WO2008056729A1 - Dispositif de freinage pour véhicule de chantier et véhicule de chantier - Google Patents

Dispositif de freinage pour véhicule de chantier et véhicule de chantier Download PDF

Info

Publication number
WO2008056729A1
WO2008056729A1 PCT/JP2007/071691 JP2007071691W WO2008056729A1 WO 2008056729 A1 WO2008056729 A1 WO 2008056729A1 JP 2007071691 W JP2007071691 W JP 2007071691W WO 2008056729 A1 WO2008056729 A1 WO 2008056729A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
braking
transmission
reaction force
operation amount
Prior art date
Application number
PCT/JP2007/071691
Other languages
English (en)
French (fr)
Inventor
Kensuke Futahashi
Masataka Kawaguchi
Munenobu Uchida
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to US12/375,384 priority Critical patent/US20100006380A1/en
Priority to EP07831422.6A priority patent/EP2058189A4/en
Publication of WO2008056729A1 publication Critical patent/WO2008056729A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07509Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/121Fork lift trucks, Clarks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention includes a work vehicle braking device and a work vehicle, and in particular, an electric motor as a drive source.
  • the present invention relates to a brake device for a work vehicle that performs work such as cargo handling and civil engineering, and a work vehicle.
  • a work vehicle that uses an electric motor (motor) as a drive source in the work vehicle, for example, a battery-type work vehicle that is driven only by a motor, or a hybrid-type work vehicle that is driven by a motor and an engine
  • the motor is used during braking.
  • a method is known in which regenerative braking is performed using a generator as a generator, and the kinetic energy of the vehicle is recovered as electric energy (see, for example, Patent Documents 1 and 2).
  • a method is generally used in which the braking torque is calculated from the operation amount of the brake pedal, the braking torque obtained by the motor is generated, and the braking force and the regenerative power are obtained.
  • Regenerative braking using the above-mentioned motor is combined with braking by a general mechanical brake as a backup when the braking force is insufficient or when the braking force cannot be exhibited due to battery overcharge or motor failure. Often used.
  • the braking force in the mechanical brake is generated as follows.
  • the master cylinders connected by the link mechanism are compressed.
  • Brake pressure is generated in the compressed master cylinder, and the brake pressure is transmitted to the brake cylinder.
  • the brake cylinder spreads the drum brake, and the drum brake is pressed against the inner surface of the wheel.
  • the braking force is generated by the friction force acting between the pressed drum brake and the wheel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-338546
  • Patent Document 2 JP-A-10-271608
  • a mechanical brake is Use regenerative braking with a motor at the same time to demonstrate the braking force of the motor and collect the movement energy!
  • the present invention has been made to solve the above-described problems, and it is possible to improve the amount of energy recovered by regenerative braking and to prevent a decrease in reliability when braking a work vehicle.
  • An object of the present invention is to provide a work vehicle that can be used.
  • the present invention provides the following means.
  • the brake operation unit operated by the driver, the operation amount detection unit that detects the operation amount of the brake operation unit, and the rotation of the wheel are converted into electric energy.
  • a regenerative unit that brakes the rotation of the wheel, a control unit that controls the regenerative unit based on the output of the operation amount detection unit, and the transmission of the operation amount is cut off when the operation amount is smaller than a predetermined value V.
  • the transmission unit transmits the operation amount obtained by removing the predetermined value from the operation amount, and the wheel is rotated based on the operation amount transmitted from the transmission unit.
  • a brake device for a work vehicle provided with a braking portion that brakes by frictional force.
  • the regenerative braking is performed by the regenerative unit based on the output of the operation amount detection unit.
  • the operation amount is not transmitted from the part to the braking part, and braking by friction by the braking part is not performed.
  • the kinetic energy of the work vehicle is converted into electric energy by the regenerative unit that is not consumed by friction braking.
  • the amount of recovered material can be improved.
  • regenerative braking and friction braking are performed simultaneously by increasing the operation amount of the brake operation unit.
  • a sufficient braking force for braking the work vehicle is ensured.
  • friction braking can be performed by increasing the amount of operation of the brake operation unit, and the work vehicle is braked. A braking force is secured.
  • the predetermined value of the operation amount is a value set by a balance between improvement of the energy recovery amount by regenerative braking and ensuring of the certainty of braking by friction braking.
  • the reaction force generation unit is an elastic member that generates the reaction force by being deformed based on the operation amount, and the arrangement position of the reaction force generation unit is changed. Therefore, it is desirable that a reaction force adjusting unit for adjusting the strength of the reaction force is provided.
  • the strength of the reaction force generated in proportion to the operation amount is changed, so that an operation feeling equivalent to that of a conventional work vehicle braking device having only a braking portion can be obtained.
  • the reaction force adjustment unit By changing the position of the reaction force generator in the direction of movement of the brake operation unit by the reaction force adjustment unit and adjusting the amount of deformation of the elastic member, the minimum amount of operation that generates reaction force and the reaction force that occurs The strength of the power is adjusted.
  • the range of the operation amount in which only regenerative braking works according to the vehicle speed of the work vehicle and the reaction force transmitted to the driver can be adjusted, and the same braking force and deceleration can always be obtained.
  • the reaction force generating portion is an elastic member that generates the reaction force by being deformed based on the operation amount, and a bottomed cylinder is formed at one end of the elastic member.
  • One of a cylindrical reaction force cylinder portion and a rod-shaped reaction force piston portion that is disposed so as to be relatively movable inside the reaction force cylinder portion is disposed in a reaction force space between the reaction force cylinder portion and the reaction force piston portion.
  • a reaction force control valve for controlling the flow of the liquid is provided in a flow path connecting the outside of the reaction cylinder and the reaction force space when the liquid is filled.
  • the braking unit includes a pressure generating unit for increasing a fluid pressure based on the operation amount transmitted from the transmission unit, and the pressure generating unit based on the fluid pressure. It is desirable to have a friction generating part that generates a frictional force with the wheel!
  • the fluid pressure is increased based on the operation amount, and the friction braking force is generated based on the fluid pressure. Therefore, the pressure generating unit and the friction generating unit are arranged at positions separated from each other. Even so, the braking force is applied to the plurality of wheels at substantially the same time and at substantially the same strength.
  • the braking unit includes a pressure generating unit that increases a fluid pressure based on the operation amount transmitted from the transmission unit, and the brake unit based on the fluid pressure.
  • a friction generating section that generates a frictional force with the wheel, and the transmission section is connected to the input section connected to the brake operation section and to the pressure generating section and the input section. It is desirable that at least one of the input unit and the output unit is provided with a limiting unit that limits the distance of relative movement. .
  • the input unit and the output unit move relative to each other, so that the operation amount of the brake operation unit is not transmitted from the input unit to the output unit.
  • the relative movement distance increases and the relative movement between the input unit and the output unit is restricted by the restriction unit, the operation amount of the brake operation unit is transmitted from the input unit to the output unit.
  • the braking unit includes a pressure generating unit configured to increase a fluid pressure based on the operation amount transmitted from the transmission unit, and the pressure generating unit based on the fluid pressure.
  • car A friction generating section that generates a frictional force with the wheel, and the transmission section is connected to the brake operating section and to the pressure generating section and the input section.
  • at least one of the input unit and the output unit is provided with a limiting unit that restricts the relative movable distance, and the input unit and the output unit. It is desirable that a transmission adjusting unit for adjusting a distance that can be moved relative to the output unit is provided.
  • the minimum operation amount of the brake operation unit at which the friction braking by the braking unit acts is adjusted by adjusting the relative movable distance.
  • the force S for adjusting the range of the operation amount that only regenerative braking works according to the vehicle speed of the work vehicle can be adjusted, and the same braking force and deceleration can always be obtained with the same operation amount.
  • the braking unit includes a pressure generating unit that increases a fluid pressure based on the operation amount transmitted from the transmission unit, and the brake unit based on the fluid pressure.
  • a friction generating section that generates a frictional force with the wheel, and the transmission section is connected to the input section connected to the brake operation section and to the pressure generating section and the input section.
  • at least one of the input unit and the output unit is provided with a limiting unit that limits the distance that can be moved relative to the input unit.
  • one of the output portions is a bottomed cylindrical transmission cylinder portion, and the other is a rod-shaped transmission piston portion disposed in the transmission cylinder portion so as to be relatively movable, and the transmission cylinder portion and the Liquid is filled in the transmission space between the transmission piston part Before Symbol flow path connecting the external and the transmission space of the transfer cylinder, Les, Shi desirable transmission control valve for controlling the flow of the liquid is provided.
  • the operation amount of the brake operation part is the pressure Directly transmitted to the generator.
  • the brake unit includes a pressure generating unit that increases a fluid pressure based on the operation amount transmitted from the transmission unit, and the brake unit based on the fluid pressure.
  • a friction generating unit that generates a frictional force with the wheel, and a pressure detecting unit that detects a fluid pressure of the pressure generating unit, and the control unit outputs at least an output of the operation amount detecting unit. It is desirable to control the braking force generated by the regenerative unit based on the output of the pressure detection unit.
  • the friction braking force by the braking unit is estimated, and based on the estimated friction braking force, the regeneration by the regeneration unit is estimated.
  • the braking force is controlled.
  • the braking force corresponding to the operation amount is applied to the wheel in both the state where only the regenerative braking force is applied and the state where the regenerative braking force and the friction braking force are acting.
  • the relationship between the operation amount and the deceleration of the work vehicle is kept constant, and excessive or insufficient braking force is prevented from acting on the wheels.
  • a second aspect of the present invention is provided with an electric motor used as a power source for traveling and the work vehicle braking device according to the first aspect of the present invention, wherein the electric motor is connected to the braking device.
  • a work vehicle used as a regeneration unit is provided.
  • the work vehicle braking device since the work vehicle braking device according to the first aspect of the present invention is provided, the recovery amount of the electric energy by the regenerative unit is improved. Since the electric motor used in the above is used as the regenerative unit, the configuration of the work vehicle is simplified compared to the case where the electric motor and the regenerative unit are provided separately.
  • the regenerative braking by the regenerative unit is performed.
  • braking by friction by the braking unit is not performed.
  • the manipulated variable is greater than or equal to a predetermined value
  • regenerative braking is performed by the regenerative unit and friction braking is also performed by the braking unit, so that the amount of energy recovered by regenerative braking can be improved and the reliability can be improved when braking the work vehicle. The effect that the fall of sex can be prevented is produced.
  • FIG. 1 is a schematic diagram illustrating a configuration of a braking device in a forklift according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating control during braking in the forklift shown in FIG.
  • FIG. 3 is a graph for explaining the relationship between the braking torque determined by the controller, the vehicle speed and the depression amount.
  • FIG. 4 is a graph showing the relationship between the brake pedal depression amount and the braking force.
  • FIG. 5 is a graph showing the relationship between the brake pedal depression amount and the reaction force transmitted to the operator.
  • FIG. 6 is a schematic diagram for explaining another embodiment of the stroke sensor in FIG. 1.
  • FIG. 7 illustrates a configuration of a braking device in a forklift according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • FIG. 9 illustrates the configuration of a braking device in a forklift according to a third embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • FIG. 11 illustrates a configuration of a braking device in a forklift according to a fourth embodiment of the present invention.
  • FIG. 12 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • FIG. 13 illustrates the configuration of a braking device in a forklift according to a fifth embodiment of the present invention.
  • FIG. 14 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • FIG. 15 illustrates a configuration of a braking device in a forklift according to a sixth embodiment of the present invention.
  • FIG. 16 is a flowchart illustrating a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • Anti-spring Reaction force generator, elastic member
  • the present invention is applied to a hybrid forklift using an electric motor 35 and an engine (not shown) or a battery-type forklift (hereinafter referred to as a forklift) driven by an electric motor. Apply and explain.
  • FIG. 1 illustrates the configuration of the braking device in the forklift according to the present embodiment.
  • the forklift (work vehicle) 1 includes an input unit 3 through which an operator (driver) inputs a braking instruction by stepping on the brake pedal 9, and an electric engineer from the motion energy of the forklift 1.
  • a regenerative braking unit 5 that performs braking by collecting energy is provided, and a mechanical braking unit 7 that performs braking by converting the kinetic energy of the forklift into thermal energy.
  • the input unit 3 includes a brake pedal (brake operation unit) 9 that the operator steps on, a stroke sensor (operation amount detection unit) 11 that detects the depression amount (operation amount) of the brake pedal 9, and the depression amount.
  • a reaction force spring (reaction force generation part, inertia member) 13 that generates a reaction force on the brake pedal 9 according to the condition and a backlash part (transmission part) 17 that transmits the amount of depression to the master cylinder 15 are provided.
  • the stroke sensor 11 is disposed on the support portion 21 and detects the depression amount by detecting the rotation angle of the brake pedal 9.
  • the detection signal of the stroke sensor 11 is input to the controller 39.
  • a stroke sensor a well-known angle sensor can be used and it does not specifically limit.
  • the anti-cavern spring 13 has one end portion fixed to the stroke portion 23 and the other end portion fixed to a wall portion W such as a frame of the fork lift 1.
  • a wall portion W such as a frame of the fork lift 1.
  • the play portion 17 includes a bottomed cylindrical transmission cylinder portion (output portion) 25 and a transmission cylinder portion 25.
  • Rod-shaped transmission piston part (input part) that is arranged so that it can move relative to the transmission cylinder part 25
  • the transmission cylinder portion 25 is connected to the master cylinder 15, and the transmission piston portion 27 is connected to the stroke portion 23.
  • the bottom surface (limitation part) 29 of the transmission cylinder part 25 plays a role of restricting relative movement with the transmission piston part 27.
  • the distance (predetermined value) 31 between the transmission cylinder 25 and the transmission piston 27 serves as a mechanical dead zone that restricts the transmission of the amount of depression from the transmission piston 27 to the transmission cylinder 25.
  • the regenerative braking unit 5 is a power transmission mechanism 3 that transmits power between the wheels 33 and the electric motor 35.
  • an electric motor (regeneration unit) 35 that generates electric power by rotating the wheel 33
  • a battery 41 to be stored.
  • the power transmission mechanism 34 is disposed between the wheel 33 and the electric motor 35, and includes a transmission, a differential gear, an axle, and the like (not shown).
  • the electric motor 35 generates power by rotating the wheel 33 and performs regenerative braking, while generating power by the alternating current supplied from the inverter 37 to rotationally drive the wheel 33.
  • the inverter 37 converts the alternating current generated by the electric motor 35 during regenerative braking into a direct current, while converting the direct current supplied from the battery 41 into an alternating current used to drive the electric motor 35. .
  • the controller 39 controls the inverter 37 to control the braking torque or regenerative torque generated by the electric motor 35 during regenerative braking, while controlling the alternating current to be supplied to control the electric motor 35.
  • the generated drive torque is controlled.
  • the battery 41 is electrically connected to the inverter 37, and during regenerative braking, the DC current (regenerative current) converted in the inverter 37 is stored, while the DC current is supplied to the inverter 37 (discharged).
  • the electric motor 35 is rotationally driven.
  • the mechanical braking unit 7 includes a master cylinder 15 that generates hydraulic pressure according to the transmitted amount of depression, a reservoir tank 43 in which oil flows in and out between the master cylinder 15, and the generated hydraulic pressure.
  • the master cylinder 15 stores oil therein and generates oil pressure by pressing the internal oil in accordance with the depression amount transmitted by the backlash portion 17.
  • the master cylinder 15 is provided with a brake pipe 47 that transmits the generated hydraulic pressure to the brake cylinder 51.
  • the reservoir tank 43 is an oil reservoir that is connected to the master cylinder 15 so that oil can flow therethrough.
  • the drum brake 45 includes a drum 49 fixed to the wheel 33, a brake cylinder 51 that pushes the brake shoe 53 in accordance with hydraulic pressure, and a brake shoe that exerts braking force by frictional force that is pressed against the inner peripheral surface of the drum 49.
  • a brake cylinder 51 that pushes the brake shoe 53 in accordance with hydraulic pressure
  • a brake shoe that exerts braking force by frictional force that is pressed against the inner peripheral surface of the drum 49.
  • FIG. 2 is a flowchart for explaining control during braking in the forklift shown in FIG.
  • FIG. 3 illustrates the relationship between the braking torque determined by the controller, the vehicle speed, and the amount of depression.
  • the brake pedal 9 that is stepped on rotates around the support portion 21 and the rotation angle is determined by a stroke sensor.
  • the stroke portion 23 of the brake pedal 9 rotates toward the master cylinder 15 side, extends the anti-spring 13 (step S21), and moves the transmission piston portion 27 of the backlash portion 17 to the master cylinder 15 side.
  • the stretched reaction force spring 13 generates a reaction force (operator reaction force) that works in the direction opposite to the rotation direction of the stroke portion 23 (step S22).
  • the detection signal of the stroke sensor 11 is input to the controller 39 of the regenerative braking unit 5, and the controller 39 determines the braking torque generated by the electric motor 35 (step S12).
  • the braking torque is determined based on the travel speed (vehicle speed) of the forklift 1 in addition to the detection signal (depression amount) of the stroke sensor 11.
  • the vehicle speed used to determine the braking torque is calculated based on a signal relating to the rotational speed of the electric motor 35 input to the controller 39.
  • the controller 39 outputs a braking torque command to the inverter 37 in order to cause the electric motor 35 to generate the determined braking torque (step S13).
  • the inverter 37 is driven based on the braking torque command and generates regenerative power (step S14).
  • the generated regenerative power is stored in the battery 41.
  • the electric motor 35 generates a braking torque (step S15), the generated braking torque is transmitted to the power transmission mechanism 34 (step S16), and the braking force (regenerative braking force) is exerted on the wheel 33 ( Step S30).
  • step S23 When the operator increases the depression amount of the brake pedal 9 and the gap of the backlash portion 17 becomes zero (step S23), the transmission piston portion 27 comes into contact with the bottom surface 29 of the transmission cylinder portion 25. Therefore, the amount of depression is transmitted from the brake pedal 9 to the master cylinder 15, the internal oil is pressed and compressed (step S25), and brake pressure is generated (step S26).
  • the brake pressure is transmitted to the brake cylinder 51 through the brake pipe 47, and the brake cylinder 51 is expanded (step S27).
  • the brake cylinder spreads the brake shoe and presses it against the inner surface of the drum (step S28).
  • a frictional force acts between the brake shoe and the drum, and a braking force (mechanical braking force) due to the frictional force is exerted on the wheel 33 (step S30).
  • FIG. 4 is a graph showing the relationship between the brake pedal depression amount and the braking force.
  • FIG. 4 shows braking in a conventional forklift with only a mechanical brake.
  • FIG. 5 is a graph showing the relationship between the amount of depression of the brake pedal and the reaction force transmitted to the operator.
  • the operator reaction force transmitted to the operator is generated by the reaction spring 13 even in a range where the amount of depression of the brake pedal 9 is small and only the regenerative braking force is applied.
  • the reaction force generated by the master cylinder 15 is also added, and the operator reaction force increases.
  • the operator reaction force is equivalent to the operator reaction force in a conventional forklift equipped with only a mechanical brake.
  • regenerative braking is performed by the electric motor 35, while the stepping amount is not transmitted from the backlash portion 17 to the drum brake 45, and braking by the drum brake 45 is not performed.
  • the kinetic energy of the forklift 1 is converted into electric energy by the electric motor 35 that is not consumed by friction braking. Therefore, in the forklift 1 of the present embodiment, the amount of recovered electric energy can be improved, and a high regenerative capacity can be obtained.
  • regenerative braking and friction braking can be performed simultaneously by increasing the amount of depression of brake pedal 9, so that forklift 1 can be braked. Sufficient braking force is secured.
  • the brake pedal 9 can be used for friction braking by increasing the amount of depression of the brake pedal 9, forklift 1 The braking force for braking the vehicle can be ensured.
  • the transmission piston 27 comes into contact with the bottom surface 29 of the transmission cylinder 25. Then, further relative movement between the transmission piston 27 and the transmission cylinder 25 is limited, and the backlash 17 is controlled by the force S that transmits the amount of depression from the transmission piston 27 to the transmission cylinder 25.
  • the amount of depression of the brake pedal 9 is absorbed by the interval 31 of the backlash portion 17, and from the transmission piston portion 27 to the transmission cylinder portion 25. It is not transmitted to and is blocked. During this time, the electric energy of the forklift 1 is converted into electric energy by the electric motor 35 that is not consumed by friction braking. Therefore, in the forklift 1 of the present embodiment, the amount of recovered electric energy can be improved and a high regenerative capacity can be obtained.
  • FIG. 6 illustrates another embodiment of the stroke sensor of FIG.
  • an angle sensor that detects the rotation angle of the brake pedal 9 may be used as the stroke sensor 11, or the rotation distance of the stroke portion 23 is detected as shown in FIG.
  • the stroke sensor 11A may be used as a sensor, and is not particularly limited.
  • the rotation of the brake pedal detected by the stroke sensor can be calculated from the moving angle, and the regenerative braking unit can be controlled based on the calculated amount of depression, or a load sensor such as a load cell can be used instead of the stroke sensor to depress the brake pedal. It is not particularly limited to detect the force and control the regenerative braking unit based on the detected stepping force.
  • FIG. 7 and FIG. 7 The basic configuration of the forklift of this embodiment is the same as that of the first embodiment.
  • the control method of the regenerative braking unit is different from that of the first embodiment. Therefore, in the present embodiment, only the control method of the regenerative braking unit and components related thereto will be described using FIGS. 7 and 8, and description of other components and the like will be omitted.
  • FIG. 7 illustrates the configuration of the braking device in the forklift according to the present embodiment.
  • the forklift (work vehicle) 101 collects electric energy from the kinetic energy of the input unit 3 where the operator inputs a braking instruction by stepping on the brake pedal 9 and the forklift 101.
  • the regenerative braking unit 105 controls the power transmission mechanism 34 that transmits power between the wheel 33 and the electric motor 35, the electric motor 35 that generates electric power by the rotation of the wheel 33, and the braking torque of the electric motor 35.
  • the controller 139 controls the inverter 37 to control the braking torque or regenerative torque generated by the electric motor 35 during regenerative braking, while controlling the AC current to be supplied to control the electric motor 35 to The generated drive torque is controlled.
  • the mechanical braking unit 107 includes a master cylinder 15 that generates hydraulic pressure according to the transmitted amount of depression, a reservoir tank 43 that allows oil to flow in and out between the master cylinder 15, and the generated hydraulic pressure. And a drum brake 45 for braking the rotation of the wheel 33.
  • the master cylinder 15 is provided with a brake pipe 147 for transmitting the generated hydraulic pressure to the brake cylinder 51, and the brake pipe 147 is provided with a pressure sensor (pressure detection unit) 148 for measuring the generated hydraulic pressure.
  • the output of the pressure sensor 148 is input to the controller 139.
  • FIG. 8 is a flowchart for explaining a part unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • the operation at the time of braking in the mechanical braking unit 107 is the same as that in the first embodiment, and thus the description thereof is omitted.
  • step S1 When braking the traveling forklift 101, the operator steps on the stepping portion 19 of the brake pedal 9 as shown in FIG. 8 (step S1).
  • the stepped brake pedal 9 rotates about the support portion 21 and the rotation angle is detected by the stroke sensor 11 (step S11; see FIG. 2).
  • the detection signal of the stroke sensor 11 is input to the controller 139 of the regenerative braking unit 105, and the controller 139 calculates a braking force T to be applied to the wheel 33 (step S112).
  • the hydraulic pressure in the brake pipe 147 is measured by the pressure sensor 148, and the output of the pressure sensor 148 is input to the controller 139 (step S113).
  • the controller 139 calculates the friction braking force F by the mechanical braking unit 107 based on the input hydraulic pressure measurement value (step S114).
  • the controller 139 calculates the regenerative braking force R by the regenerative braking unit 105 based on the following equation (1) (step S115).
  • a braking torque command is output to the inverter 37 in order to generate the calculated regenerative braking force R in the electric motor 35 (step S116). Subsequent operations at the time of braking in the regenerative braking unit 105 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the friction braking force by the drum brake 45 is estimated by detecting the brake pressure increased according to the depression amount, and the electric motor is based on the estimated friction braking force.
  • the regenerative braking force by 35 is controlled.
  • a braking force corresponding to the amount of depression can be obtained regardless of whether the regenerative braking force alone is applied or the regenerative braking force and the friction braking force are applied. It can be applied to the wheel 33, and the relationship between the amount of depression and the deceleration of the forklift 101 can be kept constant, and it is a force that prevents excessive or excessive braking force from acting on the wheel 33.
  • FIG. 9 a third embodiment of the present invention will be described with reference to FIG. 9 and FIG.
  • the basic configuration of the forklift of this embodiment is the same as that of the second embodiment, and the control method of the mechanical braking unit is different from that of the second embodiment. Therefore, in the present embodiment, only the method for controlling the mechanical braking unit and components related thereto will be described with reference to FIGS. 9 and 10, and description of other components will be omitted.
  • FIG. 9 illustrates the configuration of the braking device in the forklift according to the present embodiment.
  • the forklift (work vehicle) 201 collects the electric energy from the input unit 203 for inputting a braking instruction by the operator depressing the brake pedal 9, the kinetic energy of the forklift 201, and the like.
  • a regenerative braking unit 205 that performs braking by doing this, and a mechanical braking unit 107 that performs braking by converting the kinetic energy of the forklift 201 into heat energy.
  • the input unit 203 includes a brake pedal 9 that the operator steps on, a stroke sensor 11 that detects the amount of depression (operation amount) of the brake pedal 9, and a reaction force applied to the brake pedal 9 according to the amount of depression. Transmits anti-cavern spring 13 to be generated and stepping amount to master cylinder 15. A backlash part (transmission part) 217.
  • the play portion 217 includes a bottomed cylindrical transmission cylinder portion 25, a rod-shaped transmission piston portion 27 disposed inside the transmission cylinder portion 25 so as to be relatively movable with the transmission cylinder portion 25, and a transmission cylinder. And a seal portion 233 for sealing the transmission space 231 between the portion 25 and the transmission piston portion 27.
  • the transmission space 231 sealed by the seal portion 233 is filled with the same oil as that stored in the reservoir tank 43.
  • the transmission space 231 and the reservoir tank 43 are connected so that oil can flow through the control pipe 235.
  • the control pipe 235 has a control valve (transmission control valve) 237 that is an electromagnetic valve for controlling the flow of oil. Has been placed.
  • a control signal for controlling the opening and closing of the valve is input from the controller 239 to the control valve 237.
  • the bottom surface 29 of the transmission cylinder portion 25 serves to limit relative movement with the transmission piston portion 27.
  • a transmission space 231 between the transmission cylinder portion 25 and the transmission piston portion 27 functions as a mechanical dead zone that restricts the transmission of the stepping amount from the transmission piston portion 27 to the transmission cylinder portion 25.
  • the regenerative braking unit 205 controls the power transmission mechanism 34 that transmits power between the wheel 33 and the electric motor 35, the electric motor 35 that generates electric power by the rotation of the wheel 33, and the braking torque of the electric motor 35.
  • the controller 239 controls the inverter 37 to control the braking torque or regenerative torque generated by the electric motor 35 during regenerative braking, while controlling the AC current to be supplied to control the electric motor 35.
  • the generated drive torque is controlled.
  • the controller 239 controls opening and closing of the control valve 237.
  • the opening / closing control of the control valve 237 will be described in detail in the following description of the operation during braking of the forklift 201 of the present embodiment.
  • FIG. 10 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • the operation at the time of braking in the regenerative braking unit 205 is the same as that in the second embodiment, and the description thereof is omitted.
  • the controller 239 determines whether regenerative braking can be performed based on the output of a temperature sensor (not shown) provided in the electric motor 35, the current flowing from the electric motor 35 to the inverter 37, the voltage of the battery 41, and the like. (Step S223).
  • the controller 239 controls the control signal to open the control valve 237 (OFF signal).
  • step S224 oil freely flows between the transmission space 231 and the reservoir tank 43, and the transmission cylinder part 25 and the transmission piston part 27 can move relative to each other. Since the subsequent braking operation in the mechanical braking unit 107 is the same as that of the first embodiment, the description thereof is omitted.
  • the controller 239 controls the control valve 237 to close.
  • the control valve 237 is opened and oil flows in and out of the transmission space 231 via the control pipe 235.
  • the transmission cylinder part 25 and the transmission piston part 27 can be moved relative to each other. Then, as in the first embodiment, when the relative movement distance is small, the depression amount is the master cylinder. Not transmitted to 15. On the other hand, when the distance of the relative movement increases and the transmission piston portion 27 comes into contact with the bottom surface 29 of the transmission cylinder portion 25, the amount of depression is transmitted to the master cylinder 15.
  • the controller 239 determines that regenerative braking cannot be performed, the control valve 237 is closed and the oil is contained in the transmission space 231 so that the transmission cylinder 25 and the transmission piston 27 are relative to each other. It becomes impossible to move. Therefore, the amount of depression is directly transmitted to the master cylinder 15, and mechanical braking by the mechanical braking unit 107 can be preferentially applied, and the same operability as a conventional forklift having only the mechanical braking unit is achieved. Can be secured.
  • FIG. 11 and FIG. 11 The basic configuration of the forklift of this embodiment is the same as that of the second embodiment, and the control method of the mechanical braking unit is different from that of the second embodiment. Therefore, in the present embodiment, only the control method of the mechanical braking unit and the components related thereto will be described with reference to FIGS. 11 and 12, and the description of the other components will be omitted.
  • FIG. 11 illustrates the configuration of the braking device in the forklift according to the present embodiment.
  • the forklift (work vehicle) 301 has an input unit 303 for inputting a braking instruction when the operator depresses the brake pedal 9 and the kinetic energy of the forklift 301 also collects electric energy.
  • the input unit 303 includes a brake pedal 9 that the operator steps on, a stroke sensor 11 that detects the amount of depression (operation amount) of the brake pedal 9, and a reaction force applied to the brake pedal 9 according to the amount of depression.
  • a reaction force adjusting portion 314 that adjusts the generation of reaction force by the reaction force spring 13, and a backlash portion 17 that transmits the amount of depression to the master cylinder 15.
  • the reaction force adjusting unit 314 includes a hydraulic cylinder (anti-cylinder unit) 315 fixed to the wall portion W, Hydraulic piston (reaction piston portion) 316 fixed to the other end of the spring 13, an oil self-piping pipe 317 connecting the hydraulic cylinder 315 and the Lisano tank 43, and oil distribution in the oil pipe 317 And a control valve (reaction force control valve) 318, which is an electromagnetic valve for controlling.
  • the hydraulic piston 316 is disposed so as to be movable in the rotational direction of the stroke portion 23, and a space (reaction force space) 319 between the hydraulic cylinder 315 and the hydraulic piston 316 is filled with oil. Oil moves between the hydraulic cylinder 315 and the reservoir tank 43 through the oil pipe 317 by the movement of the hydraulic piston 316.
  • the control valve 318 receives an open / close signal for controlling the open / close of the valve from the controller 339, thereby controlling the flow of oil in the oil pipe 317.
  • the control valve 318 is closed, the oil flow in the oil pipe 317 is stopped and the movement of the hydraulic piston 316 is restricted, while when the control valve 318 is opened, the oil flow in the oil pipe 317 becomes free.
  • the hydraulic piston 316 can move freely.
  • the regenerative braking unit 305 controls the power transmission mechanism 34 that transmits power between the wheel 33 and the electric motor 35, the electric motor 35 that generates electric power by the rotation of the wheel 33, and the braking torque of the electric motor 35.
  • the controller 339 controls the inverter 37 to control the braking torque or regenerative torque generated by the electric motor 35 during regenerative braking, while controlling the AC current to be supplied to control the electric motor 35.
  • the generated drive torque is controlled.
  • the controller 339 controls the opening / closing of the control valve 318.
  • the opening / closing control of the control valve 318 will be described in detail in the following description of the operation during braking of the forklift 301 of this embodiment.
  • FIG. 12 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • the stepped brake pedal 9 rotates around the support portion 21 and the rotation angle is detected by the stroke sensor 11 (step S 11; see FIG. 2).
  • the controller 239 determines whether regenerative braking can be performed based on the output of a temperature sensor (not shown) provided in the electric motor 35, the current flowing from the electric motor 35 to the inverter 37, the voltage of the battery 41, and the like. (Step S223).
  • the controller 339 If regenerative braking can be performed, the controller 339 outputs a control signal (ON signal) for closing the control valve 318, and the control valve 318 is opened (step S324). Then, the oil flow between the space 319 and the reservoir tank 43 is interrupted, and the oil in the space 319 is sealed.
  • a control signal ON signal
  • controller 339 when regenerative braking cannot be performed, controller 339 outputs a control signal (OFF signal) for opening control valve 318, and opens control valve 318 (step S325). Then, oil freely circulates between the space 319 and the reservoir tank 43, and the hydraulic piston 316 can move.
  • the control valve 318 is closed and the oil is contained in the space 319 and the hydraulic piston 316 cannot move. Then, a reaction force is generated even in the range of the stepping amount where only regenerative braking works. [0098] Therefore, when the control valve 318 is opened, if the brake pedal 9 is depressed with the same force as when the control valve 318 is closed, the range of the depression amount that only regenerative braking works can be easily reduced. Immediately after that, braking by the mechanical braking unit 107 is performed. In other words, when regenerative braking due to full battery charge is not possible when the electric motor fails, the mechanical brake 107 can be preferentially applied, and the conventional forklift with only the mechanical brake is provided. The same level of operability can be ensured.
  • FIG. 13 illustrates the configuration of the braking device in the forklift according to the present embodiment.
  • Input part 403 for inputting a braking instruction by stepping on step 9
  • regenerative braking part 405 for braking by recovering electric energy from kinetic energy of forklift 401, and converting kinetic energy of forklift 401 to heat energy
  • a mechanical braking unit 107 that performs braking.
  • the input unit 403 includes a brake pedal 9 that the operator steps on, a stroke sensor 11 that detects the amount of depression (operation amount) of the brake pedal 9, and a reaction force applied to the brake pedal 9 according to the amount of depression.
  • An anti-cavern spring 13 to be generated and a backlash portion (transmission portion) 417 for transmitting the depression amount to the master cylinder 15 are provided.
  • the play portion 417 includes a bottomed cylindrical transmission cylinder portion 25, a rod-shaped transmission piston portion 27 disposed inside the transmission cylinder portion 25 so as to be relatively movable with the transmission cylinder portion 25, and a bottom surface 29.
  • An electric actuator (transmission adjustment unit) 431 provided is provided!
  • the electric actuator 431 receives a control signal for controlling the electric actuator 431 from the controller 439, and expands and contracts based on the control signal. By extending and contracting, the electric actuator 431 plays a role of adjusting a distance in which the transmission cylinder portion 25 and the transmission piston portion 27 can move relative to each other.
  • the regenerative braking unit 205 controls the power transmission mechanism 34 that transmits power between the wheel 33 and the electric motor 35, the electric motor 35 that generates electric power by the rotation of the wheel 33, and the braking torque of the electric motor 35. And an inverter 37 and a controller (control unit) 439, and a battery 41 in which the generated electricity is stored.
  • the controller 439 controls the inverter 37 to control the braking torque generated by the electric motor 35 during regenerative braking or the regenerative torque), while controlling the AC current to be supplied.
  • the generated drive torque is controlled.
  • the controller 439 controls the expansion / contraction of the electric actuator 431.
  • the expansion / contraction control of the electric actuator 431 will be described in detail in the following description of the operation during braking of the forklift 401 according to this embodiment.
  • FIG. 14 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • the operation at the time of braking in the regenerative braking unit 205 is the same as that in the second embodiment, and the description thereof is omitted.
  • the controller 239 determines whether regenerative braking can be performed based on the output of a temperature sensor (not shown) provided in the electric motor 35, the current flowing from the electric motor 35 to the inverter 37, the voltage of the battery 41, and the like. (Step S223).
  • controller 439 outputs a control signal for contracting electric actuator 431, and electric actuator 431 contracts (step S424). This secures a distance in which the transmission cylinder 25 and the transmission piston 27 can move relative to each other. Since the subsequent braking operation in the mechanical control unit 107 is the same as that in the first embodiment, the description thereof is omitted.
  • the amount of contraction of the electric actuator 431 is calculated by the controller 439 based on the vehicle speed of the forklift 401, the characteristics of the electric motor 35, and the like. Specifically, the amount of contraction is reduced when the vehicle speed is fast, and the amount of contraction is increased when the vehicle speed is slow. When the braking torque generated by the electric motor is large, the amount of contraction is increased, and when it is small, the amount of contraction is decreased.
  • controller 439 when regenerative braking cannot be performed, controller 439 outputs a control signal for extending electric actuator 431, and electric actuator 431 is extended (step S425).
  • the extension amount of the electric actuator 431 is calculated by the controller 439 based on the vehicle speed of the forklift 401 and the like. Specifically, the amount of stretch is increased when the vehicle speed is fast, and the amount of stretch is decreased when the vehicle speed is slow.
  • friction braking by the mechanical braking unit 107 acts by adjusting the distance that the electric cylinder 251 and the transmission piston 27 can move relative to each other by the electric actuator 431.
  • the minimum amount of depression can be adjusted. Therefore, the range of the stepping amount in which only regenerative braking works can be adjusted according to the vehicle speed of the forklift 401, and the same braking force and deceleration can always be obtained with the same stepping amount.
  • the mechanical braking unit 107 can be preferentially operated, and only the mechanical braking unit is allowed to operate. The same level of operability as a conventional forklift provided can be ensured.
  • FIG. 15 and FIG. 16 The basic configuration of the forklift of this embodiment is the same as that of the second embodiment, and the control method of the mechanical braking unit is different from that of the second embodiment. Therefore, in the embodiment, only the method for controlling the mechanical braking unit and components related thereto will be described with reference to FIGS. 15 and 16, and description of other components and the like will be omitted.
  • FIG. 15 illustrates the configuration of the braking device in the forklift according to the present embodiment.
  • the forklift (work vehicle) 601 has an input unit 603 for inputting a braking instruction by the operator depressing the brake pedal 9, and the kinetic energy of the forklift 601 also collects electric energy.
  • the input unit 403 includes a brake pedal 9 that the operator steps on, a stroke sensor 11 that detects the amount of depression (operation amount) of the brake pedal 9, and a reaction force applied to the brake pedal 9 according to the amount of depression.
  • An anti-cavern spring 13 to be generated, an electric actuator (transmission adjusting portion) 631 for adjusting the generation of the reaction force by the anti-cavern spring 13, and a backlash portion 17 for transmitting the depression amount to the master cylinder 15 are provided.
  • the electric actuator 631 is disposed between the wall portion W and the anti-cabinet 13.
  • the electric actuator 631 receives a control signal for controlling the electric actuator 631 from the controller 639, and expands and contracts based on the control signal.
  • the regenerative braking unit 605 controls the power transmission mechanism 34 that transmits power between the wheel 33 and the electric motor 35, the electric motor 35 that generates electric power by the rotation of the wheel 33, and the braking torque of the electric motor 35. And an inverter 37 and a controller (control unit) 639, and a battery 41 in which the generated electricity is stored.
  • the controller 639 controls the inverter 37 to control the braking torque or regenerative torque generated by the electric motor 35 during regenerative braking, while controlling the AC current to be supplied to control the electric motor 35.
  • the generated drive torque is controlled.
  • the controller 639 controls the expansion / contraction of the electric actuator 631.
  • the expansion / contraction control of the electric actuator 631 will be described in detail in the following description of the operation during braking of the forklift 601 of the present embodiment.
  • FIG. 16 is a flowchart for explaining a portion unique to the present embodiment of the control during braking in the forklift shown in FIG.
  • the operation at the time of braking in the regenerative braking unit 205 is the same as that in the second embodiment, and the description thereof is omitted.
  • step S11 When braking the forklift 601, the operator steps on the brake pedal 9.
  • the stepped brake pedal 9 rotates about the support portion 21 and the rotation angle is detected by the stroke sensor 11 (step S11; see FIG. 2).
  • the controller 639 determines whether regenerative braking can be performed based on the output of a temperature sensor (not shown) provided in the electric motor 35, the current flowing from the electric motor 35 to the inverter 37, the voltage of the battery 41, and the like. (Step S223).
  • controller 639 If regenerative braking can be performed, controller 639 outputs a control signal for contracting electric actuator 631, and electric actuator 631 contracts (step S624).
  • the amount of contraction of the electric actuator 631 is calculated by the controller 639 based on the vehicle speed of the forklift 601 and the characteristics of the electric motor 35. Specifically, the amount of contraction is reduced when the vehicle speed is fast, and the amount of contraction is increased when the vehicle speed is slow. Brake torque generated by an electric motor When the key is large, the amount of contraction is increased, and when it is small, the amount of contraction is decreased.
  • controller 639 outputs a control signal for extending electric actuator 631, and electric actuator 631 is extended (step S625).
  • the extension amount of the electric actuator 631 is calculated by the controller 639 based on the vehicle speed of the forklift 601 and the like. Specifically, the amount of stretch is increased when the vehicle speed is fast, and the amount of stretch is decreased when the vehicle speed is slow.
  • the reaction force is generated by adjusting the amount of deformation of the anti-cavern spring 13 by changing the arrangement position of the anti-cavern spring 13 in the moving direction of the stroke portion by the electric actuator 631.
  • the minimum amount of depression and the strength of the reaction force that can be generated can be adjusted. Therefore, it is possible to adjust the stepping amount range in which only regenerative braking works and the strength of the operator reaction force according to the vehicle speed of the forklift 601 and to always obtain the same braking force and deceleration.
  • the mechanical braking unit 107 can be preferentially operated, and only the mechanical braking unit is allowed to operate. The same level of operability as a conventional forklift provided can be ensured.
  • the operator can adjust the extension of the electric actuator 631 and the amount of stepping on the operator reaction force or the mechanical braking unit 107 can be adjusted.
  • a means for resetting the adjustment by the operator is provided. For example, there is a method in which the expansion / contraction of the electric actuator 631 is automatically returned to the initial value when the power of the forklift 601 is turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Braking Elements And Transmission Devices (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Description

明 細 書
作業車両用制動装置および作業車両
技術分野
[0001] 本発明は、作業車両用制動装置および作業車両、特に駆動源として電動機を備え
、荷役、土木等の作業を行う作業車両用制動装置および作業車両に関する。
背景技術
[0002] 作業車両において駆動源として電動機 (モータ)を用いる作業車両、例えば、モー タのみで駆動されるバッテリ式作業車両や、モータおよびエンジンで駆動されるハイ プリッド式作業車両では、制動時にモータを発電機とした回生制動を行い、車両の運 動エネルギを電気工ネルギとして回収する方法が知られている(例えば、特許文献 1 および 2参照。)。
上述の回生制動では、ブレーキペダルの操作量から制動トルクが算出され、モータ により求められた制動トルクを発生させ、制動力と回生動力とを得る方法が一般的で ある。
[0003] 上述のモータを用いた回生制動では制動力が不足する場合や、バッテリの過充電 やモータの故障等により制動力を発揮できない場合のバックアップとして、一般的な 機械式ブレーキによる制動が併せて使用されることが多い。
機械式ブレーキにおける制動力は以下のようにして発生している。
例えば、ブレーキペダルが踏まれると、リンク機構により連結されたマスタシリンダが 圧縮される。圧縮されたマスタシリンダにはブレーキ圧が発生し、ブレーキ圧がブレ ーキシリンダに伝わる。ブレーキシリンダはドラムブレーキを押し広げ、ドラムブレーキ は車輪の内面に押し付けられる。押し付けられたドラムブレーキと車輪との間に働く 摩擦力により、制動力が生じている。
特許文献 1 :特開 2004— 338546号公報
特許文献 2 :特開平 10— 271608号公報
発明の開示
[0004] バッテリ式作業車両や、ハイブリッド式作業車両では、制動時に機械式ブレーキと モータを用いた回生制動とを同時に使用して、モータによる制動力の発揮と、運動ェ ネルギの回収とを図って!/、る。
しかしながら、機械式ブレーキとモータを用いた回生制動とを同時に使用すると、機 械式ブレーキが支配的に作用し、モータによるエネルギ回収量が著しく減少するとい う問題があった。
[0005] 本発明は、上記の課題を解決するためになされたものであって、作業車両の制動 時において、回生制動によるエネルギ回収量の向上を図るとともに、信頼性の低下を 防止することができる作業車両を提供することを目的とする。
[0006] 上記目的を達成するために、本発明は、以下の手段を提供する。
本発明の第 1の態様は、運転者が操作するブレーキ操作部と、該ブレーキ操作部 の操作量を検知する操作量検出部と、車輪の回転を電気工ネルギに変換することに より、前記車輪の回転を制動する回生部と、前記操作量検出部の出力に基づいて前 記回生部を制御する制御部と、前記操作量が所定値より小さ V、ときには前記操作量 の伝達を遮断し、前記操作量が前記所定値以上のときには、前記操作量から前記所 定値を除去した操作量を伝達する伝達部と、該伝達部から伝達された前記操作量に 基づいて、前記車輪の回転を摩擦力により制動する制動部と、が設けられている作 業車両用制動装置を提供する。
[0007] 本発明の第 1の態様によれば、ブレーキ操作部の操作量が所定値より小さいときに は、操作量検出部の出力に基づいて、回生部による回生制動が行われる一方、伝達 部から制動部に操作量が伝達されず、制動部による摩擦による制動は行われない。 つまり、作業車両の初期制動時 (操作量が所定値より小さいとき)において、作業車 両の運動エネルギが摩擦制動により消耗されることなぐ回生部による電気工ネルギ に変換されるため、電気工ネルギの回収量向上が図られる。
[0008] 操作量が所定値以上のときには、操作量検出部の出力に基づいて、回生部による 回生制動が行われるとともに、伝達部から制動部に操作量が伝達され、制動部によ る摩擦制動も行われる。
そのため、例えば作業車両の制動に対して回生制動のみの制動力では不足する 場合に、ブレーキ操作部の操作量を増やすことで回生制動と摩擦制動とを同時に行 うことができ、作業車両を制動するために十分な制動力が確保される。 回生された電気を蓄えるバッテリの過充電などの原因により回生制動が十分に行え なレ、場合にも、ブレーキ操作部の操作量を増やすことで摩擦制動を行うことができ、 作業車両を制動する制動力が確保される。
[0009] ここで、操作量の所定値は、回生制動によるエネルギ回収量の向上と、摩擦制動に よる制動の確実性の確保とのバランスにより設定される値である。
[0010] 上記発明にお!/、ては、前記ブレーキ操作部の操作に対して反力を発生させる反力 発生部が設けられて V、る構成が望ましレ、。
[0011] このようにすることにより、ブレーキ操作部の操作量が所定値より少ない場合でも、 運転者はブレーキ操作部を操作するのに反力(抵抗力)を受けるため、制動部のみ を備えた従来の作業車両用制動装置と同等な操作感が得られる。
[0012] 上記構成においては、前記反力発生部が、前記操作量に基づいて変形することに より前記反力を発生する弾性部材であり、前記反力発生部の配置位置を変更するこ とで、前記反力の強さを調節する反力調節部が設けられていることが望ましい。
[0013] このようにすることにより、操作量に比例して発生する反力の強さが変化するため、 制動部のみを備えた従来の作業車両用制動装置と同等な操作感が得られる。 反力調節部により反力発生部の配置位置をブレーキ操作部の移動方向に変更し て、弾性部材の変形量を調節することで、反力が発生する最低限の操作量や発生す る反力の強さが調節される。このような調節により、例えば、作業車両の車速に応じて 回生制動のみが働く操作量の範囲や、運転者に伝わる反力を調節することができ、 常に同じ制動力や減速度が得られる。
[0014] 上記構成においては、前記反力発生部が、前記操作量に基づいて変形することに より前記反力を発生する弾性部材であり、該弾性部材の一方の端部に、有底円筒状 の反カシリンダ部および該反カシリンダ部の内部に相対移動可能に配置された棒状 の反力ピストン部の一方が配置され、前記反カシリンダ部と前記反力ピストン部との 間の反力空間に液体が満たされ、前記反カシリンダの外部と前記反力空間とを繋ぐ 流路に、前記液体の流れを制御する反力制御弁が設けられてレ、ることが望ましレ、。
[0015] このようにすることにより、反力制御弁が開かれているときは、液体は流路を介して 反力空間から流入流出するため、反カシリンダ部と反力ピストン部とは相対移動が可 能で、弾性部材は自由に移動する。すると、回生制動のみが働く操作量の範囲にお ける反力が無くなる。一方、反力制御弁が閉じられると、液体は反力空間内に封じ込 められ反カシリンダ部と反力ピストン部とは相対移動できなくなる。すると、回生制動 のみが働く操作量の範囲においても反力が発生する。
[0016] そのため、反力制御弁が開かれているときに、反力制御弁が閉じているときと同じ 力でブレーキ操作部を操作すると、操作量が回生制動のみが働く操作量の範囲を容 易に超えて直ちに制動部による制動が行われる。
[0017] 上記発明にお!/、ては、前記制動部には、前記伝達部から伝達された前記操作量 に基づいて流体の圧力を高める圧力発生部と、前記流体の圧力に基づいて前記車 輪との間で摩擦力を発生させる摩擦発生部と、が設けられて!/、ることが望ましレ、。
[0018] このようにすることにより、操作量に基づいて流体圧力が高められ、その流体圧力に 基づいて摩擦制動力が発生されるため、圧力発生部と摩擦発生部とを離れた位置に 配置しても、複数の車輪に対して略同時に、かつ、略同じ強さの制動力が作用される
[0019] 上記発明にお!/、ては、前記制動部には、前記伝達部から伝達された前記操作量 に基づいて流体の圧力を高める圧力発生部と、前記流体の圧力に基づいて前記車 輪との間で摩擦力を発生させる摩擦発生部と、が設けられ、前記伝達部は、前記ブ レーキ操作部に接続された入力部と、前記圧力発生部に接続されるとともに前記入 力部に対して相対移動可能に配置された出力部と、を有し入力部および出力部の少 なくとも一方には、前記相対移動可能な距離を制限する制限部が設けられていること が望ましい。
[0020] このようにすることにより、入力部と出力部とが相対移動することにより、ブレーキ操 作部の操作量は入力部から出力部 伝達されない。一方、相対移動の距離が大きく なり、入力部と出力部の相対移動が制限部により制限されると、ブレーキ操作部の操 作量は入力部から出力部 伝達される。
[0021] 上記発明にお!/、ては、前記制動部には、前記伝達部から伝達された前記操作量 に基づいて流体の圧力を高める圧力発生部と、前記流体の圧力に基づいて前記車 輪との間で摩擦力を発生させる摩擦発生部と、が設けられ、前記伝達部は、前記ブ レーキ操作部に接続された入力部と、前記圧力発生部に接続されるとともに前記入 力部に対して相対移動可能に配置された出力部と、を有し入力部および出力部の少 なくとも一方には、前記相対移動可能な距離を制限する制限部が設けられ、前記入 力部と前記出力部との相対移動可能な距離を調節する伝達調節部が設けられてい ることが望ましい。
[0022] このようにすることにより、相対移動可能な距離を調節することにより、制動部による 摩擦制動が作用する最低限のブレーキ操作部の操作量が調節される。このような調 節により、例えば、作業車両の車速に応じて回生制動のみが働く操作量の範囲を調 節すること力 Sでき、同じ操作量で常に同じ制動力や減速度が得られる。
[0023] 上記発明にお!/、ては、前記制動部には、前記伝達部から伝達された前記操作量 に基づいて流体の圧力を高める圧力発生部と、前記流体の圧力に基づいて前記車 輪との間で摩擦力を発生させる摩擦発生部と、が設けられ、前記伝達部は、前記ブ レーキ操作部に接続された入力部と、前記圧力発生部に接続されるとともに前記入 力部に対して相対移動可能に配置された出力部と、を有し入力部および出力部の少 なくとも一方には、前記相対移動可能な距離を制限する制限部が設けられ、前記入 力部および前記出力部の一方が有底円筒状の伝達シリンダ部であって、他方が前 記伝達シリンダ部の内部に相対移動可能に配置された棒状の伝達ピストン部であり 、前記伝達シリンダ部と前記伝達ピストン部との間の伝達空間に液体が満たされ、前 記伝達シリンダの外部と前記伝達空間とを繋ぐ流路に、前記液体の流れを制御する 伝達制御弁が設けられたことが望ましレ、。
[0024] このようにすることにより、伝達制御弁が開かれているときは、液体は流路を介して 伝達空間から流入流出するため、伝達シリンダ部と伝達ピストン部とは相対移動が可 能で、ブレーキ操作部の操作量は圧力発生部に伝達されない。一方、相対移動の 距離が大きくなり、伝達ピストン部が伝達シリンダ部の底面に接触すると、ブレーキ操 作部の操作量は圧力発生部に伝達される。
伝達制御弁が閉じられると、液体は伝達空間内に封じ込められ伝達シリンダ部と伝 達ピストン部とは相対移動できなくなる。そのため、ブレーキ操作部の操作量は圧力 発生部に直接伝達される。
[0025] 上記発明にお!/、ては、前記制動部には、前記伝達部から伝達された前記操作量 に基づいて流体の圧力を高める圧力発生部と、前記流体の圧力に基づいて前記車 輪との間で摩擦力を発生させる摩擦発生部と、が設けられ、前記圧力発生部の流体 圧力を検出する圧力検出部が設けられ、前記制御部は、少なくとも前記操作量検出 部の出力と前記圧力検出部の出力とに基づいて、前記回生部が発生する制動力を 制御することが望ましい。
[0026] このようにすることにより、操作量に基づいて高められた流体圧力を検出することに より、制動部による摩擦制動力が推定され、推定された摩擦制動力に基づいて回生 部による回生制動力が制御される。
このように制御されることで、回生制動力のみが作用している状態および回生制動 力および摩擦制動力が作用している状態のいずれであっても、操作量に応じた制動 力が車輪に作用し、操作量と作業車両の減速度との関係が一定に保たれ、過大また は過小な制動力が車輪に作用することが防止される。
[0027] 本発明の第 2の態様は、走行の動力源に用いられる電動機と、上記本発明の第 1 の態様における作業車両用制動装置と、が設けられ、前記電動機が、前記制動装置 の回生部として用いられる作業車両を提供する。
[0028] 本発明の第 2の態様によれば、上記本発明の第 1の態様における作業車両用制動 装置が設けられているため、回生部による電気工ネルギの回収量の向上が図られる 走行に用いられる電動機を回生部として用いるため、電動機と回生部とを別々に設 ける場合と比較して、作業車両の構成が簡略化される。
[0029] 本発明の第 1の態様に係る作業車両用制動装置および第 2の態様に係る作業車 両によれば、ブレーキ操作部の操作量が所定値より小さいときには、回生部による回 生制動が行われる一方、制動部による摩擦による制動は行われない。操作量が所定 値以上のときには、回生部による回生制動が行われるとともに、制動部による摩擦制 動も行われるため、作業車両の制動時において、回生制動によるエネルギ回収量の 向上を図るとともに、信頼性の低下を防止することができるという効果を奏する。 図面の簡単な説明
[図 1]本発明の第 1の実施形態に係るフォークリフトにおける制動装置の構成を説明 する模式図である。
[図 2]図 1のフォークリフトにおける制動時の制御を説明するフローチャートである。
[図 3]制御器で決定される制動トルクと、車速および踏み込み量との関係を説明する グラフである。
[図 4]ブレーキペダルの踏み込み量と制動力との関係を示すグラフである。
[図 5]ブレーキペダルの踏み込み量とオペレータに伝わる反力との関係を示すグラフ である。
[図 6]図 1のストロークセンサの他の実施例を説明する模式図である。
[図 7]本発明の第 2の実施形態に係るフォークリフトにおける制動装置の構成を説明 するものである。
[図 8]図 7のフォークリフトにおける制動時の制御のうち、本実施形態に特有な部分を 説明するフローチャートである。
[図 9]本発明の第 3の実施形態に係るフォークリフトにおける制動装置の構成を説明 するものである。
[図 10]図 9のフォークリフトにおける制動時の制御のうち、本実施形態に特有な部分 を説明するフローチャートである。
[図 11]本発明の第 4の実施形態に係るフォークリフトにおける制動装置の構成を説明 するものである。
[図 12]図 10のフォークリフトにおける制動時の制御のうち、本実施形態に特有な部分 を説明するフローチャートである。
[図 13]本発明の第 5の実施形態に係るフォークリフトにおける制動装置の構成を説明 するものである。
[図 14]図 13のフォークリフトにおける制動時の制御のうち、本実施形態に特有な部分 を説明するフローチャートである。
[図 15]本発明の第 6の実施形態に係るフォークリフトにおける制動装置の構成を説明 するものである。 [図 16]図 15のフォークリフトにおける制動時の制御のうち、本実施形態に特有な部分 を説明するフローチャートである。
符号の説明
[0031] 1 , 101 , 201 , 301 , 401 , 601 フォークリフ卜(作業車両)
9 ブレーキペダル(ブレーキ操作部)
11 ストロークセンサ (操作量検出部)
13 反カバネ (反力発生部、弾性部材)
17, 217, 417 ガタ部(伝達部)
25 伝達シリンダ部(出力部)
27 伝達ピストン部(入力部)
29 底面(制限部)
31 間隔 (所定値)
35 電動モータ(回生部)
37 インバータ(制御部)
39, 139, 239, 339, 439, 539, 639 制徒 P器(制徒 P部)
45 ドラムブレーキ(制動部、摩擦発生部)
148 圧力センサ (圧力検出部)
231 伝達空間
237 制御弁 (伝達制御弁)
314 反力調節部
315 油圧シリンダ (反カシリンダ部)
316 油圧ピストン (反力ピストン部)
318 制御弁 (反力制御弁)
319 空間 (反力空間)
431 電動ァクチユエータ (伝達調節部)
631 電動ァクチユエータ (伝達調節部)
発明を実施するための最良の形態
[0032] 〔第 1の実施形態〕 以下、本発明の第 1の実施形態に係るフォークリフトついて図 1から図 6を参照して 説明する。
なお、本実施形態では、本発明を電動モータ 35およびエンジン(図示せず)を動力 源とするハイブリッド式フォークリフトまたは電動モータにより駆動されるバッテリ式フォ 一クリフト(以下、フォークリフトと表記する。)に適用して説明する。
図 1は、本実施形態に係るフォークリフトにおける制動装置の構成を説明するもの である。
[0033] フォークリフト(作業車両) 1は、図 1に示すように、オペレータ(運転者)がブレーキ ペダル 9を踏むことで制動指示を入力する入力部 3と、フォークリフト 1の運動エネル ギから電気工ネルギを回収することにより制動を行う回生制動部 5と、フォークリフトの 運動エネルギを熱エネルギに変換することにより制動を行う機械式制動部 7と、を備 えている。
[0034] 入力部 3は、オペレータが踏むブレーキペダル(ブレーキ操作部) 9と、ブレーキぺ ダル 9の踏み込み量 (操作量)を検出するストロークセンサ(操作量検出部) 11と、踏 み込み量に応じてブレーキペダル 9に反力を発生させる反カバネ(反力発生部、弹 性部材) 13と、踏み込み量をマスタシリンダ 15に伝達するガタ部(伝達部) 17と、を備 えている。
[0035] ブレーキペダル 9には、オペレータが踏む踏み部 19と、ブレーキペダル 9を回転可 能に支持する支持部 21と、オペレータが踏み部 19を踏むことにより回動するストロー ク部 23とが設けられている。
[0036] ストロークセンサ 11は支持部 21に配置され、ブレーキペダル 9の回動角度を検出 することにより踏み込み量を検出している。ストロークセンサ 11の検出信号は制御器 39に入力される。なお、ストロークセンサとしては、公知の角度センサを用いることが でき、特に限定するものではない。
[0037] 反カバネ 13は、一方の端部がストローク部 23に固定され、他方の端部がフォークリ フト 1のフレームなどの壁部 Wに固定されている。踏み部 19が踏まれてストローク部 2 3が回動すると、反カバネ 13は伸ばされて踏み込みに対する反力を発生する。
[0038] ガタ部 17は、有底円筒状の伝達シリンダ部(出力部) 25と、伝達シリンダ部 25の内 部に伝達シリンダ部 25と相対移動可能に配置された棒状の伝達ピストン部(入力部)
27とを、備えている。伝達シリンダ部 25はマスタシリンダ 15に接続され、伝達ピストン 部 27はストローク部 23に接続されている。
伝達シリンダ部 25の底面(制限部) 29は伝達ピストン部 27との相対移動を制限す る役割を果たす。伝達シリンダ部 25と伝達ピストン部 27との間の間隔 (所定値) 31は 伝達ピストン部 27から伝達シリンダ部 25への踏み込み量の伝達を制限する機械的 不感帯として働くものである。
[0039] 回生制動部 5は、車輪 33と電動モータ 35との間で動力を伝達する動力伝達機構 3
4と、車輪 33の回転により発電する電動モータ(回生部) 35と、電動モータ 35の制動 トルクを制御するインバータ(制御部) 37および制御器 (制御部) 39と、発電された電 気が蓄えられるバッテリ 41と、を備えている。
[0040] 動力伝達機構 34は車輪 33と電動モータ 35との間に配置され、トランスミッションや デフアレンシャルギアや車軸など(図示せず)を含むものである。
電動モータ 35は車輪 33の回転により発電を行って回生制動を行う一方、インバー タ 37から供給された交流電流により動力を発生して車輪 33を回転駆動するものであ
[0041] インバータ 37は、回生制動時に電動モータ 35が発電した交流電流を直流電流に 変換する一方、バッテリ 41から供給された直流電流を電動モータ 35の駆動に用いる 交流電流に変換するものである。
[0042] 制御器 39は、インバータ 37を制御することにより、回生制動時に電動モータ 35が 発生する制動トルクほたは回生トルク)を制御する一方、供給する交流電流を制御し て電動モータ 35が発生する駆動トルクを制御するものである。
ノ ッテリ 41はインバータ 37と電気的に接続され、回生制動時にはインバータ 37に おいて変換された直流電流(回生電流)が蓄電される一方、インバータ 37に直流電 流を供給して (放電して)電動モータ 35を回転駆動させるものである。
[0043] 機械式制動部 7は、伝達された踏み込み量に応じて油圧を発生するマスタシリンダ 15と、マスタシリンダ 15との間で油の流入流出がされるリザーバタンク 43と、発生した 油圧により車輪 33の回転を制動するドラムブレーキ (制動部、摩擦発生部) 45と、を 備えている。
このような構成にすることで、マスタシリンダ 15とドラムブレーキ 45とを離れた位置に 配置しても、複数の車輪 33に対して略同時に、かつ、略同じ強さの制動力を作用さ せること力 Sでさる。
[0044] マスタシリンダ 15は内部に油を蓄え、ガタ部 17により伝達された踏み込み量に応じ て、内部の油を押圧して油圧を発生させるものである。マスタシリンダ 15には、発生し た油圧をブレーキシリンダ 51に伝達するブレーキ配管 47が設けられている。
[0045] リザーバタンク 43は、マスタシリンダ 15との間で油の流通が可能に接続された油の 貯留部である。
ドラムブレーキ 45は、車輪 33に固定されたドラム 49と、油圧に応じてブレーキシュ 一 53を押し広げるブレーキシリンダ 51と、ドラム 49の内周面に押し付けられ摩擦力 により制動力を発揮するブレーキシュ一 53とを備えている。
[0046] 次に、上記の構成からなるフォークリフトにおける制動時の動作について、図 1から 図 6を参照しながら説明する。
図 2は、図 1のフォークリフトにおける制動時の制御を説明するフローチャートである 。図 3は、制御器で決定される制動トルクと、車速および踏み込み量との関係を説明 走行しているフォークリフト 1の制動を行う場合には、図 1に示すように、オペレータ がブレーキペダル 9の踏み部 i 9を踏む(ステップ Sl)。
[0047] 踏まれたブレーキペダル 9は支持部 21を中心に回動し、回動角はストロークセンサ
11に検出される(ステップ S 11)。
一方、ブレーキペダル 9のストローク部 23は、マスタシリンダ 15側に向って回動し、 反カバネ 13を伸ばす(ステップ S21)とともに、ガタ部 17の伝達ピストン部 27をマスタ シリンダ 15側に移動させる。伸ばされた反カバネ 13は、ストローク部 23の回動方向と は反対向きに働く反力(オペレータ反力)を発生する (ステップ S22)。
[0048] ブレーキペダル 9の踏み込み量が間隔 31より少ない場合には、伝達ピストン部 27 の移動は、伝達ピストン部 27と伝達シリンダ部 25との間の間隔 31 (ガタ部 17の隙間) に吸収される。そのため、ガタ部 17の隙間が残っている間は、マスタシリンダ 15は圧 縮されない(ステップ S23、ステップ S24)。
この場合、機械式制動部 7による制動は行われな!/、。
[0049] ストロークセンサ 11の検出信号は回生制動部 5の制御器 39に入力され、制御器 39 は電動モータ 35にお!/、て発生させる制動トルクを決定する(ステップ S 12)。
制動トルクの決定は、図 3に示すように、ストロークセンサ 11の検出信号 (踏み込み 量)の他にフォークリフト 1の走行速度(車速)にも基づいて行われる。
制動トルクの決定に用いられる車速は、図 1に示すように、制御器 39に入力される 電動モータ 35の回転数に係る信号に基づいて算出される。
[0050] 制御器 39は、決定した制動トルクを電動モータ 35に発生させるため、制動トルク指 令をインバータ 37に出力する (ステップ S 13)。インバータ 37は制動トルク指令に基 づいて駆動され回生電力を発生する (ステップ S 14)。発生された回生電力はバッテ リ 41に蓄電される。
一方、電動モータ 35は制動トルクを発生し (ステップ S15)、発生された制動トルク は動力伝達機構 34に伝達され (ステップ S 16)、車輪 33において制動力(回生制動 力)が発揮される (ステップ S30)。
[0051] オペレータがブレーキペダル 9の踏み込み量を増やし、ガタ部 17の隙間がゼロに なると(ステップ S23)、伝達シリンダ部 25の底面 29に伝達ピストン部 27が接触する。 そのため、ブレーキペダル 9からマスタシリンダ 15に踏み込み量が伝達され、内部の 油が押圧、圧縮され (ステップ S25)、ブレーキ圧が発生する(ステップ S26)。
ブレーキ圧が発生すると、ストローク部 23の回動方向とは反対向きに働く反力(ォ ペレータ反力)も発生する(ステップ S22)。
[0052] 一方、ブレーキ圧はブレーキ配管 47を通してブレーキシリンダ 51に伝達され、ブレ ーキシリンダ 51が押し広げられる(ステップ S27)。ブレーキシリンダは、ブレーキシュ 一を押し広げ、ドラムの内周面に押し付ける(ステップ S28)。ブレーキシュ一とドラム との間に摩擦力が働き、車輪 33において摩擦力による制動力(機械制動力)が発揮 される(ステップ S30)。
[0053] 図 4は、ブレーキペダルの踏み込み量と制動力との関係を示すグラフである。
このように制御することで、図 4に示すように、ブレーキペダル 9の踏み込み量が小 さいときには、回生制動力 Rのみが作用する。ブレーキペダル 9の踏み込み量が大き くなると、機械制動力 Fが作用し始める。
図 4における破線は機械式制動部のみを備えた従来のフォークリフトにおける制動
[0054] 図 5は、ブレーキペダルの踏み込み量とオペレータに伝わる反力との関係を示すグ ラフである。
オペレータに伝わるオペレータ反力は、図 5に示すように、ブレーキペダル 9の踏み 込み量が小さく回生制動力のみが作用している範囲であっても、反カバネ 13により 発生している。ブレーキペダル 9の踏み込み量が大きくなり、機械制動力が発生し始 めると、マスタシリンダ 15により発生する反力も加わり、オペレータ反力は大きくなる。 オペレータ反力は機械式制動部のみを備えた従来のフォークリフトにおけるォペレ ータ反力と同等となっている。
[0055] 上記の構成によれば、ブレーキペダル 9の踏み込み量が間隔 31より小さいときには
、ストロークセンサ 11の検出信号に基づいて、電動モータ 35による回生制動が行わ れる一方、ガタ部 17からドラムブレーキ 45に踏み込み量が伝達されず、ドラムブレー キ 45による制動は行われない。
つまり、フォークリフト 1の初期制動時において、フォークリフト 1の運動エネルギが 摩擦制動により消耗されることなぐ電動モータ 35により電気工ネルギに変換される。 そのため、本実施形態のフォークリフト 1では、電気工ネルギの回収量の向上が図ら れ、高い回生能力を得ることができる。
[0056] 具体的には、ガタ部 17の伝達ピストン部 27と伝達シリンダ部 25とが相対移動するこ とにより、ブレーキペダル 9の踏み込み量はガタ部 17の間隔 31に吸収される。そのた め、伝達ピストン部 27から伝達シリンダ部 25への踏み込み量の伝達を遮断すること ができる。
[0057] 一方、踏み込み量が間隔 31以上のときには、ストロークセンサ 11の出力に基づい て、電動モータ 35による回生制動が行われるとともに、ガタ部 17からドラムブレーキ 4 5に踏み込み量が伝達され、ドラムブレーキ 45による摩擦制動も行われるため、機械 式制動部のみを備えた従来のフォークリフトと同じ程度の信頼性を確保することがで きる。
例えばフォークリフト 1の制動に対して回生制動のみの制動力では不足する場合に 、ブレーキペダル 9の踏み込み量を増やすことで回生制動と摩擦制動とを同時に行う ことができ、フォークリフト 1を制動するために十分な制動力が確保される。
回生された電気を蓄えるバッテリ 41の過充電などの原因により回生制動が十分に 行えな!/、場合にも、ブレーキペダル 9の踏み込み量を増やすことで摩擦制動を行うこ とができ、フォークリフト 1を制動する制動力を確保することができる。
[0058] 具体的には、踏み込み量が大きくなり、伝達ピストン部 27と伝達シリンダ部 25との 相対移動の距離が大きくなると、伝達シリンダ部 25の底面 29に伝達ピストン部 27が 接触する。すると、伝達ピストン部 27と伝達シリンダ部 25のそれ以上の相対移動が制 限され、ガタ部 17は踏み込み量を伝達ピストン部 27から伝達シリンダ部 25へ伝達す ること力 Sでさる。
[0059] ブレーキペダル 9の踏み込み量が間隔 31より少ない場合でも、オペレータはブレー キペダル 9を操作するのに反カバネ 13から反力(抵抗力)を受けるとともに、踏み込 み量に比例して発生する反力の強さが変化するため、機械式制動部のみを備えた 従来のフォークリフトと同じ程度の操作感を確保することができる。
[0060] ガタ部 17の伝達ピストン部 27と伝達シリンダ部 25とが相対移動することにより、ブレ ーキペダル 9の踏み込み量はガタ部 17の間隔 31に吸収され、伝達ピストン部 27から 伝達シリンダ部 25へ伝達されず、遮断される。この間はフォークリフト 1の運動エネル ギが摩擦制動により消耗されることなぐ電動モータ 35により電気工ネルギに変換さ れる。そのため、本実施形態のフォークリフト 1では、電気工ネルギの回収量の向上 が図られ、高い回生能力を得ることができる。
[0061] 図 6は、図 1のストロークセンサの他の実施例を説明するものである。
なお、上述の実施形態のように、ストロークセンサ 11としてブレーキペダル 9の回動 角を検出する角度センサを用いてもよいし、図 6に示すように、ストローク部 23の回動 距離を検出するストロークセンサ 11Aをセンサとして用いてもよぐ特に限定するもの ではない。
[0062] なお、上述の実施形態のように、ストロークセンサが検出したブレーキペダルの回 動角から踏み込み量を算出して、算出された踏み込み量に基づいて回生制動部を 制御してもよいし、ストロークセンサの代わりにロードセルなどの荷重センサを用いて 、オペレータがブレーキペダルを踏む踏み込み力を検出し、検出された踏み込み力 に基づいて回生制動部を制御してもよぐ特に限定するものではない。
[0063] 〔第 2の実施形態〕
次に、本発明の第 2の実施形態について図 7および図 8を参照して説明する。 本実施形態のフォークリフトの基本構成は、第 1の実施形態と同様である力 第 1の 実施形態とは、回生制動部の制御方法が異なっている。よって、本実施形態におい ては、図 7および図 8を用いて回生制動部の制御方法およびそれに関する構成要素 のみを説明し、その他の構成要素等の説明を省略する。
図 7は、本実施形態に係るフォークリフトにおける制動装置の構成を説明するもの である。
なお、第 1の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0064] フォークリフト(作業車両) 101は、図 7に示すように、オペレータがブレーキペダル 9 を踏むことで制動指示を入力する入力部 3と、フォークリフト 101の運動エネルギから 電気工ネルギを回収することにより制動を行う回生制動部 105と、フォークリフト 101 の運動エネルギを熱エネルギに変換することにより制動を行う機械式制動部 107と、 を備えている。
[0065] 回生制動部 105は、車輪 33と電動モータ 35との間で動力を伝達する動力伝達機 構 34と、車輪 33の回転により発電する電動モータ 35と、電動モータ 35の制動トルク を制御するインバータ 37および制御器 (制御部) 139と、発電された電気が蓄えられ るバッテリ 41と、を備えている。
[0066] 制御器 139は、インバータ 37を制御することにより、回生制動時に電動モータ 35が 発生する制動トルクほたは回生トルク)を制御する一方、供給する交流電流を制御し て電動モータ 35が発生する駆動トルクを制御するものである。
制動トルクの制御方法については、以下の本実施形態のフォークリフト 101の制動 時の動作の説明にお!/、て詳細に説明する。 [0067] 機械式制動部 107は、伝達された踏み込み量に応じて油圧を発生するマスタシリ ンダ 15と、マスタシリンダ 15との間で油の流入流出がされるリザーバタンク 43と、発 生した油圧により車輪 33の回転を制動するドラムブレーキ 45と、を備えている。 マスタシリンダ 15には、発生した油圧をブレーキシリンダ 51に伝達するブレーキ配 管 147が設けられ、ブレーキ配管 147には発生した油圧を計測する圧力センサ (圧 力検出部) 148が配置されている。圧力センサ 148の出力が制御器 139に入力され ている。
[0068] 次に、上記の構成からなるフォークリフトにおける制動時の動作について、図 7およ び図 8を参照しながら説明する。
図 8は、図 7のフォークリフトにおける制動時の制御のうち、本実施形態に特有な部 分を説明するフローチャートである。
なお、機械式制動部 107における制動時の動作は、第 1の実施形態と同様である のでその説明を省略する。
[0069] 走行しているフォークリフト 101の制動を行う場合には、図 8に示すように、オペレー タがブレーキペダル 9の踏み部 19を踏む(ステップ S l)。
踏まれたブレーキペダル 9は支持部 21を中心に回動し、回動角はストロークセンサ 11に検出される(ステップ S 11;図 2参照)。
ストロークセンサ 11の検出信号は回生制動部 105の制御器 139に入力され、制御 器 139は車輪 33に作用させる制動力 Tを算出する(ステップ S112)。
[0070] 一方、圧力センサ 148によりブレーキ配管 147における油圧が測定され、圧力セン サ 148の出力が制御器 139に入力される (ステップ S 113)。制御器 139は、入力され た油圧の測定値に基づいて、機械式制動部 107による摩擦制動力 Fを算出する(ス テツプ S 114)。
制御器 139は、以下に示す式(1)に基づいて、回生制動部 105による回生制動力 Rを算出する(ステップ S 115)。
R=T-F · · · (1)
[0071] 回生制動力 Rが算出されると、算出された回生制動力 Rを電動モータ 35に発生さ せるため、制動トルク指令をインバータ 37に出力する(ステップ S116)。 以後の回生制動部 105における制動時の動作は第 1の実施形態と同様であるので 、その説明を省略する。
[0072] 上記の構成によれば、踏み込み量に応じて高められたブレーキ圧を検出することに より、ドラムブレーキ 45による摩擦制動力が推定され、推定された摩擦制動力に基づ いて電動モータ 35による回生制動力が制御される。
このように制御されることで、回生制動力のみが作用している状態、および、回生制 動力および摩擦制動力が作用している状態のいずれであっても、踏み込み量に応じ た制動力を車輪 33に作用させることができ、踏み込み量とフォークリフト 101の減速 度との関係を一定に保つことができ、過大または過小な制動力が車輪 33に作用する ことを防止すること力でさる。
[0073] 〔第 3の実施形態〕
次に、本発明の第 3の実施形態について図 9および図 10を参照して説明する。 本実施形態のフォークリフトの基本構成は、第 2の実施形態と同様である力、第 2の 実施形態とは、機械式制動部の制御方法が異なっている。よって、本実施形態にお いては、図 9および図 10を用いて機械式制動部の制御方法およびそれに関する構 成要素のみを説明し、その他の構成要素等の説明を省略する。
図 9は、本実施形態に係るフォークリフトにおける制動装置の構成を説明するもの である。
なお、第 2の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0074] フォークリフト(作業車両) 201は、図 9に示すように、オペレータがブレーキペダル 9 を踏むことで制動指示を入力する入力部 203と、フォークリフト 201の運動エネルギ 力、ら電気工ネルギを回収することにより制動を行う回生制動部 205と、フォークリフト 2 01の運動エネルギを熱エネルギに変換することにより制動を行う機械式制動部 107 と、を備えている。
[0075] 入力部 203は、オペレータが踏むブレーキペダル 9と、ブレーキペダル 9の踏み込 み量 (操作量)を検出するストロークセンサ 11と、踏み込み量に応じてブレーキぺダ ル 9に反力を発生させる反カバネ 13と、踏み込み量をマスタシリンダ 15に伝達する ガタ部(伝達部) 217と、を備えている。
[0076] ガタ部 217は、有底円筒状の伝達シリンダ部 25と、伝達シリンダ部 25の内部に伝 達シリンダ部 25と相対移動可能に配置された棒状の伝達ピストン部 27と、伝達シリン ダ部 25と伝達ピストン部 27との間の伝達空間 231を密封するシール部 233とを、備 えている。シール部 233により密封された伝達空間 231には、リザーバタンク 43に貯 留されている油と同じ油が封入されている。
[0077] 伝達空間 231とリザーバタンク 43とは、制御配管 235により油が流通可能に接続さ れ、制御配管 235には油の流れを制御する電磁弁である制御弁 (伝達制御弁) 237 が配置されている。制御弁 237には、制御器 239から弁の開閉を制御する制御信号 が入力されている。
伝達シリンダ部 25の底面 29は伝達ピストン部 27との相対移動を制限する役割を果 たす。伝達シリンダ部 25と伝達ピストン部 27との間の伝達空間 231は伝達ピストン部 27から伝達シリンダ部 25への踏み込み量の伝達を制限する機械的不感帯として働 くものである。
[0078] 回生制動部 205は、車輪 33と電動モータ 35との間で動力を伝達する動力伝達機 構 34と、車輪 33の回転により発電する電動モータ 35と、電動モータ 35の制動トルク を制御するインバータ 37および制御器 (制御部) 239と、発電された電気が蓄えられ るバッテリ 41と、を備えている。
[0079] 制御器 239は、インバータ 37を制御することにより、回生制動時に電動モータ 35が 発生する制動トルクほたは回生トルク)を制御する一方、供給する交流電流を制御し て電動モータ 35が発生する駆動トルクを制御するものである。
制御器 239は制御弁 237の開閉を制御するものである。制御弁 237の開閉制御に つ!/、ては、以下の本実施形態のフォークリフト 201の制動時の動作の説明にお!/、て 詳細に説明する。
[0080] 次に、上記の構成からなるフォークリフトにおける制動時の動作について、図 9およ び図 10を参照しながら説明する。
図 10は、図 9のフォークリフトにおける制動時の制御のうち、本実施形態に特有な 部分を説明するフローチャートである。 なお、回生制動部 205における制動時の動作は、第 2の実施形態と同様であるの でその説明を省略する。
[0081] フォークリフト 201を制動させる場合、オペレータはブレーキペダル 9を踏む。踏ま れたブレーキペダル 9は支持部 21を中心に回動し、回動角はストロークセンサ 11に 検出される(ステップ S11 ;図 2参照。)。
制御器 239は、電動モータ 35に設けられた温度センサ(図示せず)の出力や、電 動モータ 35からインバータ 37に流れる電流や、バッテリ 41の電圧などに基づいて、 回生制動が行えるか否かを判断する (ステップ S223)。
具体的には、電動モータ 35の故障により回生制動が行えるか否力、、バッテリ 41の 過充電により回生制動が行えるか否か等を判断する。
[0082] 回生制動が行える場合には、制御器 239は制御弁 237を開く制御信号 (OFF信号
)を出力し、制御弁 237が開かれる(ステップ S224)。すると、伝達空間 231とリザー バタンク 43との間で油が自由に流通し、伝達シリンダ部 25と伝達ピストン部 27とが相 対移動可能となる。以後の機械式制動部 107における制動動作は第 1の実施形態と 同様であるため、その説明を省略する。
[0083] 一方、回生制動が行えない場合には、制御器 239は制御弁 237を閉じる制御信号
(ON信号)を出力し、制御弁 237を閉じる(ステップ S225)。すると、伝達空間 231と リザーバタンク 43との間で油の流通が遮断され、伝達空間 231内の油が封入状態と なる。
この状態では、伝達シリンダ部 25と伝達ピストン部 27とは相対移動できず、踏み込 み量はストローク部 23からマスタシリンダ 15に伝達される(ステップ S23、ステップ S2 4)。
以後の機械式制動部 107における制動動作は第 1の実施形態と同様であるため、 その説明を省略する。
[0084] 上記の構成によれば、制御器 239により回生制動可能と判断された場合には、制 御弁 237は開かれ、油は制御配管 235を介して伝達空間 231から流入流出するた め、伝達シリンダ部 25と伝達ピストン部 27とは相対移動が可能となる。すると、第 1の 実施形態と同様に、相対移動の距離が小さいときには、踏み込み量はマスタシリンダ 15に伝達されない。一方、相対移動の距離が大きくなり、伝達ピストン部 27が伝達シ リンダ部 25の底面 29に接触すると、踏み込み量はマスタシリンダ 15に伝達される。
[0085] 一方、制御器 239により回生制動ができないと判断された場合には、制御弁 237は 閉じられ、油は伝達空間 231内に封じ込められ伝達シリンダ部 25と伝達ピストン部 2 7とは相対移動できなくなる。そのため、踏み込み量はマスタシリンダ 15に直接伝達 され、機械式制動部 107による機械制動を優先的に作用させることができ、機械式制 動部のみを備えた従来のフォークリフトと同じ程度の操作性を確保することができる。
[0086] 〔第 4の実施形態〕
次に、本発明の第 4の実施形態について図 11および図 12を参照して説明する。 本実施形態のフォークリフトの基本構成は、第 2の実施形態と同様である力、第 2の 実施形態とは、機械式制動部の制御方法が異なっている。よって、本実施形態にお いては、図 11および図 12を用いて機械式制動部の制御方法およびそれに関する構 成要素のみを説明し、その他の構成要素等の説明を省略する。
図 11は、本実施形態に係るフォークリフトにおける制動装置の構成を説明するもの である。
なお、第 2の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0087] フォークリフト(作業車両) 301は、図 11に示すように、オペレータがブレーキペダル 9を踏むことで制動指示を入力する入力部 303と、フォークリフト 301の運動エネルギ 力も電気工ネルギを回収することにより制動を行う回生制動部 305と、フォークリフト 3 01の運動エネルギを熱エネルギに変換することにより制動を行う機械式制動部 107 と、を備えている。
[0088] 入力部 303は、オペレータが踏むブレーキペダル 9と、ブレーキペダル 9の踏み込 み量 (操作量)を検出するストロークセンサ 11と、踏み込み量に応じてブレーキぺダ ノレ 9に反力を発生させる反カバネ 13と、反カバネ 13による反力の発生を調整する反 力調節部 314と、踏み込み量をマスタシリンダ 15に伝達するガタ部 17と、を備えてい
[0089] 反力調節部 314は、壁部 Wに固定された油圧シリンダ(反カシリンダ部) 315と、反 カバネ 13の他方の端部に固定された油圧ピストン (反力ピストン部) 316と、油圧シリ ンダ 315とリザーノ タンク 43との間を繋ぐ油酉己管 317と、油配管 317内の油の流通を 制御する電磁弁である制御弁(反力制御弁) 318とを備えている。
[0090] 油圧ピストン 316はストローク部 23の回動方向に移動可能に配置され、油圧シリン ダ 315と油圧ピストン 316との間の空間(反力空間) 319には油が満たされている。油 は油圧ピストン 316の移動により、油配管 317を通って油圧シリンダ 315とリザーバタ ンク 43との間を流通する。
制御弁 318には制御器 339から弁の開閉を制御する開閉信号が入力されることに より、油配管 317内の油の流通を制御する。制御弁 318が閉じられると、油配管 317 内の油の流通が止められ、油圧ピストン 316の移動が規制される一方、制御弁 318 が開かれると、油配管 317内の油の流通が自由となり、油圧ピストン 316は自由に移 動できる。
[0091] 回生制動部 305は、車輪 33と電動モータ 35との間で動力を伝達する動力伝達機 構 34と、車輪 33の回転により発電する電動モータ 35と、電動モータ 35の制動トルク を制御するインバータ 37および制御器 (制御部) 339と、発電された電気が蓄えられ るバッテリ 41と、を備えている。
[0092] 制御器 339は、インバータ 37を制御することにより、回生制動時に電動モータ 35が 発生する制動トルクほたは回生トルク)を制御する一方、供給する交流電流を制御し て電動モータ 35が発生する駆動トルクを制御するものである。
制御器 339は制御弁 318の開閉を制御するものである。制御弁 318の開閉制御に つ!/、ては、以下の本実施形態のフォークリフト 301の制動時の動作の説明にお!/、て 詳細に説明する。
[0093] 次に、上記の構成からなるフォークリフトにおける制動時の動作について、図 11お よび図 12を参照しながら説明する。
図 12は、図 10のフォークリフトにおける制動時の制御のうち、本実施形態に特有な 部分を説明するフローチャートである。
なお、回生制動部 305における制動時の動作は、第 2の実施形態と同様であるの でその説明を省略する。 [0094] 踏まれたブレーキペダル 9は支持部 21を中心に回動し、回動角はストロークセンサ 11に検出される (ステップ S 11 ;図 2参照。)。
制御器 239は、電動モータ 35に設けられた温度センサ(図示せず)の出力や、電 動モータ 35からインバータ 37に流れる電流や、バッテリ 41の電圧などに基づいて、 回生制動が行えるか否かを判断する (ステップ S223)。
[0095] 回生制動が行える場合には、制御器 339は制御弁 318を閉じる制御信号 (ON信 号)を出力し、制御弁 318が開かれる(ステップ S324)。すると、空間 319とリザーバ タンク 43との間の油の流通が遮断され、空間 319内の油が封入状態となる。
この状態では、油圧シリンダ 31525の移動が規制され、踏み込み量に応じて反力 パネ 13が伸ばされ反力を発生させる。
以後の機械式制動部 107における制動動作は第 1の実施形態と同様であるため、 その説明を省略する。
[0096] 一方、回生制動が行えない場合には、制御器 339は制御弁 318を開く制御信号( OFF信号)を出力し、制御弁 318を開く(ステップ S325)。すると、空間 319とリザー バタンク 43との間で油が自由に流通し、油圧ピストン 316が移動可能となる。
この状態で、オペレータがブレーキペダル 9を踏むと、油圧ピストン 316は反カバネ 13およびストローク部 23と共に移動して反カバネ 13による反力が発生しないため、 伝達ピストン部 27が伝達シリンダ部 25に容易に接触する。そのため、ブレーキぺダ ノレ 9を踏むことにより、機械式制動部 107による制動が直ちに開始される。
以後の機械式制動部 107における制動動作は第 1の実施形態と同様であるため、 その説明を省略する。
[0097] 上記の構成によれば、制御器 339により回生制動ができないと判断された場合に は、制御弁 318が開かれ、油は油配管 317を介して空間 319から流入流出するため 、油圧ピストン 316は移動可能となり、反カバネ 13は自由に移動する。すると、回生 制動のみが働く踏み込み量の範囲における反力が無くなる。
一方、制御器 239により回生制動可能と判断された場合には、制御弁 318が閉じら れ、油は空間 319内に封じ込められ油圧ピストン 316移動できなくなる。すると、回生 制動のみが働く踏み込み量の範囲においても反力が発生する。 [0098] そのため、制御弁 318が開かれているときに、制御弁 318が閉じているときと同じ力 でブレーキペダル 9を踏むと、踏み込み量が回生制動のみが働く踏み込み量の範囲 を容易に超えて直ちに機械式制動部 107による制動が行われる。言い換えると、電 動モータ故障時、バッテリ満充電による回生制動が不可能の場合には、機械式制動 部 107を優先的に作用させることができ、機械式制動部のみを備えた従来のフォー クリフトと同じ程度の操作性を確保することができる。
[0099] 〔第 5の実施形態〕
次に、本発明の第 5の実施形態について図 13および図 14を参照して説明する。 本実施形態のフォークリフトの基本構成は、第 2の実施形態と同様である力、第 2の 実施形態とは、機械式制動部の制御方法が異なっている。よって、本実施形態にお いては、図 13および図 14を用いて機械式制動部の制御方法およびそれに関する構 成要素のみを説明し、その他の構成要素等の説明を省略する。
図 13は、本実施形態に係るフォークリフトにおける制動装置の構成を説明するもの である。
なお、第 2の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0100] フォークリフト(作業車両) 401は、図 13に示すように、オペレータがブレーキペダル
9を踏むことで制動指示を入力する入力部 403と、フォークリフト 401の運動エネルギ 力も電気工ネルギを回収することにより制動を行う回生制動部 405と、フォークリフト 4 01の運動エネルギを熱エネルギに変換することにより制動を行う機械式制動部 107 と、を備えている。
[0101] 入力部 403は、オペレータが踏むブレーキペダル 9と、ブレーキペダル 9の踏み込 み量 (操作量)を検出するストロークセンサ 11と、踏み込み量に応じてブレーキぺダ ル 9に反力を発生させる反カバネ 13と、踏み込み量をマスタシリンダ 15に伝達する ガタ部(伝達部) 417と、を備えている。
[0102] ガタ部 417は、有底円筒状の伝達シリンダ部 25と、伝達シリンダ部 25の内部に伝 達シリンダ部 25と相対移動可能に配置された棒状の伝達ピストン部 27と、底面 29に 設けられた電動ァクチユエータ (伝達調節部) 431とを備えて!/、る。 電動ァクチユエータ 431は、制御器 439から電動ァクチユエータ 431を制御する制 御信号が入力され、制御信号に基づいて伸縮するものである。伸縮することにより電 動ァクチユエータ 431は、伝達シリンダ部 25と伝達ピストン部 27との相対移動可能な 距離を調節する役割を果たす。
[0103] 回生制動部 205は、車輪 33と電動モータ 35との間で動力を伝達する動力伝達機 構 34と、車輪 33の回転により発電する電動モータ 35と、電動モータ 35の制動トルク を制御するインバータ 37および制御器 (制御部) 439と、発電された電気が蓄えられ るバッテリ 41と、を備えている。
[0104] 制御器 439は、インバータ 37を制御することにより、回生制動時に電動モータ 35が 発生する制動トルクほたは回生トルク)を制御する一方、供給する交流電流を制御し て電動モータ 35が発生する駆動トルクを制御するものである。
制御器 439は電動ァクチユエータ 431の伸縮を制御するものである。電動ァクチュ エータ 431の伸縮制御については、以下の本実施形態のフォークリフト 401の制動 時の動作の説明にお!/、て詳細に説明する。
[0105] 次に、上記の構成からなるフォークリフトにおける制動時の動作について、図 13お よび図 14を参照しながら説明する。
図 14は、図 13のフォークリフトにおける制動時の制御のうち、本実施形態に特有な 部分を説明するフローチャートである。
なお、回生制動部 205における制動時の動作は、第 2の実施形態と同様であるの でその説明を省略する。
[0106] フォークリフト 201を制動させる場合、オペレータはブレーキペダル 9を踏む。踏ま れたブレーキペダル 9は支持部 21を中心に回動し、回動角はストロークセンサ 11に 検出される(ステップ S11 ;図 2参照。)。
制御器 239は、電動モータ 35に設けられた温度センサ(図示せず)の出力や、電 動モータ 35からインバータ 37に流れる電流や、バッテリ 41の電圧などに基づいて、 回生制動が行えるか否かを判断する (ステップ S223)。
具体的には、電動モータ 35の故障により回生制動が行えるか否力、、バッテリ 41の 過充電により回生制動が行えるか否か等を判断する。 [0107] 回生制動が行える場合には、制御器 439は電動ァクチユエータ 431を縮める制御 信号を出力し、電動ァクチユエータ 431が縮む (ステップ S424)。すると、伝達シリン ダ部 25と伝達ピストン部 27とが相対移動可能な距離が確保される。以後の機械式制 動部 107における制動動作は第 1の実施形態と同様であるため、その説明を省略す
[0108] 電動ァクチユエータ 431の縮め量は、制御器 439においてフォークリフト 401の車 速や電動モータ 35の特性などに基づいて算出される。具体的には、車速が早いとき には縮め量を減らし、遅いときには縮め量を増やす。電動モータの発生する制動トル クが大きいときには縮め量を増やし、小さいときには縮め量を減らす。
[0109] 一方、回生制動が行えない場合には、制御器 439は電動ァクチユエータ 431を伸 ばす制御信号を出力し、電動ァクチユエータ 431が伸ばされる (ステップ S425)。電 動ァクチユエータ 431の伸ばし量は、制御器 439においてフォークリフト 401の車速 などに基づいて算出される。具体的には、車速が早いときには伸ばし量を増やし、遅 いときには伸ばし量を減らす。
[0110] 電動ァクチユエータ 431が伸びると、伝達シリンダ部 25と伝達ピストン部 27とが相 対移動可能な距離が短くなる。この状態では、伝達シリンダ部 25は小さな踏み込み 量で電動ァクチユエータ 431と接触し、踏み込み量はストローク部 23からマスタシリン ダ 15に伝達される。
[0111] 上記の構成によれば、電動ァクチユエータ 431により、伝達シリンダ部 25と伝達ビス トン部 27との相対移動可能な距離を調節することにより、機械式制動部 107による摩 擦制動が作用する最低限の踏み込み量を調節することができる。そのため、フォーク リフト 401の車速に応じて回生制動のみが働く踏み込み量の範囲を調節することが でき、同じ踏み込み量で常に同じ制動力や減速度を得ることができる。
[0112] 電動モータ 35の故障時や、バッテリ 41の満充電時における回生制動が行えない 場合であっても、機械式制動部 107を優先的に作用させることができ、機械式制動 部のみを備えた従来のフォークリフトと同じ程度の操作性を確保することができる。
[0113] 〔第 6の実施形態〕
次に、本発明の第 6の実施形態について図 15および図 16を参照して説明する。 本実施形態のフォークリフトの基本構成は、第 2の実施形態と同様である力、第 2の 実施形態とは、機械式制動部の制御方法が異なっている。よって、実施形態におい ては、図 15および図 16を用いて機械式制動部の制御方法およびそれに関する構成 要素のみを説明し、その他の構成要素等の説明を省略する。
図 15は、本実施形態に係るフォークリフトにおける制動装置の構成を説明するもの である。
なお、第 2の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0114] フォークリフト(作業車両) 601は、図 15に示すように、オペレータがブレーキペダル 9を踏むことで制動指示を入力する入力部 603と、フォークリフト 601の運動エネルギ 力も電気工ネルギを回収することにより制動を行う回生制動部 605と、フォークリフト 6 01の運動エネルギを熱エネルギに変換することにより制動を行う機械式制動部 107 と、を備えている。
[0115] 入力部 403は、オペレータが踏むブレーキペダル 9と、ブレーキペダル 9の踏み込 み量 (操作量)を検出するストロークセンサ 11と、踏み込み量に応じてブレーキぺダ ノレ 9に反力を発生させる反カバネ 13と、反カバネ 13による反力の発生を調整する電 動ァクチユエータ(伝達調節部) 631と、踏み込み量をマスタシリンダ 15に伝達するガ タ部 17と、を備えている。
[0116] 電動ァクチユエータ 631は壁部 Wと反カバネ 13との間に配置されている。電動ァク チユエータ 631は、制御器 639から電動ァクチユエータ 631を制御する制御信号が 入力され、制御信号に基づレ、て伸縮するものである。
[0117] 回生制動部 605は、車輪 33と電動モータ 35との間で動力を伝達する動力伝達機 構 34と、車輪 33の回転により発電する電動モータ 35と、電動モータ 35の制動トルク を制御するインバータ 37および制御器 (制御部) 639と、発電された電気が蓄えられ るバッテリ 41と、を備えている。
[0118] 制御器 639は、インバータ 37を制御することにより、回生制動時に電動モータ 35が 発生する制動トルクほたは回生トルク)を制御する一方、供給する交流電流を制御し て電動モータ 35が発生する駆動トルクを制御するものである。 制御器 639は電動ァクチユエータ 631の伸縮を制御するものである。電動ァクチュ エータ 631の伸縮制御については、以下の本実施形態のフォークリフト 601の制動 時の動作の説明にお!/、て詳細に説明する。
[0119] 次に、上記の構成からなるフォークリフトにおける制動時の動作について、図 15お よび図 16を参照しながら説明する。
図 16は、図 15のフォークリフトにおける制動時の制御のうち、本実施形態に特有な 部分を説明するフローチャートである。
なお、回生制動部 205における制動時の動作は、第 2の実施形態と同様であるの でその説明を省略する。
[0120] フォークリフト 601を制動させる場合、オペレータはブレーキペダル 9を踏む。踏ま れたブレーキペダル 9は支持部 21を中心に回動し、回動角はストロークセンサ 11に 検出される(ステップ S11 ;図 2参照。)。
制御器 639は、電動モータ 35に設けられた温度センサ(図示せず)の出力や、電 動モータ 35からインバータ 37に流れる電流や、バッテリ 41の電圧などに基づいて、 回生制動が行えるか否かを判断する (ステップ S223)。
具体的には、電動モータ 35の故障により回生制動が行えるか否力、、バッテリ 41の 過充電により回生制動が行えるか否か等を判断する。
[0121] 回生制動が行える場合には、制御器 639は電動ァクチユエータ 631を縮める制御 信号を出力し、電動ァクチユエータ 631が縮む(ステップ S624)。
電動ァクチユエータ 631が縮むと、反カバネ 13により反力が発生しない踏み込み 量の範囲が狭くなる。ブレーキペダル 9が踏まれると、反カバネ 13により反力が発生 するため、ブレーキペダル 9の踏み込み量は、回生制動が行われる踏み込み量の範 囲に留まりやすぐ回生制動部 605による回生制動が行われる。
以後の機械式制動部 107における制動動作は第 1の実施形態と同様であるため、 その説明を省略する。
[0122] 電動ァクチユエータ 631の縮め量は、制御器 639においてフォークリフト 601の車 速や電動モータ 35の特性などに基づいて算出される。具体的には、車速が早いとき には縮め量を減らし、遅いときには縮め量を増やす。電動モータの発生する制動トル クが大きいときには縮め量を増やし、小さいときには縮め量を減らす。
[0123] 一方、回生制動が行えない場合には、制御器 639は電動ァクチユエータ 631を伸 ばす制御信号を出力し、電動ァクチユエータ 631が伸ばされる (ステップ S625)。電 動ァクチユエータ 631の伸ばし量は、制御器 639においてフォークリフト 601の車速 などに基づいて算出される。具体的には、車速が早いときには伸ばし量を増やし、遅 いときには伸ばし量を減らす。
[0124] 電動ァクチユエータ 631が伸びると、反カバネ 13により反力が発生しない踏み込み 量の範囲が広くなる。
この状態では、ブレーキペダル 9が踏まれると、反力が発生しないため、ブレーキぺ ダル 9の踏み込み量は回生制動が行われる踏み込み量範囲を容易に超える。その ため、伝達シリンダ部 25は比較的早く伝達ピストン部 27と接触し、踏み込み量はスト ローク部 23からマスタシリンダ 15に伝達される。
[0125] 上記の構成によれば、電動ァクチユエータ 631により、反カバネ 13の配置位置をス トローク部の移動方向に変更して、反カバネ 13の変形量を調節することで、反力が 発生する最低限の踏み込み量や発生する反力の強さを調節することができる。その ため、フォークリフト 601の車速に応じて回生制動のみが働く踏み込み量の範囲や、 オペレータ反力の強さを調節することができ、常に同じ制動力や減速度を得ることが できる。
[0126] 電動モータ 35の故障時や、バッテリ 41の満充電時における回生制動が行えない 場合であっても、機械式制動部 107を優先的に作用させることができ、機械式制動 部のみを備えた従来のフォークリフトと同じ程度の操作性を確保することができる。
[0127] さらに、オペレータが電動ァクチユエータ 631の伸縮を調節することにより、ォペレ 一タ反カや、機械式制動部 107が作用し始める踏み込み量を調節することもできる。 このような調節を行う場合には、オペレータによる調節をリセットする手段が設けられ ていることが好ましい。例えば、フォークリフト 601の電源が切られると自動的に電動 ァクチユエータ 631の伸縮が初期値に戻される方法が挙げられる。

Claims

請求の範囲
[1] 運転者が操作するブレーキ操作部と、
該ブレーキ操作部の操作量を検知する操作量検出部と、
車輪の回転を電気工ネルギに変換することにより、前記車輪の回転を制動する回 生部と、
前記操作量検出部の出力に基づいて前記回生部を制御する制御部と、 前記操作量が所定値より小さいときには前記操作量の伝達を遮断し、前記操作量 が前記所定値以上のときには、前記操作量から前記所定値を除去した操作量を伝 達する伝達部と、
該伝達部から伝達された前記操作量に基づいて、前記車輪の回転を摩擦力により 制動する制動部と、が設けられていることを特徴とする作業車両用制動装置。
[2] 前記ブレーキ操作部の操作に対して反力を発生させる反力発生部が設けられてレ、 ることを特徴とする請求項 1記載の作業車両用制動装置。
[3] 前記反力発生部が、前記操作量に基づいて変形することにより前記反力を発生す る弾性部材であり、
前記反力発生部の配置位置を変更することで、前記反力の強さを調節する反力調 節部が設けられていることを特徴とする請求項 2に記載の作業車両用制動装置。
[4] 前記反力発生部が、前記操作量に基づいて変形することにより前記反力を発生す る弾性部材であり、
該弾性部材の一方の端部に、有底円筒状の反カシリンダ部および該反カシリンダ 部の内部に相対移動可能に配置された棒状の反力ピストン部の一方が配置され、 前記反カシリンダ部と前記反力ピストン部との間の反力空間に液体が満たされ、 前記反カシリンダの外部と前記反力空間とを繋ぐ流路に、前記液体の流れを制御 する反力制御弁が設けられていることを特徴とする請求項 2に記載の作業車両用制 動装置。
[5] 前記制動部には、前記伝達部から伝達された前記操作量に基づいて流体の圧力 を高める圧力発生部と、前記流体の圧力に基づいて前記車輪との間で摩擦力を発 生させる摩擦発生部と、が設けられて!/、ることを特徴とする請求項 1から 4の!/、ずれか に記載の作業車両用制動装置。
[6] 前記伝達部は、前記ブレーキ操作部に接続された入力部と、前記圧力発生部に接 続されるとともに前記入力部に対して相対移動可能に配置された出力部と、を有し、 入力部および出力部の少なくとも一方には、前記相対移動可能な距離を制限する 制限部
が設けられていることを特徴とする請求項 5記載の作業車両用制動装置。
[7] 前記入力部と前記出力部との相対移動可能な距離を調節する伝達調節部が設け られていることを特徴とする請求項 6記載の作業車両用制動装置。
[8] 前記入力部および前記出力部の一方が有底円筒状の伝達シリンダ部であって、他 方が前記伝達シリンダ部の内部に相対移動可能に配置された棒状の伝達ピストン部 であり、
前記伝達シリンダ部と前記伝達ピストン部との間の伝達空間に液体が満たされ、 前記伝達シリンダの外部と前記伝達空間とを繋ぐ流路に、前記液体の流れを制御 する伝達制御弁が設けられたことを特徴とする請求項 6または 7に記載の作業車両用 制動装置。
[9] 前記圧力発生部の流体圧力を検出する圧力検出部が設けられ、
前記制御部は、少なくとも前記操作量検出部の出力と前記圧力検出部の出力とに 基づ V、て、前記回生部が発生する制動力を制御することを特徴とする請求項 5から 8 の!/、ずれかに記載の作業車両用制動装置。
[10] 走行の動力源に用いられる電動機と、
請求項 1から請求項 9のいずれかに記載の作業車両用制動装置と、
が設けられ、
前記電動機が、前記制動装置の回生部として用いられることを特徴とする作業車両
PCT/JP2007/071691 2006-11-09 2007-11-08 Dispositif de freinage pour véhicule de chantier et véhicule de chantier WO2008056729A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/375,384 US20100006380A1 (en) 2006-11-09 2007-11-08 Commercial-vehicle braking system and commercial vehicle
EP07831422.6A EP2058189A4 (en) 2006-11-09 2007-11-08 BRAKING DEVICE FOR CONSTRUCTION VEHICLE AND CONSTRUCTION VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-303779 2006-11-09
JP2006303779A JP4302133B2 (ja) 2006-11-09 2006-11-09 作業車両用制動装置および作業車両

Publications (1)

Publication Number Publication Date
WO2008056729A1 true WO2008056729A1 (fr) 2008-05-15

Family

ID=39364540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071691 WO2008056729A1 (fr) 2006-11-09 2007-11-08 Dispositif de freinage pour véhicule de chantier et véhicule de chantier

Country Status (4)

Country Link
US (1) US20100006380A1 (ja)
EP (1) EP2058189A4 (ja)
JP (1) JP4302133B2 (ja)
WO (1) WO2008056729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942759A1 (fr) * 2009-03-06 2010-09-10 Peugeot Citroen Automobiles Sa Systeme de freinage comportant une pedale de frein a deplacement controle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154324A (ja) * 2006-12-15 2008-07-03 Tcm Corp 産業用電気駆動車両の制動装置
JP5951704B2 (ja) * 2009-04-02 2016-07-13 株式会社東芝 回生ブレーキ装置および回生ブレーキ装置を備える車両
DE102010036685B4 (de) 2010-07-28 2023-10-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Ansteuern einer Bremsvorrichtung eines Hybridfahrzeugs und Bremsvorrichtung zum Bremsen des Hybridfahrzeugs
JP6012225B2 (ja) * 2012-03-30 2016-10-25 日立オートモティブシステムズ株式会社 ブレーキ装置
DE102012220770A1 (de) * 2012-11-14 2014-05-15 Robert Bosch Gmbh Steuervorrichtung für zumindest eine Bremssystemkomponente eines rekuperativen Bremssystems, Steuervorrichtung für eine Informationsausgabeeinrichtung eines Fahrzeugs und Verfahren zum Betreiben mindestens eines rekuperativen Bremssystems eines Fahrzeugs
KR101984741B1 (ko) * 2012-11-23 2019-05-31 주식회사 두산 지게차의 페달장치
US9676279B2 (en) 2012-12-08 2017-06-13 Ford Global Technologies, Llc Parallel regeneration brake torque modulation system and method
DE102012025423A1 (de) 2012-12-21 2014-06-26 Lucas Automotive Gmbh Elektrohydraulische Fahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
US9254825B2 (en) * 2014-01-12 2016-02-09 Ford Global Technologies, Llc Regenerative braking control system and method
GB201411228D0 (en) * 2014-06-24 2014-08-06 Torotrak Dev Ltd Driver interface for a kinetic energy recovery system
CN104290727A (zh) * 2014-09-30 2015-01-21 广西柳工机械股份有限公司 电动轮矿用自卸车用制动系统
CN105109349A (zh) * 2015-02-05 2015-12-02 南京理工大学 高可靠性的车辆制动系统
DE102015011973A1 (de) * 2015-09-12 2017-03-16 Man Truck & Bus Ag Bremsbelagvorrichtung für eine Scheibenbremse
CN205131228U (zh) * 2015-10-20 2016-04-06 浙江中力机械有限公司 双制动脚刹机构
CN111976670B (zh) * 2020-08-31 2021-09-28 安徽江淮汽车集团股份有限公司 车辆能量回收装置、车辆能量回收方法和存储介质
DE102021114497A1 (de) * 2021-06-07 2022-12-08 Zf Cv Systems Global Gmbh Bremsanlage eines Kraftfahrzeugs und Verfahren zur Steuerung derselben
CN113479072B (zh) * 2021-07-14 2023-04-07 中国第一汽车股份有限公司 一种改善电动车辆能量回收工况驾驶性的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549537U (ja) * 1991-12-17 1993-06-29 三菱自動車工業株式会社 制動エネルギー回収用制御レバー付きブレーキペダル装置
JPH07336805A (ja) * 1994-06-03 1995-12-22 Toyota Motor Corp 電気自動車の制動装置
JPH10271608A (ja) 1997-03-27 1998-10-09 Mitsubishi Motors Corp 電気自動車の制動制御装置
JP2004338546A (ja) 2003-05-15 2004-12-02 Nippon Yusoki Co Ltd 産業車両のブレーキシステム
JP2005219687A (ja) * 2004-02-09 2005-08-18 Toyoda Iron Works Co Ltd ペダル反力装置
JP2005263074A (ja) * 2004-03-19 2005-09-29 Toyoda Iron Works Co Ltd 車両用ブレーキ装置
JP2006054982A (ja) * 2004-08-16 2006-02-23 Sugai Sogyo:Kk 電動モータ式カート

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031271A5 (ja) * 1969-02-05 1970-11-13 Daimler Benz Ag
GB1412557A (en) * 1972-08-23 1975-11-05 Elektr Strassenverkehr Ges Electrically propelled vehicles
US4741410A (en) * 1985-07-05 1988-05-03 Advanced Energy Systems Inc. Energy storage automotive drive system particularly adaptable for retrofitting
DE4239386A1 (de) * 1992-11-24 1994-05-26 Teves Gmbh Alfred Bremsanlage für Kraftfahrzeuge mit elektrischem Antrieb
JPH08216868A (ja) * 1995-02-10 1996-08-27 Jidosha Kiki Co Ltd ブレーキ倍力装置を備えた制動システム
US6176556B1 (en) * 1998-09-02 2001-01-23 Chrysler Corporation Braking system for accommodation of regenerative braking in an electric or hybrid electric vehicle
US6439674B1 (en) * 1999-09-01 2002-08-27 Denso Corporation Vehicle braking apparatus and vehicle braking method
JP3396694B2 (ja) * 1999-10-08 2003-04-14 トヨタ自動車株式会社 ブレーキ装置
JP3775236B2 (ja) * 2001-04-18 2006-05-17 日産自動車株式会社 ストロークシミュレータ
US20040251095A1 (en) * 2003-06-12 2004-12-16 Hydro-Quebec Electric vehicle braking system
DE102004011622A1 (de) * 2003-08-06 2005-03-31 Continental Teves Ag & Co. Ohg Bremsbetätigungseinheit zur Betätigung einer Kraftfahrzeugbremsanlage
US20080017425A1 (en) * 2004-04-20 2008-01-24 Continental Teves Ag & Ohg Process For Operating A Brake Actuation Unit Of A Motor Vehicle Brake System
US7232192B2 (en) * 2004-07-01 2007-06-19 Ford Global Technologies, Llc Deadband regenerative braking control for hydraulic hybrid vehicle powertrain
US7748792B2 (en) * 2007-06-11 2010-07-06 Ford Global Technologies Automotive braking system with master cylinder force simulator
IT1392621B1 (it) * 2008-10-23 2012-03-16 Ferrari Spa Impianto frenante di un veicolo atto a comandare una frenata rigenerativa

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549537U (ja) * 1991-12-17 1993-06-29 三菱自動車工業株式会社 制動エネルギー回収用制御レバー付きブレーキペダル装置
JPH07336805A (ja) * 1994-06-03 1995-12-22 Toyota Motor Corp 電気自動車の制動装置
JPH10271608A (ja) 1997-03-27 1998-10-09 Mitsubishi Motors Corp 電気自動車の制動制御装置
JP2004338546A (ja) 2003-05-15 2004-12-02 Nippon Yusoki Co Ltd 産業車両のブレーキシステム
JP2005219687A (ja) * 2004-02-09 2005-08-18 Toyoda Iron Works Co Ltd ペダル反力装置
JP2005263074A (ja) * 2004-03-19 2005-09-29 Toyoda Iron Works Co Ltd 車両用ブレーキ装置
JP2006054982A (ja) * 2004-08-16 2006-02-23 Sugai Sogyo:Kk 電動モータ式カート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2058189A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942759A1 (fr) * 2009-03-06 2010-09-10 Peugeot Citroen Automobiles Sa Systeme de freinage comportant une pedale de frein a deplacement controle

Also Published As

Publication number Publication date
JP4302133B2 (ja) 2009-07-22
EP2058189A1 (en) 2009-05-13
US20100006380A1 (en) 2010-01-14
JP2008120157A (ja) 2008-05-29
EP2058189A4 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2008056729A1 (fr) Dispositif de freinage pour véhicule de chantier et véhicule de chantier
JP5222329B2 (ja) 車両用制動装置
JP5304274B2 (ja) 車両用制動制御装置
JP5790870B2 (ja) 制動制御装置及び制御方法
JP4700010B2 (ja) ブレーキ装置およびその制御装置
JP5066004B2 (ja) ブレーキシステム
US8886375B2 (en) Control apparatus for electric vehicle
JP5262777B2 (ja) 車両用制動制御装置
KR101304208B1 (ko) 회생 제동 시스템의 유압 제어 방법
US20100036577A1 (en) Braking apparatus and method for controlling braking apparatus
JPH114503A (ja) 車両用制動装置
US20110139555A1 (en) Electric brake device
JP4418259B2 (ja) 電動ブレーキ装置
US9308897B2 (en) Brake control device
JP5560797B2 (ja) 作業用車両の走行装置
JP6056430B2 (ja) 車両用制動制御装置
JP4760653B2 (ja) 車両の制動装置
JP4798092B2 (ja) 電気自動車の制動装置
JPH114504A (ja) 車両用制動装置
JP5891866B2 (ja) 制動制御装置
JP6015284B2 (ja) 車両用制動制御装置
JP5474132B2 (ja) ブレーキシステム
JP4179692B2 (ja) ブレーキバイワイヤ式サービスブレーキ
JP5238459B2 (ja) 制動装置および制動装置の制御方法
JP6911735B2 (ja) 車両のブレーキ制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12375384

Country of ref document: US

Ref document number: 2007831422

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE