JP5262777B2 - 車両用制動制御装置 - Google Patents

車両用制動制御装置 Download PDF

Info

Publication number
JP5262777B2
JP5262777B2 JP2009023985A JP2009023985A JP5262777B2 JP 5262777 B2 JP5262777 B2 JP 5262777B2 JP 2009023985 A JP2009023985 A JP 2009023985A JP 2009023985 A JP2009023985 A JP 2009023985A JP 5262777 B2 JP5262777 B2 JP 5262777B2
Authority
JP
Japan
Prior art keywords
braking torque
change
regenerative braking
regenerative
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009023985A
Other languages
English (en)
Other versions
JP2010179742A (ja
Inventor
圭悟 網代
直樹 宮下
直衛 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009023985A priority Critical patent/JP5262777B2/ja
Publication of JP2010179742A publication Critical patent/JP2010179742A/ja
Application granted granted Critical
Publication of JP5262777B2 publication Critical patent/JP5262777B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両用制動制御装置に関する。
特許文献1に記載の車両用制動制御装置では、回生制動トルクの変化量に応じてプライマリピストンの位置を変化させることにより、回生協調制御による回生制動トルクと摩擦制動トルクとのすり替えを実現している。このとき、マスタシリンダ圧の増減により変化するブレーキペダル反力は、インプットロッドをプライマリピストン側へ付勢するバネの反力により相殺し、ブレーキペダル反力の変動を抑制している。
特開2007−112426号公報
しかしながら、上記従来技術にあっては、マスタシリンダの液剛性と設定したバネ特性との関係によって、ブレーキペダル反力の小さい領域と大きい領域とが存在するため、ブレーキペダル反力の大きな領域では、ブレーキペダル反力の小さな領域と比較してブレーキペダル反力の変動速度が高く、ドライバに違和感を与えるという問題があった。
本発明の目的は、ブレーキペダル反力の変動に伴う違和感を軽減できる車両用制動制御装置を提供することにある。
上記課題を解決するため、本発明では、回生制動トルクと摩擦制動トルクとのすり替えに伴い発生するブレーキペダル反力の変動量の大きさを表す踏力変化度合いを算出し、踏力変化度合いが大きいほど、回生制動トルクの変化を制限する。
よって、本発明にあっては、踏力変化度合いが大きいほど回生制動トルクの変化を制限することにより、マスタシリンダ圧の変化速度が緩やかとなり、ブレーキペダル反力の変動速度を小さくできる。この結果、ブレーキペダル反力の変動に伴いドライバに与える違和感を軽減できる。
実施例1のハイブリッド車両を示す全体システム図である。 実施例1のブレーキ装置1の全体構成図である。 実施例1の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートである。 インプットロッドストロークXiに応じた回生指令の最大値の特性マップである。 インプットロッドストロークXiに対する踏力変化度合いの設定マップである。 踏力変化度合いに対する回生増加勾配の設定マップである。 高G減速時と低G減速時とにおいてマスタシリンダ圧を同じ量だけ減圧したときのインプットロッドストロークXiの違いを示す図である。 実施例1の作用を示すタイムチャートである。 実施例2の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートである。 実施例2の作用を示すタイムチャートである。 実施例3の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートである。 実施例3の作用を示すタイムチャートである。 実施例4の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートである。 踏力変化度合いに応じたすり替え開始車速設定マップである。 実施例4の作用を示すタイムチャートである。 実施例5の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートである。 踏力変化度合いに応じたスリップ判定閾値設定マップである。 実施例5の制御を適用しない場合の回生指令の減少勾配を示すタイムチャートである。 実施例5の作用を示すタイムチャートである。
以下、本発明の車両用制動制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。
まず、構成を説明する。
[全体構成]
図1は、実施例1のハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車両の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータ(回生制動装置)MGと、第2クラッチCL2と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RLと、右後輪RRと、を有する。なお、FLは左前輪、FRは右前輪である。
エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ101からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。なお、エンジン出力軸にはフライホイールFWが設けられている。
第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ105からの制御指令に基づいて、第1クラッチ油圧ユニット106により作り出された制御油圧により作動し、スリップ締結を含み締結・開放が制御される。具体的には、第1クラッチCL1は非制御時において、板ばねの付勢力によって完全締結しているノーマルクローズ型の乾式クラッチである。第1クラッチCL1の開放指令が出力されると、伝達トルク容量指令に応じた油圧がピストンに供給されてストロークし、ストローク量に応じた伝達トルク容量に設定される。所定以上のストロークが行われると、クラッチプレート間の接触が絶たれて開放する。また、ピストンにはクラッチ開放時のフリクションロスを軽減するために、クラッチプレートの接触が絶たれた後もさらにピストンに付与する油圧を高めて余分に所定量ストロークさせる。
一方、第1クラッチCL1が開放された状態から締結するときは、ピストンに付与する油圧を徐々に低くする。すると、ピストンがストロークを開始し、所定量ストロークしたときにクラッチプレートが当接し始める(ガタ詰めに相当)。ちなみに、クラッチプレートが当接したか否かはエンジン回転数Neが上昇を開始したか否かで判断できる。それ以後は、ピストンに作用する油圧を低くするほど高い伝達トルク容量となる。
モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ102からの制御指令に基づいて、インバータ103により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ104からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ104を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。なお、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。
第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ107からの制御指令に基づいて、第2クラッチ油圧ユニット108により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
自動変速機ATは、前進5速後退1速等の有段階の変速比を車速VSPやアクセル開度APO等に応じて自動的に切り換える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。
そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。なお、第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。
このハイブリッド駆動系は、第1クラッチCL1の締結・開放状態に応じて3つの走行モードを有する。
第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。
第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。
第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリSOCが低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードである。なお、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。
上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを設定する。
「エンジン走行モード」は、エンジンEのみを動力源として駆動輪RL,RRを動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪RL,RRを動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RL,RRを動かすと同時に、モータジェネレータMGを発電機として機能させる。
定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ104の充電のために使用する。
また、さらなるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
次に、ハイブリッド車両の制御系を説明する。
実施例1におけるハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ101と、モータコントローラ102と、インバータ103と、バッテリ104と、第1クラッチコントローラ105と、第1クラッチ油圧ユニット106と、ATコントローラ107と、第2クラッチ油圧ユニット108と、ブレーキ装置1と、統合コントローラ(回生協調制御手段)110と、を有して構成されている。なお、エンジンコントローラ101と、モータコントローラ102と、第1クラッチコントローラ105と、ATコントローラ107と、ブレーキ装置1と、統合コントローラ110とは、互いの情報交換が可能なCAN通信線111を介して接続されている。
エンジンコントローラ101は、エンジン回転数センサ112からのエンジン回転数情報を入力し、統合コントローラ110からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。なお、エンジン回転数Ne等の情報は、CAN通信線111を介して統合コントローラ110へ供給される。
モータコントローラ102は、モータジェネレータMGのロータ回転位置を検出するレゾルバ113からの情報を入力し、統合コントローラ110からの目標モータジェネレータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータジェネレータ回転数,Tm:モータジェネレータトルク)を制御する指令をインバータ103へ出力する。なお、このモータコントローラ102では、バッテリ104の充電状態を表すバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線111を介して統合コントローラ110へ供給される。
第1クラッチコントローラ105は、第1クラッチ油圧センサ114と第1クラッチストロークセンサ115からのセンサ情報を入力し、統合コントローラ110からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・開放を制御する指令を第1クラッチ油圧ユニット106に出力する。なお、第1クラッチストロークC1Sの情報は、CAN通信線111を介して統合コントローラ110へ供給する。
ATコントローラ107は、アクセル開度センサ116と車速センサ117と第2クラッチ油圧センサ118と運転者の操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチからの各センサ情報を入力し、統合コントローラ110からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニット108に出力する。なお、アクセル開度APOと車速VSPとインヒビタスイッチの情報は、CAN通信線111を介して統合コントローラ110へ供給する。
ブレーキ装置1は、ドライバの制動操作に応じて各車輪に摩擦制動トルクを付与する。また、統合コントローラ110からの回生協調制御指令に基づいて摩擦制動トルクを調整する。回生協調制御については後述する。
統合コントローラ110は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ121と、第2クラッチ出力回転数N2outを検出する第2クラッチ出力回転数センサ122と、第2クラッチ伝達トルク容量TCL2(第2クラッチトルク)を検出する第2クラッチトルクセンサ123と、4輪の各車輪速を検出する車輪速センサ124と、前後加速度を検出するGセンサ125とからの各センサ情報と、CAN通信線111を介して得られた情報とを入力する。
統合コントローラ110は、エンジンコントローラ101への制御指令によるエンジンEの動作制御と、モータコントローラ102への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ105への制御指令による第1クラッチCL1の締結・開放制御と、ATコントローラ107への制御指令による第2クラッチCL2の締結・開放制御と、ブレーキコントローラ109への制御指令によるブレーキ装置1の動作制御と、を行う。
統合コントローラ110は、ドライバのブレーキペダル踏み込み量に対して目標減速度を算出し、算出した目標減速度に対し回生制動トルクを優先することにより、特に加減速を繰り返す走行パターンにおいて、エネルギ回収効率が高く、より低い車速まで回生制動によるエネルギの回収を実現している。
一方、回生制動トルクには車速によって決まる回転数に応じて上限があるため、目標減速度に対し回生制動トルクによる減速のみでは不足する場合、その不足分を摩擦制動トルクで補うような回生協調制御指令をブレーキ装置1に出力する。
統合コントローラ110は、回生協調制御時、回生制動トルクと摩擦制動トルクとのすり替えに伴い発生するドライバ踏力Fi(ブレーキペダル反力)の変動量の大きさを表す踏力変化度合いを算出し、算出した踏力変化度合いが大きいほど、回生制動トルクの変化を制限する回生制動トルク変化制限部(回生制動トルク変化制限手段)110aを備える。この回生制動トルク変化制限部110aの詳細については後述する。
[ブレーキ装置の構成]
図2は、実施例1のブレーキ装置1の全体構成図であり、実施例1のブレーキ装置1は、電動モータとエンジンとを動力源とするハイブリッド車両に搭載している。
ブレーキ装置1は、マスタシリンダ2と、リザーバタンクRESと、各車輪に設けたホイルシリンダ4a〜4dと、マスタシリンダ2に接続して設けたマスタシリンダ圧制御機構(ブレーキ倍力装置)5およびインプットロッド(入力部材)6と、ブレーキ操作量検出装置7と、マスタシリンダ圧制御機構5を制御するマスタシリンダ圧制御装置8とを有する。
インプットロッド6は、ブレーキペダルBPと共にストローク(進退)し、マスタシリンダ2内の液圧(以下、マスタシリンダ圧Pmc)を加減する。マスタシリンダ圧制御機構5およびマスタシリンダ圧制御装置8は、マスタシリンダ2のプライマリピストン(アシスト部材)2bをストロークさせ、マスタシリンダ圧Pmcを加減する。
以下、説明のため、マスタシリンダ2の軸方向にx軸を設定し、ブレーキペダルBPの側を負方向と定義する。実施例1のマスタシリンダ2は、いわゆるタンデム型であり、シリンダ2a内にプライマリピストン2bおよびセカンダリピストン2cを有している。シリンダ2aの内周面と、プライマリピストン2bのx軸正方向側の面およびセカンダリピストン2cのx軸負方向側の面との間で、第1液圧室としてのプライマリ液圧室2dを形成している。シリンダ2aの内周面とセカンダリピストン2cのx軸正方向側の面との間で、第2液圧室としてのセカンダリ液室2eを形成している。
プライマリ液圧室2dはプライマリ回路10と連通可能に接続し、セカンダリ液室2eはセカンダリ回路20と連通可能に接続している。プライマリ液圧室2dの容積は、プライマリピストン2bおよびセカンダリピストン2cがシリンダ2a内をストロークすることで変化する。プライマリ液圧室2dには、プライマリピストン2bをx軸負方向側に付勢する戻しバネ2fを設置している。セカンダリ液室2eの容積は、セカンダリピストン2cがシリンダ2a内をストロークすることで変化する。セカンダリ液室2eには、セカンダリピストン2cをx軸負方向側に付勢する戻しバネ2gを設置している。
なお、図示は省略したが、プライマリ回路10およびセカンダリ回路20には、ABS制御等を実施するための各種バルブやモータポンプ、リザーバ等を設けている。
プライマリ回路10にはプライマリ液圧センサ(マスタシリンダ圧検出手段)13、セカンダリ回路20にはセカンダリ液圧センサ(マスタシリンダ圧検出手段)14を設け、プライマリ液圧センサ13はプライマリ液圧室2dの液圧を、セカンダリ液圧センサ14はセカンダリ液室2eの液圧を検出し、この液圧情報をマスタシリンダ圧制御装置8に送信している。
インプットロッド6のx軸正方向側の一端6aは、プライマリピストン2bの隔壁2hを貫通し、プライマリ液圧室2d内に接地している。インプットロッド6の一端6aとプライマリピストン2bの隔壁2hとの間はシールしており、液密性を確保すると共に、一端6aは隔壁2hに対してx軸方向に摺動可能に設けている。一方、インプットロッド6のx軸負方向側の他端6bは、ブレーキペダルBPに連結している。ドライバがブレーキペダルBPを踏むと、インプットロッド6はx軸正方向側に移動し、ドライバがブレーキペダルBPを戻すとインプットロッド6はx軸負方向側に移動する。
またインプットロッド6には、プライマリピストン2bの隔壁2hの内周よりも大径、かつ、フランジ部6cの外径よりも小径の大径部6fを形成している。この大径部6fのx軸正方向側端面と隔壁2hのx軸負方向側端面との間には、ブレーキ非作動時においてギャップL1を設けている。このギャップL1により、統合コントローラ110から回生協調制御指令を受けた場合には、プライマリピストン2bをインプットロッド6に対してx軸負方向に相対移動することで、回生制動トルク分だけ摩擦制動トルクを減じることが可能である。またギャップL1により、インプットロッド6が、プライマリピストン2bに対してx軸正方向にギャップL1分相対変位すると、この大径部6fのx軸正方向の面と隔壁2hとが当接して、インプットロッド6とプライマリピストン2bとが一体に移動することが可能である。
インプットロッド6またはプライマリピストン2bがx軸正方向側へ移動することによってプライマリ液圧室2dの作動液を加圧し、加圧した作動液をプライマリ回路10に供給する。また、加圧した作動液によるプライマリ液圧室2dの圧力により、セカンダリピストン2cがx軸正方向側へ移動する。セカンダリピストン2cがx軸正方向側へ移動することによってセカンダリ液室2eの作動液を加圧し、加圧した作動液をセカンダリ回路20に供給する。
上記のように、インプットロッド6がブレーキペダルBPと連動して移動し、プライマリ液圧室2dを加圧する構成により、万が一、故障によりマスタシリンダ圧制御機構5の駆動モータ(倍力アクチュエータ)50が停止した場合にも、ドライバのブレーキ操作によってマスタシリンダ圧Pmcを上昇させ、所定の制動トルクを確保できる。また、マスタシリンダ圧Pmcに応じた力がインプットロッド6を介してブレーキペダルBPに作用し、ブレーキペダル反力としてドライバに伝達するため、上記構成を採らない場合に必要な、ブレーキペダル反力を生成するバネ等の装置が不要となる。よって、ブレーキ倍力装置の小型化・軽量化を図ることができ、車両への搭載性が向上する。
ブレーキ操作量検出装置7は、ドライバの要求減速度を検出するためのもので、インプットロッド6の他端6b側に設けている。ブレーキ操作量検出装置7は、インプットロッド6のx軸方向変位量(ストローク)を検出するストロークセンサ、すなわち、ブレーキペダルBPのストロークセンサである。
リザーバタンクRESは、隔壁(不図示)によって互いに仕切られた少なくとも2つの液室を有している。各液室はそれぞれブレーキ回路11,21を介して、マスタシリンダ2のプライマリ液圧室2dおよびセカンダリ液室2eと連通可能に接続している。
ホイルシリンダ(摩擦制動装置)4a〜4dは、シリンダ、ピストン、パッド等を有しており、シリンダ2aが供給した作動液によって上記ピストンが移動し、このピストンに連結したパッドをディスクロータ40a〜40dに押圧するものである。なお、ディスクロータ40a〜40dは各車輪と一体回転し、ディスクロータ40a〜40dに作用するブレーキトルクは、各車輪と路面との間に作用するブレーキ力となる。
マスタシリンダ圧制御機構5は、プライマリピストン2bの変位量すなわちマスタシリンダ圧Pmcを、マスタシリンダ圧制御装置8の制御指令に従って制御するものであり、駆動モータ50と、減速装置51と、回転−並進変換装置55と、を有している。
マスタシリンダ圧制御装置8は演算処理回路であり、ブレーキ操作量検出装置7や駆動モータ50からのセンサ信号等に基づいて、駆動モータ50の作動を制御する。
続いて、マスタシリンダ圧制御機構5の構成および動作について説明する。
駆動モータ50は三相DCブラシレスモータであり、マスタシリンダ圧制御装置8の制御指令に基づき供給する電力によって動作し、所望の回転トルクを発生する。
減速装置51は、駆動モータ50の出力回転をプーリ減速方式により減速する。減速装置51は、駆動モータ50の出力軸に設けた小径の駆動側プーリ52と、回転−並進変換装置55のボールネジナット56に設けた大径の従動側プーリ53と、駆動側および従動側プーリ52,53に巻き掛けたベルト54とを有している。減速装置51は、駆動モータ50の回転トルクを、減速比(駆動側および従動側プーリ52,53の半径比)分だけ増幅し、回転−並進変換装置55に伝達する。
回転−並進変換装置55は、駆動モータ50の回転動力を並進動力に変換し、この並進動力によりプライマリピストン2bを押圧する。本実施例1では、動力変換機構としてボールネジ方式を採用しており、回転−並進変換装置55は、ボールネジナット56と、ボールネジ軸57と、可動部材58と、戻しバネ59とを有している。
マスタシリンダ2のx軸負方向側には第1ハウジング部材HSG1を接続し、第1ハウジング部材HSG1のx軸負方向側には第2ハウジング部材HSG2を接続している。ボールネジナット56は、第2ハウジング部材HSG2内に設けられたベアリングBRGの内周に、軸回転可能に設置している。ボールネジナット56のx軸負方向側の外周には、従動側プーリ53を嵌合している。ボールネジナット56の内周には、中空のボールネジ軸57が螺合している。ボールネジナット56とボールネジ軸57との間の隙間には、複数のボールを回転移動可能に設置している。
ボールネジ軸57のx軸正方向側の端には可動部材58を一体に設け、この可動部材58のx軸正方向側の面にはプライマリピストン2bが接合している。プライマリピストン2bは第1ハウジング部材HSG1内に収容し、プライマリピストン2bのx軸正方向側の端は第1ハウジング部材HSG1から突出してマスタシリンダ2の内周に嵌合している。
第1ハウジング部材HSG1内であって、プライマリピストン2bの外周に戻しバネ59を設置している。戻しバネ59は、x軸正方向側の端を第1ハウジング部材HSG1内部のx軸正方向側の面Aに固定する一方、x軸負方向側の端を可動部材58に係合している。戻しバネ59は、面Aと可動部材58との間でx軸方向に押し縮めて設置しており、可動部材58およびボールネジ軸57をx軸負方向側に付勢している。
従動側プーリ53が回転するとボールネジナット56が一体に回転し、このボールネジナット56の回転運動により、ボールネジ軸57がx軸方向に並進運動する。x軸正方向側へのボールネジ軸57の並進運動の推力により、可動部材58を介してプライマリピストン2bをx軸正方向側に押圧する。なお、図1では、ブレーキ非操作時にボールネジ軸57がx軸負方向側に最大変位した初期位置にある状態を示す。
一方、ボールネジ軸57には、上記x軸正方向側への推力と反対方向(x軸負方向側)に、戻しバネ59の弾性力が作用する。これによりブレーキ中、すなわちプライマリピストン2bをx軸正方向側に押圧してマスタシリンダ圧Pmcを加圧している状態で、万が一、故障により駆動モータ50が停止し、ボールネジ軸57の戻し制御が不能となった場合でも、戻しバネ59の反力によりボールネジ軸27が初期位置に戻る。これによりマスタシリンダ圧Pmcがゼロ付近まで低下するため、ブレーキ力の引きずりの発生を防止し、この引きずりに起因して車両挙動が不安定になる事態を回避することができる。
また、インプットロッド6とプライマリピストン2bとの間に画成した環状空間Bには、一対のバネ(付勢手段)6d,6eを配設している。一対のバネ6d,6eは、その各一端をインプットロッド6に設けたフランジ部6cに係止し、バネ6dの他端をプライマリピストン2bの隔壁2hに係止し、バネ6eの他端を可動部材58に係止している。これら一対のバネ6d,6eは、プライマリピストン2bに対してインプットロッド6を両者の相対変位の中立位置に向けて付勢し、ブレーキ非作動時にインプットロッド6とプライマリピストン2bとを相対移動の中立位置に保持する機能を有している。これら一つのバネ6d,6eにより、インプットロッド6とプライマリピストン2bとが中立位置からいずれかの方向に相対変位したとき、プライマリピストン2bに対してインプットロッド6を中立位置に戻す付勢力が作用する。
なお、駆動モータ50には、例えば、レゾルバ等の回転角検出センサ50aを設けており、これにより検出したモータ出力軸の位置信号をマスタシリンダ圧制御装置8に入力する。マスタシリンダ圧制御装置8は、入力した位置信号に基づき駆動モータ50の回転角を算出し、この回転角に基づき回転−並進変換装置25の推進量、すなわちプライマリピストン2bのx軸方向変位量を算出する。
次に、マスタシリンダ圧制御機構5とマスタシリンダ圧制御装置8による、インプットロッド6の推力の増幅作用について説明する。実施例1では、マスタシリンダ圧制御装置8は駆動モータ50によりインプットロッド6の変位に応じたプライマリピストン2bの変位、すなわちインプットロッド6とプライマリピストン2bの相対変位を制御している。
マスタシリンダ圧制御機構5およびマスタシリンダ圧制御装置8は、ドライバのブレーキ操作によるインプットロッド6の変位量で決まる目標減速度に応じて、プライマリピストン2bを変位させる。これにより、プライマリ液圧室2dを、インプットロッド6の推力に加えてプライマリピストン2bの推力によって加圧し、マスタシリンダ圧Pmcを調整する。すなわち、インプットロッド6の推力を増幅する。増幅比(以下、倍力比α)は、プライマリ液圧室2dにおけるインプットロッド6とプライマリピストン2bの軸直方向断面積(以下、それぞれ受圧面積AIRおよびAPP)の比等により、以下のように決定される。
マスタシリンダ圧Pmcの液圧調整を、下記の式(1)で示される圧力平衡関係をもって行う。
Pmc=(FIR+K×△x)/AIR=(FPP−K×△x)/APP …(1)
ここで、圧力平衡式(1)における各要素は、以下のとおりである。
Pmc:プライマリ液圧室2dの液圧(マスタシリンダ圧)
FIR:インプットロッド6の推力
FPP:プライマリピストン2bの推力
AIR:インプットロッド6の受圧面積
APP:プライマリピストン2bの受圧面積
K:バネ6d,6eのバネ定数
Δx:インプットロッド6とプライマリピストン2bとの相対変位量
なお、実施例1では、インプットロッド6の受圧面積AIRを、プライマリピストン2bの受圧面積APPよりも小さく設定している。
ここで相対変位量Δxは、インプットロッド6の変位(インプットロッドストローク)をXi、プライマリピストン2bの変位(ピストンストローク)をXbとして、Δx=Xb−Xiと定義する。よって、Δxは、相対移動の中立位置では0、インプットロッド6に対してプライマリピストン2bが前進(x軸正方向側へストローク)する方向では正符号、その逆方向では負符号となる。なお、圧力平衡式(1)ではシールの摺動抵抗を無視している。プライマリピストン2bの推力FPPは、駆動モータ50の電流値から推定できる。
一方、倍力比αを、下記の式(2)のように表すことができる。
α=Pmc×(APP+AIR)/FIR …(2)
よって、式(2)に上記式(1)のPmcを代入すると、倍力比αは下記の式(3)のようになる。
α=(1+K×Δx/FIR)×(AIR+APP)/AIR …(3)
倍力制御では、目標のマスタシリンダ圧特性が得られるように、駆動モータ50(ピストンストロークXb)を制御する。ここで、マスタシリンダ圧特性とは、インプットロッドストロークXiに対するマスタシリンダ圧Pmcの変化特性を指す。インプットロッドストロークXiに対するピストンストロークXbを示すストローク特性と、上記目標マスタシリンダ圧特性とに対応して、インプットロッドストロークXiに対する相対変位量Δxの変化を示す目標変位量算出特性を得ることができる。検証により得られた目標変位量算出特性データに基づき、相対変位量Δxの目標値(以下、目標変位量Δx*)を算出する。
すなわち、目標変位量算出特性は、インプットロッドストロークXiに対する目標変位量Δx*の変化の特性を示し、インプットロッドストロークXiに対応して1つの目標変位量Δx*が定まる。検出したインプットロッドストロークXiに対応して決定される目標変位量Δx*を実現するように駆動モータ50の回転(プライマリピストン2bの変位量Xb)を制御すると、目標変位量Δx*に対応する大きさのマスタシリンダ圧Pmcがマスタシリンダ2で発生する。
ここで、上記のようにインプットロッドストロークXiをブレーキ操作量検出装置7により検出し、ピストンストロークXbを回転角検出センサ50aの信号に基づき算出し、相対変位量Δxを上記検出(算出)した変位量の差により求めることができる。倍力制御では、具体的には、上記検出した変位量Xiと目標変位量算出特性とに基づいて目標変位量Δx*を設定し、上記検出(算出)された相対変位量Δxが目標変位量Δx*と一致するように駆動モータ50を制御(フィードバック制御)する。なお、ピストンストロークXbを検出するストロークセンサを別途設けることとしてもよい。
実施例1では、踏力センサを用いることなく倍力制御を行うため、その分だけコストを低減できる。また、相対変位量Δxが任意の所定値となるように駆動モータ50を制御することにより、受圧面積比(AIR+APP)/AIRで定まる倍力比よりも大きな倍力比や小さな倍力比を得ることができ、所望の倍力比に基づく制動力を得ることができる。
一定倍力制御は、インプットロッド6およびプライマリピストン2bを一体的に変位する、すなわち、インプットロッド6に対してプライマリピストン2bが常に上記中立位置となり、相対変位量Δx=0で変位するように、駆動モータ50を制御するものである。このようにΔx=0となるようにプライマリピストン2bをストロークさせた場合、上記式(3)により、倍力比αは、α=(AIR+APP)/AIRとして一意に定まる。よって、必要な倍力比に基づいてAIRおよびAPPを設定し、変位量XbがインプットロッドストロークXiに等しくなるようにプライマリピストン2bを制御することで、常に一定の(上記必要な)倍力比を得ることができる。
一定倍力制御における目標マスタシリンダ圧特性は、インプットロッド6の前進(x軸正方向側への変位)に伴い発生するマスタシリンダ圧Pmcが2次曲線、3次曲線、あるいはこれらにそれ以上の高次曲線等が複合した多次曲線(以下、これらを総称して多次曲線という)状に大きくなる。また、一定倍力制御は、インプットロッドストロークXiと同じ量だけプライマリピストン2bがストロークする(Xb=Xi)ストローク特性を有している。このストローク特性と上記目標マスタシリンダ圧特性とに基づき得られる目標変位量算出特性では、あらゆるインプットロッドストロークXiに対して目標変位量Δx*が0となる。
これに対し、倍力可変制御は、目標変位量Δx*を正の所定値に設定し、相対変位量Δxがこの所定値となるように駆動モータ50を制御する。これにより、マスタシリンダ圧Pmcを増加する方向へインプットロッド6が前進移動するに従い、インプットロッドストロークXiに比べてプライマリピストン2bの変位量Xbが大きくなるようにするものである。上記式(3)により、倍力比αは、(1+K×Δx/FIR)倍の大きさとなる。すなわち、インプットロッドストロークXiに比例ゲイン(1+K×Δx/FIR)を乗じた量だけプライマリピストン2bをストロークさせることと同義となる。このようにΔxに応じて倍力比αが可変となり、マスタシリンダ圧制御機構5が倍力源として働いて、ドライバの要求通りの制動トルクを発生させつつペダル踏力の大きな低減を図ることができる。
すなわち、制御性の観点からは上記比例ゲイン(1+K×Δx/FIR)は1であることが望ましいが、例えば緊急ブレーキ等によりドライバのブレーキ操作量を上回る制動トルクが必要な場合には、一時的に、1を上回る値に上記比例ゲインを変更することができる。これにより、同量のブレーキ操作量でも、マスタシリンダ圧Pmcを通常時(上記比例ゲインが1の場合)に比べて引き上げることができるため、より大きな制動トルクを発生させることができる。ここで、緊急ブレーキの判定は、例えば、ブレーキ操作量検出装置7の信号の時間変化率が所定値を上回るか否かで判定できる。
このように、倍力可変制御では、インプットロッド6の前進に対してプライマリピストン2bの前進をより進め、インプットロッド6に対するプライマリピストン2bの相対変位量Δxがインプットロッド6の前進に伴い大きくなり、これに対応してインプットロッド6の前進に伴うマスタシリンダ圧Pmcの増加が一定倍力制御よりも大きくなるように駆動モータ50を制御する方法である。
倍力可変制御における目標マスタシリンダ圧特性は、インプットロッド6の前進(x軸正方向側への変位)に伴い発生するマスタシリンダ圧Pmcの増加が一定倍力制御よりも大きくなる(多次曲線状に増加するマスタシリンダ圧特性がより急峻になる)。また、倍力可変制御は、インプットロッドストロークXiの増加に対するピストンストロークXbの増加分が1よりも大きいストローク特性を有している。このストローク特性と上記目標マスタシリンダ圧特性とに基づき得られる目標変位量算出特性では、インプットロッドストロークXiが増加するに応じて目標変位量Δx*が所定の割合で増加する。
また、倍力可変制御として、上記制御(マスタシリンダ圧Pmcを増加する方向へインプットロッド6が移動するに従い、インプットロッドストロークXiに比べてピストンストロークXbが大きくなるように駆動モータ50を制御すること)に加え、マスタシリンダ圧Pmcを増加する方向へインプットロッド6が移動するに従い、インプットロッドストロークXiに比べてピストンストロークXbが小さくなるように駆動モータ50を制御する。これにより、回生協調制御時、回生制動トルクの増加に応じて摩擦制動トルクを減じることができる。
[回生制動トルク変化抑制処理]
図3は、実施例1の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、この処理は、所定の演算周期で繰り返し実行される。
ステップS1では、ブレーキ操作量検出装置7により検出されたインプットロッドストロークXiに基づいて、回生指令(回生制動トルク)の最大値を算出し、ステップS2へ移行する。図4は、インプットロッドストロークXiに応じた回生指令の最大値の特性マップであり、回生指令の最大値は、インプットロッドストロークxiの増加に応じて大きくなる特性を有する。なお、回生指令の最大値は車速による制限があるため、ここでは、車速を加味して最大値を設定する。
ステップS2では、インプットッロッドストロークXiに基づいて、摩擦制動トルクを回生制動トルクにすり替えるときのブレーキ踏力の変化のし易さ(ブレーキペダル反力の変動のし易さ)である踏力変化度合いを算出し、ステップS3へ移行する(踏力変化度合い算出手段)。図5は、インプットロッドストロークXiに対する踏力変化度合いの設定マップであり、マスタシリンダ2の液剛性とバネ6d,6eのバネ定数から、摩擦制動トルクを回生制動トルクにすり替えるときに発生する踏力変化度合いをあらかじめマップ化したものである。
図5に示すように、制動時によく使われる低G領域、すなわちマスタシリンダ圧が低い領域では、マスタシリンダ圧Pmcの増減に伴うドライバ踏力Fiの変動を相殺できるようにバネ6d,6eの特性を設定しているため、踏力変化度合いを小さく設定している。一方、高G(インプットロッドストロークXiが大きい)領域、すなわちマスタシリンダ圧が高い領域では、バネ6d,6eの特性がマスタシリンダ圧Pmcの増減に伴うドライバ踏力Fiの変動を相殺できないため、インプットロッドストロークXiが大きいほど踏力変化度合いが大きくなるように設定する。
ステップS3では、踏力変化度合いに基づいて、回生増加勾配(回生制動トルクの増加勾配)を設定し、ステップS4へ移行する。図6は、踏力変化度合いに対する回生増加勾配の設定マップであり、回生増加勾配は、踏力変化度合いが大きいほど小さく(緩やかに)する。
ステップS4では、回生指令の前回値に設定した回生増加勾配を加算して回生指令を算出し、ステップS5へ移行する。
回生指令=前回値+回生増加勾配
ステップS5では、ステップS1で算出した回生指令の最大値とステップS4で算出した回生指令とを比較し、値の低い方を回生指令に決定し、ステップS6へ移行する。
ステップS6では、ステップS5で決定した回生指令を前回値として保存し、リターンへ移行する。
次に、実施例1の作用を説明する。
実施例1のブレーキ装置1では、回生制動トルクの変化量に応じて摩擦制動トルクが増減するように、ピストンストロークXbを制御し、マスタシリンダ圧Pmcを増減させる。このとき、マスタシリンダ圧Pmcの増減により変化するドライバ踏力Fi(ブレーキペダル反力)は、プライマリピストン2bとインプットロッド6との間に介装したバネ6d,6eの反力により相殺され、これにより、回生制動トルクと摩擦制動トルクとのすり替えに伴うドライバ踏力Fiの変動が抑制される。
ドライバ踏力Fiは、式(1)の圧力平衡式から、下記の式(4)で表される。
Fi=Pmc×AIR+K×Δx …(4)
式(4)から、ブレーキ踏力Fiは、マスタシリンダ圧Pmcとバネ6d,6eの反力とで決まることがわかる。つまり、マスタシリンダ圧Pmcの増減に応じて、式(4)右辺のPmc×AIRが変動するため、この変動分を打ち消すようにK×Δxを増減させることにより、ドライバ踏力Fiの変動を抑制できる。
ところが、ピストンストロークXbとマスタシリンダ圧Pmcとの関係は、一般的に非線形特性であるのに対し、ピストンストロークXbとバネ6d,6eの反力との関係は線形特性であるため、ドライバ踏力Fiの変動が小さくなる領域と大きくなる領域とが存在する。
今、インプットロッドストロークXi(=ブレーキペダルペダルストローク)が図7のA点にある場合、ある量の回生制動トルクが働いたとき、ブレーキ装置1では、回生制動トルクに対応するマスタシリンダ圧Pmcを下げるために、プライマリピストン2bをA'点まで戻すことで、回生協調を実現している。一方、インプットロッドストロークXiがB点にある場合、上記と同じ量の回生制動トルクが働いたときには、プライマリピストン2bをB'点まで戻すことになる。
ここで、マスタシリンダPmcの液量−液圧特性は、高圧であるほど少ない液量で圧力に変わるため、A→A'よりもB→B'の方がプライマリピストン2bの戻し量が少ない。
バネ6d,6eは、インプットロッド6に対してプライマリピストン2bを動かしたとき、インプットロッド6とプライマリピストン2bの相対変位量Δxに比例して反力を発生するように付勢されているが、A→A'の場合とB→B'の場合とではΔxが異なるため、ドライバ踏力Fiの変化度合いも異なるものとなる。
ここで、バネ6d,6eの反力特性は、走行時に良く使われる低G減速(A→A')のときにドライバ踏力Fiが変動しないようにチューニングされているため、高G減速(B→B')では、マスタシリンダ圧Pmcの減少に伴うドライバ踏力Fiの変動をバネ反力で相殺することができず、ドライバ踏力Fiの変化度合いが大きくなってしまう。
一般的に、回生協調制御において、回生制動トルクと摩擦制動トルクとをすり替える際の回生制動トルクの変化速度は、摩擦制動装置の応答性を考慮し、マスタシリンダ圧Pmcの応答特性によって一定の速度に決められている。このため、ドライバ踏力Fiの変化度合いが大きな高G減速時(B→B')では、ドライバ踏力Fiの変化度合いが小さな低G減速時(A→A')よりもドライバ踏力Fiの変動速度が高くなり、ドライバに違和感を与えてしまう。
これに対し、実施例1では、インプットロッドストロークXiに応じて踏力変化度合いを算出し、踏力変化度合いが高いほど、回生指令の回生増加勾配を小さくする。これにより、図8に示すように、本制御を適用しない場合と比較して、ドライバ踏力Fiが変化する速度を遅くできるため、ドライバに与える違和感を低減できる。
また、実施例1では、ドライバ踏力Fiが増加方向に変動する場合にのみ、回生指令の増加勾配を小さくし、ドライバ踏力Fiが減少方向に変動する場合には、回生指令の減少勾配を小さくせず、マスタシリンダ圧Pmcの応答特性によって決められた速度のままとする。
ドライバ踏力Fiの変動によりドライバに与える違和感は、ペダル吸い込まれ側よりもペダル押し戻され側の方が大きい。そこで、ドライバ踏力Fiがペダル押し戻され側に変化する場合にのみ回生指令の増加勾配を小さくすることで、ドライバに与える違和感の軽減と、燃費向上との両立を図ることができる。
次に、効果を説明する。
実施例1の車両用制動制御装置にあっては、以下に列挙する効果を奏する。
(1) インプットロッドストロークXiに基づいて踏力変化度合いを算出する踏力変化度合い算出手段(ステップS2)と、踏力変化度合いが大きいほど、回生指令の増加勾配を小さくする回生制動トルク変化制限部110aと、を備える。これにより、マスタシリンダ圧Pmcの変化速度が緩やかとなり、ドライバ踏力Fiの変動速度を小さくできる。この結果、ドライバ踏力Fiの変動に伴う違和感を軽減できる。
(2) 回生制動トルク変化制限部110aは、ブレーキ踏力Fiが増加方向に変動する場合、ブレーキ踏力Fiが減少方向に変動する場合よりも回生指令の変化勾配を緩やかにするため、ドライバに与える違和感の軽減と、燃費向上との両立を図ることができる。
実施例2では、回生指令の変化勾配の制限方法のみ実施例1と異なり、その他の構成については実施例1と共通するため、共通する部分については、同一呼称、同一符号で表し、図示ならびに説明は省略する。
[回生制動トルク変化抑制処理]
図9は、実施例2の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、実施例1と異なる部分についてのみ説明する。
ステップS11では、式(4)の圧力平衡式に基づいて、ドライバ踏力Fiを算出し、ステップS12へ移行する。
Fi=Pmc×AIR+K×Δx …(4)
ステップS12では、ドライバ踏力Fiとドライバ踏力Fiの前回値との差が所定値よりも大きいか否かを判定する。YESの場合にはステップS13へ移行し、NOの場合にはステップS4へ移行する(ブレーキペダル反力変化量検出手段)。
ステップS13では、回生増加勾配に0.5を乗算して補正後回生増加勾配を算出し、ステップS4へ移行する。
補正後回生増加勾配=回生増加勾配×0.5
ステップS4では、回生指令の前回値に設定した補正後回生増加勾配を加算して回生指令を算出し、ステップS5へ移行する。
回生指令=前回値+補正後回生増加勾配
次に、実施例2の作用を説明する。
実施例2では、ドライバ踏力Fiとドライバ踏力Fiの前回値との差が所定値よりも大きい場合、回生増加勾配を1/2の大きさに補正し、回生指令の増加勾配をより制限する。ピストンストロークXbとマスタシリンダ圧Pmcとの関係は、ブレーキ回路へのエア混入、ブレーキキャリパ等の部品のバラツキ、ブレーキパッドの摩耗等の経年変化等の理由により変化する。
このため、インプットロッドストロークXiに対する踏力変化度合いの特性も、あらかじめ設定した特性(図5)に対して変化している可能性があり、実際のインプットロッドストロークXiに対する踏力変化度合いと設定したインプットロッドストロークXiに対する踏力変化度合いとのずれが大きい場合には、ドライバ踏力Fiの変動速度が高くなり、ドライバに違和感を与える(図10の適用なし)。
これに対し、実施例2では、ドライバ踏力Fiの変化が大きい場合には、回生指令の増加勾配を小さくするため、図10に示すように、実際のインプットロッドストロークXiに対する踏力変化度合いと設定したインプットロッドストロークXiに対する踏力変化度合いとのずれが大きい場合であっても、ドライバ踏力Fiの変動速度を遅くして違和感を軽減できる。
次に、効果を説明する。
実施例2の車両用制動制御装置にあっては、実施例1の効果(1),(2)に加え、以下の効果を奏する。
(3) ブレーキペダル反力の変化量を検出するブレーキペダル反力変化量検出手段(ステップS12)を備え、回生制動トルク変化制限部110aは、ドライバ踏力Fiとドライバ踏力Fiの前回値との差が所定値よりも大きい場合、回生指令の回生増加勾配を制限する。これにより、実際のインプットロッドストロークXiに対する踏力変化度合いと設定したインプットロッドストロークXiに対する踏力変化度合いとのずれが大きい場合であっても、ドライバ踏力Fiの変動する速度を遅くでき、違和感を軽減できる。
実施例3では、回生指令の変化勾配の制限方法のみ実施例1と異なり、その他の構成については実施例1と共通するため、共通する部分については、同一呼称、同一符号で表し、図示ならびに説明は省略する。
[回生制動トルク変化抑制処理]
図11は、実施例3の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、実施例1と異なる部分についてのみ説明する。
ステップS21では、インプットロッドストロークXiを読み込み、ステップS22へ移行する。
ステップS22では、インプットロッドストロークXiとインプットロッドストロークXiの前回値との差が所定値よりも大きいか否かを判定する。YESの場合にはステップS23へ移行し、NOの場合にはステップS4へ移行する(ブレーキペダル変化速度検出手段)。
ステップS23では、回生増加勾配に0.5を乗算して補正後回生増加勾配を算出し、ステップS4へ移行する。
補正後回生増加勾配=回生増加勾配×0.5
ステップS4では、回生指令の前回値に設定した補正後回生増加勾配を加算して回生指令を算出し、ステップS5へ移行する。
回生指令=前回値+補正後回生増加勾配
次に、実施例3の作用を説明する。
実施例3では、インプットロッドストロークXiとインプットロッドストロークXiの前回値との差が所定値よりも大きい場合、回生増加勾配を1/2の大きさに補正し、回生指令の増加勾配をより制限する。つまり、インプットロッドストロークXiの変化からインプットロッドストロークXiを予測し、インプットストロークXiが踏力変化度合いの大きな領域に入る可能性がある場合には、早めに回生増加勾配を制限しておく。
これにより、図12に示すように、摩擦制動トルクから回生制動トルクへのすり替えを行っている途中でドライバがブレーキペダルBPを踏み増しした場合など、本制御を適用しない場合と比較してより早期に回生指令の増加勾配を小さくできるため、マスタシリンダ圧Pmcが過渡的に変化した場合であっても、ドライバ踏力Fiの変動に伴う違和感を軽減できる。
次に、効果を説明する。
実施例3の車両用制動制御装置にあっては、実施例1の効果(1),(2)に加え、以下の効果を奏する。
(4) インプットロッドストロークXiを検出するブレーキペダル変化速度検出手段(ステップS22)を備え、回生制動トルク変化制限部110aは、インプットロッドストロークXiとインプットロッドストロークXiの前回値との差が所定値よりも大きい場合、回生指令の回生増加勾配を制限する。これにより、マスタシリンダ圧Pmcが過渡的に変化した場合であっても、ドライバ踏力Fiの変動に伴う違和感を軽減できる。
実施例4は、低車速で回生制動トルクから摩擦制動トルクへのすり替えを開始する車速を踏力変化度合いに応じて変更する例である。その他の構成については実施例1と共通するため、共通する部分については、同一呼称、同一符号で表し、図示ならびに説明は省略する。
極低速域では回生制動トルクを出力できないため、回生協調制御では、駆動系がクリープトルクを発生させる目標車速(例えば、7km/h)となったとき、回生制動トルクをゼロにしておく必要がある。そこで、統合コントローラ110では、車速が所定車速となったとき、回生制動トルクから摩擦制動トルクへのすり替えを開始する。所定車速は、目標車速とマスタシリンダ圧Pmcの応答特性とを考慮した車速とする。
実施例4の回生制動トルク変化制限部110aでは、踏力変化度合いに応じてすり替え開始車速を変更することにより、踏力変化度合いが大きいときの回生制動トルクの減少勾配を小さくし、ドライバ踏力Fiの変動速度を遅くする。
[回生制動トルク変化抑制処理]
図13は、実施例4の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、実施例1と異なる部分についてのみ説明する。
ステップS31では、踏力変化度合いに基づいて、回生制動トルクから摩擦制動トルクへのすり替え開始車速を決定し、ステップS32へ移行する。図14に示すように、すり替え開始車速は、踏力変化度合いが大きいほど高車速となるように設定する。
ステップS32では、すり替え開始車速と回生制動トルクをゼロとする目標車速とに基づいて、回生指令を算出し、ステップS5へ移行する。
次に、実施例4の作用を説明する。
実施例1〜3に示したように、回生指令を増やす方向の勾配は、燃費以外の制限がないため、自由に設定することが可能であるが、低速域で回生指令を減少させる方向の場合、回生指令をゼロとする目標車速(例えば、7km/h)は他の要件(クリープトルク等)によって決まっており、変更することはできない。
よって、実施例4では、踏力変化度合いが大きい場合には、踏力変化度合いが大きいほど回生制動トルクから摩擦制動トルクへのすり替え開始車速を高車速側に変更する。本制御を適用しない場合、踏力変化度合いの大きさにかかわらず、すり替え開始車速は一定の車速であるため、踏力変化度合いが大きい場合、ドライバ踏力Fiの変動速度が高くなり、ドライバに違和感を与える。
これに対し、実施例4では、踏力変化度合いが大きいほどすり替え開始車速を拘束側に変更することで、図15に示すように、踏力変化度合いが大きい場合には、踏力変化度合いが小さい場合よりも回生指令の減少勾配を緩やかにすることができる。
次に、効果を説明する。
実施例4の車両用制動制御装置にあっては、実施例1の効果(1),(2)に加え、以下の効果を奏する。
(5) 回生制動トルク変化制限部110aは、踏力変化度合いが大きいほど、低車速域で回生制動トルクから摩擦制動トルクへのすり替えを開始する車速を高車速側に変更するため、低車速域におけるドライバ踏力Fiの変動に伴う違和感を軽減できる。
実施例5は、回生制動トルクの制限を開始する回生輪スリップ率の閾値を踏力変化度合いに応じて変更する例である。その他の構成については実施例1と共通するため、共通する部分については、同一呼称、同一符号で表し、図示ならびに説明を省略する。
統合コントローラ110は、回生協調制御時であって、車両が旋回している場合、回生輪である左右後輪RL,RRの車輪速がスリップ判定閾値を下回った場合、回生制動トルクを制限する。このとき、回生制動トルク変化制限部110aでは、踏力変化度合いに応じてスリップ判定閾値を変更することにより、踏力変化度合いが大きいときの回生制動トルクの減少勾配を小さくし、ドライバ踏力Fiの変動速度を遅くする。
また、統合コントローラ110は、回生協調制御時に自動変速機ATの変速を行う際、回生制動トルクから摩擦制動トルクへのすり替えを行った後、自動変速機ATの変速を開始する。このとき、回生制動トルク変化制限部110は、踏力変化度合いが大きいほど、自動変速機の変速時、回生制動トルクから摩擦制動トルクへのすり替えを開始する変速タイミングを早める。ここで、「変速タイミングを早める」とは、回生制動トルクの減少を開始させ始める時間、車速等を早めることをいう。
[回生制動トルク変化抑制処理]
図16は、実施例5の回生制動トルク変化制限部110aで実行される回生制動トルク変化抑制処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、実施例1と異なる部分についてのみ説明する。
ステップS41では、車輪速センサ124から回生輪である左右後輪RL,RRの車輪速を読み込み、ステップS42へ移行する。
ステップS42では、車輪速センサ124から非回生輪である左右前輪FL,FRの車輪速を読み込み、ステップS43へ移行する。
ステップS43では、車速と踏力変化度合いに応じてスリップ判定閾値を変更し、ステップS44へ移行する。図17に示すように、スリップ判定閾値は、車速が高いほど高く、かつ、踏力変化度合いが大きいほど高車速となるように設定する。
ステップS44では、回生輪車速がスリップ判定閾値よりも低いか否かを判定する。YESの場合にはステップS45へ移行し、NOの場合にはステップS46へ移行する(回生輪スリップ量検出手段)。
ステップS45では、回生指令の前回値から所定値を減算して回生指令を算出し、ステップS5へ移行する。
回生指令=前回値−所定値
ステップS46では、それ以外の回生指令値演算を実施し、ステップS5へ移行する。ここで、「それ以外の回生指令値」とは、回生輪のスリップとは異なるパラメータで算出した回生指令値であって、例えば、実施例2に示したブレーキペダル反力の変化量に応じた回生指令値、実施例3に示したインプットロッドストロークXiの変化量に応じた回生指令値、低車速域で回生制限しているときの回生指令値、ABS制御時の回生指令値(例えば、回生協調制御時にABS制御が介入した場合、回生制動トルクをゼロまで急減させる)等をいう。
ステップS47では、ステップS1で算出した回生指令の最大値と、ステップS45で算出した回生指令と、ステップS46で算出した回生指令とを比較し、最も値の低いものを回生指令に決定し、ステップS6へ移行する。なお、ステップS44でNOとなり、ステップS45を実施していない場合には、ステップS1で算出した回生指令の最大値と、ステップS46で算出した回生指令とを比較して値の低い方を回生指令に決定する。
次に、作用を説明する。
回生輪のスリップを早期に抑制するためには、回生指令の減少勾配を大きくする必要があるが、踏力変化度合いが大きい場合、ドライバ踏力Fiの変動速度が高くなるため、ドライバに違和感を与えてしまう(図18)。
これに対し、実施例5では、踏力変化度合いが大きいほどスリップ判定閾値をより高車速とすることで、図19に示すように、踏力変化度合いが大きい場合には、回生制動トルクの減少をより早期に開始することができるため、回生輪のスリップを抑制しつつ、回生指令の減少勾配を緩やかにすることができる。
また、実施例5では、踏力変化度合いが大きいほど、自動変速機の変速時、回生制動トルクから摩擦制動トルクへのすり替えを開始する変速タイミングを早めるため、変速時におけるドライバ踏力Fiの変動に伴う違和感を軽減できる。
次に、効果を説明する。
実施例5の車両用制動制御装置にあっては、実施例1の効果(1),(2)に加え、以下に列挙する効果を奏する。
(6) 回生輪のスリップ量を検出する回生輪スリップ量検出手段(ステップS44)を備え、回生制動トルク変化制限部110aは、踏力変化度合いが大きいほど、回生制動トルクの制限を開始するスリップ判定閾値を高車速とする(回生輪スリップ率の閾値を小さくする)。これにより、回生輪のスリップ抑制とドライバ踏力Fiの変動に伴う違和感の軽減との両立を図ることができる。
(7) 回生制動トルク変化制限部110aは、踏力変化度合いが大きいほど、自動変速機の変速時、回生制動トルクから摩擦制動トルクへのすり替えを開始する変速タイミングを早めるため、変速時におけるドライバ踏力Fiの変動に伴う違和感を軽減できる。
(他の実施例)
以上、本発明のブレーキ倍力装置の制御装置を実施例に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
例えば、回生指令の勾配を緩やかにする方法は、実施例に示した勾配の制限に限らず、ローパスフィルタなどで回生指令を滑らかにする方法等、任意の方法を用いることができる。
また、実施例1では、踏力変化度合いをインプットロッドストロークXiに基づいて算出する例を示したが、ブレーキペダルストロークに基づいて算出してもよい。
実施例1では、ドライバ踏力Fiが増加方向に変動する場合にのみ、回生指令の増加勾配を小さくし、ドライバ踏力Fiが減少方向に変動する場合には、回生指令の減少勾配を小さくしない例を示したが、回生指令の減少勾配を小さくしてもよい。
BP ブレーキペダル
MG モータジェネレータ(回生制動装置)
2b プライマリピストン(アシスト部材)
4a〜4d ホイルシリンダ(摩擦制動装置)
5 マスタシリンダ圧制御機構(ブレーキ倍力装置)
6 インプットロッド(入力部材)
6d,6e バネ(付勢手段)
13 プライマリ液圧センサ(マスタシリンダ圧検出手段)
14 セカンダリ液圧センサ(マスタシリンダ圧検出手段)
50 駆動モータ(倍力アクチュエータ)
110 統合コントローラ(回生協調制御手段)
110a 回生制動トルク変化制限部(回生制動トルク変化制限手段)

Claims (7)

  1. ブレーキペダルの操作により進退移動する入力部材と、この入力部材の移動方向に対して相対移動可能に設けたアシスト部材と、このアシスト部材に対して前記入力部材を両者の相対変位の中立位置に向けて付勢する付勢手段と、前記入力部材の移動量に応じて前記アシスト部材を進退移動させるアクチュエータと、を備え、前記アシスト部材の推力によりマスタシリンダ内に倍力されたブレーキ液を発生させるブレーキ倍力装置と、
    マスタシリンダ圧に応じて車輪に摩擦制動トルクを付与する摩擦制動装置と、
    車輪に回生制動トルクを付与する回生制動装置と、
    前記摩擦制動トルクと前記回生制動トルクとを含む総制動トルクがドライバの要求制動トルクとなるように前記摩擦制動トルクと前記回生制動トルクとを制御する回生協調制御を実行する回生協調制御手段と、
    前記ブレーキペダルの操作量に基づいて、前記回生制動トルクと前記摩擦制動トルクとのすり替えに伴い発生するブレーキペダル反力の変動量の大きさを表す踏力変化度合いを算出する踏力変化度合い算出手段と、
    算出された踏力変化度合いが大きいほど、前記回生制動トルクの変化を制限する回生制動トルク変化制限手段と、
    を備えることを特徴とする車両用制動制御装置。
  2. 請求項1に記載の車両用制動制御装置において、
    前記回生制動トルク変化制限手段は、ブレーキペダル反力が増加方向に変動する場合、減少方向に変動する場合よりも前記回生制動トルクの変化を制限することを特徴とする車両用制動制御装置。
  3. 請求項1または請求項2に記載の車両用制動制御装置において、
    ブレーキペダル反力の変化量を検出するブレーキペダル反力変化量検出手段を備え、
    前記回生制動トルク変化制限手段は、検出されたブレーキペダル反力変化量が所定値よりも大きい場合には、前記所定値以下である場合よりも前記回生制動トルクの変化を制限することを特徴とする車両用制動制御装置。
  4. 請求項1ないし請求項3のいずれか1項に記載の車両用制動制御装置において、
    前記ブレーキペダルの変化速度を検出するブレーキペダル変化速度検出手段を備え、
    前記回生制動トルク変化制限手段は、検出されたブレーキペダル変化速度が所定値よりも大きい場合には、前記所定値以下である場合よりも前記回生制動トルクの変化を制限することを特徴とする車両用制動制御装置。
  5. 請求項1ないし請求項4のいずれか1項に記載の車両用制動制御装置において、
    前記回生制動トルク変化制限手段は、算出された踏力変化度合いが大きいほど、低車速域で回生制動トルクから摩擦制動トルクへのすり替えを開始する車速を高車速側に変更することを特徴とする車両用制動制御装置。
  6. 請求項1ないし請求項5のいずれか1項に記載の車両用制動制御装置において、
    前記回生制動トルク変化制限手段は、算出された踏力変化度合いが大きいほど、自動変速機の変速時、回生制動トルクから摩擦制動トルクへのすり替えを開始する変速タイミングを早めることを特徴とする車両用制動制御装置。
  7. 請求項1ないし請求項6のいずれか1項に記載の車両用制動制御装置において、
    回生輪のスリップ量を検出する回生輪スリップ量検出手段を備え、
    前記回生制動トルク変化制限手段は、算出された踏力変化度合いが大きいほど、前記回生制動トルクの制限を開始する回生輪スリップ率の閾値を小さくすることを特徴とする車両用制動制御装置。
JP2009023985A 2009-02-04 2009-02-04 車両用制動制御装置 Active JP5262777B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023985A JP5262777B2 (ja) 2009-02-04 2009-02-04 車両用制動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023985A JP5262777B2 (ja) 2009-02-04 2009-02-04 車両用制動制御装置

Publications (2)

Publication Number Publication Date
JP2010179742A JP2010179742A (ja) 2010-08-19
JP5262777B2 true JP5262777B2 (ja) 2013-08-14

Family

ID=42761618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023985A Active JP5262777B2 (ja) 2009-02-04 2009-02-04 車両用制動制御装置

Country Status (1)

Country Link
JP (1) JP5262777B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419603B1 (ko) 2012-11-28 2014-07-14 쌍용자동차 주식회사 감속페달 위치정보를 이용한 전기자동차의 회생제동 제어장치 및 그 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740905B2 (ja) * 2010-10-20 2015-07-01 日産自動車株式会社 車両用制動力制御装置
JP5672938B2 (ja) * 2010-10-20 2015-02-18 日産自動車株式会社 車両の制動制御装置
DE102011004140A1 (de) 2011-02-15 2012-08-16 Robert Bosch Gmbh Bremssystem sowie Verfahren zur Regelung eines Druckes eines Bremsmediums in einem Bremssystem
KR101259361B1 (ko) 2011-04-18 2013-04-30 주식회사 만도 차량 제동 시스템 및 그 제어 방법
KR101283075B1 (ko) 2011-07-05 2013-07-05 현대자동차주식회사 회생제동시스템의 제어방법
KR101252250B1 (ko) 2011-10-10 2013-04-08 주식회사 만도 전자 제어식 브레이크 부스터
US8706358B2 (en) * 2011-10-21 2014-04-22 Honda Motor Co., Ltd. Method of controlling braking in a vehicle
JP5891866B2 (ja) * 2012-03-14 2016-03-23 日産自動車株式会社 制動制御装置
EP2826681B1 (en) 2012-03-14 2018-05-09 Nissan Motor Co., Ltd Braking control device and control method
JP6024333B2 (ja) * 2012-09-21 2016-11-16 日産自動車株式会社 車両用制動制御装置
JP6056430B2 (ja) * 2012-12-04 2017-01-11 日産自動車株式会社 車両用制動制御装置
JP6164045B2 (ja) 2013-10-30 2017-07-19 トヨタ自動車株式会社 車両の制動力制御方法
JP6237139B2 (ja) * 2013-11-12 2017-11-29 日産自動車株式会社 車両用制動制御装置
JP6264050B2 (ja) * 2014-01-10 2018-01-24 日産自動車株式会社 車両用制動制御装置
JP6488215B2 (ja) * 2014-10-02 2019-03-20 本田技研工業株式会社 車両用制動装置
CN106585389B (zh) * 2015-10-20 2019-06-14 北京宝沃汽车有限公司 电动汽车及电动汽车再生制动的控制方法和装置
CN106904078B (zh) * 2015-12-22 2019-03-12 北京宝沃汽车有限公司 车辆的控制方法、控制系统及车辆
CN105564252B (zh) * 2015-12-31 2017-12-05 杭州新时空电动汽车有限公司 纯电动汽车整车制动系统及其能量回馈控制方法
CN113830064B (zh) * 2020-06-23 2023-03-14 比亚迪股份有限公司 汽车电液制动系统失效处理方法、系统及汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428289B2 (ja) * 1996-04-22 2003-07-22 三菱自動車工業株式会社 電気自動車の制動制御装置
JP3804383B2 (ja) * 2000-01-19 2006-08-02 トヨタ自動車株式会社 燃料電池を有する車両の制御装置
JP2005329740A (ja) * 2004-05-18 2005-12-02 Toyota Motor Corp 車両制動システム
JP2006224768A (ja) * 2005-02-16 2006-08-31 Toyota Motor Corp バッテリの飽和に備えた回生制動制御を含む車輌用制動装置
JP4784756B2 (ja) * 2005-09-26 2011-10-05 日立オートモティブシステムズ株式会社 電動倍力装置
JP4822003B2 (ja) * 2006-12-28 2011-11-24 日立オートモティブシステムズ株式会社 電動倍力装置
JP4687689B2 (ja) * 2007-05-28 2011-05-25 トヨタ自動車株式会社 車両の回生/摩擦制動協調型制動制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419603B1 (ko) 2012-11-28 2014-07-14 쌍용자동차 주식회사 감속페달 위치정보를 이용한 전기자동차의 회생제동 제어장치 및 그 방법

Also Published As

Publication number Publication date
JP2010179742A (ja) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5262777B2 (ja) 車両用制動制御装置
JP5304274B2 (ja) 車両用制動制御装置
JP5790870B2 (ja) 制動制御装置及び制御方法
JP5736673B2 (ja) 複合ブレーキの制動力協調制御装置
JP5668856B2 (ja) 車両のブレーキ制御装置
US20050218717A1 (en) Braking system of hybrid vehicle
JP6024333B2 (ja) 車両用制動制御装置
JP6056430B2 (ja) 車両用制動制御装置
JP5051117B2 (ja) ハイブリッド車両の発進制御装置
WO2012046579A1 (ja) 電動車両のブレーキ制御装置
JP5233652B2 (ja) ハイブリッド車両の発進制御装置
JP2007022105A (ja) 車両用制動装置
JP2015093586A (ja) 車両用制動制御装置
JP5245886B2 (ja) 回生協調ブレーキ制御装置及び回生協調ブレーキ制御方法
JP5262827B2 (ja) 車両用制動制御装置
JP5332235B2 (ja) 回生協調ブレーキ制御装置
JP5982885B2 (ja) 制動制御装置
JP5685088B2 (ja) 車両用制動装置
JP5891866B2 (ja) 制動制御装置
JP6318586B2 (ja) 車両用制動制御装置
JP2015030426A (ja) 車両の制動装置
JP6015284B2 (ja) 車両用制動制御装置
JP2005271637A (ja) 車両のブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150