WO2008044594A1 - Cartouche, procédé d'extraction de liquide résiduel et analyseur automatique - Google Patents

Cartouche, procédé d'extraction de liquide résiduel et analyseur automatique Download PDF

Info

Publication number
WO2008044594A1
WO2008044594A1 PCT/JP2007/069469 JP2007069469W WO2008044594A1 WO 2008044594 A1 WO2008044594 A1 WO 2008044594A1 JP 2007069469 W JP2007069469 W JP 2007069469W WO 2008044594 A1 WO2008044594 A1 WO 2008044594A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartridge
pipette
tank
liquid
waste
Prior art date
Application number
PCT/JP2007/069469
Other languages
English (en)
French (fr)
Inventor
Kosuke Kubo
Junichi Oka
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to US12/444,828 priority Critical patent/US8198090B2/en
Priority to CN2007800060424A priority patent/CN101384905B/zh
Priority to EP07829207.5A priority patent/EP2073017B1/en
Priority to JP2008517257A priority patent/JP4956533B2/ja
Publication of WO2008044594A1 publication Critical patent/WO2008044594A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50855Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using modular assemblies of strips or of individual wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/022Drop detachment mechanisms of single droplets from nozzles or pins droplet contacts the surface of the receptacle
    • B01L2400/024Drop detachment mechanisms of single droplets from nozzles or pins droplet contacts the surface of the receptacle touch-off at the side wall of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • Y10T436/114998Automated chemical analysis with conveyance of sample along a test line in a container or rack with treatment or replacement of aspirator element [e.g., cleaning, etc.]

Definitions

  • the present invention relates to a cartridge, a residual liquid removal method and an automatic analyzer.
  • an automatic analyzer that automatically determines a predetermined component in a sample by detecting a reaction between the sample and a reagent in a biochemical test, a clinical test or the like is used.
  • a reagent reservoir filled with reagents, a reagent reservoir filled with a reagent, and a cartridge having a reaction reservoir for reacting a specimen with the reagent are used for the measurement of the automatic analyzer (see, for example, Patent Documents 1 to 3).
  • FIG. 8 shows an example of a conventional cartridge.
  • this cartridge 800 a plurality of (10 in this example) tanks 810 to 819 are arranged in parallel in the longitudinal direction and integrated by a plate-like member. The upper portions of the plurality of tanks 810 to 819 are open.
  • the pipette which can be moved in the vertical and horizontal directions provided in the automatic analyzer, samples, reagents, etc. stored in each of the plurality of tanks 810 to 819. Introduction or derivation is performed.
  • Patent Document 1 Japanese Utility Model Application Publication No. 58 — 36359
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-122336
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-316226
  • Patent Document 4 Japanese Patent Application Laid-Open No. 51-35393
  • Patent Document 5 Japanese Patent Application Laid-Open No. 51-37691
  • Patent Document 6 Akira Jiro 58 — 48,647
  • Patent Document 7 Japanese Utility Model Publication No. 58 — 193255
  • Patent Document 8 Japanese Patent Application Laid-Open No. 60-243566
  • Patent document 9 the real fair 7--3329 publicisation
  • Patent Document 10 Patent No. 2669821
  • an object of the present invention is to provide a cartridge capable of removing residual liquid in all directions of a pipette tip without requiring a new device, regardless of the viscosity of the residual liquid. .
  • the cartridge of the present invention has a plurality of upper opening baths, and is a force cartridge for introducing or discharging a liquid to or from at least one of the plurality of baths.
  • the waste liquid tank further includes a waste liquid tank, and the waste liquid tank has capillary action generating means, and the residual liquid of the pipette tip is brought into contact with the capillary action generating means of the waste liquid tank, and the residual liquid is caused by the capillary action.
  • the residual liquid removal method of the present invention is a residual liquid removal method for removing the residual liquid of a pipette in an automatic analyzer
  • the waste tank has a capillary phenomenon generating means
  • a liquid is introduced into or drawn out of at least one of the plurality of tanks by the pipette, and the capillary phenomenon generating means of the waste tank is brought into contact with the residual solution of the pipette tip, and the residual solution is extracted by the capillary phenomenon.
  • the capillary solution is moved to the capillary action generating means to remove the residual liquid from the pipet.
  • An automatic analyzer comprises a pipette which can move vertically and horizontally.
  • the cartridge has a plurality of tanks in the top opening and a waste tank,
  • the waste tank has a capillary phenomenon generating means
  • Liquid is introduced or withdrawn from at least one of the plurality of vessels by the pipette,
  • the remaining liquid at the tip of the pipette is brought into contact with the capillary action generating means of the waste liquid tank, and the remaining liquid is transferred to the capillary action generating means by the capillary action to remove the remaining liquid from the pipet. It is characterized by
  • the cartridge of the present invention is provided with the capillary action generating means in the waste liquid tank, and the capillary action generating means moves and removes the remaining solution at the tip of the pipette by utilizing the capillary action. Therefore, in the cartridge of the present invention, the residual liquid can be removed without requiring an air supply device, a filter paper recovery device, etc. as in the prior art. Further, in the cartridge of the present invention, it is possible to remove the residual solution in all directions of the pipette tip regardless of the viscosity of the residual solution. In addition, the use of the cartridge of the present invention enables repeated use without replacing the pipette tip. Brief description of the drawings
  • FIG. 1 is a perspective view showing a configuration of an example of a cartridge of the present invention.
  • FIG. 2 is a plan view of the cartridge shown in FIG.
  • FIG. 3 is a cross-sectional view of an example of the waste liquid tank of the present invention in which a groove is formed at the bottom.
  • FIG. 4 is a cross-sectional view for explaining the state in which the remaining solution at the tip of the pipette in one example of the waste liquid tank of the present invention is moved to the space at the bottom of the waste liquid tank.
  • FIG. 5 is a cross-sectional view of an example of the waste liquid tank of the present invention in which a porous body is disposed at the bottom.
  • FIG. 6 is a plan view showing a configuration of an example of the cartridge of the present invention in which a part of upper openings of a plurality of tanks is sealed.
  • FIG. 7 is a view for explaining a state when introducing or deriving a sample, a reagent or the like stored in a plurality of vessels by a pipette in an example of the cartridge of the present invention.
  • FIG. 8 is a perspective view showing the configuration of an example of a conventional cartridge.
  • pipette is, for example, a so-called pipette such as a graduated tube, one having a tip attached to the tip of the pipette, a nozzle provided in an automatic analyzer, etc., It includes those in which a tip is attached to the tip of the nozzle.
  • the capillary phenomenon generating means is a space formed in at least one of the bottom portion and the side wall of the waste liquid tank to generate the capillary phenomenon. Preferred,.
  • a groove is formed in at least one of the bottom and the side wall of the waste liquid tank, and the groove is a space where the capillary phenomenon is generated.
  • the width of the groove is, for example, in the range of 0.1 mm to 1 mm
  • the depth of the groove is, for example, in the range of 0.3 mm to 1 mm.
  • the capillary phenomenon generating means may be a porous body disposed in the waste liquid tank. As described above, by integrating the porous body as the residual solution removing means of the pipette tip with the cartridge, it is possible to remove the residual solution of the pipette tip without requiring a new device.
  • the number of waste liquid tanks is not particularly limited, and, for example, the number of types of reagents, specimens, etc. stored in the cartridge. To 10, preferably in the range of 2 to 6, and more preferably in the range of 3 to 4. If the cartridge of the present invention has a plurality of waste liquid tanks, it is possible to move different kinds of residual liquid to the capillary action generating means of the separate waste liquid tanks. As a result, it is possible to prevent the contamination of different kinds of residual solutions, which is more preferable.
  • the distance between the tip of the pipette and the capillary action generating means when the residual liquid is transferred to the capillary action generating means The distance of is, for example, in the range of 0. 0 to 0.7 mm.
  • the plurality of tanks include a storage tank for storing a reagent, and a reaction tank for reacting the reagent with the sample.
  • the plurality of vessels further include a preparation vessel for preparing the sample.
  • residual liquid removal method and automatic analyzer of the present invention may be used as a measurement cell for measuring the absorbance of at least one of the plurality of tanks.
  • the length of the whole cartridge is, for example, in the range of:! To 10 cm, and the width of the whole cartridge is, for example, 0.3 to 3 cm. And the overall height of the cartridge is, for example, in the range of 0.5 to 5 cm.
  • the sealing material is preferably an aluminum box.
  • the cartridge of the present invention is not limited in its method of use, but is used, for example, in an automatic analyzer for specimens.
  • FIG. 1 and 2 show an example of the configuration of the cartridge of the present invention.
  • FIG. 1 is a perspective view of an example of the configuration of a force cartridge according to the present invention
  • FIG. 2 is a plan view of the cartridge shown in FIG.
  • this cartridge 100 has a plurality of (10 in this example) tanks 110 to 119 and three waste tanks 120 to 122.
  • the plurality of tanks 110 to 119 are arranged in parallel in the longitudinal direction of the cartridge 100 and integrated by a plate-like member.
  • the upper portions of the plurality of tanks 110 to 119 are open.
  • the three waste tanks 120 to 122 Are arranged in parallel in the width direction of the cartridge 100 at one end of the cartridge 100 (the left end in FIGS. 1 and 2).
  • the cartridge 100 is entirely transparent. By making the whole of the cartridge transparent, it is possible to easily perform the absorbance measurement described later.
  • the cartridge may be, for example, transparent only at a portion through which light is transmitted at the time of absorbance measurement described later.
  • the vessel made transparent can be used as a measurement cell for absorbance measurement.
  • the size of the cartridge 100 is not particularly limited, and is, for example, a length of 1 to 10 cm, a width of 0.3 to 3 cm, and a height of 0.5 to 5 cm.
  • the material for forming the cartridge 100 is not particularly limited, and examples thereof include polyethylene resin, polyethylene resin, and polypropylene resin.
  • each of the plurality of tanks 110 to 119 are not particularly limited.
  • Examples of the shape of each tank include a prismatic shape, a cylindrical shape, a conical shape, a hemispherical shape, and a shape combining these.
  • the size of each of the tanks for example, when the tank is regarded as a cylinder, the diameter is in the range of! To 20 mm, and the depth force is preferably in the range of 3 to 20 mm.
  • the shape and size of each of the vessels may be the same or different in all the vessels.
  • the number of the plurality of tanks is ten.
  • the present invention is not limited to this, and the number of the plurality of tanks may be appropriately determined in consideration of the number of reagents used, operability, and the like. Can.
  • the plurality of tanks 110 to 119 preferably include a storage tank, a reaction tank, and a preparation tank.
  • the storage tank is used to store a reagent.
  • the storage tank is a plurality of the tanks
  • the reaction vessel is used when the reagent and the sample are reacted.
  • the reaction vessel may also be only one of the plurality of vessels 110 to 119 and may be two or more.
  • the preparation tank is used when preparing the sample.
  • the preparation tank may also be only one of the plurality of tanks 110 to 119, or may be two or more.
  • the plurality of tanks 110 to 119 further include a sample tank.
  • the sample tank is used when the sample is directly injected into the cartridge 100.
  • the sample reservoir may also be only one of the plurality of reservoirs 110 to 119, or may be two or more.
  • the waste tank 120 to 122 is used to remove residual liquid from the pipette.
  • the waste liquid tank 120 to 122 has a capillary phenomenon generating means. By bringing the residual liquid at the tip of the pipette into contact with the capillary action generating means of the waste liquid tank 120 to 122, the residual liquid moves to the capillary action generating means.
  • each of the waste liquid tanks 120 to 122 is not particularly limited, and examples thereof include a prismatic shape, a cylindrical shape, and the like.
  • the size of each tank of the waste liquid tank 120 to 122 is not particularly limited, and can be appropriately determined in consideration of, for example, the size (thickness) or the shape of the tip of the pipette. When viewed, its longitudinal and lateral lengths are each, for example, in the range of 3 to 5 mm, and its depth is, for example, in the range of 0.5 to 10 mm, preferably,! Range.
  • the shape and size of each of the waste liquid tanks 120 to 122 may be the same or different in all the tanks.
  • the number of waste liquid tanks is three in this example, the present invention is not limited to this.
  • the number of waste liquid tanks is as described above.
  • the capillary phenomenon generating means is preferably a space for generating the capillary phenomenon formed in at least one of the bottom portion and the side wall of the waste liquid tank 120 to 122.
  • a method of forming a space for causing capillary action in at least one of the bottom and side wall of the waste liquid tank 120 to 122 for example, at least one of the bottom of the waste liquid tank 120 to 122 and the side wall
  • the method of forming a groove in at least one of the bottom and the side wall of the waste liquid tank 120 to 122 is preferable because the residual liquid can be removed more efficiently.
  • the waste liquid tank of the present invention will be described by taking, as an example, a case where a space for generating a capillary phenomenon is formed at the bottom.
  • FIG. 3 shows a cross-sectional view of an example of the waste liquid tank of the present invention in which a groove is formed at the bottom.
  • a groove is formed at the bottom.
  • the width of the groove is not particularly limited, and for example, a force that can be appropriately determined in consideration of the size (thickness) of the pipette tip, the size of droplets formed on the pipette tip, etc. It is in the range of 0.1 to 1 mm , preferably in the range of 0.3 to 0.6 mm .
  • the depth of the groove is not particularly limited.
  • a force that can be appropriately determined in consideration of ease of removal from the mold when molding the cartridge that is, for example, 0.3 to 1 mm And preferably in the range of 0.4 to 0.7 mm, more preferably 0.6 mm.
  • the length of the groove is the same as the vertical or horizontal length of the waste tank.
  • the number of grooves may be appropriately determined according to the size of the waste liquid tank.
  • FIG. 4 shows a state in which the residual liquid is moved to the space.
  • the same parts as in FIG. 3 are given the same reference numerals.
  • FIG. 4 (a) when moving the residual liquid 410 to the space, first, the residual liquid 410 at the tip of the pipette 400 is brought into contact with the space (in this example, the groove 331). Then, as shown by the arrow in FIG. 4 (b), the residual liquid 410 moves to the space by capillary action.
  • the distance between the tip of the pipette 400 and the space at this time is not particularly limited as long as the remaining liquid 410 can be brought into contact with the space, for example, in the range of 0.0 to 0.7 mm. Yes, preferably 0.5 mm.
  • the capillary action generating means may be a porous body disposed in the waste liquid tank 120 to 122.
  • the location of the porous body is not particularly limited, and examples thereof include the bottom of the waste tank and the side wall.
  • the porous body may be attached to at least one of the bottom and the side wall of the waste liquid tank 120-122.
  • there is a method of fixing using When the porous body is disposed at the bottom of the waste liquid tank 120 to 122, the porous body may be merely placed at the bottom of the waste liquid tank 120 to 122 without using an adhesive or the like. .
  • FIG. 5 shows a cross-sectional view of an example of the waste liquid tank of the present invention in which the porous body is disposed at the bottom. As shown, a porous body 530 is disposed at the bottom of the waste liquid tank 520.
  • porous body examples include filter paper, non-woven fabric, knitted fabric, woven fabric, continuous foam resin, sponge and the like.
  • the size of the porous body corresponds, for example, to the bottom area of the waste tank and the like. Therefore, it may be decided appropriately.
  • the porous body is preferably replaced for each measurement. However, it is also possible to use the cartridge for a plurality of measurements without replacing the porous body.
  • the force at which the waste liquid tanks 120 to 122 are disposed at one end is not limited to this.
  • the waste liquid tank may be located anywhere in the cartridge. For example, it may be disposed at the middle of the longitudinal direction of the cartridge so as to be located at the middle of the plurality of vessels, or at the widthwise end of the cartridge so as to be parallel to the plurality of vessels. It may be
  • a part or all of the upper openings of the plurality of tanks be sealed with a sealing material before use, in order to prevent contamination with foreign matter.
  • the sealing material include metal foils such as aluminum foil and high molecular weight films.
  • the sealing material is preferably aluminum foil because it can be easily broken by the pipette and the sealing property is also good.
  • a part or all of the upper openings of the plurality of baths can be sealed by adhering the seed material to the upper surface of the cartridge with, for example, a hot melt adhesive.
  • FIG. 6 shows the configuration of an example of the cartridge of the present invention in which a part of the upper opening of the plurality of tanks is sealed.
  • the cartridge shown in FIG. 6 has the same configuration as in FIG. 1 and FIG. 2 except that it has a sealing material, and the same parts as in FIG. 1 and FIG.
  • the top opening of the tank 110 to 118 is sealed out of the plurality of tanks 110 to 119 by the sawing material 600 (see FIGS. 1 and 2).
  • the method of manufacturing the cartridge of the present invention is not particularly limited.
  • the cartridge of the present invention in which the capillary phenomenon generating means of the waste liquid tank is the space can be manufactured by integral molding by injection molding or the like.
  • the cartridge of the present invention in which the capillary phenomenon generating means of the waste liquid tank is the porous body can be manufactured, for example, by disposing the porous body in the waste liquid tank after molding the cartridge body by injection molding or the like. .
  • the cartridge of the present invention manufactures a molded body in which a plurality of cartridges of the present invention are connected, for example, by injection molding, and in each of the molded bodies, a part of the upper opening of the plurality of tanks or It is possible to produce a large quantity with uniform quality by sealing the whole and taking appropriate measures as necessary so that the molded body can be separated individually with the seal.
  • Examples of the treatment for separating the molded body individually include treatments such as formation of perforations, formation of concave streaks, and formation of notches.
  • the tanks 112 to 116 are the first to fifth
  • the reservoirs 111, 117 and 118 are used as the first to third reaction vessels
  • the reservoir 110 is used as the preparation reservoir
  • the reservoir 119 is used as the sample reservoir.
  • a hemoglobin measurement reagent is stored in the first storage tank 112, for example.
  • the hemoglobin measuring reagent is used to measure the concentration of hemoglobin contained in red blood cells, and it is known if it reacts with hemoglobin and can measure the state after reaction colorimetrically. Various ones can be used.
  • the hemoglobin concentration is measured in order to calculate the hematocrit value (volume ratio of red blood cells in blood) from the hemoglobin concentration and to correct the influence of the hematocrit value in the measurement.
  • the second storage tank 113 contains, for example, a dilution liquid for hemolysis.
  • the hemolyzing dilution solution is for destroying the blood cell component in order to measure the component in the blood cell, and, for example, one in which saponin is contained in physiological saline is used.
  • the third storage tank 114 stores, for example, a buffer used as a dilution liquid and a washing solution.
  • a buffer solution one that does not inhibit the reaction of hemoglobin or the immune reaction of the component to be measured, and does not cause an error in the measurement of the absorbance of hemoglobin or the component to be measured, is preferred.
  • Albumin can be used.
  • a cleaning liquid is stored in the fourth storage tank 115.
  • the washing solution is for washing a pipette provided in an automatic analyzer described later, and, for example, distilled water is used.
  • cleaning liquid things other than distilled water can also be used.
  • the fifth storage tank 116 contains, for example, a latex suspension.
  • the latex suspension is generally one in which an immunoreactive substance having specific reactivity with the component to be measured is dispersed in a buffer solution in a state of being supported on latex microparticles.
  • the components to be measured include disease markers such as hepatitis virus, rheumatoid factor, C-reactive protein, hemolytic streptococcal toxin, various enzymes and the like.
  • the above-mentioned immunoreactive substance for example, a substance that exhibits an antigen-antibody reaction specifically with the exemplified disease marker to generate an aggregate S is used.
  • the latex fine particles include latex beads made of polystyrene.
  • the first reaction tank 111 is used, for example, when preparing a mixed solution of diluted blood and a hemoglobin measurement reagent and measuring the absorbance of the mixed solution. That is, the first reaction vessel is used, for example, to obtain the absorbance necessary to calculate the hemoglobin concentration.
  • the second reaction tank 117 is used, for example, to cause a latex agglutination reaction and measure the absorbance at that time.
  • the third reaction tank 118 in order to measure a component to be measured that is different from the second reaction tank, the third reaction tank 118 generates an immune response different from that of the second reaction tank and measures absorbance. Or, in order to confirm measurement reproducibility, it is used to generate the same immune response as the second reaction vessel and measure absorbance.
  • the preparation tank 110 is used, for example, when preparing the sample blood.
  • the preparation of the sample blood is performed, for example, by mixing the sample blood with the saline stored in the third storage tank and diluting the blood.
  • the sample blood is injected into the sample tank 119.
  • the measurement using the cartridge of the present invention will be described by taking this case as an example.
  • the residual liquid removal method of the present invention is carried out.
  • the cartridge of the present invention used in this example has the waste tank of the configuration shown in FIG.
  • the cartridge 100 of the present invention is used, for example, by being incorporated into the automatic analyzer of the present invention.
  • the number of cartridges incorporated in the automatic analyzer may be one, and a plurality of cartridges may be incorporated in the automatic analyzer at the same time.
  • the automated analyzer comprises a pipette.
  • the pipette is movable vertically and horizontally.
  • the introduction or discharge of the samples, reagents, etc. stored in the plurality of tanks 110 to 119 of the cartridge 100 is performed by the pipette.
  • Figure 7 shows the force with the pipette It shows the state when introducing or deriving samples or reagents contained in multiple tanks of the trolley. In FIG. 7, the same parts as in FIGS.
  • the cartridge 100 is attached to the automatic analyzer.
  • the cartridge 100 has been mounted based on the user's operation or automatically, and the measurement operation is started.
  • This measurement operation includes the measurement of the hemoglobin concentration and the measurement of the component to be measured.
  • Measurement of hemoglobin concentration includes, for example, sample preparation, absorbance measurement, and calculation of hemoglobin concentration (hemat crit value)!
  • physiological saline stored in the second storage tank 113 is dispensed to the preparation tank 110 by the pipette 700.
  • a total of 190 L of physiological saline is dispensed into the preparation tank 110 by, for example, dispensing 95 L twice.
  • the buffer solution stored in the third storage tank 114 is dispensed to the second reaction tank 117 by the pipette 700.
  • 84 buffers are dispensed at one time to the second reaction vessel 117.
  • the hemoglobin measurement reagent stored in the first storage tank 112 is dispensed to the first reaction tank 111 by the pipette 700.
  • a total of 154 H of the hemoglobin measurement reagent is dispensed into the first reaction vessel 111 by, for example, dispensing 77 L twice.
  • the pipette 700 is washed. Specifically, first, the tip end of the pipette 700 is moved to the second storage tank 113, and the introduction and discharge of 110 for the saline contained in the second storage tank 113 is performed twice. . Then, the tip of the pipette 700 is moved to the fourth storage tank 115, and the distilled water stored in the fourth storage tank 115 is used. Introduction ⁇ Derivation of 50 ⁇ L Then, the pipette 700 is moved to the waste tank 120, and the tip of the pipette 700 is brought into contact with the groove of the bottom of the waste tank 120. Then, the remaining liquid at the tip of the pipette 700 (for example, the liquid droplet coming out from the pipette tip by its own weight) is sucked into the groove of the bottom of the waste liquid tank 120 by capillary action.
  • the remaining liquid at the tip of the pipette 700 for example, the liquid droplet coming out from the pipette tip by its own weight
  • the liquid in the preparation tank 110 is mixed to dilute the sample blood. Is done. For example, 28 samples of blood are dispensed at one time to the preparation tank 110, and the mixing of the liquid in the preparation tank 110 is performed, for example, by 5 introductions and discharges of the liquid 110. To be done.
  • Sample preparation for hemoglobin measurement is completed.
  • 2 8 ⁇ L of diluted blood is dispensed at one time to the first reaction vessel 111, and the mixing of the liquid in the first reaction vessel 111 is, for example, the liquid 110. It is done by 5 introductions ⁇ derivation.
  • absorbance measurement is performed.
  • the absorbance measurement is performed by irradiating monochromatic light from the side of the first reaction vessel 111 and measuring the amount of light transmitted through the first reaction vessel 111 at that time.
  • a force selected according to the type of reagent for hemoglobin measurement for example, one having a wavelength of 540 nm is used.
  • the calculation of the hemoglobin concentration is performed, for example, by substituting the difference between the reference absorbance and the measured absorbance into a computing equation.
  • the hematocrit value can be calculated from the hemoglobin concentration thus obtained. However, based on the measured absorbance without measuring the hemoglobin concentration, it is possible to directly calculate the heme and crits toy directly.
  • the concentration of the component to be measured is measured as described above.
  • the measurement of the concentration of the component to be measured includes, for example, sample preparation, absorbance measurement, and concentration calculation.
  • the pipette 700 is washed. Specifically, instead, the tip of the pipette 700 is moved to the second storage tank 113, and the introduction and discharge for the saline contained in the second storage tank 113 is performed twice. Then, the tip of the pipette 700 is moved to the fourth storage tank 115 to introduce and discharge 50 volumes of distilled water stored in the fourth storage tank 115. Then, the pipette 700 is moved to the waste tank 120, and the tip of the pipette 700 is brought into contact with the groove of the bottom of the waste tank 120. Then, the remaining liquid at the tip of the pipette 700 is drawn into the groove of the bottom of the waste tank 120 by capillary action.
  • the diluted blood in the preparation tank 110 is dispensed to the second reaction tank 117 by the pipette 700, and the liquid in the second reaction tank 117 is mixed.
  • the liquid in the second reaction tank 117 is mixed.
  • 28 dilutions of blood are dispensed at one time to the second reaction tank 117, and mixing of the liquid in the second reaction tank 117 is performed, for example, with respect to the liquid 85. It is done by introducing 5 times' derivation.
  • the pipette 700 is washed using the distilled water stored in the fourth storage tank 115. Specifically, first, the tip of the pipette 700 is moved to the fourth storage tank 115, and 110 L is introduced and extracted three times to the distilled water stored in the fourth storage tank 115. . Then, the pipette 700 is moved to the waste tank 120, and the tip of the pipette 700 is brought into contact with the groove of the bottom of the waste tank 120. Then, the remaining liquid at the tip of the pipette 700 is drawn into the groove of the bottom of the waste tank 120 by capillary action.
  • the latex suspension stored in the fifth storage tank 116 is dispensed to the second reaction tank 117 by the pipette 700, and the inside of the second reaction tank 117 is dispensed.
  • Mix the liquid For example, a latex suspension of 28. 2 is dispensed at one time to the second reaction vessel 117, and mixing of the liquid in the second reaction vessel 117 can be performed, for example, by using the liquid 110. This is done by three introductions and derivations for a L.
  • absorbance measurement is performed.
  • the absorbance measurement is performed by irradiating monochromatic light from the side of the second reaction tank 117 and measuring the amount of light transmitted through the second reaction tank 117 at that time.
  • the monochromatic light is selected depending on the component to be measured and the immunoreactive substance carried on the latex suspension to be used.
  • the calculation of the concentration of the component to be measured is, for example, It is carried out by substituting the difference between the reference absorbance and the measured absorbance into an arithmetic expression. The concentration of the component to be measured thus obtained can be corrected based on the hematocrit value obtained earlier.
  • the pipette 700 is moved to the waste tank 121, and the tip of the pipette 700 is brought into contact with the groove of the bottom of the waste tank 121. Then, the remaining liquid at the tip of the pipette 700 is drawn into the groove of the bottom of the waste tank 121 by capillary action. Thereby, the pipette 700 can be used for the next measurement without disposable.
  • the washing solution in the middle of the first measurement and the residual solution of the pipette tip before the second measurement are separately It can be moved to the groove at the bottom of each waste tank. As a result, it is possible to prevent contamination of different types of residual solutions.
  • the cartridge of the present invention can also be used for measurement by, for example, an immunoturbidimetric method, an enzyme colorimetric method, an immunoturbidimetric agglutination inhibition method, etc. in addition to the latex agglutination method.
  • an immunoturbidimetric method examples include microalbumin and the like.
  • an enzyme colorimetric method examples include creatine and the like.
  • an immunoturbidimetric agglutination inhibition method etc.
  • examples of the component to be measured in the aforementioned immunoturbidimetric assay include microalbumin and the like.
  • the component to be measured in the enzyme colorimetric method include creatine and the like.
  • Examples of the component to be measured in the above-described immunoassay method include hemoglobin Ale and the like.
  • the cartridge of the present invention is capable of removing the residual solution in all directions of the pipette tip without requiring a new device, regardless of the viscosity of the residual solution.
  • the cartridge of the present invention is, for example, incorporated into an automatic analyzer and the force S suitably used for measurement using an immunoassay such as latex agglutination method, the application thereof is not limited, and it is applied to a wide range of fields. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

明 細 書
カートリッジ、残液除去方法および自動分析装置
技術分野
[0001] 本発明は、カートリッジ、残液除去方法および自動分析装置に関する。
背景技術
[0002] 従来から、生化学検査や臨床検査等において、検体と試薬との反応を検出するこ とにより検体中の所定の成分を自動的に定量する自動分析装置が用いられてレ、る。 この自動分析装置の測定にぉレ、て、試薬を充填した試薬槽ゃ検体と試薬とを反応さ せる反応槽を有するカートリッジが使用されている(例えば、特許文献 1〜3参照)。
[0003] 図 8に、従来のカートリッジの一例を示す。図示のとおり、このカートリッジ 800は、複 数 (この例では 10個)の槽 810〜819が、長手方向に並列して配置され、板状部材 で一体化されている。前記複数の槽 810〜819は、その上部が開口している。この力 ートリッジ 800を自動分析装置にセットすると、前記自動分析装置に備えられた上下 方向および水平方向に移動可能なピペットによって、前記複数の槽 810〜819の各 槽に収容された検体や試薬等の導入または導出が行われる。
[0004] このようなカートリッジを用いた測定において、前記ピペットの先端に検体や試薬等 が残ってしまうと測定の信頼性が低下してしまう。ピペットの残液を除去しな!/、場合は 、ピペットの先端に装着したチップを、液を吸引ないし吐出の毎に交換する必要があ る。このため、前記ピペット先端の残液を除去する必要がある。前記残液を除去する 方法として、前記カートリッジに廃液槽を設け、その側壁に前記ピペットの側面を接触 させる方法がある。し力、しながら、この方法では、前記廃液槽の側壁に接触する側と 反対側の前記ピペットの側面に付着した液体を除去することは困難である。
[0005] また、前記ピペット内のエアーを吐ききつたり、前記ピペットの先端にエアーを吹き 付けたりすることで前記残液を除去する方法もある。し力、しながら、この方法では、ェ ァ一の供給装置を用意する必要がある上、粘性の高い液体は、前記ピペットに残り やすい。
[0006] さらに、前記ピペットの先端を濾紙に接触させて、前記残液を吸レ、取らせる手段が 各種提案されている(例えば、特許文献 4〜; 10参照)。し力もながら、この手段では、 使用済み(吸レ、取り後)の濾紙の回収および新たな濾紙の提供のための装置を必要 とする。
[0007] 特許文献 1 : :実開昭 58 — 36359号公幸
特許文献 2 : :特開平 8 - 122336号公報
特許文献 3 : :特開平 11 — 316226号公報
特許文献 4 : :特開昭 51 — 35393号公幸
特許文献 5 : :特開昭 51 — 37691号公幸
特許文献 6 : :実開昭 58 — 48647号公幸
特許文献 7 : :実開昭 58 — 193255号公報
特許文献 8 : :特開昭 60 — 243566号公報
特許文献 9 : :実公平 7 - - 3329号公幸
特許文献 10 :特許第 2669821号公報
発明の開示
[0008] そこで、本発明は、新たな装置を必要とすることなぐピペット先端の全方向の残液 を、残液の粘性に関係なく除去することが可能なカートリッジを提供することを目的と する。
[0009] 前記目的を達成するために、本発明のカートリッジは、上部開口の槽を複数有し、 前記複数の槽の少なくとも一つに対し、ピペットにより液体を導入または導出する力 ートリッジであって、さらに、廃液槽を有し、前記廃液槽は、毛細管現象発生手段を 有し、前記廃液槽の前記毛細管現象発生手段に前記ピペット先端の残液を接触さ せ、前記毛細管現象により前記残液を前記毛細管現象発生手段に移動させて前記 ピペットから前記残液を除去することを特徴とする。
[0010] 本発明の残液除去方法は、 自動分析装置中のピペットの残液を除去する残液除去 方法であって、
上部開口の複数の槽および廃液槽を有するカートリッジを用意し、
前記廃液槽は、毛細管現象発生手段を有し、
前記カートリッジを、上下方向および水平方向に移動可能な前記ピペットを備える前 記自動分析装置に搭載し、
前記複数の槽の少なくとも一つに対し、前記ピペットにより液体を導入または導出し、 前記廃液槽の前記毛細管現象発生手段に前記ピペット先端の残液を接触させ、前 記毛細管現象により前記残液を前記毛細管現象発生手段に移動させて前記ピぺッ トから前記残液を除去することを特徴とする。
[0011] 本発明の自動分析装置は、上下方向および水平方向に移動可能なピペットを備え
、且つ、カートリッジが着脱自在に搭載される自動分析装置であって、
前記カートリッジは、上部開口の複数の槽および廃液槽を有し、
前記廃液槽は、毛細管現象発生手段を有し、
前記複数の槽の少なくとも一つに対し、前記ピペットにより液体が導入または導出さ れ、
前記廃液槽の前記毛細管現象発生手段に前記ピペット先端の残液を接触させ、前 記毛細管現象により前記残液を前記毛細管現象発生手段に移動させて前記ピぺッ トから前記残液を除去することを特徴とする。
[0012] このように、本発明のカートリッジは、廃液槽に毛細管現象発生手段を備えており、 その毛細管現象を利用して毛細管現象発生手段にピペット先端の残液を移動させ て除去する。このため、本発明のカートリッジでは、従来のようにエアーの供給装置や 濾紙の回収装置等を必要とすることなぐ前記残液を除去することができる。また、本 発明のカートリッジでは、残液の粘性に関係なぐ前記ピペット先端の全方向の残液 を除去すること力 Sできる。また、本発明のカートリッジを使用すれば、ピペットチップを 交換することなぐ繰り返し使用可能となる。 図面の簡単な説明
[0013] [図 1]図 1は、本発明のカートリッジの一例の構成を示す斜視図である。
[図 2]図 2は、図 1に示したカートリッジの平面図である。
[図 3]図 3は、底部に溝が形成された本発明の廃液槽の一例の断面図である。
[図 4]図 4は、本発明の廃液槽の一例におけるピペット先端の残液を廃液槽の底部の 空間へと移動させる際の状態を説明する断面図である。 [図 5]図 5は、底部に多孔体が配置された本発明の廃液槽の一例の断面図である。
[図 6]図 6は、複数の槽の上部開口の一部がシールされた本発明のカートリッジの一 例の構成を示す平面図である。
[図 7]図 7は、本発明のカートリッジの一例におけるピペットにより複数の槽に収容され た検体や試薬等の導入または導出を行う際の状態を説明する図である。
[図 8]図 8は、従来のカートリッジの一例の構成を示す斜視図である。
発明を実施するための最良の形態
[0014] 本発明において、「ピペット」は、例えば、 目盛り付の管のような、いわゆるピペットの 他に、ピペットの先端にチップが装着されたもの、 自動分析装置等に備えられたノズ ノレ、前記ノズルの先端にチップが装着されたもの等も含む。
[0015] 本発明のカートリッジ、残液除去方法および自動分析装置において、前記毛細管 現象発生手段は、前記廃液槽の底部および側壁の少なくとも一方に形成された毛細 管現象を発生させる空間であることが好ましレ、。
[0016] 本発明のカートリッジ、残液除去方法および自動分析装置にお!/、て、前記廃液槽 の底部および側壁の少なくとも一方に溝が形成され、前記溝が、前記毛細管現象を 発生させる空間であることが好ましい。この場合において、前記溝の幅は、例えば、 0 .;!〜 lmmの範囲であり、前記溝の深さは、例えば、 0. 3〜; 1mmの範囲である。
[0017] 本発明のカートリッジ、残液除去方法および自動分析装置において、前記毛細管 現象発生手段は、前記廃液槽に配置された多孔体であってもよい。このように、ピぺ ット先端の残液除去手段である多孔体をカートリッジと一体化することで、新たな装置 を必要とすることなぐピペット先端の残液と除去することが可能である。
[0018] 本発明のカートリッジ、残液除去方法および自動分析装置にお!/、て、前記廃液槽 の数は、特に制限されず、例えば、カートリッジに収容される試薬や検体等の種類の 数を考慮して適宜決定できるが、例えば、;!〜 10個の範囲であり、好ましくは、 2〜6 個の範囲であり、より好ましくは、 3〜4個の範囲である。本発明のカートリッジが前記 廃液槽を複数有すれば、種類の異なる残液を別個の廃液槽の毛細管現象発生手段 に移動させること力できる。この結果、種類の異なる残液同士のコンタミを防止するこ とができ、より好ましい。 [0019] 本発明のカートリッジ、残液除去方法および自動分析装置にお!/、て、前記残液を 前記毛細管現象発生手段に移動させる際の前記ピペットの先端と前記毛細管現象 発生手段との間の距離は、例えば、 0. 0〜0. 7mmの範囲である。
[0020] 本発明のカートリッジ、残液除去方法および自動分析装置において、前記複数の 槽は、試薬を収容する収容槽および前記試薬と検体とを反応させる反応槽を含むこ とが好ましい。この場合において、前記複数の槽は、さらに、前記検体を調製する調 製槽を含むことが好ましい。
[0021] 本発明のカートリッジ、残液除去方法および自動分析装置において、前記複数の 槽の少なくとも一つ力 吸光度測定用の測定セルとして用いられてもよい。
[0022] 本発明のカートリッジ、残液除去方法および自動分析装置において、カートリッジ全 体の長さは、例えば、;!〜 10cmの範囲であり、カートリッジ全体の幅は、例えば、 0. 3〜3cmの範囲であり、カートリッジ全体の高さは、例えば、 0. 5〜5cmの範囲である
[0023] 本発明のカートリッジ、残液除去方法および自動分析装置では、異物の混入を防ぐ ために、使用前において、前記複数の槽の上部開口の一部または全部がシール材 によりシールされていることが好ましい。この場合において、前記シール材は、アルミ ニゥム箱であることが好ましレ、。
[0024] 本発明のカートリッジは、その使用方法に制限はないが、例えば、検体の自動分析 装置に使用される。
[0025] つぎに、本発明のカートリッジ、残液除去方法および自動分析装置について説明 する。
[0026] 図 1および図 2に、本発明のカートリッジの一例の構成を示す。図 1は、本発明の力 ートリッジの一例の構成の斜視図であり、図 2は、図 1に示したカートリッジの平面図で ある。
[0027] 図 1および図 2に示すように、このカートリッジ 100は、複数(この例では 10個)の槽 110〜; 119および 3つの廃液槽 120〜; 122を有する。前記複数の槽 110〜; 119は、 カートリッジ 100の長手方向に並列して配置され、板状部材で一体化されている。前 記複数の槽 110〜; 119は、その上部が開口している。前記 3つの廃液槽 120〜; 122 は、前記カートリッジ 100の一端(図 1および図 2において左側端部)に、前記カートリ ッジ 100の幅方向に並列して配置されている。
[0028] 前記カートリッジ 100は、全体が透明であることが好ましい。前記カートリッジ全体を 透明にすることで、後述の吸光度測定を簡便に行うことができる。なお、前記カートリ ッジは、例えば、後述の吸光度測定の際に光が透過する部分のみを透明とすることも できる。例えば、前記複数の槽の少なくとも一つを透明とすることで、前記透明とした 槽を、吸光度測定用の測定セルとして用いることができる。
[0029] 前記カートリッジ 100の大きさは、特に制限されないが、例えば、長さ l〜10cm、幅 0. d〜3cm、高 0. 5〜5cmである。
[0030] 前記カートリッジ 100の形成材料としては、特に制限されないが、例えば、ポリスチ レン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等が挙げられる。
[0031] 前記複数の槽 110〜; 119の各槽の大きさや形状は、特に制限されない。前記各槽 の形状としては、例えば、角柱状、円筒状、円錐状、半球状およびこれらを組み合わ せた形状等が挙げられる。前記各槽の大きさとしては、例えば、槽を円筒に見立てた とき、直径が;!〜 20mmの範囲であり、深さ力 ¾〜20mmの範囲であることが好ましい 。前記各槽の形状および大きさは、全ての槽において同じであってもよいし、異なつ ていてもよい。また、この例では前記複数の槽の数を 10個とした力 本発明はこれに 限定されず、前記複数の槽の数は、用いる試薬の数および操作性等を考慮して適宜 に決めることができる。
[0032] 前述のとおり、前記複数の槽 110〜; 119は、収容槽、反応槽および調製槽を含む ことが好ましい。
[0033] 前記収容槽は、試薬を収容するために利用される。前記収容槽は、前記複数の槽
110〜119のぅちの1っだけでぁってもょぃし、 2つ以上であってもよい。
[0034] 前記反応槽は、前記試薬と検体とを反応させる際に利用される。前記反応槽も、前 記複数の槽 110〜; 119のうちの 1つだけであってもよいし、 2つ以上であってもよい。
[0035] 前記調製槽は、前記検体を調製する際に利用される。前記調製槽も、前記複数の 槽 110〜; 119のうちの 1つだけであってもよいし、 2つ以上であってもよい。
[0036] 前記複数の槽 110〜; 119は、さらに、検体槽を含むことが好ましい。 [0037] 前記検体槽は、カートリッジ 100へ検体を直接注入する際に利用される。前記検体 槽も、前記複数の槽 110〜; 119のうちの 1つだけであってもよいし、 2つ以上であって あよい。
[0038] 前記廃液槽 120〜; 122は、前記ピペットから残液を除去するために使用される。前 記廃液槽 120〜; 122は、毛細管現象発生手段を有する。前記廃液槽 120〜; 122の 前記毛細管現象発生手段に前記ピペット先端の前記残液を接触させることにより、前 記残液は、前記毛細管現象発生手段に移動する。
[0039] 前記廃液槽 120〜122の各槽の形状は、特に制限されず、例えば、角柱状、円筒 状等が挙げられる。前記廃液槽 120〜122の各槽の大きさとしては、特に制限され ず、例えば、前記ピペット先端の大きさ(太さ)や形状等を考慮して適宜決定できるが 、例えば、槽を角柱に見立てたとき、その縦および横の長さが、それぞれ、例えば、 3 〜5mmの範囲であり、その深さが、例えば、 0. 5〜; 10mmの範囲であり、好ましくは 、;!〜 3mmの範囲である。前記廃液槽 120〜; 122の各槽の形状および大きさは、全 ての槽において同じであってもよいし、異なっていてもよい。また、この例では前記廃 液槽の数を 3個としたが、本発明はこれに限定されない。前記廃液槽の数は、前述の とおりである。
[0040] 前述のとおり、前記毛細管現象発生手段は、前記廃液槽 120〜; 122の底部および 側壁の少なくとも一方に形成された毛細管現象を発生させる空間であることが好まし い。前記廃液槽 120〜; 122の底部および側壁の少なくとも一方に、毛細管現象を発 生させる空間を形成する方法としては、例えば、前記廃液槽 120〜; 122の底部およ び側壁の少なくとも一方に、溝を形成する方法や網目状の凹凸を形成する方法等が 挙げられる。これらの方法によれば、カートリッジの製造工程を簡略化できる。この中 でも、前記廃液槽 120〜; 122の底部および側壁の少なくとも一方に、溝を形成する 方法が、前記残液の除去をより効率よく行うことができ、好ましい。
[0041] つぎに、底部に毛細管現象を発生させる空間が形成された場合を例に、本発明の 廃液槽について説明する。
[0042] 図 3に、底部に溝が形成された本発明の廃液槽の一例の断面図を示す。図示のと おり、この廃液槽 320の底部には、 3本の溝 330〜332が形成されている。 [0043] 前記溝の幅は、特に制限されず、例えば、前記ピペット先端の大きさ(太さ)や前記 ピペット先端に形成される液滴の大きさ等を考慮して適宜決定できる力 例えば、 0. l〜l mmの範囲であり、好ましくは、 0. 3〜0. 6mmの範囲である。前記溝の深さは 、特に制限されず、例えば、カートリッジを成型する際の金型からの抜き易さ、すなわ ち成型性等を考慮して適宜決定できる力 例えば、 0. 3〜; 1mmの範囲であり、好ま しくは、 0. 4〜0. 7mmの範囲であり、より好ましくは、 0. 6mmである。前記溝の長さ は、前記廃液槽の縦または横の長さと同様である。前記溝の本数は、前記廃液槽の 大きさに応じて、適宜決定すればよい。
[0044] 図 4に、前記残液を前記空間に移動させる際の状態を示す。図 4において、図 3と 同一部分には、同一の符号を付している。図 4 (a)に示すとおり、前記残液 410を前 記空間に移動させる際には、まず、前記ピペット 400先端の残液 410を前記空間(こ の例においては溝 331)に接触させる。すると、図 4 (b)の矢印で示すように、前記残 液 410が、毛細管現象により前記空間に移動する。この際の前記ピペット 400先端と 前記空間との間の距離は、前記残液 410を前記空間に接触させられる距離であれ ば、特に制限されないが、例えば、 0. 0〜0. 7mmの範囲であり、好ましくは、 0. 5m mである。
[0045] 前記毛細管現象発生手段は、前記廃液槽 120〜; 122に配置された多孔体であつ てもよい。前記多孔体の配置場所は、特に制限されず、例えば、前記廃液槽の底部 や側壁が挙げられる。前記廃液槽 120〜; 122の底部および側壁の少なくとも一方に 、多孔体を配置する方法としては、例えば、前記廃液槽 120〜122の底部および側 壁の少なくとも一方に、前記多孔体を、接着剤等を用いて固定する方法等が挙げら れる。なお、前記多孔体を、前記廃液槽 120〜; 122の底部に配置する場合には、接 着剤等を用いず、前記多孔体を、前記廃液槽 120〜122の底部に置くだけとしても よい。
[0046] 図 5に、底部に多孔体が配置された本発明の廃液槽の一例の断面図を示す。図示 のとおり、この廃液槽 520の底部には、多孔体 530が配置されている。
[0047] 前記多孔体としては、例えば、濾紙、不織布、編み物、織物、連続発泡樹脂、スポ ンジ等が挙げられる。前記多孔体の大きさは、例えば、前記廃液槽の底面積等に応 じて適宜決定すればよい。
[0048] 前記多孔体は、 1回の測定毎に交換することが好ましい。ただし、前記多孔体を交 換することなぐ前記カートリッジを複数回の測定に用いることも可能である。
[0049] 前述のとおり、図 1および図 2に示したカートリッジ 100では、その一端(図 1および 図 2において左側端部)に前記廃液槽 120〜122が配置されている力、本発明の力 ートリッジは、これに限定されない。本発明のカートリッジにおいて、前記廃液槽は、 前記カートリッジのどこに位置してもよい。例えば、前記複数の槽の中間に位置する ように、前記カートリッジの長手方向の中央に配置されていてもよいし、前記複数の槽 と並列するように、前記カートリッジの幅方向の端に配置されていてもよい。
[0050] 前述のとおり、本発明のカートリッジでは、異物の混入を防ぐために、使用前におい て、前記複数の槽の上部開口の一部または全部がシール材によりシールされている ことが好ましい。前記シール材としては、例えば、アルミニウム箔等の金属箔ゃ高分 子フィルム等が挙げられる。前記シール材は、前記ピペットにより容易に破ることがで き、且つ、密封性も良好であることからアルミニウム箔であることが好ましい。前記シー ノレ材を、例えば、ホットメルト型接着剤等でカートリッジ上部表面に接着させることで、 前記複数の槽の上部開口の一部または全部をシールすることができる。
[0051] 図 6に、前記複数の槽の上部開口の一部がシールされた本発明のカートリッジの一 例の構成を示す。図 6に示したカートリッジは、シール材を有すること以外、図 1およ び図 2と同様の構成であり、図 1および図 2と同一部分には、同一の符号を付している 。図示のとおり、このカートリッジ 100では、シーノレ材 600により、前記複数の槽 110 〜; 119のうち、槽 110〜; 118の上部開口がシールされて!/、る(図 1および図 2参照)。
[0052] 本発明のカートリッジの製造方法は、特に制限されない。廃液槽の毛細管現象発 生手段が前記空間である本発明のカートリッジは、例えば、射出成型等による一体成 型により製造すること力 Sできる。また、廃液槽の毛細管現象発生手段が前記多孔体 である本発明のカートリッジは、例えば、射出成型等によりカートリッジ本体を成型し た後、廃液槽に多孔体を配置することで製造することができる。本発明のカートリッジ は、例えば、射出成型等により、複数の本発明のカートリッジがつながった成型体を 製造し、前記成型体のそれぞれにおいて、前記複数の槽の上部開口の一部または 全部をシールし、前記シールごと前記成型体が個別に切り離せるように必要に応じて 適当な処置をすることによって、均一な品質で大量に生産することが可能である。前 記成型体を個別に切り離す処置としては、例えば、ミシン目の形成、凹条の形成、切 り欠き部の形成等の処置が挙げられる。
[0053] 図 1および図 2に示したカートリッジ 100が、例えば、ラテックス凝集法による検体血 液中の所定の成分の測定に用いられる場合には、槽 112〜; 116が、第 1〜第 5の収 容槽として利用され、槽 111、 117および 118が、第 1〜第 3の反応槽として利用され 、槽 110が、前記調製槽として利用され、槽 119が、前記検体槽として利用される。
[0054] 前記第 1の収容槽 112には、例えば、ヘモグロビン測定試薬が収容される。へモグ ロビン測定試薬は、赤血球中に含まれるヘモグロビン濃度を測定するために使用さ れるものであり、ヘモグロビンと反応し、且つ、反応後の状態を比色測定可能なもの であれば、公知の種々のものを使用することができる。ヘモグロビン濃度を測定する のは、ヘモグロビン濃度からへマトクリット値(血液中の赤血球の容積比率)を算出し 、測定におけるへマトクリット値の影響を補正するためである。
[0055] 前記第 2の収容槽 113には、例えば、溶血用希釈液が収容される。溶血用希釈液 は、血球中の成分を測定するために、血球成分を破壊するためのものであり、例えば 、生理食塩水にサポニンを含有させたものが使用される。
[0056] 前記第 3の収容槽 114には、例えば、希釈液および洗浄液として使用される緩衝液 が収容される。前記緩衝液としては、ヘモグロビンの反応や測定対象成分の免疫反 応を阻害せず、且つ、ヘモグロビンや測定対象成分の吸光度測定において誤差を 生じさせないものが好ましぐ例えば、生理食塩水や牛血清アルブミンを使用すること ができる。
[0057] 前記第 4の収容槽 115には、例えば、洗浄液が収容される。前記洗浄液は、後述 の自動分析装置に備えられたピペットを洗浄するためのものであり、例えば、蒸留水 が用いられる。前記洗浄液としては、蒸留水以外のものを使用することもできる。
[0058] 前記第 5の収容槽 116には、例えば、ラテックス懸濁液が収容される。前記ラテック ス懸濁液は、一般的に、測定対象成分に対して特異的反応性を示す免疫反応物質 を、ラテックス微粒子に担持させた状態でバッファ溶液中に分散させたものである。前 記測定対象成分としては、例えば、肝炎ウィルス、リウマチ因子、 C反応性蛋白、溶 血性連鎖球菌毒素、各種酵素等の疾病マーカーが挙げられる。前記免疫反応物質 としては、例えば、例示した疾病マーカーと特異的に抗原抗体反応を示して凝集塊 を生じるもの力 S使用される。前記ラテックス微粒子としては、例えば、ポリスチレン製の ラテックスビーズが挙げられる。
[0059] 前記第 1の反応槽 111は、例えば、希釈血液とヘモグロビン測定試薬の混合液を 調製し、その混合液の吸光度を測定する際に利用される。すなわち、前記第 1の反 応槽は、例えば、ヘモグロビン濃度を演算するために必要な吸光度を得るために利 用される。
[0060] 前記第 2の反応槽 117は、例えば、ラテックス凝集反応を生じさせ、そのときの吸光 度を測定する際に利用される。
[0061] 前記第 3の反応槽 118は、例えば、前記第 2の反応槽とは異なる測定対象成分を 測定するために、前記第 2の反応槽とは異なる免疫反応を生じさせて吸光度を測定 し、あるいは測定再現性を確認するために、前記第 2の反応槽と同様の免疫反応を 生じさせて吸光度を測定するために利用される。
[0062] 前記調製槽 110は、例えば、前記検体血液を調製する際に利用される。前記検体 血液の調製は、例えば、検体血液を前記第 3の収容槽に収容された生理食塩水と混 合し、血液を希釈することにより行われる。
[0063] 前記検体槽 119には、例えば、前記検体血液が注入される。
[0064] この場合を例に、本発明のカートリッジを用いた測定について説明する。この測定 において、本発明の残液除去方法が実施される。この例で用いた本発明のカートリツ ジは、図 3に示した構成の廃液槽を有する。
[0065] 本発明のカートリッジ 100は、例えば、本発明の自動分析装置に組み込まれて使 用される。なお、前記自動分析装置に組み込まれるカートリッジは、 1つであってもよ いし、同時に複数のカートリッジを前記自動分析装置の組み込んでもよい。前記自動 分析装置は、ピペットを備えている。前記ピペットは、上下方向および水平方向に移 動可能である。前記カートリッジ 100の複数の槽 110〜; 119に収容された検体や試 薬等の導入または導出は、前記ピペットによって行われる。図 7に、ピペットにより力 ートリッジの複数の槽に収容された検体や試薬等の導入または導出を行う際の状態 を示す。図 7において、図 1および図 2と同一部分には、同一の符号を付している。図 7に示すように、このカートリッジ 100において、複数の槽 110〜119に収容された検 体や試薬等の導入または導出は、上下方向および水平方向に移動可能なピペット 7 00によって行われる。これ以降、ある槽から液体を導入し、異なる槽にその液体を導 出する動作を分注と表記する。
[0066] まず、前記検体槽 119に検体血液を保持させた後、カートリッジ 100を自動分析装 置に装着する。
[0067] 前記自動分析装置においては、使用者の操作に基づいて、若しくは自動的にカー トリッジ 100が装着されたことが認識され、測定動作が開始される。この測定動作は、 ヘモグロビン濃度の測定および測定対象成分の測定を含んでいる。
[0068] つぎに、ヘモグロビン濃度の測定を行う。ヘモグロビン濃度の測定は、例えば、試 料調製、吸光度測定およびヘモグロビン濃度(へマトクリット値)の演算を含んで!/、る
[0069] 前記試料調製においては、まず、前記ピペット 700により、前記第 2の収容槽 113 に収容された生理食塩水を、前記調製槽 110に対して分注する。前記調製槽 110に 対しては、例えば、 95 Lの分注を 2回行うことにより、合計で 190 Lの生理食塩水 が分注される。
[0070] つぎに、前記ピペット 700により、前記第 3の収容槽 114に収容された緩衝液を、第 2の反応槽 117に対して分注する。前記第 2の反応槽 117に対しては、例えば、 84 しの緩衝液が 1回で分注される。ついで、前記ピペット 700により、前記第 1の収容 槽 112に収容されたヘモグロビン測定試薬を、前記第 1の反応槽 111に対して分注 する。前記第 1の反応槽 111に対しては、例えば、 77 Lの分注を 2回行うことにより 、合計で 154 H Lのヘモグロビン測定試薬が分注される。
[0071] つぎに、前記ピペット 700の洗浄を行う。具体的には、まず、前記ピペット 700の先 端を前記第 2の収容槽 113に移動させ、前記第 2の収容槽 113に収容された生理食 塩水に対する 110 しの導入 ·導出を 2回行う。ついで、前記ピペット 700の先端を前 記第 4の収容槽 115に移動させ、前記第 4の収容槽 115に収容された蒸留水に対す る 50 ^ Lの導入 ·導出を行う。ついで、前記ピペット 700を前記廃液槽 120に移動さ せ、前記ピペット 700の先端を前記廃液槽 120の底部の溝に接触させる。すると、前 記ピペット 700の先端の残液 (例えば、自重によりピペット先端から外部に出ている液 滴)が、毛細管現象により、前記廃液槽 120の底部の溝の内部に吸い取られる。
[0072] つぎに、前記ピペット 700により、前記検体槽 119に保持された検体血液を前記調 製槽 110に分注した後、前記調製槽 110内の液体を混合することにより、検体血液 の希釈が行われる。前記調製槽 110に対しては、例えば、 28 しの検体血液が 1回 で分注され、前記調製槽 110内の液体の混合は、例えば、前記液体 110 に対す る 5回の導入 ·導出により行われる。
[0073] つぎに、前述のピペットの洗浄と同様の手順に従って、再度、前記ピペット 700の洗 浄を行う。
[0074] 最後に、前記ピペット 700により、前記調製槽 110内の希釈血液を前記第 1の反応 槽 11 1に分注した後、前記第 1の反応槽 111内の液体を混合することにより、へモグ ロビン測定用の試料調製が終了する。前記第 1の反応槽 111に対しては、例えば、 2 8 ^ Lの希釈血液が 1回で分注され、前記第 1の反応槽 111内の液体の混合は、例 えば、前記液体 110 しに対する 5回の導入 ·導出により行われる。
[0075] つぎに、吸光度測定を行う。前記吸光度測定は、前記第 1の反応槽 111の側方か ら単色光を照射し、そのときに前記第 1の反応槽 111を透過した光量を測定すること により行われる。前記単色光は、ヘモグロビン測定用の試薬の種類によって選択され る力 例えば、波長が 540nmのものが使用される。ヘモグロビン濃度の演算は、例え ば、基準吸光度と測定された吸光度との差を演算式に代入することにより行われる。 このようにして得られたヘモグロビン濃度から、へマトクリット値を算出することができる 。ただし、ヘモグロビン濃度を測定することなぐ測定された吸光度に基づいて、へマ 卜クリツトイ直を直接演算するようにしてもよレヽ。
[0076] ヘモグロビン濃度(へマトクリット値)の測定が終了したら、前述のように、測定対象 成分の濃度を測定する。前記測定対象成分の濃度測定は、例えば、試料調製、吸 光度測定および濃度演算を含んで!/、る。
[0077] 前記試料調製に当たっては、まず、前記ピペット 700の洗浄を行う。具体的には、ま ず、前記ピペット 700の先端を前記第 2の収容槽 113に移動させ、前記第 2の収容槽 113に収容された生理食塩水に対する 110 しの導入 ·導出を 2回行う。ついで、前 記ピペット 700の先端を前記第 4の収容槽 115に移動させ、前記第 4の収容槽 115 に収容された蒸留水に対する 50 しの導入 ·導出を行う。ついで、前記ピペット 700 を前記廃液槽 120に移動させ、前記ピペット 700の先端を前記廃液槽 120の底部の 溝に接触させる。すると、前記ピペット 700の先端の残液が、毛細管現象により、前記 廃液槽 120の底部の溝の内部に吸い取られる。
[0078] つぎに、前記ピペット 700により、前記第 2の反応槽 117に対して、前記調製槽 110 内の希釈血液を分注し、前記第 2の反応槽 117内の液体を混合する。前記第 2の反 応槽 117に対しては、例えば、 28 しの希釈血液が 1回で分注され、前記第 2の反 応槽 117内の液体の混合は、例えば、前記液体 85 しに対する 5回の導入'導出に より行われる。
[0079] つぎに、前記第 4の収容槽 115に収容された蒸留水を利用して、前記ピペット 700 の洗浄を行う。具体的には、まず、前記ピペット 700の先端を前記第 4の収容槽 115 に移動させ、前記第 4の収容槽 115に収容された蒸留水に対して 110 Lの導入- 導出を 3回行う。ついで、前記ピペット 700を前記廃液槽 120に移動させ、前記ピぺ ット 700の先端を前記廃液槽 120の底部の溝に接触させる。すると、前記ピペット 70 0の先端の残液が、毛細管現象により、前記廃液槽 120の底部の溝の内部に吸い取 られる。
[0080] 最後に、前記ピペット 700により、前記第 2の反応槽 117に対して前記第 5の収容 槽 116に収容されたラテックス懸濁液を分注し、前記第 2の反応槽 117内の液体を混 合する。前記第 2の反応槽 117に対しては、例えば、 28. 2 しのラテックス懸濁液が 1回で分注され、前記第 2の反応槽 117内の液体の混合は、例えば、前記液体 110 a Lに対する 3回の導入'導出により行われる。
[0081] つぎに、吸光度測定を行う。前記吸光度測定は、前記第 2の反応槽 117の側方か ら単色光を照射し、そのときに前記第 2の反応槽 117を透過した光量を測定すること により行われる。前記単色光は、測定対象成分や用いるラテックス懸濁液に担持され た免疫反応物質によって選択される。前記測定対象成分の濃度の演算は、例えば、 基準吸光度と測定された吸光度との差を演算式に代入することにより行われる。この ようにして得られた測定対象成分の濃度は、先に得られたへマトクリット値に基づいて ネ甫正が fiわれる。
[0082] このようにして、 1回の測定が終了する。ここで、前記ピペット 700を前記廃液槽 121 に移動させ、前記ピペット 700の先端を前記廃液槽 121の底部の溝に接触させる。 すると、前記ピペット 700の先端の残液が、毛細管現象により、前記廃液槽 121の底 部の溝の内部に吸い取られる。これにより、前記ピペット 700を使い捨てることなぐ 次の測定にも使用することができる。
[0083] このように、複数の廃液槽を有する本発明のカートリッジを用いた測定では、例えば 、 1回目の測定途中の洗浄液と、 2回目の測定前の前記ピペット先端の残液とを、別 個の廃液槽の底部の溝に移動させることができる。この結果、種類の異なる残液同士 のコンタミを防止することが可能となる。
[0084] 本発明のカートリッジは、前記ラテックス凝集法以外にも、例えば、免疫比濁法、酵 素比色法、免疫比濁凝集阻止法等による測定にも使用できる。前記免疫比濁法に おける測定対象成分としては、例えば、マイクロアルブミン等が挙げられる。前記酵素 比色法における測定対象成分としては、例えば、クレアチン等が挙げられる。前記免 疫比濁凝集阻止法における測定対象成分としては、例えば、ヘモグロビン Ale等が 挙げられる。
産業上の利用可能性
[0085] 本発明のカートリッジは、新たな装置を必要とすることなぐピペット先端の全方向の 残液を、残液の粘性に関係なく除去することができるものである。本発明のカートリツ ジは、例えば、自動分析装置に組み込んで、ラテックス凝集法をはじめとする免疫測 定法を用いた測定に好適に使用される力 S、その用途は制限されず、広い分野に適用 可能である。

Claims

請求の範囲
[I] 上部開口の槽を複数有し、前記複数の槽の少なくとも一つに対し、ピペットにより液 体を導入または導出するカートリッジであって、さらに、廃液槽を有し、前記廃液槽は 、毛細管現象発生手段を有し、前記廃液槽の前記毛細管現象発生手段に前記ピぺ ット先端の残液を接触させ、前記毛細管現象により前記残液を前記毛細管現象発生 手段に移動させて前記ピペットから前記残液を除去するカートリッジ。
[2] 前記毛細管現象発生手段が、前記廃液槽の底部および側壁の少なくとも一方に形 成された毛細管現象を発生させる空間である請求の範囲 1記載のカートリッジ。
[3] 前記廃液槽の底部および側壁の少なくとも一方に溝が形成され、前記溝が、前記毛 細管現象を発生させる空間である請求の範囲 2記載のカートリッジ。
[4] 前記溝の幅が、 0. ;!〜 lmmの範囲であり、前記溝の深さが、 0. 3〜; 1mmの範囲で ある請求の範囲 3記載のカートリッジ。
[5] 前記毛細管現象発生手段が、前記廃液槽に配置された多孔体である請求の範囲 1 記載のカートリッジ。
[6] 前記廃液槽を複数有する請求の範囲 1記載のカートリッジ。
[7] 前記廃液槽の数が、 2〜6個の範囲である請求の範囲 6記載のカートリッジ。
[8] 前記残液を前記毛細管現象発生手段に移動させる際の前記ピペットの先端と前記 毛細管現象発生手段との間の距離が、 0. 0〜0. 7mmの範囲である請求の範囲 1記 載のカートリッジ。
[9] 前記複数の槽が、試薬を収容する収容槽および前記試薬と検体とを反応させる反応 槽を含む請求の範囲 1記載のカートリッジ。
[10] 前記複数の槽が、さらに、前記検体を調製する調製槽を含む請求の範囲 9記載の力 ートリッジ。
[I I] 前記複数の槽の少なくとも一つが、吸光度測定用の測定セルとして用いられる請求 の範囲 1記載のカートリッジ。
[12] カートリッジ全体の長さ力 S、;!〜 10cmの範囲であり、カートリッジ全体の幅が、 0. 3〜
3cmの範囲であり、カートリッジ全体の高さ力 0. 5〜5cmの範囲である請求の範囲 1記載のカートリッジ。
[13] 使用前において、前記複数の槽の上部開口の一部または全部がシール材によりシ ールされている請求の範囲 1記載のカートリッジ。
[14] 前記シール材が、アルミニウム箔である請求の範囲 13記載のカートリッジ。
[15] 検体の自動分析装置に使用される請求の範囲 1記載のカートリッジ。
[16] 自動分析装置中のピペットの残液を除去する残液除去方法であって、
上部開口の複数の槽および廃液槽を有するカートリッジを用意し、
前記廃液槽は、毛細管現象発生手段を有し、
前記カートリッジを、上下方向および水平方向に移動可能な前記ピペットを備える前 記自動分析装置に搭載し、
前記複数の槽の少なくとも一つに対し、前記ピペットにより液体を導入または導出し、 前記廃液槽の前記毛細管現象発生手段に前記ピペット先端の残液を接触させ、前 記毛細管現象により前記残液を前記毛細管現象発生手段に移動させて前記ピぺッ トから前記残液を除去する残液除去方法。
[17] 上下方向および水平方向に移動可能なピペットを備え、且つ、カートリッジが着脱自 在に搭載される自動分析装置であって、
前記カートリッジは、上部開口の複数の槽および廃液槽を有し、
前記廃液槽は、毛細管現象発生手段を有し、
前記複数の槽の少なくとも一つに対し、前記ピペットにより液体が導入または導出さ れ、
前記廃液槽の前記毛細管現象発生手段に前記ピペット先端の残液を接触させ、前 記毛細管現象により前記残液を前記毛細管現象発生手段に移動させて前記ピぺッ トから前記残液を除去する自動分析装置。
PCT/JP2007/069469 2006-10-10 2007-10-04 Cartouche, procédé d'extraction de liquide résiduel et analyseur automatique WO2008044594A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/444,828 US8198090B2 (en) 2006-10-10 2007-10-04 Cartridge, residual liquid removing method, and automatic analyzer
CN2007800060424A CN101384905B (zh) 2006-10-10 2007-10-04 盒、残液去除方法以及自动分析装置
EP07829207.5A EP2073017B1 (en) 2006-10-10 2007-10-04 Cartridge, residual liquid removing method, and automatic analyzer
JP2008517257A JP4956533B2 (ja) 2006-10-10 2007-10-04 カートリッジ、残液除去方法および自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-276971 2006-10-10
JP2006276971 2006-10-10

Publications (1)

Publication Number Publication Date
WO2008044594A1 true WO2008044594A1 (fr) 2008-04-17

Family

ID=39282798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069469 WO2008044594A1 (fr) 2006-10-10 2007-10-04 Cartouche, procédé d'extraction de liquide résiduel et analyseur automatique

Country Status (5)

Country Link
US (1) US8198090B2 (ja)
EP (1) EP2073017B1 (ja)
JP (1) JP4956533B2 (ja)
CN (1) CN101384905B (ja)
WO (1) WO2008044594A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132887A3 (en) * 2009-05-15 2011-02-17 Gen-Probe Incorporated Contamination control for liquid handling
US8662392B2 (en) 2010-11-12 2014-03-04 Gen-Probe Incorporated System and method for tracking items during a process
JP2019174188A (ja) * 2018-03-27 2019-10-10 凸版印刷株式会社 試薬カートリッジ、核酸抽出セットおよび溶液廃棄方法
US11192513B2 (en) 2017-03-30 2021-12-07 Joyson Safety Systems Japan K.K. Airbag and airbag device
JP2022533865A (ja) * 2020-04-20 2022-07-27 レオバイオ・カンパニー・リミテッド 糖化ヘモグロビンの測定装置及び方法
JP7329287B2 (ja) 2019-07-30 2023-08-18 ピーシーエル インコーポレイテッド 多重バイオマーカー同時分析装置及び多重バイオマーカー同時分析方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037009A1 (de) 2010-08-16 2012-02-16 Drg Instruments Gmbh Verfahren zur Analyse einer Probe
CN102873062B (zh) * 2012-09-03 2014-12-10 深圳湃尔生物科技有限公司 酶标洗板机清洗方法
AU2013202778A1 (en) 2013-03-14 2014-10-02 Gen-Probe Incorporated Systems, methods, and apparatuses for performing automated reagent-based assays
CN108434838B (zh) * 2018-04-26 2020-08-21 山东南山铝业股份有限公司 过滤式压盘以及过滤气动阀
CN110441539B (zh) * 2019-08-21 2023-08-01 东软威特曼生物科技(沈阳)有限公司 用于固体直热式或空气浴式反应盘的反应杯架及全自动生化分析仪
DE102021111102A1 (de) * 2021-04-29 2022-11-03 Aeneas Gmbh & Co. Kg Teststreifenanordnung mit Behältern
US20230101709A1 (en) * 2021-09-30 2023-03-30 Artel, Inc. Pipettable replacement fluid for mimicking pipettability of target fluid and related method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135393A (en) 1974-09-19 1976-03-25 Olympus Optical Co Denkieidoniokeru ketsuseitofusochi
JPS5137691A (ja) 1974-09-27 1976-03-30 Olympus Optical Co
JPS5836359U (ja) 1981-09-01 1983-03-09 日本テクトロン株式会社 生化学自動分析装置におけるマルチセル
JPS5848647U (ja) 1981-09-30 1983-04-01 富士レビオ株式会社 吸取紙の給紙装置
JPS58193255U (ja) 1982-06-18 1983-12-22 株式会社富士通ゼネラル 試料供給部材の水切り装置
JPS60243566A (ja) 1984-05-18 1985-12-03 Shimadzu Corp 自動分析装置におけるサンプリングノズル清浄装置
JPH073329Y2 (ja) 1989-12-18 1995-01-30 東亜医用電子株式会社 サンプルピペットの拭取装置
JPH08122336A (ja) 1994-10-27 1996-05-17 Precision Syst Sci Kk カートリッジ容器
JP2669821B2 (ja) 1986-04-17 1997-10-29 ヘレナ、ラボラトリ−ズ、コ−ポレ−シヨン 自動ピペツト装置
JPH11316226A (ja) 1998-05-06 1999-11-16 Olympus Optical Co Ltd 自動測定用カートリッジ及び自動測定法
JP2004203390A (ja) * 2002-12-20 2004-07-22 Arkray Inc 液体保存容器およびカートリッジ
JP2007175005A (ja) * 2005-12-28 2007-07-12 Shimadzu Corp 反応容器及び反応容器処理装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999505A (en) * 1974-06-08 1976-12-28 Olympus Optical Co., Ltd. Apparatus for automatic application of blood serum
US4052161A (en) * 1974-08-22 1977-10-04 The Perkin-Elmer Corporation Kinetic analyzer
US4076503A (en) * 1974-08-22 1978-02-28 The Perkin-Elmer Corporation Pipetting system for use in kinetic analysis apparatus and the like
JPS527594U (ja) * 1975-06-23 1977-01-19
JPS5836359A (ja) 1981-08-28 1983-03-03 Yazawa Kaki Kogyo Kk 餅切断装置
JPS5848647A (ja) 1981-09-17 1983-03-22 Toshiba Corp 液体金属浄化装置
IL67722A0 (en) 1982-02-05 1983-05-15 Plessey Overseas Container with memory
US4847050A (en) * 1985-07-22 1989-07-11 E. I. Du Pont De Nemours And Company Resealable lid structure for a container
JPS62157222A (ja) * 1985-12-28 1987-07-13 Honda Motor Co Ltd 内燃機関における吸排気系内脈動制御装置
US4827780A (en) 1986-04-17 1989-05-09 Helena Laboratories Corporation Automatic pipetting apparatus
JPH073329A (ja) 1993-06-18 1995-01-06 Nippon Steel Corp 硬さと降伏比の低い高強度鋼管の製造法
JPH08217044A (ja) * 1995-02-15 1996-08-27 Taiho Ii P S Kk 発泡樹脂製容器
US6027695A (en) * 1998-04-01 2000-02-22 Dupont Pharmaceuticals Company Apparatus for holding small volumes of liquids
JP4104770B2 (ja) * 1999-03-04 2008-06-18 アークレイ株式会社 試験片保持部材およびこれを用いた余剰試料液除去装置
JP3638503B2 (ja) * 2000-06-12 2005-04-13 アークレイ株式会社 カートリッジ式容器を用いる測定装置および測定方法並びに記録媒体
US20050092685A1 (en) * 2002-01-17 2005-05-05 Spark Holland B.V. Set comprising a pipette and a cartridge, as well as a method for applying a sample to the cartridge and an analytical method
JP4056784B2 (ja) * 2002-04-19 2008-03-05 テラメックス株式会社 試験紙ホルダー
DK1570274T3 (da) * 2002-12-13 2011-08-29 Dhr Finland Oy Analysator og analysefremgangsmåde og en væskekassette
DE10302721A1 (de) * 2003-01-23 2004-08-05 Steag Microparts Gmbh Mikrofluidische Anordnung zum Dosieren von Flüssigkeiten
US20050236317A1 (en) * 2004-04-23 2005-10-27 Millipore Corporation Pendant drop control in a multiwell plate
JP4683633B2 (ja) * 2004-11-09 2011-05-18 キヤノン株式会社 液体の分析システムおよびカートリッジ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135393A (en) 1974-09-19 1976-03-25 Olympus Optical Co Denkieidoniokeru ketsuseitofusochi
JPS5137691A (ja) 1974-09-27 1976-03-30 Olympus Optical Co
JPS5836359U (ja) 1981-09-01 1983-03-09 日本テクトロン株式会社 生化学自動分析装置におけるマルチセル
JPS5848647U (ja) 1981-09-30 1983-04-01 富士レビオ株式会社 吸取紙の給紙装置
JPS58193255U (ja) 1982-06-18 1983-12-22 株式会社富士通ゼネラル 試料供給部材の水切り装置
JPS60243566A (ja) 1984-05-18 1985-12-03 Shimadzu Corp 自動分析装置におけるサンプリングノズル清浄装置
JP2669821B2 (ja) 1986-04-17 1997-10-29 ヘレナ、ラボラトリ−ズ、コ−ポレ−シヨン 自動ピペツト装置
JPH073329Y2 (ja) 1989-12-18 1995-01-30 東亜医用電子株式会社 サンプルピペットの拭取装置
JPH08122336A (ja) 1994-10-27 1996-05-17 Precision Syst Sci Kk カートリッジ容器
JPH11316226A (ja) 1998-05-06 1999-11-16 Olympus Optical Co Ltd 自動測定用カートリッジ及び自動測定法
JP2004203390A (ja) * 2002-12-20 2004-07-22 Arkray Inc 液体保存容器およびカートリッジ
JP2007175005A (ja) * 2005-12-28 2007-07-12 Shimadzu Corp 反応容器及び反応容器処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2073017A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117192B2 (en) 2009-05-15 2015-08-25 Gen-Probe Incorporated Method for reading machine-readable labels
US8309036B2 (en) 2009-05-15 2012-11-13 Gen-Probe Incorporated Method for separating viscous materials suspended from a pipette
US8790593B2 (en) 2009-05-15 2014-07-29 Gen-Probe Incorporated Contamination control for liquid handling
US8939364B2 (en) 2009-05-15 2015-01-27 Gen-Probe Incorporated Contamination control for liquid handling
US9011802B2 (en) 2009-05-15 2015-04-21 Gen-Probe Incorporated Covered rack for holding fluid receptacles
WO2010132887A3 (en) * 2009-05-15 2011-02-17 Gen-Probe Incorporated Contamination control for liquid handling
US8662392B2 (en) 2010-11-12 2014-03-04 Gen-Probe Incorporated System and method for tracking items during a process
US9171279B2 (en) 2010-11-12 2015-10-27 Gen-Probe Incorporated Receptacle rack having an electronic memory element
US11192513B2 (en) 2017-03-30 2021-12-07 Joyson Safety Systems Japan K.K. Airbag and airbag device
JP2019174188A (ja) * 2018-03-27 2019-10-10 凸版印刷株式会社 試薬カートリッジ、核酸抽出セットおよび溶液廃棄方法
JP7329287B2 (ja) 2019-07-30 2023-08-18 ピーシーエル インコーポレイテッド 多重バイオマーカー同時分析装置及び多重バイオマーカー同時分析方法
JP2022533865A (ja) * 2020-04-20 2022-07-27 レオバイオ・カンパニー・リミテッド 糖化ヘモグロビンの測定装置及び方法
JP7340267B2 (ja) 2020-04-20 2023-09-07 レオバイオ・カンパニー・リミテッド 糖化ヘモグロビンの測定装置及び方法

Also Published As

Publication number Publication date
US8198090B2 (en) 2012-06-12
EP2073017A4 (en) 2012-11-07
JPWO2008044594A1 (ja) 2010-02-12
US20100075426A1 (en) 2010-03-25
CN101384905A (zh) 2009-03-11
EP2073017B1 (en) 2016-08-03
JP4956533B2 (ja) 2012-06-20
EP2073017A1 (en) 2009-06-24
CN101384905B (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2008044594A1 (fr) Cartouche, procédé d'extraction de liquide résiduel et analyseur automatique
US9878322B2 (en) Pipetting unit and method of pipetting a test liquid
JP5433013B2 (ja) 血液検査器での血液分析用使い捨てカセットおよびその使用方法
CN104203412B (zh) 用于化学和/或生物物质的移动式多参数分析的集成式一次性芯片盒系统
KR100866016B1 (ko) 시약 배급 시스템
JP3989446B2 (ja) 蛋白質検出用流動システム及び蛋白質検出方法
JP3923968B2 (ja) 容器使用方法
JP4474099B2 (ja) 液体保存容器およびカートリッジ
NZ211887A (en) Sample processor card for use with centrifuge
JP2008157708A (ja) マイクロチップ及びそれを用いた分析デバイス
RU2765214C1 (ru) Система для обработки текучей среды для приема, выпуска и перемещения текучих сред, а также способ обработки текучих сред в системе для обработки текучей среды
JP5254751B2 (ja) マイクロチップ
CN100434181C (zh) 计量一定剂量的样品液体
JP4956439B2 (ja) 少量の液体を調薬及び混合するための方法及び装置
CN108430639B (zh) 流体收集装置及相关方法
JP6879313B2 (ja) 分析機器のプローブ洗浄ステーション
CN109752353A (zh) 微液滴检测装置
JP5424723B2 (ja) マイクロ流体チップおよび混合方法
JP5172461B2 (ja) マイクロチップ
US9383298B2 (en) Method for preparing a sample for analysis
JP5137014B2 (ja) マイクロチップ
JPH02281143A (ja) 自動化学分析用反応容器
WO2016031353A1 (ja) 自動分析装置用反応セル、その反応セルを搭載した自動分析装置、及びその自動分析装置を用いた分析方法
JP6049463B2 (ja) マイクロチップ
JPH0110605Y2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008517257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780006042.4

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007829207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007829207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12444828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE