transmission baseband signal from LSI Tx— If the BBS is to be frequency upconverted to the DCS 1800 band, the RF IC transmit signal processing unit Tx—SP U converts the transmission baseband signal Tx BBS to the DCS 1800 Frequency up-comparator to band A single transmission is performed to generate a DCS 1800 RF transmission signal DCS 1800— ⁇ (1710 ⁇ ⁇ ; 1780 MHz).
  • BB Transmission baseband signal from LSI Tx—BBS power SPCS190
  • the RF IC transmission signal processing unit Tx—SPU converts the transmission baseband signal Tx—BBS to PCS 1900
  • PCS 1900 RF transmit signal PCS1900—Tx (l 850MHz to 910MHz) force S is generated by frequency up-conversion to the band.
  • DCS 1800 RF transmission signal DCS 1800—Tx and PCS 1900 RF transmission signal PCS 1900— ⁇ is power amplified by the high output power amplifier HPA1 of the high output power amplifier module (_PA_ML) and passes through the low pass filter LPF1. Is supplied to the transmission terminal Txl of the antenna switch MMIC (ANT_SW).
  • Transmission terminal DCS 1800 RF transmission signal supplied to Txl DCS 1800 one Tx and PCS 1900 RF transmission signal PCS1900—Tx is transmitted from the antenna ANT power for transmission and reception via the common I / O terminal I / O That power S.
  • DCS 1800 RF received signal DCS 1800—Rx (1805MHz ⁇ ; 1880MHz) and PCS1900 RF received signal PCS 1900—Rx (1930MHz ⁇ ; 1990MHz) received by ANT antenna for transmission and reception are the antenna switch MMIC Supplied to the common I / O terminal of (ANT_SW).
  • DCS 1800 RF received signal DCS 1800— Rx obtained from the receiving terminal Rx3 of the antenna switch MMIC (ANT_SW) is amplified by the low-noise amplifier LNA2 of the RF IC (RF— IC) via the surface acoustic wave filter SAW2, and the antenna PCS 1900 RF reception signal PCS 1900—RX obtained from the switch MMIC (ANT_SW) reception terminal Rx4 is amplified by the low noise amplifier LNA1 of the RF IC (RF—IC) via the SAW filter SAW1, and then received.
  • Received signal processing unit Rx—SPU performs frequency down-conversion from DCS 1800 RF received signal DCS 1800—Rx or PCS 1900 RF received signal PCS 1900—Rx to received baseband signal Rx—BBS.
  • the antenna switch MMIC (ANT—SW) responds to the control signal B. B—Cnt and the RF transmission signal DCS by connecting the input / output terminal I / O and the transmission terminal Txl.
  • 1800—Tx transmission and input / output terminal I / O reception terminal Rx3 RF reception signal DCS 1800—Rx reception is performed in a time-sharing manner.
  • PCS 1900 send / receive mode
  • the antenna switch MMIC (ANT—SW) also responds to the control signal ⁇ ⁇ B—Cnt and transmits and receives the RF transmission signal PCS 1900—Tx by connecting the I / O terminal I / O and the transmission terminal Txl.
  • RF reception signal by connection with output terminal I / O and reception terminal Rx4 Receives PCS 1900—RX in a time-sharing manner.
  • the transmission operation and the reception operation can be processed in parallel by code division. That is, the WCDMA2100 RF reception signal WCDMA2100_Rx (2110 MHz to 2170 MHz) received by the transmitting / receiving antenna ANT is supplied to the common input / output terminal I / O of the antenna switch MMIC (ANT_SW).
  • Antenna switch MMI C (ANT_SW) transmit / receive terminal WCDMA2100 RF received signal obtained from TRxl W CDMA2100— Rx is amplified by low noise amplifier LNA3 of RF IC (RF— IC) via duplexer DUP 1 and then received Signal processing unit Rx—supplied to the SPU.
  • the received signal processing unit Rx—SPU performs frequency down-conversion from the WCDMA2100 RF received signal WCDMA2 100—Rx to the received baseband signal Rx—BBS.
  • the antenna switch MMIC (ANT—SW) responds to the control signal ⁇ ⁇ B—Cnt between input / output terminal I / O and transmission / reception terminal TRxl.
  • RF transmission signal due to steady connection of WCDMA1900 — Tx transmission and RF reception signal WCDMA2100— Rx reception is performed in parallel.
  • BB Transmission baseband signal from LSI Tx—When BBS is to be frequency upconverted to WCDMA900 band, RF IC transmission signal processing unit Tx—SPU is the transmission baseband signal Tx—BBS WCDMA900 RF transmission signal WCDMA900—Tx (approximately 900 MHz) is generated by performing frequency up-conversion to WCDMA900 band.
  • the RF transmission signal WCDMA900—Tx of WCDMA900 is amplified by the high-output power amplifier W—PA2 and supplied to the transmit / receive terminal TRx5 of the antenna switch MMIC (ANT_SW) via the duplexer DUP2.
  • the WCDMA900 RF transmission signal WCDMA900—Tx supplied to the transmit / receive terminal TRx5 can be transmitted from the transmit / receive antenna ANT via the common input / output terminal I / O.
  • the WCDMA900 RF reception signal WCDMA900_Rx (approximately 900 MHz) received by the transmission / reception antenna ANT is supplied to the common input / output terminal I / O of the antenna switch MMIC (ANT_SW).
  • WCDMA900 RF reception signal WCDMA900—Rx obtained from the transceiver switch TRx5 of the antenna switch MMIC (ANT_SW) is amplified by the low noise amplifier LNA4 of the RF IC (RF—IC) via the duplexer DU P2, and then received signal Processing unit Rx—supplied to the SPU.
  • the reception signal processing unit Rx—SPU performs frequency down-conversion from the WCDMA900 RF reception signal WCDMA900—Rx to the reception baseband signal Rx—BBS.
  • the antenna switch MMIC (ANT—SW) responds to the control signal ⁇ ⁇ B—Cnt to connect the input / output terminal I / O and the transmission / reception terminal TRx5.
  • RF transmission signal due to steady connection between WCDMA900 Tx And RF reception signal WCDMA900—Rx reception is performed in parallel.
  • the chip of the antenna switch MMIC according to one embodiment of the present invention shown in FIG. 1 includes a plurality of high-frequency switches Qm and Qn as shown in FIG.
  • One end of one high frequency switch Qm of multiple high frequency switches Qm and Qn and one end of the other high frequency switch Qn are connected to a common input / output terminal I / O, and the common input / output terminal I / O is a radio frequency communication. It can be connected to the antenna ANT of the mobile phone that is the terminal device.
  • WCDMA RF transmit signal WCDMA—Tx and RF receive signal WCDMA—Rx can be supplied to the other end Txm of one high-frequency switch Qm, and RF transmit signal to the other end Txn of the other high-frequency switch Qn WCDMA— ⁇ and RF reception signal WCDMA—Other RF transmission signal different from Rx RF—Tx and other RF reception signal RF—Rx can be supplied
  • One high-frequency switch Qm contains six FETQmls connected in series, ..., Qm6, and the other high-frequency switch Qn contains the other six FETQnl connected in series, ..., Qn6 .
  • the three FETQml, Qm2, and Qm3 consist of one FET with three gates Gml, Gm2, and Gm3 in a triple gate structure, and the three FETQm4, Qm5, and Qm6 have three gates.
  • Gm4, Gm5, and Gm6 are composed of one FET with triple gate structure.
  • the inter-gate region (common connection node of FETQml and Qm2) between the gate Gml and the gate Gm2 of the multi-gate structure is the source of FETQml via the potential stabilization resistor Rdlm. It is connected to the.
  • the gate-to-gate region (common connection node of FETQm2 and Qm3) between the gates Gm2 and Gm3 of the multi-gate structure is connected to the source of FETQml via the potential stabilization resistors Rd2m and Rdlm.
  • the gate-to-gate region between the gates Gm2 and Gm3 of the multi-gate structure (common connection of FETQm2 and Qm3 Is connected to the drain of FETQm3 via the potential stabilization resistor Rd3m.
  • the inter-gate region (common connection node of FETQm4 and Qm5) between the gates Gm4 and Gm5 of the multi-gate structure is connected to the source of FETQm4 via the potential stabilization resistor Rd4m.
  • the inter-gate region (common connection node of FETQm5 and Qm6) between the gates Gm5 and Gm6 of the multi-gate structure is connected to the source of FE TQm4 via potential stabilization resistors Rd5m and Rd4m.
  • inter-gate region (common connection node of FETQm5 and Qm6) between the gate Gm5 and the gate Gm6 of the multi-gate structure is connected to the drain of FETQm6 via the potential stabilization resistor Rd6m.
  • the inter-gate region (common connection node of FETQnl and Qn2) between the gate Gnl and gate Gn2 of the multi-gate structure is connected to the source of FETQnl via the potential stabilization resistor Rdln.
  • the inter-gate region (common connection node of FE TQn2 and Qn3) between the gates Gn2 and Gn3 of the multi-gate structure is connected to the source of FETQnl via potential stabilization resistors Rd2n and Rdln.
  • the inter-gate region (common connection node of FETQn2 and Qn3) between the gate Gn2 and the gate Gn3 of the multi-gate structure is connected to the drain of FETQn3 via the potential stabilization resistor Rd3n.
  • the inter-gate region (common connection node of FETQn4 and Qn5) between the gate Gn4 and the gate Gn5 of the multi-gate structure is connected to the source of FETQn4 through the potential stabilization resistor Rd4n.
  • the inter-gate region (common connection node of FETQn5 and Qn6) between the gates Gn5 and Gn6 of the multi-gate structure is connected to the source of FETQn4 via potential stabilization resistors Rd5n and Rd4n. Furthermore, the gate-to-gate region (common connection node of FETQn5 and Qn6) between the gates Gn5 and Gn6 of the multigate structure is connected to the drain of FETQn6 via the potential stabilization resistor Rd6n! / ⁇
  • One high frequency switch Qm FETQml, ..., Qm6 gate Gml, ... Gm6 can be supplied with control voltage Vctrl-m for on / off control of one high frequency switch Qm Is done.
  • Other gates of Qn6 Gnl, ⁇ Gn6 is supplied with other control voltage V Ctrl—n for on / off control of the other high-frequency switch Qn Made possible.
  • 6 FETQml in one high-frequency switch Qm ..., 6 gates in Qm6 Gml, ...
  • Six resistors Rglm, ..., Rg6m are connected between Gm6 and the control terminal to which the control voltage Vctrl-m is supplied.
  • 6 FETQnl of the other high-frequency switch Qn ..., the other 6 gates of Qn6 Gnl, ..., between Gn6 and another control terminal to which other control voltage Vctrl—n is supplied
  • the other 6 resistors Rgln, ..., Rg6n are connected.
  • the input / output proximity resistors Rgln, Rg2n, and Rg3n between n have the first voltage 'current characteristic.
  • the other high-frequency switch Qn is the intermediate section between the input / output proximity FET Qnl and the other six FET Qnl, the other high-frequency switch Qn of Qn 6 and the other end proximity FET Qn6 closest to the other end Txn
  • Intermediate resistors Rg3n, Rg4n between the gates Gn3, Gn4 of the FETQn3, 4 and other control terminals Vctrl—n have the second voltage 'current characteristic.
  • the linearity of the first voltage 'current characteristics of the input / output proximity resistors Rgln, Rg2n, Rg3n is set higher than the linearity of the second voltage / current characteristics of the intermediate resistors Rg3n, Rg4n. ing.
  • the first high-frequency switch Qn driven by Tx is the first voltage of the input / output proximity resistors Rgln, Rg2 n, Rg3n. Is set higher than the linearity of the second voltage and current characteristics of the intermediate resistors Rg3n and Rg4n. Therefore, even if an unequal RF leakage signal is applied to the input / output proximity resistors Rgln, Rg2n, Rg3n and the intermediate resistors Rg3n, Rg4n, the other high-frequency switch Qn is closest to the common input / output terminal I / O.
  • the other high-frequency switch Qn driven by Tx is the third voltage / current characteristic of the other end proximity resistors Rg4n, Rg5n, Rg6n.
  • the linearity of the current characteristics is the second resistance of the intermediate resistors Rg3n, Rg4n. It is set higher than the linearity of the voltage / current characteristics. Therefore, even if an unequal RF leakage signal is applied to the other-end proximity resistors Rg4n, Rg5n, Rg6n and the intermediate resistors Rg3n, Rg4n, the other-end proximity FET Qn6 closest to the other end Txn at the other high-frequency switch Qn.
  • the distortion of the current flowing through the other-end proximity resistor Rg4n, Rg5n, Rg6n of the gate Gn6 can be suppressed. As a result, it is possible to reduce intermodulation distortion, which is important for WCDMA systems, and harmonic distortion, which is important for GSM systems.
  • the resistance values of the input / output proximity resistors Rgln, Rg2n, Rg3n are set larger than the resistance values of the intermediate resistors Rg3n, Rg4n. Therefore, even if the input / output proximity RF leakage signal applied to the I / O proximity resistors Rgln, Rg2n, and Rg3n is higher than the level of the intermediate RF leakage signal applied to the intermediate resistors Rg3n and Rg4n, Significant intermodulation distortion can be reduced.
  • a gate resistance Rglm of 10K ⁇ is connected between the gate Gm1 of the other end proximity FETQml near the other end Txm with one high-frequency switch Qm and the gate Gm2 of the other end second proximity FETQm2. .
  • a 10 ⁇ ⁇ gate resistor Rg2m is connected to Qm3.
  • a gate resistor Rg6m of 10 ⁇ is connected between the gate Gm6 of the input / output proximity FETQm6 and the gate Gm5 of the input / output second proximity FETQm5 close to the common input / output terminal I / O in one high-frequency switch Qm. ing.
  • a 10 ⁇ ⁇ gate resistance Rg5m is connected between the gate Gm5 of the I / O second proximity FETQm5 and the gate Qm4 of the intermediate FETQm4.
  • the gate Qm3 of the intermediate FETQ m3 and the gate Qm4 of the intermediate FETQm4 are connected to one end of the gate resistance Rg3m, Rg4m, respectively, and the other end of the gate resistance Rg3m, Rg4m is connected to one end of the 20 ⁇ resistance Rg7m
  • the control voltage Vctrl-m is supplied to the other end of the resistor Rg7m.
  • a resistor Rdlm of 15 ⁇ is connected between the source and drain of the FETQml near the other end, and a resistor Rd2m of 15 ⁇ is connected between the source and drain of the second adjacent FETQm2 at the other end.
  • a resistor Rd3m of 15 ⁇ is connected between the source and drain of the FETQm3.
  • Intermediate section FETQm4 has a 15 ⁇ resistance Rd4m connected between the source and drain of FETQm4, and input / output second proximity FETQm5 has a 15 ⁇ resistance Rd5m connected between the source and drain, so that the input / output proximity
  • a 15 ⁇ resistor Rd 6m is connected between the source and drain of FETQm6.
  • the gate resistance Rglm of 10 ⁇ and the gate resistance Rg2m of 10 ⁇ , the gate resistance Rg3m of 10 ⁇ , and the resistance Rg3m of 20 ⁇ Rg7m Are connected in series, and between the gate Gm6 of the FETQm6 and the control voltage Vctrl—m, 1 OK ⁇ gate resistance Rg6m and 10K ⁇ gate resistance Rg 5m and 10 ⁇ ⁇ gate resistance Rg4m and 20 ⁇ ⁇
  • the resistor Rg7m is connected in series.
  • a 10 ⁇ gate resistor Rg2m is connected in series between the gate Gm2 of the second proximity FETQm2 and the control voltage Vctrl—m.
  • a 10 ⁇ gate resistor Rg2m is connected in series between the gate Gm2 of the second proximity FETQm2 and the control voltage Vctrl—m.
  • a gate resistor Rg5m of 10 FET ⁇ , a gate resistor Rg4m of 10 ⁇ , and a resistor Rg7m of 20 ⁇ are connected in series between the gate Gm5 of 2 proximity FETQm5 and the control voltage Vctrl—m.
  • a gate resistor Rg3m of 10K ⁇ and a resistor Rg7m of 20 ⁇ are connected in series, and the gate Qm4 of the intermediate FETQm 4 and the control voltage Vctrl m Between the gate resistance of 104 ⁇ Rg4m and 20K An ⁇ resistor Rg7m is connected in series.
  • Six gate resistors Rglm 'Rg6m and one resistor Rg7m have non-linear voltage-current characteristics as shown in (Equation 1)!
  • the resistance value of the gate resistor network of the gate Gm of the FETQm 1 and the gate Qm6 of the input / output proximity FETQm6 near the other end where the high level RF leakage signal voltage is supplied is the intermediate part where the low level RF leakage signal voltage is supplied FETQm3 gate Qm3 and intermediate FETQm4 gate Qm4 gate resistance network is higher than the resistance value.
  • the RF power of the RF signal (up to 20dBm, the frequency (or the frequency band of PCS1900)
  • the maximum power of the PCS 190 0 RF transmission signal is about 33 dBm, so the 20 dBm RF signal Pin can be said to be a transmission power higher than the intermediate level.
  • Rglm, Rg2m, Rg3m, Rg4m, Rg5m, Rg6m, Rg7m voltage Vpp is the peak 'to' peak RF signal voltage, as shown in the lower left of Figure 5 for the six HEMT transistors of the off-state switch Qm.
  • Characteristics of RF leakage signal distribution of 6 gate resistors and 1 other resistor L3 is a characteristic when 0.8pF additional capacitance Cl lTxlm, C12Txlm is connected, and characteristic L4 is 0.8 pF. This is the characteristic when the additional capacitance Cl lTxlm and C12Txlm are not connected.
  • Either six gate resistance Rglm with sexual L4, Rg2m, Rg3m, Rg4m, Rg5m, the level of the RF leakage signal applied to Rg6m are substantially equalized.
  • a gate resistor Rg6n of 10 ⁇ is connected between the gate Gn6 of the other end proximity FETQn6 close to the other end Txn by the other high-frequency switch Qn and the gate Gn5 of the other end second proximity FETQn5. .
  • a 10 ⁇ ⁇ gate resistor Rg5n Connected between the gate Gn5 of the second proximity FETQn5 at the other end and the gate Qn5 of the intermediate FETQn4 is a 10 ⁇ ⁇ gate resistor Rg5n.
  • a gate resistor Rgln of 10 ⁇ is connected between the gate Gnl of the input / output proximity FET Qnl adjacent to the common input / output terminal I / O in the other high-frequency switch Qn and the gate Gn2 of the input / output second proximity FET Qn2.
  • a 15 ⁇ resistor Rd6n is connected between the source and drain of the FETQn6 near the other end, and a 15 ⁇ resistor Rd5n is connected between the source and drain of the second adjacent FETQn5 at the other end.
  • a resistor Rd4n of 15 ⁇ is connected between the source and drain of the intermediate FETQn4.
  • a 15 ⁇ ⁇ ⁇ ⁇ resistor Rd3n is connected between the source and drain of the intermediate FETQn3, and a 15 ⁇ resistor Rd2n is connected between the source and drain of the input / output second proximity FETQn2.
  • a 15 ⁇ resistor Rdln is connected between the source and drain.
  • the other end of the second proximity FET Qn5 gate Gn5 and the control voltage Vctrl—n are connected in series with a 10 ⁇ gate resistor Rg5n, a 10K ⁇ gate resistor Rg4n and a 20 ⁇ resistor Rg7n in series.
  • a 10 ⁇ gate resistor Rg2n, a 10 ⁇ gate resistor Rg3n, and a 20 ⁇ resistor Rg7n are connected in series.
  • a gate resistor Rg4n of 104 ⁇ and a resistor Rg7n of 20 ⁇ are connected in series, and the gate Qn3 of the intermediate FETQn3 and the control voltage Vctrl—n
  • a 10 ⁇ gate resistor Rg3n and a 20 ⁇ resistor Rg7n are connected in series.
  • Six gate resistors Rgln 'Rg6n and one resistor Rg7n have non-linear voltage / current characteristics as shown in (Equation 1)!
  • the other high-frequency switch Qn of the antenna switch MMIC (ANT_SW) shown in Fig. 5 generates a deformed U-shaped standing wave in the same way as in Fig. 4, and inputs and outputs to the gate Gn6 of the FETQn6 near the other end. Assume that a high level RF leakage signal voltage is generated at the gate Gnl of the proximity FETQnl, and a low level RF leakage signal voltage is generated at the gate Qn4 of the intermediate FETQn4 and the gate Qn3 of the intermediate FETQn3.
  • the resistance value of the gate resistor network of the gate Gn6 of the proximity FET Qn6 and the gate of the input / output proximity FET Qnl to which the high level RF leakage signal voltage is supplied is the intermediate FETQn4 to which the low level RF leakage signal voltage is supplied Gate Qn4 and middle FETQn3 gate Qn3 gate resistance network resistance value is higher!
  • a high-level RF leakage signal voltage is applied to the gate resistor network with a large resistance between the other end proximity FE TQn6 and the input / output proximity FETQnl, the current itself flowing through the other end proximity FETQn6 and the input / output proximity FETQnl gate resistance network And signal current distortion is also reduced.
  • each resistor Rgln, Rg2n, Rg3n of the six HEMT transistors in the off-state switch Qn due to the influence of the WCDMA RF transmission signal Pin from the on-state switch Qm Rg4n, Rg5n, Rg6n, and the other single resistor Rg7n, the distribution of the RF leakage signal is shown.
  • the voltage Vpp of each resistor Rgln, Rg2n, Rg3n, Rg4n, Rg5n, Rg6n, Rg7n in the lower right of Fig. 5 is the RF signal voltage of peak 'to' peak.
  • the characteristics of the RF leakage signal distribution of the six gate resistors of the six HEMT transistors in the off-state switch Qn shown in the lower right of Fig. 5 and the other resistor L3 is 0.8 pF of additional capacitance C11 This is the characteristic when Txln and C12Txln are connected, and the characteristic L4 is the characteristic when 0.8pF additional capacitance C1 lTxln and C12Txln are not connected.
  • the level of the RF leakage signal applied to the six gate resistors Rgln, Rg2n, Rg3n, Rg4n, Rg5n, and Rg6n is substantially equalized for both the characteristic L3 and characteristic L4 in the lower right of FIG.
  • High-frequency switch SW—Txl HEMT transistor Q — tl l, Q— tl2 is controlled to be turned on by a 4 ⁇ 5 volt control signal supplied to control terminal Txlc, and RF transmission signal DC S 1800 of signal terminal Txl DC S 1800 Or GSM900 RF transmission signal PCS1900—Tx is transmitted to common I / O terminal I / O.
  • the HEMT transistor Q—ti l, Q—tl 2 of the high-frequency switch SW—Tx2 is controlled to be turned off by a 0-volt control signal from the control terminal Txlc, the gate of the ground switch GS W—Txl is connected to ground.
  • High-frequency switch SW—Tx2 HEMT transistors Q—121 and Q—122 are controlled to be turned on by a 5 volt control signal, and GSM850 RF transmission signal GSM850 — Tx or GSM900 RF transmission signal GSM900—Tx It is transmitted to the common input / output terminal I / O.
  • the high-frequency switch SW— ⁇ 2 is controlled by the control voltage of the control terminal Tx2c, the transistor Q—t21, Q—122 is turned off, the depletion with the gate of the ground switch GSW —Tx2 connected to the ground
  • the mode HEMT transistors Q5-t21 and Q5-122 are controlled to be turned on, improving the isolation of the signal terminal Tx2.
  • High-frequency switch SW— ⁇ 2 and among the three gate resistances of transistor Q—122, the input / output proximity gate resistance close to the input / output terminal I / O is 30 ⁇ , and the input next to the input / output terminal I / O The output second proximity gate resistance is set to 20 ⁇ , and the middle gate resistance is set to 10 ⁇ .
  • the other end proximity gate resistance close to the other end Tx2 is 30 ⁇
  • the other end next to ⁇ 2 is the second adjacent gate resistance is 20 ⁇
  • middle part The gate resistance is set to 10 ⁇ .
  • WCDMA900 RF transmit signal WCDMA900—Tx and RF receive signal WCDMA900 —Rx supplied signal terminal TRx5 and common I / O terminal I / O is turned on by the control signal of control terminal Rx5c .
  • High-frequency switch SW-TRx5 to be controlled is connected.
  • the high-frequency switch SW—TRx5 HEMT transistors Q—tr51 and Q—tr52 are controlled to be turned on by the 5 volt control signal supplied to the control terminal Rx5c, and the signal terminal T Rxl WCDMA900 RF transmission signal WCDMA900—Tx is It is transmitted to the common input / output terminal 1 / O.
  • the WCDMA900 RF reception signal WCDM A900—Rx received by the antenna is transmitted from the common input / output terminal I / O to the transmission / reception signal terminal TRx5.
  • the high-frequency switch SW—TRx5 HEMT transistor Q—tr51, Q—tr52 is controlled to be turned off by a 0-volt control signal at the control terminal Rx5c, the gate of the ground switch GSW—TR x5 is connected to ground.
  • the depletion mode HEMT transistors Q5—tr5 1 and Q5—tr52 are controlled to be on, improving the isolation of the signal terminal TRx5.
  • High-frequency switch SW — TRxl HEMT transistor Q—trl l, Q— trl 2 is controlled to be turned on by the 5 volt control signal supplied to the control terminal TRxlc, and the RF transmission signal WCDMA1900 of the signal terminal TR xl WCDMA1900— Tx is transmitted to the common input / output terminal I / O.
  • the WCDMA2100 RF reception signal WC DMA2100-Rx received by the antenna is transmitted from the common input / output terminal I / O to the transmission / reception signal terminal TRxl.
  • the high-frequency switch SW—Rx2 HEMT transistor is turned on by a 4.5-volt control signal supplied to the control terminal Rx2c, and the GSM850 RF reception signal or GSM900 RF reception signal at the signal terminal Rx2 is a common input / output terminal. Transmitted to I / O.
  • the HEMT transistor of the high-frequency switch SW—Rx2 When the HEMT transistor of the high-frequency switch SW—Rx2 is controlled to be turned off by the 0-volt control signal at the control terminal Rx2c, the HEMT transistor in the depletion mode with the gate of the ground switch GSW—Rx2 connected to the ground Controlled to improve isolation of signal terminal Rx2.
  • the signal terminal Rx3 and the common I / O terminal I / O are turned on by the control signal of the control terminal Rx3c.
  • 'High-frequency switch SW—Rx3 to be controlled off is connected.
  • the high-frequency switch SW—Rx3 HEMT transistor is turned on by a 5-volt control signal supplied to the control terminal Rx3c, and the DCS 1800 RF reception signal DCS 180 on the signal terminal Rx3 O—Rx is transmitted to the common input / output terminal I / O.
  • the HEMT transistor of the high-frequency switch SW—Rx3 When the HEMT transistor of the high-frequency switch SW—Rx3 is controlled to be turned off by the 0-volt control signal at the control terminal Rx3c, the HEMT transistor in the depletion mode with the gate of the ground switch GSW—Rx3 connected to ground is turned on. And the isolation of the signal terminal Rx3 is improved.
  • RF reception signal of PCS 1900 PCS 1900—Rx (1930MHz ⁇ ; 1990MHz) force S
  • the signal terminal Rx4 to be supplied and the common I / O terminal I / O are turned on by the control signal of the control terminal Rx4c ⁇
  • High frequency switch SW-Rx4 to be controlled off is connected.
  • the high-frequency switch SW— Rx4 HEMT transistor is turned on by a 5-volt control signal supplied to the control terminal R x4c, and the PCS 1900 RF reception signal PCS 1900 — Rx is a common I / O. Transmitted to terminal I / O.
  • the HEMT transistor of the high-frequency switch SW—Rx4 When the HEMT transistor of the high-frequency switch SW—Rx4 is controlled to be turned off by the 0-volt control signal at the control terminal Rx4c, the HEMT transistor in the depletion mode with the gate of the ground switch GSW—Rx4 connected to ground is turned on. To improve the isolation of the signal terminal Rx4.
  • RF reception signal of GSM850 GSM850—RF reception signal of Rx and GSM900
  • the high frequency switch SW—Rx4 for Rx is connected to the common reception high frequency switch SW—Qcom.
  • Common receive high-frequency switch SW—5 volt control signal is turned on.
  • the QMT HEMT transistor is turned on, and one of the four RF receive signals and one RF receive signal are common. I / O terminal Transmitted to I / O.
  • the adjacent I / O second proximity gate resistance is set to 20 ⁇
  • the middle gate resistance is set to 10 ⁇ .
  • the proximity gate resistance is set to 20 ⁇ ⁇
  • the middle gate resistance is set to 10 ⁇ ⁇ .
  • FIG. 8 shows a DCS 1800 RF transmission signal of the high frequency switch of the antenna switch MMIC (AN T—SW) according to one embodiment of the present invention shown in FIG. 6.
  • DCS 1800—Tx and RF transmission of the PCS 190 0 This is a plan view mainly showing the HEMT transistor Q-til of the high-frequency switch SW-Txl for the signal PCS1900-Tx and the gate resistors Rgl, Rg2, and Rg3.
  • Multi-gate HEMT transistor Q—ti l drain electrode D and source electrode S are the same input / output terminal I / O and high-frequency switch SW—Txl other HEMT transistor Q—tl 2 Are respectively connected to the drain electrodes.
  • the gate-to-gate region between the gate G1 and gate G2 of the multi-gate HEMT transistor Q—ti l is connected to the drain electrode D of the HEMT transistor Q—tl 1 via the contact electrode C1 and the potential stabilization resistor Rdl. It is connected.
  • the inter-gate region between the gate G2 and the gate G2 of the HEMT transistor Q-tl 1 is connected to the contact electrode C1 via the contact electrode C2 and the potential stabilization resistor Rd2, and the contact electrode C2 and the potential stabilization resistor It is connected to the source electrode S of HEMT transistor Q-tl 1 via Rd3.
  • FIG. 8 it can also be made of a semiconductor layer having a smaller resistivity (sheet resistance) per unit area than the gate resistances Rgl, Rg2, and Rg3.
  • sheet resistance resistivity
  • the linearity of the semiconductor layer is better when the sheet resistance is smaller. Therefore, the sheet resistance is small for the input / output proximity goot resistance close to the input / output terminal I / O !, and the semiconductor layer is used for the other gate resistance! / A semiconductor layer is used. As a result, it is possible to improve the overall distortion characteristics while minimizing the area of the gate resistance occupying the chip.
  • a metal layer can be used for the gate resistance Rgl.
  • the metal layer has a lower sheet resistance than the semiconductor layer, but it has excellent linearity. Therefore, a metal layer is used for the input / output proximity gate resistance close to the input / output terminal I / O, and a semiconductor layer is used for the other gate resistance. As a result, it is possible to improve the overall distortion characteristics while minimizing the area of the gate resistance occupying the chip.
  • HEMT transistors Q—tl2 and gate resistances Rg4, Rg5, and Rg6 of the high-frequency switch SW—Txl multi-gate structure are the same as the HEMT transistors Q—ti l and gate resistors Rgl, Rg2, Rg3 shown in FIG. Formed in the same manner.
  • the antenna switch MMIC according to one embodiment of the present invention shown in FIG. 8 can
  • one high-frequency switch Qm and the other high-frequency switch Qn are changed from a HEMT transistor to an N-channel depletion-type insulated gate MOS transistor. Can be replaced.
  • the common input / output terminal I / O is connected to the controller integrated circuit CNT IC in Fig. 1.
  • a charge pump circuit that boosts the 3 volt single supply voltage to a 3.8 volt bias voltage Etc. are included in the controller integrated circuit CNT-IC.
  • a single power supply voltage of 3 V is turned on and off control input terminal Vctrl- m
  • a booster circuit such as a charge pump circuit that boosts the Vctrl-n high-level voltage to 4.5 volts is included in the controller integrated circuit CNT-IC.
  • the high-frequency switch of the antenna switch MMIC according to one embodiment of the present invention shown in FIG. 6 has an input / output proximity gate resistance Rg 1 close to the common input / output terminal I / O of 30 mm.
  • the mesa resistance of a compound semiconductor of ⁇ can be replaced with a metal thin film resistor having excellent linearity in the voltage 'current characteristic of a refractory metal such as tungsten or molybdenum.
  • the input / output second proximity gate resistor Rg2 can be replaced with a metal thin film resistor having excellent voltage-current characteristics and excellent linearity from a mesa resistance of a compound semiconductor of 20 ⁇ .
  • FIG. 9 is a block diagram showing another configuration of the high-output power amplifier module HPA-ML including the antenna switch MMIC, the high-output power amplifiers HPA1 and HPA2, and the low-pass filters LPF1 and LPF2.
  • the antenna switch MMIC (ANT-SW) is composed of a chip chip 2 of a GaAs compound semiconductor integrated circuit, and has a configuration of a high-frequency switch circuit as shown in FIG.
  • a signal path is established between them, and either receive operation RX or transmit operation TX is performed.
  • a controller CNT—IC that generates control signals Rx4c and Rx3c ′ R x2c to control the antenna switch MMIC in response to the 3-bit control signal B.
  • Silicon semiconductor integrated circuit chip chipl controller CNT IC is supplied with a single power supply voltage Vdd of 3 volts, so that control signals Rx4c, Rx3 c '
  • the controller CNT — IC includes a booster circuit that generates the high-level control voltage 4.5V of Rx2c.
  • High power amplifiers HPA1 and HPA2 of silicon chip ICl chip of silicon semiconductor integrated circuit are power MOSFETs of LD (Lateral Diffbsed) structure that can be formed in the same process as CMOS device of controller CNT—IC. is there.
  • the power amplification transistors at the final stage of the high output power amplifiers HPA1 and HPA2 can use HBT (Hetero Bipolar Transistor) such as GaAs, InGaAs, SiGe, etc., which has excellent power added efficiency.
  • HBT Hetero Bipolar Transistor
  • a chip chipl of a silicon semiconductor integrated circuit chip and a chip chip2 of a GaAs compound semiconductor integrated circuit are arranged on a multilayer wiring insulating substrate or a tab of a plurality of external connection leads for a high output power amplifier module HP A—ML. Can be mounted.
  • Chip capacitors can be used as the capacitors of the low-pass filters LPF 1 and LPF 2.
  • the inductors of the low pass filter LPF1 and LPF2 can be formed by the multilayer wiring inside the multilayer wiring insulating substrate, and can be formed by using a part of a plurality of external connection leads.
  • the baseband signal processing LSI and the application processor are configured by different semiconductor chips, respectively.
  • the application processor is the baseband signal processing LSI. It can be an integrated one-chip integrated with a semiconductor chip.
  • a semiconductor integrated circuit includes a DC boost circuit (100).
  • the DC boost circuit includes a high frequency input terminal (101), a DC control input terminal (103), and a DC output terminal (104).
  • the DC boost circuit includes a first capacitor element (106; C1), a second capacitor element (110; C2), a first diode (108; D1), a second diode (109; D2), a first resistor Includes element (107; R1) and second resistance element (111; R2).
  • the high frequency input terminal is connected to one terminal of the first capacitor element and the first resistor element connected in series.
  • the other terminal of the series connection is connected to the force sword of the first diode and the anode of the second diode.
  • the anode of the first diode and one terminal of the second capacitive element are connected to the DC control input terminal, and the force sword of the second diode and the other terminal of the second capacitive element are the second terminal. It is connected to one terminal of the resistance element.
  • the other terminal of the second resistance element is connected to the DC output terminal.
  • the resistance value of the first resistance element is set larger than the resistance value of the resistor (rs2) (see FIG. 10).
  • the DC boost circuit can have a high input impedance by the first resistance element set to a large resistance value.
  • the voltage drop of the first series resistor of the first diode and the voltage of the second series resistor of the second diode generated by the negative voltage amplitude and the positive voltage amplitude of the high frequency input signal supplied to the high frequency input terminal.
  • the drop is smaller than the voltage drop of the first resistance element.
  • the reverse voltage applied to the first diode and the reverse voltage applied to the second diode are reduced to provide a semiconductor integrated circuit in which the life of the built-in DC boost circuit and the operational reliability are improved. Touch with S.
  • the semiconductor integrated circuit (300) further includes a high-frequency switch (320; Qsw) connected between the signal input terminal (306) and the signal output terminal (301).
  • a high-frequency input signal (RFin) is supplied to the signal input terminal of the high-frequency switch, and the DC output voltage (Vout) generated from the DC output terminal of the DC boost circuit is supplied to the control input terminal of the high-frequency switch. Supplied (see Figure 12).
  • the high-frequency switch and the DC boost circuit are incorporated.
  • the lifetime and operational reliability of the semiconductor integrated circuit can be improved.
  • the high-frequency switch (320) includes a field effect transistor (Qsw).
  • Qsw field effect transistor
  • the field effect transistor as the high-frequency switch has a drain'source path between the signal input terminal and the signal output terminal of the high-frequency switch. Consists of multiple field-effect transistors connected in series
  • the voltage of each of the plurality of field-effect transistors connected in series is reduced, and harmonic distortion can be reduced.
  • the field effect transistor as the high-frequency switch is composed of a heterojunction HEMT formed on a compound semiconductor chip (FIG. 12). reference).
  • the high-frequency switch can have a low on-resistance, and signal loss can be reduced.
  • a semiconductor integrated circuit (300) according to an embodiment from another aspect includes a transmission / reception antenna
  • It includes an input / output terminal (301) connectable to (ANT), at least one reception signal output terminal (308), and at least one transmission signal input terminal (306).
  • a reception high-frequency switch (304) is connected between the input / output terminal and the reception signal output terminal.
  • a transmission high frequency switch (302) is connected between the input / output terminal and the transmission signal input terminal.
  • the reception control input terminal (312) of the reception high-frequency switch is provided with a reception control voltage.
  • the transmission high-frequency switch includes a transmission field-effect transistor (320) and a DC boost circuit (330).
  • the DC boost circuit includes a high frequency input terminal, a DC control input terminal, and a DC output terminal.
  • a transmission high frequency output signal (Txl) is supplied to the high frequency input terminal of the DC boost circuit, and a DC control voltage is supplied to the DC control input terminal, thereby generating a DC output voltage from the DC output terminal.
  • the transmission high-frequency output signal is supplied to the transmission signal input terminal of the transmission high-frequency switch, and the transmission signal output terminal of the transmission high-frequency switch is connected to the input / output terminal (301).
  • the high-level DC output voltage from the DC output terminal of the DC boost circuit is supplied to the gate of the transmission field-effect transistor as the transmission control input terminal of the high-frequency transmission switch.
  • the transmission field effect transistor becomes conductive, and the transmission high-frequency output signal supplied to the transmission signal input terminal of the transmission high-frequency switch is transmitted to the input / output terminal.
  • the DC boost circuit includes a high frequency input terminal (101), a DC control input terminal (103), and a DC output terminal (104).
  • the DC boost circuit includes a first capacitor element (106; C1), a second capacitor element (110; C2), a first diode (108; D1), a second diode (109; D2), a first resistor Includes element (107; R1) and second resistance element (111; R2).
  • the high frequency input terminal is connected to one terminal of the first capacitor element and the first resistor element connected in series.
  • the other terminal of the series connection is connected to the force sword of the first diode and the anode of the second diode.
  • the anode of the first diode and one terminal of the second capacitive element are connected to the DC control input terminal, the force sword of the second diode and the other terminal of the second capacitive element Is connected to one terminal of the second resistance element.
  • the other terminal of the second resistance element is connected to the DC output terminal.
  • the resistance value of the first resistance element is set larger than the resistance value of the resistor (rs2) (see FIG. 10).
  • a high frequency module (RF-ML) includes a power amplifier (HPA1, HPA2) and an antenna switch semiconductor integrated circuit (ANT-SW).
  • the power amplifier amplifies high frequency transmission signals (RF—Txl, RF_Tx2) generated from a high frequency analog signal processing semiconductor integrated circuit (RF—IC) and supplies the amplified signals to an antenna (ANT).
  • the antenna switch semiconductor integrated circuit supplies high-frequency received signals (RF—Rxl, RF_Rx2) received by the antenna to the high-frequency analog signal processing semiconductor integrated circuit, and supplies an output signal of the power amplifier to the antenna.
  • the antenna switch semiconductor integrated circuit is the semiconductor integrated circuit described in [1] or the semiconductor integrated circuit described in [2] (see FIG. 17).
  • FIG. 10 is a circuit diagram showing a DC boost circuit 100 built in a semiconductor integrated circuit according to one embodiment of the present invention.
  • the DC boost circuit 100 includes capacitive elements 106 (C1), 110 (C2), resistive elements 107 (R1), 111 (R2), diodes 108 (Dl), 109 (D2). It consists of The resistance value of resistor 107 is set to a sufficiently large value (for example, 10 ⁇ ) compared to the antenna impedance of 50 ⁇ , so the input impedance of DC boost circuit 100 is sufficiently high compared to 50 ⁇ . It is a value. Therefore, input to the high-frequency signal input terminal 101. Most of the applied high-frequency input signal power RFin flows to the high-frequency signal input terminal 102 connected to the switch element, and a small part of the power flows into the DC boost circuit 100.
  • the series resistance rs 1 of the diode 108 and the series resistance rs 2 of the diode 109 are about several ⁇ , which is sufficiently lower than the resistance value of the resistance element 107 (for example, 10 ⁇ ).
  • the voltage drop of the series resistance rsl of the diode 108 and the voltage drop of the series resistance rs2 of the diode 109 generated by the negative voltage amplitude and the positive voltage amplitude of the high frequency input signal power RFin supplied to the high frequency signal input terminal 101 are: It becomes smaller than the voltage drop of the resistance element 107.
  • the reverse voltage applied to the diode 108 and the reverse voltage applied to the diode 109 are reduced, and the life and operation reliability of the DC boost circuit 100 can be improved. Note that the order of connection of the capacitor element 106 and the resistor element 107 connected in series may be the order of connection shown in FIG. 10, or the order may be reversed.
  • diode 108 is biased in the reverse direction and becomes non-conductive, and diode 109 is biased in the forward direction and becomes conductive. It becomes.
  • the positive charge charged in the other terminal of the capacitor 106 flows into the capacitor 110 via the diode 109.
  • One terminal of the capacitive element 110 connected to the connection point between the DC control voltage supply terminal 103 and the diode 108 is charged to a negative voltage, and the capacitive element 110 connected to the connection point between the diode 109 and the resistance element 111 is connected. The other terminal is charged to a positive voltage.
  • 3V is applied to the DC control voltage supply terminal 103 of the DC boost circuit 100 incorporated in the semiconductor integrated circuit according to the embodiment of the present invention shown in FIG.
  • the DC control voltage supply terminal 103 of the DC boost circuit 100 incorporated in the semiconductor integrated circuit according to the embodiment of the present invention shown in FIG.
  • an RF signal current of approximately 1 mA flows.
  • This current flows from the DC control voltage supply terminal 103 to the high frequency input terminal 201 through the diode 108 (including the series resistance rsl) and the 10 ⁇ resistance element 107.
  • a voltage drop of approximately 1 volt occurs across the diode 108 (including the series resistor rsl).
  • the voltage of one terminal of the resistance element 107 connected to the common connection point of the diodes 108 and 109 is more than the DC control voltage Vdc3 volts of the DC control voltage supply terminal 103 than both ends of the diode 108 (including the series resistance rsl).
  • the voltage drop of approximately 1 volt is approximately 2 volts, which is lower.
  • the voltage of the power sword of the diode 109 is maintained at a DC output voltage Vout of about 5 volts at the DC output terminal 204, and a voltage of about 2 volts is applied to the anode of the diode 109.
  • Vout DC output voltage
  • an RF signal current of approximately 1 mA is applied from the high-frequency input terminal 101 to the capacitive element 106, the 10 ⁇ resistive element 107, and the diode 109 (series resistance rs2 Into the DC output terminal 104 and the DC control voltage supply terminal 103.
  • a voltage drop of approximately 1 volt occurs across the diode 109 (including the series resistor rs2).
  • the reverse of the diodes 108 and 109 of the DC boost circuit 100 built in the semiconductor integrated circuit according to the embodiment of the invention shown in FIG. The directional voltage can be made much lower. Therefore, the life and operational reliability of the DC boost circuit 100 shown in Fig. 10 can be significantly improved.
  • FIG. 12 is a circuit diagram showing a DC boost circuit (DCBC) 330 and a transmission high-frequency switch circuit 302 built in the semiconductor integrated circuit 300 according to one embodiment of the present invention.
  • the transmission high-frequency switch circuit 302 is connected to a high-frequency signal input terminal 306, a high-frequency signal output terminal 301, and a control input terminal 310.
  • the DC boost circuit (DCBC) 330 incorporated in the semiconductor integrated circuit 300 of FIG. 12 is essentially the same as the DC boost circuit 100 shown in FIG. That is, in the circuit diagram of the DC boost circuit (DCBC) 330 in FIG. 12, the series resistance corresponding to the series resistance rsl of the diode 108 and the series resistance rs2 of the diode 109 in FIG. 10 is not connected to the diodes 333 and 334. .
  • the DC boost circuit (DCBC) 330 in FIG. 12 is larger than the DC control voltage Vdc at the DC control input terminal 310 by the charging voltage Vb at both ends of the capacitive element 211, similarly to the DC boost circuit 100 in FIG.
  • a DC output voltage Vout is generated from the other end of the resistance element 336 (R2).
  • the DC control voltage Vdc at the DC control input terminal 310 is 3 volts and the charging voltage Vb across the capacitive element 335 (C2) is approximately 2 volts
  • the output voltage Vout is approximately 5 volts.
  • DC boost circuit (DCBC) High-level DC output voltage (Qsw) from high DC output voltage Vout from 330 3
  • Ron of 20 can be reduced, and the RF signal loss transmitted to the signal output terminal 301 connected to the antenna ANT can be reduced.
  • the signal output terminal 301 connected to the antenna ANT also functions as a signal input / output terminal, and the signal output terminal 301 is connected to a reception high-frequency switch.
  • the reception high-frequency switch is controlled to be in a non-conductive state
  • the transmission high-frequency switch (Q sw) 320 is controlled to be in a conductive state.
  • the high frequency switch (Qsw) 320 is controlled to be in the ON state
  • the voltage at the signal input / output terminal 301 is also at a high level due to the high level DC output voltage Vout from the DC boost circuit (DCBC) 330.
  • DCBC DC boost circuit
  • the transmission high-frequency switch (Qsw) 320 has a plurality of field effects in which the drain and source paths are connected in series between the high-frequency signal input terminal 306 and the signal output terminal 301.
  • Transistor (FET) 320A, 320B, 320C, 320D Multiple FETs 320A, 320B, 320C, and 320D connected in series can reduce the voltage of each FET, and can reduce the harmonic distortion of the antenna switch.
  • FET320A, 320B, 320C, 320D drain 'High resistance resistance element 322A, 322B, 322C, 322D force between source and drain of each FET The source can be maintained at substantially the same potential in terms of DC.
  • FIG. 13 shows a high-frequency equivalent circuit of a DC boost circuit that drives a transmission high-frequency switch circuit incorporated in a semiconductor integrated circuit according to one embodiment of the present invention shown in FIGS. 10 and 12.
  • FIG. The resistance value of the resistance element 107 is Rl
  • the equivalent impedances of the diodes 108 and 109 are Zl and Z2, respectively.
  • the equivalent impedance of one of the diodes 108 and 109 is sufficiently larger than the equivalent impedance of the other. Therefore, if Z1 ⁇ Z2, the input impedance Zinl is
  • FIG. 14 is a circuit diagram showing a high-frequency equivalent circuit of a DC boost circuit studied by the present inventors prior to the present invention shown in FIG.
  • the resistance values of the resistance elements 207 and 208 are R11, and the equivalent impedances of the diodes 209 and 210 are Zl and Z2, respectively.
  • the equivalent impedance of one of the diodes 209 and 210 is sufficiently larger than the equivalent impedance of the other. Therefore, if Z1 ⁇ Z2, the input impedance Zin2 is
  • Zin2 (Rl l + Zl)
  • the level of the DC output voltage generated by boosting in the DC boost circuit is determined by the input power of the high-frequency input signal RFin supplied to the DC boost circuit. That is, Figure 10 And the DC boost circuit shown in Fig. 11 generates equal DC output voltage Vout! From (Equation 1) and (Equation 2), the DC boost circuit in Figs. 10 and 11 needs to satisfy R1> R11 in order to generate the DC output voltage Vout at the same level. According to the simulation results by the inventors, it was found that the DC output voltage Vout having the same level is generated when R1 0.7 'R11.
  • the antenna switch MMIC (300) in Fig. 15 has a single pole 4 throw (SP4T; Single Pole 4 throw) type switch.
  • the antenna switch MMIC (300) includes four high-frequency switches 302, 303, 304, and 305.
  • the first transmission switch 302 is connected to the common input / output terminal I / O (301) and the first transmission terminal Txl (306) by connecting the first transmission terminal Txl (306) to the common input / output terminal. Establish a route for the first transmission signal to 1 / O (301).
  • the second transmission switch 303 connects the common input / output terminal I / O (301) and the second transmission terminal Tx2 (307) to the common input / output terminal I from the second transmission terminal ⁇ 2 (307). Establish a route for the second transmission signal to / O (301).
  • the first receiving switch 304 is connected to the first input / output terminal 1/0 (301) through the first input / output terminal 1/0 (301) by connecting the common input / output terminal I / O (301) and the first receiving terminal Rxl (308). Establish a route for the first received signal to the receiving terminal R xl (308).
  • the second receiving switch 305 connects the common input / output terminal I / O (301) and the second receiving terminal Rx2 (309) to connect the second receiving terminal 305 to the second receiving terminal I / O (301). Establish a route for the second received signal to terminal Rx2 (309).
  • the high-frequency switches FE T320, 340, 360, and 370 constituting the four high-frequency switches 302, 303, 304, and 305 use a repulsive force S of a heterojunction structure having a low on-resistance.
  • the common input / output terminal 301 is connected to the transmission / reception antenna ⁇ , the first transmission terminal Txl (306) is connected to the first power amplifier via the first low-pass filter (not shown), and the second A second power amplifier (not shown) can be connected to the transmission terminal Tx2 (307) via a second low-pass filter (not shown).
  • a first low noise amplifier is connected to the first reception terminal Rxl (308) via a first surface acoustic wave filter (not shown), and a second low noise amplifier is connected to the second reception terminal Rx2 (309). Two surface acoustic wave filters can be connected (not shown).
  • the first transmission switch 302 includes first transmission FETs 320A to 320D connected in series between the common input / output terminal I / O (301) and the first transmission terminal Txl (306). Resistor elements 322A and 322D are connected between the source and drain of each FET. Each gate is connected to one end of the resistance element 3 21A ′ 321D, and the other end of the resistance element 321A ′ 321D is connected to the first transmission DC control terminal 310 via the resistance element 323.
  • the first transmission switch 302 includes a first capacitor element 331, a second capacitor element 335, a first resistor element 332, a second resistor element 336, and a first die.
  • a first transmission DC boost circuit 330 composed of an ode 333 and a second diode 334 is included.
  • the resistance values of the first resistance element 332 and the second resistance element 336 are set to values sufficiently larger than the resistance values of the series resistance component of the first diode 333 and the series resistance component of the second diode 334.
  • the first transmission DC boost circuit 330 of the first transmission switch 302 is supplied with the first transmission RF signal from the first transmission terminal Txl (306) and the first transmission DC control voltage is supplied to the first transmission DC control terminal 310. Is done.
  • the first transmission DC boost circuit 330 of the first transmission switch 302 of FIG. 15 performs essentially the same boosting operation as the DC boost circuit 100 shown in FIG.
  • the second transmission switch 303 includes second transmission FETs 340A '340D connected in series between the common input / output terminal I / O (301) and the second transmission terminal Tx2 (307). Resistance elements 342A and 342D are connected between the source and drain of each FET. Each gate is connected to one end of the resistance element 3 41A ′ 341D, and the other end of the resistance element 341A ′ 341D is connected to the second transmission DC control terminal 311 via the resistance element 343.
  • the first transmission switch 303 includes a first transmission element 351, a second capacitance element 355, a first resistance element 352, a second resistance element 356, a first diode 353, and a second diode 354. Includes DC boost circuit 350.
  • the resistance values of the first resistance element 352 and the second resistance element 356 are set to values sufficiently larger than the resistance values of the series resistance component of the first diode 353 and the series resistance component of the second diode 354.
  • the second transmission DC boost circuit 350 of the second transmission switch 303 is supplied with the second transmission RF signal from the second transmission terminal Tx2 (307), and the second transmission DC control voltage is supplied to the second transmission DC control terminal 311. Is done.
  • the second transmission DC boost circuit 350 of the second transmission switch 303 in FIG. 15 performs the same boosting operation as the DC boost circuit 100 shown in FIG.
  • the first reception switch 304 includes a first reception FET 360A ′ 360D connected in series between the common input / output terminal I / O (301) and the first reception terminal Rxl (308).
  • Resistance elements 362A and 362D are connected between the source and drain of each FET. Each gate is connected to one end of the resistance element 3 61A ′ 361D, and the other end of the resistance element 361A ′ 361D is connected to the first reception DC control terminal 312 via the resistance element 363.
  • the second receiving switch 305 has a common input / output terminal I / O (301) and a second receiving terminal Rx2 (309 ) And a second receiving FET 370A '370D connected in series. Resistance elements 372A and 372D are connected between the source and drain of each FET. Each gate is connected to one end of the resistor element 371A ′ 371D, and the other end of the resistor element 371A ′ 371D is connected to the second reception DC control terminal 313 via the resistor element 373.
  • the power level of the first RF received signal supplied from the transmit / receive antenna ANT to the common input / output terminal I / O (301) in the receive state is the RF transmit signal supplied from the RF power amplifier to the transmit / receive antenna ANT in the transmit state. It is extremely small compared with the power level. Accordingly, a reception DC boost circuit such as the first transmission DC boost circuit 330 of the first transmission switch 302 or the second transmission DC boost circuit 350 of the second transmission switch 303 is provided inside the first reception switch 304 or the second reception switch 305. However, the boosting function of the receiving DC boost circuit is extremely low. For this reason, no DC boost circuit for reception is arranged in the first reception switch 304 or the second reception switch 305.
  • the first transmission FET 32 0A.320D of the first transmission switch 302 of the antenna switch MMIC (300) of FIG. 15 is driven by the high-level DC output voltage from the first transmission DC boost circuit 330 and becomes conductive.
  • the first transmission RF signal supplied to the first transmission terminal Txl (306) via the first transmission FET 320A-320D in the conductive state is sent to the common input / output terminal I / O (301) connected to the antenna ANT. Communicated.
  • On-resistance Ron of the first transmission FET 320A .320D of the first transmission switch 302 is reduced by the high-level DC output voltage from the first transmission DC boost circuit 330, and the common input / output terminal I / I connected to the antenna ANT
  • the RF signal loss transmitted to O (301) can be reduced.
  • the first transmission FET 320A .320D of the first transmission switch 302 is controlled to be in the ON state by the high level DC output voltage from the first transmission DC boost circuit 330, it is common to the high level DC output voltage.
  • the voltage at the I / O terminal I / O (301) is also high.
  • the second transmission DC control voltage of the second transmission DC control terminal 311 of the second transmission switch 303, the first reception DC control voltage of the first reception DC control terminal 312 of the first reception switch 304, and the second The second reception DC control voltage at the second reception DC control terminal 313 of the reception switch 305 is a low level DC control voltage. Therefore, the second transmission FETs 340A-340D of the second transmission switch 303, the first reception FET 360A --- 360D of the first reception switch 30 4, and the second reception FET 370A --- 3 of the second reception switch 305 70D is a non-conductive state.
  • the high-level DC output voltage causes the gate-source voltage of each of the non-conducting second transmit FET340A --- 340D, first receive FET360A-360D, and second receive FET370A --- 370D to be deeply reversed.
  • Direction bias voltage The force S can reduce the change in the capacitance value of the gate capacitance of these FETs and reduce the harmonic distortion of the antenna switch.
  • the second transmission FE T340A .340D of the second transmission switch 303 of the antenna switch MMIC (300) of FIG. 15 is driven by the high-level DC output voltage from the second transmission DC boost circuit 350 and becomes conductive.
  • the first transmission FET 320A--320D of the first transmission switch 302, the first reception FET 360A--360D of the first reception switch 304, and the second reception FET 370A of the second reception switch 305-- 370D is in a non-conductive state.
  • the gate-source voltage of each of the non-conducting first transmitter FET 320A- '' 320D, first receiver FET 360A- '360D, and second receiver FET 370A ••• 370D is a deep reverse bias voltage.
  • the change in the capacitance value of the gate capacitance of these FETs can be reduced, and the power S reduces the harmonic distortion of the antenna switch.
  • the SP4T antenna switch MMIC (300) is configured as described above.
  • the internal resistance elements in Fig. 15 use mesa resistances of compound semiconductors and metal thin film resistors, and the internal capacitance elements in Fig. 15 MIM (Metal Insulator Metal) capacity can be used.
  • MIM Metal Insulator Metal
  • the internal resistance elements and capacitive elements in FIG. 15 are not limited to these and can be changed to resistive elements and capacitive elements manufactured by other manufacturing methods.
  • FIG. 16 shows the first transmission DC boost circuit 330 of the first transmission switch 302 and the second transmission DC of the second transmission switch 30 3 of the antenna switch MMIC (300) according to the embodiment of the present invention shown in FIG. 3 is a plan view showing a device structure of a boost circuit 350.
  • FIG. 16 shows the first transmission DC boost circuit 330 of the first transmission switch 302 and the second transmission DC of the second transmission switch 30 3 of the antenna switch MMIC (300) according to the embodiment of the present invention shown in FIG. 3 is a plan view showing a device structure of a boost circuit 350.
  • the high frequency input terminal 401 (Tx) of the DC boost circuit is connected to one end of the first capacitive element C1.
  • the first capacitive element C1 is composed of a total capacitance of the metal layer 404 of the lower first layer wiring, the metal layer 405 of the upper second layer wiring, and the interlayer insulating layer.
  • the metal layer 404 is connected to one end of the resistor 407 forming the first resistance element R1 via the connection point 406.
  • the other end of the resistor 407 is connected to the metal layer 409 via the connection point 408.
  • the metal layer 409 is connected to the force sword of the first diode D1 and the anode of the second diode D2.
  • the first diode D1 is formed of a FET (410) having a source electrode 411 (S), a drain electrode 412 (D), and a gate electrode 413 (G).
  • the source electrode 411 (S) and the drain electrode 412 (D) of the FET (410) are short-circuited by the metal layer 409.
  • the source electrode 411 (S) and drain electrode 412 (D) as a force sword are connected to the metal layer 409, the gate electrode 413 (G) as an anode is connected to the metal layer 420, and the metal layer 420 is a DC control voltage.
  • the second diode D2 is formed of a FET (414) having a source electrode 415 (S), a drain electrode 416 (D), and a gate electrode 417 (G).
  • the source electrode 415 (S) and the drain electrode 416 (D) of the FET (414) are short-circuited by the metal layer 418.
  • the gate electrode 417 (G) and the source electrode 415 (S) of the FET (414) serve as a force sword with the anode of the Schottky diode (D2).
  • the gate electrode 417 (G) of the FET (414) is connected to the metal layer 409, and the source electrode 415 (S) and the drain electrode 416 (D) are short-circuited by the metal layer 418.
  • a gate electrode 417 (G) as an anode is connected to the metal layer 409, and a source electrode 415 (S) and a drain electrode 416 (D) as a force sword are connected to the metal layer 418.
  • the metal layer 418 is connected to one end of the second capacitive element C2 via the connection point 419.
  • the second capacitive element C2 is composed of a MIM capacitance of a metal layer 421 of the lower-layer first-layer wiring, a metal layer 420 of the upper-layer second-layer wiring, and an inter-layer insulating layer.
  • the metal layer 421 of the lower first layer wiring is connected to one end of the resistor 423 forming the second resistance element R2 via the connection point 422, and the other end of the resistor 423 is connected to the connection point 424. Connected to DC output terminal 40 3 where DC output voltage Vout is generated.
  • the FETs 410 and 414 that form the Schottky diodes Dl and D2 have the same structure as the HEMTs of the high-frequency switches FET 320, 340, 360, and 370 that form the four high-frequency switches 302, 303, 304, and 305 in FIG. It is possible to manufacture with the same manufacturing process.
  • FIG. 17 is a block diagram showing the configuration of a mobile phone equipped with a high-frequency module incorporating an antenna switch MMIC, a high-frequency analog signal processing semiconductor integrated circuit, and a baseband signal processing LSI according to one embodiment of the present invention. .
  • the high-frequency module RF-ML shown in the figure consists of the antenna switch mic-wave monolithic semiconductor integrated circuit (ANT-SW) shown in Fig. 15, RF power amplifiers HPA1 and HPA2, low-pass filters LPF1 and LPF2. Controller integrated circuit (CNT-IC).
  • the common input / output terminal I / O of the antenna switch MMIC (ANT_SW) of the high-frequency module RF—ML is connected to the antenna ANT for transmitting and receiving mobile phones!
  • B— Cnt from the baseband signal processing LSI (BB—LSI) passes through the high-frequency analog signal processing semiconductor integrated circuit (RF—IC) (hereinafter referred to as “RFIC”).
  • RFIC high-frequency analog signal processing semiconductor integrated circuit
  • High-frequency signal flow from the transmitting / receiving antenna AN to the common input / output terminal I / O becomes the reception operation RX of the mobile phone, and is supplied from the common input / output terminal I / O.
  • the flow of high-frequency signals to the transmitting / receiving antenna ANT is the mobile phone transmission operation TX.
  • RFIC transmits baseband signal from baseband signal processing LSI (BB—LSI) Tx— Performs frequency up-conversion of BBS to high-frequency transmission signal! / ⁇ , conversely with transmission / reception antenna ANT
  • the received high-frequency received signal is frequency down-converted to the received baseband signal Rx—BBS and supplied to the baseband signal processing LSI (BB—LSI).
  • High-frequency module RF—ML antenna switch MMIC (ANT_SW) establishes a signal path between the common I / O terminal I / O and any of the transmission terminals Txl, ⁇ 2, and the reception terminals Rxl, Rx2. , Either receive operation RX or transmit operation TX.
  • This antenna switch MMIC (ANT_SW) sets the impedance of the signal path other than the established signal path due to the difference between the reception operation RX and the transmission operation TX! Can be obtained.
  • the baseband signal processing LSI (BB-LSI) is connected to an external nonvolatile memory (not shown) and connected to an application processor!
  • the application processor is shown in the figure and is shown as a liquid crystal display device! /, Na! /, A key input device. And can run various application programs including general-purpose programs and games. Phases related to reception baseband signals such as GSM system by the boot program (startup initialization program), operating system program (OS), baseband signal processing LSI of the mobile phone and other digital signal processor (DSP) Programs for phase modulation related to demodulation and transmission baseband signals and various application programs can be stored in external non-volatile memory.
  • the baseband signal processing Tx—BBS from the baseband signal processing LSI should be frequency up-converted to the GSM850 or GSM900 transmission frequency band.
  • the frequency of the RF transmission signal of GSM850 is 824 MHz to 849 MHz
  • the frequency of the RF transmission signal of GSM900 is 880 MHz to 915 MHz.
  • the RFIC transmission signal processing unit Tx—SPU performs frequency up-conversion from the transmission baseband signal Tx—BBS to this transmission frequency band to generate a high-frequency transmission signal RF-Txl.
  • the high-frequency transmission signal RF—Tx 1 in this transmission frequency band is power amplified by the RF high-output power amplifier HPA1 of the high-frequency module RF—ML, and passes through the single-pass filter LPF 1 to the transmission end of the antenna switch MMIC (ANT_SW). Supplied to child Txl.
  • the GSM850 or GSM900 high-frequency transmission signal RF—Txl supplied to the transmission terminal Txl is measured by the power transmitted from the transmission / reception antenna ANT card via the common input / output terminal I / O.
  • the high-frequency reception signal RF—Rxl of the GSM850 or GSM900 received by the transmission / reception antenna ANT is supplied to the common input / output terminal I / O of the antenna switch MMIC (ANT—SW).
  • the frequency of the RF reception signal of GSM850 is 869MHz to 894MHz, and the frequency of the RF reception signal of GSM900 is 925MHz to 960MHz.
  • the high frequency received signal RF—Rxl of this received frequency band obtained from the receiving terminal Rxl of the antenna switch MMIC (ANT_SW) is amplified by the low noise amplifier LNA1 of the RFIC (RF—IC) through the surface acoustic wave filter SAW1, After that, it is supplied to the received signal processing unit Rx—SPU.
  • the reception signal processing unit Rx—SPU performs frequency down-conversion to the reception baseband signal Rx BBS from the GSM high-frequency reception signal GSM—Rx force.
  • the antenna switch MMIC (ANT_SW) responds to the control signal B.
  • B Cnt
  • the high-frequency transmission signal RF by connecting the common input / output terminal I / O and the transmission terminal Txl.
  • Txl Transmission of Txl and reception of common input / output terminal I / O.
  • Reception of RF reception signal RF—Rxl by connection with terminal Rxl is performed in a time-sharing manner.
  • Baseband signal processing Assume a case where the transmission baseband signal Tx—BBS from the LSI (BB—LSI) should be frequency up-converted to the DCS1800 or PCS1900 transmission frequency band.
  • the frequency of the RF transmission signal of DCS1800 is 1710 MHz to 1780 MHz
  • the frequency of the RF transmission signal of PCS 1900 is 1850 MHz to 910 MHz.
  • the RFIC transmit signal processing unit Tx—SPU performs frequency up-conversion of the transmit baseband signal Tx—BBS to this transmit frequency band to generate a high frequency transmit signal RF—Tx2 for this transmit frequency band.
  • the high-frequency transmission signal RF—Tx2 in this transmission frequency band is power amplified by the RF high-output power amplifier HPA2 of the high-frequency module RF—ML and passed through the low-pass filter LPF2 to the transmission terminal Tx2 of the antenna switch MMIC (ANT_SW). Supplied.
  • the high frequency transmission signal RF—Tx2 of DCS 1800 or PCS 1900 supplied to the transmission terminal ⁇ 2 can be transmitted from the transmission / reception antenna ANT via the common input / output terminal I / O.
  • the high frequency reception signal RF—Rx2 of DCS 1800 or PCS 1900 received by the transmitting / receiving antenna ANT is supplied to the common input / output terminal 1 / O of the antenna switch MMIC (ANT_SW).
  • the frequency of the RF reception signal of DCS1800 is 1805 MHz to 180 MHz
  • the frequency of the RF reception signal of PCS 1900 is 1930 MHz to 1990 MHz.
  • High frequency received signal RF—Rx2 of DCS 1800 or PCS 1900 obtained from receiving terminal Rx2 of antenna switch MMIC (ANT—SW) is amplified by low noise amplifier LNA2 of RFIC (RF—IC) through surface acoustic wave filter SAW2. And then supplied to the received signal processing unit Rx—SPU.
  • the received signal processing unit Rx—SPU performs frequency down-conversion from the high frequency received signal RF—Rx2 of DCS 1800 or PCS 1900 to the received baseband signal Rx—BBS.
  • the antenna switch MMIC (ANT
  • SW responds to the control signal B.
  • B Cnt and uses a common input / output terminal I / O and transmission terminal
  • the high-frequency transmission signal RF—Tx2 is transmitted by the connection to the I / O and the reception terminal Rx2 of the common input / output terminal I / O is received in a time-sharing manner.
  • the baseband signal processing LSI and the application processor are configured by different semiconductor chips, respectively.
  • the application processor is the baseband signal processing LSI. It can be an integrated one-chip integrated with a semiconductor chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electronic Switches (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Transceivers (AREA)

Description

明 細 書
半導体集積回路、それを内蔵した RFモジュールおよびそれを搭載した無 線通信端末装置
技術分野
[0001] 本発明は、無線通信システムのための送受信切換回路(アンテナスィッチ)を内蔵 する半導体集積回路、それを内蔵した RF (無線周波数)モジュールおよびそれを搭 載した無線通信端末装置に関し、特に WCDMA方式で重要な相互変調歪または G SM方式で重要な高調波歪を低減するのに有益な技術に関する。
[0002] また、本発明は、 DCブースト回路を含む半導体集積回路とそれを内蔵した RFモジ ユールに関し、特にデバイスの寿命および動作信頼性を向上するのに有益な技術で ある。
背景技術
[0003] 世界中のどんな場所でも無線通信すると言う携帯電話端末等の通信端末機器の 能力であるュビキタス'カバレージは、今日現実のものではなぐ現在開発が進めら れている。
[0004] ュビキタスを実現するためのモパイルシステムは、 GSM(Global System for Mobile Communication^ Pし S (Personal communication system)、 Dし: 5 (Digital Cellular Sy stem)、 GPRS (General Packet Radio Service)、 EDGE (Enhanced Data for GSM Ev olution; Enhanced Data for GPRS)、 WCDMA (Wideband Code Division Multiple A ccess)等のセルラーである。これらのシステムの特性は、一定包落線と包落線変化と の信号、時分割とコード分割とのマルチプレックス、高(数ワット)から低(マイクロワット )への送信出力電力の広範囲な組み合わせに及んでいる。その結果、マルチバンド とマルチモードとの応用の要望が、大きくなつている。
[0005] 一方、下記非特許文献 1には、 GSM、 DCS, PCS, WCDMAのクヮッドバンドの この MMICは、 GSM方式と DCS方式と PCS方式のそれぞれの方式の送信信号と 受信信号とを時分割で直列処理できるとともに、 WCDMA方式の送信信号と受信信 号とをコード分割で並列処理することができる。スィッチには、ノ リア層として AlGaAs が使用され、チャネル層として InGaAsが使用され、低いオン抵抗を持つヘテロ接合 構造の HEMT (High Electron Mobility Transistor)が使用されている。また、下記非 特許文献 1には、 DCSと PCS2の送信端子での 2次高調波歪と 3次高調波歪とは約 - 70dBcとなることが記載されて!/、る。
[0006] また、下記特許文献 1には、無線通信システムのための送受信切換回路のための スィッチ回路が記載されている。オン状態のスィッチ回路からの高電圧によってオフ 状態のスィッチ回路の直列接続された FETの高電圧側の FETが最初にオン状態と なるのを直列接続された FETのゲート抵抗を高電圧側から低電圧側へ順に小さな抵 抗とすることにより回避している。その結果、揷入損失および高調波歪が小さい通信 用電子部品を提供できるとしている。
[0007] さらに、下記特許文献 2には、移動体通信機器のための高周波スィッチ回路が記 載されて!/、る。オフ状態の高周波スィッチ回路の直列接続された複数の FETのうち でオン状態の高周波スィッチ回路からの高電圧が印加される入出力端子に最も近い FETのゲート抵抗だけを最大に設定して他のゲート抵抗を最大値よりも低く設定して いる。その結果、ゲート抵抗の抵抗値の総合計を小さくしつつ、信号経路に及ぼす 景響を低減させること力 Sでさるとして!/、る。
[0008] また、下記特許文献 3には、移動体通信機のためのスィッチ回路が記載されている 。スィッチ回路は 2つ以上の複数のゲートを有する FETで構成され、 FETのドレイン とドレイン隣接ゲートとの間にドレイン付加容量が接続され、 FETのソースとソース隣 接ゲートとの間にソース付加容量が接続されている。オフ状態のスィッチの FETのド レインとドレイン隣接ゲートとの間にドレイン付加容量により、オン状態のスィッチ回路 力、らの負方向の電圧の振れによってオフ状態のスィッチの FETがオンする現象が抑 圧できる。また、オフ状態のスィッチの FETのソースとソース隣接ゲートとの間にソー ス付加容量により、オン状態のスィッチ回路からの正方向の電圧の振れによってオフ 状態のスィッチの FETがオンする現象が抑圧できる。その結果、低電圧で低歪特性 の高周波スィッチを実現することができるとしている。尚、下記特許文献 3に対応する 米国特許は、第 5, 774, 792号 明細書である。 [0009] また、下記特許文献 4には、携帯端末等の無線通信機器のためのアンテナスィッチ 回路が記載されている。アンテナスィッチ回路の FETは、ドレイン 'ソース間に複数の ゲートを持つマルチゲートトランジスタとされている。複数のゲートの隣り合うゲートに 挟まれたゲート間領域が電位安定化抵抗を介してドレインとソースとに接続されこと によって、マルチゲート型の FETのドレイン 'ソース間の信号漏れを抑圧できるとして いる。
[0010] 世界中のどんな場所でも無線通信すると言う携帯電話端末等の通信端末機器の 能力であるュビキタス'カバレージは、今日現実のものではなぐ現在開発が進めら れている。
[0011] ュビキタスを実現するためのモパイルシステムは、 GSM(Global System for Mobile Communication八 Pし S (Personal communication system)、 Dし: 5 (Digital Cellular Sy stem)、 GPRS (General Packet Radio Service)、 EDGE (bnhanced Data for GSM Ev olution; Enhanced Data for GPRS)、 WCDMA (Wideband Code Division Multiple A ccess)等のセノレラーや、無泉 LAN (Local Area Network)、 WIMAX (Worldwide Inte roperability for Microwave Access)等の様々なシステムが存在する。
[0012] これらのシステムの特性は、一定包落線や包落線変化との信号、時分割、周波数 分割とコード分割等のマルチプレックス、高(数ワット)から低 (マイクロワット)への送信 出力電力の広範囲な組み合わせに及んでいる。その結果、 1つの端末で複数のシス テムに対応するマルチモード化の要望が大きくなつている。時分割で送信と受信とを 切り替える時分割送受信を採用するシステムに対応するモパイル通信端末や、マル チモード対応した通信を行なうモパイル通信端末では、送信モードと受信モードとの 間の切り替えをする必要がある。この切り換えに、アンテナスィッチが用いられている
[0013] モパイル端末では、電池駆動であるために、低消費電力化が求められている。モバ ィル通信端末で最も電力を消費するのは、送信信号の電力を数 Wの大電力に増幅 する電力増幅器である。この電力増幅器の電力変換効率を高めることが、低電力化 に有効である。しかし、増幅信号を低損失のアンテナスィッチを介してアンテナに供 給して空間に放出することも、モパイル端末全体としての電力変換効率の向上およ び低消費電力化に有効である。従って、電力増幅器とアンテナとの間に接続される アンテナスィッチは、低損失であることが求められる。
[0014] また、電波資源は各国や各地域によって管理運用されており、電波を空間に放出 するモパイル通信端末は国や地域毎に、各システムに使用できる電波の周波数ゃ電 力強度が規定されている。そのため、高調波電力のようなシステムで用いられる周波 数以外で空間に放出される電力強度は、法律等で決められた値以下に抑制する必 要がある。端末より放出される電力は電力増幅器で増幅され、アンテナスィッチを介 してアンテナより放射される。通常、電力増幅器から発生する高調波は、電力増幅器 の出力の LPF (Low Pass Filter)で十分に抑制されることができる。し力、し、 LPFの出 力に接続されたアンテナスィッチにおいて発生した高調波歪みは、そのままアンテナ を介して空間に放出される。従って、アンテナスィッチにおいては、高調波歪みの発 生の抑制、すなわち高線型性能も要求される。
[0015] 従来では、 PINダイオードを用いたアンテナスィッチ力 S、一般的であった。し力、し、 下記非特許文献 2に記載されているように、マイクロ波信号スィッチに PINダイオード よりも高速な GaAsスィッチ FET (Field Effect Transistor)が使用される。
[0016] し力、し、 GaAsスィッチ FETの降伏電圧は、 PINダイオードの降伏電圧よりもはるか に低いと言う欠点がある。従って、下記非特許文献 2には、 GaAsマイクロウエーブモ ノリシック IC (MMIC)において多数の FETセルを直列に接続して、 FET1段当りに 印加される電圧を小さくすることによって、この欠点を解決する技術が記載されている
[0017] また、 GaAsモノリシックスィッチ ICでは、送信電力が増加すると、波形歪が発生す る。従って、下記非特許文献 3には、波形歪の問題を解決するためのフィードフォヮ ード回路を含むスィッチが記載されている。このスィッチは、 RF信号入力端子と接地 電位との間に第 1FETのドレイン 'ソース経路が接続され、 RF信号入力端子と RF信 号出力端子との間に第 2FETのソース'ドレイン経路が接続される。フィードフォヮ一 ド回路は、 RF信号入力端子と第 1FETのゲートとの間に直列接続されたフィードフォ ワード容量とダイオードとを含んでいる。 RF信号を RF信号入力端子から RF信号出 力端子へ伝達しない際には、第 1FETはオン、第 2FETはオフに制御される。逆に、 RF信号を RF信号入力端子から RF信号出力端子へ伝達する際には、第 1FETはォ フ、第 2FETはオンに制御される。この RF信号の伝達時には、フィードフォワード回 路を介して RF信号入力端子の RF信号の低レベルが第 1FETのゲートに負電圧とし て伝達される。従って、波形歪と RF送信電力の損失との問題を回避することができる
[0018] また、下記特許文献 5には、複数の RF信号源に接続された複数のスィッチエレメン トを含む RFスィッチに、複数の DCブースト回路を接続することが記載されている。複 数のスィッチエレメントは複数の FETで構成され、 FETのゲートにはオン'オフ制御 のための DC制御電圧が印加される。この DC制御電圧は一般にはシステム電源電 圧から生成されるが、 DC制御電圧が 2. 5ボルト以下に低下すると RF出力信号に歪 を与える高調波信号成分が著しく増加する。下記特許文献 5では、複数のダイオード と複数の容量と複数の抵抗で構成された DCブースト回路に、 DC制御電圧と RF信 号とが供給される。 RF信号の正電圧と負電圧とに応答した複数のダイオードと複数 の容量とによる充放電動作により、 DC制御電圧よりも大きな DC出力電圧が DCブー スト回路から抽出される。複数の抵抗は DCブースト回路を高入力インピーダンスとし て、 RF信号源から DCブースト回路に大きな電流が流れるのを防止して!/、る。
[0019] 非特許文献 l : Hiroyuki Tosaka et al, "An Anttena Switch MMIC Usi ng E/D Mode p— HEMT for GSM/DCS/PCS/WCDMA Bands Application", 2003 IEEE Radio Frequency Integrated Circuits Sy mposium, PP. 519— 522.
非特許文献 2 : M. B. Shifrin at al, "Monolithic FET Structures for Hi gh— Power Control Component Applications , IEEE TRANS ACTIO NS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO 12, DECEMBER 1989, PP. 2134- 2141.
非特許文献 3 : K. Miyatsuji at al, "A GaAs High -Power RF Single - Pole Double—Throw Switch IC for Digital Mobile Communication System , 1994 IEEE International Solid— State Circuit Conference DIGEST OF TECHNICAL PAPERS, PP. 34— 35. 特許文献 1 :特開昭 2005— 072671号 公報
特許文献 2 :特開昭 2006— 174425号 公報
特許文献 3 :特開平 8— 70245号 公報
特許文献 4 :特開昭 2000— 101032号 公報
特許文献 5 :米国特許出願公開 US2004/0229577A1
発明の開示
発明が解決しょうとする課題
[0020] 本発明者等は、本発明に先立って GSM、 GSM、 DCS, PCS, WCDMAのマル チバンドの送受信を可能とする携帯電話に搭載されるアンテナスィッチマイクロゥェ ーブモノリシック IC (MMIC)と、それを内蔵した RFモジュールとの開発に従事した。
[0021] 図 1は、本発明に先立って開発されたアンテナスィッチ MMICを内蔵した RFモジュ ールとベースバンド信号処理 LSIとを搭載した携帯電話の構成を示すブロック図であ
[0022] 同図で、携帯電話の送受信用アンテナ ANTには RFモジュール RF— MLのアンテ ナスイッチ MMIC (ANT_SW)の共通の入出力端子 I/Oが接続されて!/、る。ベー スバンド信号処理 LSI (BB— LSI)からの制御信号 B. B— Cntは、 RFアナログ信号 処理半導体集積回路 (RF— IC)を経由して高出力電力増幅器モジュール (HPA— MUのコントローラ集積回路(CNT—IC)に供給される。送受信用アンテナ ANTか ら共通の入出力端子 I/Oへの RF信号の流れは携帯電話の受信動作 RXとなり、共 通の入出力端子 I/Oから送受信用アンテナ ANTへの RF信号の流れは携帯電話 の送信動作 TXとなる。
[0023] RF IC (RF— IC)はベースバンド信号処理 LSI (BB— LSI)からの送信ベースバン ド信号 Tx— BBSを RF送信信号に周波数アップコンバージョンを行!/ヽ、逆に送受信 用アンテナ ANTで受信された RF受信信号を受信ベースバンド信号 Rx— BBSに周 波数ダウンコンバージョンを行いベースバンド信号処理 LSI (BB— LSI)に供給する
[0024] RFモジュール RF— MLのアンテナスィッチ MMIC (ANT_SW)は共通の入出力 端子 I/Oと送信端子 Txl、 Τχ2、受信端子 Rx2、 Rx3、 Rx4、送受信端子 TRxl、 T Rx5の!/、ずれかの端子の間で信号経路を確立して、受信動作 RXと送信動作 TXと のいずれかを行う。このアンテナスィッチ MMIC (ANT—SW)は受信動作 RXと送信 動作 TXとの!/、ずれかのために確立した信号経路以外の信号経路のインピーダンス を極めて高レ、値に設定することで、必要なアイソレーションが得られるものである。
[0025] 図 2は、本発明に先立って開発されたアンテナスィッチ MMICの複数の高周波スィ ツチの構成を示すブロック図である。図 2のアンテナスィッチ MMICは、図 1に示した 携帯電話に搭載された RFモジュール RF— MLに内蔵されている。
[0026] 図 2に示すようにアンテナスィッチ MMICは複数の高周波スィッチ Qa、 Qb、 Qcを 含んでいる。高周波スィッチ Qaは、共通の入出力端子 I/Oと送信端子 Tx2 (GSM8 50または GSM900の RF送信信号を出力する送信端子)の間で信号経路を確立す るためのスィッチである。高周波スィッチ Qbは、共通の入出力端子 I/Oと送信端子 Txl (DCS1800または PCS 1900の RF送信信号を出力する送信端子)の間で信号 経路を確立するためのスィッチである。高周波スィッチ Qcは、共通の入出力端子 1/ Oと送受信端子 TRxl (WCDMA1900の RF送信信号を出力して WCDMA2100 の RF受信信号を入力する送受信端子)の間で信号経路を確立するためのスィッチ である。
[0027] 図 2は、高周波スィッチ Qaがオン状態とされ、他の高周波スィッチ Qb、 Qcはオフ状 態とされる場合を示している。複数の高周波スィッチ Qa、 Qb、 Qcの各スィッチは 6個 の直列接続された Nチャンネルの電界効果トランジスタ(以下、 FETと称する)で構成 されることにより、扱う電圧を増大するとともに送信と受信との両方での揷入損出が最 小となるように低いオン抵抗を確保している。尚、各 FETは、 HEMTトランジスタとな つて!/、る。各スィッチの 6個の直列接続された HEMTトランジスタのゲートには 6個の ゲート抵抗が接続され、 6個のゲート抵抗は他の 1個の抵抗を介して高周波スィッチ のオン'オフを制御するための制御入力端子に接続される。各スィッチの 6個の直列 接続された HEMTトランジスタのドレイン 'ソース間には、スィッチの 6個の HEMTトラ ンジスタがオフ状態の時にドレイン電圧とソース電圧とを等しくするための比較的抵 抗値の高い抵抗が接続されている。 6個のゲート抵抗と他の 1個の抵抗の抵抗値を 比較的高い値に設定することにより、スィッチがオフ状態の時に 6個の直列接続され た HEMTトランジスタのドレイン.ゲート寄生容量とソース.ゲート寄生容量とドレイン- ソース間抵抗とを介して RF信号入力端子からオン'オフ制御入力端子に漏れ込む R F信号損出を低減することができる。
[0028] また、図 2に示した高周波スィッチでは、前記特許文献 3に記載されているように、 各スィッチは 2つ以上の複数のゲートを有する FETで構成され、 FETのドレインとドレ イン隣接ゲートとの間にドレイン付加容量が接続され、 FETのソースとソース隣接ゲ ートとの間にソース付加容量が接続されている。上述したように図 2は、高周波スイツ チ Qaがオン状態とされ、他の高周波スィッチ Qb、 Qcはオフ状態とされる場合を示し ている。高レベルのゲート制御電圧 Vctrl— aによって高周波スィッチ Qaがオン状態 とされることにより、 GSM850もしくは GSM900の RF送信信号が送信端子 Tx2から 共通の入出力端子 I/Oに供給される。ゼロボルトのゲート制御電圧 Vctrl— b、 Vctr 1— cによって、他の高周波スィッチ Qb、 Qcはオフ状態とされている。し力、し、共通の 入出力端子 I/Oに供給されている高周波スィッチ Qaを経由した RF送信信号によつ て、他の高周波スィッチ Qb、 Qcの 6個の直列接続された HEMTトランジスタのドレイ ン 'ソース間が駆動される。良く知られているように、電界効果トランジスタのドレインと ソースとはデバイス構造で決定されるのではなぐ厳密にはキヤリャを放出する方がソ ースであり、キャリアを収集する方がドレインである。従って、良く知られているように、 対称型電界効果トランジスタでは流れる電流の方向が逆転すると、電流逆転前のドレ インとソースとは電流逆転後のソースとドレインとなる。
[0029] し力、し、説明の簡素化のために図 2でオフ状態の他の高周波スィッチ Qb、 Qcでは 、共通の入出力端子 I/Oに接続された方をドレインと呼び、送信端子 Txl、送受信 端子 TRxlに接続された方をソースと呼ぶことにする。図 2ではオフ状態のスィッチ Q b、 Qcの共通の入出力端子 I/Oに近接した FETQlb、 Qlcのドレインとドレイン隣 接ゲートとの間のドレイン付加容量 Cl lTxl、 Cl lTRxlにより、オン状態のスィッチ Qaからの RF送信信号の負方向の電圧の振れによってオフ状態のスィッチ Qb、 Qc の近接 FETQlb、 Qlcがオンする現象が抑圧できる。また、オフ状態のスィッチ Qb、 Qcの送信端子 Txl、送受信端子 TRxlに近接した FETQ6b、 Q6cのソースとソース 隣接ゲートとの間のソース付加容量 C12Txl、 C12TRxlにより、オン状態のスイツ チ Qaからの RF送信信号の正方向の電圧の振れによってオフ状態のスィッチ Qb、 Q cの近接 FETQ6b、 Q6cがオンする現象が抑圧できる。
[0030] 図 3は、図 2に示した高周波スィッチのオフ状態のスィッチ Qbの等価回路を示す図 である。図 3では、スィッチ Qbは、 6個の直列接続された Nチャンネルの HEMTトラン ジスタ Qlb' Q6bと、 6個のゲート抵抗 Rglb 'Rg6bと、オン'オフ制御入力端子 Vc trl— bに接続された他の 1個の抵抗 Rg7bと、 6個のドレイン 'ソース間抵抗 Rdlb' R d6bと、ドレイン付加容量 Cl lTxlと、ソース付加容量 C12Txlとにより構成されてい る。 6個の直列接続された Nチャンネルの HEMTトランジスタ Qlb' Q6bは、ドレイン •ゲート寄生容量 Cgl lb、ソース'ゲート寄生容量 Cgl2b…ドレイン 'ゲート寄生容量 Cg61b、ソース.ゲート寄生容量 Cg62bを含んでいる。
[0031] 図 4は、図 2に示した高周波スィッチのオン状態のスィッチからの RF信号の影響に よるオフ状態のスィッチの 6個の HEMTトランジスタの 6個のゲート抵抗と他の 1個の 抵抗とに印加される RF漏洩信号の分布を説明する図である。図 4のオン状態のスィ ツチ Qkとオフ状態のスィッチ Q1とは、図 2のオン状態のスィッチ Qaとオフ状態のスィ ツチ Qbとに対応するものと理解されたい。
[0032] 図 4では、一方のオン.オフ制御入力端子 Vctrl—kと他方のオン.オフ制御入力端 子 Vctrl— 1とはそれぞれ 4· 5ボノレト、 0ボノレトに設定されることにより、一方のスィッチ Qkはオン状態とされ、他方のスィッチ Q1はオフ状態される。一方のスィッチ Qkの 6個 のゲート抵抗 Rglk' Rg6kは全て 10Κ Ωとされ、オン ·オフ制御入力端子 Vctrl— k に接続された他の 1個の抵抗 Rg7kは 20Κ Ωとされ、 6個のドレイン 'ソース間抵抗 Rd lk- · 'Rd6kは全て 15K Ωとされ、各 HEMTトランジスタのドレイン ·ゲート寄生容量と ソース'ゲート寄生容量とはそれぞれ 0· 4pFとされている。また、ドレイン付加容量 C l lTxlkと、ソース付加容量 C12Txlkとは、それぞれ 0· 8pFとされている。他方の スィッチ Q1の 6個のゲート抵抗 Rgll' Rg61も全て 10Κ Ωとされ、オン'オフ制御入力 端子 Vctrl— 1に接続された他の 1個の抵抗 Rg71も 20Κ Ωとされ、 6個のドレイン'ソー ス間抵抗 Rdll' Rd61も全て 15Κ Ωとされ、各 HEMTトランジスタのドレイン 'ゲート 寄生容量とソース'ゲート寄生容量とはそれぞれ 0· 4pFとされている。また、ドレイン 付加容量 Cl lTxllと、ソース付加容量 C12Txllとは、それぞれ 0. 8pFとされている [0033] 3個の FETQkl、 Qk2、 Qk3は 3個のゲート Gkl、 Gk2、 Gk3がマルチゲート構造 とされた 1個の FETで構成され、 3個の FETQk4、 Qk5、 Qk6は 3個のゲート Gk4、 Gk5、 Gk6がマルチゲート構造とされた 1個の FETで構成されている。同様に、 3個 の FETQ11、 Q12、 Q13は 3個のゲート Gll、 G12、 G13がマルチゲート構造とされた 1 個の FETで構成され、 3個の FETQ14、 Q 、 Q16は 3個のゲート G14、 G 、 G16が マルチゲート構造とされた 1個の FETで構成されている。
[0034] 前記特許文献 4と同様に、マルチゲート構造のゲート Gklとゲート Gk2との間のゲ ート間領域 (FETQkl、 Qk2の共通接続ノード)が電位安定化抵抗 Rdlkを介して F ETQklのソースに接続されている。また、マルチゲート構造のゲート Gk2とゲート Gk 3との間のゲート間領域 (FETQk2、 Qk3の共通接続ノード)が電位安定化抵抗 Rd2 k、 Rdlkを介して FETQklのソースに接続されている。更に、マルチゲート構造のゲ ート Gk2とゲート Gk3との間のゲート間領域(FETQk2、 Qk3の共通接続ノード)が 電位安定化抵抗 Rd3kを介して FETQk3のドレインに接続されている。また、マルチ ゲート構造のゲート Gk4とゲート Gk5との間のゲート間領域(FETQk4、 Qk5の共通 接続ノード)が電位安定化抵抗 Rd4kを介して FETQk4のソースに接続されている。 マルチゲート構造のゲート Gk5とゲート Gk6との間のゲート間領域(FETQk5、 Qk6 の共通接続ノード)が電位安定化抵抗 Rd5k、 Rd4kを介して FETQk4のソースに接 続されている。更に、マルチゲート構造のゲート Gk5とゲート Gk6との間のゲート間領 域(FETQk5、 Qk6の共通接続ノード)が電位安定化抵抗 Rd6kを介して FETQk6 のドレインに接続されて!/、る。
[0035] マルチゲート構造のゲート G11とゲート G12との間のゲート間領域(FETQ11、 Q12 の共通接続ノード)が電位安定化抵抗 Rdllを介して FETQ11のソースに接続されて いる。また、マルチゲート構造のゲート G12とゲート G13との間のゲート間領域(FETQ 12、 Q13の共通接続ノード)が電位安定化抵抗 Rd21、 Rdllを介して FETQ11のソー スに接続されている。更に、マルチゲート構造のゲート G12とゲート G13との間のゲー ト間領域 (FETQ12、 Q13の共通接続ノード)が電位安定化抵抗 Rd31を介して FETQ 13のドレインに接続されている。また、マルチゲート構造のゲート Gk4とゲート Gk5と の間のゲート間領域 (FETQ14、 Q の共通接続ノード)が電位安定化抵抗 Rd41を 介して FETQ14のソースに接続されている。マルチゲート構造のゲート G とゲート G 16との間のゲート間領域 (FETQ 、 Q16の共通接続ノード)が電位安定化抵抗 Rd51 、 Rd41を介して FETQ14のソースに接続されている。更に、マルチゲート構造のゲー ト G とゲート G16との間のゲート間領域(FETQ 、 Q16の共通接続ノード)が電位安 定化抵抗 Rd61を介して FETQ16のドレインに接続されている。
[0036] 図 4で、一方のオン.オフ制御入力端子 Vctrl— kが 4. 5ボルトに設定されることによ り、一方のスィッチ Qkはオン状態とされる。一方のスィッチ Qkの 6個の Nチャンネル の HEMTトランジスタのドレイン 'ソース間のチャンネルは極めて低い抵抗となるので 、一方のスィッチ Qkは低いオン抵抗のオン状態となり、送信端子 Txlkに供給された RF信号はオン状態のスィッチ Qkを介して共通の入出力端子 I/Oに低い揷入損出 で伝達される。この時、スィッチ Qkの 6個の Nチャンネルの HEMTトランジスタのそれ ぞれのゲートとドレインとの間、ゲートとソースの間、ゲートとチャンネルとの間の全て のへテロ接合(ショットキー接合)は、順方向にバイアスされる。 HEMTトランジスタの このへテロ接合の順方向電圧は略 0. 7ボルトなので、共通の入出力端子 I/Oの浮 遊容量の充電電圧の上昇は 4· 5ボルト 0. 7ボルト = 3. 8ボルトでクランプされる。
[0037] 共通の入出力端子 I/Oの直流レベルは略 3. 8ボルトのクランプ電圧であるのに対 して、他方のオン'オフ制御入力端子 Vctrl— 1が 0ボルトであるので、他方のスィッチ Q1はオフ状態とされる。他方のスィッチ Q1の 6個の Nチャンネルの HEMTトランジス タのドレイン 'ソース間のチャンネルは無限大に近い高い抵抗となるので、他方のスィ ツチ Q1はオフ状態となり、 RF信号が供給された共通の入出力端子 I/Oと送信端子 Txllとの間で高いアイソレーションを得ることができる。
[0038] 携帯電話端末のためのアンテナスィッチ MMICのオン状態のスィッチの揷入損失 は極めて低!/、レベルとする一方、オフ状態のスィッチは高レ、アイソレーションが必要 であるとともに低歪特性が必要となる。オフ状態のスィッチは共通の入出力端子 I/O と信号端子との間を絶縁するとともに、共通の入出力端子 I/Oでの歪をできるだけ 低減する必要がある。 GSM900の RF信号の周波数 880MHz〜915MHzの 2倍の 周波数は PCS 1900の RF信号の周波数 1850MHz〜 1910MHzにオーバーラップ するので、オフ状態のスィッチの 2次高調波歪を抑圧しなければならない。更に、 DC S 1800の RF信号の周波数 1710MHz〜; 1785や PCS1900の RF信号の周波数 1 850MHz〜; 1910MHzの 2倍の周波数力も 3倍の周波数は、 3. 42GHz〜5. 73G
Hzの広帯域に拡散する。従って、人体への影響や種々の電子機器への影響を考慮 すると、オフ状態のスィッチの 2次高調波歪と 3次高調波歪とを抑圧しなければならな い。
[0039] また、 RF送信信号と RF受信信号とをコード分割により並列処理することができる W CDMA方式のためのアンテナスィッチ MMICの送受信端子(例えば、図 1の送受信 端子 TRxl、 TRx5)と共通の入出力端子 I/Oとの間では、相互変調歪を低減する 必要がある。これは、 WCDMA方式のための送受信端子から共通の入出力端子 1/ Oへ WCDMA方式の RF送信信号が伝達される間に、共通の入出力端子 I/Oから WCDMA方式のための送受信端子へ WCDMA方式の RF受信信号が伝達される 。一方、共通の入出力端子 I/Oでは、相互変調によってアンテナで受信された妨害 信号と WCDMA方式の RF送信信号とのミキシングが行われる。ミキシングの結果、 WCDMA方式の RF受信信号の周波数帯域とオーバーラップする相互変調歪信号 が妨害信号として WCDMA方式のための送受信端子に現れることになる。
[0040] 本発明者等による検討によって、図 4でオフ状態のスィッチ Q1が大きなレベルの 2 次高調波歪と 3次高調波歪とを発生するのは、オン状態のスィッチ Qkからの RF信号 によってオフ状態のスィッチ Q1の HEMTトランジスタのゲートのヘテロ接合の容量が 大きく変化する時と判明した。共通の入出力端子 I/Oの直流レベルの略 3. 8ボルト のクランプ電圧に、オン状態のスィッチ Qkからの RF信号が重畳される。オン状態の スィッチ Qkからの RF信号の振幅レベルが極めて低!/、場合には、共通の入出力端子 I/Oの直流レベルの略 3. 8ボルトと 0ボルトのオン ·オフ制御電圧 Vctrl— 1とにより、 Nチャンネルの HEMTトランジスタのゲートのヘテロ接合は深く逆方向バイアスされ、 ヘテロ接合の近傍のチャンネルの電子濃度は極めて低レ、。この状態の HEMTトラン ジスタのゲートのヘテロ接合の容量値は、極めて小さい。オン状態のスィッチ Qkから の RF信号の振幅レベルが増大すると、重畳電圧のレベルは略 3. 8ボルト力、ら 0ボル トに向かって変化する。 Nチャンネルの HEMTトランジスタのゲートのヘテロ接合のし きい値電圧 Vthは略 1ボルトであり、 Nチャンネルの HEMTトランジスタのゲートの ヘテロ接合はしきレ、値電圧 Vth付近にバイアスされ、ヘテロ接合の近傍のチャンネル の電子濃度は増大する。この状態の HEMTトランジスタは重畳電圧の振幅に伴う容 量値の変化が大きくなり、図 4でオフ状態のスィッチ Q1が大きなレベルの 2次高調波 歪と 3次高調波歪とを発生するものである。従って、本発明者等はスィッチ Qkをオン 状態にするためのオン ·オフ制御電圧 Vctrl—kを以前の 3ボルトから 4. 5ボルトに増 加することによって、オン状態のスィッチ Qkからの RF信号によってオフ状態のスイツ チ Q1の HEMTトランジスタのゲートのヘテロ接合の容量が大きく変化する現象を抑 圧できることを回路シュミュレーシヨンにより見い出した。スィッチ Qkをオン状態にする ためのオン.オフ制御電圧 Vctrl—kが以前の 3ボルトの場合の 3次高調波歪は約 70. 5dBcであった。それに対して、スィッチ Qkをオン状態にするためのオン ·オフ制 御電圧 Vctrl—kを 4. 5ボルトに増加させることによって 3次高調波歪は約 77dBc に低減することができた。
[0041] このようにスィッチ Qkをオン状態にするためのオン .オフ制御電圧 Vctrl—kを 3ボ ノレトカ、ら 4. 5ボルトに増加させることによって 2次高調波歪と 3次高調波歪とを低減す ること力 Sできた。また WCDMA方式で重要な相互変調歪についても、 Qkをオン状態 にするためのオン ·オフ制御電圧 Vctrl—kを 3ボルトから 4. 5ボルトに増加させること により 5dB程度低減できることを回路シミュレーションにより見い出した。
[0042] ところ力 実際に作成したスィッチにおいてはシミュレーションで予想されたような歪 の改善が得られなかった。例えば、 WCDMA方式で重要な相互変調歪はスィッチ Q kをオン状態にするためのオン ·オフ制御電圧 Vctrl—kを 3ボルトから 4. 5ボルトに増 カロさせても顕著には低減できないことが判明した。
[0043] 図 7は、図 4に示す高周波スィッチでスィッチ Qkをオン状態にするためのオン ·オフ 制御電圧 Vctrl—kを 3ボルトから 4· 5ボルトに増加させたことによるオフ状態のスイツ チ Q1での相互変調歪を示す図である。オン.オフ制御電圧 Vctrl—kが 4. 5ボルトで も、相互変調歪 Lcは略— 95dBmまでしか低下していない。開発当初に設定された 相互変調歪 Lcの目標値— lOOdBmには、遥かに及ぶものではない。
[0044] その結果、アンテナで受信された妨害信号と WCDMA方式の RF送信信号との共 通の入出力端子 I/Oでのミキシング (相互変調)による歪の発生には、オフ状態のス イッチ Q1の HEMTトランジスタのゲートのヘテロ接合の容量は実質的には寄与して いないことが判明した。発明者はこの事実から、相互変調歪の発生にはオフ状態の スィッチ Q1の複数の HEMTトランジスタの複数のゲートの抵抗が関係しているのでは ないかと考え始めた。
[0045] 図 4の右下には、オン状態のスィッチ Qkからの RF信号 Pinの影響によるオフ状態 のスィッチ Q1の 6個の HEMTトランジスタの 6個のゲート抵抗 Rgll、 Rg2nl、 Rg31、 Rg41、 Rg51、 Rg61と他の 1個の抵抗 Rg71に印加される RF漏洩信号の分布が示され ている。尚、図 4の右下の RF漏洩信号の分布はコンピュータによるシュミュレーシヨン の結果であり、 RF信号 Pinの RF電力は 20dBm、周波数は PCS 1900の周波数帯 域内の 1880MHzである。 PCS 1900の RF送信信号の最大電力は 33dBm程度で あるので、 20dBmの RF信号 Pinは中間レベルより高めの送信電力と言うことができる 。図 4の右下の各抵抗 Rgll、 Rg2nl、 Rg31、 Rg41、 Rg51、 Rg61、 Rg71の電圧 Vpp はピーク 'ツー'ピークの RF信号電圧である。図 4の右下に示したオフ状態のスィッチ Q1の 6個の HEMTトランジスタの 6個のゲート抵抗と他の 1個の抵抗の RF漏洩信号 の分布の特性 L1は 0. 8pFのドレイン付加容量 Cl lTxllとソース付加容量 C12Txl 1とを接続した場合の特性であり、特性 L2は 0. 8pFのドレイン付加容量 Cl lTxllとソ ース付加容量 C12Txllとを接続しな力 た場合の特性である。特性 L1と特性 L2の いずれでも変形した U字型の不均等な RF漏洩信号の定在波がオフ状態のスィッチ Q1の左端のゲート抵抗から右端のゲート抵抗まで存在している。
[0046] オフ状態のスィッチ Q1の 6個の HEMTトランジスタの 6個のゲート抵抗 Rgll、 Rg2 nl、 Rg31、 Rg41、 Rg51、 Rg61と他の 1個の抵抗 Rg71とが完全な線型抵抗であれば、 相互変調歪等の歪は発生しない。しかし、半導体集積回路に構成される半導体抵抗 を含めて大多数の抵抗素子は、完全な線型抵抗ではなく非線形抵抗である。
[0047] 抵抗の両端の印加電圧を Vとすると、非線形抵抗に流れる電流は次式で与えられ
[0048] I = a-V + b-V2 + c -V3- - - (数 1)
従って、前記数 1で与えられる非線形抵抗に流れる電流は、印加電圧 Vが小さい時 は第 1項の a ' Vで支配的に決定され、印加電圧 Vが大きい時は第 2項と第 3項の b 'V 2 + c 'V3で支配的に決定される。
[0049] 一方、完全な線型抵抗では、上記の式で定数 aと定数 bとがゼロであり、完全な線型 抵抗に流れる電流は次式で与えられる。
[0050] I = a-V + b-V2 + c -V3- - -
= a-V + 0 -V2 + 0-V3- - - = a -V (数 2)
図 4でオフ状態のスィッチ Q1の全て 10Κ Ωに設定され前記数 1で与えられる非線 形抵抗の特性を持つ 6個のゲート抵抗 Rgll' · 'Rg61に均等なレベルの RF漏洩信号 が供給されずに変形 U字型の定在波の RF漏洩信号が供給されることが、相互変調 歪の発生の原因であることが本発明者等によるシュミュレーシヨンにより明らかとされ た。すなわち、オフ状態のスィッチ Q1の左端のゲート抵抗 Rgllと右端のゲート抵抗 Rg61とに高レベルの RF漏洩信号電圧により大きな歪電流が流れ、オフ状態のスイツ チ Q1の中央のゲート抵抗 Rg31、ゲート抵抗 Rg41に低レベルの RF漏洩信号電圧に より小さな歪電流が流れることが原因と思われる。
[0051] 従って、本発明は本発明に先立って本発明者等による困難な解析結果を基にして なされたものである。従って、本発明の目的とするところは、 RF通信端末装置に搭載 されるアンテナスィッチにおいて WCDMA方式で重要な相互変調歪または GSM方 式で重要な高調波歪を低減することにある。
[0052] 本発明の前記並びにその他の目的と新規な特徴とは、本明細書の記述及び添付 図面から明らかになるであろう。
[0053] 前記特許文献 5に記載されているように、 RFスィッチでの高調波信号成分を低減 するために DCブースト回路に DC制御電圧と RF信号とを供給して、 DC制御電圧よ りも大きな DC出力電圧を DCブースト回路から抽出することは極めて有効な技術であ
[0054] 本発明者等 (ま、本発明 ίこ先立って GSM850、 GSM900、 DCS1800、 PCS 190 0のマルチバンドの送信を可能とする携帯電話に搭載されるアンテナスィッチマイクロ ウェーブモノリシック IC (MMIC)と、それを内蔵する RFモジュールとの開発に従事し た。その開発の中で、本発明者等は前記特許文献 5に記載のようなアンテナスィッチ を検討した。しかし、検討の結果、このアンテナスィッチは、長時間の使用での動作 信頼性が十分でないことが判明した。更に、本発明者等は、その動作信頼性が十分 でないことの原因の解明を行った。以下に、本発明者等により行われた原因解明の 結果を説明する。
[0055] 図 11は、前記特許文献 5に記載された RFスィッチの DCブースト回路と実質的に 同一であり、本発明に先立って本発明者等により検討された RFスィッチの DCブース ト回路を示す回路図である。
[0056] 図 11の RFスィッチの DCブースト回路 200は、アンテナスィッチ MMICの RF入力 信号 RFinの一部を整流して DC制御電圧 Vdcに重畳して、重畳によって DC制御電 圧 Vdcよりも大きな DC出力電圧 Voutを生成するものである。 DCブースト回路 200 は、容量素子 206 (C1)、 211 (C2)、抵抗素子 207 (R11)、 208 (R12)、 212 (R2) 、ダイオード 209 (Dl)、 210 (D2)で構成されている。抵抗素子 207、 208の抵抗値 は、携帯電話のアンテナのインピーダンス 50 Ωに比べて十分に大きい値 (例えば、 1 0Κ Ω )に設定されている。その結果、 DCブースト回路 200の入力インピーダンスは、 アンテナのインピーダンス 50 Ωに比べて十分に高い値となっている。従って、高周波 入力端子 201に入力された RF入力信号 RFinの大部分はスィッチ素子としての FET に接続される高周波信号端子 202へ流れ、残りの僅かな RF信号電力が DCブースト 回路 200の入力端子に供給される。
[0057] DCブースト回路 200による昇圧動作は、以下のように説明される。最初に高周波 入力端子 201での電圧振幅が負の時には、ダイオード 209が順方向にバイアスされ て導通状態となり、ダイオード 210が逆方向にバイアスされて非導通状態となる。この 時、 DC制御電圧 Vdcが印加された DC制御入力端子 203からダイオード 209と抵抗 素子 207を介して、容量素子 206に電流が流入する。この流入電流によって容量素 子 206の抵抗素子 207、 208に接続された一方の端子が正電圧に充電され、容量 素子 206の高周波入力端子 201に接続された他方の端子が負電圧に充電される。 次に高周波入力端子 201での電圧振幅が正の時には、ダイオード 209が逆方向に バイアスされて非導通状態となり、ダイオード 210が順方向にバイアスされて導通状 態となる。この時、容量素子 206に充電されていた正電荷は、抵抗素子 208とダイォ ード 210とを介して容量素子 211に流入する。その結果、容量素子 211のダイオード 210の力ソードに接続された一方の端子が正電圧に充電され、容量素子 211の DC 制御入力端子 203に接続された他方の端子が負電圧に充電される。高周波入力端 子 201の RF入力信号 RFinの正電圧振幅と負電圧振幅とに応答して、容量素子 21 1の両端は充電電圧 Vbまで充電される。その結果、 DC制御入力端子 203の DC制 御電圧 Vdcより充電電圧 Vb分大きな DC出力電圧 Voutが DC出力端子 204から生 成される。 DC制御入力端子 203の DC制御電圧 Vdcが 3ボルトで、容量素子 211の 両端の充電電圧が略 2ボルトの場合には、 DC出力端子 204から生成される DC出力 電圧 Voutは略 5ボルトとなる。
し力、し、本発明者等による検討によって、図 11の RFスィッチの DCブースト回路 20 0のダイオード 209、 210の両端に大きな逆方向電圧が印加されることが判明した。 D C制御電圧供給端子 203に 3Vを印加して、 DC出力端子 204で略 5Vの DC出力電 圧 Voutが出力される場合、高周波入力端子 201の RF入力信号 RFinが負電圧振 幅の時には、略 1mAの RF信号電流が、 DC制御入力端子 203からダイオード 209と 10Κ Ωの抵抗素子 207とを介して高周波入力端子 201に流入する。ダイオード 209 の両端には略 1ボルトの電圧降下が発生して、 10Κ Ωの抵抗素子 207の両端には略 10ボルトの電圧降下が発生する。その結果、抵抗素子 207、 208の共通接続点の電 圧は、 DC制御入力端子 203の DC制御電圧 Vdc3ボルトよりもダイオード 209と抵抗 素子 207とでの約 11ボルトの電圧降下分低い略— 8ボルトとなる。ダイオード 210の 力ソードの電圧は DC出力端子 204の略 5ボルトの DC出力電圧 Voutに維持され、ダ ィオード 210のアノードには略— 8ボルトの電圧が印加されている。その結果、ダイォ ード 210の両端の間には、略 13ボルトの逆方向電圧が印加されることになる。高周 波入力端子 201の RF入力信号 RFinが正電圧振幅の時には、略 1mAの RF信号電 流力 高周波入力端子 201から容量素子 206と 10Κ Ωの抵抗素子 208とダイオード 210とを介して DC出力端子 204と DC制御入力端子 203とに流入する。 10Κ Ωの抵 抗素子 208の両端には略 10ボルトの電圧降下が発生して、ダイオード 210の両端に は略 1ボルトの電圧降下が発生する。その結果、抵抗素子 207、 208の共通接続点 の電圧は、 DC出力端子 204の略 5ボルトの DC出力電圧 Voutよりもダイオード 210 と抵抗素子 208での約 11ボルトの電圧降下分高い略 16ボルトとなる。ダイオード 20 9のアノードの電圧は DC制御入力端子 203の DC制御電圧 Vdc3ボルトに維持され 、抵抗素子 207、 208の共通接続点の電圧は略 16ボルトの電圧となっている。その 結果、ダイオード 209の両端の間には、略 13ボルトの逆方向電圧が印加されることに なる。
[0059] 以上説明したように、高周波入力端子 201の RF入力信号 RFinが負電圧振幅の時 のダイオード 210の両端の略 13ボルトの大きな逆方向電圧と高周波入力端子 201の RF入力信号 RFinが正電圧振幅の時のダイオード 209の両端の間の略 13ボルトの 大きな逆方向電圧とは、ダイオード 210、 209の特性の劣化の原因となる。従って図 11に示す DCブースト回路 200をアンテナスィッチ MMICに適応した場合には、長 期的なデバイスの寿命および動作信頼性が低いという問題があることが、本発明者 等の検討により明らかとされた。
[0060] 本発明の目的とするところは、内蔵の DCブースト回路の寿命および動作信頼性を 向上した半導体集積回路を提供することにある。本発明の前記並びにその他の目的 と新規な特徴とは、本明細書の記述及び添付図面から明らかになるであろう。
課題を解決するための手段
[0061] 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下 記の通りである。
[0062] 本発明の 1つの形態による半導体集積回路は、複数の高周波スィッチ(Qm、 Qn) を含む。
[0063] 前記複数の高周波スィッチ(Qm、 Qn)の一方の高周波スィッチ(Qm)の一端と前 記複数の高周波スィッチ(Qm、 Qn)の他方の高周波スィッチ(Qn)の一端とは共通 の入出力端子(I/O)に接続され、前記共通の入出力端子(I/O)は無線周波数通 信端末機器のアンテナ (ANT)と接続可能にされる。
[0064] 前記一方の高周波スィッチ(Qm)の他端(Txm)には所定の通信方式による RF送 信信号 (WCDMA— Tx)と RF受信信号 (WCDMA— Rx)とが供給可能にされ、前 記他方の高周波スィッチ(Qn)の他端(Txn)には前記 RF送信信号 (WCDMA— T X)と前記 RF受信信号 (WCDMA Rx)と異なる他の RF送信信号(RF Tx)と他の RF受信信号 (RF—Rx)との少なくともいずれか一方が供給可能にされる。
[0065] 前記一方の高周波スィッチ(Qm)は直列接続された複数の電界効果トランジスタ( Qml、 · · ·、 Qm6)を含み、前記他方の高周波スィッチ(Qn)は直列接続された他の 複数の電界効果トランジスタ(Qnl、 · · ·、 Qn6)を含む。
[0066] 前記一方の高周波スィッチ(Qm)の前記複数の電界効果トランジスタ(Qml、 · · ·、 Qm6)の複数のゲート(Gml、 · · ·、 Gm6)には前記一方の高周波スィッチ(Qm)のォ ン 'オフ制御のための制御電圧 (Vctrl— m)が供給可能にされる。前記他方の高周 波スィッチ(Qn)の前記他の複数の電界効果トランジスタ(Qnl、 · · ·、 Qn6)の他の複 数のゲート(Gnl、 · · ·、 Gn6)には前記他方の高周波スィッチ(Qn)のオン ·オフ制御 のための他の制御電圧 (Vctrl— n)が供給可能にされる。
[0067] 前記一方の高周波スィッチ(Qm)の前記複数の電界効果トランジスタ(Qml、 · · ·、 Qm6)の前記複数のゲート(Gml、 · · ·、 Gm6)と前記制御電圧(Vctrl— m)が供給さ れる制御端子との間には複数の抵抗 (Rglm、 · · ·、 Rg6m)が接続されている。前記 他方の高周波スィッチ(Qn)の前記他の複数の電界効果トランジスタ(Qnl、 · · ·、 Qn 6)の前記他の複数のゲート(Gnl、 · · ·、 Gn6)と前記他の制御電圧(Vctrl— n)が供 給される他の制御端子との間には他の複数の抵抗 (Rgln、 · · ·、 Rg6n)が接続されて いる。
[0068] 前記他方の高周波スィッチ(Qn)で前記他の複数の電界効果トランジスタ(Qnl、 · · ·、 Qn6)のうちの前記共通の入出力端子(I/O)に最も近接した入出力近接電界 効果トランジスタ(Qnl)のゲート (Gnl)と前記他の制御端子 (Vctrl_n)との間の入 出力近接抵抗 (Rgln、 Rg2n、 Rg3n)は、第 1の電圧'電流特性を持つ。
[0069] 前記他方の高周波スィッチ(Qn)で前記入出力近接電界効果トランジスタ(Qnl)と 前記他の複数の電界効果トランジスタ(Qnl、 · · ·、 Qn6)のうちの前記他方の高周波 スィッチ(Qn)の前記他端 (Txn)に最も近接した他端近接電界効果トランジスタ(Qn 6)との間の中間部の中間部電界効果トランジスタ(Qn3、 4)のゲート(Gn3、 4)と前 記他の制御端子 (Vctrl— n)との間の中間部抵抗 (Rg3n、 Rg4n)は、第 2の電圧- 電流特性を持つ。
[0070] 前記他方の高周波スィッチ(Qn)で前記入出力近接抵抗(Rgln、 Rg2n、 Rg3n) の前記第 1の電圧 ·電流特性の線形性は前記中間部抵抗 (Rg3n、 Rg4n)の前記第 2の電圧 ·電流特性の線形性よりも高く設定されている(図 5参照)。
[0071] 本発明の前記 1つの形態による手段によれば、前記所定の通信方式による前記 R F送信信号 (WCDMA— Tx)により駆動される前記他方の高周波スィッチ(Qn)で前 記入出力近接抵抗 (Rgln、 Rg2n、 Rg3n)の前記第 1の電圧'電流特性の線形性は 前記中間部抵抗 (Rg3n、 Rg4n)の前記第 2の電圧 ·電流特性の線形性よりも高く設 定されている。従って、前記入出力近接抵抗 (Rgln、 Rg2n、 Rg3n)と前記中間部 抵抗 (Rg3n、 Rg4n)に不均等な RF漏洩信号が印加されても、前記他方の高周波ス イッチ(Qn)で前記共通の入出力端子(I/O)に最も近接した前記入出力近接電界 効果トランジスタ(Qnl)の前記ゲート (Gnl)の前記入出力近接抵抗 (Rgln、 Rg2n 、 Rg3n)に流れる電流の歪を抑圧できる。その結果、 WCDMA方式で重要な相互 変調歪または GSM方式で重要な高調波歪を低減することができる。
[0072] 本発明の 1つの好適な形態による半導体集積回路では、前記他方の高周波スイツ チ(Qn)で前記他の複数の電界効果トランジスタ(Qnl、 · · ·、 Qn6)のうちの前記他方 の高周波スィッチ(Qn)の前記他端 (Txn)に最も近接した前記他端近接電界効果ト ランジスタ(Qn6)のゲート (Gn6)と前記他の制御端子 (Vctrl— n)との間の他端近 接抵抗 (Rg4n、 Rg5n、 Rg6n)は、第 3の電圧'電流特性を持つ。
[0073] 前記他方の高周波スィッチ(Qn)で前記他端近接抵抗(Rg4n、 Rg5n、 Rg6n)の 前記第 3の電圧 ·電流特性の線形性は前記中間部抵抗 (Rg3n、 Rg4n)の前記第 2 の電圧 ·電流特性の前記線形性よりも高く設定されて!/、る(図 5参照)。
[0074] 本発明の前記 1つの好適な形態による手段によれば、前記所定の通信方式による 前記 RF送信信号 (WCDMA— Tx)により駆動される前記他方の高周波スィッチ(Q n)で前記他端近接抵抗 (Rg4n、 Rg5n、 Rg6n)の前記第 3の電圧'電流特性の線形 性は前記中間部抵抗 (Rg3n、 Rg4n)の前記第 2の電圧 ·電流特性の線形性よりも高 く設定されている。従って、前記他端近接抵抗 (Rg4n、 Rg5n、 Rg6n)と前記中間部 抵抗 (Rg3n、 Rg4n)に不均等な RF漏洩信号が印加されても、前記他方の高周波ス イッチ(Qn)で前記他端 (Txn)に最も近接した前記他端近接電界効果トランジスタ( Qn6)の前記ゲート(Gn6)の前記他端近接抵抗(Rg4n、 Rg5n、 Rg6n)に流れる電 流の歪を抑圧できる。その結果、 WCDMA方式で重要な相互変調歪または GSM方 式で重要な高調波歪を低減することができる。
[0075] 本発明の他の 1つの好適な形態による半導体集積回路では、前記入出力近接抵 抗(Rgln、 Rg2n、 Rg3n)の抵抗値は前記中間部抵抗(Rg3n、 Rg4n)の抵抗値より も大きく設定され、前記他端近接抵抗 (Rg4n、 Rg5n、 Rg6n)の抵抗値は前記中間 部抵抗 (Rg3n、 Rg4n)の抵抗値よりも大きく設定されて!/、る(図 5参照)。
[0076] 本発明の前記他の 1つの好適な形態による手段によれば、前記中間部抵抗 (Rg3n 、 Rg4n)に印加される中間部 RF漏洩信号のレベルよりも前記入出力近接抵抗 (Rgl n、 Rg2n、 Rg3n)に印加される入出力近接 RF漏洩信号のレベルが高くても、例えば WCDMA方式で重要な相互変調歪を低減することができる。これは、前記中間部抵 抗(Rg3n、 Rg4n)よりも抵抗値の大きな前記入出力近接抵抗(Rgln、 Rg2n、 Rg3n )に高レベルの入出力近接 RF漏洩信号が印加されても、前記入出力近接抵抗 (Rg ln、 Rg2n、 Rg3n)に流れる電流自体が低減され、信号電流の歪も低減されるため である。
[0077] 本発明の前記他の 1つの好適な形態による手段によれば、前記中間部抵抗 (Rg3n 、 Rg4n)に印加される中間部 RF漏洩信号のレベルよりも前記他端近接抵抗 (Rg4n 、 Rg5n、 Rg6n)に印加される他端近接 RF漏洩信号のレベルが高くても、例えば W CDMA方式で重要な相互変調歪を低減することができる。これは、前記中間部抵抗 (Rg3n、 Rg4n)よりも抵抗値の大きな前記他端近接抵抗(Rg4n、 Rg5n、 Rg6n)に 高レベルの他端近接 RF漏洩信号が印加されても、前記他端近接抵抗 (Rg4n、 Rg5 n、 Rg6n)に流れる電流自体が低減され、信号電流の歪も低減されるためである。
[0078] 本発明の 1つのより好適な形態による半導体集積回路では、前記他方の高周波ス イッチ(Qn)で前記他の複数の電界効果トランジスタ(Qnl、 · · ·、 Qn6)のうちの前記 入出力近接電界効果トランジスタ(Qnl)の次に前記共通の入出力端子(I/O)に近 接した入出力第 2近接電界効果トランジスタ(Qn2)のゲート(Gn2)と前記入出力近 接電界効果トランジスタ(Qnl)の前記ゲート (Gnl)との間に、第 1抵抗 (Rgln)が接 続されて!/、る。前記入出力第 2近接電界効果トランジスタ(Qn2)の前記ゲート (Gn2 )と前記中間部電界効果トランジスタ(Qn3、 4)の前記ゲート(Gn3、 4)との間に、第 2 抵抗 (Rg2n)が接続されている。前記中間部電界効果トランジスタ(Qn3、 4)の前記 ゲート(Gn3、 4)と前記他の制御端子 (Vctrl— n)との間に、第 3抵抗 (Rg3n)が接続 されている。
[0079] 前記入出力近接電界効果トランジスタ(Qnl)の前記ゲート (Gnl)に接続された前 記入出力近接抵抗 (Rgln、 Rg2n、 Rg3n)は、前記第 1抵抗 (Rgln)と前記第 2抵 抗 (Rg2n)と前記第 3抵抗 (Rg3n)とを含む。前記入出力第 2近接電界効果トランジ スタ(Qn2)の前記ゲート(Gn2)に接続された入出力第 2近接抵抗 (Rg2n、 Rg3n) は、前記第 1抵抗 (Rgln)を含まず、前記第 2抵抗 (Rg2n)と前記第 3抵抗 (Rg3n)と を含む。前記中間部電界効果トランジスタ(Qn3、 4)の前記ゲート(Gn3、 4)に接続 された前記中間部抵抗 (Rg3n、 Rg4n)は、前記第 1抵抗 (Rgln)と前記第 2抵抗 (R g2n)とを含まず、前記第 3抵抗 (Rg3n)を含む(図 5参照)。
[0080] 本発明の前記 1つのより好適な形態による手段によれば、前記入出力近接抵抗 (R gin, Rg2n、 Rg3n)の高い抵抗値は、 1個の高抵抗で実現されるのではなぐ前記 第 1抵抗 (Rgln)と前記第 2抵抗 (Rg2n)と前記第 3抵抗 (Rg3n)との合計により実現 されること力 Sでさる。
[0081] 本発明の前記 1つのより好適な形態による半導体集積回路では、前記他方の高周 波スィッチ(Qn)で前記中間部電界効果トランジスタ(Qn3、 4)の前記ゲート(Gn3、 4)と前記他の制御端子 (Vctrl— n)との間に、第 4抵抗 (Rg4n)が接続されて!/、る。 前記他方の高周波スィッチ(Qn)の前記他の複数の電界効果トランジスタ(Qnl、 · · · 、 Qn7)のうちの前記他端近接電界効果トランジスタ(Qn6)の次に前記他方の高周 波スィッチ(Qn)の前記他端 (Txn)に近接した他端第 2近接電界効果トランジスタ(Q η5)のゲート(Gn5)と前記中間部電界効果トランジスタ(Qn3、 4)の前記ゲート(Gn 3、 4)との間に、第 5抵抗 (Rg5n)が接続されている。前記他端第 2近接電界効果トラ ンジスタ(Qn5)の前記ゲート(Gn5)と前記他端近接電界効果トランジスタ(Qn6)の 前記ゲート (Gn6)との間に、第 6抵抗 (Rg6n)が接続されて!/、る。
[0082] 前記他端近接電界効果トランジスタ(Qn6)の前記ゲート (Gn6)に接続された前記 他端近接抵抗(Rg4n、 Rg5n、 Rg6n)は、前記第 4抵抗(Rg4n)と前記第 5抵抗(Rg 5n)と前記第 6抵抗 (Rg6n)とを含む。前記他端第 2近接電界効果トランジスタ(Qn5 )の前記ゲート (Gn5)に接続された他端第 2近接抵抗 (Rg4n、 Rg5n)は、前記第 6 抵抗 (Rg6n)を含まず、前記第 4抵抗 (Rg4n)と前記第 5抵抗 (Rg5n)とを含む。前 記中間部電界効果トランジスタ(Qn3、 4)の前記ゲート(Gn3、 4)に接続された前記 中間部抵抗 (Rg3n、 Rg4n)は、前記第 5抵抗 (Rg5n)と前記第 6抵抗 (Rg6n)とを含 まず、前記第 4抵抗 (Rg4n)を含む(図 5参照)。
[0083] 本発明の前記 1つのより好適な形態による手段によれば、前記他端近接抵抗 (Rg4 n、 Rg5n、 Rg6n)の高い抵抗値は、 1個の高抵抗で実現されるのではなぐ前記第 4 抵抗 (Rg4n)と前記第 5抵抗 (Rg5n)と前記第 6抵抗 (Rg6n)との合計により実現さ れること力 Sでさる。
[0084] 本発明の 1つの具体的な形態による半導体集積回路では、前記複数の高周波スィ ツチ(SW— TRxl、 SW_Txl、 SW_TX2)の前記一方の高周波スィッチ(SW— T Rxl)の前記他端(TRxl)には、前記所定の通信方式としての WCDMA方式による 前記 RF送信信号(WCDMA1900— Tx)と前記 RF受信信号(WCDMA2100— R X)とが供給可能にされる。前記複数の高周波スィッチ(SW— TRxl、 SW— Txl、 S W_TX2)の前記他方の高周波スィッチ(SW— Txl、 SW_TX2)の前記他端(Tx 1、 Tx2)には、前記他の RF送信信号(GSM850— Tx/GSM900— Tx、 DCS 18 00— Tx/PCS1900— Tx)力 S供給可倉 こされる。
[0085] 前記一方の高周波スィッチ(SW— TRxl)の前記他端(TRxl)と接地ノード(GND )との間には一方の接地スィッチ(GSW— TRxl)が接続され、前記他方の高周波ス イッチ(SW— Txl、 SW_TX2)の前記他端(Txl、 Tx2)と前記接地ノード(GND) との間には他方の接地スィッチ(GSW— Txl、 GSW— ΤΧ2)が接続されている。
[0086] 前記一方の高周波スィッチ(SW— TRxl)がオン状態に制御される時には、前記 一方の接地スィッチ(GSW— TRxl)はオフ状態に、前記他方の高周波スィッチ(S W_Txl , SW— TX2)はオフ状態に、前記他方の接地スィッチ(GSW— Txl、 GS W_TX2)はオン状態にそれぞれ制御される。
[0087] 前記他方の高周波スィッチ(SW— Txl、 SW— TX2)がオン状態に制御される時 には、前記他方の接地スィッチ(GSW— Txl、 GSW— TX2)はオフ状態に、前記一 方の高周波スィッチ(SW TRxl)はオフ状態に、前記一方の接地スィッチ(GSW _TRxl)はオン状態にそれぞれ制御される(図 6参照)。
[0088] 本発明の前記 1つのより具体的な形態による手段によれば、前記一方の高周波ス イッチ(SW— TRxl)と前記一方の接地スィッチ(GSW— TRxl)とは相補的にオン- オフ制御され、前記他方の高周波スィッチ(SW— Txl SW— ΤΧ2)と前記他方の 接地スィッチ(GSW— Txl GSW— ΤΧ2)とは相補的にオン ·オフ制御される。その 結果、アンテナスィッチのアイソレーションを更に向上することができる。
[0089] 本発明の他の 1つの具体的な形態による半導体集積回路では、前記共通の入出 力端子(I/O)と前記他方の高周波スィッチ(Qn)の前記入出力近接電界効果トラン ジスタ(Qnl)の前記ゲート(Gnl)との間に入出力付加容量(CI lTxln)が接続され 、前記他方の高周波スィッチ(Qn)の前記他端 (Txn)と前記他方の高周波スィッチ( Qn)の前記他端近接電界効果トランジスタ(Qn6)の前記ゲート (Gn6)との間に他端 付加容量(CI 2Txln)が接続されて!/ヽる(図 5参照)。
[0090] 本発明の前記他の 1つのより具体的な形態による手段によれば、前記一方の高周 波スィッチ(Qm)と前記他方の高周波スィッチ(Qn)とがそれぞれオン状態とオフ状 態とされる際に、オン状態の前記一方の高周波スィッチ(Qm)からの RF送信信号の 正方向と負方向との電圧の振れにより、前記他方の高周波スィッチ(Qn)の入出力 近接 FET (Qnl)と他端近接 FET (Qn6)とがオンする現象を抑圧できる。
[0091] 本発明の 1つのより具体的な形態による半導体集積回路では、前記複数の高周波 スィッチ(SW— TRxl SW_Txl , SW— TX2)の前記他方の高周波スィッチ(SW — Txl SW— ΤΧ2)の前記他端(Txl Τχ2)に供給される前記他の RF送信信号( GSM850— Tx/GSM900— Tx DCS 1800— Tx/PCS 1900— Τχ)は GSM8 50と GSM900と DCS1800と PCS1900のいずれ力、の RF送信信号である(図 6参 昭)
[0092] また、本願において開示される発明のうち、別の代表的なものの概要を簡単に説明 すれば、次の通りである。
[0093] 即ち、本発明の代表的な半導体集積回路は、 DCブースト回路(100)を含む。前 記 DCブースト回路は、高周波入力端子(101)と、 DC制御入力端子(103)と、 DC 出力端子(104)とを含む。 [0094] 前記高周波入力端子に高周波入力信号 (RFin)が供給され、前記 DC制御入力端 子に DC制御電圧 (Vdc)が供給され、前記 DC出力端子から DC出力電圧 (Vout)が 生成される。
[0095] 前記 DCブースト回路では、第 1容量素子(106 ; C1)と第 1抵抗素子(107 ;R1)と の直列接続の一方の端子には、前記高周波入力端子が接続される。第 1ダイオード (108 ; D1)と第 2ダイオード(109 ; D2)とは、第 2容量素子(110; C2)を介して、逆 方向に並列接続されている。前記第 1ダイオードと前記第 2ダイオードの共通接続点 は、前記直列接続の他方の端子に接続される。前記第 1ダイオードと前記第 2容量の 一方の端子の共通接続点は前記 DC制御入力端子に接続され、前記第 2ダイオード と前記第 2容量の他方の端子の共通接続点は前記第 2抵抗素子を介して前記 DC出 力端子に接続される。
[0096] 前記第 2容量素子を介しての前記第 1ダイオードと前記第 2ダイオードとの逆方向 の並列接続の内部の前記第 1ダイォードの第 1直列抵抗 (rs 1 )の抵抗値と前記第 2 ダイオードの第 2直列抵抗 (rs2)の抵抗値よりも、前記第 1抵抗素子の抵抗値は大き く設定されて!/、る(図 10参照)。
発明の効果
[0097] 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説 明すれば、下記の通りである。
[0098] すなわち、本発明によれば、 RF通信端末装置に搭載されるアンテナスィッチにお いて WCDMA方式で重要な相互変調歪または GSM方式で重要な高調波歪を低減 すること力 Sでさる。
[0099] また、本願において開示される発明のうち、代表的なものによって得られる効果を 簡単に説明すれば以下の通りである。
[0100] すなわち、本発明によれば、内蔵の DCブースト回路の寿命および動作信頼性を向 上した半導体集積回路を提供することができる。
図面の簡単な説明
[0101] [図 1]図 1は、本発明に先立って開発されたアンテナスィッチを内蔵した RFモジユー ルとベースバンド信号処理 LSIとを搭載した携帯電話の構成を示すブロック図であり 、また本発明の 1つの実施形態によるアンテナスィッチ MMICを内蔵した RFモジュ ールとベースバンド信号処理 LSIとを搭載した携帯電話の構成を示すブロック図であ
Figure imgf000028_0001
[図 3]図 3は、図 2に示した高周波スィッチのオフ状態のスィッチの等価回路を示す図 である。
[図 4]図 4は、図 2に示した高周波スィッチのオン状態のスィッチからの RF信号の影 響によるオフ状態のスィッチの 6個の HEMTトランジスタの 6個のゲート抵抗と他の 1 個の抵抗とに印加される RF漏洩信号の分布を説明する図である。
[図 5]図 5は、図 1に示した本発明の 1つの実施形態によるアンテナスィッチ MMICの 高周波スィッチの基本的な構成を示すブロック図である。
[図 6]図 6は、図 1に示した本発明の 1つの実施形態によるアンテナスィッチ MMICの 高周波スィッチの具体的な構成を示すブロック図である。
[図 7]図 7は、図 4に示す高周波スィッチでスィッチ Qkをオン状態にするためのオン- オフ制御電圧を 3ボルトから 4. 5ボルトに増加させたことによるオフ状態のスィッチ Q1 での相互変調歪を示す図であり、また図 5に示す高周波スィッチで WCDMA方式の RF送信信号を伝達するための一方のスィッチ Qmをオン状態にする制御電圧を 3ボ ノレトカ、ら 4. 5ボルトに増加することで、 0ボルトの制御電圧によってオフ状態に制御さ れた他方のスィッチ Qnの相互変調歪を示す図である。
[図 8]図 8は、図 6に示した本発明の 1つの実施形態によるアンテナスィッチ MMICの 高周波スィッチの DCS 1800の RF送信信号と PCS1900の RF送信信号のための高 周波スィッチのマルチゲート構造の HEMTトランジスタとゲート抵抗を主として示す 平面図である。
[図 9]図 9は、アンテナスィッチ MMICと高出力電力増幅器とローパスフィルタとを含 む高出力電力増幅器モジュールの他の構成を示すブロック図である。
園 10]図 10は、本発明の 1つの実施の形態による半導体集積回路に内蔵された DC ブースト回路 100を示す回路図である。 [図 11]図 11は、本発明に先立って本発明者等により検討された RFスィッチの DCブ 一スト回路を示す回路図である。
[図 12]図 12は、本発明の 1つの実施の形態による半導体集積回路に内蔵された DC ブースト回路と送信用高周波スィッチ回路を示す回路図である。
[図 13]図 13は、図 10と図 12とに示した本発明の 1つの実施の形態による半導体集 積回路に内蔵された送信用高周波スィッチ回路を駆動する DCブースト回路の高周 波等価回路を示す回路図である。
[図 14]図 14は、図 11に示した本発明に先立って本発明者等により検討された DCブ 一スト回路の高周波等価回路を示す回路図である。
[図 15]図 15は、本発明の他の 1つの実施の形態によるアンテナスィッチマイクロウヱ ーブモノリシック半導体集積回路を示す回路図である。
[図 16]図 16は、図 15に示した本発明の 1つの実施の形態によるアンテナスィッチ M MICの第 1送信スィッチの第 1送信 DCブースト回路や第 2送信スィッチの第 2送信 D Cブースト回路のデバイス構造を示す平面図である。
[図 17]図 17は、本発明の 1つの実施の形態によるアンテナスィッチ MMICを内蔵し た高周波モジュールと高周波アナログ信号処理半導体集積回路とベースバンド信号 処理 LSIとを搭載した携帯電話の構成を示すブロック図である。
符号の説明
Qm、Qn 複数の高周波スィッチ
Qm —方の高周波スィッチ
Qn 他方の高周波スィッチ
I/O 共通の入出力端子
ANT 無線周波数通信端末機器のアンテナ
Txm 一方の高周波スィッチの他端
WCDMA_Tx WCDMA方式の RF送信信号
WCDMA_Rx WCDMA方式の RF受信信号
Txn 他方の高周波スィッチの他端
RF Τχ 他の RF送信信号 RF_Rx 他の RF受信信号
Qml、 · · ·、 Qm6 複数の電界効果トランジスタ
Qnl、…、 Qn6 他の複数の電界効果トランジスタ
Vctrl_m 制御電圧
Vctrl— n 他の制御電圧
Qnl 入出力近接電界効果トランジスタ
Rgln、 Rg2n、 Rg3n 入出力近接抵抗
Qn3、4 中間部電界効果トランジスタ
Rg3n、Rg4n 中間部抵抗
Qn6 他端近接電界効果トランジスタ
Rg4n、 Rg5n、 Rg6n 他端近接抵抗
101 高周波信号入力端子
102 高周波信号入力端子
103 DC制御電圧供給端子
104 DC出力端子
105 接続点
106 第 1容量素子
107 第 1抵抗素子
108 第 1ダイオード
110 第 2容量素子
111 第 2抵抗素子
109 第 2ダイオード
201 高周波信号入力端子
202 高周波信号入力端子
203 DC制御電圧供給端子
204 DC出力端子
205 接続点
206 第 1容量素子 207 第 1抵抗素子
208 第 2抵抗素子
209 第 1ダイオード
210 第 2ダイオード
211 第 3抵抗素子
300 SP4Tアンテナスィッチ MMIC
301 共通の入出力端子
320 高周波スィッチ
330 DCブースト回路
302· ••305 スィッチ
306 第 1送信端子
307 第 2送信端子
308
309 2受 1S 子
310 第 1送信 DC制御端子
311 第 2送信 DC制御端子
312 第 1受信 DC制御端子
313 第 2受信 DC制御端子
320 高周波スィッチ FET
330 DCブースト回路
340 高周波スィッチ FET
350 DCブースト回路
360 高周波スィッチ FET
370 高周波スィッチ FET
402 外部電圧端子
403 出力端子
407 抵抗
423 抵抗 410 FET (ダイオード)
414 FET (ダイオード)
411 ソース電極
415 ソース電極
412 ドレイン電極
416 ドレイン電極
413 ゲート電極
417 ゲート電極
RF— ML 高周波モジュール
ANT 送受信用アンテナ
BB— LSI ベースバンド信号処理 LSI
RF— IC 高周波アナログ信号処理半導体集積回路
ANT_SW アンテナスィッチ MMIC
I/O 共通の入出力端子
Txl、 Tx2 送信端子、
Rxl , Rx2 受信端子
HPA1 RF高出力電力増幅器
HPA2 RF高出力電力増幅器
LPF1 ローパスフィルタ
LPF2 ローパスフィルタ
CNT— IC コントローラ集積回路
Tx_SPU 送信信号処理ユニット
Rx_SPU 受信信号処理ユニット
LNA1 低雑音増幅器
LNA2 低雑音増幅器
SAW1 表面弾性波フィルタ
SAW2 表面弾性波フィルタ
RX 受信動作 TX 送信動作
B. B_Cnt 制御信号
Tx— BBS 送信ベースバンド信号
Rx— BBS 受信ベースバンド信号
RF_Txl : 第 1バンドの高周波送信信号
RF_Rxl : 第 1バンドの高周波受信信号
RF_Tx2 : 第 2バンドの高周波送信信号
RF_Rx2 : 第 2バンドの高周波受信信号
発明を実施するための最良の形態
[0103] 《携帯電話の構成》
図 1は、本発明の 1つの実施形態によるアンテナスィッチ MMICを内蔵した RFモジ ユールとベースバンド信号処理 LSIとを搭載した携帯電話の構成を示すブロック図で ある。
[0104] 同図で、携帯電話の送受信用アンテナ ANTには RFモジュール RF— MLのアンテ ナスイッチ MMIC (ANT_SW)の共通の入出力端子 I/Oが接続されて!/、る。ベー スバンド信号処理 LSI (BB— LSI)からの制御信号 B. B— Cntは、 RFアナログ信号 処理半導体集積回路 (RF— IC)を経由して高出力電力増幅器モジュール (HPA— MUのコントローラ集積回路(CNT—IC)に供給される。送受信用アンテナ ANTか ら共通の入出力端子 I/Oへの RF信号の流れは携帯電話の受信動作 RXとなり、共 通の入出力端子 I/Oから送受信用アンテナ ANTへの RF信号の流れは携帯電話 の送信動作 TXとなる。
[0105] RF IC (RF_IC)はベースバンド信号処理 LSI (BB_LSI)からの送信ベースバン ド信号 Tx— BBSを RF送信信号に周波数アップコンバージョンを行!/ヽ、逆に送受信 用アンテナ ANTで受信された RF受信信号を受信ベースバンド信号 Rx— BBSに周 波数ダウンコンバージョンを行いベースバンド信号処理 LSI (BB— LSI)に供給する
[0106] RFモジュール RF— MLのアンテナスィッチ MMIC (ANT_SW)は共通の入出力 端子 I/Oと送信端子 Txl、 Τχ2、受信端子 Rx2、 Rx3、 Rx4、送受信端子 TRxl、 T Rx5の!/、ずれかの端子の間で信号経路を確立して、受信動作 RXと送信動作 TXと のいずれかを行う。このアンテナスィッチ MMIC (ANT—SW)は受信動作 RXと送信 動作 TXとの!/、ずれかのために確立した信号経路以外の信号経路のインピーダンス を極めて高い値に設定することで、必要なアイソレーションが得られるものである。ァ ンテナスイッチの分野では、共通の入出力端子 I/Oはシングルポール(Single Pole) と呼ばれ、送信端子 Txl、 Τχ2、受信端子 Rx2、 Rx3、 Rx4、送受信端子 TRxl、 T Rx5の合計 7個の端子は 7スロー(7 throw)と呼ばれる。従って、図 1のアンテナスイツ チ MMIC (ANT— SW)は、シングルポール 7スロー(SP7T ; Single Pole 7 throw)型 のスィッチである。
[0107] 尚、ベースバンド信号処理 LSI (BB— LSI)は図示されていない外部不揮発性メモ リと図示されて!/、な!/、アプリケーションプロセッサとに接続されて!/、る。アプリケーショ ンプロセッサは、図示されてレ、なレ、液晶表示装置と図示されて!/、な!/、キー入力装置 とに接続され、汎用プログラムやゲームを含む種々のアプリケーションプログラムを実 行することカできる。携帯電話等のモパイル機器のブートプログラム(起動ィニシャラ ィズプログラム)、オペレーティングシステムプログラム(OS)、ベースバンド信号処理 LSIの内部のディジタルシグナルプロセッサ(DSP)による GSM方式等の受信べ一 スバンド信号に関する位相復調と送信ベースバンド信号に関する位相変調のための プログラム、種々のアプリケーションプログラムは、外部不揮発性メモリに格納されるこ と力 Sできる。
[0108] 《GSM850、 GSM900による送受信動作》
BB— LSIからの送信ベースバンド信号 Tx— BBSが GSM850のバンドに周波数ァ ップコンバージョンされるべき場合には、 RF ICの送信信号処理ユニット Tx— SPU は送信ベースバンド信号 Tx— BBSを GSM850のバンドへの周波数アップコンバー ジョンを行って、 GSM850の RF送信信号 GSM850— Tx (824MHz〜849MHz) が生成される。 BB— LSIからの送信ベースバンド信号 Tx— BBSが GSM900のバン ドに周波数アップコンバージョンされるべき場合には、 RF ICの送信信号処理ュニッ ト Tx— SPUは送信ベースバンド信号 Tx— BBSを GSM900のバンドへの周波数ァ ップコンバージョンを行って、 GSM900の RF送信信号 GSM900 Tx(880MHz 〜915MHz)が生成される。 GSM850の RF送信信号 GSM850— Txと GSM900 の RF送信信号 GSM900— Τχとは、高出力電力増幅器モジュール(HPA— ML)の 高出力電力増幅器 HPA2で電力増幅され、ローパスフィルタ LPF2を経由してアン テナスィッチ MMIC (ANT_SW)の送信端子 Tx2に供給される。送信端子 Τχ2に 供給された GSM850の RF送信信号 GSM850— Txと GSM900の RF送信信号 GS M900—TXとは共通の入出力端子 I/Oを介して送受信用アンテナ ANTから送信さ れること力 Sでさる。
[0109] 送受信用アンテナ ANTで受信された GSM850の RF受信信号 GSM850— Rx (8 69MHz〜894MHz)と GSM900の RF受信信号 GSM900— Rx (925MHz〜96 0MHz)とは、アンテナスィッチ MMIC (ANT_SW)の共通の入出力端子 I/Oに供 給される。アンテナスィッチ MMIC (ANT_SW)の受信端子 Rx2から得られる GSM 850の RF受信信号 GSM850— Rxと GSM900の RF受信信号 GSM900— Rxとは 表面弾性波フィルタ SAW3を介して RF IC (RF— IC)の低雑音増幅器 LNA5で増 幅された後、受信信号処理ユニット Rx— SPUに供給される。受信信号処理ユニット Rx— SPUでは、 GSM850の RF受信信号 GSM850— Rxまたは GSM900の RF受 信信号 GSM900— Rxから受信ベースバンド信号 Rx— BBSへの周波数ダウンコン バージョンが fiわれる。 GSM850の送受信モードでは、アンテナスィッチ MMIC ( ANT_SW)は制御信号 B. B— Cntに応答して入出力端子 I/Oと送信端子 Tx2と の接続による RF送信信号 GSM850— Txの送信と入出力端子 I/Oとの受信端子 R x2との接続による RF受信信号 GSM850— Rxの受信とを時分割で行う。同様に、 G SM900の送受信モードでも、アンテナスィッチ MMIC (ANT—SW)は制御信号 Β· B— Cntに応答して入出力端子 I/Oと送信端子 Τχ2との接続による RF送信信号 G SM900— Txの送信と入出力端子 I/Oとの受信端子 Rx2との接続による RF受信信 号 GSM900— Rxの受信とを時分割で行う。
[0110] 《DCS 1800、 PCS 1900による送受信動作》
BB— LSIからの送信ベースバンド信号 Tx— BBSが DCS 1800のバンドに周波数 アップコンバージョンされるべき場合には、 RF ICの送信信号処理ユニット Tx— SP Uは送信ベースバンド信号 Tx BBSを DCS 1800のバンドへの周波数アップコンパ 一ジョンを行って、 DCS1800の RF送信信号 DCS 1800— Τχ(1710ΜΗζ〜; 1780 MHz)が生成される。 BB— LSIからの送信ベースバンド信号 Tx— BBS力 SPCS190 0のバンドに周波数アップコンバージョンされるべき場合には、 RF ICの送信信号処 理ユニット Tx—SPUは送信ベースバンド信号 Tx— BBSを PCS 1900のバンドへの 周波数アップコンバージョンを行って、 PCS 1900の RF送信信号 PCS1900— Tx (l 850MHz〜 910MHz)力 S生成される。 DCS 1800の RF送信信号 DCS 1800— Tx と PCS 1900の RF送信信号 PCS 1900— Τχとは、高出力電力増幅器モジュール(Η PA_ML)の高出力電力増幅器 HPA1で電力増幅され、ローパスフィルタ LPF1を 経由してアンテナスィッチ MMIC (ANT_SW)の送信端子 Txlに供給される。送信 端子 Txlに供給された DCS 1800の RF送信信号 DCS 1800一 Txと PCS 1900の R F送信信号 PCS1900— Txとは共通の入出力端子 I/Oを介して送受信用アンテナ ANT力、ら送信されること力 Sできる。
[0111] 送受信用アンテナ ANTで受信された DCS 1800の RF受信信号 DCS 1800— Rx ( 1805MHz〜; 1880MHz)と PCS1900の RF受信信号 PCS 1900— Rx (1930MH z〜; 1990MHz)とは、アンテナスィッチ MMIC (ANT_SW)の共通の入出力端子 I /〇に供給される。アンテナスィッチ MMIC (ANT_SW)の受信端子 Rx3から得ら れる DCS 1800の RF受信信号 DCS 1800— Rxは表面弾性波フィルタ SAW2を介し て RF IC (RF— IC)の低雑音増幅器 LNA2で増幅され、アンテナスィッチ MMIC ( ANT_SW)の受信端子 Rx4から得られる PCS 1900の RF受信信号 PCS 1900— R Xは表面弾性波フィルタ SAW1を介して RF IC (RF— IC)の低雑音増幅器 LNA1 で増幅され、その後、受信信号処理ユニット Rx— SPUに供給される。受信信号処理 ユニット Rx— SPUでは、 DCS 1800の RF受信信号 DCS 1800— Rxまたは PCS 19 00の RF受信信号 PCS 1900— Rxから受信ベースバンド信号 Rx— BBSへの周波数 ダウンコンバージョンが行われる。
[0112] DCS 1800の送受信モードでは、アンテナスィッチ MMIC (ANT— SW)は制御信 号 B. B— Cntに応答して入出力端子 I/Oと送信端子 Txlとの接続による RF送信信 号 DCS 1800— Txの送信と入出力端子 I/Oとの受信端子 Rx3との接続による RF 受信信号 DCS 1800— Rxの受信とを時分割で行う。同様に、 PCS 1900の送受信モ ードでも、アンテナスィッチ MMIC (ANT— SW)は制御信号 Β· B— Cntに応答して 入出力端子 I/Oと送信端子 Txlとの接続による RF送信信号 PCS 1900— Txの送 信と入出力端子 I/Oとの受信端子 Rx4との接続による RF受信信号 PCS 1900— R Xの受信とを時分割で行う。
[0113] 《WCDMAによる送受信動作》
BB— LSIからの送信ベースバンド信号 Tx— BBSが WCDMA1900のバンドに周 波数アップコンバージョンされるべき場合には、 RF ICの送信信号処理ユニット Tx — SPUは送信ベースバンド信号 Tx— BBSを WCDMA1900のバンドへの周波数 アップコンバージョンを行って、 WCDMA1900の RF送信信号 WCDMA1900— T x (1920MHz〜; 1980MHz)力 S生成される。 WCDMA1900の RF送信信号 WCD MA1900— Txは、高出力電力増幅器 W—PA1で電力増幅され、デュープレクサ D UP 1を経由してアンテナスィッチ MMIC (ANT_SW)の送受信端子 TRxlに供給 される。送受信端子 TRxlに供給された WCDMA1900の RF送信信号 WCDMA1 900— Txは、共通の入出力端子 I/Oを介して送受信用アンテナ ANTから送信され ること力 Sでさる。
[0114] WCDMA方式では、コード分割により送信動作と受信動作とが並列に処理される こと力 Sできる。すなわち、送受信用アンテナ ANTで受信された WCDMA2100の RF 受信信号 WCDMA2100_Rx(2110MHz〜2170MHz)は、アンテナスィッチ M MIC (ANT_SW)の共通の入出力端子 I/Oに供給される。アンテナスィッチ MMI C (ANT_SW)の送受信端子 TRxlから得られる WCDMA2100の RF受信信号 W CDMA2100— Rxはデュープレクサ DUP 1を経由して RF IC (RF— IC)の低雑音 増幅器 LNA3で増幅され、その後、受信信号処理ユニット Rx— SPUに供給される。 受信信号処理ユニット Rx— SPUでは、 WCDMA2100の RF受信信号 WCDMA2 100— Rxから受信ベースバンド信号 Rx— BBSへの周波数ダウンコンバージョンが 行われる。
[0115] WCDMA1900による送信と WCDMA2100による受信との並列処理モードでは 、アンテナスィッチ MMIC (ANT— SW)は制御信号 Β· B— Cntに応答して入出力 端子 I/Oと送受信端子 TRxlとの間の定常接続により RF送信信号 WCDMA1900 — Txの送信と RF受信信号 WCDMA2100— Rxの受信とを並列して行う。
[0116] WCDMA900は 2006年の 1月末に提案された新しい方式で、モパイル TV、ビデ ォ電話、遠隔地での DSLライクなサービス等を対象としている。 WCDMA900は 90 0MHzの周波数帯域と思われる力 S、端末機器からの RF送信信号 WCDMA900— Txの送信周波数と端末機器への RF受信信号 WCDMA900— Rxの送信周波数と は現在明らかにされていない。し力、し、 WCDMA900では、 RF送信信号 WCDMA 900— Txの送信周波数よりも RF受信信号 WCDMA900— Rxの送信周波数が高 い周波数と推測される。
[0117] BB— LSIからの送信ベースバンド信号 Tx— BBSが WCDMA900のバンドに周波 数アップコンバージョンされるべき場合には、 RF ICの送信信号処理ユニット Tx— S PUは送信ベースバンド信号 Tx— BBSを WCDMA900のバンドへの周波数アップ コンバージョンを行って、 WCDMA900の RF送信信号 WCDMA900— Tx (略 900 MHz)が生成される。 WCDMA900の RF送信信号 WCDMA900— Txは、高出力 電力増幅器 W— PA2で電力増幅され、デュープレクサ DUP2を経由してアンテナス イッチ MMIC (ANT_SW)の送受信端子 TRx5に供給される。送受信端子 TRx5に 供給された WCDMA900の RF送信信号 WCDMA900— Txは、共通の入出力端 子 I/Oを介して送受信用アンテナ ANTから送信されることができる。
[0118] 送受信用アンテナ ANTで受信された WCDMA900の RF受信信号 WCDMA90 0_Rx(略 900MHz)は、アンテナスィッチ MMIC (ANT_SW)の共通の入出力端 子 I/Oに供給される。アンテナスィッチ MMIC (ANT_SW)の送受信端子 TRx5か ら得られる WCDMA900の RF受信信号 WCDMA900— Rxはデュープレクサ DU P2を経由して RF IC (RF— IC)の低雑音増幅器 LNA4で増幅され、その後、受信 信号処理ユニット Rx— SPUに供給される。受信信号処理ユニット Rx— SPUでは、 WCDMA900の RF受信信号 WCDMA900— Rxから受信ベースバンド信号 Rx— BBSへの周波数ダウンコンバージョンが行われる。
[0119] WCDMA900による送信と WCDMA900による受信との並列処理モードでは、ァ ンテナスィッチ MMIC (ANT— SW)は制御信号 Β· B— Cntに応答して入出力端子 I/Oと送受信端子 TRx5との間の定常接続により RF送信信号 WCDMA900 Tx の送信と RF受信信号 WCDMA900— Rxの受信とを並列して行う。
[0120] 《アンテナスィッチの高周波スィッチの基本的な構成》
図 5は、図 1に示した本発明の 1つの実施形態によるアンテナスィッチ MMIC (AN T—SW)の高周波スィッチの基本的な構成を示すブロック図である。
[0121] 図 1に示した本発明の 1つの実施形態によるアンテナスィッチ MMICのチップは、 図 5に示すように複数の高周波スィッチ Qm、 Qnを含む。複数の高周波スィッチ Qm 、 Qnの一方の高周波スィッチ Qmの一端と他方の高周波スィッチ Qnの一端とは共 通の入出力端子 I/Oに接続され、共通の入出力端子 I/Oは無線周波数通信端末 機器である携帯電話のアンテナ ANTと接続可能にされている。一方の高周波スイツ チ Qmの他端 Txmには WCDMA方式の RF送信信号 WCDMA— Txと RF受信信 号 WCDMA— Rxとが供給可能にされ、他方の高周波スィッチ Qnの他端 Txnには R F送信信号 WCDMA— Τχと RF受信信号 WCDMA— Rxと異なる他の RF送信信号 RF— Txと他の RF受信信号 RF— Rxとの少なくともいずれか一方が供給可能にされ
[0122] 一方の高周波スィッチ Qmは直列接続された 6個の FETQml、 · · ·、 Qm6を含み、 他方の高周波スィッチ Qnは直列接続された他の 6個の FETQnl、 · · ·、 Qn6を含む。 尚、 3個の FETQml、 Qm2、 Qm3は 3個のゲート Gml、 Gm2、 Gm3がトリプルゲー ト構造とされた 1個の FETで構成され、 3個の FETQm4、 Qm5、 Qm6は 3個のゲー ト Gm4、 Gm5、 Gm6がトリプルゲート構造とされた 1個の FETで構成されている。同 様に、 3ί固の FETQnl、 Qn2、 Qn3iま 3ί固のゲート Gnl、 Gn2、 Gn3力トリプノレゲート 構造とされた 1個の FETで構成され、 3個の FETQn4、 Qn5、 Qn6は 3個のゲート G n4、 Gn5、 Gn6がトリプルゲート構造とされた 1個の FETで構成されている。
[0123] 前記特許文献 4と同様に、マルチゲート構造のゲート Gmlとゲート Gm2との間のゲ ート間領域 (FETQml、 Qm2の共通接続ノード)が電位安定化抵抗 Rdlmを介して FETQmlのソースに接続されている。また、マルチゲート構造のゲート Gm2とゲート Gm3との間のゲート間領域(FETQm2、 Qm3の共通接続ノード)が電位安定化抵 抗 Rd2m、 Rdlmを介して FETQmlのソースに接続されている。更に、マルチゲート 構造のゲート Gm2とゲート Gm3との間のゲート間領域(FETQm2、 Qm3の共通接 続ノード)が電位安定化抵抗 Rd3mを介して FETQm3のドレインに接続されて!/、る。 また、マルチゲート構造のゲート Gm4とゲート Gm5との間のゲート間領域(FETQm 4、 Qm5の共通接続ノード)が電位安定化抵抗 Rd4mを介して FETQm4のソースに 接続されている。マルチゲート構造のゲート Gm5とゲート Gm6との間のゲート間領域 (FETQm5、 Qm6の共通接続ノード)が電位安定化抵抗 Rd5m、 Rd4mを介して FE TQm4のソースに接続されている。更に、マルチゲート構造のゲート Gm5とゲート G m6との間のゲート間領域(FETQm5、 Qm6の共通接続ノード)が電位安定化抵抗 Rd6mを介して FETQm6のドレインに接続されている。
[0124] マルチゲート構造のゲート Gnlとゲート Gn2との間のゲート間領域(FETQnl、 Qn 2の共通接続ノード)が電位安定化抵抗 Rdlnを介して FETQnlのソースに接続され ている。また、マルチゲート構造のゲート Gn2とゲート Gn3との間のゲート間領域(FE TQn2、 Qn3の共通接続ノード)が電位安定化抵抗 Rd2n、 Rdlnを介して FETQnl のソースに接続されている。更に、マルチゲート構造のゲート Gn2とゲート Gn3との間 のゲート間領域 (FETQn2、 Qn3の共通接続ノード)が電位安定化抵抗 Rd3nを介し て FETQn3のドレインに接続されている。また、マルチゲート構造のゲート Gn4とゲ ート Gn5との間のゲート間領域 (FETQn4、 Qn5の共通接続ノード)が電位安定化 抵抗 Rd4nを介して FETQn4のソースに接続されている。マルチゲート構造のゲート Gn5とゲート Gn6との間のゲート間領域(FETQn5、 Qn6の共通接続ノード)が電位 安定化抵抗 Rd5n、 Rd4nを介して FETQn4のソースに接続されている。更に、マル チゲート構造のゲート Gn5とゲート Gn6との間のゲート間領域(FETQn5、 Qn6の共 通接続ノード)が電位安定化抵抗 Rd6nを介して FETQn6のドレインに接続されて!/ヽ
[0125] 一方の高周波スィッチ Qmの FETQml、 · · ·、 Qm6のゲート Gml、 · · ·、 Gm6には 一方の高周波スィッチ Qmのオン ·オフ制御のための制御電圧 Vctrl— mが供給可 能にされる。他方の高周波スィッチ Qnの他の FETQnl、 · ·ヽ Qn6の他のゲート Gnl 、 · · ·、 Gn6には他方の高周波スィッチ Qnのオン.オフ制御のための他の制御電圧 V Ctrl— nが供給可能にされる。
[0126] 一方の高周波スィッチ Qmの 6個の FETQml、 · · ·、 Qm6の 6個のゲート Gml、 · · ·、 Gm6と制御電圧 Vctrl— mが供給される制御端子との間には 6個の抵抗 Rglm、 · · · 、 Rg6mが接続されている。他方の高周波スィッチ Qnの 6個の FETQnl、 · · ·、 Qn6 の他の 6個のゲート Gnl、 · · ·、 Gn6と他の制御電圧 Vctrl— nが供給される他の制御 端子との間には他の 6個の抵抗 Rgln、 · · ·、 Rg6nが接続されている。
[0127] 他方の高周波スィッチ Qnで他の 6個の FETQnl、 · · ·、 Qn6のうちの共通の入出力 端子 I/Oに最も近接した入出力近接 FETQnlのゲート Gnlと他の制御端子 Vctrl — nとの間の入出力近接抵抗 Rgln、 Rg2n、 Rg3nは、第 1の電圧'電流特性を持つ 。他方の高周波スィッチ Qnで入出力近接 FETQnlと他の 6個の FETQnl、 · · ·、 Qn 6のうちの他方の高周波スィッチ Qnの他端 Txnに最も近接した他端近接 FETQn6と の間の中間部の中間部 FETQn3、 4のゲート Gn3、 Gn4と他の制御端子 Vctrl— nと の間の中間部抵抗 Rg3n、 Rg4nは、第 2の電圧'電流特性を持つ。他方の高周波ス イッチ Qnで入出力近接抵抗 Rgln、 Rg2n、 Rg3nの第 1の電圧'電流特性の線形性 は中間部抵抗 Rg3n、Rg4nの第 2の電圧 ·電流特性の線形性よりも高く設定されて いる。従って、一方の高周波スィッチ Qmからの WCDMA方式の RF送信信号 WCD MA— Txにより駆動される他方の高周波スィッチ Qnで入出力近接抵抗 Rgln、Rg2 n、 Rg3nの第 1の電圧.電流特性の線形性は中間部抵抗 Rg3n、 Rg4nの第 2の電圧 •電流特性の線形性よりも高く設定されている。従って、入出力近接抵抗 Rgln、 Rg2 n、 Rg3nと中間部抵抗 Rg3n、 Rg4nに不均等な RF漏洩信号が印加されても、他方 の高周波スィッチ Qnで共通の入出力端子 I/Oに最も近接した入出力近接 FETQn 1のゲート Gnlの入出力近接抵抗 Rgln、 Rg2n、 Rg3nに流れる電流の歪を抑圧で きる。その結果、 WCDMA方式で重要な相互変調歪および GSM方式で重要な高 調波歪を低減することができる。
[0128] また、他方の高周波スィッチ Qnで他の複数の FETQnl、 · · ·、 Qnのうちの他方の高 周波スィッチ Qnの他端 Txnに最も近接した他端近接 FETQn6のゲート Gn6と他の 制御端子 Vctrl— nとの間の他端近接抵抗 Rg4n、 Rg5n、 Rg6nは、第 3の電圧'電 流特性を持つ。他方の高周波スィッチ Qnで他端近接抵抗 Rg4n、 Rg5n、 Rg6nの 第 3の電圧 ·電流特性の線形性は中間部抵抗 Rg3n、 Rg4nの第 2の電圧 ·電流特性 の前記線形性よりも高く設定されている。従って、一方の高周波スィッチ Qmからの W CDMA方式の RF送信信号 WCDMA— Txにより駆動される他方の高周波スィッチ Qnで他端近接抵抗 Rg4n、 Rg5n、 Rg6nの第 3の電圧 ·電流特性の線形性は中間 部抵抗 Rg3n、 Rg4nの第 2の電圧 ·電流特性の線形性よりも高く設定されている。従 つて、他端近接抵抗 Rg4n、 Rg5n、 Rg6nと中間部抵抗 Rg3n、 Rg4nに不均等な R F漏洩信号が印加されても、他方の高周波スィッチ Qnで他端 Txnに最も近接した他 端近接 FETQn6のゲート Gn6の他端近接抵抗 Rg4n、 Rg5n、 Rg6nに流れる電流 の歪を抑圧できる。その結果、 WCDMA方式で重要な相互変調歪および GSM方 式で重要な高調波歪を低減することができる。
[0129] また、入出力近接抵抗 Rgln、 Rg2n、 Rg3nの抵抗値は中間部抵抗 Rg3n、 Rg4n の抵抗値よりも大きく設定されている。従って、中間部抵抗 Rg3n、Rg4nに印加され る中間部 RF漏洩信号のレベルよりも入出力近接抵抗 Rgln、 Rg2n、 Rg3nに印加さ れる入出力近接 RF漏洩信号のレベルが高くても、 WCDMA方式で重要な相互変 調歪を低減することができる。これは、中間部抵抗 Rg3n、Rg4nよりも抵抗値の大き な入出力近接抵抗 Rgln、 Rg2n、 Rg3nに高レベルの入出力近接 RF漏洩信号が印 カロされても、入出力近接抵抗 Rgln、 Rg2n、 Rg3nに流れる電流自体が低減され、 信号電流の歪も低減されるためである。また、他端近接抵抗 Rg4n、 Rg5n、 Rg6nの 抵抗値は中間部抵抗 Rg3n、Rg4nの抵抗値よりも大きく設定されている。従って、中 間部抵抗 Rg3n、 Rg4nに印加される中間部 RF漏洩信号のレベルよりも他端近接抵 抗 Rg4n、 Rg5n、 Rg6nに印加される他端近接 RF漏洩信号のレベルが高くても、 W CDMA方式で重要な相互変調歪を低減することができる。これは、中間部抵抗 Rg3 n、 Rg4nよりも抵抗値の大きな他端近接抵抗 Rg4n、 Rg5n、 Rg6nに高レベルの他 端近接 RF漏洩信号が印加されても、他端近接抵抗 Rg4n、 Rg5n、 Rg6nに流れる 電流自体が低減され、信号電流の歪も低減されるためである。
[0130] 図 5に示した本発明の 1つの実施形態によるアンテナスィッチ MMIC (ANT— SW )の高周波スィッチを、更に詳細に説明する。
[0131] 一方の高周波スィッチ Qmで他端 Txmに近接した他端近接 FETQmlのゲート Gm 1と他端第 2近接 FETQm2のゲート Gm2との間には、 10K Ωのゲート抵抗 Rglmが 接続されている。他端第 2近接 FETQm2のゲート Gm2と中間部 FETQm3のゲート Qm3との間には、 10Κ Ωのゲート抵抗 Rg2mが接続されている。一方の高周波スィ ツチ Qmで共通の入出力端子 I/Oに近接した入出力近接 FETQm6のゲート Gm6 と入出力第 2近接 FETQm5のゲート Gm5との間には、 10Κ Ωのゲート抵抗 Rg6m が接続されている。入出力第 2近接 FETQm5のゲート Gm5と中間部 FETQm4のゲ ート Qm4との間には、 10Κ Ωのゲート抵抗 Rg5mが接続されている。中間部 FETQ m3のゲート Qm3と中間部 FETQm4のゲート Qm4とにはそれぞれ 10Κ Ωのゲート 抵抗 Rg3m、 Rg4mの一端が接続され、ゲート抵抗 Rg3m、 Rg4mの他端は 20Κ Ω の抵抗 Rg7mの一端に接続され、抵抗 Rg7mの他端には制御電圧 Vctrl— mが供給 される。
[0132] 他端近接 FETQmlのソースとドレインとの間には 15Κ Ωの抵抗 Rdlmが接続され 、他端第 2近接 FETQm2のソースとドレインとの間には 15Κ Ωの抵抗 Rd2mが接続 され、中間部 FETQm3のソースとドレインとの間には 15Κ Ωの抵抗 Rd3mが接続さ れている。中間部 FETQm4のソースとドレインとの間には 15Κ Ωの抵抗 Rd4mが接 続され、入出力第 2近接 FETQm5のソースとドレインとの間には 15Κ Ωの抵抗 Rd5 mが接続され、入出力近接 FETQm6のソースとドレインとの間には 15Κ Ωの抵抗 Rd 6mが接続されている。
[0133] 従って、他端近接 FETQmlのゲート Gmlと制御電圧 Vctrl— mとの間には 10Κ Ω のゲート抵抗 Rglmと 10Κ Ωのゲート抵抗 Rg2mと 10Κ Ωのゲート抵抗 Rg3mと 20 Κ Ωの抵抗 Rg7mとが直列に接続され、入出力近接 FETQm6のゲート Gm6と制御 電圧 Vctrl— mとの間には 1 OK Ωのゲート抵抗 Rg6mと 10K Ωのゲート抵抗 Rg 5mと 10Κ Ωのゲート抵抗 Rg4mと 20Κ Ωの抵抗 Rg7mとが直列に接続されている。他端 第 2近接 FETQm2のゲート Gm2と制御電圧 Vctrl— mとの間には 10Κ Ωのゲート抵 抗 Rg2mと 10Κ Ωのゲート抵抗 Rg3mと 20Κ Ωの抵抗 Rg7mとが直列に接続され、 入出力第 2近接 FETQm5のゲート Gm5と制御電圧 Vctrl— mとの間には 10Κ Ωの ゲート抵抗 Rg5mと 10Κ Ωのゲート抵抗 Rg4mと 20Κ Ωの抵抗 Rg7mとが直列に接 続されている。中間部 FETQm3のゲート Qm3と制御電圧 Vctrl— mとの間には 10K Ωのゲート抵抗 Rg3mと 20Κ Ωの抵抗 Rg7mとが直列に接続され、中間部 FETQm 4のゲート Qm4と制御電圧 Vctrl mとの間には 10Κ Ωのゲート抵抗 Rg4mと 20K Ωの抵抗 Rg7mとが直列に接続されている。 6個のゲート抵抗 Rglm' Rg6mと 1個 の抵抗 Rg7mは前記(数 1)で示すような非線型の電圧 ·電流特性を持って!/、る。
[0134] 図 5に示したアンテナスィッチ MMIC (ANT— SW)の一方の高周波スィッチ Qmで も図 4と同様に変形 U字型の定在波が発生して、他端近接 FETQmlのゲート Gml と入出力近接 FETQm6のゲート Gm6とに高レベルの RF漏洩信号電圧が生じて中 間部 FETQm3のゲート Qm3と中間部 FETQm4のゲート Qm4とには低レベルの R F漏洩信号電圧が生じるとする。高レベルの RF漏洩信号電圧が供給される他端近 接 FETQm 1のゲート Gmlと入出力近接 FETQm6のゲート Gm6のゲート抵抗網の 抵抗値は、低レベルの RF漏洩信号電圧が供給される中間部 FETQm3のゲート Qm 3と中間部 FETQm4のゲート Qm4のゲート抵抗網の抵抗値よりも高くなつている。他 端近接 FETQmlと入出力近接 FETQm6の抵抗値の大きなゲート抵抗網の高レべ ルの RF漏洩信号電圧が印加されると、他端近接 FETQmlと入出力近接 FETQm6 のゲート抵抗網に流れる電流自体が低減され、信号電流の歪も低減される。
[0135] 図 5の左下には、オン状態のスィッチ Qnからの PCS方式の RF送信信号の影響に よるオフ状態のスィッチ Qmの 6個の HEMTトランジスタの 6個のゲート抵抗 Rglm、 Rg2m、 Rg3m、 Rg4m、 Rg5m、 Rg6mと他の 1固の抵抗 Rg7mとに印カロされる RF 漏洩信号の分布が示されている。尚、図 5の左下の RF漏洩信号の分布は図 4と同様 にコンピュータによるシュミュレーシヨンの結果であり、図 4と同様に RF信号の RF電 力 (ま 20dBm、周波数 (ま PCS1900の周波数帯域内の 1880MHzである。 PCS 190 0の RF送信信号の最大電力は 33dBm程度であるので、 20dBmの RF信号 Pinは中 間レベルより高めの送信電力と言うことができる。図 5の左下の各抵抗 Rglm、 Rg2m 、 Rg3m、 Rg4m、 Rg5m、 Rg6m、 Rg7mの電圧 Vppはピーク 'ツー'ピークの RF信 号電圧である。図 5の左下に示したオフ状態のスィッチ Qmの 6個の HEMTトランジ スタの 6個のゲート抵抗と他の 1個の抵抗の RF漏洩信号の分布の特性 L3は 0. 8pF の付加容量 Cl lTxlm、 C12Txlmとを接続した場合の特性であり、特性 L4は 0. 8 pFの付加容量 Cl lTxlm、 C12Txlmとを接続しなかった場合の特性である。図 5 の左下の特性 L3と特性 L4とのいずれでも 6個のゲート抵抗 Rglm、 Rg2m、 Rg3m、 Rg4m、 Rg5m、 Rg6mに印加される RF漏洩信号のレベルが略均等化されている。 [0136] 他端 Txmと他端近接 FETQmlのゲート Gmlとの間には 0. 8pFのソース付加容 量 C12Txlmが接続され、共通の入出力端子 I/Oと入出力近接 FETQm6のゲート Gm6との間には 0. 8pFのドレイン付加容量 Cl lTxlmが接続されている。その結果 、制御電圧 Vctrl— mと制御電圧 Vctrl— nとがそれぞれ 0ボルトと 4· 5ボルトとなり、 一方の高周波スィッチ Qmと他方の高周波スィッチ Qnとがそれぞれオフ状態とオン 状態とされる際に、オン状態の他方の高周波スィッチ Qnからの RF送信信号の正方 向と負方向との電圧の振れにより、一方の高周波スィッチ Qmの入出力近接 FETQ m6と他端近接 FETQmlとがオンする現象を抑圧できる。
[0137] 他方の高周波スィッチ Qnで他端 Txnに近接した他端近接 FETQn6のゲート Gn6 と他端第 2近接 FETQn5のゲート Gn5との間には、 10Κ Ωのゲート抵抗 Rg6nが接 続されている。他端第 2近接 FETQn5のゲート Gn5と中間部 FETQn4のゲート Qn5 との間には、 10Κ Ωのゲート抵抗 Rg5nが接続されている。他方の高周波スィッチ Qn で共通の入出力端子 I/Oに近接した入出力近接 FETQnlのゲート Gnlと入出力 第 2近接 FETQn2のゲート Gn2との間には、 10Κ Ωのゲート抵抗 Rglnが接続され ている。入出力第 2近接 FETQn2のゲート Gn2と中間部 FETQn3のゲート Qn3との 間には、 10Κ Ωのゲート抵抗 Rg2nが接続されている。中間部 FETQn3のゲート Qn 3と中間部 FETQn4のゲート Qn4とにはそれぞれ 10Κ Ωのゲート抵抗 Rg3n、 Rg4n の一端が接続され、ゲート抵抗 Rg3n、 Rg4nの他端は 20Κ Ωの抵抗 Rg7nの一端に 接続され、抵抗 Rg7nの他端には制御電圧 Vctrl— nが供給される。
[0138] 他端近接 FETQn6のソースとドレインとの間には 15Κ Ωの抵抗 Rd6nが接続され、 他端第 2近接 FETQn5のソースとドレインとの間には 15Κ Ωの抵抗 Rd5nが接続さ れ、中間部 FETQn4のソースとドレインとの間には 15Κ Ωの抵抗 Rd4nが接続されて いる。中間部 FETQn3のソースとドレインとの間には 15Κ Ωの抵抗 Rd3nが接続され 、入出力第 2近接 FETQn2のソースとドレインとの間には 15Κ Ωの抵抗 Rd2nが接続 され、入出力近接 FETQnlのソースとドレインとの間には 15Κ Ωの抵抗 Rdlnが接 続されている。
[0139] 従って、他端近接 FETQn6のゲート Gn6と制御電圧 Vctrl— nとの間には 10Κ Ω のゲート抵抗 Rg6nと 10Κ Ωのゲート抵抗 Rg5nと 10Κ Ωのゲート抵抗 Rg4nと 20K Ωの抵抗 Rg7nとが直列に接続され、入出力近接 FETQnlのゲート Gnlと制御電圧 Vctrl— nとの間には 10Κ Ωのゲート抵抗 Rglnと 10Κ Ωのゲート抵抗 Rg2nと 10K Ωのゲート抵抗 Rg3nと 20Κ Ωの抵抗 Rg7nとが直列に接続されている。他端第 2近 接 FETQn5のゲート Gn5と制御電圧 Vctrl— nとの間には 10Κ Ωのゲート抵抗 Rg5 nと 10K Ωのゲート抵抗 Rg4nと 20Κ Ωの抵抗 Rg7nとが直列に接続され、入出力第 2近接 FETQn2のゲート Gn2と制御電圧 Vctrl— nとの間には 10Κ Ωのゲート抵抗 R g2nと 10Κ Ωのゲート抵抗 Rg3nと 20Κ Ωの抵抗 Rg7nとが直列に接続されている。 中間部 FETQn4のゲート Qn4と制御電圧 Vctrl— nとの間には 10Κ Ωのゲート抵抗 Rg4nと 20Κ Ωの抵抗 Rg7nとが直列に接続され、中間部 FETQn3のゲート Qn3と 制御電圧 Vctrl— nとの間には 10Κ Ωのゲート抵抗 Rg3nと 20Κ Ωの抵抗 Rg7nとが 直列に接続されている。 6個のゲート抵抗 Rgln' Rg6nと 1個の抵抗 Rg7nは前記( 数 1)で示すような非線型の電圧 ·電流特性を持って!/、る。
[0140] 図 5に示したアンテナスィッチ MMIC (ANT_SW)の他方の高周波スィッチ Qnで も図 4と同様に変形 U字型の定在波が発生して、他端近接 FETQn6のゲート Gn6と 入出力近接 FETQnlのゲート Gnlとに高レベルの RF漏洩信号電圧が生じて中間 部 FETQn4のゲート Qn4と中間部 FETQn3のゲート Qn3とには低レベルの RF漏洩 信号電圧が生じるとする。高レベルの RF漏洩信号電圧が供給される他端近接 FET Qn6のゲート Gn6と入出力近接 FETQnlのゲート Gnlのゲート抵抗網の抵抗値は 、低レベルの RF漏洩信号電圧が供給される中間部 FETQn4のゲート Qn4と中間部 FETQn3のゲート Qn3のゲート抵抗網の抵抗値よりも高くなつて!/、る。他端近接 FE TQn6と入出力近接 FETQnlの抵抗値の大きなゲート抵抗網の高レベルの RF漏洩 信号電圧が印加されると、他端近接 FETQn6と入出力近接 FETQnlのゲート抵抗 網に流れる電流自体が低減され、信号電流の歪も低減される。
[0141] 図 5の右下には、オン状態のスィッチ Qmからの WCDMA方式の RF送信信号 Pin の影響によるオフ状態のスィッチ Qnの 6個の HEMTトランジスタの 6個のゲート抵抗 Rgln, Rg2n、 Rg3n、 Rg4n、 Rg5n、 Rg6nと他の 1固の抵抗 Rg7nとに印カロされる RF漏洩信号の分布が示されている。図 5の右下の各抵抗 Rgln、 Rg2n、 Rg3n、 Rg 4n、 Rg5n、 Rg6n、 Rg7nの電圧 Vppはピーク 'ツー'ピークの RF信号電圧である。 図 5の右下に示したオフ状態のスィッチ Qnの 6個の HEMTトランジスタの 6個のゲー ト抵抗と他の 1個の抵抗の RF漏洩信号の分布の特性 L3は 0. 8pFの付加容量 C11 Txln、 C12Txlnとを接続した場合の特性であり、特性 L4は 0. 8pFの付加容量 C1 lTxln, C12Txlnとを接続しなかった場合の特性である。図 5の右下の特性 L3と 特性 L4とのいずれでも 6個のゲート抵抗 Rgln、 Rg2n、 Rg3n、 Rg4n、 Rg5n、 Rg6 nに印加される RF漏洩信号のレベルが略均等化されている。
[0142] 図 7の特性 Lpは、図 5に示す高周波スィッチで WCDMA方式の RF送信信号を伝 達するための一方のスィッチ Qmをオン状態にする制御電圧 Vctrl—mを 3ボルトから 4. 5ボルトに増カロすることで、 0ボルトの制御電圧 Vctrl— nによってオフ状態に制御 された他方のスィッチ Qnの相互変調歪を示すものである。他方のスィッチ Qnは、 W CDMA方式の RF送信信号とは異なった例えば PCS方式の RF送信信号を伝達す るためのスィッチであり、 GSM850、 GSM900、 DCS1800の RF送信信号を伝達 するためのスィッチであっても良い。 WCDMA方式の RF送信信号の伝達用の一方 のスィッチ Qmをオン状態にする制御電圧 Vctrl— mを 3. 0ボルト力、ら 4. 5ボルトに増 加することで、 RF送信信号の伝達用の他の方式の他方のスィッチ Qnでの相互変調 歪を— 97dBmから— 102dBmまでに低減でき、開発当初に設定された相互変調歪 の目標値一 lOOdBmを達成することができた。
[0143] また、図 5で他端 Txnと他端近接 FETQn6のゲート Gn6との間には 0. 8pFのソー ス付加容量 C12Txlnが接続され、共通の入出力端子 I/Oと入出力近接 FETQnl のゲート Gnlとの間には 0. 8pFのドレイン付加容量 Cl lTxlnが接続されている。そ の結果、制御電圧 Vctrl— mと制御電圧 Vctrl— nとがそれぞれ 4· 5ボルトと 0ボルト となり、一方の高周波スィッチ Qmと他方の高周波スィッチ Qnとがそれぞれオン状態 とオフ状態とされる際に、オン状態の一方の高周波スィッチ Qmからの WCDMA方 式の RF送信信号の正方向と負方向との電圧の振れにより、他方の高周波スィッチ Q nの他端近接 FETQn6と入出力近接 FETQnlとがオンする現象を抑圧できる。
[0144] 《アンテナスィッチの高周波スィッチの具体的な構成》
図 6は、図 1に示した本発明の 1つの実施形態によるアンテナスィッチ MMIC (AN T SW)の高周波スィッチの具体的な構成を示すブロック図である。 [0145] 図 1に示した本発明の 1つの実施形態によるアンテナスィッチ MMIC (ANT— SW )のチップは、図 6に示すように複数の高周波スィッチを含む。図 6では、アンテナスィ ツチ MMIC (ANT_SW)の共通の入出力端子 I/Oは、送受信アンテナ ANTに接 続される。
[0146] DCS 1800の RF送信信号 DCS1800 (1710MHz〜; 1780MHz)と PCS1900の RF送信信号 PCS 1900— Tx ( 1850ΜΗζ〜 1910MHz)とが供給される信号端子 T xlと共通の入出力端子 I/Oとの間には、制御端子 Txlcの制御信号によりオン'ォ フ制御される高周波スィッチ SW—Txlが接続されて!/、る。制御端子 Txlcに供給さ れる 4· 5ボルトの制御信号により高周波スィッチ SW—Txlの HEMTトランジスタ Q — tl l、 Q— tl2がオンに制御され、信号端子 Txlの DCS 1800の RF送信信号 DC S 1800又は GSM900の RF送信信号 PCS1900— Txは共通の入出力端子 I/Oに 伝達される。制御端子 Txlcの 0ボルトの制御信号により高周波スィッチ SW—Tx2の HEMTトランジスタ Q— ti l、 Q—tl 2がオフに制御される際には、接地スィッチ GS W— Txlのゲートが接地に接続されたデプレッションモードの HEMTトランジスタ Q5 — tl l、 Q5— tl 2がオンに制御され、信号端子 Txlのアイソレーションが向上される 。高周波スィッチ SW—Txlで、 HEMTトランジスタ Q—tl 1の 3個のゲート抵抗のう ち入出力端子 I/Oに近接した入出力近接ゲート抵抗 Rglは 30Κ Ω、入出力端子 I /〇に次に近接した入出力第 2近接ゲート抵抗 Rg2は 20Κ Ω、中間部ゲート抵抗 Rg 3は 10Κ Ωに設定されている。 HEMTトランジスタ Q—tl2の 3個のゲート抵抗のうち 他端 Txlに近接した他端近接ゲート抵抗 Rg6は 30Κ Ω、他端 Txlに次に近接した 他端第 2近接ゲート抵抗 Rg5は 20Κ Ω、中間部ゲート抵抗 Rg4は 10Κ Ωに設定され ている。その結果、オフ状態の高周波スィッチ SW—Txlは、 WCDMA方式で重要 な相互変調歪を低減する
こと力 Sでさる。
[0147] GSM850の RF送信信号 GSM850— Tx(824MHz〜849MHz)と GSM900の RF送信信号 GSM900—丁 (880^ ^½〜915^«½)とが供給される信号端子丁 2 と共通の入出力端子 I/Oとの間には、制御端子 Tx2cの制御信号によりオン'オフ制 御される高周波スィッチ SW Tx2が接続されている。制御端子 Tx2cに供給される 4 . 5ボルトの制御信号により高周波スィッチ SW— Tx2の HEMTトランジスタ Q— 121 、 Q— 122がオンに制御され、信号端子 Tx2の GSM850の RF送信信号 GSM850 — Tx又は GSM900の RF送信信号 GSM900— Txは共通の入出力端子 I/Oに伝 達される。制御端子 Tx2cの 0ボルトの制御信号により高周波スィッチ SW— Τχ2の Η ΕΜΤトランジスタ Q—t21、 Q— 122がオフに制御される際には、接地スィッチ GSW —Tx2のゲートが接地に接続されたデプレッションモードの HEMTトランジスタ Q5— t21、 Q5— 122がオンに制御され、信号端子 Tx2のアイソレーションが向上される。 高周波スィッチ SW— Τχ2で、 ΗΕΜΤトランジスタ Q— 122の 3個のゲート抵抗のうち 入出力端子 I/Oに近接した入出力近接ゲート抵抗は 30Κ Ω、入出力端子 I/Oに 次に近接した入出力第 2近接ゲート抵抗は 20Κ Ω、中間部ゲート抵抗は 10Κ Ωに設 定されている。 HEMTトランジスタ Q— 121の 3個のゲート抵抗のうち他端 Tx2に近接 した他端近接ゲート抵抗は 30Κ Ω、他端 Τχ2に次に近接した他端第 2近接ゲート抵 抗は 20Κ Ω、中間部ゲート抵抗は 10Κ Ωに設定されている。その結果、オフ状態の 高周波スィッチ SW— Τχ2は、 WCDMA方式で重要な相互変調歪および GSM方 式で重要な高調波歪を低減することができる。
[0148] WCDMA900の RF送信信号 WCDMA900— Txと RF受信信号 WCDMA900 —Rxとが供給される信号端子 TRx5と共通の入出力端子 I/Oとの間には、制御端 子 Rx5cの制御信号によりオン.オフ制御される高周波スィッチ SW— TRx5が接続さ れている。制御端子 Rx5cに供給される 4. 5ボルトの制御信号により高周波スィッチ S W—TRx5の HEMTトランジスタ Q—tr51、 Q— tr52がオンに制御され、信号端子 T Rxlの WCDMA900の RF送信信号 WCDMA900— Txは共通の入出力端子 1/ Oに伝達される。また、アンテナで受信された WCDMA900の RF受信信号 WCDM A900— Rxは、共通の入出力端子 I/Oから送受信信号端子 TRx5に伝達される。 制御端子 Rx5cの 0ボルトの制御信号により高周波スィッチ SW— TRx5の HEMTト ランジスタ Q— tr51、 Q— tr52がオフに制御される際には、接地スィッチ GSW— TR x5のゲートが接地に接続されたデプレッションモードの HEMTトランジスタ Q5—tr5 1、 Q5— tr52がオンに制御され、信号端子 TRx5のアイソレーションが向上される。
[0149] WCDMA1900の RF送信信号 WCDMA1900 _Tx (1920MHz~1980MHz) と WCDMA2100の RF受信信号 WCDMA2100— Rx (2110MHz〜2170MHz) とが供給される信号端子 TRxlと共通の入出力端子 I/Oとの間には、制御端子 TRx lcの制御信号によりオン.オフ制御される高周波スィッチ SW—TRxlが接続されて いる。制御端子 TRxlcに供給される 4. 5ボルトの制御信号により高周波スィッチ SW —TRxlの HEMTトランジスタ Q—trl l、 Q— trl 2がオンに制御され、信号端子 TR xlの WCDMA1900の RF送信信号 WCDMA1900— Txは、共通の入出力端子 I /〇に伝達される。また、アンテナで受信された WCDMA2100の RF受信信号 WC DMA2100— Rxは、共通の入出力端子 I/Oから送受信信号端子 TRxlに伝達さ れる。制御端子 TRxlcの 0ボルトの制御信号により高周波スィッチ SW— TRxlの H EMTトランジスタ Q—trl l、 Q— trl 2がオフに制御される際には、接地スィッチ GS W— TRxlのゲートが接地に接続されたデプレッションモードの HEMTトランジスタ Q 5— trl l、 Q5— trl 2がオンに制御され、信号端子 TRxlのアイソレーションが向上さ れる。
[0150] GSM850の RF受信信号 GSM850— Rx (869MHz〜894MHz)と GSM900の RF受信信号 GSM900— Rx (925MHz〜960MHz)とが供給される信号端子 Rx2 と共通の入出力端子 I/Oとの間には、制御端子 Rx2cの制御信号によりオン'オフ制 御される高周波スィッチ SW— Rx2が接続されて!/、る。制御端子 Rx2cに供給される 4 . 5ボルトの制御信号により高周波スィッチ SW—Rx2の HEMTトランジスタがオンに 制御され、信号端子 Rx2の GSM850の RF受信信号又は GSM900の RF受信信号 は共通の入出力端子 I/Oに伝達される。制御端子 Rx2cの 0ボルトの制御信号によ り高周波スィッチ SW—Rx2の HEMTトランジスタがオフに制御される際には、接地 スィッチ GSW—Rx2のゲートが接地に接続されたデプレッションモードの HEMTトラ ンジスタがオンに制御され、信号端子 Rx2のアイソレーションが向上される。
[0151] DCS 1800の RF受信信号 DCS 1800— Rx (1805MHz〜 880MHz)力 S供給さ れる信号端子 Rx3と共通の入出力端子 I/Oとの間には、制御端子 Rx3cの制御信 号によりオン'オフ制御される高周波スィッチ SW—Rx3が接続されている。制御端子 Rx3cに供給される 4. 5ボルトの制御信号により高周波スィッチ SW—Rx3の HEMT トランジスタがオンに制御され、信号端子 Rx3の DCS 1800の RF受信信号 DCS 180 O—Rxは共通の入出力端子 I/Oに伝達される。制御端子 Rx3cの 0ボルトの制御信 号により高周波スィッチ SW—Rx3の HEMTトランジスタがオフに制御される際には 、接地スィッチ GSW—Rx3のゲートが接地に接続されたデプレッションモードの HE MTトランジスタがオンに制御され、信号端子 Rx3のアイソレーションが向上される。
[0152] PCS 1900の RF受信信号 PCS 1900— Rx (1930MHz〜; 1990MHz)力 S供給され る信号端子 Rx4と共通の入出力端子 I/Oとの間には、制御端子 Rx4cの制御信号 によりオン ·オフ制御される高周波スィッチ SW—Rx4が接続されている。制御端子 R x4cに供給される 4. 5ボルトの制御信号により高周波スィッチ SW— Rx4の HEMTト ランジスタがオンに制御され、信号端子 Rx4の PCS 1900の RF受信信号 PCS 1900 —Rxは共通の入出力端子 I/Oに伝達される。制御端子 Rx4cの 0ボルトの制御信 号により高周波スィッチ SW—Rx4の HEMTトランジスタがオフに制御される際には 、接地スィッチ GSW—Rx4のゲートが接地に接続されたデプレッションモードの HE MTトランジスタがオンに制御され、信号端子 Rx4のアイソレーションが向上される。
[0153] GSM850の RF受信信号 GSM850— Rxと GSM900の RF受信信号 GSM900— Rxとのための高周波スィッチ SW— Rx2と DCS 1800の RF受信信号 DCS 1800— R Xのための高周波スィッチ SW— Rx3と PCS 1900の RF受信信号 PCS 1900— Rxの ための高周波スィッチ SW— Rx4とには、共通受信高周波スィッチ SW— Qcomが接 続されている。制御端子 Rxccに供給される 4. 5ボルトの制御信号により共通受信高 周波スィッチ SW— Qcomの HEMTトランジスタがオンに制御され、 4つの RF受信信 号のいずれ力、 1つの RF受信信号が共通の入出力端子 I/Oに伝達される。共通受 信高周波スィッチ SW— Qcomで、 HEMTトランジスタ Q— comlの 3個のゲート抵抗 のうち入出力端子 I/Oに近接した入出力近接ゲート抵抗は 30Κ Ω、入出力端子 1/ Oに次に近接した入出力第 2近接ゲート抵抗は 20Κ Ω、中間部ゲート抵抗は 10Κ Ω に設定されてレ、る。 HEMTトランジスタ Q— com2の 3個のゲート抵抗のうち高周波ス イッチ SW— Rx2、 SW— Rx3、 SW— Rx4に近接した他端近接ゲート抵抗は 30K Ω 、他端 Τχ2に次に近接した他端第 2近接ゲート抵抗は 20Κ Ω、中間部ゲート抵抗は 10Κ Ωに設定されている。その結果、オフ状態の共通受信高周波スィッチ SW—Qc omは、 WCDMA方式で重要な相互変調歪および GSM方式で重要な高調波歪を 低減すること力 Sでさる。
[0154] 図 8は、図 6に示した本発明の 1つの実施形態によるアンテナスィッチ MMIC (AN T—SW)の高周波スィッチの DCS 1800の RF送信信号 DCS 1800— Txと PCS 190 0の RF送信信号 PCS1900— Txのための高周波スィッチ SW— Txlのマルチゲート 構造の HEMTトランジスタ Q— ti lとゲート抵抗 Rgl、 Rg2、 Rg3を主として示す平 面図である。マルチゲート構造の HEMTトランジスタ Q— ti lのドレイン電極 Dとソー ス電極 Sとは、共通の入出力端子 I/Oと高周波スィッチ SW—Txlのマルチゲート構 造の他の HEMTトランジスタ Q—tl 2のドレイン電極にそれぞれ接続される。マルチ ゲート構造の HEMTトランジスタ Q— tl 1のゲート G1は 30K Ωのゲート抵抗 Rglに 接続され、ゲート G2は 20Κ Ωのゲート抵抗 Rg2に接続され、ゲート G3は 10Κ Ωのゲ ート抵抗 Rg3に接続されている。共通の入出力端子 I/Oに近接した入出力近接ゲ 一ト抵抗 Rg 1と入出力第 2近接ゲート抵抗 Rg2の抵抗値が中間部グート抵抗 Rg3の 抵抗値よりも高いので、オフ状態の高周波スィッチ SW— Txlは、 WCDMA方式で 重要な相互変調歪を低減することができる。マルチゲート構造の HEMTトランジスタ Q— ti lのゲート G1とゲート G2との間のゲート間領域は、コンタクト電極 C1と電位安 定化抵抗 Rdlとを介して HEMTトランジスタ Q—tl 1のドレイン電極 Dに接続されて いる。 HEMTトランジスタ Q—tl 1のゲート G2とゲート G2との間のゲート間領域はコ ンタクト電極 C2と電位安定化抵抗 Rd2とを介してコンタクト電極 C1と接続され、また コンタクト電極 C2と電位安定化抵抗 Rd3とを介して HEMTトランジスタ Q—tl 1のソ ース電極 Sと接続されている。また、 HEMTトランジスタ Q—tl 1のドレイン電極 Dとソ ース電極 Sとの間には、 HEMTトランジスタ Q—tl 1がオフ状態の時にドレイン電圧と ソース電圧とを等しくするための抵抗 R
カ接続されてレヽる。尚、抵抗 Rgl、 Rg2、 Rg3、 Rdl , Rd2、 Rd3、 R は、ィ匕合物
Dl l Dl l
半導体のメサエッチングで形成された化合物半導体のメサ抵抗である。
[0155] また、図 8においてゲート抵抗 Rgl、 Rg2、 Rg3に比べて単位面積あたりの抵抗率( シート抵抗)の小さい半導体層で作成することもできる。通常、半導体層の線形性は シート抵抗が小さい方が優れる。そこで入出力端子 I/Oに近接した入出力近接グー ト抵抗にシート抵抗の小さ!/、半導体層を用い、他のゲート抵抗はシート抵抗の大き!/、 半導体層を用いる。それにより、チップ内を占めるゲート抵抗の面積をなるベく小さく しつつ、全体の歪特性を改善することができる。
[0156] 或いはゲート抵抗 Rglに金属層を用いることもできる。通常、金属層は半導体層に 比べるとシート抵抗は小さいが、線形性に優れる。そこで入出力端子 I/Oに近接し た入出力近接ゲート抵抗に金属層を用い、他のゲート抵抗は半導体層を用いる。そ れにより、チップ内を占めるゲート抵抗の面積をなるベく小さくしつつ、全体の歪特性 を改善すること力できる。
[0157] 高周波スィッチ SW— Txlのマルチゲート構造の他の HEMTトランジスタ Q— tl2 とゲート抵抗 Rg4、 Rg5、 Rg6も、図 8に示した HEMTトランジスタ Q— ti lとゲート抵 抗 Rgl、 Rg2、 Rg3と同様に形成される。また、接地スィッチ GSW— Txlの HEMTト ランジスタ Q5— tl l、 Q5— tl2、高周波スィッチ SW—Tx2の HEMTトランジスタ Q — 121、 Q— 122、接地スィッチ GSW— Tx2の HEMTトランジスタ Q5—t21、 Q5_t 22、高周波スィッチ SW—TRx5の HEMTトランジスタ Q—t51、 Q— 152、接地スィ ツチ GSW— TRx5の HEMTトランジスタ Q5—t51、 Q5— 152、高周波スィッチ SW —TRxlの HEMTトランジスタ Q—trl l、 Q— trl2、接地スィッチ GSW— TRxlの H EMTトランジスタ Q5—trl l、 Q5— trl 2、共通受信高周波スィッチ SW— Qcomの HEMTトランジスタ Qcoml、 Qcom2とそれらのゲート抵抗も、図 8に示した HEMTト ランジスタ Q— ti lとゲート抵抗 Rgl、 Rg2、 Rg3と同様に形成される。その結果、図 8 に示した本発明の 1つの実施形態によるアンテナスィッチ MMICは、 WCDMA方式 で重要な相互変調歪および GSM方式で重要な高調波歪を低減することができる。
[0158] 《その他の実施形態》
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、 本発明はそれに限定されるものではなぐその要旨を逸脱しない範囲において種々 変更可能であることは言うまでもなレ、。
[0159] 例えば、図 5のアンテナスィッチ MMIC (ANT— SW)の高周波スィッチで、一方の 高周波スィッチ Qmと他方の高周波スィッチ Qnとを、 HEMTトランジスタから Nチャン ネルのデプレッション型の絶縁ゲート MOSトランジスタに置換することができる。 尚、 この時には、共通の入出力端子 I/Oには、図 1のコントローラ集積回路 CNT ICか ら発生される 3· 8ボルトのバイアス電圧を供給する。図 1のコントローラ集積回路 CN T—ICに外部から 3ボルトの単一電源電圧が供給される場合には、 3ボルトの単一電 源電圧を 3. 8ボルトのバイアス電圧に昇圧するチャージポンプ回路等の昇圧回路が コントローラ集積回路 CNT—IC内部に含まれている。
[0160] また、図 5の高周波スィッチで、高周波スィッチが ΗΕΜΤトランジスタである場合も 絶縁ゲート MOSトランジスタである場合のいずれでも、 3ボルトの単一電源電圧をォ ン'オフ制御入力端子 Vctrl— m、 Vctrl— nのハイレベル電圧 4· 5ボルトに昇圧する チャージポンプ回路等の昇圧回路がコントローラ集積回路 CNT—IC内部に含まれ ている。
[0161] 更に、図 8で、図 6に示した本発明の 1つの実施形態によるアンテナスィッチ MMIC の高周波スィッチで、共通の入出力端子 I/Oに近接した入出力近接ゲート抵抗 Rg 1を 30Κ Ωの化合物半導体のメサ抵抗からタングステン、モリブデン等の高融点金属 による電圧'電流特性で線形性に優れた金属薄膜抵抗に置換することもできる。また 、入出力第 2近接ゲート抵抗 Rg2も、 20Κ Ωの化合物半導体のメサ抵抗から同様に 電圧'電流特性で線形性に優れた金属薄膜抵抗に置換することもできる。
[0162] 図 9は、アンテナスィッチ MMICと高出力電力増幅器 HPA1、 HPA2とローパスフ ィルタ LPF1、 LPF2とを含む高出力電力増幅器モジュール HPA— MLの他の構成 を示すブロック図である。
[0163] 同図において、アンテナスィッチ MMIC (ANT— SW)は GaAs化合物半導体集積 回路のチップ chip2で構成され、図 6に示すような高周波スィッチ回路の構成となつ ている。このアンテナスィッチ MMICでは、制御信号 Rx4c、 Rx3c' Rx2cにより、共 通の入出力端子 I/Oと送信端子 Txl、 Τχ2、受信端子 Rx2、 Rx3、 Rx4、送受信端 子 TRxl、 TRx5のいずれかの端子の間で信号経路を確立して、受信動作 RXと送 信動作 TXとのいずれかを行う。ベースバンド LSIからの 3ビットの制御信号 B. B— C ntに応答してアンテナスィッチ MMICを制御するための制御信号 Rx4c、Rx3c' R x2cを生成するコントローラ CNT—ICは、シリコン半導体集積回路のチップ chiplの 内部に構成されている。シリコン半導体集積回路のチップ chiplのコントローラ CNT ICには、 3ボルトの単一電源電圧 Vddが供給されることより、制御信号 Rx4c、 Rx3 c 'Rx2cのハイレベル制御電圧 4· 5ボルトを生成する昇圧回路をコントローラ CNT —ICが含んでいる。
[0164] シリコン半導体集積回路のチップ chiplの高出力電力増幅器 HPA1、 HPA2の電 力増幅トランジスタは、コントローラ CNT—ICの CMOSデバイスと同一プロセスで形 成可能な LD (Lateral Diffbsed)構造のパワー MOSFETである。また、高出力電力増 幅器 HPA1、 HPA2の最終段の電力増幅トランジスタは、 GaAs、 InGaAs, SiGe等 の電力付加効率に優れた HBT (Hetero Bipolar Transistor)を使用することも可能で ある。
[0165] シリコン半導体集積回路のチップ chiplと GaAs化合物半導体集積回路のチップ c hip2とは、高出力電力増幅器モジュール HP A— MLための多層配線絶縁基板また は複数の外部接続リードのタブの上に搭載されることができる。ローパスフィルタ LPF 1、 LPF2のコンデンサは、チップコンデンサが使用されることができる。ローパスフィ ノレタ LPF1、 LPF2のインダクタは、多層配線絶縁基板の内部の多層配線により形成 されること力 Sでき、また複数の外部接続リードの一部を用いて形成されることができる
[0166] また、上記の実施形態ではベースバンド信号処理 LSIとアプリケーションプロセッサ とはそれぞれ別の半導体チップで構成されて!/、たが、別な実施形態ではアプリケー シヨンプロセッサがベースバンド信号処理 LSIの半導体チップに統合された統合ワン チップとされることができる。
[0167] 《代表的な実施の形態》
本願において開示される発明の別の代表的な実施の形態について概要を説明す る。代表的な実施の形態についての概要説明で括弧を付して参照する図面の参照 符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
[0168] 〔1〕本発明の代表的な実施の形態に係る半導体集積回路は、 DCブースト回路(1 00)を含む。前記 DCブースト回路は、高周波入力端子(101)と、 DC制御入力端子 (103)と、 DC出力端子(104)とを含む。
[0169] 前記 DCブースト回路の前記高周波入力端子に高周波入力信号 (RFin)が供給さ れ、前記 DC制御入力端子に DC制御電圧 (Vdc)が供給されことにより、前記 DC出 力端子から DC出力電圧 (Vout)が生成される。
[0170] 前記 DCブースト回路は、第 1容量素子(106 ; C1)、第 2容量素子(110 ; C2)、第 1 ダイオード(108 ; D1)、第 2ダイオード(109 ; D2)、第 1抵抗素子(107 ;R1)、第 2抵 抗素子(111; R2)を含む。前記第 1容量素子と前記第 1抵抗素子との直列接続の一 方の端子には、前記高周波入力端子が接続される。前記直列接続の他方の端子は 、前記第 1ダイオードの力ソードと前記第 2ダイオードのアノードとに接続されている。 前記第 1ダイオードのアノードと前記第 2容量素子の一方の端子とは前記 DC制御入 力端子に接続され、前記第 2ダイオードの力ソードと前記第 2容量素子の他方の端子 とは前記第 2抵抗素子の一方の端子に接続されている。前記第 2抵抗素子の他方の 端子は、前記 DC出力端子に接続されている。
[0171] 前記第 1ダイオードと前記第 2ダイオードと前記第 2容量素子とからなる閉ループの 内部の前記第 1ダイォードの第 1直列抵抗 (rs 1 )の抵抗値と前記第 2ダイォードの第 2直列抵抗 (rs2)の抵抗値よりも、前記第 1抵抗素子の抵抗値は大きく設定されてい る(図 10参照)。
[0172] 前記実施の形態によれば、大きな抵抗値に設定された前記第 1抵抗素子により DC ブースト回路を高入力インピーダンスとすることができる。前記高周波入力端子に供 給される前記高周波入力信号の負電圧振幅と正電圧振幅とにより生成される前記第 1ダイオードの第 1直列抵抗の電圧降下と前記第 2ダイオードの第 2直列抵抗の電圧 降下とは、前記第 1抵抗素子の電圧降下よりも小さくなる。前記第 1ダイオードに印加 される逆方向電圧と前記第 2ダイオードに印加される逆方向電圧とが小さくなり、内蔵 の DCブースト回路の寿命および動作信頼性を向上した半導体集積回路を提供する こと力 Sでさる。
[0173] 好適な実施の形態による半導体集積回路(300)は、信号入力端子(306)と信号 出力端子(301)との間に接続された高周波スィッチ(320; Qsw)を更に含む。前記 高周波スィッチの前記信号入力端子には高周波入力信号 (RFin)が供給され、前記 高周波スィッチの制御入力端子には前記 DCブースト回路の前記 DC出力端子から 生成される前記 DC出力電圧 (Vout)が供給される(図 12参照)。
[0174] 前記好適な実施の形態によれば、高周波スィッチと DCブースト回路とを内蔵する 半導体集積回路の寿命および動作信頼性を向上することができる。
[0175] より好適な実施の形態による半導体集積回路では、前記高周波スィッチ(320)は 電界効果トランジスタ(Qsw)を含む。前記高周波スィッチの前記制御入力端子として の前記電界効果トランジスタのゲートに高レベルの前記 DC出力電圧が供給されるこ とにより、前記電界効果トランジスタは導通して前記高周波スィッチの前記信号入力 端子に供給される前記高周波入力信号は前記信号出力端子に伝達される(図 12参 昭)
[0176] 具体的な実施の形態による半導体集積回路では、前記高周波スィッチとしての前 記電界効果トランジスタは、ドレイン 'ソース経路が前記高周波スィッチの前記信号入 力端子と前記信号出力端子との間に直列接続された複数の電界効果トランジスタで 構成されている
(図 12参照)。
[0177] 前記具体的な実施の形態によれば、直列接続された複数の電界効果トランジスタ の個々のトランジスタの電圧が小さくなり、高調波歪みを低減することができる。
[0178] より具体的な実施の形態による半導体集積回路では、前記高周波スィッチとしての 前記電界効果トランジスタは、化合物半導体チップに形成されたへテロ接合の HEM Tで構成されてレ、る(図 12参照)。
[0179] 前記より具体的な実施の形態によれば、前記高周波スィッチを低いオン抵抗とする ことができ、信号損失を低減することができる。
[0180] 〔2〕別の観点による実施の形態に係る半導体集積回路(300)は、送受信アンテナ
(ANT)に接続可能な入出力端子(301)と、少なくとも 1個の受信信号出力端子(30 8)と、少なくとも 1個の送信信号入力端子(306)とを含む。前記入出力端子と前記受 信信号出力端子との間には、受信用高周波スィッチ(304)が接続される。前記入出 力端子と前記送信信号入力端子との間には、送信高周波スィッチ(302)が接続され
[0181] 前記受信用高周波スィッチの受信制御入力端子(312)には、受信制御電圧が供 る。
[0182] 前記受信用高周波スィッチは、受信用電界効果トランジスタ(360)を含む。前記受 信用高周波スィッチの前記受信用制御入力端子としての前記受信用電界効果トラン ジスタのゲートに、高レベルの前記受信制御電圧が供給される。それにより、前記受 信用電界効果トランジスタは導通して、前記入出力端子に前記送受信アンテナから 供給される受信高周波入力信号 (Rxl)が前記受信信号出力端子に伝達される。
[0183] 前記送信用高周波スィッチは、送信用電界効果トランジスタ(320)と DCブースト回 路(330)とを含む。前記 DCブースト回路は、高周波入力端子と、 DC制御入力端子 と、 DC出力端子とを含む。前記 DCブースト回路の前記高周波入力端子に送信高 周波出力信号 (Txl)が供給され、前記 DC制御入力端子に DC制御電圧が供給さ れることにより、前記 DC出力端子から DC出力電圧が生成される。前記送信用高周 波スィッチの送信用信号入力端子には前記送信高周波出力信号が供給され、前記 送信用高周波スィッチの送信用信号出力端子は前記入出力端子(301)と接続され る。前記送信用高周波スィッチの送信用制御入力端子としての前記送信用電界効 果トランジスタのゲートに、前記 DCブースト回路の前記 DC出力端子からの高レベル の前記 DC出力電圧が供給される。それにより、前記送信用電界効果トランジスタは 導通して、前記送信用高周波スィッチの前記送信用信号入力端子に供給される前 記送信高周波出力信号は前記入出力端子に伝達される。
[0184] 前記 DCブースト回路は、高周波入力端子(101)と、 DC制御入力端子(103)と、 DC出力端子(104)とを含む。
[0185] 前記 DCブースト回路の前記高周波入力端子に高周波入力信号 (RFin)が供給さ れ、前記 DC制御入力端子に DC制御電圧 (Vdc)が供給されことにより、前記 DC出 力端子から DC出力電圧 (Vout)が生成される。
[0186] 前記 DCブースト回路は、第 1容量素子(106 ; C1)、第 2容量素子(110 ; C2)、第 1 ダイオード(108 ; D1)、第 2ダイオード(109 ; D2)、第 1抵抗素子(107 ;R1)、第 2抵 抗素子(111; R2)を含む。前記第 1容量素子と前記第 1抵抗素子との直列接続の一 方の端子には、前記高周波入力端子が接続される。前記直列接続の他方の端子は 、前記第 1ダイオードの力ソードと前記第 2ダイオードのアノードとに接続されている。 前記第 1ダイオードのアノードと前記第 2容量素子の一方の端子とは前記 DC制御入 力端子に接続され、前記第 2ダイオードの力ソードと前記第 2容量素子の他方の端子 とは前記第 2抵抗素子の一方の端子に接続されている。前記第 2抵抗素子の他方の 端子は、前記 DC出力端子に接続されている。
[0187] 前記第 1ダイオードと前記第 2ダイオードと前記第 2容量素子とからなる閉ループの 内部の前記第 1ダイォードの第 1直列抵抗 (rs 1 )の抵抗値と前記第 2ダイォードの第 2直列抵抗 (rs2)の抵抗値よりも、前記第 1抵抗素子の抵抗値は大きく設定されてい る(図 10参照)。
[0188] 〔3〕本発明の他の実施の形態に係る高周波モジュール (RF— ML)は、電力増幅 器 (HPA1、 HPA2)と、アンテナスィッチ半導体集積回路 (ANT—SW)とを含む。 前記電力増幅器は、高周波アナログ信号処理半導体集積回路 (RF— IC)から生成 される高周波送信信号 (RF— Txl、 RF_Tx2)を増幅してアンテナ (ANT)へ供給 する。前記アンテナスィッチ半導体集積回路は前記アンテナで受信される高周波受 信信号 (RF— Rxl、 RF_Rx2)を前記高周波アナログ信号処理半導体集積回路に 供給する一方、前記電力増幅器の出力信号を前記アンテナへ供給する。前記アン テナスィッチ半導体集積回路は、前記〔1〕に記載の半導体集積回路または前記〔2〕 に記載の半導体集積回路である(図 17参照)。
[0189] 《実施の形態の説明》
次に、実施の形態について更に詳述する。以下、本発明を実施するための最良の 形態を図面に基づいて詳細に説明する。なお、発明を実施するための最良の形態を 説明するための全図において、同一の機能を有する部材には同一の符号を付し、そ の繰り返しの説明は省略する。
[0190] 《 DCブースト回路》
図 10は、本発明の 1つの実施の形態による半導体集積回路に内蔵された DCブー スト回路 100を示す回路図である。
[0191] 同図に示すように、 DCブースト回路 100は、容量素子 106 (C1)、 110 (C2)、抵抗 素子 107 (R1)、 111 (R2)、ダイオード 108 (Dl)、 109 (D2)で構成されている。抵 抗素子 107の抵抗値はアンテナのインピーダンス 50 Ωに比べて十分に大きい値 (例 えば、 10Κ Ω )に設定されているので、 DCブースト回路 100の入力インピーダンスは 50 Ωに比べて十分に高い値となっている。従って、高周波信号入力端子 101に入 力された高周波入力信号電力 RFinの大部分は、スィッチ素子に接続される高周波 信号入力端子 102へ流れ、わずかな一部の電力が DCブースト回路 100に流入され る。ダイォード 108の直列抵抗 rs 1とダイォード 109の直列抵抗 rs 2も数 Ω程度であり 、抵抗素子 107の抵抗値 (例えば、 10Κ Ω )よりも十分低い。高周波信号入力端子 1 01に供給される高周波入力信号電力 RFinの負電圧振幅と正電圧振幅とにより生成 されるダイオード 108の直列抵抗 rslの電圧降下とダイオード 109の直列抵抗 rs2の 電圧降下とは、抵抗素子 107の電圧降下よりも小さくなる。ダイオード 108に印加さ れる逆方向電圧とダイオード 109に印加される逆方向電圧とが小さくなり、 DCブース ト回路 100の寿命および動作信頼性を向上することができる。尚、直列接続された容 量素子 106と抵抗素子 107の接続順序は図 10に示した接続の順序でも良いし、順 序を逆転させても良い。
[0192] DCブースト回路 100の動作は、以下のように説明される。
[0193] 最初に接続点 105での高周波信号の電圧振幅が負の時を考えると、ダイオード 10 8が順方向にバイアスされて導通状態となり、ダイオード 109が逆方向にバイアスされ て非導通状態となる。この時に、容量素子 106に電流がダイオード 108を介して流れ 込み、接続点 105に接続された容量素子 106の一方の端子が負電圧に充電され、 ダイオード 108、 109に接続された容量素子 106の他方の端子が正電圧に充電され る。次に、接続点 105での高周波信号の電圧振幅が正になる時を考えると、ダイォー ド 108が逆方向にバイアスされて非導通状態となり、ダイオード 109が順方向にバイ ァスされて導通状態となる。この時、容量素子 106の他方の端子に充電されていた 正電荷は、ダイオード 109を介して容量素子 110に流れ込む。 DC制御電圧供給端 子 103とダイオード 108との接続点に接続された容量素子 110の一方の端子が負電 圧に充電され、ダイオード 109及び抵抗素子 111との接続点に接続された容量素子 110の他方の端子は正電圧に充電される。高周波信号の負電圧振幅に応答した容 量素子 106の充電の動作と高周波信号の正電圧振幅に応答した容量素子 110の充 電の動作とが繰り返され、容量素子 110が充電される。 DC制御電圧供給端子 103 に印加される DC制御電圧 Vdcと容量素子 110の両端の間の充電電位差 Vbの和に よるが DC出力電圧 Voutが DCブースト回路の DC出力端子 104より出力されて、ァ ンテナスィッチ MMICの制御に用いられる。すなわち、 DC制御電圧供給端子 103 の DC制御電圧 Vdcより充電電位差 Vb分大きな DC出力電圧 Voutが DC出力端子 1 04から生成される。 DC制御電圧供給端子 103の DC制御電圧 Vdcが 3ボルトで、容 量素子 110の両端の充電電位差 Vbが略 2ボルトの場合には、 DC出力端子 104から 生成される DC出力電圧 Voutは略 5ボルトとなる。
ここで、図 10に示した本発明の 1つの実施の形態による半導体集積回路に内蔵さ れた DCブースト回路 100の DC制御電圧供給端子 103に 3Vを印加して、 DC出力 端子 104で約 5Vの DC出力電圧 Voutが出力される場合、ダイオード 108、 109の逆 方向電圧の大きさを考えてみる。この場合、高周波入力端子 101の RF入力信号 RFi nが負電圧振幅の時には、略 1mAの RF信号電流が流れる。この電流は DC制御電 圧供給端子 103からダイオード 108 (直列抵抗 rslを含む)と 10Κ Ωの抵抗素子 107 とを介して高周波入力端子 201に流入する。ダイオード 108 (直列抵抗 rslを含む) の両端には略 1ボルトの電圧降下が発生する。従って、ダイオード 108、 109の共通 接続点に接続された抵抗素子 107の一方の端子の電圧は、 DC制御電圧供給端子 103の DC制御電圧 Vdc3ボルトよりもダイオード 108 (直列抵抗 rslを含む)の両端 の略 1ボルトの電圧降下分低い略 2ボルトとなる。ダイオード 109の力ソードの電圧は DC出力端子 204の略 5ボルトの DC出力電圧 Voutに維持され、ダイオード 109のァ ノードには略 2ボルトの電圧が印加されている。その結果、ダイオード 109の両端の 間には、略 3ボルトと極めて低い逆方向電圧が印加されることになる。高周波入力端 子 101の RF入力信号 RFinが正電圧振幅の時には、略 1mAの RF信号電流が、高 周波入力端子 101から容量素子 106と 10Κ Ωの抵抗素子 107とダイオード 109 (直 列抵抗 rs2を含む)とを介して DC出力端子 104と DC制御電圧供給端子 103とに流 入する。ダイオード 109 (直列抵抗 rs2を含む)の両端には、略 1ボルトの電圧降下が 発生する。従って、ダイオード 108、 109の共通接続点に接続された抵抗素子 107の 一方の端子の電圧は、 DC出力端子 104の略 5ボルトの DC出力電圧 Voutよりもダイ オード 109 (直列抵抗 rs2を含む)の両端の略 1ボルトの電圧降下分高い略 6ボルトと なる。ダイオード 108のアノードの電圧は DC制御入力端子 203の DC制御電圧 Vdc 3ボルトに維持され、ダイオード 108、 109の共通接続点に接続された抵抗素子 107 の一方の端子の電圧は略 6ボルトの電圧となっている。その結果、ダイオード 108の 両端の間には、略 3ボルトと極めて低い逆方向電圧が印加されることになる。このよう に、図 11に示した DCブースト回路と比較して、図 10に示した本発明の 1つの実施の 形態による半導体集積回路に内蔵された DCブースト回路 100のダイオード 108、 1 09の逆方向電圧を遙かに低くすることが可能となる。従って、図 10に示した DCブー スト回路 100の寿命および動作信頼性を著しく向上することが可能と
なる。
[0195] 《 DCブースト回路により駆動される高周波スィッチ》
図 12は、本発明の 1つの実施の形態による半導体集積回路 300に内蔵された DC ブースト回路(DCBC) 330と送信用高周波スィッチ回路 302を示す回路図である。 同図に示すように、送信用高周波スィッチ回路 302は、高周波信号入力端子 306と 高周波信号出力端子 301と制御入力端子 310とに接続されている。図 12の半導体 集積回路 300に内蔵された DCブースト回路(DCBC) 330は、図 10に示した DCブ 一スト回路 100と本質的に同一である。すなわち、図 12の DCブースト回路(DCBC) 330の回路図では、図 10のダイオード 108の直列抵抗 rslとダイオード 109の直列 抵抗 rs2とに対応する直列抵抗は、ダイオード 333、 334は接続されていない。
[0196] し力、し、図 12のダイオード 333、 334も、数 Ω程度の直列抵抗を含むものである。
[0197] 従って、図 12の DCブースト回路(DCBC) 330は、図 10の DCブースト回路 100と 同様に、 DC制御入力端子 310の DC制御電圧 Vdcより容量素子 211の両端の充電 電圧 Vb分大きな DC出力電圧 Voutを抵抗素子 336 (R2)の他端から生成する。 DC 制御入力端子 310の DC制御電圧 Vdcが 3ボルトで、容量素子 335 (C2)の両端の 充電電圧 Vbは略 2ボルトの場合には、抵抗素子 336 (R2)の他端から生成される DC 出力電圧 Voutは略 5ボルトとなる。図 12の半導体集積回路 300の高周波スィッチ( Qsw) 320は、 DCブースト回路(DCBC) 330からの高レベルの DC出力電圧 Vout により駆動されて導通状態となる。導通状態の高周波スィッチ(Qsw) 320を介して、 高周波信号入力端子 306に供給される高周波入力信号 RFinとしての RF送信信号 Txは、アンテナ ΑΝΤに接続される信号出力端子 301へ伝達される。 DCブースト回 路(DCBC) 330からの高レベルの DC出力電圧 Voutにより高周波スィッチ(Qsw) 3 20のオン抵抗 Ronが低減されて、アンテナ ANTに接続される信号出力端子 301へ 伝達される RF信号損失が低減されることができる。また、図 12では図示されていな いが、アンテナ ANTに接続される信号出力端子 301は信号入出力端子としても機 能して、信号出力端子 301には受信用高周波スィッチが接続される。送信動作モー ドでは、受信用高周波スィッチは非導通状態に制御され、送信用高周波スィッチ(Q sw) 320は導通状態に制御される。高周波スィッチ(Qsw) 320がオン状態に制御さ れる際に、 DCブースト回路(DCBC) 330からの高レベルの DC出力電圧 Voutによ り信号入出力端子 301の電圧も高レベルとなる。この時に、図示されていない受信用 高周波スィッチのゲートの DC制御入力端子には低レベルの DC制御電圧が印加さ れ、受信用高周波スィッチは非導通状態となる。受信用高周波スィッチのソース'ドレ インの高レベルの電圧とゲートの低レベルの DC制御電圧とによって、受信用高周波 スィッチの FETのゲート'ソース間電圧は深い逆方向バイアス電圧となる。受信用高 周波スィッチの FETのゲート'ソース間電圧が浅い逆方向バイアス電圧の場合には、 送信用高周波スィッチから伝達される RF送信信号により駆動される受信用高周波ス イッチの FETのゲート容量の容量値の変化が大きくなる。受信用高周波スィッチの F ETのゲート容量の容量 の大きな変化は、アンテナスィッチの大きな高調波歪みの 原因となる。図 12に示した半導体集積回路 300では、 DCブースト回路 (DCBC) 33 0からの高レベルの DC出力電圧 Voutにより、受信用高周波スィッチの FETのゲート •ソース間電圧は深い逆方向バイアス電圧となる。受信用高周波スィッチの FETのゲ ート容量の容量 の変化を小さくでき、アンテナスィッチの高調波歪みを低減するこ と力 Sできる。
図 12に示した半導体集積回路 300では、送信用高周波スィッチ(Qsw) 320は、高 周波信号入力端子 306と信号出力端子 301との間にドレイン 'ソース経路が直列接 続された複数の電界効果トランジスタ(FET) 320A、 320B、 320C、 320Dにより構 成されている。直列接続された複数の電界効果トランジスタ(FET) 320A、 320B、 3 20C、 320Dの個々の FETの電圧が小さくなり、アンテナスィッチの高調波歪みを低 減すること力できる。 FET320A、 320B、 320C、 320Dのドレイン 'ソース間に高抵 抗の抵抗素子 322A、 322B、 322C、 322D力 S接続され、個々の FETのドレイン 'ソ ースは直流的に略同一の電位に維持されることができる。略同一の電位に維持され た個々の FETのドレイン.ソース電圧を基準とした FET320A、 320B、 320C、 320 Dのゲー卜電圧の高-低により、 FET320A、 320B、 320C、 320Dの才ン '才フカ決 定される。また、 FET320A, 320B、 320C、 320Dのゲートには抵抗素子 321A、 3 21B、 321C、 321Dを介して、 DCブースト回路(DCBC) 330からの DC出力電圧 V out力供給される。更に、 FET320A、 320B、 320C、 320Dのゲートに (ま抵抗素子 323を介して、 DC制御入力端子 310の DC制御電圧 Vdcが供給される。尚、 FET3 20A、 320B、 320C、 320Dとしては、低いオン抵抗を持つヘテロ接合構造の HEM Tが使用されている。尚、 HEMTは、 High Electron Mobility Transistorの略である。
[0199] 図 13は、図 10と図 12とに示した本発明の 1つの実施の形態による半導体集積回 路に内蔵された送信用高周波スィッチ回路を駆動する DCブースト回路の高周波等 価回路を示す回路図である。抵抗素子 107の抵抗値を Rl、ダイオード 108、 109の 等価インピーダンスを各々 Zl、 Z2とする。ダイオード 108、 109の一方の等価インピ 一ダンスが他方の等価インピーダンスよりも十分大きくなる。従って、 Z1 < < Z2とす ると、入力インピーダンス Zinlは、
Zinl =Rl + (Z1||Z2)
= R1 + Z1 …(数 1)
となる。
[0200] 同様に、図 14は、図 11に示した本発明に先立って本発明者等により検討された D Cブースト回路の高周波等価回路を示す回路図である。抵抗素子 207、 208の抵抗 値を等しい R11とし、ダイオード 209、 210の等価インピーダンスを各々 Zl、 Z2とす る。ダイオード 209、 210の一方の等価インピーダンスが他方の等価インピーダンスよ りも十分大きくなる。従って、 Z1 < < Z2とすると、入力インピーダンス Zin2は、
Zin2= (Rl l + Zl) || (Rl l + Z2)
= (R11 + Z1) · (Rl l + Z2) / (2 -Rl l + Z2) …(数 2) となる。
[0201] DCブースト回路での昇圧により生成される DC出力電圧のレベルは、 DCブースト 回路に供給される高周波入力信号 RFinの入力電力で決定される。すなわち、図 10 と図 11に示した DCブースト回路は、互いに入力インピーダンスが等し!/、時に同じレ ベルの DC出力電圧 Voutを生成する。 (数 1)と(数 2)より、図 10と図 11の DCブース ト回路は等しいレベルの DC出力電圧 Voutを生成するためには、 R1〉R11である 必要がある。発明者らによるシミュレーション結果では、等しいレベルの DC出力電圧 Voutは、 R1 0. 7 'R11の時に生成されることが判明した。また DCブースト回路の 昇圧動作では、抵抗素子 107、 207、 208を介して容量素子 106、 110、 206、 211 カ充電 '放電される。 GSM850、 GSM900、 DCS1800、 PCS 1900等のマノレチノ ンドの送受信を可能とする携帯電話では、搭載されるアンテナスィッチの複数の高周 波スィッチを高速で非導通 '導通に駆動する必要がある。そのためには、 DCブースト 回路の入力インピーダンスを有る程度低くする必要がある。図 10に示す本発明の 1 つの実施の形態による DCブースト回路は、有る程度低い入力インピーダンスを比較 的低い抵抗値 R1の抵抗素子 107により実現することができる。比較的低い抵抗値 R 1の抵抗素子 107は、半導体チップ上で小さなチップ専有面積で形成される。従って 、図 10に示す本発明の 1つの実施の形態による DCブースト回路を採用することによ り、アンテナスィッチ MMICのチップ面積を低減することが可能となる。 図 15は、本発明の他の 1つの実施の形態によるアンテナスィッチマイクロウエーブ モノリシック半導体集積回路(MMIC) 300を示す回路図である。
図 15に示したアンテナスィッチ MMIC (300)は共通の入出力端子 I/O (301)と 送信端子 Txl (306)、 Tx2 (307)、受信端子 Rxl (308)、 Rx2 (309)の!/、ずれ力、の 端子の間で信号経路を確立して、受信動作 RXと送信動作 TXとの!/、ずれかを行う。 このアンテナスィッチ MMIC (300)は受信動作 RXと送信動作 TXとの!/、ずれかのた めに確立した信号経路以外の信号経路のインピーダンスを極めて高い値に設定す ることで、必要なアイソレーションを得るものである。アンテナスィッチの分野では、共 通の入出力端子 1/0 (301)はシングルポール(Single Pole)と呼ばれる。このシング ルポール I/O (301)と送信端子 Txl (306)、 Tx2 (307)、受信端子 Rxl (308)、 R x2 (309)間の合計 4個の信号経路は、 4スロー(4 throw)と呼ばれる。従って、図 15 のアンテナスィッチ MMIC (300)は、シングルポール 4スロー(SP4T ; Single Pole 4 throw)型のスィッチである。
[0204] アンテナスィッチ MMIC (300)は、 4個の高周波スィッチ 302、 303、 304、 305を 含む。第 1送信スィッチ 302は共通の入出力端子 I/O (301)と第 1送信端子 Txl (3 06)との間を接続することにより、第 1送信端子 Txl (306)から共通の入出力端子 1/ O (301)への第 1送信信号の経路を確立する。第 2送信スィッチ 303は共通の入出 力端子 I/O (301)と第 2送信端子 Tx2 (307)との間を接続することにより、第 2送信 端子 Τχ2 (307)から共通の入出力端子 I/O (301)への第 2送信信号の経路を確立 する。第 1受信スィッチ 304は共通の入出力端子 I/O (301)と第 1受信端子 Rxl (3 08)との間を接続することにより、共通の入出力端子 1/0 (301)から第 1受信端子 R xl (308)への第 1受信信号の経路を確立する。第 2受信スィッチ 305は共通の入出 力端子 I/O (301)と第 2受信端子 Rx2 (309)との間を接続することにより、共通の入 出力端子 I/O (301)から第 2受信端子 Rx2 (309)への第 2受信信号の経路を確立 する。尚、 4個の高周波スィッチ 302、 303、 304、 305を構成する高周波スィッチ FE T320、 340、 360、 370としては、低いオン抵抗を持つヘテロ接合構造の ΗΕΜΤ力 S 使用されている。
[0205] 共通の入出力端子 301には送受信アンテナ ΑΝΤが接続され、第 1送信端子 Txl ( 306)には第 1電力増幅器が第 1ローパスフィルタを介して接続され(図示せず)、第 2 送信端子 Tx2 (307)には図示されてない第 2電力増幅器が第 2ローパスフィルタを 介して接続されることができる(図示せず)。第 1受信端子 Rxl (308)には第 1低雑音 増幅器が第 1表面弾性波フィルタを介して接続され(図示せず)、第 2受信端子 Rx2 ( 309)には第 2低雑音増幅器が第 2表面弾性波フィルタを介して接続されることができ る(図示せず)。
[0206] 第 1送信スィッチ 302は、共通の入出力端子 I/O (301)と第 1送信端子 Txl (306 )との間に直列接続された第 1送信 FET320A—320Dを含んでいる。各 FETのソー ス 'ドレイン間には抵抗素子 322A. 322Dが接続されている。各ゲートは抵抗素子 3 21A' 321Dの一端に接続され、抵抗素子 321A' 321Dの他端は抵抗素子 323 を介して第 1送信 DC制御端子 310に接続される。また、第 1送信スィッチ 302は、第 1容量素子 331、第 2容量素子 335、第 1抵抗素子 332、第 2抵抗素子 336、第 1ダイ オード 333、第 2ダイオード 334で構成された第 1送信 DCブースト回路 330を含んで いる。第 1抵抗素子 332、第 2抵抗素子 336の抵抗値は、第 1ダイオード 333の直列 抵抗成分と第 2ダイオード 334の直列抵抗成分の抵抗値よりも十分大きな値に設定 されている。第 1送信スィッチ 302の第 1送信 DCブースト回路 330には、第 1送信端 子 Txl (306)から第 1送信 RF信号が供給され第 1送信 DC制御端子 310に第 1送信 DC制御電圧が供給される。それにより、図 15の第 1送信スィッチ 302の第 1送信 DC ブースト回路 330は、図 10に示した DCブースト回路 100と本質的に同一の昇圧動 作を実行する。
[0207] 第 2送信スィッチ 303は、共通の入出力端子 I/O (301)と第 2送信端子 Tx2 (307 )との間に直列接続された第 2送信 FET340A' 340Dを含んでいる。各 FETのソー ス 'ドレイン間には抵抗素子 342A. 342Dが接続されている。各ゲートは抵抗素子 3 41A' 341Dの一端に接続され、抵抗素子 341A' 341Dの他端は抵抗素子 343 を介して第 2送信 DC制御端子 311に接続される。また、第 1送信スィッチ 303は、第 1容量素子 351、第 2容量素子 355、第 1抵抗素子 352、第 2抵抗素子 356、第 1ダイ オード 353、第 2ダイオード 354で構成された第 2送信 DCブースト回路 350を含んで いる。第 1抵抗素子 352、第 2抵抗素子 356の抵抗値は、第 1ダイオード 353の直列 抵抗成分と第 2ダイオード 354の直列抵抗成分の抵抗値よりも十分大きな値に設定 されている。第 2送信スィッチ 303の第 2送信 DCブースト回路 350には、第 2送信端 子 Tx2 (307)から第 2送信 RF信号が供給され第 2送信 DC制御端子 311に第 2送信 DC制御電圧が供給される。それにより、図 15の第 2送信スィッチ 303の第 2送信 DC ブースト回路 350は、図 10に示した DCブースト回路 100と本質的に同一の昇圧動 作を実行する。
[0208] 第 1受信スィッチ 304は、共通の入出力端子 I/O (301)と第 1受信端子 Rxl (308 )との間に直列接続された第 1受信 FET360A' 360Dを含んでいる。各 FETのソー ス 'ドレイン間には抵抗素子 362A. 362Dが接続されている。各ゲートは抵抗素子 3 61A' 361Dの一端に接続され、抵抗素子 361A' 361Dの他端は抵抗素子 363 を介して第 1受信 DC制御端子 312に接続されている。
[0209] 第 2受信スィッチ 305は、共通の入出力端子 I/O (301)と第 2受信端子 Rx2 (309 )との間に直列接続された第 2受信 FET370A' 370Dを含んでいる。各 FETのソー ス 'ドレイン間には抵抗素子 372A. 372Dが接続されている。各ゲートは抵抗素子 3 71A' 371Dの一端に接続され、抵抗素子 371A' 371Dの他端は抵抗素子 373 を介して第 2受信 DC制御端子 313に接続されている。また、受信状態で送受信アン テナ ANTから共通の入出力端子 I/O (301)に供給される第 1RF受信信号の電力 レベルは、送信状態で RF電力増幅器から送受信アンテナ ANT供給される RF送信 信号の電力レベルと比較すると極めて小さい。従って、第 1受信スィッチ 304や第 2 受信スィッチ 305の内部に第 1送信スィッチ 302の第 1送信 DCブースト回路 330や 第 2送信スィッチ 303の第 2送信 DCブースト回路 350のような受信 DCブースト回路 を配置しても、受信 DCブースト回路の昇圧機能は極めて低い。この理由から、第 1 受信スィッチ 304や第 2受信スィッチ 305の内部には、受信用の DCブースト回路が 配置されていない。
図 15のアンテナスィッチ MMIC (300)の第 1送信スィッチ 302の第 1送信 FET32 0A. 320Dは、第 1送信 DCブースト回路 330からの高レベルの DC出力電圧により 駆動されて導通状態となる。導通状態の第 1送信 FET320A—320Dを介して、第 1 送信端子 Txl (306)に供給される第 1送信 RF信号はアンテナ ANTに接続される共 通の入出力端子 I/O (301)へ伝達される。第 1送信 DCブースト回路 330からの高 レベルの DC出力電圧により第 1送信スィッチ 302の第 1送信 FET320A .320Dの オン抵抗 Ronが低減されて、アンテナ ANTに接続される共通の入出力端子 I/O (3 01)へ伝達される RF信号損失が低減されることができる。また、第 1送信 DCブースト 回路 330からの高レベルの DC出力電圧により第 1送信スィッチ 302の第 1送信 FET 320A .320Dがオン状態に制御される際に、高レベルの DC出力電圧により共通の 入出力端子 I/O (301)の電圧も高レベルとなる。この時に、第 2送信スィッチ 303の 第 2送信 DC制御端子 311の第 2送信 DC制御電圧と、第 1受信スィッチ 304の第 1受 信 DC制御端子 312の第 1受信 DC制御電圧と、第 2受信スィッチ 305の第 2受信 DC 制御端子 313の第 2受信 DC制御電圧とは、低レベルの DC制御電圧となっている。 従って、第 2送信スィッチ 303の第 2送信 FET340A- 340Dと、第 1受信スィッチ 30 4の第 1受信 FET360A- - -360Dと、第 2受信スィッチ 305の第 2受信 FET370A- - -3 70Dとは、非導通状態となる。また、高レベルの DC出力電圧により、非導通状態の 第 2送信 FET340A- - -340D、第 1受信 FET360A- 360D、第 2受信 FET370A- - - 370Dの各 FETのゲート'ソース間電圧は深い逆方向バイアス電圧となる。これらの F ETのゲート容量の容量値の変化を小さくでき、アンテナスィッチの高調波歪みを低 減すること力 Sでさる。
[0211] また、図 15のアンテナスィッチ MMIC (300)の第 2送信スィッチ 303の第 2送信 FE T340A .340Dが第 2送信 DCブースト回路 350からの高レベルの DC出力電圧に より駆動されて導通状態となる場合には、第 1送信スィッチ 302の第 1送信 FET320 A-— 320Dと、第 1受信スィッチ 304の第 1受信 FET360A-— 360Dと、第 2受信スィ ツチ 305の第 2受信 FET370A—370Dとは、非導通状態となる。また、非導通状態 の第 1送信 FET320A- - '320D、第 1受信 FET360A- - '360D、第 2受信 FET370A •••370Dの各 FETのゲート'ソース間電圧は深い逆方向バイアス電圧となる。これら の FETのゲート容量の容量値の変化を小さくでき、アンテナスィッチの高調波歪みを 低減すること力 Sでさる。
[0212] 以上のように SP4T型のアンテナスィッチ MMIC (300)は構成される力 図 15の内 部の抵抗素子は化合物半導体のメサ抵抗や金属薄膜抵抗を用い、図 15の内部の 容量素子は MIM (Metal Insulator Metal)容量を用いることができる。しかしな がら、図 15の内部の抵抗素子および容量素子はこれらに限定されるものではなぐ 他の製造方法で製造される抵抗素子および容量素子に変更可能であることは言うま でもない。
[0213] 《DCブースト回路のデバイス構造》
図 16は、図 15に示した本発明の 1つの実施の形態によるアンテナスィッチ MMIC ( 300)の第 1送信スィッチ 302の第 1送信 DCブースト回路 330や第 2送信スィッチ 30 3の第 2送信 DCブースト回路 350のデバイス構造を示す平面図である。
[0214] 同図に示すように DCブースト回路の高周波入力端子 401 (Tx)は、第 1容量素子 C1の一端に接続されている。第 1容量素子 C1は、下層の第 1層配線の金属層 404 と上層の第 2層配線の金属層 405と層間絶縁層との ΜΙΜ容量で構成されている。金 属層 404は接続点 406を経由して第 1抵抗素子 R1を形成する抵抗 407の一端に接 続され、抵抗 407の他端は接続点 408を経由して金属層 409に接続されている。金 属層 409には、第 1ダイオード D1の力ソードと第 2ダイオード D2のアノードとが接続さ れている。第 1ダイオード D1は、ソース電極 411 (S)、ドレイン電極 412 (D)、ゲート 電極 413 (G)を持つ FET (410)で形成される。 FET (410)のソース電極 411 (S)と ドレイン電極 412 (D)とは、金属層 409により短絡されている。 FET (410)のゲート電 極 410 (G)とソース電極 411 (S)と力 ショットキーダイオード(D1)のアノードとカソー ドとなる。力ソードとしてのソース電極 411 (S)とドレイン電極 412 (D)は金属層 409に 接続され、アノードとしてのゲート電極 413 (G)は金属層 420に接続され、金属層 42 0は DC制御電圧 Vdcが供給される DC制御入力端子 402に接続されている。同様に 、第 2ダイオード D2は、ソース電極 415 (S)、ドレイン電極 416 (D)、ゲート電極 417 ( G)を持つ FET (414)で形成される。 FET (414)のソース電極 415 (S)とドレイン電 極 416 (D)とは、金属層 418により短絡されている。 FET (414)のゲート電極 417 (G )とソース電極 415 (S)とが、ショットキーダイオード(D2)のアノードと力ソードとなる。
FET (414)のゲート電極 417 (G)は金属層 409に接続され、ソース電極 415 (S)とド レイン電極 416 (D)は金属層 418により短絡されている。 FET (414)のゲート電極 4 17 (G)とソース電極 415 (S)と力 ショットキーダイオード(D2)のアノードと力ソードと なる。アノードとしてのゲート電極 417 (G)は金属層 409に接続され、力ソードとして のソース電極 415 (S)とドレイン電極 416 (D)は金属層 418に接続されている。金属 層 418は接続点 419を経由して第 2容量素子 C2の一端に接続されている。第 2容量 素子 C2は、下層の第 1層配線の金属層 421と上層の第 2層配線の金属層 420と層 間絶縁層との MIM容量で構成されている。下層の第 1層配線の金属層 421は、接 続点 422を経由して第 2抵抗素子 R2を形成する抵抗 423の一端に接続され、抵抗 4 23の他端は接続点 424を経由して DC出力電圧 Voutが生成される DC出力端子 40 3に接続されている。ショットキーダイオード Dl、 D2を形成する FET410、 414は、 図 15の 4個の高周波スィッチ 302、 303、 304、 305を構成する高周波スィッチ FET 320、 340、 360、 370の HEMTと同一構造で、また、同一製造プロセスで製造す ること力 Sでさる。
《高周波モジュール》 図 17は、本発明の 1つの実施の形態によるアンテナスィッチ MMICを内蔵した高 周波モジュールと高周波アナログ信号処理半導体集積回路とベースバンド信号処理 LSIとを搭載した携帯電話の構成を示すブロック図である。
[0216] 同図に示された高周波モジユーノレ RF— MLは、図 15に示したアンテナスィッチマ イク口ウェーブモノリシック半導体集積回路 (ANT—SW)と RF電力増幅器 HPA1、 HPA2とローパスフィルタ LPF1、 LPF2とコントローラ集積回路(CNT— IC)とを含ん でいる。携帯電話の送受信用アンテナ ANTには、高周波モジュール RF— MLのァ ンテナスィッチ MMIC (ANT_SW)の共通の入出力端子 I/Oが接続されて!/、る。 ベースバンド信号処理 LSI (BB— LSI)からの制御信号 B. B— Cntは、高周波アナ ログ信号処理半導体集積回路 (RF— IC) (以下 RFIC)を経由して高周波モジュール (RF—MUのコントローラ集積回路(CNT—IC)に供給される。送受信用アンテナ A NTから共通の入出力端子 I/Oへの高周波信号の流れは携帯電話の受信動作 RX となり、共通の入出力端子 I/Oから送受信用アンテナ ANTへの高周波信号の流れ は携帯電話の送信動作 TXとなる。
[0217] RFIC (RF— IC)はベースバンド信号処理 LSI (BB— LSI)からの送信ベースバンド 信号 Tx— BBSを高周波送信信号に周波数アップコンバージョンを行!/ヽ、逆に送受 信用アンテナ ANTで受信された高周波受信信号を受信ベースバンド信号 Rx—BB Sに周波数ダウンコンバージョンを行いベースバンド信号処理 LSI (BB— LSI)に供 給する。
[0218] 高周波モジュール RF— MLのアンテナスィッチ MMIC (ANT_SW)は共通の入 出力端子 I/Oと送信端子 Txl、 Τχ2、受信端子 Rxl、 Rx2のいずれかの端子の間 で信号経路を確立して、受信動作 RXと送信動作 TXとのいずれかを行う。このアンテ ナスイッチ MMIC (ANT_SW)は受信動作 RXと送信動作 TXとの!/ヽずれかのため に確立した信号経路以外の信号経路のインピーダンスを極めて高い値に設定するこ とで、必要なアイソレーションが得られるものである。
[0219] 尚、ベースバンド信号処理 LSI (BB— LSI)は図示されていない外部不揮発性メモ リと図示されて!/、な!/、アプリケーションプロセッサとに接続されて!/、る。アプリケーショ ンプロセッサは、図示されてレ、なレ、液晶表示装置と図示されて!/、な!/、キー入力装置 とに接続され、汎用プログラムやゲームを含む種々のアプリケーションプログラムを実 行することカできる。携帯電話等のモパイル機器のブートプログラム(起動ィニシャラ ィズプログラム)、オペレーティングシステムプログラム(OS)、ベースバンド信号処理 LSIの内部のディジタルシグナルプロセッサ(DSP)による GSM方式等の受信べ一 スバンド信号に関する位相復調と送信ベースバンド信号に関する位相変調のための プログラム、種々のアプリケーションプログラムは、外部不揮発性メモリに格納されるこ と力 Sできる。
[0220] ベースバンド信号処理 LSI (BB— LSI)からの送信ベースバンド信号 Tx— BBSが GSM850または GSM900の送信周波数バンドに周波数アップコンバージョンされる べき場合を想定する。尚、 GSM850の RF送信信号の周波数は 824MHz〜849M Hzであり、 GSM900の RF送信信号の周波数は 880MHz〜915MHzである。この 場合には、 RFICの送信信号処理ユニット Tx— SPUは送信ベースバンド信号 Tx— BBSからこの送信周波数バンドへの周波数アップコンバージョンを行って、高周波送 信信号 RF— Txlが生成される。この送信周波数バンドの高周波送信信号 RF—Tx 1は、高周波モジュール RF— MLの RF高出力電力増幅器 HPA1で電力増幅され、 口一パスフィルタ LPF 1を経由してアンテナスィッチ MMIC (ANT_SW)の送信端 子 Txlに供給される。送信端子 Txlに供給された GSM850または GSM900の高周 波送信信号 RF— Txlは、共通の入出力端子 I/Oを介して送受信用アンテナ ANT カゝら送信されること力でさる。
[0221] 送受信用アンテナ ANTで受信された GSM850または GSM900の高周波受信信 号 RF— Rxlは、アンテナスィッチ MMIC (ANT— SW)の共通の入出力端子 I/O に供給される。尚、 GSM850の RF受信信号の周波数は 869MHz〜894MHzであ り、 GSM900の RF受信信号の周波数は 925MHz〜960MHzである。アンテナスィ ツチ MMIC (ANT_SW)の受信端子 Rxlから得られるこの受信周波数バンドの高 周波受信信号 RF— Rxlは表面弾性波フィルタ SAW1を介して RFIC (RF— IC)の 低雑音増幅器 LNA1で増幅され、その後、受信信号処理ユニット Rx— SPUに供給 される。受信信号処理ユニット Rx— SPUでは、 GSMの高周波受信信号 GSM— Rx 力、ら受信ベースバンド信号 Rx BBSへの周波数ダウンコンバージョンが行われる。 [0222] GSM850または GSM900の送受信モードでは、アンテナスィッチ MMIC (ANT _SW)は制御信号 B. B— Cntに応答して共通の入出力端子 I/Oと送信端子 Txl との接続による高周波送信信号 RF—Txlの送信と共通の入出力端子 I/Oとの受信 端子 Rxlとの接続による高周波受信信号 RF—Rxlの受信とを時分割で行う。
[0223] ベースバンド信号処理 LSI (BB— LSI)からの送信ベースバンド信号 Tx— BBSが DCS1800または PCS1900の送信周波数バンドに周波数アップコンバージョンされ るべき場合を想定する。尚、 DCS1800の RF送信信号の周波数は 1710MHz〜17 80MHzであり、 PCS 1900の RF送信信号の周波数は 1850MHz〜 910MHzで ある。この場合には、 RFICの送信信号処理ユニット Tx— SPUは送信ベースバンド 信号 Tx— BBSをこの送信周波数バンドへの周波数アップコンバージョンを行って、 この送信周波数バンドの高周波送信信号 RF—Tx2が生成される。この送信周波数 バンドの高周波送信信号 RF— Tx2は、高周波モジュール RF— MLの RF高出力電 力増幅器 HPA2で電力増幅され、ローパスフィルタ LPF2を経由してアンテナスイツ チ MMIC (ANT_SW)の送信端子 Tx2に供給される。送信端子 Τχ2に供給された DCS 1800または PCS 1900の高周波送信信号 RF—Tx2は、共通の入出力端子 I /〇を介して送受信用アンテナ ANTから送信されることができる。
[0224] 送受信用アンテナ ANTで受信された DCS 1800または PCS 1900の高周波受信 信号 RF— Rx2は、アンテナスィッチ MMIC (ANT_SW)の共通の入出力端子 1/ Oに供給される。尚、 DCS1800の RF受信信号の周波数は 1805MHz〜; 180MHz であり、 PCS 1900の RF受信信号の周波数は 1930MHz〜; 1990MHzである。アン テナスィッチ MMIC (ANT—SW)の受信端子 Rx2から得られる DCS 1800または P CS 1900の高周波受信信号 RF— Rx2は表面弾性波フィルタ SAW2を介して RFIC (RF— IC)の低雑音増幅器 LNA2で増幅され、その後、受信信号処理ユニット Rx— SPUに供給される。受信信号処理ユニット Rx— SPUでは、 DCS 1800または PCS 1 900の高周波受信信号 RF—Rx2から受信ベースバンド信号 Rx— BBSへの周波数 ダウンコンバージョンが行われる。
[0225] DCS 1800または PCS 1900の送受信モードでは、アンテナスィッチ MMIC (ANT
SW)は制御信号 B. B Cntに応答して共通の入出力端子 I/Oと送信端子 Tx2 との接続による高周波送信信号 RF—Tx2の送信と共通の入出力端子 I/Oとの受信 端子 Rx2との接続による高周波受信信号 RF—Rx2の受信とを時分割で行う。 以上 本発明者によってなされた発明を実施の形態に基づいて具体的に説明した力 本発 明はそれに限定されるものではなぐその要旨を逸脱しない範囲において種々変更 可能であることは言うまでもな!/、。
[0226] 例えば、図 15のアンテナスィッチ MMIC (300)の高周波スィッチで、高周波スイツ チ 320、 340、 360、 370を、 HEMTトランジスタ力、ら Nチャンネノレのデプレッション型 の絶縁ゲート MOSトランジスタに置換することができる。尚、この時には、共通の入出 力端子 I/Oには、図 17のコントローラ集積回路 CNT—ICから発生される略 4ボルト のバイアス電圧を供給する。図 17のコントローラ集積回路 CNT—ICに外部から 3ボ ノレトの単一電源電圧が供給される場合には、 3ボルトの単一電源電圧を略 4ボルトの ノ ィァス電圧に昇圧するチャージポンプ回路等の昇圧回路がコントローラ集積回路 CNT— IC内部に含まれて!/、る。
Hzの RF送信信号の送信と WCDMAの 2110^ ^½〜2170^/[^½の1¾^受信信号の 受信とを切り換えることも可能である。
[0228] また、上記の実施形態ではベースバンド信号処理 LSIとアプリケーションプロセッサ とはそれぞれ別の半導体チップで構成されて!/、たが、別な実施形態ではアプリケー シヨンプロセッサがベースバンド信号処理 LSIの半導体チップに統合された統合ワン チップとされることができる。
産業上の利用可能性
[0229] 本発明によれば、 RF通信端末装置に搭載されるアンテナスィッチにおいて WCD MA方式で重要な相互変調歪または GSM方式で重要な高調波歪を低減することが できる。
[0230] また、本発明によれば、内蔵の DCブースト回路の寿命および動作信頼性を向上し た半導体集積回路を提供することができる。

Claims

請求の範囲
[1] 複数の高周波スィッチを含み、
前記複数の高周波スィッチの一方の高周波スィッチの一端と前記複数の高周波ス イッチの他方の高周波スィッチの一端とは共通の入出力端子に接続され、前記共通 の入出力端子は無線周波数通信端末機器のアンテナと接続可能にされ、
前記一方の高周波スィッチの他端には所定の通信方式による RF送信信号と RF受 信信号とが供給可能にされ、前記他方の高周波スィッチの他端には前記 RF送信信 号と前記 RF受信信号と異なる他の RF送信信号と他の RF受信信号との少なくともい ずれか一方が供給可能にされ、
前記一方の高周波スィッチは直列接続された複数の電界効果トランジスタを含み、 前記他方の高周波スィッチは直列接続された他の複数の電界効果トランジスタを含 み、
前記一方の高周波スィッチの前記複数の電界効果トランジスタの複数のゲートには 前記一方の高周波スィッチのオン'オフ制御のための制御電圧が供給可能にされ、 前記他方の高周波スィッチの前記他の複数の電界効果トランジスタの他の複数のゲ 一トには前記他方の高周波スィッチのオン'オフ制御のための他の制御電圧が供給 可能にされ、
前記一方の高周波スィッチの前記複数の電界効果トランジスタの前記複数のゲート と前記制御電圧が供給される制御端子との間には複数の抵抗が接続され、前記他 方の高周波スィッチの前記他の複数の電界効果トランジスタの前記他の複数のゲー トと前記他の制御電圧が供給される他の制御端子との間には他の複数の抵抗が接 続され、
前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記共 通の入出力端子に最も近接した入出力近接電界効果トランジスタのゲートと前記他 の制御端子との間の入出力近接抵抗は、第 1の電圧'電流特性を持ち、
前記他方の高周波スィッチで前記入出力近接電界効果トランジスタと前記他の複 数の電界効果トランジスタのうちの前記他方の高周波スィッチの前記他端に最も近 接した他端近接電界効果トランジスタとの間の中間部の中間部電界効果トランジスタ のゲートと前記他の制御端子との間の中間部抵抗は、第 2の電圧'電流特性を持ち、 前記他方の高周波スィッチで前記入出力近接抵抗の前記第 1の電圧 ·電流特性の 線形性は前記中間部抵抗の前記第 2の電圧 ·電流特性の線形性よりも高く設定され ていることを特徴とする半導体集積回路。
[2] 前記他方の高周波スィッチで前記入出力近接抵抗が第一の半導体層からなり、前 記中間部抵抗が前記第一の半導体層より単位面積当りの抵抗率の大きい第二の半 導体層からなることを特徴とする請求項 1に記載の半導体集積回路。
[3] 前記他方の高周波スィッチで前記入出力近接抵抗が金属層からなり、前記中間部 抵抗が半導体層からなることを特徴とする請求項 1に記載の半導体集積回路。
[4] 前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記他 方の高周波スィッチの前記他端に最も近接した前記他端近接電界効果トランジスタ のゲートと前記他の制御端子との間の他端近接抵抗は、第 3の電圧 ·電流特性を持 ち、
前記他方の高周波スィッチで前記他端近接抵抗の前記第 3の電圧 ·電流特性の線 形性は前記中間部抵抗の前記第 2の電圧 ·電流特性の前記線形性よりも高く設定さ れて!/、ることを特徴とする請求項 1に記載の半導体集積回路。
[5] 前記入出力近接抵抗の抵抗値は前記中間部抵抗の抵抗値よりも大きく設定され、 前記他端近接抵抗の抵抗値は前記中間部抵抗の抵抗値よりも大きく設定されている ことを特徴とする請求項 4に記載の半導体集積回路。
[6] 前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記入 出力近接電界効果トランジスタの次に前記共通の入出力端子に近接した入出力第 2 近接電界効果トランジスタのゲートと前記入出力近接電界効果トランジスタの前記ゲ ートとの間に第 1抵抗が接続され、前記入出力第 2近接電界効果トランジスタの前記 ゲートと前記中間部電界効果トランジスタの前記ゲートとの間に第 2抵抗が接続され 、前記中間部電界効果トランジスタの前記ゲートと前記他の制御端子との間に第 3抵 抗が接続され、
前記入出力近接電界効果トランジスタの前記ゲートに接続された前記入出力近接 抵抗は、前記第 1抵抗と前記第 2抵抗と前記第 3抵抗とを含み、前記入出力第 2近接 電界効果トランジスタの前記ゲートに接続された入出力第 2近接抵抗は、前記第 1抵 抗を含まず、前記第 2抵抗と前記第 3抵抗とを含み、前記中間部電界効果トランジス タの前記ゲートに接続された前記中間部抵抗は、前記第 1抵抗と前記第 2抵抗とを 含まず、前記第 3抵抗を含み、
前記他方の高周波スィッチで前記中間部電界効果トランジスタの前記ゲートと前記 他の制御端子との間に、第 4抵抗が接続され、前記他方の高周波スィッチの前記他 の複数の電界効果トランジスタのうちの前記他端近接電界効果トランジスタの次に前 記他方の高周波スィッチの前記他端に近接した他端第 2近接電界効果トランジスタ のゲートと前記中間部電界効果トランジスタの前記ゲートとの間に第 5抵抗が接続さ れ、前記他端第 2近接電界効果トランジスタの前記ゲートと前記他端近接電界効果ト ランジスタの前記ゲートとの間に第 6抵抗が接続され、
前記他端近接電界効果トランジスタの前記ゲートに接続された前記他端近接抵抗 は前記第 4抵抗と前記第 5抵抗と前記第 6抵抗とを含み、前記他端第 2近接電界効 果トランジスタの前記ゲートに接続された他端第 2近接抵抗は、前記第 6抵抗を含ま ず、前記第 4抵抗と前記第 5抵抗とを含み、前記中間部電界効果トランジスタの前記 ゲートに接続された前記中間部抵抗は、前記第 5抵抗と前記第 6抵抗とを含まず、前 記第 4抵抗を含むことを特徴とする請求項 5に記載の半導体集積回路。
前記複数の高周波スィッチの前記一方の高周波スィッチの前記他端には前記所 定の通信方式としての WCDMA方式による前記 RF送信信号と前記 RF受信信号と が供給可能にされ、前記複数の高周波スィッチの前記他端には前記他の RF送信信 号が供給可能にされ、
前記一方の高周波スィッチの前記他端と接地ノードとの間には一方の接地スィッチ が接続され、前記他方の高周波スィッチの前記他端と前記接地ノードとの間には他 方の接地スィッチが接続され、
前記一方の高周波スィッチがオン状態に制御される時には、前記一方の接地スィ ツチはオフ状態に、前記他方の高周波スィッチはオフ状態に、前記他方の接地スイツ チはオン状態にそれぞれ制御され、
前記他方の高周波スィッチがオン状態に制御される時には、前記他方の接地スィ ツチはオフ状態に、前記一方の高周波スィッチはオフ状態に、前記一方の接地スイツ チはオン状態にそれぞれ制御されることを特徴とする請求項 1に記載の半導体集積 回路。
[8] 前記共通の入出力端子と前記他方の高周波スィッチの前記入出力近接電界効果 トランジスタの前記ゲートとの間に入出力付加容量が接続されていることを特徴とする 請求項 7に記載の半導体集積回路。
[9] 前記複数の高周波スィッチの前記他方の高周波スィッチの前記他端に供給される 前記他の RF送信信号は GSM850と GSM900と DCS1800と PCS1900のいずれ かの RF送信信号であることを特徴とする請求項 7に記載の半導体集積回路。
[10] RFアナログ信号処理半導体集積回路から生成される RF送信信号を増幅してアン テナへ供給する電力増幅器と、
前記アンテナで受信される RF受信信号を前記 RFアナログ信号処理半導体集積 回路に供給するとともに、前記電力増幅器の出力信号を前記アンテナへ供給するァ ンテナスィッチ半導体集積回路とを含む RFモジュールであって、
前記アンテナスィッチ半導体集積回路は、複数の高周波スィッチを含み、 前記複数の高周波スィッチの一方の高周波スィッチの一端と前記複数の高周波ス イッチの他方の高周波スィッチの一端とは共通の入出力端子に接続され、前記共通 の入出力端子は前記アンテナと接続可能にされ、
前記一方の高周波スィッチの他端には所定の通信方式による RF送信信号と RF受 信信号とが供給可能にされ、前記他方の高周波スィッチの他端には前記 RF送信信 号と前記 RF受信信号と異なる他の RF送信信号と他の RF受信信号との少なくともい ずれか一方が供給可能にされ、
前記一方の高周波スィッチは直列接続された複数の電界効果トランジスタを含み、 前記他方の高周波スィッチは直列接続された他の複数の電界効果トランジスタを含 み、
前記一方の高周波スィッチの前記複数の電界効果トランジスタの複数のゲートには 前記一方の高周波スィッチのオン'オフ制御のための制御電圧が供給可能にされ、 前記他方の高周波スィッチの前記他の複数の電界効果トランジスタの他の複数のゲ 一トには前記他方の高周波スィッチのオン'オフ制御のための他の制御電圧が供給 可能にされ、
前記一方の高周波スィッチの前記複数の電界効果トランジスタの前記複数のゲート と前記制御電圧が供給される制御端子との間には複数の抵抗が接続され、前記他 方の高周波スィッチの前記他の複数の電界効果トランジスタの前記他の複数のゲー トと前記他の制御電圧が供給される他の制御端子との間には他の複数の抵抗が接 続され、
前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記共 通の入出力端子に最も近接した入出力近接電界効果トランジスタのゲートと前記他 の制御端子との間の入出力近接抵抗は、第 1の電圧'電流特性を持ち、
前記他方の高周波スィッチで前記入出力近接電界効果トランジスタと前記他の複 数の電界効果トランジスタのうちの前記他方の高周波スィッチの前記他端に最も近 接した他端近接電界効果トランジスタとの間の中間部の中間部電界効果トランジスタ のゲートと前記他の制御端子との間の中間部抵抗は、第 2の電圧'電流特性を持ち、 前記他方の高周波スィッチで前記入出力近接抵抗の前記第 1の電圧 ·電流特性の 線形性は前記中間部抵抗の前記第 2の電圧 ·電流特性の線形性よりも高く設定され て!/、ることを特徴とする RFモジュール。
[11] 前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記他 方の高周波スィッチの前記他端に最も近接した前記他端近接電界効果トランジスタ のゲートと前記他の制御端子との間の他端近接抵抗は、第 3の電圧 ·電流特性を持 ち、
前記他方の高周波スィッチで前記他端近接抵抗の前記第 3の電圧 ·電流特性の線 形性は前記中間部抵抗の前記第 2の電圧 ·電流特性の前記線形性よりも高く設定さ れていることを特徴とする請求項 10に記載の RFモジュール。
[12] 前記入出力近接抵抗の抵抗値は前記中間部抵抗の抵抗値よりも大きく設定され、 前記他端近接抵抗の抵抗値は前記中間部抵抗の抵抗値よりも大きく設定されている ことを特徴とする請求項 11に記載の RFモジュール。
[13] 前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記入 出力近接電界効果トランジスタの次に前記共通の入出力端子に近接した入出力第 2 近接電界効果トランジスタのゲートと前記入出力近接電界効果トランジスタの前記ゲ ートとの間に第 1抵抗が接続され、前記入出力第 2近接電界効果トランジスタの前記 ゲートと前記中間部電界効果トランジスタの前記ゲートとの間に第 2抵抗が接続され 、前記中間部電界効果トランジスタの前記ゲートと前記他の制御端子との間に第 3抵 抗が接続され、
前記入出力近接電界効果トランジスタの前記ゲートに接続された前記入出力近接 抵抗は、前記第 1抵抗と前記第 2抵抗と前記第 3抵抗とを含み、前記入出力第 2近接 電界効果トランジスタの前記ゲートに接続された入出力第 2近接抵抗は、前記第 1抵 抗を含まず、前記第 2抵抗と前記第 3抵抗とを含み、前記中間部電界効果トランジス タの前記ゲートに接続された前記中間部抵抗は、前記第 1抵抗と前記第 2抵抗とを 含まず、前記第 3抵抗を含み、
前記他方の高周波スィッチで前記中間部電界効果トランジスタの前記ゲートと前記 他の制御端子との間に、第 4抵抗が接続され、前記他方の高周波スィッチの前記他 の複数の電界効果トランジスタのうちの前記他端近接電界効果トランジスタの次に前 記他方の高周波スィッチの前記他端に近接した他端第 2近接電界効果トランジスタ のゲートと前記中間部電界効果トランジスタの前記ゲートとの間に第 5抵抗が接続さ れ、前記他端第 2近接電界効果トランジスタの前記ゲートと前記他端近接電界効果ト ランジスタの前記ゲートとの間に第 6抵抗が接続され、
前記他端近接電界効果トランジスタの前記ゲートに接続された前記他端近接抵抗 は前記第 4抵抗と前記第 5抵抗と前記第 6抵抗とを含み、前記他端第 2近接電界効 果トランジスタの前記ゲートに接続された他端第 2近接抵抗は、前記第 6抵抗を含ま ず、前記第 4抵抗と前記第 5抵抗とを含み、前記中間部電界効果トランジスタの前記 ゲートに接続された前記中間部抵抗は、前記第 5抵抗と前記第 6抵抗とを含まず、前 記第 4抵抗を含むことを特徴とする請求項 12に記載の RFモジュール。
前記複数の高周波スィッチの前記一方の高周波スィッチの前記他端には前記所 定の通信方式としての WCDMA方式による前記 RF送信信号と前記 RF受信信号と が供給可能にされ、前記複数の高周波スィッチの前記他端には前記他の RF送信信 号が供給可能にされ、
前記一方の高周波スィッチの前記他端と接地ノードとの間には一方の接地スィッチ が接続され、前記他方の高周波スィッチの前記他端と前記接地ノードとの間には他 方の接地スィッチが接続され、
前記一方の高周波スィッチがオン状態に制御される時には、前記一方の接地スィ ツチはオフ状態に、前記他方の高周波スィッチはオフ状態に、前記他方の接地スイツ チはオン状態にそれぞれ制御され、
前記他方の高周波スィッチがオン状態に制御される時には、前記他方の接地スィ ツチはオフ状態に、前記一方の高周波スィッチはオフ状態に、前記一方の接地スイツ チはオン状態にそれぞれ制御されることを特徴とする請求項 10に記載の RFモジュ ール。
[15] 前記共通の入出力端子と前記他方の高周波スィッチの前記入出力近接電界効果 トランジスタの前記ゲートとの間に入出力付加容量が接続されていることを特徴とする 請求項 14に記載の半導体集積回路。
[16] 前記複数の高周波スィッチの前記他方の高周波スィッチの前記他端に供給される 前記他の RF送信信号は GSM850と GSM900と DCS1800と PCS1900のいずれ かの RF送信信号であることを特徴とする請求項 14に記載の RFモジュール。
[17] ベースバンド信号処理を行う LSIと、
前記 LSIからの送信ベースバンド信号の RF送信信号への周波数アップコンパージ ヨンを行いアンテナで受信される RF受信信号の受信ベースバンド信号への周波数ダ ゥンコンバージョンを行う RFアナログ信号処理半導体集積回路と、
前記 RFアナログ信号処理半導体集積回路から生成される前記 RF送信信号を増 幅して前記アンテナへ供給する電力増幅器と、
前記アンテナで受信される前記 RF受信信号を前記 RFアナログ信号処理半導体 集積回路に供給するとともに、前記電力増幅器の出力信号を前記アンテナへ供給す るアンテナスィッチ半導体集積回路とを含む無線通信端末装置であって、
前記アンテナスィッチ半導体集積回路は、複数の高周波スィッチを含み、 前記複数の高周波スィッチの一方の高周波スィッチの一端と前記複数の高周波ス イッチの他方の高周波スィッチの一端とは共通の入出力端子に接続され、前記共通 の入出力端子は前記アンテナと接続可能にされ、
前記一方の高周波スィッチの他端には所定の通信方式による RF送信信号と RF受 信信号とが供給可能にされ、前記他方の高周波スィッチの他端には前記 RF送信信 号と前記 RF受信信号と異なる他の RF送信信号と他の RF受信信号との少なくともい ずれか一方が供給可能にされ、
前記一方の高周波スィッチは直列接続された複数の電界効果トランジスタを含み、 前記他方の高周波スィッチは直列接続された他の複数の電界効果トランジスタを含 み、
前記一方の高周波スィッチの前記複数の電界効果トランジスタの複数のゲートには 前記一方の高周波スィッチのオン'オフ制御のための制御電圧が供給可能にされ、 前記他方の高周波スィッチの前記他の複数の電界効果トランジスタの他の複数のゲ 一トには前記他方の高周波スィッチのオン'オフ制御のための他の制御電圧が供給 可能にされ、
前記一方の高周波スィッチの前記複数の電界効果トランジスタの前記複数のゲート と前記制御電圧が供給される制御端子との間には複数の抵抗が接続され、前記他 方の高周波スィッチの前記他の複数の電界効果トランジスタの前記他の複数のゲー トと前記他の制御電圧が供給される他の制御端子との間には他の複数の抵抗が接 続され、
前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記共 通の入出力端子に最も近接した入出力近接電界効果トランジスタのゲートと前記他 の制御端子との間の入出力近接抵抗は、第 1の電圧'電流特性を持ち、
前記他方の高周波スィッチで前記入出力近接電界効果トランジスタと前記他の複 数の電界効果トランジスタのうちの前記他方の高周波スィッチの前記他端に最も近 接した他端近接電界効果トランジスタとの間の中間部の中間部電界効果トランジスタ のゲートと前記他の制御端子との間の中間部抵抗は、第 2の電圧'電流特性を持ち、 前記他方の高周波スィッチで前記入出力近接抵抗の前記第 1の電圧 ·電流特性の 線形性は前記中間部抵抗の前記第 2の電圧 ·電流特性の線形性よりも高く設定され て!/、ることを特徴とする無線通信端末装置。
[18] 前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記他 方の高周波スィッチの前記他端に最も近接した前記他端近接電界効果トランジスタ のゲートと前記他の制御端子との間の他端近接抵抗は、第 3の電圧 ·電流特性を持 ち、
前記他方の高周波スィッチで前記他端近接抵抗の前記第 3の電圧 ·電流特性の線 形性は前記中間部抵抗の前記第 2の電圧 ·電流特性の前記線形性よりも高く設定さ れていることを特徴とする請求項 17に記載の無線通信端末装置。
[19] 前記入出力近接抵抗の抵抗値は前記中間部抵抗の抵抗値よりも大きく設定され、 前記他端近接抵抗の抵抗値は前記中間部抵抗の抵抗値よりも大きく設定されている ことを特徴とする請求項 18に記載の無線通信端末装置。
[20] 前記他方の高周波スィッチで前記他の複数の電界効果トランジスタのうちの前記入 出力近接電界効果トランジスタの次に前記共通の入出力端子に近接した入出力第 2 近接電界効果トランジスタのゲートと前記入出力近接電界効果トランジスタの前記ゲ ートとの間に第 1抵抗が接続され、前記入出力第 2近接電界効果トランジスタの前記 ゲートと前記中間部電界効果トランジスタの前記ゲートとの間に第 2抵抗が接続され 、前記中間部電界効果トランジスタの前記ゲートと前記他の制御端子との間に第 3抵 抗が接続され、
前記入出力近接電界効果トランジスタの前記ゲートに接続された前記入出力近接 抵抗は、前記第 1抵抗と前記第 2抵抗と前記第 3抵抗とを含み、前記入出力第 2近接 電界効果トランジスタの前記ゲートに接続された入出力第 2近接抵抗は、前記第 1抵 抗を含まず、前記第 2抵抗と前記第 3抵抗とを含み、前記中間部電界効果トランジス タの前記ゲートに接続された前記中間部抵抗は、前記第 1抵抗と前記第 2抵抗とを 含まず、前記第 3抵抗を含み、
前記他方の高周波スィッチで前記中間部電界効果トランジスタの前記ゲートと前記 他の制御端子との間に、第 4抵抗が接続され、前記他方の高周波スィッチの前記他 の複数の電界効果トランジスタのうちの前記他端近接電界効果トランジスタの次に前 記他方の高周波スィッチの前記他端に近接した他端第 2近接電界効果トランジスタ のゲートと前記中間部電界効果トランジスタの前記ゲートとの間に第 5抵抗が接続さ れ、前記他端第 2近接電界効果トランジスタの前記ゲートと前記他端近接電界効果ト ランジスタの前記ゲートとの間に第 6抵抗が接続され、
前記他端近接電界効果トランジスタの前記ゲートに接続された前記他端近接抵抗 は前記第 4抵抗と前記第 5抵抗と前記第 6抵抗とを含み、前記他端第 2近接電界効 果トランジスタの前記ゲートに接続された他端第 2近接抵抗は、前記第 6抵抗を含ま ず、前記第 4抵抗と前記第 5抵抗とを含み、前記中間部電界効果トランジスタの前記 ゲートに接続された前記中間部抵抗は、前記第 5抵抗と前記第 6抵抗とを含まず、前 記第 4抵抗を含むことを特徴とする請求項 19に記載の無線通信端末装置。
[21] 前記複数の高周波スィッチの前記一方の高周波スィッチの前記他端には前記所 定の通信方式としての WCDMA方式による前記 RF送信信号と前記 RF受信信号と が供給可能にされ、前記複数の高周波スィッチの前記他端には前記他の RF送信信 号が供給可能にされ、
前記一方の高周波スィッチの前記他端と接地ノードとの間には一方の接地スィッチ が接続され、前記他方の高周波スィッチの前記他端と前記接地ノードとの間には他 方の接地スィッチが接続され、
前記一方の高周波スィッチがオン状態に制御される時には、前記一方の接地スィ ツチはオフ状態に、前記他方の高周波スィッチはオフ状態に、前記他方の接地スイツ チはオン状態にそれぞれ制御され、
前記他方の高周波スィッチがオン状態に制御される時には、前記他方の接地スィ ツチはオフ状態に、前記一方の高周波スィッチはオフ状態に、前記一方の接地スイツ チはオン状態にそれぞれ制御されることを特徴とする請求項 17に記載の無線通信 端末装置。
[22] 前記共通の入出力端子と前記他方の高周波スィッチの前記入出力近接電界効果 トランジスタの前記ゲートとの間に入出力付加容量が接続され、
前記複数の高周波スィッチの前記他方の高周波スィッチの前記他端に供給される 前記他の RF送信信号は GSM850と GSM900と DCS1800と PCS1900のいずれ かの RF送信信号であることを特徴とする請求項 21に記載の無線通信端末装置。 [23] DCブースト回路を含み、
前記 DCブースト回路は、高周波入力端子と、 DC制御入力端子と、 DC出力端子と を含み
前記高周波入力端子に高周波入力信号が供給され、前記 DC制御入力端子に D C制御電圧が供給され、前記 DC出力端子から DC出力電圧が生成され、
前記 DCブースト回路では、第 1容量素子と第 1抵抗素子との直列接続の一方の端 子には前記高周波入力端子が接続され、第 1ダイオードと第 2ダイオードとは第 2容 量素子を介して逆方向に並列接続され、前記第 1ダイオードと前記第 2ダイオードの 共通接続点は前記直列接続の他方の端子に接続され、前記第 1ダイオードと前記第 2容量素子の一方の端子の共通接続点は前記 DC制御入力端子に接続され、前記 第 2ダイオードと前記第 2容量素子の他方の端子の共通接続点は前記第 2抵抗素子 を介して前記 DC出力端子に接続され、
前記第 2容量素子を介しての前記第 1ダイオードと前記第 2ダイオードとの逆方向 の並列接続の内部の前記第 1ダイオードの第 1直列抵抗の抵抗値と前記第 2直列抵 杭の抵抗値よりも、前記第 1抵抗素子の抵抗値は大きく設定されている半導体集積 回路。
[24] 信号入力端子と信号出力端子との間に接続された高周波スィッチを更に含み、 前記高周波スィッチの前記信号入力端子には高周波入力信号が供給され、前記 高周波スィッチの制御入力端子には前記 DCブースト回路の前記 DC出力端子から 生成される前記 DC出力電圧が供給される請求項 23に記載の半導体集積回路。
[25] 前記高周波スィッチは電界効果トランジスタを含み、前記高周波スィッチの前記制 御入力端子としての前記電界効果トランジスタのゲートに高レベルの前記 DC出力電 圧が供給されることにより、前記電界効果トランジスタは導通して前記高周波スィッチ の前記信号入力端子に供給される前記高周波入力信号は前記信号出力端子に伝 達される請求項 24に記載の半導体集積回路。
[26] 前記高周波スィッチとしての前記電界効果トランジスタは、ドレイン 'ソース経路が前 記高周波スィッチの前記信号入力端子と前記信号出力端子との間に直列接続され た複数の電界効果トランジスタで構成されている請求項 25に記載の半導体集積回 路。
[27] 前記高周波スィッチとしての前記電界効果トランジスタは、化合物半導体チップに 形成されたへテロ接合の HEMTで構成されている請求項 26に記載の半導体集積 回路。
[28] DCブースト回路を含み、
前記 DCブースト回路は、高周波入力端子と、 DC制御入力端子と、 DC出力端子と を含み、
前記 DCブースト回路の前記高周波入力端子に高周波入力信号が供給され、前記 DC制御入力端子に DC制御電圧が供給されことにより、前記 DC出力端子から DC 出力電圧が生成され、
前記 DCブースト回路は、第 1容量素子、第 2容量素子、第 1ダイオード、第 2ダイォ ード、第 1抵抗素子、第 2抵抗素子を含み、前記第 1容量素子と前記第 1抵抗素子と の直列接続の一方の端子には、前記高周波入力端子が接続され、前記直列接続の 他方の端子は、前記第 1ダイオードの力ソードと前記第 2ダイオードのアノードとに接 続され、前記第 1ダイオードのアノードと前記第 2容量素子の一方の端子とは前記 D C制御入力端子に接続され、前記第 2ダイオードの力ソードと前記第 2容量素子の他 方の端子とは前記第 2抵抗素子の一方の端子に接続され、前記第 2抵抗素子の他 方の端子は、前記 DC出力端子に接続され、
前記第 1ダイオードと前記第 2ダイオードと前記第 2容量素子とからなる閉ループの 内部の前記第 1ダイオードの第 1直列抵抗の抵抗値と前記第 2ダイオードの第 2直列 抵抗の抵抗値よりも、前記第 1抵抗素子の抵抗値は大きく設定されている半導体集 積回路。
[29] 信号入力端子と信号出力端子との間に接続された高周波スィッチを更に含み、 前記高周波スィッチの前記信号入力端子には高周波入力信号が供給され、前記 高周波スィッチの制御入力端子には前記 DCブースト回路の前記 DC出力端子から 生成される前記 DC出力電圧が供給される請求項 28に記載の半導体集積回路。
[30] 前記高周波スィッチは電界効果トランジスタを含み、前記高周波スィッチの前記制 御入力端子としての前記電界効果トランジスタのゲートに高レベルの前記 DC出力電 圧が供給されることにより、前記電界効果トランジスタは導通して前記高周波スィッチ の前記信号入力端子に供給される前記高周波入力信号は前記信号出力端子に伝 達される請求項 29に記載の半導体集積回路。
[31] 前記高周波スィッチとしての前記電界効果トランジスタは、ドレイン 'ソース経路が前 記高周波スィッチの前記信号入力端子と前記信号出力端子との間に直列接続され た複数の電界効果トランジスタで構成されている請求項 30に記載の半導体集積回 路。
[32] 前記高周波スィッチとしての前記電界効果トランジスタは、化合物半導体チップに 形成されたへテロ接合の HEMTで構成されて!/、る請求項 31に記載の半導体集積 回路。
[33] 送受信アンテナに接続可能な入出力端子と、少なくとも 1個以上の受信信号出力 端子と、少なくとも 1個以上の送信信号入力端子とを含み、
前記入出力端子と前記受信信号出力端子との間には受信用高周波スィッチが接 続され、前記入出力端子と前記送信信号入力端子との間には送信高周波スィッチが 接続され、
前記受信用高周波スィッチの受信制御入力端子には受信制御電圧が供給され、 前記受信用高周波スィッチは、受信用電界効果トランジスタを含み、前記受信用高 周波スィッチの前記受信用制御入力端子としての前記受信用電界効果トランジスタ のゲートに高レベルの前記受信制御電圧が供給されることにより、前記受信用電界 効果トランジスタは導通して、前記入出力端子に前記送受信アンテナから供給される 受信高周波入力信号が前記受信信号出力端子に伝達され、
前記送信用高周波スィッチは、送信用電界効果トランジスタと DCブースト回路とを 含み、前記 DCブースト回路は、高周波入力端子と、 DC制御入力端子と、 DC出力 端子とを含み、前記 DCブースト回路の前記高周波入力端子に送信高周波出力信 号が供給され、前記 DC制御入力端子に DC制御電圧が供給されることにより、前記 DC出力端子から DC出力電圧が生成され、前記送信用高周波スィッチの送信用信 号入力端子には前記送信高周波出力信号が供給され、前記送信用高周波スィッチ の送信用信号出力端子は前記入出力端子と接続され、前記送信用高周波スィッチ の送信用制御入力端子としての前記送信用電界効果トランジスタのゲートに、前記 D Cブースト回路の前記 DC出力端子からの高レベルの前記 DC出力電圧が供給され ることにより、前記送信用電界効果トランジスタは導通して、前記送信用高周波スイツ チの前記送信用信号入力端子に供給される前記送信高周波出力信号は前記入出 力端子に伝達され、
前記各 DCブースト回路は、第 1容量素子、第 2容量素子、第 1ダイオード、第 2ダイ オード、第 1抵抗素子、第 2抵抗素子を含み、前記第 1容量素子と前記第 1抵抗素子 との直列接続の一方の端子には、前記高周波入力端子が接続され、前記直列接続 の他方の端子は、前記第 1ダイオードの力ソードと前記第 2ダイオードのアノードとに 接続され、前記第 1ダイオードのアノードと前記第 2容量素子の一方の端子とは前記 DC制御入力端子に接続され、前記第 2ダイオードの力ソードと前記第 2容量素子の 他方の端子とは前記第 2抵抗素子の一方の端子に接続され、前記第 2抵抗素子の 他方の端子は、前記 DC出力端子に接続され、
前記第 1ダイオードと前記第 2ダイオードと前記第 2容量素子とからなる閉ループの 内部の前記第 1ダイオードの第 1直列抵抗の抵抗値と前記第 2ダイオードの第 2直列 抵抗の抵抗値よりも、前記第 1抵抗素子の抵抗値は大きく設定されている半導体集 積回路。
[34] 前記受信用高周波スィッチ、前記送信用高周波スィッチの高周波スィッチとしての 前記各電界効果トランジスタは、ドレイン 'ソース経路が直列接続された複数の電界 効果トランジスタで構成されている請求項 33に記載の半導体集積回路。
[35] 前記高周波スィッチとしての前記電界効果トランジスタは、化合物半導体チップに 形成されたへテロ接合の HEMTで構成されている請求項 34に記載の半導体集積 回路。
[36] 高周波アナログ信号処理半導体集積回路から生成される高周波送信信号を増幅 してアンテナへ供給する電力増幅器と、
前記アンテナで受信される高周波受信信号を高周波アナログ信号処理半導体集 積回路に供給する一方、前記電力増幅器の出力信号を前記アンテナへ供給するた めのアンテナスィッチ半導体集積回路とを含む高周波モジュールであって、 前記アンテナスィッチ半導体集積回路として請求項 23の半導体集積回路を用いた ことを特徴とする高周波モジュール。
[37] 高周波アナログ信号処理半導体集積回路から生成される高周波送信信号を増幅 してアンテナへ供給する電力増幅器と、
前記アンテナで受信される高周波受信信号を高周波アナログ信号処理半導体集 積回路に供給する一方、前記電力増幅器の出力信号を前記アンテナへ供給するた めのアンテナスィッチ半導体集積回路とを含む高周波モジュールであって、 前記アンテナスィッチ半導体集積回路として請求項 28の半導体集積回路を用いた ことを特徴とする高周波モジュール。
[38] 高周波アナログ信号処理半導体集積回路から生成される高周波送信信号を増幅 してアンテナへ供給する電力増幅器と、
前記アンテナで受信される高周波受信信号を高周波アナログ信号処理半導体集 積回路に供給する一方、前記電力増幅器の出力信号を前記アンテナへ供給するた めのアンテナスィッチ半導体集積回路とを含む高周波モジュールであって、 前記アンテナスィッチ半導体集積回路として請求項 33の半導体集積回路を用いた ことを特徴とする高周波モジュール。
PCT/JP2007/071733 2006-11-09 2007-11-08 Circuit intégré semi-conducteur, module rf utilisant celui-ci et dispositif de terminal de communication radio utilisant celui-ci WO2008056747A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/513,280 US8200167B2 (en) 2006-11-09 2007-11-08 Semiconductor integrated circuit, RF module using the same, and radio communication terminal device using the same
JP2008543125A JP4524478B2 (ja) 2006-11-09 2007-11-08 半導体集積回路、それを内蔵したrfモジュールおよびそれを搭載した無線通信端末装置
CN2007800414039A CN101536327B (zh) 2006-11-09 2007-11-08 半导体集成电路、内置它的rf模块和安装它的无线通信终端装置
US13/448,033 US8335479B2 (en) 2006-11-09 2012-04-16 Semiconductor integrated circuit, RF module using the same, and radio communication terminal device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006303874 2006-11-09
JP2006-303874 2006-11-09
JP2007019130 2007-01-30
JP2007-019130 2007-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/513,280 A-371-Of-International US8200167B2 (en) 2006-11-09 2007-11-08 Semiconductor integrated circuit, RF module using the same, and radio communication terminal device using the same
US13/448,033 Division US8335479B2 (en) 2006-11-09 2012-04-16 Semiconductor integrated circuit, RF module using the same, and radio communication terminal device using the same

Publications (1)

Publication Number Publication Date
WO2008056747A1 true WO2008056747A1 (fr) 2008-05-15

Family

ID=39364558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071733 WO2008056747A1 (fr) 2006-11-09 2007-11-08 Circuit intégré semi-conducteur, module rf utilisant celui-ci et dispositif de terminal de communication radio utilisant celui-ci

Country Status (4)

Country Link
US (3) US8200167B2 (ja)
JP (1) JP4524478B2 (ja)
CN (1) CN101536327B (ja)
WO (1) WO2008056747A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114837A (ja) * 2008-11-10 2010-05-20 Renesas Technology Corp 半導体集積回路およびそれを内蔵した高周波モジュール
JP2010258150A (ja) * 2009-04-23 2010-11-11 Renesas Electronics Corp 半導体装置
WO2011014582A3 (en) * 2009-07-29 2011-05-26 Qualcomm Incorporated Switches with variable control voltages
JP2011166663A (ja) * 2010-02-15 2011-08-25 Renesas Electronics Corp アンテナスイッチおよびそれを内蔵した高周波モジュール
US20120003944A1 (en) * 2009-05-22 2012-01-05 Huizhou Tcl Mobile Communication Co., Ltd. Radio transceiver for mobile communication terminal
WO2012161032A1 (ja) * 2011-05-20 2012-11-29 株式会社村田製作所 半導体集積回路装置および高周波モジュール
JP2013501410A (ja) * 2009-07-28 2013-01-10 クゥアルコム・インコーポレイテッド 改良されたバイアスを備えるスイッチ
WO2013084739A1 (ja) * 2011-12-09 2013-06-13 株式会社村田製作所 半導体装置及び高周波モジュール
US10211830B2 (en) 2017-04-28 2019-02-19 Qualcomm Incorporated Shunt termination path

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631607B2 (ja) * 2009-08-21 2014-11-26 株式会社東芝 マルチチップモジュール構造を有する高周波回路
US8552816B2 (en) * 2010-03-23 2013-10-08 Rf Micro Devices, Inc. Multiband simultaneous transmission and reception front end architecture
US9008597B2 (en) 2010-04-20 2015-04-14 Rf Micro Devices, Inc. Direct current (DC)-DC converter having a multi-stage output filter
US9577590B2 (en) 2010-04-20 2017-02-21 Qorvo Us, Inc. Dual inductive element charge pump buck and buck power supplies
US9900204B2 (en) 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US9553550B2 (en) * 2010-04-20 2017-01-24 Qorvo Us, Inc. Multiband RF switch ground isolation
JP5672098B2 (ja) * 2011-03-18 2015-02-18 富士通株式会社 無線端末装置
JP2013016975A (ja) * 2011-07-01 2013-01-24 Toshiba Corp 半導体スイッチ及び無線機器
US8638698B2 (en) * 2011-07-26 2014-01-28 Motorola Mobility Llc Front end employing pin diode switch with high linearity and low loss for simultaneous transmission
US20130029614A1 (en) * 2011-07-29 2013-01-31 Samsung Electro-Mechanics Company Systems, Methods, and Apparatuses for Negative-Charge-Pump-Based Antenna Switch Controllers Utilizing Battery Supplies
US9413415B2 (en) * 2011-12-20 2016-08-09 Murata Manufacturing Co., Ltd. High frequency module
CN103219975B (zh) * 2012-01-19 2016-10-19 三星电机株式会社 高频开关
CN103219974B (zh) * 2012-01-19 2016-05-11 三星电机株式会社 高频开关
JP5880114B2 (ja) * 2012-02-17 2016-03-08 ソニー株式会社 集積回路および無線通信装置
US8891266B2 (en) * 2012-03-13 2014-11-18 International Business Machines Corporation Monolithic high voltage multiplier having high voltage semiconductor diodes and high-k capacitors
TW201419771A (zh) * 2012-11-08 2014-05-16 Ind Tech Res Inst 切換電路及射頻切換電路及其切換方法
US9306613B2 (en) 2013-01-10 2016-04-05 Google Technology Holdings LLC Variable antenna match linearity
US9240770B2 (en) * 2013-03-15 2016-01-19 Rf Micro Devices, Inc. Harmonic cancellation circuit for an RF switch branch
KR20150035219A (ko) * 2013-09-27 2015-04-06 삼성전기주식회사 고주파 스위치
US20150171860A1 (en) * 2013-11-13 2015-06-18 Skyworks Solutions, Inc. Circuits and methods for improved quality factor in a stack of transistors
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US10455729B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. Enclosure cooling system
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US9196459B2 (en) 2014-01-10 2015-11-24 Reno Technologies, Inc. RF impedance matching network
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US9697991B2 (en) 2014-01-10 2017-07-04 Reno Technologies, Inc. RF impedance matching network
CN104935316B (zh) * 2014-03-21 2018-08-31 博通集成电路(上海)股份有限公司 用于控制收发通路切换的射频开关、射频系统和操作方法
US9515645B2 (en) 2014-06-03 2016-12-06 Infineon Technologies Ag System and method for a radio frequency switch
US20150381160A1 (en) * 2014-06-26 2015-12-31 Infineon Technologies Ag Robust multiplexer, and method for operating a robust multiplexer
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US11017983B2 (en) 2015-02-18 2021-05-25 Reno Technologies, Inc. RF power amplifier
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10340879B2 (en) 2015-02-18 2019-07-02 Reno Technologies, Inc. Switching circuit
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US11150283B2 (en) 2015-06-29 2021-10-19 Reno Technologies, Inc. Amplitude and phase detection circuit
US10984986B2 (en) 2015-06-29 2021-04-20 Reno Technologies, Inc. Impedance matching network and method
US11081316B2 (en) 2015-06-29 2021-08-03 Reno Technologies, Inc. Impedance matching network and method
US11335540B2 (en) 2015-06-29 2022-05-17 Reno Technologies, Inc. Impedance matching network and method
US11342160B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Filter for impedance matching
US11342161B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Switching circuit with voltage bias
US10692699B2 (en) 2015-06-29 2020-06-23 Reno Technologies, Inc. Impedance matching with restricted capacitor switching
CN106452409A (zh) * 2016-11-14 2017-02-22 江苏本能科技有限公司 射频电路选通开关
US10714314B1 (en) 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US11393659B2 (en) 2017-07-10 2022-07-19 Reno Technologies, Inc. Impedance matching network and method
US11114280B2 (en) 2017-07-10 2021-09-07 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
US11101110B2 (en) 2017-07-10 2021-08-24 Reno Technologies, Inc. Impedance matching network and method
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US10727029B2 (en) 2017-07-10 2020-07-28 Reno Technologies, Inc Impedance matching using independent capacitance and frequency control
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US11315758B2 (en) 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching
US11538662B2 (en) 2019-05-21 2022-12-27 Reno Technologies, Inc. Impedance matching network and method with reduced memory requirements
US10715133B1 (en) 2019-05-30 2020-07-14 Qorvo Us, Inc. Radio frequency switch
CN114342267B (zh) * 2019-08-28 2023-12-26 株式会社村田制作所 高频模块以及通信装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270659A (ja) * 1996-01-31 1997-10-14 Matsushita Electric Ind Co Ltd スイッチアッテネータ
JPH10150395A (ja) * 1996-11-20 1998-06-02 Hitachi Ltd スイッチ回路およびスイッチならびに無線装置
US20040229577A1 (en) * 2003-05-16 2004-11-18 Triquint Semiconductor, Inc. Boost circuit
JP2005006072A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 高周波スイッチ装置および半導体装置
JP2005057375A (ja) * 2003-08-08 2005-03-03 Tdk Corp 高周波スイッチモジュールおよび高周波スイッチモジュール用多層基板
JP2006050590A (ja) * 2004-07-01 2006-02-16 Nec Corp 無線装置、該無線装置に用いられる制御方法及び制御プログラム
JP2006174425A (ja) * 2004-11-17 2006-06-29 Matsushita Electric Ind Co Ltd 高周波スイッチ回路及び半導体装置
JP2006303775A (ja) * 2005-04-19 2006-11-02 Renesas Technology Corp 半導体回路装置および高周波電力増幅モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169775B2 (ja) * 1994-08-29 2001-05-28 株式会社日立製作所 半導体回路、スイッチ及びそれを用いた通信機
US5777530A (en) * 1996-01-31 1998-07-07 Matsushita Electric Industrial Co., Ltd. Switch attenuator
US6218890B1 (en) 1998-07-14 2001-04-17 Sanyo Electric Co., Ltd. Switching circuit device and semiconductor device
JP3600072B2 (ja) 1998-07-14 2004-12-08 三洋電機株式会社 半導体装置
JP4202852B2 (ja) 2003-08-27 2008-12-24 株式会社ルネサステクノロジ 通信用電子部品および送受信切替え用半導体装置
JP2005303775A (ja) 2004-04-14 2005-10-27 Pioneer Electronic Corp 音響変換器用振動板
EP1612965A3 (en) 2004-07-01 2012-01-04 NEC Corporation Antenna selector
US7391282B2 (en) 2004-11-17 2008-06-24 Matsushita Electric Industrial Co., Ltd. Radio-frequency switch circuit and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270659A (ja) * 1996-01-31 1997-10-14 Matsushita Electric Ind Co Ltd スイッチアッテネータ
JPH10150395A (ja) * 1996-11-20 1998-06-02 Hitachi Ltd スイッチ回路およびスイッチならびに無線装置
US20040229577A1 (en) * 2003-05-16 2004-11-18 Triquint Semiconductor, Inc. Boost circuit
JP2005006072A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 高周波スイッチ装置および半導体装置
JP2005057375A (ja) * 2003-08-08 2005-03-03 Tdk Corp 高周波スイッチモジュールおよび高周波スイッチモジュール用多層基板
JP2006050590A (ja) * 2004-07-01 2006-02-16 Nec Corp 無線装置、該無線装置に用いられる制御方法及び制御プログラム
JP2006174425A (ja) * 2004-11-17 2006-06-29 Matsushita Electric Ind Co Ltd 高周波スイッチ回路及び半導体装置
JP2006303775A (ja) * 2005-04-19 2006-11-02 Renesas Technology Corp 半導体回路装置および高周波電力増幅モジュール

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159282B2 (en) 2008-11-10 2012-04-17 Renesas Electronics Corporation Semiconductor integrated circuit and high frequency module with the same
JP2010114837A (ja) * 2008-11-10 2010-05-20 Renesas Technology Corp 半導体集積回路およびそれを内蔵した高周波モジュール
US8330524B2 (en) 2008-11-10 2012-12-11 Renesas Electronics Corporation Semiconductor integrated circuit and high frequency module with the same
JP2010258150A (ja) * 2009-04-23 2010-11-11 Renesas Electronics Corp 半導体装置
US20120003944A1 (en) * 2009-05-22 2012-01-05 Huizhou Tcl Mobile Communication Co., Ltd. Radio transceiver for mobile communication terminal
JP2013501410A (ja) * 2009-07-28 2013-01-10 クゥアルコム・インコーポレイテッド 改良されたバイアスを備えるスイッチ
KR101354816B1 (ko) * 2009-07-28 2014-01-22 퀄컴 인코포레이티드 개선된 바이어싱을 갖는 스위치
WO2011014582A3 (en) * 2009-07-29 2011-05-26 Qualcomm Incorporated Switches with variable control voltages
KR101354753B1 (ko) 2009-07-29 2014-01-22 퀄컴 인코포레이티드 가변 제어 전압을 이용하는 스위치
JP2011166663A (ja) * 2010-02-15 2011-08-25 Renesas Electronics Corp アンテナスイッチおよびそれを内蔵した高周波モジュール
WO2012161032A1 (ja) * 2011-05-20 2012-11-29 株式会社村田製作所 半導体集積回路装置および高周波モジュール
JP5494890B2 (ja) * 2011-05-20 2014-05-21 株式会社村田製作所 半導体集積回路装置および高周波モジュール
WO2013084739A1 (ja) * 2011-12-09 2013-06-13 株式会社村田製作所 半導体装置及び高周波モジュール
JPWO2013084739A1 (ja) * 2011-12-09 2015-04-27 株式会社村田製作所 半導体装置及び高周波モジュール
US9444512B2 (en) 2011-12-09 2016-09-13 Murata Manufacturing Co., Ltd. Semiconductor device and high-frequency module
US10211830B2 (en) 2017-04-28 2019-02-19 Qualcomm Incorporated Shunt termination path

Also Published As

Publication number Publication date
US20120200335A1 (en) 2012-08-09
US20130069708A1 (en) 2013-03-21
US8676132B2 (en) 2014-03-18
CN101536327B (zh) 2013-03-13
JP4524478B2 (ja) 2010-08-18
CN101536327A (zh) 2009-09-16
US8200167B2 (en) 2012-06-12
US20100069020A1 (en) 2010-03-18
US8335479B2 (en) 2012-12-18
JPWO2008056747A1 (ja) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008056747A1 (fr) Circuit intégré semi-conducteur, module rf utilisant celui-ci et dispositif de terminal de communication radio utilisant celui-ci
US7890063B2 (en) Systems, methods, and apparatuses for complementary metal oxide semiconductor (CMOS) antenna switches using body switching in multistacking structure
TWI735454B (zh) 藉由開關以減少諧波漏泄之無線收發器
US7843280B2 (en) Systems, methods, and apparatuses for high power complementary metal oxide semiconductor (CMOS) antenna switches using body switching and substrate junction diode controlling in multistacking structure
US7738841B2 (en) Systems, methods and apparatuses for high power complementary metal oxide semiconductor (CMOS) antenna switches using body switching and external component in multi-stacking structure
CN101741410B (zh) 半导体集成电路及内置有该半导体集成电路的高频模块
TWI459629B (zh) Semiconductor integrated circuit device and high frequency module
US7307479B2 (en) Handset radiofrequency front end module in fine pitch quad flat no lead (FQFP-N) package
US10153803B2 (en) Receiving circuit, wireless communication module, and wireless communication device
US8466745B2 (en) Hybrid reconfigurable multi-bands multi-modes power amplifier module
US8843083B2 (en) CMOS switching circuitry of a transmitter module
US10171123B2 (en) Triple-gate PHEMT for multi-mode multi-band switch applications
US20210250054A1 (en) Radio frequency circuit, radio frequency module, and communication device
US20050270711A1 (en) ESD protection circuit for high speed signaling including T/R switches
US8884702B2 (en) Power amplifier with supply switching
EP1162737A1 (en) Semiconductor device and communication device
WO2023286798A1 (ja) 電力増幅回路及び電力増幅方法
WO2023282206A1 (ja) 電力増幅回路および通信装置
JP5494890B2 (ja) 半導体集積回路装置および高周波モジュール
WO2023106183A1 (ja) 電力増幅回路および通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041403.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008543125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12513280

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07831464

Country of ref document: EP

Kind code of ref document: A1