WO2008041526A1 - Procédé et appareil pour la fabrication d'un support d'enregistrement optique - Google Patents

Procédé et appareil pour la fabrication d'un support d'enregistrement optique Download PDF

Info

Publication number
WO2008041526A1
WO2008041526A1 PCT/JP2007/068442 JP2007068442W WO2008041526A1 WO 2008041526 A1 WO2008041526 A1 WO 2008041526A1 JP 2007068442 W JP2007068442 W JP 2007068442W WO 2008041526 A1 WO2008041526 A1 WO 2008041526A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
stamper
raw material
recording medium
Prior art date
Application number
PCT/JP2007/068442
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Furomoto
Masafumi Aga
Toshifumi Kawano
Hideharu Takeshima
Yukari Kiritou
Atsushi Komura
Kumi Mizuno
Yumi Matsumura
Original Assignee
Mitsubishi Kagaku Media Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Media Co., Ltd. filed Critical Mitsubishi Kagaku Media Co., Ltd.
Priority to US12/443,014 priority Critical patent/US9196288B2/en
Publication of WO2008041526A1 publication Critical patent/WO2008041526A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2463Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azulene
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2467Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver

Definitions

  • the present invention relates to a method for manufacturing an optical recording medium and the like, and more particularly to a method and a manufacturing apparatus for manufacturing a multilayer multilayer optical recording medium having good recording characteristics.
  • an optical recording medium capable of further increasing the information density as compared with the prior art.
  • an optical recording medium capable of increasing the density of information for example, a multilayer multi-layer optical recording such as a DVD-ROM having a laminated structure in which two recording layers are provided on one medium (dual layer). Medium.
  • a multilayer multi-layer optical recording such as a DVD-ROM having a laminated structure in which two recording layers are provided on one medium (dual layer). Medium.
  • a multilayer multilayer optical recording medium is usually manufactured by a manufacturing method called a photopolymerization method (hereinafter referred to as “2P method”).
  • 2P method for example, the first recording layer, the first reflective layer, the intermediate layer on which the concave / convex shape for the recording track is formed on the transparent first substrate on which the concave / convex shape for the recording track is formed, the second layer A recording layer and a second reflective layer are formed in this order, and finally a second substrate is bonded to produce a two-layer optical recording medium.
  • the intermediate layer is usually produced as follows. That is, first
  • a light curable resin raw material that is cured by light can be applied on the reflective layer to form a resin raw material layer, and then transferred onto this.
  • a stamper having a concavo-convex shape for copying (hereinafter referred to as “a concavo-convex shape for transfer” as appropriate) is placed.
  • the stamper is peeled off. In this way, the concavo-convex shape for transfer of the stamper is transferred to the surface of the photocurable resin, and the intermediate layer having the concavo-convex shape can be formed by a cured product of the curable resin.
  • the stamper after the photocurable resin is cured is smooth. It is desirable to peel off.
  • the photocurable resin and the stamper are difficult to peel off, or even if peeled off, the uniformity of the surface of the intermediate layer is reduced. If a manufacturing problem such as this occurs, defects such as scratching may occur in the intermediate layer, which may make it impossible to stably record and reproduce information by light on the optical recording medium. .
  • Patent Document 2 proposes performing surface coating with an inorganic material on an acrylic resin stamper. As a result, it is said that it is possible to perform the above-described peeling well. Further, this document uses an acrylic stamper in which a SiO dielectric film is formed on the surface of the groove / pit (corresponding to the concavo-convex shape for transfer) of the stamper.
  • the entire stamper is made of cyclic polyolefin or polystyrene resin, or at least the surface of the stamper on which the matrix pattern (corresponding to the concavo-convex shape for transfer) is formed is cyclic polyolefin or It has been proposed to be composed of polystyrene resins. It is described that the release property of the stamper with respect to the intermediate layer made of the cured product of the radiation curable resin can be thereby improved. Further, in Patent Document 3, it is stated that the cyclic polyolefin makes the release property of the stamper particularly good for the intermediate layer made of the cured product of the radiation curable resin.
  • Patent Document 1 Pamphlet of International Publication No. 2005/048253 (paragraph [0100])
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-279707 (paragraphs [0021], [0028])
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-85839 (paragraphs [0006], [0016], [0046] to [0055], etc.)
  • the present invention was devised in view of the above-described problems, and can provide an optical recording medium that has a good concavo-convex shape and can stably record and reproduce information by light. It is an object to provide a method for manufacturing a medium and a manufacturing apparatus.
  • the inventors of the present invention have intensively studied to solve the above problems.
  • the uneven shape is transferred after the intermediate layer is cured and the stamper is peeled off.
  • the inventors have found a method of subjecting the intermediate layer to surface modification treatment. And by introducing this method, it was found that even when a stamper was formed from a polycarbonate resin, which was difficult to smoothly peel, an intermediate layer having a good uneven shape could be obtained. Furthermore, by introducing this method, we have found that the uneven shape of the stamper can be faithfully transferred to the intermediate layer and reproduced as a recording layer regardless of the stamper material.
  • the gist of the present invention is a method for producing an optical recording medium provided with an intermediate layer having a concavo-convex shape, and information is obtained by light irradiated on a substrate directly or via another layer.
  • a stamper having a transfer concavo-convex shape corresponding to the concavo-convex shape in this order, directly or via another layer on the recording layer.
  • the resin raw material layer is cured in the placed state to obtain an adhesive body including the substrate, the recording layer, the resin raw material layer, and the stamper, and the stamper is peeled from the resin raw material layer.
  • Forming the intermediate layer by performing a surface modification treatment for promoting the curing of the resin material layer to which the uneven shape for transfer has been transferred after transferring the uneven shape for transfer to the resin material layer.
  • the surface modification treatment is preferably a radiation irradiation treatment and / or a heat treatment.
  • the surface modification treatment is preferably performed by heat treatment at an irradiation dose of 50 to; 1000 mj / cm 2 of ultraviolet irradiation, or a heating temperature of 40 to 120 ° C.
  • the curing of the resin raw material layer in the step of obtaining the bonded body is preferably a semi-cured state.
  • the recording layer preferably contains an organic dye material.
  • the stamper is preferably made of a polycarbonate resin.
  • the resin raw material layer is preferably composed of a plurality of resin layers.
  • the resin raw material layer is composed of a plurality of resin layers, and curing of the outermost resin layer among the plurality of resin layers is curing to a semi-cured state.
  • Another gist of the present invention is an apparatus for manufacturing an optical recording medium comprising at least a substrate, a recording layer, and an intermediate layer having a concavo-convex shape, on the substrate directly or via another layer.
  • a means for forming the recording layer a means for forming a resin raw material layer on the recording layer directly or via another layer, and a transfer corresponding to the uneven shape on the resin raw material layer.
  • a surface modification treatment that exfoliates the stamper from a body and transfers the uneven shape for transfer onto the resin material layer, and promotes curing of the resin material layer to which the uneven shape for transfer is transferred Having means for applying It resides in the apparatus for manufacturing a medium body.
  • an optical recording medium of the present invention it is possible to manufacture an optical recording medium having a good concavo-convex shape and stable recording / reproducing of information by light.
  • FIG. L (a) to (!) are schematic views for explaining a preferable example of a method of manufacturing an optical recording medium to which the first embodiment of the present invention is applied.
  • FIG. 2 (a) and (b) are schematic views for explaining a resin raw material layer forming step of an optical recording medium manufacturing method to which the second embodiment of the present invention is applied.
  • FIG. 3 is a schematic diagram for explaining the resin raw material layer hardening step of the method of manufacturing an optical recording medium to which the second embodiment of the present invention is applied.
  • FIG. 4 is a block diagram of a manufacturing apparatus capable of manufacturing the optical recording medium of the present invention. Explanation of symbols
  • FIGS. 1A to 1H are schematic views for explaining a preferred example of a method for manufacturing an optical recording medium to which the first embodiment of the present invention is applied.
  • FIGS. 1 (a) to (!) As an example of a method for producing a multilayer multi-layer optical recording medium, a dual layer type single-sided incidence type optical recording medium having two recording layers containing an organic dye is shown. A method for manufacturing (single-sided dual-layer DVD-R or single-sided dual-layer DVD recordable disc) is shown.
  • a single-sided dual-layer optical recording medium 100 represented by a single-sided dual-layer DVD-R is provided with a first substrate 101 having a disk-like light transmission property.
  • the second reflective layer 106, the adhesive layer 107, and the second substrate 108 forming the outermost layer have a structure in which they are laminated in order.
  • irregularities are respectively formed on the first substrate 101 and the intermediate layer 104, and these irregularities respectively constitute recording tracks. That is, the uneven shape (that is, the uneven shape described above) on the surface of each of the first substrate 101 and the intermediate layer 104 is the shape of the recording track.
  • recording / reproduction of optical information on the optical recording medium 100 is performed from the first substrate 101 side to the first recording layer. 102 and the second recording layer 105 are performed by a laser beam 109 irradiated. That is, information is recorded and reproduced on the first recording layer 102 and the second recording layer 105 by the irradiated laser beam 109.
  • light transmission means light with respect to the wavelength of light irradiated for recording / reproducing optical information. It means transparency.
  • the light transmittance means that the light wavelength for recording / reproducing is usually 30% or more, preferably 50% or more, more preferably 60% or more.
  • the transparency to the wavelength of light for recording / reproduction is ideally 100%, which is usually 99.9% or less.
  • the optical recording medium manufacturing method of the present embodiment includes a first recording layer forming step, a first reflective layer forming step, a resin raw material layer forming step, a resin raw material layer curing step, a stamper peeling step, and a surface modification.
  • the first substrate 101 is prepared.
  • a substrate having an uneven surface and grooves, lands, and pre-pits is prepared.
  • the first substrate 101 can be manufactured by injection molding using a nickel stamper, for example.
  • the first recording layer 102 is a layer in which information is recorded by irradiated light.
  • the first recording layer 102 can form by the following method. That is, a coating solution containing an organic dye is applied to the surface of the first substrate 101 having the unevenness by spin coating or the like. Thereafter, heating or the like is performed to remove the solvent used in the coating solution, and the first recording layer 102 is formed.
  • the first recording layer 102 is formed directly on the first substrate 101 as described above will be described.
  • the first recording layer 102 is different from the type of the optical recording medium 100 or the like. Depending on the configuration, it may be formed on the first substrate 101 via one or more other layers. [0029] [3. First reflective layer forming step]
  • the first reflective layer 103 is formed on the first recording layer 102 in the first reflection forming step.
  • the method for forming the first reflective layer 103 is not limited.
  • the first reflective layer 103 is formed on the first recording layer 102 by sputtering or vapor-depositing an Ag alloy or the like on the first recording layer 102. be able to.
  • the data substrate 111 is obtained by sequentially stacking the first recording layer 102 and the first reflective layer 103 on the first substrate 101.
  • the data board 111 is made transparent.
  • a resin material layer 104a is formed on the entire surface of the first reflective layer 103 (that is, the surface of the data substrate 111). That is, the resin material layer 104a is formed on the first recording layer 102 via the first reflective layer 103.
  • the resin raw material layer 104a formed here is a layer that will form the intermediate layer 104 when the optical recording medium 100 is completed, and is formed of a curable resin or a precursor thereof that can be cured by any treatment. Is a layer.
  • the curable resin a curable resin that can be used for an optical recording medium can be arbitrarily used.
  • the curable resin include a radiation curable resin and a thermosetting resin, and among them, an ultraviolet curable resin which is a kind of the radiation curable resin is preferable.
  • “radiation” is used in the meaning including electron beam, ultraviolet ray, visible light, and infrared ray.
  • one kind of curable resin may be used alone, or two or more kinds may be used in any combination and ratio.
  • the resin raw material layer 104a is in an indefinite state (usually predetermined) before being formed in the resin raw material layer curing step.
  • the method for forming the resin raw material layer 104a is not limited.
  • the resin material layer 104a can be formed by applying a precursor of a curable resin by spin coating or the like.
  • a precursor of an ultraviolet curable resin which is one of radiation curable resins, is applied by spin coating, and a resin raw material layer (hereinafter referred to as “ultraviolet curable resin” for convenience of explanation).
  • a resin raw material layer hereinafter referred to as “ultraviolet curable resin” for convenience of explanation.
  • a “raw material layer”. 104a is formed.
  • the linear curable resin raw material layer 104a may be formed directly on the first recording layer 102 in accordance with the type and configuration of the optical recording medium 100, or one layer other than the first reflective layer 103. Alternatively, it may be formed through two or more other layers! /.
  • the stamper 110 is placed on the ultraviolet curable resin raw material layer 104a, and the ultraviolet curable resin raw material layer 104a is cured. That is, the stamper 110 is placed on the surface of the ultraviolet curable resin material layer 104a opposite to the first recording layer 102.
  • the stamper 110 is a mold having on its surface irregularities (transfer irregularities) having a shape (uneven shape for transfer) corresponding to the irregular shape (uneven shape) to be formed in the intermediate layer 104. Then, the transfer unevenness shape of the transfer unevenness of the stamper 110 is transferred to the ultraviolet curable resin raw material layer 104a, so that the intermediate layer 104 has the unevenness of the desired uneven shape. The uneven shape is set.
  • the material of the stamper 110 in consideration of the manufacturing cost of the optical recording medium 100, a resin is usually used. As will be described later, it is preferable that the ultraviolet rays for curing the ultraviolet curable resin raw material layer 104 a are irradiated through the stamper 110. Therefore, if an opaque material such as a metal is used as the material of the stamper 110, it becomes impossible to irradiate the ultraviolet rays through the stamper 110. In such a case, the ultraviolet rays may adversely affect the deterioration of each layer. There is sex.
  • the resin material layer 104a is kept in a semi-cured state, and the stamper 110 is peeled off in a heating environment. If the degree of freedom of the material to be used is greatly expanded, the advantage will be demonstrated. That is, conventionally, from the viewpoint of reducing the surface energy when the stamper 110 is formed, a polyolefin resin, a polystyrene resin, or the like has been preferred as the resin forming the stamper 110. And what is actually put into practical use is amorphous cyclic polyolefin resin ( For example, ZEONEX and ZEONOR (both manufactured by Nippon Zeon Co., Ltd.)).
  • the present invention is not limited to the high-functionality resin as described above. It is possible to use general-purpose, low-cost resins such as acrylic resins and acrylic resins. It should be noted that the surface modification treatment step is performed and a stamper is used in a heating environment.
  • the stamper 110 can be peeled well, and the degree of freedom of the material used for the stamper 110 is increased. Is possible.
  • a polycarbonate resin or an acrylic resin as the material of the stamper 110. More preferred is a polycarbonate resin.
  • the stamper 110 may be used alone or in combination of two or more in any combination and ratio.
  • the stamper 110 is usually formed in a disc shape in which a central hole penetrating the front and back is formed in the central portion. Also in this embodiment, it is assumed that the stamper 110 has a disk-like shape having a concavo-convex shape for transfer on the surface and a center hole (not shown) formed in the center.
  • the manufacturing method is arbitrary.
  • the stamper 110 is a resin stamper
  • the stamper 110 has a reverse (negative) shape of the concavo-convex shape for transfer. It can be produced by injection molding or the like using a metal stamper having a concavo-convex pattern (for example, a nickel stamper).
  • the thickness of the stamper 110 used in the present embodiment is usually preferably 0.3 mm or more from the viewpoint of shape stability and ease of handling. However, the thickness is usually 5 mm or less. If the thickness of the stamper 110 is within this range, the stamper 110 has sufficient light transmissivity. Therefore, even if it is irradiated with ultraviolet rays through the stamper 110 as described later, it is possible to efficiently cure the ultraviolet curable resin or the like. Yes, productivity can be improved.
  • the outer diameter of the stamper 110 is preferably larger than the outer diameter of the first substrate 101 (usually equal to the outer diameter of the optical recording medium 100). If the outer diameter of the stamper 110 is designed to be larger than the outer diameter of the first substrate 101 in advance, the stamper 110 is manufactured when the stamper 110 is manufactured by injection molding. It is possible to form an uneven shape for transfer with a margin on the outer peripheral portion of the stamper 110 outside the outer diameter of the first substrate 101, and form an excellent uneven shape for transfer over the entire surface of the stamper 110. I can do it.
  • the outer diameter of the stamper 110 is larger than the outer diameter of 104 (and the ultraviolet curable resin raw material layer 104a). In this way, the shape of the end face of the intermediate layer 104 becomes good. In other words, if the outer diameter of the stamper 110 is set to be equal to or smaller than the outer diameter of the first substrate 101, when the stamper 110 is placed on the ultraviolet curable resin raw material layer 104a, the outer periphery of the stamper 110 is exposed to ultraviolet rays. The resin of the curable resin raw material layer 104a may adhere. This resin may become a burr when the stamper 110 is peeled off.
  • the outer diameter of the stamper 110 is larger than the outer diameter of the intermediate layer 104 (ultraviolet curable resin raw material layer 104a)!
  • the resin to be present is present outside the outer diameter of the intermediate layer 104.
  • the outer diameter of the stamper 110 is preferably larger than the outer diameter of the first substrate 101 by a diameter of usually 1 mm or more, preferably 2 mm or more.
  • the extent to which the outer diameter of the stamper 110 is larger than the outer diameter of the first substrate 101 is usually 15 mm or less, preferably 10 mm or less.
  • the stamper 110 When the stamper 110 is placed, the stamper 110 is usually placed so that the uneven surface of the stamper 110 is pressed against the ultraviolet curable resin raw material layer 104a. However, the unevenness of the stamper 110 is formed in advance. It is also possible to apply the same raw material as the ultraviolet curable resin raw material layer 104a on the surface by spin coating or the like, and place the applied stamper 110 and the ultraviolet curable resin raw material layer 104a. In order to make the film thickness of the ultraviolet curable resin raw material layer 104a within a predetermined range, for example, the pressing force at the time of mounting may be adjusted, ultraviolet irradiation may be performed at the time of spin coating, or heat may be applied. The method of piling up is mentioned.
  • the ultraviolet curable resin raw material layer 104a is cured in a state where the stamper 110 is placed on the ultraviolet curable resin raw material layer 104a.
  • the ultraviolet curable resin raw material layer 104a may be irradiated with ultraviolet rays. UV irradiation
  • the method is not limited, and irradiation may be performed through the stamper 110, irradiation may be performed from the side surface of the ultraviolet curable resin raw material layer 104a, and irradiation may be performed from the first substrate 101 side.
  • the stamper 110 When irradiating ultraviolet rays from the stamper 110 side, it is industrially preferable to use a stamper 110 capable of transmitting ultraviolet rays (light transmissive material). When irradiating ultraviolet rays from the first substrate 101 side, it is preferable to prevent the first recording layer 102 from being damaged by the irradiation of ultraviolet rays. From the viewpoint of the irradiation efficiency of the ultraviolet rays and the reduction of the adverse effects of the ultraviolet rays on each layer material, the ultraviolet rays are preferably irradiated through the stamper 110.
  • the ultraviolet wavelength when irradiating the ultraviolet curable resin raw material layer 104a with ultraviolet rays is not limited and may be anything having a peak in the ultraviolet region, but the peak wavelength is usually 250 ⁇ m or more, preferably 300 nm. These are usually 600 nm or less, preferably 500 nm or less. Even if the peak wavelength of the irradiated ultraviolet light is less than the above range or exceeds the above range, the ultraviolet curable resin raw material layer 104a may be insufficiently cured.
  • the irradiation amount of ultraviolet rays is appropriately optimized depending on the constituent material and composition of the resin raw material layer 104a, and is usually 50 mj / cm 2 or more, preferably 100 mj / cm 2 or more.
  • the resin has more uncured portions, and there is a possibility that uneven transfer to the resin raw material layer 104a (and hence to the intermediate layer 104) may occur, such as grooves being removed during peeling. .
  • the resin raw material layer 104a when the resin raw material layer 104a is cured to a semi-cured state as described later, it is usually 500 mj / cm 2 or less, preferably 400 mj / cm 2 or less is desirable.
  • the irradiation amount exceeds the above range, the resin is completely cured, and it becomes difficult to peel off the stamper 110. As a result, peeling to the resin raw material layer 104a (such as the intermediate layer 104) such as peeling scratches and groove gaps occurs. In some cases, uneven transfer of irregularities may occur.
  • the irradiation time of ultraviolet rays is appropriately adjusted so that the irradiation amount falls within the above range.
  • the irradiation intensity of ultraviolet light is not limited unless significantly impairing the effects of the present invention, usually 30 mW / cm 2 or more, preferably 40 mW / cm 2 or more is desirable instrument typically 200 mW / cm 2 or less, preferably 150 mW / cm 2 or less is desirable.
  • the surface modification treatment becomes uneven or physical Distortion may occur.
  • a weak ultraviolet ray having an irradiation intensity of less than the above range is irradiated for a long time, not only the production efficiency is lowered, but a sufficient surface modification treatment effect may not be obtained.
  • a known method and apparatus can be used without limitation for the irradiation method and irradiation apparatus when the ultraviolet curable resin raw material layer 104a is irradiated with ultraviolet rays.
  • the present invention it is preferable to cure to a semi-cured state without completing the curing of the ultraviolet curable resin material layer 104a with ultraviolet rays.
  • the ultraviolet curable resin raw material layer 104a By setting the ultraviolet curable resin raw material layer 104a to a semi-cured state, the adhesive strength between the stamper 110 and the resin raw material layer 104a is reduced, so that the stamper 110 described later can be easily peeled off. it can. According to this method, even when a material such as a polycarbonate resin that is difficult to peel is used as the material of the stamper 110, it is possible to peel the stamper 110 satisfactorily.
  • the curing to the semi-cured state can be determined by, for example, the degree of curing of the ultraviolet curable resin material layer 104a.
  • the amount of double bonds remaining in the ultraviolet curable resin raw material layer 104a can be quantified by measuring with an infrared spectrophotometer (FT-IR) or Raman spectroscopy.
  • FT-IR infrared spectrophotometer
  • Raman spectroscopy Specifically, the absorption position of the double bond of the uncured UV curable resin is specified in advance, and the absorption before and after curing of the surface of the UV curable resin film provided on the stamper is measured.
  • the ratio of the amount of double bonds before and after curing can be calculated and obtained.
  • the semi-cured state means that the residual rate power of the double bond after the curing treatment on the surface of the ultraviolet curable resin provided on the stamper is usually 90% or less, preferably 50% or less, more Preferably it is 30% or less.
  • the ultraviolet curable resin raw material layer 104a is The state which has viscosity can be mentioned. Specifically, when the surface of the ultraviolet curable resin raw material layer 104a is touched with a finger when the stamper 110 described later is peeled off, You can give a sticky state.
  • the above-described ultraviolet irradiation conditions that is, the irradiation amount, irradiation intensity, and irradiation time are appropriately optimized. You just have to.
  • the ultraviolet curable resin precursor layer 104a is irradiated with ultraviolet rays from the stamper 110 side through the stamper 110, thereby polymerizing the precursor of the ultraviolet curable resin, thereby ultraviolet curable.
  • the description will be made assuming that the resin raw material layer 104a is cured to a semi-cured state. As described above, the resin raw material layer 104a is cured to obtain the data substrate 11 1 (that is, the first substrate 101, the first recording layer 102). And the first reflecting layer 103), the ultraviolet curable resin raw material layer 104a, and the adhesive body 112 including the stamper 110 are obtained.
  • the stamper 110 is peeled from the ultraviolet curable resin material layer 104a (see FIG. 1 (c)). Thereby, the uneven shape for transfer of the stamper 110 is transferred to the ultraviolet curable resin raw material layer 104a. Then, an uneven shape is formed in the intermediate layer 104 according to the transferred uneven shape for transfer.
  • the ultraviolet curable resin raw material layer 104a refers to a layer before being cured after being applied, the stamper being peeled off, and further subjected to surface effect treatment.
  • the intermediate layer 104 refers to a layer after the surface effect treatment is performed after the stamper 110 is peeled off. Accordingly, the ultraviolet ray curable resin raw material layer 104a and the intermediate layer 104 are different in force and state indicating the layers formed at the same position.
  • the specific method for peeling the stamper 110 is not limited, but normally, when the optical recording medium has a disk shape, the inner circumference is vacuum-sucked and a knife edge is formed on the inner circumference of the optical recording medium. Then, separation is performed by separating the disc (laminated body 113 for optical recording medium described later) and the stamper 110 while blowing air therethrough.
  • the above-described peeling of the stamper 110 may be performed without controlling the temperature, such as at room temperature, or may be performed in a state where the adhesive 112 is heated! / In a heated state! /,
  • the peeling of the Stanno 110 improves the peeling, and the resin raw material layer having a good concavo-convex shape 10 4a can be obtained, and as a result, the intermediate layer 104 having a good uneven shape can be obtained, which is preferable.
  • the timing of the heating operation is arbitrary, for example, the time before the stamper peeling process such as substrate preparation, first recording layer forming process, first reflective layer forming process, resin material layer forming process, resin material layer curing process, etc.
  • the temperature of the adhesive 112 when the stamper 110 is peeled is arbitrary, but usually 50 ° C or higher is preferred, and the glass transition temperature of the resin raw material layer 104a (that is, the intermediate layer 104) is lower than the glass transition temperature. And preferably not higher than the glass transition temperature of the stamper 110.
  • the stano 110 can be peeled off satisfactorily. Can be done. Further, when the resin raw material layer 104a is cured to a semi-cured state in the resin raw material layer curing step as in the present embodiment, the stamper is peeled off while being heated in the stamper peeling step! By doing so, the stamper 110 can be peeled off more stably.
  • the temperature of the adhesive 112 can be measured with a non-contact thermometer (for example, a non-contact thermometer IT2-60 manufactured by KEYENCE).
  • a non-contact thermometer for example, a non-contact thermometer IT2-60 manufactured by KEYENCE.
  • the resin material layer 104a is subjected to a surface modification treatment.
  • the resin raw material layer 104a is cured and the intermediate layer 104 is formed.
  • the surface modification treatment is not limited as long as it is a treatment that accelerates curing of the resin raw material layer 104a, but is preferably a radiation irradiation treatment and / or a heat treatment. Also radiation Among the wires, it is preferable to use ultraviolet rays.
  • the resin raw material layer 104a when the resin raw material layer 104a is composed of an ultraviolet curable resin, at least ultraviolet irradiation should be used, regardless of whether ultraviolet irradiation or heat treatment is used as the surface modification treatment. I like it.
  • the resin raw material layer 104a is made of a thermosetting resin, either the ultraviolet irradiation or the heat treatment may be used as the surface modification treatment, but at least the heating is performed as the surface modification treatment. It is preferable to use a treatment.
  • the resin raw material layer 104a is subjected to a surface modification treatment to thereby cure the resin raw material layer 104a.
  • the intermediate layer 104 can be obtained by accelerating and completing the curing. As a result, even when the data substrate 111 is held with the stamper 110 peeled off, the shape of the unevenness transferred to the intermediate layer 104 will not change, and the recording / reproduction of the second recording layer described later can be stabilized. It can be made.
  • the advantage of the surface modification treatment described above is that the resin raw material layer 104a is further cured only when the resin raw material layer 104a is kept in a semi-cured state in the resin raw material layer curing step. Even so, it can be obtained.
  • the resin raw material layer 104a is further cured from the semi-cured state in the resin raw material layer curing step, for example, when the curing is greatly advanced so as to complete the curing of the resin raw material layer 104a. Even so, for some reason, very fine sized uncured portions may remain. In such an uncured portion, the uneven shape may change over time, and particularly when the recording layer is laminated using a solvent, the thickness of the recording layer laminated on the groove portion and the land portion.
  • the change in the ratio was one of the factors that decreased the stability of recording and reproduction of optical recording media.
  • such an uncured portion can be cured. Therefore, even if the data substrate 111 is held after the stamper is peeled off and before the second recording layer is formed, the resin raw material layer The shape of the irregularities transferred to 104a can be prevented from changing, and the recording / reproduction of the optical recording medium can be stabilized.
  • the time from the release of the stamper 110 to the surface modification treatment is not limited as long as the effect of the present invention is not significantly impaired, but it is usually within 24 hours, preferably within 12 hours. In particular, it is best to remove the stamper 100 and immediately perform surface modification treatment It is. Further, the surface modification treatment can be performed in a plurality of times. Also in this case, it is desirable to perform the first surface modification treatment at the above-mentioned time.
  • the ultraviolet wavelength when the surface modification treatment is performed by ultraviolet irradiation is not limited and is not limited as long as it has a peak in the ultraviolet region, but the peak wavelength is usually 250 nm or more, preferably Is 300 nm or more, usually 600 nm or less, preferably 500 nm or less. Even if the peak wavelength of the irradiated ultraviolet light is less than the above range or exceeding the above range, the ultraviolet ray curable resin raw material layer 104a may be insufficiently cured.
  • the amount of ultraviolet irradiation is appropriately optimized depending on the constituent material and composition of the resin raw material layer 104a, the curing conditions in the resin raw material layer hardening step, etc., but is usually 50 mj / cm 2 or more, preferably 100 mj / Desirably, cm 2 or more, more preferably 200 mj / cm 2 or more is usually 100 Omj / cm 2 or less, preferably 800 mj / cm 2 or less, more preferably 500 mj / cm 2 or less.
  • the amount of UV irradiation is less than the above range, a sufficient surface modification effect may not be obtained, and when it exceeds the above range, it may be physically applied to the medium due to shrinkage or temperature rise of the medium. Distortion may occur.
  • the irradiation intensity of ultraviolet rays is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 50 mW / cm 2 or more, preferably 200 mW / cm 2 or more.
  • irradiation with weak ultraviolet rays whose irradiation intensity is less than the above range is performed for a long time, not only the production efficiency is lowered, but also the reaction speed becomes slow and a sufficient surface modification treatment effect may not be obtained.
  • the heating method and the heating apparatus in the case of heating as the surface modification treatment, but it is desirable to uniformly heat the entire surface of the resin raw material layer 104a.
  • an oven-type heating method or a heating method using an infrared lamp is suitable!
  • the temperature in the case where the surface modification treatment is performed by heat treatment using a heat source such as an oven is appropriately optimized depending on the constituent material and composition of the resin raw material layer 104a, the curing conditions in the resin raw material layer curing step, and the like. However, it is usually 40 ° C or higher, preferably 50 ° C or higher, and usually 120 ° C or lower, preferably 100 ° C or lower. If the heating temperature is less than the above range, a sufficient surface modification effect may not be obtained, and a sufficient modification effect may be obtained. However, since it requires heating for a long time, the production efficiency tends to decrease. If the heating temperature exceeds the above range, the substrate may be physically distorted or the recording layer may be damaged by the heat.
  • the heating time is usually 10 seconds or more, preferably 30 seconds or more, more preferably 1 minute or more, and usually 3 hours or less, preferably 2 hours or less. It is.
  • high-temperature heating is performed in a short time such as when the heating time is less than the above range, the surface modification treatment may become uneven or physical distortion may occur.
  • the low temperature heating is performed for a long time such as exceeding the above range, not only the production efficiency is lowered, but also a sufficient surface modification treatment effect may not be obtained.
  • the heat treatment is also preferably a heating method using infrared rays.
  • a heating method using infrared rays since the heating can be instantaneously performed, a sufficient surface modification treatment effect can be obtained by heating for several seconds. For this reason, it is a preferable heating method in terms of production efficiency.
  • the resin raw material layer 104a that has been in a semi-cured state is sufficiently cured by the surface modification treatment. Then, through this surface modification treatment step, the resin raw material layer 104a (that is, the intermediate layer 104) is completely cured in the optical recording medium laminate 113, and the next step (here, the second recording layer) is completed. Even when the optical recording medium laminate 113 is stored before the layer formation step), it is possible to suppress the deterioration of the intermediate layer 104 over time.
  • the second recording layer 105 is formed on the intermediate layer 104 as shown in FIG.
  • the method for forming the second recording layer 105 is not limited. For example, it can be formed by the following method. That is, a coating solution containing an organic dye is applied to the surface of the intermediate layer 104 by spin coating or the like. Then, heating or the like is performed to remove the solvent used in the coating solution, and the second recording layer 105 is formed. By repeating [4. Resin raw material layer forming step] to [8. Second recording layer forming step], a multilayer multilayer optical recording medium can be efficiently produced.
  • the second recording layer 105 is formed directly on the intermediate layer 104.
  • the second recording layer 105 may be formed via a layer (for example, a protective layer or a buffer layer).
  • the second reflective layer 106 is formed on the second recording layer 105 as shown in FIG.
  • the method of forming the second reflective layer 106 is not limited.
  • the second reflective layer 106 can be formed on the second recording layer 105 by sputtering vapor deposition of an Ag alloy or the like.
  • the second substrate 108 is formed on the second reflective layer 106 as shown in FIG.
  • the method for forming the second substrate 108 is not limited.
  • the second substrate 108 can be bonded to the second reflective layer 106 with the adhesive layer 107 interposed therebetween.
  • the second substrate 108 is not limited, but here, a mirror substrate obtained by injection molding of polycarbonate is used as the second substrate 108.
  • the configuration of the adhesive layer 107 is arbitrary.
  • the adhesive layer 107 may be transparent or opaque. Further, the surface may be somewhat rough. Furthermore, even delayed-cure adhesives can be used without problems.
  • the adhesive layer 107 is formed by applying an adhesive on the second reflective layer 106 by a method such as screen printing, irradiating ultraviolet rays, placing the second substrate 108, and pressing the second substrate 108. It may be. It is also possible to form the adhesive layer 107 by pressing a pressure sensitive double-sided tape between the second reflective layer 106 and the second substrate 108.
  • the manufacture of the optical recording medium 100 is completed.
  • an optical recording medium 100 having a layer structure as shown in FIG. 1 (h) can be obtained.
  • the material of the stamper 110 that can stably manufacture the optical recording medium 100 including the intermediate layer 104 having a good concavo-convex shape and few defects is provided.
  • BCA burst cutting area
  • the layer configuration shown in FIG. 1 (h) is merely an example, and, for example, by the method for manufacturing the optical recording medium of the present embodiment, one layer or two or more layers not shown in FIG. 1 (h) An optical recording medium having another layer (for example, a base layer is inserted between the first substrate 101 and the first recording layer 102) may be manufactured. Moreover, you may make it perform other processes other than the process mentioned above before, in the middle of each process mentioned above.
  • the above-described process is performed using the dual layer type single-sided incidence type optical recording medium having two recording layers containing an organic dye as an example.
  • S for example, a Blu-ray disc (BD-ROM, BD-R, etc.)
  • the production method of the present invention can also be applied to the production of so-called film surface incidence type optical recording media such as BD-RE.
  • the recording laser beam 109 is irradiated from the upper side of FIG. 1 (h)
  • the recording layer forming process and the reflective layer forming process are performed in the forming process of each layer existing above and below the intermediate layer.
  • the order of the processes is reversed, and a cover layer forming process is provided instead of the second substrate forming process.
  • cover layer a material that is transparent to the recording laser beam and has a low birefringence is selected.
  • a plastic plate hereinafter referred to as “cover layer sheet” as appropriate
  • cover layer sheet is bonded with an adhesive, and a liquid material is used. It is formed by curing with light, radiation or heat after application.
  • the plastic used as the material for the cover layer can be any material as long as it is transparent to recording laser light and has a low birefringence.
  • adhesion for example, light, radiation curing, thermosetting resin, pressure sensitive adhesive, or the like can be used.
  • the pressure-sensitive adhesive for example, an adhesive made of an acrylic, a methacrylate, a rubber, a silicon, or a urethane polymer can be used.
  • the cover layer material may be used alone, or two or more materials may be used in any combination and ratio! /.
  • the specific method for adhering the cover layer sheet is also arbitrary. For example, after preparing a coating solution by dissolving a photocurable resin constituting the adhesive layer in a suitable solvent, this coating solution is used. Is coated on the recording layer to form a coating film, and a polycarbonate sheet is overlaid on the coating film. After that, the coating liquid is further stretched and developed by rotating the medium, for example, in a superposed state as necessary, and then cured by irradiating with an ultraviolet ray with a UV lamp. Alternatively, a pressure-sensitive adhesive may be applied to the cover layer sheet in advance, and the cover layer sheet may be superimposed on the recording layer, and then pressed and pressed with an appropriate pressure.
  • the pressure-sensitive adhesive is preferably an acrylic or methacrylate polymer pressure-sensitive adhesive from the viewpoint of transparency and durability. More specifically, 2-ethyl hexyl acrylate, n-butyl acrylate, iso-octyl acrylate, etc. are used as main component monomers, and these main component monomers include acrylic acid, methacrylic acid, acrylamide derivatives, A pressure-sensitive adhesive obtained by copolymerizing polar monomers such as maleic acid, hydroxylethyl acrylate and glycidyl acrylate is preferred.
  • the pressure-sensitive adhesive preferably further contains a polyisocyanate-based crosslinking agent. Note that one type of adhesive can be used alone! /, And two or more types can be used in any combination and ratio.
  • the above-described materials can be used as the pressure-sensitive adhesive.
  • a predetermined amount of pressure-sensitive adhesive is uniformly applied to the surface of the cover layer sheet that contacts the recording layer side, and the solvent is dried. Force can be applied by applying pressure to the side surface (or the surface if an interface layer is provided) with a laminating roller. Further, when the cover layer sheet coated with the pressure-sensitive adhesive is adhered to the surface of the recording medium on which the recording layer is formed, it is preferably bonded in a vacuum so as not to entrain air and form bubbles.
  • the cover layer sheet was bonded, and the release film was peeled off to integrate the cover layer sheet and the adhesive layer. Alternatively, it may be attached to a recording medium.
  • a spin coating method for example, a spin coating method, a dip method, or the like is used. In particular, it is preferable to use a spin coating method for a disk-shaped medium.
  • urethane, epoxy, acrylic resin, etc. are used as the cover layer material. After coating, UV, electron beam, radiation is irradiated to cure radical polymerization or cationic polymerization to cure. Can be made.
  • the resin raw material layer may be formed from a plurality of resin layers in consideration of the warp of the optical recording medium, the recording characteristics of the recording layer formed on the intermediate layer, and the like. .
  • the resin layer formed with the concave and convex shape by the stamper is the outermost resin layer.
  • the number of the resin layers constituting the resin raw material layer is not particularly limited. Specifically, the number of the resin layers is usually 10 layers or less, preferably 5 layers or less, more preferably 4 layers or less. On the other hand, the number of the resin layers is two or more. However, from the viewpoint of production efficiency, the number of resin layers constituting the resin raw material layer is preferably 2 or more and 5 or less. From the viewpoint of production efficiency, it is particularly preferable that the number of resin layers constituting the resin raw material layer is a two-layer or three-layer structure.
  • the resin raw material layer is composed of two resin layers.
  • the resin raw material layer forming method and the stamper placing method are changed with respect to the first embodiment.
  • an ultraviolet curable resin is used as in the first embodiment.
  • the substrate preparation, the first recording layer forming step, and the first reflective layer forming step are performed in the same manner as in the first embodiment, and then the resin material layer forming step is performed.
  • FIGS. 2A and 2B are schematic views for explaining the resin raw material layer forming step of the method of manufacturing an optical recording medium to which the second embodiment of the present invention is applied.
  • 2 (a) and 2 (b) the same parts as those in FIGS. 1 (a) to (!) Will be described with the same reference numerals as those in FIGS. 1 (a) to (!).
  • the outermost layer is formed.
  • the first resin layer 104a and the second resin layer are placed on the stamper 110 having the second resin layer 104a formed thereon.
  • An ultraviolet curable resin raw material layer 104a (see FIG. 3) is formed from 104a. That is, the stamper 110 in which the second resin layer 104a that is the outermost resin layer is formed is placed on the first resin layer 104a.
  • the stamper 110 is placed on the ultraviolet curable resin material layer 104a.
  • this point will be described in detail.
  • the ultraviolet curable resin raw material layer 104a As shown in FIG. 2 (a), data composed of the first substrate 101, the first recording layer 102, and the first reflective layer 103 is used. Apply UV curable resin on substrate 111 and form first resin layer 104a by spin coating, for example.
  • the method for manufacturing the data substrate 111 is the same as that in the first embodiment.
  • the degree to which the first resin layer 104a is cured is not limited, and the second resin layer 104a is mounted.
  • the stage of placing it may be in a semi-cured state in which curing may be sufficiently completed.
  • the first resin layer 104a is sufficiently cured.
  • the UV-curing layer formed from the first resin layer 104a and the second resin layer 104a is formed from the first resin layer 104a and the second resin layer 104a
  • the thickness of the curable resin material layer 104a can be a uniform film thickness that can be easily controlled. Further, in the stage of placing the second resin layer 104a, the first resin layer 104a is kept in a semi-cured state.
  • the affinity of the interface between the first resin layer 104a and the second resin layer 104a can be improved.
  • an ultraviolet curable resin is applied on the stamper 110 on the surface having the uneven shape for transfer, and the second material is formed by, for example, spin coating.
  • the resin layer 104a is formed.
  • the stamper 110 can be the same as that used in the first embodiment.
  • the second resin layer 104a functions as an outermost resin layer because an uneven shape is formed in the second resin layer 104a.
  • the method for forming the second resin layer 104a is not limited.
  • the precursor can be formed on the entire surface of the stamper 110 by spin coating or the like.
  • the second resin layer is formed so that the first resin layer 104a and the second resin layer 104a face each other.
  • the stamper 110 on which the 104a is formed is connected to the data substrate 111 on which the first resin layer 104a is formed.
  • the ultraviolet curable resin material comprising the first resin layer 104a and the second resin layer 104a is formed on the entire surface of the data substrate 111 (that is, the surface of the first reflective layer 103).
  • Layer 104a is formed. That is, the ultraviolet curable resin material layer 104 a is formed on the first recording layer 102 via the first reflective layer 103.
  • the stamper 110 having the concavo-convex shape for transfer is placed on the ultraviolet curable resin raw material layer 104a.
  • the stamper 110 is placed on the surface of the ultraviolet curable resin material layer 104a opposite to the first recording layer 102.
  • FIG. 3 is a schematic diagram for explaining the resin raw material layer curing step of the method of manufacturing an optical recording medium to which the second embodiment of the present invention is applied.
  • Fig. 3 the same parts as Fig. 1 (a) to (!) And Fig. 2 (a) and (b) are shown in Fig. 1 (a) to (! And Fig. 2 (a) and (b).
  • the same reference numerals are used for explanation.
  • the ultraviolet curable resin raw material layer 104a is cured to a semi-cured state without being completely cured by ultraviolet rays.
  • the second resin layer 104a that is the outermost resin layer is preferably cured to a semi-cured state.
  • the adhesion between the stamper 110 and the resin raw material layer 104a is reduced, so that the stamper 110 described later can be easily peeled off. I can do it.
  • the stamper 110 can be peeled off satisfactorily.
  • the conditions for ultraviolet irradiation may be adjusted as in the first embodiment.
  • an adhesive body 112 ′ including the data substrate 111, the ultraviolet curable resin material layer 104 a and the stamper 110 is obtained.
  • the first resin layer 104a and the second resin layer 104a are both semi-cured.
  • the stamper 110 is peeled from the curable resin layer 104a in the same manner as in the first embodiment. Thereby, the uneven shape for transfer of the stamper 110 is transferred to the ultraviolet curable resin material layer 104a (see FIG. 1D).
  • a surface modification treatment step is performed in which the resin raw material layer 104a is subjected to a surface modification treatment ( See Figure 1 (e).
  • the method and conditions for the surface modification treatment can be performed in the same manner as in the first embodiment.
  • Curing of both the portion and the layer portion that was the second resin layer 104a proceeds sufficiently to complete the curing of the resin raw material layer 104a, whereby the intermediate layer 104 is obtained.
  • the resin material layer 104a is subjected to a surface modification treatment, whereby the resin material
  • the intermediate layer 104 can be formed by accelerating the curing reaction of the layer 104a to complete the curing.
  • the second recording layer forming step, the second reflecting layer forming step, and the second substrate forming step may be performed in the same manner as in the first embodiment.
  • an optical recording medium 100 (see FIG. 1 (g)) having an excellent concavo-convex shape and having the intermediate layer 104 with few defects can be manufactured. Further, according to the method of manufacturing the optical recording medium of the present embodiment, the same advantage as that of the first embodiment can be obtained with the force S.
  • the ultraviolet curable resin raw material layer 104a is constituted by a plurality of resin layers (first resin layer 104a, second resin layer 104a).
  • the recording characteristics of the second recording layer 105 can be satisfactorily used as the outermost resin layer, and the material can be in close contact with the first reflective layer 103! / The material contacts the data substrate 111.
  • Data on materials that can be used for resin layers to improve warping of optical recording media It is also possible to obtain the advantage that it can be used for the resin layer in contact with the substrate 111.
  • an optical recording medium to be manufactured a dual layer type single-sided dual-layer DVD-R having two recording layers containing an organic dye has been described as an example.
  • the optical recording medium to which the method for producing an optical recording medium of the present invention can be applied is not limited to this. That is, it has a substrate, a recording layer, and an intermediate layer having a concavo-convex shape, and a resin raw material layer is formed on the recording layer directly or via another layer, and the transfer concavo-convex is formed on the resin raw material layer.
  • the present invention can be applied to any optical recording medium or laminated body for optical recording media manufactured by the method, and thereby the effects of the present invention can be exhibited satisfactorily. Therefore, not only write-once DVD-R, but also playback-only DVD-ROM, rewritable DVD-RW, DVD-RAM, etc., as well as high-density recording can be achieved by using a short wavelength blue laser. It can be suitably used for HD DVD-ROM, HD DVD-R, HD DVD—RW, and the like.
  • the method for producing an optical recording medium of the present invention can also be applied to an optical recording medium having only one recording layer.
  • the method for producing an optical recording medium of the present invention can be applied to an optical recording medium having three or more recording layers and two or more intermediate layers.
  • the force S is applied to apply the intermediate layer forming method described in the above embodiment.
  • write-once type media (Write Once media such as CD-R and DVD-R) that can be recorded only once, and record erasure can be used.
  • Reproducible media that can be repeated (Re-Writable media such as CD-RW and DVD-RW) are suitable.
  • Reproduction-only media (ROM such as CD-ROM and DVD-ROM) Medium) is not excluded.
  • the method for producing an optical recording medium of the present invention is preferable because it can exhibit stable recording / reproducing characteristics when applied to a write-once medium.
  • each layer constituting the single-sided dual-layer optical recording medium 100 will be described with a single-sided dual-layer DVD-R shown in FIG. 1 (h) as the center.
  • the first substrate 101 is desirably excellent in optical characteristics, such as being light transmissive and having a low birefringence.
  • optical characteristics such as being light transmissive and having a low birefringence.
  • birefringence which is transparent to the recording / reproducing laser beam.
  • the material constituting the first substrate 101 is not particularly limited.
  • a resin, metal, glass or the like having appropriate processability and rigidity can be used.
  • the resin include acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (particularly amorphous polyolefin), polyester resin, polystyrene resin, epoxy resin, and the like.
  • the materials constituting the first substrate 101 may be used alone, or two or more may be used in any combination and ratio.
  • the thickness of the first substrate 101 is not particularly limited, but is usually 2 mm or less, and preferably 1.2 mm or less. This is because the distance between the objective lens and the recording layer is small, and the coma aberration force S tends to be small as the substrate is thin, and the recording density is easily increased. However, in order to obtain sufficient optical properties, hygroscopicity, moldability, and shape stability, it is usually 10 or more, preferably 30 111 or more. In addition, when it is desirable to ensure the strength of the recording medium by the first substrate 101, it is usually 0.5 mm or more.
  • the first substrate 101 preferably has a low hygroscopic property. Furthermore, it is desirable that the first substrate 101 has shape stability so that the optical recording medium has a certain degree of rigidity.
  • the first substrate 101 is usually provided with a guide groove for tracking as an uneven shape.
  • the tracking guide groove is usually provided on the first substrate 101 as a concentric or spiral groove.
  • the track pitch of the guide groove differs depending on the wavelength of the laser beam used for recording / reproducing on the optical recording medium. Specifically, in a CD-type optical recording medium, the track pitch is usually 1 ⁇ 5 111 or more and 1 ⁇ 6 m or less. For DVD optical recording media, track pitch Is usually 0 ⁇ 7 111 or more and 0 ⁇ 8 111 or less. In the optical recording medium for blue laser, the track pitch is usually 0.1 ⁇ m or more and 0.6 ⁇ 6 m or less.
  • the depth of the groove also varies depending on the wavelength of the laser beam used for recording / reproduction of the optical recording medium. Specifically, in a CD-based optical recording medium, the groove depth is usually 10 nm or more and 300 nm or less. In DVD-type optical recording media, the groove depth is usually lOnm or more and 250 nm or less. In the optical recording medium for blue laser, the groove depth is usually lOnm or more and 200 nm or less.
  • the method of forming the guide groove is arbitrary.
  • the forming force S can be as follows. Specifically, when a metal or glass is used as the material of the first substrate 101, a thin photocurable or thermosetting resin layer is usually provided on the surface, and a guide groove can be formed there. . In this regard, it is preferable to use a resin as the material of the first substrate 101 because a guide groove can be formed on the surface by injection molding.
  • the first substrate 101 an annular substrate having a center hole in the center is generally used.
  • the ring shape is not particularly limited, and various shapes such as a disk shape, an ellipse shape, and a polygon shape can be considered.
  • the first substrate 101 is usually a disk shape.
  • the diameter of the first substrate 101 is usually about 80 mm or 120 mm.
  • the first recording layer 102 has higher sensitivity than the recording layer used for optical recording media usually used for CD-R, single-sided DVD-R, and the like.
  • the first reflective layer 103 is usually a translucent reflective film. For this reason, half of the incident laser beam 109 is transmitted through the first reflective layer 103. As a result, the power of the laser beam 109 incident on the first recording layer 102 is halved. Therefore, since the recording on the first recording layer 102 is performed with about half the power of the incident laser beam, it is desirable that the first recording layer 102 has particularly high sensitivity.
  • the material used for the first recording layer 102 is not limited, and may be an organic substance or an inorganic substance, but the maximum absorption wavelength in the visible light to near infrared region of about 350 to 900 nm.
  • a compound having a max and suitable for recording with a blue to near-microwave laser is preferred.
  • near-infrared laser with a wavelength of about 770 to 830 nm as used for CD-R Compounds, compounds suitable for recording with a red laser with a wavelength of about 620 to 690 nm as used for DVD-R, or compounds suitable for recording with a so-called blue laser with a wavelength of 410 nm or 515 nm, etc. are more preferred. .
  • Specific compounds used in the first recording layer 102 are not particularly limited, and examples thereof include organic dye materials and amorphous semiconductors, and it is particularly preferable to contain an organic dye material.
  • organic dye materials include macrocyclic azanulene dyes (phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), pyromethene dyes, polymethine dyes (cyanine dyes, merocyanine dyes, squalium dyes, etc.), anthraquinone dyes, Azureum dyes, metal-containing azo dyes, metal-containing indoor two-phosphorus dyes, and the like. These dyes may be used alone or in combination of two or more in any combination and ratio.
  • amorphous semiconductor materials include SbTe, GeTe, GeSbTe, InSbTe, AgSbTe, AglnSbTe, GeSb, GeSbSn, InGeSbTe, and InGeSbSnTe. .
  • a composition containing Sb as a main component.
  • These amorphous semiconductor materials may be used alone or in combination of two or more in any combination and ratio.
  • the film thickness of the first recording layer 102 is not particularly limited because the suitable film thickness differs depending on the recording method or the like. However, in order to obtain a sufficient degree of modulation, it is usually 5 nm or more, preferably 10 nm or more, and particularly preferably 20 nm or more. In order to transmit light, it is usually 3 m or less, preferably 1 m or less, more preferably 200 nm or less.
  • the method for forming the first recording layer 102 is not particularly limited, but is generally performed by a vacuum deposition method, a sputtering method, a doctor blade method, a casting method, a spin coating method, an immersion method, or the like.
  • a thin film forming method is mentioned.
  • the film formation method is preferably a wet film formation method such as a spin coating method from the viewpoint of mass productivity and cost.
  • vacuum vapor deposition is preferred from the viewpoint that a uniform recording layer can be obtained.
  • the first reflective layer 103 has a light transmittance with a small absorption of recording / reproducing light, usually 40% or more, and an appropriate light reflectance.
  • a layer having an appropriate transmittance by providing a thin metal with high reflectivity can be given.
  • the first reflective layer 103 has a certain degree of corrosion resistance.
  • the first recording layer 102 has a blocking property so that the first recording layer 102 is not affected by the leaching of other components from the upper layer of the first reflective layer 103 (the intermediate layer 104 in the above embodiment).
  • the material constituting the first reflective layer 103 is not particularly limited, but a material having a reasonably high reflectance at the wavelength of the reproduction light is preferable.
  • materials constituting the first reflective layer 103 include Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, Pd, Mg, Se, Hf, V, Nb, Ru, W, and Mn.
  • Re, Fe, Co, Rh, Ir, Zn, Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, rare earth metals and other metals or metalloids are used alone or in alloys It is possible. Further, the materials constituting the first reflective layer 103 may be used alone or in combination of two or more in any combination and ratio.
  • the thickness of the first reflective layer 103 is usually 50 nm or less, preferably 30 nm or less, and more preferably 20 nm or less. By setting it within the above range, the light transmittance is reduced to 40% or more. However, the thickness of the first reflective layer 103 is usually 3 nm or more, preferably 5 nm or more, because the first recording layer 102 is not affected by the layer present on the first reflective layer 103.
  • the method for forming the first reflective layer 103 is an arbitrary force. Examples thereof include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method.
  • the intermediate layer 104 is made of a resin that is transparent, can be formed with concave and convex shapes such as grooves and pits, and has high adhesive strength. Furthermore, it is preferable to use a resin having a small shrinkage ratio at the time of curing and bonding because of high shape stability of the medium.
  • the intermediate layer 104 may be a multilayer film as in the second embodiment, which may be a single layer film as in the first embodiment.
  • the intermediate layer 104 is preferably made of a material that does not damage the second recording layer 105.
  • the material constituting the intermediate layer 104 include curable resins such as thermoplastic resins, thermosetting resins, and radiation curable resins.
  • the material of the intermediate layer 104 May be used alone, or two or more may be used in any combination and ratio.
  • the materials for the intermediate layer 104 among these, radiation curable resins are preferred, and ultraviolet curable resins are preferred. By adopting these resins, it becomes easy to transfer the uneven shape of the stamper.
  • Examples of the ultraviolet curable resin include a radical (radical polymerization type) ultraviolet curable resin and a cationic (cation polymerization type) ultraviolet curable resin, both of which can be used.
  • radical ultraviolet curable resin for example, a composition containing an ultraviolet curable compound (radical ultraviolet curable compound) and a photopolymerization initiator as essential components is used.
  • the radical ultraviolet curable compound for example, monofunctional (meth) acrylate and polyfunctional (meth) acrylate can be used as the polymerizable monomer component. Each of these may be used alone or in combination of two or more in any combination and ratio.
  • the attalate and the meta acrylate are collectively referred to as (meth) acrylate.
  • the photopolymerization initiator is not limited, but for example, a molecular cleavage type or a hydrogen abstraction type is preferable.
  • an uncured ultraviolet curable resin precursor mainly composed of a radical polymerization type acrylic ester and cure it to obtain an intermediate layer.
  • examples of the cationic ultraviolet curable resin include an epoxy resin containing a cationic polymerization type photoinitiator.
  • examples of the epoxy resin include bisphenol A-epoxyhydrin type, alicyclic epoxy, long chain aliphatic type, brominated epoxy resin, glycidyl ester type, glycidyl ether type, and heterocyclic type. .
  • the epoxy resin it is preferable to use a resin having a low content of free chlorine and chlorine ions. The amount of chlorine is preferably 1% by weight or less, and more preferably 0.5% by weight or less.
  • examples of the cationic polymerization type photoinitiator include sulfonium salt, iodine salt, and diazoyuum salt.
  • the resin raw material layer 104a When using radiation curable resin as the material of the intermediate layer 104, it is preferable to use a liquid material. This is because when the resin raw material layer 104a is formed, by using the radiation curable resin, the resin raw material layer 104a can be applied without using a solvent, so that productivity is improved.
  • the viscosity is preferably adjusted to 20 to 4000 mPa's.
  • the intermediate layer 104 is provided with a concavo-convex shape spirally or concentrically. This uneven shape forms grooves and lands. Normally, information is recorded / reproduced on / from the second recording layer 105 using such grooves and / or lands as recording tracks.
  • the method for producing an optical recording medium of the present invention has an advantage that the uneven shape used as a normal recording track can be formed satisfactorily, and therefore has an intermediate layer 104 with few defects. It is possible to obtain medium 100.
  • the groove width is usually about 50 to 800 nm, preferably 100 to 600 nm, more preferably 120 to 500 nm.
  • the groove depth is usually about 10 to 300, preferably (about 12 to 270 nm, more preferably (about 14 to 250 nm.
  • the track pitch is Usually, it is about 0.;! ⁇ 2.O ⁇ m, Preferably it is 0.2-1.5 ⁇ ⁇ m, More preferably, it is 0.3-1.O ⁇ m.
  • the film thickness of the intermediate layer 104 is preferably 5 m or more, preferably 10 m or more, which is preferably controlled accurately. However, it is usually less than lOOrn, preferably less than 70111.
  • the method for forming the intermediate layer 104 is not limited and is an arbitrary force.
  • the intermediate layer 104 is formed as follows.
  • the intermediate layer 104 using a thermoplastic resin, a thermosetting resin, or the like is prepared by dissolving the thermoplastic resin or the like in an appropriate solvent.
  • the intermediate layer 104 can be formed by applying this coating solution and drying (heating).
  • the intermediate layer 104 using a radiation curable resin is prepared as it is or dissolved in an appropriate solvent to prepare a coating solution.
  • the intermediate layer 104 using a radiation curable resin can be formed by applying this coating solution and curing it by irradiating with appropriate radiation.
  • the coating method there are no restrictions on the coating method, and methods such as spin coating and casting are used. Among these, the spin coat method is preferable.
  • the intermediate layer using high viscosity resin 1 04 can also be applied and formed by screen printing or the like.
  • the second recording layer 105 has higher sensitivity than the recording layer normally used for optical recording media such as CD-R and single-sided DVD-R.
  • the second recording layer 105 is preferably a dye having a low heat generation and a high refractive index in order to realize good recording / reproduction. Further, in the combination of the second recording layer 105 and the second reflective layer 106, it is desirable that the reflection and absorption of light be in an appropriate range.
  • the material constituting the second recording layer 105, the film forming method, and the like may be the same as those of the first recording layer 102.
  • the film forming method of the second recording layer 105 is preferably a wet film forming method.
  • first recording layer 102 and the second recording layer 105 may be the same or different.
  • the specific compound used for the second recording layer 105 is not limited, and a compound similar to the first recording layer 102 is preferably used.
  • a recording layer made of an organic dye material has a deeper guide groove than a recording layer made of an amorphous semiconductor material. Therefore, particularly when the second recording layer 105 is a layer containing an organic color material, it is difficult to form the second recording layer 105 while maintaining the deep groove shape formed in the intermediate layer 104.
  • the affinity with the intermediate layer 104 is good, so that the second recording layer is formed on the intermediate layer 104.
  • the uneven shape can be reflected well as the unevenness of the recording layer. Therefore, according to the present invention, particularly when the second recording layer 105 contains an organic color material, the effect is remarkable.
  • the thickness of the second recording layer 105 is not particularly limited because the suitable thickness varies depending on the recording method and the like, but is usually 10 nm or more, preferably 30 nm or more, and particularly preferably 50 nm or more. However, in order to obtain an appropriate reflectance, the thickness of the second recording layer 105 is usually 3 111 or less, preferably 1 am or less, more preferably 200 nm or less.
  • the second reflective layer 106 has high reflectivity and high durability.
  • the material constituting the second reflective layer 106 is sufficiently high in reflectance at the wavelength of the reproduction light.
  • metals such as Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, and Pd can be used alone or as an alloy.
  • Au, Al, and Ag are suitable as materials for the second reflective layer 106 having high reflectivity.
  • other components may be included.
  • the material for forming the second reflective layer 106 may be used alone or in combination of two or more in any combination and ratio.
  • the thickness of the second reflective layer 106 is usually 20 nm or more, preferably 30 nm or more, more preferably 50 nm or more. However, in order to increase the recording sensitivity, it is usually 400 nm or less, preferably 300 nm or less.
  • the method for forming the second reflective layer 106 is not limited, and examples thereof include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method.
  • a known inorganic or organic intermediate layer or adhesive layer may be provided above and below the second reflective layer 106 in order to improve the reflectance, the recording characteristics, and the adhesion.
  • the adhesive layer 107 has a high adhesive force and a low shrinkage rate at the time of curing and adhesion because the shape stability of the optical recording medium 100 becomes high.
  • the adhesive layer 107 is preferably made of a material that does not damage the second reflective layer 106. Further, a known inorganic or organic protective layer may be provided between the second reflective layer 106 and the adhesive layer 107 in order to suppress damage.
  • the same material as that of the intermediate layer 104 can be used.
  • the film thickness of the adhesive layer 107 is usually 2 111 or more, preferably 5 m or more. However, in order to reduce the thickness of the optical recording medium 100 as much as possible and to suppress the reduction in productivity due to the time required for curing, the thickness of the adhesive layer 107 is usually lOO ⁇ m. The following is preferred.
  • a pressure-sensitive double-sided tape or the like can be used as the adhesive layer 107.
  • the adhesive layer 107 can be formed by sandwiching and pressing the pressure-sensitive double-sided tape between the second reflective layer 106 and the second substrate 108.
  • the second substrate 108 preferably has high mechanical stability and high rigidity. Also, it has high adhesiveness with the adhesive layer 107!
  • the second substrate 108 As such a material for the second substrate 108, it is possible to use the same material as that used for the first substrate 101.
  • the material include any one of A1 alloy substrates such as Al—Mg alloys mainly composed of A1, Mg alloy substrates such as Mg—Zn alloys mainly composed of Mg, silicon, titanium, and ceramics. It is also possible to use a substrate made of force, or a combination of them.
  • the material of the second substrate 108 may be used alone, or two or more may be used in any combination and ratio! /.
  • the material of the second substrate 108 is preferably polycarbonate from the viewpoints of high productivity such as moldability, cost, and shape stability.
  • the material of the second substrate 108 is preferably amorphous polyolefin from the viewpoint of chemical resistance, low hygroscopicity, and the like.
  • the material of the second substrate 108 is preferably a glass substrate from the viewpoint of high-speed response!
  • the second substrate 108 is thick to some extent.
  • the thickness of the second substrate 108 is preferably 0.3 mm or more. However, it is usually 3 mm or less, preferably 1.5 mm or less.
  • the optical recording medium 100 may include one or two or more other layers as necessary in the above laminated structure. Alternatively, any other layer having one layer or two or more layers may be provided on the outermost surface of the optical recording medium 100. Furthermore, on the optical recording medium 100, printing that can be written (printed) with various printers such as ink jet and thermal transfer, or various writing tools, on the surface that is not the recording light or reproducing light incident surface, if necessary. A receiving layer may be provided. Further, the two optical recording media 100 and the first substrate 101 may be bonded together. By laminating two optical recording media 100, a large-capacity medium having four recording layers can be obtained.
  • the method for producing an optical recording medium of the present invention can also be applied to a phase change rewritable compact disk (CD-RW, CD-Rewritable) or a phase change rewritable DVD.
  • Layer structure such as recording layer when applied to phase change type optical recording media
  • Phase change type CD-RW or rewritable type DVD uses the change in reflectivity and phase difference caused by the difference in refractive index between the amorphous state and the crystalline state in the recording layer composed of phase change type recording material force.
  • the recording information signal is detected.
  • phase change recording material examples include SbTe, GeTe, GeSbTe, InSbTe, AgSbTe, AglnSbTe, GeSb, GeSbSn, InGeSbTe, and InGeSbSnTe materials.
  • SbTe SbTe
  • GeSbTe GeSbTe
  • InSbTe AglnSbTe
  • GeSb GeSbSn
  • InGeSbTe InGeSbTe
  • InGeSbSnTe materials examples include SbTe, GeTe, GeSbTe, InSbTe, AglnSbTe, GeSb, GeSbSn, InGeSbTe, and InGeSbSnTe materials.
  • a composition containing Sb as a main component in the recording layer.
  • the method for producing an optical recording medium of the present invention can also be applied to a film surface incident type optical recording medium such as a Blu-ray disc.
  • a film surface incident type optical recording medium such as a Blu-ray disc.
  • the recording laser beam 109 is irradiated from the upper side of FIG. 1 (h)
  • the stacking order of the recording layer and the reflective layer is reversed, and the second reflective layer is not the first reflective layer.
  • a high light reflectance is required.
  • a cover layer is formed instead of the second substrate.
  • the cover layer is selected from a material that is transparent to the recording laser light and has a low birefringence.
  • the cover layer sheet is bonded to the cover layer sheet with an adhesive, light, radiation, or the like after applying the liquid material. It is formed by curing with heat or the like.
  • the cover layer preferably has a transmittance of 70% or more at the wavelength of the recording laser beam, more preferably 80% or more. The upper limit of the transmittance is 100%.
  • the cover layer may further be provided with a layer having a thickness of 0 ⁇ ; m to 50 111 or less on the surface in order to impart functions such as scratch resistance and fingerprint resistance to the incident light side surface. .
  • the thickness of the cover layer depends on the wavelength of the recording laser beam and the NA (numerical aperture) of the objective lens. Usually 0.01 mm or more, preferably 0.05 mm or more, and usually 0.3 mm or less, preferably 0 It is desirable to be within 15mm. It is preferable that the entire thickness including the thickness of the adhesive layer, the hard coat layer, and the like be within an optically acceptable thickness range. For example, in the case of so-called Blu-ray discs, it is preferable to control them below 100 111 ⁇ 3 am.
  • Such an optical recording medium manufacturing method of the present embodiment can be performed by, for example, an optical recording medium manufacturing apparatus 1 as shown in FIG. That is, this manufacturing apparatus 1 performs the operation of the first recording layer forming process and the first recording layer forming apparatus 2 that performs the operation of the first recording layer forming process.
  • a stamper peeling device 6 that performs the operation, a surface modification processing device 7 that performs the surface modification treatment process of the resin raw material layer, and a second recording layer formation device 8 that performs the operation of the second recording layer formation step,
  • the second reflective layer forming apparatus 9 for performing the operation of the second reflective layer forming process
  • the second substrate forming apparatus 10 for performing the operation of the second substrate forming process
  • the optical recording medium 100 and intermediate products being manufactured
  • Each of these apparatuses 2 to 10 is configured to include a transport apparatus 11 that transports in the order described above.
  • this manufacturing apparatus 1 is an apparatus for manufacturing an optical recording medium that includes at least a substrate, a recording layer, and an intermediate layer having a concavo-convex shape.
  • First recording layer forming apparatus 2 as means for forming first recording layer 102 via the layer, and means for forming resin raw material layer 104a on first recording layer 102 directly or via another layer Resin raw material layer forming apparatus 4 and the resin raw material layer 104a are cured on the resin raw material layer 104a with the stamper 110 having the concave / convex shape for transfer corresponding to the concave / convex shape placed thereon.
  • a stamper peeling device 6 as a means for transferring the uneven shape for One, the concavo-convex shape for transfer is constituted by having a surface modification apparatus 7 as a means for performing a surface modification treatment to promote the curing of the resin material layer transferred. Therefore, by carrying out the above-described method for producing an optical recording medium by the production apparatus 1, an optical recording medium having a good defect-shaped intermediate layer with few defects can be produced at low cost. The actions and effects described above can be obtained.
  • the manufacturing apparatus 1 exemplified here is an example of a manufacturing apparatus for performing the above-described optical recording medium manufacturing method
  • the optical recording medium manufacturing apparatus of the present invention is an example of the manufacturing apparatus 1 described above.
  • the present invention is not limited, and can be implemented with arbitrary modifications without departing from the scope of the present invention.
  • the devices 2 to 11 can be arbitrarily combined depending on the configuration of the optical recording medium to be manufactured.
  • the manufacturing apparatus 1 can be configured in combination with another apparatus not listed here.
  • the devices 2 to 11 are as in this example One manufacturing device 1 Each device can be integrated into a separate device 2
  • ⁇ 11 may constitute the manufacturing device 1 as a whole! /.
  • one apparatus force S and the functions of different apparatuses in the manufacturing apparatus 1 may be combined. Examples of this are the first recording layer forming device 2 and the second recording layer forming device 8, or the first reflecting layer forming device 3 and the second reflecting layer forming device 9, the resin raw material layer curing device 5 and the surface modification. Quality treatment equipment 7 etc.
  • the device 1 is an example of manufacturing a substrate surface incident type dual layer type single-sided dual layer DVD-R, but in the case of a film surface incidence type Blu-ray disc,
  • the mounting order of the recording layer forming apparatus and the first reflective layer forming apparatus and the mounting order of the second recording layer forming apparatus and the second reflective layer forming apparatus are reversed, and instead of the second substrate forming apparatus. This can be done by arranging a cover layer forming device.
  • This example is an example of HD DVD-R-DL (dual-layer medium), but in order to confirm the effect of the present invention, the first recording layer and the first reflective layer are omitted to produce an optical recording medium, evaluated. Even when the first recording layer and the first reflective layer are omitted, it can be sufficiently verified that the effects of the present invention can be applied to HD DV D-R-DL by the following examples.
  • PC1 stamper Using polycarbonate (PC) as a material, a disk-shaped stanono (hereinafter also referred to as PC1 stamper) with an outer diameter of 120 mm and a thickness of 0 ⁇ 60 mm was formed by injection molding. .
  • PC1 stamper a disk-shaped stanono (hereinafter also referred to as PC1 stamper) with an outer diameter of 120 mm and a thickness of 0 ⁇ 60 mm was formed by injection molding.
  • a nickel master having a guide groove with a track pitch of 0 ⁇ 4 111, a width of 0 ⁇ 23 111 and a depth of 65 nm was used.
  • Atomic force microscope (AFM) confirmed that the guide groove (unevenness) of the nickel master was accurately transferred to the PCI stamper.
  • an ultraviolet curable resin (SD6036, manufactured by Dainippon Ink & Co., Inc.) for forming the first resin layer is dropped on the first substrate in a circular shape, and a film having a thickness of about 18 111 (first film) is formed by a spinner method. 1 resin layer) was formed.
  • a predetermined UV curable resin MPZ388, manufactured by Nippon Kayaku Co., Ltd.
  • a film (second resin layer) about 7 m thick was formed by the spinner method.
  • the first substrate and the PC1 stamper were bonded so that the first resin layer and the second resin layer face each other.
  • ultraviolet rays were irradiated from the PC 1 stamper side at room temperature in an air atmosphere (light source: Toschia 751 manufactured by Harrison Toshiba) to cure the first resin layer and the second resin layer to form an adhesive body.
  • the irradiation amount of ultraviolet rays was 90 mj / cm 2 .
  • the PC 1 stamper was peeled off, surface modification was performed by irradiating ultraviolet rays from the second resin layer immediately to form an intermediate layer.
  • the irradiation amount of ultraviolet rays was set to 350 mJ / cm.
  • An intermediate layer provided on the first substrate and subjected to surface modification treatment is allowed to stand for 12 hours in a clean booth at 25 ° C. and 42% relative humidity.
  • a dye tetrafluoropropanol solution (concentration: 1.0% by weight) was dropped and applied by a spinner method. After coating, the film was dried at 70 ° C. for 30 minutes to form a second recording layer. The coating conditions of the second recording layer were adjusted so that the OD value was 0.15 with a laser having a wavelength of 470 nm.
  • an Ag alloy made of Ag Bi (Bi: 1.0 atomic%) is used on the second recording layer.
  • a second reflective layer having a thickness of lOOnm was formed by a notching method.
  • an adhesive layer was provided on the second reflective layer by spin coating an ultraviolet curable resin. Then, a polycarbonate substrate having a diameter of 120 mm and a thickness of 0.6 mm was placed on the adhesive layer to form a second substrate, which was cured and adhered by irradiation with ultraviolet rays.
  • the Push-Pull signal obtained from the optical recording medium manufactured by the above method was measured. The larger the value, the better the recording characteristics.
  • the Push-Pull signal is defined by the following formula
  • (I I) is the amplitude between the vertices of the (I I) signal.
  • (I +1) is the (I +1) signal
  • the focus servo was applied to the second recording layer, the tracking servo was in an open loop state, and the optical recording medium was rotated at 600 rpm.
  • an optical disk has an eccentricity of several tens of microns, so that the reproduction beam traverses the guide groove and the land several tens of times in one rotation.
  • the (I I) signal and the (I +1) signal indicate sinusoidal outputs.
  • the Push-Pull signal used was ODU1000 manufactured by Pulstec Industrial Co., Ltd., using a laser beam with a wavelength of 405 nm and a reproduction power of 0.4 mW.
  • Table 1 shows the measurement results of the Push-Pull signal measured at a radial position of 40 mm on the optical recording medium.
  • An optical recording medium was produced in the same manner as in Example 1 except that the ultraviolet irradiation amount during the formation of the adhesive and the ultraviolet irradiation amount during the surface modification treatment were as shown in Table 1. Any production Also, after peeling the PCI stamper and touching the surface of the second resin layer (outermost resin layer) with a finger, it was confirmed that the surface was sticky and semi-cured.
  • the push-pull signal of the obtained optical recording medium was measured in the same manner as in Example 1. The results are shown in Table 1.
  • a stamper was produced in the same manner as in Example 1 using amorphous polyolefin instead of the PC1 stamper (sometimes referred to as an APOl stamper).
  • an optical recording medium was produced in the same manner as in Example 1 except that the ultraviolet irradiation amount during the formation of the adhesive and the ultraviolet irradiation amount during the surface modification treatment were as shown in Table 1.
  • the surface of the second resin layer (outermost resin layer) was touched with a finger after peeling off the APOl stamper, it was confirmed that it was sticky and in a semi-cured state. .
  • the push-pull signal of the obtained optical recording medium was measured in the same manner as in Example 1. The results are shown in Table 1.
  • PC2 stamper Using polycarbonate (PC) as a material, a disk-shaped stanono with a central hole with an inner diameter of 15 mm and an outer diameter of 120 mm and a thickness of 0 ⁇ 60 mm (hereinafter sometimes referred to as “PC2 stamper”) was formed by injection molding. .
  • PC2 stamper a nickel master having a guide groove with a track pitch of 0.774 111, a width of 0 ⁇ 32 111, and a depth of 175 nm was used. The atomic force microscope confirmed that the guide groove (unevenness) of the nickel master was accurately transferred to the PC2 stamper.
  • a tetrafluoropropanol solution (concentration: 0.9 wt%) of a metal-containing azo dye was prepared, and this was dropped onto a substrate and applied by a spinner method. After coating, the film was dried at 70 ° C. for 30 minutes to form a first recording layer. The coating conditions of the first recording layer were adjusted so that the OD value was 0.53 with a laser having a wavelength of 590 nm.
  • a translucent first reflective layer having a thickness of 17 nm was formed on the first recording layer by sputtering using an Ag alloy made of Ag—Bi (Bi: 1.0 atomic%).
  • an ultraviolet curable resin SD6036 manufactured by Dainippon Ink, Inc.
  • a film having a thickness of about 35 111 (using a spinner method) The first resin layer) was formed.
  • a predetermined UV curable resin MPZ388 manufactured by Nippon Kayaku Co., Ltd.
  • a film (second resin layer) having a thickness of about 13 111 was formed by the spinner method.
  • the first substrate and the PC2 stamper are placed so that the first resin layer and the second resin layer face each other. Pasted together. Subsequently, ultraviolet rays were irradiated from the PC2 stamper side at room temperature to cure the first resin layer and the second resin layer, thereby forming an adhesive body. In this case, the amount of UV irradiation is 200 mj / cm7.
  • the first recording layer, the first reflective layer, and the intermediate layer provided on the substrate and subjected to the surface modification treatment were allowed to stand in a clean booth at 25 ° C. and a relative humidity of 42% for 12 hours.
  • a tetrafluoropropanol solution (concentration: 1.1% by weight) of a metal-containing azo dye was dropped and applied by a spinner method.
  • the film was dried at 70 ° C. for 30 minutes to form a second recording layer.
  • the coating conditions of the second recording layer were adjusted so that the OD value was 0 ⁇ 59 with a laser having a wavelength of 590 nm.
  • a second reflective layer having a thickness of 120 nm was formed on the second recording layer by a notching method using an Ag alloy made of Ag-Bi (Bi: 1.0 atomic%). .
  • an adhesive layer was provided on the second reflective layer by spin coating an ultraviolet curable resin.
  • a polycarbonate substrate having a diameter of 120 mm and a thickness of 0.6 mm was placed on the adhesive layer to form a second substrate, which was cured and adhered by irradiating ultraviolet rays.
  • the Push-Pull signal obtained from the second recording layer of the optical recording medium manufactured by the above method was measured.
  • the push-pull signal was ODU1000 manufactured by Pulstec Industrial Co., Ltd., a laser beam having a wavelength of 650 nm, and a reproduction rate of 0.7 mW.
  • Table 2 shows the results of push-pull signals measured at the radial positions of 23 mm, 40 mm, and 58 mm on the optical recording medium.
  • a multilayer optical recording medium having two recording layers was prepared in the same manner as in Example 7 except that the ultraviolet irradiation amount during the formation of the adhesive and the ultraviolet irradiation amount during the surface modification treatment were as shown in Table 2. Manufactured. In any production, when the surface of the second resin layer (outermost resin layer) was touched with a finger after peeling off the PC2 stamper, it was confirmed that it was sticky and in a semi-cured state.
  • the push-pull signal of the obtained optical recording medium was measured in the same manner as in Example 7. The results are shown in Table 2.
  • Table 3 shows the results of measuring the guide groove shape before and after forming the second recording layer in the same manner as in Example 7 for Comparative Example 5.
  • a stamper was produced in the same manner as in Example 7 using amorphous polyolefin instead of the PC2 stamper (sometimes referred to as AP02 stamper).
  • the medium was manufactured. In any production, when the surface of the second resin layer (outermost resin layer) was touched with a finger after peeling the AP02 stamper, it was confirmed that it was sticky and semi-cured. .
  • the push-pull signal of the obtained optical recording medium was measured in the same manner as in Example 7. The results are shown in Table 2.
  • Example 7 in which the surface modification treatment was performed had deeper grooves after the second recording layer was formed than Comparative Example 5 in which the surface modification treatment was not performed. .
  • a disk-shaped stanono with a central hole with an inner diameter of 15 mm and an outer diameter of 80 mm and a thickness of 0 ⁇ 60 mm (hereinafter sometimes referred to as “03 stamper”) was formed by injection molding.
  • Injection molding has a track pitch of 0.774 111, width 0 ⁇ 32 111, depth
  • a nickel master having a guide groove of 175 nm was used.
  • a tetrafluoropropanol solution (concentration: 0.9 wt%) of a metal-containing azo dye was prepared, and this was dropped onto a substrate and applied by a spinner method. After coating, the film was dried at 70 ° C. for 30 minutes to form a first recording layer. The coating conditions of the first recording layer were adjusted so that the OD value was 0.53 with a laser having a wavelength of 590 nm.
  • a translucent first reflective layer having a thickness of 17 nm was formed on the first recording layer by sputtering using an Ag alloy made of Ag—Bi (Bi: 1.0 atomic%).
  • an ultraviolet curable resin SD6036 manufactured by Dainippon Ink, Inc.
  • a film having a thickness of about 35 111 (using a spinner method) The first resin layer) was formed.
  • a predetermined UV curable resin MPZ388 manufactured by Nippon Kayaku Co., Ltd.
  • the second resin layer (outer resin layer) is dropped in a circle on the surface of the AP03 stamper where the guide groove is formed, and the spinner A film (second resin layer) having a thickness of about 13 111 was formed by one method.
  • the first substrate and the AP03 stamper were bonded so that the first resin layer and the second resin layer face each other.
  • ultraviolet rays were irradiated from the AP03 stamper side at room temperature to cure the first resin layer and the second resin layer, thereby forming an adhesive body.
  • the irradiation amount of ultraviolet rays was set to 100 mj / cm 2 .
  • the first recording layer, first reflective layer, and intermediate layer provided on the substrate and subjected to surface modification treatment were immediately placed in a clean booth at 25 ° C and 42% relative humidity,
  • a tetrafluoropropanol solution (concentration: 1.1% by weight) of a metal-containing azo dye was dropped and applied by a spinner method. After coating, it was dried at 70 ° C. for 30 minutes to form a second recording layer.
  • the coating conditions of the second recording layer were adjusted so that the OD value was 0 ⁇ 59 with a laser having a wavelength of 590 nm.
  • a second reflective layer having a thickness of 120 nm is formed on the second recording layer by a sputtering method using an Ag alloy made of Ag-Bi (Bi: 1.0 atomic%). did.
  • an adhesive layer was provided on the second reflective layer by spin coating an ultraviolet curable resin.
  • a polycarbonate substrate having a diameter of 80 mm and a thickness of 0.6 mm was placed on the adhesive layer to form a second substrate, which was cured and adhered by irradiation with ultraviolet rays.
  • the Push-Pull signal obtained from the second recording layer of the optical recording medium manufactured by the above method was measured. The larger the numerical value, the better the recording characteristics.
  • the Push-Pull signal was ODU1000 manufactured by Pulstec Industrial Co., Ltd., using a laser beam with a wavelength of 650 nm and a reproduction power of 0.7 mW.
  • Table 4 shows the push-pull signal measurement results measured at the radial positions of 23 mm, 33 mm, and 38 mm on the optical recording medium. Shown in
  • optical recording medium produced by the above method was observed with an optical microscope for the presence of grooving that tends to occur in the circumferential direction and peeling scratches that tend to occur in the radial direction.
  • a multilayer optical recording medium having two recording layers was prepared in the same manner as in Example 12 except that the ultraviolet irradiation amount during the formation of the adhesive and the ultraviolet irradiation amount during the surface modification treatment were as shown in Table 4. Manufactured.
  • the ultraviolet irradiation amount during the formation of the adhesive and the ultraviolet irradiation amount during the surface modification treatment were as shown in Table 4.
  • Table 4 Manufactured.
  • Example 13 and 14 and Comparative Examples 9 to 11 when the surface of the second resin layer (outermost resin layer) was touched with a finger after peeling off the AP03 stamper, there was stickiness. It was confirmed to be in a semi-cured state.
  • Example 15 and Comparative Example 12 when the surface of the second resin layer (outermost resin layer) was touched with a finger after the AP03 stamper was peeled off, almost no stickiness was felt.
  • the obtained optical recording medium was measured for Push-Pull signal and confirmed for peeling scratches in the same manner as in Example 12. The results are shown in Table 4.
  • Examples 12 to 15 in which surface modification treatment was performed had a larger Push-Pull signal value than Comparative Examples 9 to 12 in which surface modification treatment was not performed at any measurement position. From this, in Comparative Examples 9 to 12, it is possible that the guide groove shape of the second recording layer is changed from the groove shape of the stamper (AP03). On the other hand, in Examples 12 to 15 it can be seen that this change was suppressed and the second recording layer having a good concavo-convex shape was formed. Because of this, according to the manufacturing method of the present invention, light recording / reproducing information with light is stable. It is assumed that a recording medium can be obtained.
  • Example 15 and Comparative Example 12 which were irradiated with a large amount of ultraviolet rays at the time of forming the adhesive body, grooving / peeling scratches occurred, whereas in Examples 12 to 14 and Comparative Examples 10 and 11, Groove
  • the intermediate layer (resin raw material layer) must be semi-cured before the stamper is peeled off in order to form a good guide groove (ie, uneven shape). It was confirmed!
  • stamper a stamper similar to the PC2 stamper used in Example 7 was used. This stamper is hereinafter referred to as the PC3 stamper as appropriate.
  • a tetrafluoropentanol solution (concentration: 0.9 wt%) of a metal-containing azo dye was prepared, and this was dropped onto a substrate and applied by a spinner method. After coating, the film was dried at 70 ° C. for 30 minutes to form a first recording layer. The coating conditions of the first recording layer were adjusted so that the OD value was 0.53 with a laser having a wavelength of 590 nm.
  • an Ag alloy made of Ag Bi (Bi: 1.0 atomic%) is used on the first recording layer,
  • a 17 nm semitransparent first reflective layer was formed by sputtering.
  • an ultraviolet curable resin SD6036 manufactured by Dainippon Ink, Inc.
  • a film having a thickness of about 35 111 (using a spinner method) The first resin layer) was formed.
  • a predetermined UV curable resin MPZ388 manufactured by Nippon Kayaku Co., Ltd.
  • a film (second resin layer) having a thickness of about 13 111 was formed by the spinner method.
  • the first substrate and the PC3 stamper are placed so that the first resin layer and the second resin layer face each other. Pasted together. Subsequently, ultraviolet rays were irradiated from the PC3 stamper side at room temperature to cure the first resin layer and the second resin layer, thereby forming an adhesive body. In this case, the amount of UV irradiation is 240 mj / cm7.
  • the first recording layer, the first reflective layer, and the intermediate layer provided on the substrate and subjected to the surface modification treatment were allowed to stand in a clean booth at 25 ° C. and a relative humidity of 42% for 12 hours.
  • a tetrafluoropropanol solution (concentration: 1.1% by weight) of a metal-containing azo dye was dropped and applied by a spinner method. After coating, it was dried at 70 ° C. for 30 minutes to form a second recording layer.
  • the coating conditions of the second recording layer were adjusted so that the OD value was 0 ⁇ 59 with a laser having a wavelength of 590 nm.
  • a second reflective layer having a thickness of 120 nm was formed on the second recording layer using a Ag alloy made of Ag Bi (Bi: 1.0 atomic%) by a sputtering method.
  • an adhesive layer was provided on the second reflective layer by spin coating an ultraviolet curable resin. Then, a polycarbonate substrate having a diameter of 120 mm and a thickness of 0.6 mm was placed on the adhesive layer to form a second substrate, which was cured and adhered by irradiation with ultraviolet rays.
  • the Push-Pull signal obtained from the second recording layer of the optical recording medium manufactured by the above method was measured. The larger the numerical value, the better the recording characteristics.
  • the Push-Pull signal was ODU1000 manufactured by Pulstec Industrial Co., Ltd., using a laser beam with a wavelength of 650 nm and a reproduction power of 0.7 mW.
  • Table 5 shows the measurement results of push-pull signals measured at the radial positions of 23 mm, 40 mm, and 58 mm on the optical recording medium.
  • Example 17 and Comparative Example 13 A multilayer optical recording medium having two recording layers was prepared in the same manner as in Example 16 except that the ultraviolet ray irradiation amount during the formation of the adhesive and the heat treatment conditions during the surface modification treatment were as shown in Table 5. Manufactured. When the surface of the second resin layer (outermost resin layer) was touched with a finger after the PC3 stamper was peeled off, almost no stickiness was felt.
  • the push-pull signal of the obtained optical recording medium was measured in the same manner as in Example 16. The results are shown in Table 5.
  • the present invention can be widely used in any field where the power is applied to the optical recording medium, and is particularly suitable for use in the production of an optical recording medium having an intermediate layer having an uneven shape. Specific examples are particularly suitable for use in CDs, DVDs, blue laser compatible optical recording media, and the like. It should be noted that the entire contents of the specification, claims, drawings and abstract of the Japanese Patent Application No. 2006-260963, filed on September 26, 2006, are incorporated herein by reference. As it is incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

明 細 書
光記録媒体の製造方法及び製造装置
技術分野
[0001] 本発明は、光記録媒体の製造方法等に関し、より詳しくは、記録特性の良好な積 層型多層光記録媒体を製造する方法及び製造装置に関する。
背景技術
[0002] 近年、長時間かつ高画質の動画等の大容量データを記録'再生するために、従来 と比較してさらなる情報の高密度化が可能な光記録媒体の開発が望まれている。こ のような情報の高密度化が可能な光記録媒体としては、例えば、 1枚の媒体に記録 層を 2層(デュアルレイヤ)設けた積層構造を有する DVD— ROM等の積層型多層 光記録媒体が挙げられる。このような多層化の技術を用いれば、 1層あたりの記録密 度は変化させることなく容量を増大させることが可能である。
[0003] 積層型多層光記録媒体は、通常、フォトポリメリゼーシヨン法(Photo Polymeriza tion :以下、「2P法」と記すことがある。)と呼ばれる製造方法により製造される。 2P法 によれば、例えば、記録トラック用の凹凸形状が形成された透明な第 1基板上に第 1 記録層、第 1反射層、記録トラック用の凹凸形状が形成された中間層、第 2記録層、 第 2反射層をこの順に形成し、最後に第 2基板を接着することにより 2層構造の光記 録媒体が製造される。
[0004] 2P法の場合は、中間層は、通常、以下のようにして製造される。すなわち、まず、第
1反射層上に、光(光としては、例えば紫外線等の放射線を挙げることができる。)に より硬化する光硬化性樹脂原料等を塗布して樹脂原料層を形成した後、この上に転 写用の凹凸形状(以下適宜、「転写用凹凸形状」とレ、う)を有するスタンパを載置する 。次いで、上記光硬化性樹脂原料等を硬化させた後に、スタンパを剥離する。このよ うにして、光硬化性樹脂の表面にスタンパの転写用凹凸形状を転写させて、凹凸形 状を有する中間層を硬化性樹脂の硬化物によって形成することができるようになって いる。
[0005] したがって、 2P法においては、光硬化性樹脂を硬化させた後のスタンパをスムーズ に剥離することが望まれる。 2P法により記録用トラック用の凹凸形状を有する中間層 を形成する際には、光硬化性樹脂とスタンパとが剥離し難い、又は、剥離しても中間 層の表面の均一性が低下する、等の製造上の課題が生じると、中間層にキズゃはぎ 取り等の欠陥が生じ、光記録媒体に安定して光による情報の記録 ·再生を行うことが できなくなる可能性があるからである。
[0006] ところ力 特にポリカーボネート系樹脂やアクリル樹脂で形成したスタンパを用いた 場合には、紫外線硬化性樹脂等で形成された中間層とスタンパとの剥離が困難であ るという現状がある(特許文献 1 , 2)。
[0007] 特許文献 2には、アクリル樹脂製のスタンパに対して、無機系材料による表面コー ティングを行うことが提案されている。そして、それにより、上記剥離を良好に行うこと 力 Sできるとされている。さらに、同文献においては、スタンパの溝/ピット(転写用凹凸 形状に対応)の表面に SiO誘電体膜が成膜されたアクリルスタンパを用いている。
[0008] 一方、特許文献 3には、スタンパの全体を環状ポリオレフインまたはポリスチレン系 樹脂から構成するか、スタンパの少なくとも母型パターン (転写用凹凸形状に相当) が形成されている表面を環状ポリオレフインまたはポリスチレン系樹脂から構成するこ とが提案されている。そして、それにより、放射線硬化型樹脂の硬化物からなる中間 層に対するスタンパの離型性を良好にすることができると記載されている。また、特許 文献 3においては、環状ポリオレフインが、放射線硬化型樹脂の硬化物からなる中間 層に対するスタンパの離型性を特に良好にするとしている。
[0009] 特許文献 1 :国際公開第 2005/048253号パンフレット(段落 [0100] )
特許文献 2:特開 2002— 279707号公報(段落 [0021]、 [0028] )
特許文献 3 :特開 2003— 85839号公報(段落 [0006]、 [0016]、 [0046]〜[0055 ]等)
発明の開示
発明が解決しょうとする課題
[0010] しかしながら、特許文献 2, 3のような方法によって中間層とスタンパとの剥離を容易 にした場合であっても、中間層に形成された溝の表面が完全に硬化されていない場 合には、記録用トラックの凹凸形状が変化する場合や、記録層を積層する際に凹部 と凸部の比率が変化する場合があることが判明した。また、このような凹凸形状等の 変化は、経時的にも起こることが判明した。これにより、光記録媒体への光による情報 記録 ·再生特性が不安定になる可能性があった。
[0011] 特にこのような課題は、記録層として有機色素材料を用いる方式の光記録媒体に おいて顕著に発生することが判った。し力もながら従来は、どのようにすれば、スタン パに形成された溝形状が中間層に忠実に転写され、さらに記録層として再現すること が可能であるかは明らかでなかった。
[0012] 本発明は上記の課題に鑑みて創案されたもので、良好な凹凸形状を有し、光によ る情報の記録 ·再生が安定した光記録媒体を製造することができる、光記録媒体の 製造方法及び製造装置を提供することを目的とする。
課題を解決するための手段
[0013] 本発明の発明者らは、上記課題を解決するべく鋭意検討した結果、 2P法による光 記録媒体の製造方法において、中間層を硬化させた後にスタンパを剥離した後に、 凹凸形状が転写された中間層に表面改質処理を施すという手法を見出した。そして 、この手法を導入することにより、スムーズな剥離が困難であったポリカーボネート系 樹脂でスタンパを形成した場合にも、良好な凹凸形状を有する中間層を得ることがで きるという知見を得た。さらに、この手法を導入することにより、スタンパの材質によら ず、スタンパの凹凸形状が中間層に忠実に転写され、さらに記録層として再現できる という知見を得た。
[0014] 即ち、本発明の要旨は、凹凸形状を有する中間層を備えた光記録媒体の製造方 法であって、基板上に、直接又は他の層を介して、照射される光により情報が記録さ れる記録層を形成する工程と、前記記録層上に、直接又は他の層を介して、樹脂原 料層と前記凹凸形状に対応した転写用凹凸形状を有するスタンパとをこの順に載置 した状態で、前記樹脂原料層を硬化させて、前記基板、前記記録層、前記樹脂原料 層及び前記スタンパを備えた接着体を得る工程と、前記樹脂原料層から前記スタン パを剥離して前記樹脂原料層に前記転写用凹凸形状を転写した後に、前記転写用 凹凸形状が転写された前記樹脂原料層の硬化を促進させる表面改質処理を施して 前記中間層を形成する工程とを有することを特徴とする、光記録媒体の製造方法に 存する。
[0015] このとき、前記表面改質処理は、放射線照射処理及び/又は加熱処理であること が好ましい。
また、前記表面改質処理は、照射量 50〜; 1000mj/cm2の紫外線照射による力、、 若しくは加熱温度 40〜; 120°Cの加熱処理によることが好ましい。
さらに、前記接着体を得る工程における前記樹脂原料層の硬化は、半硬化状態ま での硬化であることが好ましレ、。
[0016] また、前記記録層は、有機色素材料を含有することが好ましい。
また、前記スタンパは、ポリカーボネート系樹脂製であることが好ましい。 さらに、前記樹脂原料層は複数の樹脂層から構成されていることが好ましい。 また、前記樹脂原料層が複数の樹脂層から構成され、且つ、前記複数の樹脂層の うち最外樹脂層の硬化が、半硬化状態までの硬化であることが好ましい。
[0017] 本発明の別の要旨は、基板、記録層、及び、凹凸形状を有する中間層を少なくとも 備えた光記録媒体の製造装置であって、前記基板上に、直接又は他の層を介して、 前記記録層を形成する手段と、前記記録層上に、直接又は他の層を介して、樹脂原 料層を形成する手段と、前記樹脂原料層上に、前記凹凸形状に対応した転写用凹 凸形状を有するスタンパを載置した状態で、前記樹脂原料層を硬化させて、前記基 板、前記記録層、前記樹脂原料層及び前記スタンパを備えた接着体を得る手段と、 前記接着体から前記スタンパを剥離し、前記樹脂原料層に前記転写用凹凸形状を 転写する手段とを備え、かつ、前記転写用凹凸形状が転写された前記樹脂原料層 の硬化を促進させる表面改質処理を施す手段を有することを特徴とする、光記録媒 体の製造装置に存する。
発明の効果
[0018] 本発明の光記録媒体の製造方法及び製造装置によれば、良好な凹凸形状を有し 、光による情報の記録 ·再生が安定した光記録媒体を製造することができる。
図面の簡単な説明
[0019] [図 l] (a)〜(!)は、いずれも、本発明の第一実施形態が適用される光記録媒体の製 造方法の好ましい一例を説明するための模式図である。 [図 2] (a) , (b)は、いずれも、本発明の第二実施形態が適用される光記録媒体の製 造方法の樹脂原料層形成工程について説明するための模式図である。
[図 3]本発明の第二実施形態が適用される光記録媒体の製造方法の樹脂原料層硬 化工程につ!/、て説明するための模式図である。
[図 4]本発明の光記録媒体を製造することが出来る製造装置のブロック図である。 符号の説明
1 製造装置
2 第 1記録層形成装置
3 第 1反射層形成装置
4 樹脂原料層形成装置
5 樹脂原料層硬化装置
6 スタンパ剥離装置
7 表面改質処理装置
8 第 2記録層形成装置
9 第 2反射層形成装置
10 第 2基板形成装置
11 運搬装置
100 光記録媒体
101 第 1基板
102 第 1記録層
103 第 1反射層
104 中間層
104a 樹脂原料層(紫外線硬化性樹脂原料層)
104a 第 1樹脂層
1
104a 第 2樹脂層 (最外樹脂層)
105 第 2記録層
106 第 2反射層
107 接着層 108 第 2基板
109 レーザ光
110 スタンノ
111 データ基板
112, 112' 接着体
113 光記録媒体用積層体
発明を実施するための最良の形態
[0021] 以下、本発明の実施形態について詳述する。し力もながら、本発明は、以下の実施 形態に限定されるものではなぐその要旨を逸脱しない範囲内で種々変形して実施 すること力 Sできることは!/、うまでもな!/、。
[0022] [I.第一実施形態]
図 1 (a)〜 (h)は、本発明の第一実施形態が適用される光記録媒体の製造方法の 好ましい一例を説明するための模式図である。なお、図 1 (a)〜(!)には、積層型多 層光記録媒体の製造方法の例として、有機色素を含む 2つの記録層を有するデュア ルレイヤタイプの片面入射型の光記録媒体(片面 2層 DVD— R又は片面 2層 DVD レコーダブル.ディスク)の製造方法が示されている。
[0023] まず、本実施形態において製造しょうとする光記録媒体の構成について簡単に説 明する。図 1 (h)に示すように、片面 2層 DVD— Rに代表される片面 2層の光記録媒 体 100は、ディスク状の光透過性の第 1基板 101を備えていて、この第 1基板 101上 に、色素を含む第 1記録層 102と、半透明の第 1反射層 103と、紫外線硬化性樹脂 力もなる光透過性の中間層 104と、色素を含む第 2記録層 105と、第 2反射層 106と 、接着層 107と、最外層を形成する第 2基板 108とが、順番に積層された構造を有し ている。
[0024] また、第 1基板 101及び中間層 104上にはそれぞれ凹凸が形成され、これらの凹 凸がそれぞれ記録トラックを構成している。即ち、第 1基板 101及び中間層 104がそ れぞれ表面に有する凹凸形状(即ち、上記の凹凸の形状)が、記録トラックの形状と なっている。
さらに、光記録媒体 100の光情報の記録 ·再生は、第 1基板 101側から第 1記録層 102及び第 2記録層 105に照射されたレーザ光 109により行われるようになつている 。即ち、第 1記録層 102及び第 2記録層 105は、照射されるレーザ光 109により情報 が記録及び再生されるようになっている。
[0025] なお、本実施の形態が適用される光記録媒体の製造方法において、「光透過性( 又は透明)」とは、光情報を記録 ·再生するために照射される光の波長に対する光透 過性を意味するものである。具体的には、光透過性とは、記録'再生のための光の波 長について、通常 30%以上、好ましくは 50%以上、より好ましくは 60%以上の透過 性があることを言う。一方、記録 ·再生のための光の波長に対する透過性は、理想的 には 100%である力 通常は、 99. 9%以下の値となる。
[0026] 続いて、本実施形態の光記録媒体の製造方法を説明する。
本実施形態の光記録媒体の製造方法は、第 1記録層形成工程と、第 1反射層形成 工程と、樹脂原料層形成工程と、樹脂原料層硬化工程と、スタンパ剥離工程と、表面 改質処理工程と、第 2記録層形成工程と、第 2反射層形成工程と、第 2基板形成ェ 程とを有する。
[0027] [1.基板の用意]
まず、第 1基板 101を用意する。第 1基板 101としては、図 1 (a)に示すように、表面 に凹凸で、溝、ランド、及びプリピットが形成されたものを用意する。第 1基板 101は、 例えばニッケル製スタンパ等を用いて射出成形等により作製することができる。
[0028] [2.第 1記録層形成工程]
次に、第 1記録層形成工程において、第 1基板 101上に第 1記録層 102を形成する 。第 1記録層 102は、照射される光により情報が記録される層である。第 1記録層 102 の形成方法に制限はないが、例えば以下の方法で形成することができる。即ち、有 機色素を含有する塗布液を第 1基板 101の凹凸を有する側の表面にスピンコート等 により塗布する。その後、塗布液に使用した溶媒を除去するために加熱等を行い、第 1記録層 102を成膜する。なお、本実施形態では、上記のように第 1基板 101上に直 接第 1記録層 102を形成した例を示して説明するが、第 1記録層 102は、光記録媒 体 100の種類や構成などに応じて、第 1基板 101上に 1層又は 2層以上の他の層を 介して形成するようにしてもょレ、。 [0029] [3.第 1反射層形成工程]
第 1記録層 102を成膜した後、第 1反射形成工程において、第 1記録層 102上に第 1反射層 103を形成する。第 1反射層 103の形成方法に制限はないが、例えば、第 1 記録層 102上に Ag合金等をスパッタまたは蒸着することにより、第 1記録層 102上に 第 1反射層 103を成膜することができる。
このように、第 1基板 101上に、第 1記録層 102及び第 1反射層 103を順に積層す ることによって、データ基板 111を得る。なお、本実施の形態においては、データ基 板 11 1を透明にしてレ、るものとする。
[0030] [4.樹脂原料層形成工程]
続いて、樹脂原料層形成工程において、図 1 (b)に示すように、第 1反射層 103の 表面(即ち、データ基板 111の表面)全体に、樹脂原料層 104aを形成する。即ち、 第 1記録層 102上に、第 1反射層 103を介して樹脂原料層 104aを形成する。
ここで形成する樹脂原料層 104aは、光記録媒体 100の完成時に中間層 104を構 成することになる層で、何らかの処理を施すことにより硬化しうる硬化性樹脂又はその 前駆体により形成された層である。
[0031] 上記硬化性樹脂としては光記録媒体に使用しうる硬化性樹脂を任意に用いること ができる。硬化性樹脂の例としては、放射線硬化性樹脂、熱硬化性樹脂などが挙げ られ、中でも、放射線硬化性樹脂の一種である紫外線硬化性樹脂が好ましい。なお 、本明細書においては、「放射線」を、電子線、紫外線、可視光、及び赤外線を含む 意味で用いる。また、硬化性樹脂は 1種を単独で用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもよ!/、。
ただし、樹脂原料層 104aはこの後でスタンパ 110 (後述)により表面に凹凸が成形 されることになるため、樹脂原料層硬化工程において成形される前には、不定形な 状態(通常は、所定の粘度を有する液体状態)となって!/、る。
[0032] また、樹脂原料層 104aの形成方法に制限はない。例えば、樹脂原料層 104aは、 硬化性樹脂の前駆体をスピンコート等により塗布することで形成することができる。本 実施形態においては、放射線硬化性樹脂の一つである紫外線硬化性樹脂の前駆体 をスピンコートにより塗布し、樹脂原料層(以下、説明の便宜から「紫外線硬化性樹脂 原料層」と呼ぶ場合がある。 ) 104aを形成したものとする。
[0033] ところで、本実施形態においては、上記のように第 1記録層 102上に第 1反射層 10 3を介して紫外線硬化性樹脂原料層 104aを形成した例を示して説明するが、紫外 線硬化性樹脂原料層 104aは、光記録媒体 100の種類や構成などに応じて、第 1記 録層 102上に直接形成するようにしてもよぐまた、第 1反射層 103以外の 1層又は 2 層以上のその他の層を介して形成するようにしてもよ!/、。
[0034] [5.樹脂原料層硬化工程]
次に、樹脂原料層硬化工程において、図 1 (c)に示すように、紫外線硬化性樹脂原 料層 104a上にスタンパ 110を載置し、紫外線硬化性樹脂原料層 104aを硬化させる 。つまり、第 1記録層 102とは反対側の紫外線硬化性樹脂原料層 104aの表面にスタ ンパ 110が載置された状態となる。
スタンパ 110は、中間層 104に形成されることになる凹凸の形状(凹凸形状)に対応 した形状 (転写用凹凸形状)の凹凸(転写用凹凸)を表面に有する型である。そして、 スタンパ 110が有する転写用凹凸の転写用凹凸形状が紫外線硬化性樹脂原料層 1 04aに転写されることにより、中間層 104に、所望の凹凸形状の凹凸が形成されるよ う、転写用凹凸形状は設定されている。
[0035] また、スタンパ 110の材料としては、光記録媒体 100の製造コストを考慮して、通常 は樹脂を用いる。後述する通り、紫外線硬化性樹脂原料層 104aを硬化させるための 紫外線は、スタンパ 110を介して照射することが好ましい。したがって、スタンパ 110 の材料として金属等の不透明材料を用いると、紫外線をスタンパ 110を介して照射す ることが不可能となるが、そのような場合には紫外線により各層の劣化など悪影響を 及ぼす可能性がある。
[0036] ところで、本実施形態においては、後述するように、樹脂原料層 104aを半硬化状 態に留めておくこと、及び、スタンパ 110の剥離を加熱環境下で行うことにより、スタン ノ 110に用いる材料の自由度が大きく広がると!/、う利点が発揮される。つまり、従来 は、スタンパ 110を形成したときの表面エネルギーを小さくする観点から、スタンパ 11 0を形成する樹脂として、ポリオレフイン系樹脂、ポリスチレン系樹脂などが好ましいと されてきた。そして、実際に実用化されているのは、非晶質環状ポリオレフイン樹脂( 例えば、ゼォネックスおよびゼォノア(いずれも日本ゼオン社製))である。しかし、本 実施形態においては、後述する表面改質処理工程を行うこと、及び、加熱環境下に おいてスタンパ 110の剥離を行うことによって、上記のような高機能性の樹脂に限ら れず、ポリカーボネート系樹脂、アクリル系樹脂等の汎用で低コストの樹脂を用いるこ と力 Sできる。なお、表面改質処理工程を行うこと、及び、加熱環境下においてスタンパ
110の剥離を行うことは、いずれか一方のみを行った場合でも両方を組み合わせて 行った場合でも、スタンパ 110の剥離を良好に行うことができ、スタンパ 110に用いる 材料の自由度を高めることは可能である。
上記利点を顕著に発揮させる観点から、スタンパ 110の材料としては、ポリカーボネ ート系樹脂、アクリル系樹脂を用いることが好ましい。より好ましくは、ポリカーボネート 系樹脂である。なお、スタンパ 110の材料は、 1種を単独で用いてもよぐ 2種以上を 任意の組み合わせ及び比率で併用してもよ!/、。
[0037] さらに、スタンパ 110は、通常、中央部に表裏を貫通する中心孔を形成された円板 形状に形成される。本実施形態においても、スタンパ 110は、表面に転写用凹凸形 状を有し、中央部にセンターホール(図示省略)を形成された円板形状のものを用い ているものとする。
[0038] なお、スタンパ 110を作製する場合、その作製方法は任意であるが、例えば、スタン ノ 110を樹脂製スタンパとする場合には、スタンパ 110が有する転写用凹凸形状の 逆 (ネガ)の凹凸パターンを有する金属製スタンパ(例えば、ニッケル製スタンパ)を用 いて、射出成形等により作製することができる。
[0039] また、本実施の形態において使用されるスタンパ 110の厚さは、形状安定性及びハ ンドリングの容易さの点で、通常 0. 3mm以上とするのが望ましい。但し、厚さは、通 常、 5mm以下である。スタンパ 110の厚さがこの範囲であれば、十分な光透過性を 有するため、後述するようにスタンパ 110を介して紫外線を照射しても、紫外線硬化 樹脂等を効率よく硬化させることが可能であり、生産性を向上させることが出来る。
[0040] さらに、スタンパ 110の外径は、第 1基板 101の外径(通常は、光記録媒体 100の 外径に等しい)より大きくすることが好ましい。スタンパ 110の外径を第 1基板 101の 外径よりも予め大きく設計しておくと、射出成形でスタンパ 110を製造する際に、スタ ンパ 110の第 1基板 101の外径よりも外側の外周部にも余裕を持って転写用凹凸形 状を形成することが可能となり、スタンパ 110の全面にわたって良好な転写用凹凸形 状を形成することが出来る。
[0041] また、第 1基板 101の外径よりもスタンパ 110の外径を大きくすることにより、中間層
104 (及び、紫外線硬化性樹脂原料層 104a)の外径よりもスタンパ 110の外径が大 きくなる。このようにすると、中間層 104の端面の形状を良好にしゃすくなる。つまり、 仮にスタンパ 110の外径を第 1基板 101の外径以下にした場合には、スタンパ 110を 紫外線硬化性樹脂原料層 104a上に載置した際に、スタンパ 110の外周端部に紫外 線硬化性樹脂原料層 104aの樹脂が付着することがある。この樹脂は、スタンパ 110 を剥離する際にバリとなる場合がある。したがって、中間層 104 (紫外線硬化性樹脂 原料層 104a)の外径よりもスタンパ 110の外径が大き!/、と、ノ リとなりやす!/、紫外線 硬化性樹脂原料層 104aの端部に存在する樹脂が、中間層 104の外径よりも外側に 存在することとなる。その結果、ノ リが発生したとしても、バリ発生の部分を取り除くこ とによって、中間層 104の端面の形状を良好とすることができる。
[0042] 具体的には、スタンパ 110の外径は、第 1基板 101の外径より、直径で通常 lmm 以上、好ましくは 2mm以上大きくすることが好ましい。但し、スタンパ 110の外径を第 1基板 101の外径より大きくする程度は、直径で通常 15mm以下、好ましくは 10mm 以下であることが好ましい。
[0043] スタンパ 110を載置する際は、通常、スタンパ 110の凹凸が形成された面を紫外線 硬化性樹脂原料層 104aに押し付けるようにして載置するが、あらかじめスタンパ 110 の凹凸が形成された面にも、スピンコート等によって紫外線硬化性樹脂原料層 104a と同じ原料を塗布しておき、塗布されたスタンパ 110と紫外線硬化性樹脂原料層 10 4aとを載置することもできる。紫外線硬化性樹脂原料層 104aの膜厚が所定範囲に なるようにするためには、例えば、載置する際の押し付ける力を調節してもよいし、ス ピンコート時に紫外線照射を行ったり、熱をかけたりする方法等が挙げられる。
[0044] そして、スタンパ 110を紫外線硬化性樹脂原料層 104aに載置した状態で、紫外線 硬化性樹脂原料層 104aを硬化させる。紫外線硬化性樹脂原料層 104aを硬化させ るには、紫外線硬化性樹脂原料層 104aに紫外線を照射すればよい。紫外線の照射 方法は限定されず、スタンパ 110を介して照射してもよいし、紫外線硬化性樹脂原料 層 104aの側面から照射してもよぐさらに、第 1基板 101側から照射するようにしても よい。紫外線をスタンパ 1 10側からの照射する場合には、スタンパ 110として紫外線 を透過しうるもの(光透過性のもの)を用いることが、工業的に好ましい。紫外線を第 1 基板 101側から照射する場合には、紫外線の照射により第 1記録層 102がダメージ を受けないようにすることが好ましい。紫外線の照射効率および紫外線による各層材 料への悪影響軽減の観点から、紫外線はスタンパ 110を介して照射することが好まし い。
[0045] 紫外線硬化性樹脂原料層 104aに紫外線を照射する場合の紫外線波長は限定さ れず、紫外域にピークを有するものであればよいが、そのピーク波長は、通常 250η m以上、好ましくは 300nm以上であり、通常 600nm以下、好ましくは 500nm以下で ある。照射する紫外線のピーク波長が前記範囲未満であっても、前記範囲超過であ つても、紫外線硬化性樹脂原料層 104aの硬化が不十分となる可能性がある。
[0046] 紫外線の照射量は、樹脂原料層 104aの構成物質や組成等によって適宜最適化さ れるカ 通常 50mj/cm2以上、好ましくは 100mj/cm2以上が望ましい。照射量が 前記範囲未満の場合は樹脂の未硬化部分が多くなり、剥離時に溝が抜けるなど樹 脂原料層 104aへの(ひいては、中間層 104への)凹凸の転写不良が起こる可能性 力 る。また、紫外線の照射量の上限に特に制限は無いが、後述するように樹脂原 料層 104aを半硬化状態まで硬化させるようにする場合には、通常 500mj/cm2以 下、好ましくは 400mj/cm2以下が望ましい。照射量が前記範囲を超える場合は、 樹脂が完全に硬化してしまい、スタンパ 110の剥離が困難な状況となり、結果として、 剥離傷や溝抜けなど樹脂原料層 104aへの(ひいては、中間層 104への)凹凸の転 写不良が発生する場合がある。なお、紫外線の照射時間は、照射量が前記範囲とな るように適宜調整される。
[0047] 紫外線の照射強度は本発明の効果を著しく損なわない限り任意であるが、通常 30 mW/cm2以上、好ましくは 40mW/cm2以上が望ましぐ通常 200mW/cm2以下 、好ましくは 150mW/cm2以下が望ましい。照射強度が前記範囲を超えるような強 力な紫外線を短時間に照射する場合は、表面改質処理が不均一になったり、物理 的な歪みを生じたりする場合がある。また、照射強度が前記範囲未満のような弱い紫 外線を長時間照射する場合は、製造効率が低下するばかりか、十分な表面改質処 理効果が得られなレ、場合がある。
[0048] 紫外線硬化性樹脂原料層 104aに紫外線を照射する場合の照射方法や照射装置 には限定はなぐ公知の方法、装置を用いることができる。
[0049] さらに、本発明においては、紫外線硬化性樹脂原料層 104aの紫外線による硬化を 完結させずに、半硬化状態までの硬化とすることが好ましい。紫外線硬化性樹脂原 料層 104aの硬化を半硬化状態までの硬化とすることにより、スタンパ 110と樹脂原料 層 104aとの密着力が低下するため、後述するスタンパ 110の剥離を容易にすること ができる。この方法によれば、スタンパ 110の材質としてポリカーボネート系樹脂のよ うな剥離が困難な材質を用いた場合であっても、良好にスタンパ 110を剥離すること が可能となる。したがって、スタンパの材質によらず良好な凹凸形状を有する樹脂原 料層 104aの形成が可能となり、ひいては良好な凹凸形状を有する中間層 104を形 成することが可能となる。
[0050] ここで、半硬化状態までの硬化とは、例えば、紫外線硬化性樹脂原料層 104aの硬 化度合いで判断することができる。具体的には、紫外線硬化性樹脂原料層 104aに 残存する二重結合の割合を赤外分光光度計 (FT— IR)またはラマン分光法で測定 することによって定量すること力 Sできる。具体的には、未硬化の紫外線硬化性樹脂の 二重結合の吸収位置をあらかじめ特定しておき、スタンパ上に設けられた紫外線硬 化性樹脂の膜の表面の硬化前後における吸収を測定することにより、硬化前後の二 重結合の量の比率を算出して得ることができる。
本発明において、半硬化状態とは、スタンパ上に設けられた紫外線硬化性樹脂表 面の、硬化処理を行った後における二重結合の残存率力 通常 90%以下、好ましく は 50%以下、より好ましくは 30%以下であることが望ましい。
[0051] 一方、紫外線硬化性樹脂原料層 104aが半硬化しているか否かを定性的に判断す る方法の一つとして、硬化処理を行った後において、紫外線硬化性樹脂原料層 104 aが粘性を有する状態を挙げることができる。具体的には、後述するスタンパ 110の 剥離を行った時点で、紫外線硬化性樹脂原料層 104aの表面を指で触った場合に、 ベとつくような状態を挙げることができる。
[0052] このように、紫外線硬化性樹脂原料層 104aの硬化を半硬化状態までの硬化とする ためには、上述の紫外線照射の条件、即ち、照射量、照射強度及び照射時間を適 宜最適化すればよい。
[0053] 本実施形態では、スタンパ 1 10を介して、スタンパ 110側から紫外線硬化性樹脂原 料層 104aに紫外線を照射して、紫外線硬化性樹脂の前駆体を重合させることにより 、紫外線硬化性樹脂原料層 104aを半硬化状態まで硬化させたものとして説明を行う 以上のようにして、前記樹脂原料層 104aを硬化させて、データ基板 11 1 (即ち、第 1基板 101、第 1記録層 102及び第 1反射層 103)、紫外線硬化性樹脂原料層 104a 、並びに、スタンパ 1 10を備えた接着体 112が得られる。
[0054] [6.スタンパ剥離工程]
スタンパ剥離工程では、図 1 (d)に示すように、紫外線硬化性樹脂原料層 104a (図 1 (c)参照)からスタンパ 110を剥離させる。これにより、紫外線硬化性樹脂原料層 10 4aにスタンパ 110の転写用凹凸形状が転写される。そして、この転写された転写用 凹凸形状に応じて凹凸形状が、中間層 104に形成されることになる。なお、本明細書 では、紫外線硬化性樹脂原料層 104aとは、塗布後、硬化され、スタンパが剥離され 、更に表面効果処理を施されるよりも以前のものを指す。また、中間層 104とは、スタ ンパ 110が剥離された後で表面効果処理を施された後のものを指す。したがって、紫 外線硬化性樹脂原料層 104a及び中間層 104は同様の位置に形成された層を指す ものである力 その状態が異なるものである。
[0055] スタンパ 110を剥離させる具体的方法に制限はないが、通常は、光記録媒体が円 盤形状の場合には、内周を真空吸着して、光記録媒体の内周にナイフエッジを入れ 、そこにエアーを吹き込みながらディスク(後述する光記録媒体用積層体 113)とスタ ンパ 110を引き離すという方法で剥離を行う。
[0056] ここで、上記のスタンパ 110の剥離は、常温で行う等、温度制御せずに行っても、 接着体 112を加熱した状態にお!/、て行ってもよ!/、が、加熱した状態にお!/、てスタン ノ 110の剥離することで剥離が良好となり、良好な凹凸形状を有する樹脂原料層 10 4aを得ることができ、ひいては良好な凹凸形状を有する中間層 104が得られるので 好ましい。加熱操作を行う時期は任意であり、例えば基板の用意、第 1記録層形成ェ 程、第 1反射層形成工程、樹脂原料層形成工程、樹脂原料層硬化工程などのスタン パ剥離工程以前の時点から加熱を開始してもょレ、が、スタンパ剥離工程直前ある!/、 は、スタンパ剥離工程中までに加熱を開始することが望ましい。中でも、通常は、樹 脂原料層硬化工程後、すなわちスタンパ剥離工程において加熱操作を行うようにす ること力 S好ましい。また、スタンパ 110を剥離する時の接着体 112の温度は任意であ るが、通常、 50°C以上が好ましぐまた、樹脂原料層 104aの(即ち、中間層 104の) ガラス転移温度以下、かつスタンパ 110のガラス転移温度以下とすることが好ましい
[0057] なお、樹脂原料層硬化工程において樹脂原料層 104aの硬化を完結させた場合で あっても、スタンパ剥離工程において加熱した状態で剥離を行うようにすれば、スタン ノ 110の剥離を良好に行うことが可能である。また、本実施形態のように、樹脂原料 層硬化工程において樹脂原料層 104aを半硬化状態まで硬化させた場合にあって は、スタンパ剥離工程にお!/、て加熱した状態で剥離を行うようにすれば、スタンパ 11 0の剥離をより一層安定して行なうことが可能である。
なお、接着体 112の温度は、非接触型の温度計 (例えば、 KEYENCE社製の非 接触型温度計 IT2— 60)により測定することができる。
[0058] 以上の操作を経て、紫外線硬化性樹脂原料層 104aの表面にスタンパ 110の転写 用凹凸の形状 (即ち、転写用凹凸形状)が転写された樹脂原料層 104aを形成し、第 1基板 101、第 1記録層 102、第 1反射層 103及び樹脂原料層 104aを備えた光記録 媒体用積層体 113を得ること力 Sできる(図 1 (d)参照)。
[0059] [7.表面改質処理工程]
本実施形態では、図 1 (e)に示すように、スタンパ 110を剥離することによって樹脂 原料層 104aに転写用凹凸形状を転写した後で、樹脂原料層 104aに表面改質処理 を施す。これにより、樹脂原料層 104aは硬化が進行し、中間層 104が形成される。こ こで、表面改質処理とは、樹脂原料層 104aの硬化を促進する処理であれば限定さ れないが、放射線照射処理及び/又は加熱処理であることが好ましい。また、放射 線の中でも、紫外線を用いることが好ましい。したがって、例えば樹脂原料層 104aが 紫外線硬化性樹脂で構成されている場合には、表面改質処理として紫外線照射及 び加熱処理の何れを用いてもょレ、が、少なくとも紫外線照射を用いることが好ましレ、 。また、例えば樹脂原料層 104aが熱硬化性樹脂で構成されている場合にも、表面 改質処理として紫外線照射及び加熱処理の何れを用いてもよいが、表面改質処理と して、少なくとも加熱処理を用いることが好ましい。
[0060] このように、スタンパ 110を剥離して樹脂原料層 104aに転写用凹凸形状を転写し た後、樹脂原料層 104aに表面改質処理を施すことにより、樹脂原料層 104aの硬化 反応を促進して硬化を完結させ、中間層 104を得ることが出来る。これにより、最早、 スタンパ 110を剥離した状態でデータ基板 111を保持した場合でも、中間層 104に 転写された凹凸の形状は変化することがなくなり、後述する第 2記録層の記録 ·再生 を安定化させることが出来る。
[0061] 前記の表面改質処理の利点は、樹脂原料層硬化工程において樹脂原料層 104a の硬化を半硬化状態までに留めておいた場合だけでなぐ樹脂原料層 104aを更に 硬化させていた場合であっても得られるものである。この点について説明すると、樹 脂原料層硬化工程において樹脂原料層 104aの硬化を半硬化状態から更に進行さ せた場合、例え樹脂原料層 104aの硬化を完結させるように硬化を大きく進行させた 場合であっても、何らかの理由により、非常に微細なサイズの未硬化部分が残ること がある。このような未硬化部分は、時間の経過と共に凹凸形状が変化する可能性が あったり、また特に溶媒を用いて記録層を積層する場合に、溝部とランド部に積層さ れる記録層の厚さ比率が変化することが多ぐ光記録媒体の記録'再生の安定性を 低下させる一因となっていた。しかし、表面改質処理を行うことにより、このような未硬 化部分を硬化させることができるので、スタンパ剥離後、第 2記録層形成前にデータ 基板 11 1を保持した場合でも、樹脂原料層 104aに転写された凹凸の形状は変化す ることを防止でき、光記録媒体の記録 ·再生を安定させることができるのである。
[0062] スタンパ 110を剥離してから表面改質処理を行う迄の時間は本発明の効果が著しく 損なわれない限り限定されないが、通常 24時間以内、好ましくは 12時間以内である ことが望ましい。特に、スタンパ 100を剥離して直ちに表面改質処理することが最適 である。また、表面改質処理を複数回に分割して行うことも出来る。この場合も、初回 の表面改質処理は前記の時期に行うことが望ましい。
[0063] 表面改質処理を紫外線照射で行う場合の紫外線波長は限定されず、紫外域にピ ークを有するものであれば制限は無いが、そのピーク波長は、通常 250nm以上、好 ましくは 300nm以上であり、通常 600nm以下、好ましくは 500nm以下である。照射 する紫外線のピーク波長が前記範囲未満であっても、前記範囲超過であっても、紫 外線硬化性樹脂原料層 104aの硬化が不十分となる可能性がある。
[0064] 紫外線の照射量は、樹脂原料層 104aの構成物質や組成、前記の樹脂原料層硬 化工程における硬化条件等によって適宜最適化されるが、通常 50mj/cm2以上、 好ましくは 100mj/cm2以上、より好ましくは 200mj/cm2以上が望ましぐ通常 100 Omj/cm2以下、好ましくは 800mj/cm2以下、より好ましくは 500mj/cm2以下が 望ましい。紫外線の照射量が前記範囲未満である場合は、十分な表面改質効果が 得られない場合があり、前記範囲超過である場合は、収縮や媒体の温度上昇等の理 由により媒体に物理的な歪みが生じる場合がある。
[0065] 紫外線の照射強度は本発明の効果を著しく損なわない限り任意であるが、通常 50 mW/cm2以上、好ましくは 200mW/cm2以上が望ましい。照射強度が前記範囲未 満のような弱い紫外線を長時間照射する場合は、製造効率が低下するばかりか、反 応速度が遅くなり十分な表面改質処理効果が得られない場合がある。
[0066] 表面改質処理として紫外線照射する場合の照射方法や照射装置には限定はなぐ 前記の樹脂原料層硬化工程と同様、公知の方法、装置を用いることができる。
[0067] 一方、表面改質処理として加熱を行う場合の加熱方法や加熱装置には限定は無 いが、樹脂原料層 104aの全面に亘つて均一に加熱することが望ましい。その点では 、オーブン式の加熱方法または赤外線ランプを使用した加熱方式が適して!/、る。
[0068] 表面改質処理をオーブン等の熱源による加熱処理で行う場合の温度は、樹脂原料 層 104aの構成物質や組成、前記の樹脂原料層硬化工程における硬化条件等によ つて適宜最適化されるが、通常 40°C以上、好ましくは 50°C以上が望ましぐ通常 12 0°C以下、好ましくは 100°C以下が望ましい。加熱温度が前記範囲未満である場合 は、十分な表面改質効果が得られない場合があり、また十分な改質効果を得るため には長時間の加熱が必要となるため製造効率が低下する傾向にある。また、加熱温 度が前記範囲超過である場合は、熱により基板に物理的な歪みを生じたり、記録層 にダメージを与えてしまう可能性がある。
[0069] オーブン等の熱源によって加熱処理を行う場合の加熱時間は、通常 10秒以上、好 ましくは 30秒以上、より好ましくは 1分以上であり、通常 3時間以下、好ましくは 2時間 以下である。加熱時間が前記範囲未満のような短時間に高温加熱を行うような場合 は、表面改質処理が不均一になったり、物理的な歪みを生じたりする場合がある。ま た、低温の加熱を前記範囲超過のような長時間行うような場合は、製造効率が低下 するばかりか、十分な表面改質処理効果が得られない場合がある。
また、加熱処理は、赤外線を用いた加熱方法も好ましい。赤外線を用いた加熱の 場合は瞬時に加熱することが出来るため、数秒程度の加熱で十分な表面改質処理 効果を得ることが出来る。このため、生産効率上、好ましい加熱方法である。
[0070] 本実施形態では、表面改質処理により、半硬化状態であった樹脂原料層 104aを 十分に硬化されることになる。そして、この表面改質処理工程を経たことによって、光 記録媒体用積層体 113において、樹脂原料層 104a (即ち、中間層 104)の硬化を完 結させ、次の工程 (ここでは、第 2記録層形成工程)までの間に光記録媒体用積層体 113を保存した場合でも、中間層 104が経時的に劣化することを抑制できるようにな つている。
[0071] [8.第 2記録層形成工程]
第 2記録層形成工程では、図 1 (f)に示すように、中間層 104上に第 2記録層 105 を形成する。第 2記録層 105の形成方法に制限はないが、例えば以下の方法で形成 すること力 Sできる。即ち、有機色素を含む塗布液を、スピンコート等により中間層 104 表面に塗布する。そして、塗布液に使用した溶媒を除去するために加熱等を行い、 第 2記録層 105を成膜する。 [4.樹脂原料層形成工程]から [8.第 2記録層形成ェ 程]を繰り返すことによって、積層型多層光記録媒体を効率よく製造することができる
[0072] なお、本実施形態は、第 2記録層 105を中間層 104上に直接形成した例を示して 説明するが、光記録媒体 100の種類や構成などに応じて、 1層又は 2層以上の他の 層(例えば保護層やバッファ一層)を介して第 2記録層 105を形成してもよいことはい うまでもない。
[0073] [9.第 2反射層形成工程]
第 2反射層形成工程では、図 1 (g)に示すように、第 2記録層 105上に第 2反射層 1 06を形成する。第 2反射層 106の形成方法に制限はないが、例えば、 Ag合金等を スパッタ蒸着することにより第 2記録層 105上に第 2反射層 106を成膜することができ
[0074] [10.第 2基板形成工程]
第 2基板形成工程においては、図 1 (h)に示すように、第 2反射層 106上に第 2基 板 108を形成する。第 2基板 108の形成方法に制限はないが、例えば、第 2基板 10 8を、接着層 107を介して第 2反射層 106に貼り合わせて形成することができる。なお 、第 2基板 108に制限はないが、ここでは、ポリカーボネートを射出成形して得られた 鏡面基板を第 2基板 108として用いているものとする。
[0075] ここで、接着層 107の構成は任意である。例えば、接着層 107は、透明であっても 不透明であってもよい。また、表面が多少粗くてもよい。さらに、遅延硬化型の接着剤 であっても問題なく使用できる。また、例えば、第 2反射層 106上にスクリーン印刷等 の方法で接着剤を塗布し、紫外線を照射してから第 2基板 108を載置し、押圧するこ とにより接着層 107を形成するようにしてもよい。また、第 2反射層 106と第 2基板 108 との間に感圧式両面テープを挟んで押圧することにより接着層 107を形成することも 可能である。
[0076] 以上のようにして、光記録媒体 100の製造が完了する。本実施形態の光記録媒体 の製造方法によれば、図 1 (h)に示すような層構成の光記録媒体 100を得ることがで きる。また、本発明の光記録媒体の製造方法によれば、光による情報の記録 ·再生が 安定した高品質の光記録媒体 100を製造できる。さらに、本実施形態の光記録媒体 の製造方法によれば、良好な凹凸形状を有する、欠陥の少ない中間層 104を備える 光記録媒体 100を安定的に製造することができる、スタンパ 110の材質によらず、良 好な凹凸形状を有する中間層 104を備える光記録媒体 100を製造することが可能で ある、などの利点も得ることができる。また、表面改質処理を行ったことにより、凹凸形 状を有するデータ記録領域に対する記録 ·再生を安定化できるという効果のみならず 、 BCA (バーストカッティングエリア)と呼ばれる媒体識別信号を記録する領域に対し ても、良好な信号記録特性が得られる。これは、表面処理を行うことで硬化反応が進 み、中間層 104の弾性率が高くなつたためと考えられる。
[0077] なお、図 1 (h)に示した層構成はあくまで一例であり、例えば、本実施形態の光記 録媒体の製造方法により、図 1 (h)に図示しない 1層又は 2層以上の他の層(例えば 、第 1基板 101と第 1記録層 102との間に下地層を揷入する。)を有する光記録媒体 を製造するようにしてもよい。また、上述した各工程の前、途中、後に、上述した工程 以外の他の工程を行うようにしてもよい。
[0078] 上述の工程は有機色素を含む 2つの記録層を有するデュアルレイヤタイプの片面 入射型の光記録媒体を例にとって説明した力 S、例えば Blu— ray ディスク等(BD— ROM、 BD— R、 BD— RE等)のいわゆる膜面入射型の光記録媒体の製造において も、本発明の製造方法を適用することが出来る。その場合、記録レーザ光 109が図 1 (h)の上側から照射されることになるため、中間層からみて上下に存在するそれぞれ の層の形成工程において、記録層形成工程と反射層形成工程の工程順が逆になり 、第 2基板形成工程の代わりに、カバー層形成工程を有する。
[0079] [11.カバー層形成工程]
カバー層は、記録レーザ光に対して透明で複屈折の少ない材料が選ばれ、通常は 、プラスチック板(以下適宜、「カバー層シート」という)を接着剤で貼り合せる力、、液状 の材料を塗布後に光、放射線、又は熱等により硬化して形成する。
[0080] カバー層の材料として用いられるプラスチックは、記録レーザ光に対して透明で複 屈折の少ない材料である限り任意の材料を用いることが出来る力 例えば、ポリカー ボネート、ポリオレフイン、アクリル、三酢酸セルロース、ポリエチレンテレフタレート等 力 S挙げられる。また、接着には、例えば、光、放射線硬化、熱硬化樹脂や、感圧性の 接着剤などを用いることが出来る。さらに、感圧性接着剤としては、例えば、アクリル 系、メタタリレート系、ゴム系、シリコン系、ウレタン系の各ポリマーからなる粘着剤を使 用できる。なお、カバー層の材料は 1種を単独で用いてもよぐ 2種以上を任意の組 み合わせ及び比率で用いてもよ!/、。 [0081] カバー層シートを接着するための具体的方法も任意であるが、例えば、接着層を構 成する光硬化性樹脂を適当な溶剤に溶解して塗布液を調製した後、この塗布液を記 録層上に塗布して塗布膜を形成し、塗布膜上にポリカーボネートシートを重ね合わ せる。その後、必要に応じて重ね合わせた状態で、媒体を回転させるなどして塗布液 を更に延伸展開した後、 UVランプで紫外線を照射して硬化させる。或いは、感圧性 接着剤をあらかじめカバー層シートに塗布しておき、カバー層シートを記録層上に重 ね合わせた後、適度な圧力で押さえつけて圧着することもできる。
[0082] 前記粘着剤としては、透明性、耐久性の観点から、アクリル系、メタタリレート系のポ リマー粘着剤が好ましい。より具体的には、 2—ェチルへキシルアタリレート、 n—ブチ ルアタリレート、 iso—ォクチルアタリレートなどを主成分モノマーとし、これらの主成分 モノマーに、アクリル酸、メタクリル酸、アクリルアミド誘導体、マレイン酸、ヒドロキシル ェチルアタリレート、グリシジルアタリレート等の極性モノマーを共重合させて得られる 粘着剤が好ましい。主成分モノマーの分子量調整、その短鎖成分の混合、アタリノレ 酸による架橋点密度の調整により、ガラス転移温度 Tg、タック性能(低い圧力で接触 させたときに直ちに形成される接着力)、剥離強度、せん断保持力等の物性を制御 すること力 Sできる。アクリル系ポリマーの溶剤としては、例えば、酢酸ェチル、酢酸ブ チル、トルエン、メチルェチルケトン、シクロへキサン等が用いられる。上記粘着剤は 、更に、ポリイソシァネート系架橋剤を含有することが好ましい。なお、粘着剤は 1種を 単独で用いてもよ!/、し、 2種以上を任意の組み合わせ及び比率で用いてもよ!/、。
[0083] また、粘着剤としては前述のような材料を用いることができ、カバー層シートの記録 層側に接する表面に粘着剤を所定量均一に塗布し、溶剤を乾燥させた後、記録層 側表面(界面層を有する場合はその表面)に貼り合わせローラー等により圧力をかけ て硬化させること力 Sできる。また、該粘着剤が塗布されたカバー層シートを、記録層を 形成した記録媒体表面に接着する際には、空気を巻き込んで泡を形成しないように 、真空中で貼り合せるのが好ましい。
[0084] また、離型フィルム上に上記粘着剤を塗布して溶剤を乾燥した後、カバー層シート を貼り合わせ、更に離型フィルムを剥離してカバー層シートと粘着剤層を一体化した 後、記録媒体と貼りあわせてもよい。 [0085] 塗布によってカバー層を形成する場合には、例えば、スピンコート法、ディップ法等 が用いられるが、特に、ディスク状媒体に対してはスピンコート法を用いることが好ま しい。塗布によるカバー層を形成する際、カバー層の材料としてはウレタン、エポキシ 、アクリル系の樹脂等を用い、塗布後、紫外線、電子線、放射線を照射し、ラジカル 重合若しくはカチオン重合を促進して硬化させることができる。
[0086] [II.第二実施形態]
本発明の光記録媒体の製造方法においては、光記録媒体の反りや、中間層上に 形成される記録層の記録特性等を考慮し、樹脂原料層を複数の樹脂層から形成し てもよい。この場合、樹脂原料層を構成する複数の樹脂層のうち、スタンパにより凹 凸形状を形成される樹脂層が最外樹脂層となる。
[0087] このように樹脂原料層を複数の樹脂層から構成する場合、樹脂原料層を構成する 樹脂層の数は、特に制限されない。具体的には、上記樹脂層の数は、通常 10層以 下、好ましくは 5層以下、より好ましくは 4層以下とする。一方、上記樹脂層の数は、 2 層以上とする。但し、生産効率の観点からは、樹脂原料層を構成する樹脂層の数は 、 2層以上、 5層以下とすることが好ましい。生産効率の観点から特に好ましいのは、 樹脂原料層を構成する樹脂層の数を、 2層又は 3層構造とすることである。
[0088] 以下、樹脂原料層を 2層の樹脂層から構成する場合について、第二実施形態を示 して説明する。なお、以下の第二実施形態では、第一実施形態に対して、樹脂原料 層の形成方法、及び、スタンパの載置方法を変更したものである。また、樹脂原料層 104を形成する樹脂としては、第一実施形態と同様に、紫外線硬化性樹脂を用いて いるものとして説明を行う。
[0089] 本実施形態では、基板の用意、第 1記録層形成工程、及び、第 1反射層形成工程 は、それぞれ第一実施形態と同様にして行い、その後、樹脂原料層形成工程を行う
図 2 (a) , (b)は、本発明の第二実施形態が適用される光記録媒体の製造方法の 樹脂原料層形成工程について説明するための模式図である。なお、図 2 (a) , (b)に おいて、図 1 (a)〜(! )と同様の部位については、図 1 (a)〜(!)と同様の符号を付し て説明する。 [0090] 本実施形態の製造方法では、樹脂原料層形成工程において、図 2 (a) , (b)に示 すように、表面に第 1樹脂層 104aを形成したデータ基板 111上に、最外樹脂層であ
1
る第 2樹脂層 104aを形成したスタンパ 1 10を載置し、第 1樹脂層 104aと第 2樹脂層
2 1
104aとから紫外線硬化性樹脂原料層 104a (図 3参照)を形成する。つまり、第 1樹 脂層 104a上に、最外樹脂層である第 2樹脂層 104aを形成したスタンパ 110を載置
1 2
することによって、紫外線硬化性樹脂原料層 104a上にスタンパ 110が載置された状 態となる。以下、この点に関して詳しく説明する。
[0091] 即ち、紫外線硬化性樹脂原料層 104aを形成するためには、図 2 (a)に示すように、 第 1基板 101、第 1記録層 102及び第 1反射層 103から構成されるデータ基板 111 上に紫外線硬化樹脂を塗布し、例えばスピンコート等により第 1樹脂層 104aを形成
1 する。なお、データ基板 111の製造方法は、第一実施形態と同様である。
[0092] ここで、第 1樹脂層 104aを硬化させる程度は限定されず、第 2樹脂層 104aを載
1 2 置する段階において、十分に硬化を完結させておいてもよぐ半硬化状態であっても よい。第 2樹脂層 104aを載置する段階において第 1樹脂層 104aを十分に硬化を
2 1
完結させておけば、第 1樹脂層 104aと第 2樹脂層 104aとから形成される紫外線硬
1 2
化性樹脂原料層 104aの厚みを制御し易ぐ均一な膜厚にすることができる。また、第 2樹脂層 104aを載置する段階において、第 1樹脂層 104aを半硬化の状態としてお
2 1
けば、第 1樹脂層 104aと第 2樹脂層 104aとの界面の親和性を向上させることがで
1 2
きる。
[0093] 一方、スタンパ 110上には、図 2 (b)に示すように、転写用凹凸形状を有している側 の表面上に紫外線硬化樹脂を塗布し、例えばスピンコート等により、第 2樹脂層 104 aを形成する。なお、スタンパ 110は、第一実施形態と同様のものを用いることができ る。また、本実施形態においては、この第 2樹脂層 104aに凹凸形状が形成されるこ とになるため、第 2樹脂層 104aは最外樹脂層として機能することになる。
また、第 2樹脂層 104aの形成方法に制限はないが、例えば、スタンパ 110の表面 全体に、紫外線硬化性樹脂の前駆体をスピンコート等により塗布して成膜することが できる。
[0094] 次いで、第 1樹脂層 104aと第 2樹脂層 104aとを向かい合うようにして、第 2樹脂層 104aが形成されたスタンパ 110を、第 1樹脂層 104aが形成されたデータ基板 111
2 1
と貼り合わせる。このとき、紫外線硬化性樹脂原料層 104aの膜厚が所定範囲になる ようにするには、例えば、スピンコート時に紫外線照射を行ったり、熱を掛けたりする 方法等が考えられる。これにより、データ基板 111の表面(即ち、第 1反射層 103の表 面)全体に、第 1樹脂層 104aと第 2樹脂層 104aとからなる紫外線硬化性樹脂原料
1 2
層 104aが形成される。即ち、第 1記録層 102上に、第 1反射層 103を介して紫外線 硬化性樹脂原料層 104aが形成される。そして、上記操作によって、紫外線硬化性樹 脂原料層 104a上に、転写用凹凸形状を有するスタンパ 110を載置した状態を得るこ とができる。換言すれば、第 1記録層 102とは反対側の紫外線硬化性樹脂原料層 10 4aの表面にスタンパ 110が載置された状態となる。
[0095] 樹脂原料層硬化工程としては、第一実施形態と同様に、図 3に示すように、この状 態でスタンパ 110を介して、スタンパ 110側から紫外線を照射して樹脂原料層 104a を硬化させる。なお、図 3は、本発明の第二実施形態が適用される光記録媒体の製 造方法の樹脂原料層硬化工程について説明するための模式図である。図 3におい て、図 1 (a)〜(!)及び図 2 (a) , (b)と同様の部位については、図 1 (a)〜(!)及び図 2 (a) , (b)と同様の符号を付して説明する。
[0096] 本発明の第二実施形態においても、第一実施形態と同様に、紫外線硬化性樹脂 原料層 104aの紫外線による硬化を完結させずに、半硬化状態までの硬化とすること も好ましい。特に、最外樹脂層である第 2樹脂層 104aを、半硬化状態までの硬化と することが好ましい。このように紫外線硬化性樹脂原料層 104aの硬化を半硬化状態 までの硬化とすることにより、スタンパ 110と樹脂原料層 104aとの密着力が低下する ため、後述するスタンパ 110の剥離を容易にすることが出来る。また、この方法によれ ば、スタンパ 110の材質としてポリカーボネート系樹脂のような剥離が困難な材質を 用いた場合であっても、良好にスタンパ 110を剥離することが可能となる。
[0097] 紫外線硬化性樹脂原料層 104aの硬化を半硬化状態までの硬化とするためには、 第一実施形態と同様に、紫外線照射の条件を調節すればよい。
以上のようにして、データ基板 111、紫外線硬化性樹脂原料層 104a及びスタンパ 110を備えた接着体 112 'が得られる。なお、本実施形態の接着体 112 'においては 、第 1樹脂層 104a及び第 2樹脂層 104aはいずれも半硬化状態となっているものと
1 2
して説明する。
[0098] このようにして樹脂原料層 104aを硬化させた後、第一実施形態と同様にして、スタ ンパ 110を硬化性樹脂層 104aから剥離する。これにより、紫外線硬化性樹脂原料層 104aにスタンパ 110の転写用凹凸形状が転写される(図 1 (d)参照)。
[0099] 第二実施形態においても、スタンパ 110を剥離することによって樹脂原料層 104a に転写用凹凸形状を転写した後、樹脂原料層 104aに表面改質処理を施す表面改 質処理工程を行う(図 1 (e)参照)。ここで、表面改質処理の方法、条件は、前記の第 一実施形態と同様にして行うことができる。これにより、第 1樹脂層 104aであった層
1
部分と第 2樹脂層 104aであった層部分との両方の硬化が十分に進行し、樹脂原料 層 104aの硬化が完結され、中間層 104が得られる。
[0100] このように、第二実施形態においても、スタンパ 110を剥離して樹脂原料層 104aに 転写用凹凸形状を転写した後、樹脂原料層 104aに表面改質処理を施すことにより、 樹脂原料層 104aの硬化反応を促進し硬化を完結させ、中間層 104を形成すること が出来る。これにより、最早、スタンパ 110を剥離した状態でデータ基板 111を保持し た場合でも、中間層 104に転写された凹凸の形状は変化することがなくなり、後述す る第 2記録層の記録 ·再生を安定化させることが出来る。
[0101] その後、第 2記録層形成工程、第 2反射層形成工程、及び、第 2基板形成工程は、 それぞれ第一実施形態と同様にして行うようにすればよい。
以上のようにすれば、第一実施形態と同様に、良好な凹凸形状を有する、欠陥の 少ない中間層 104を備えた光記録媒体 100 (図 1 (g)参照)を製造することができる。 また、本実施形態の光記録媒体の製造方法によれば、第一実施形態と同様の利点 を得ること力 Sでさる。
[0102] さらに、本実施形態によれば、中間層 104の形成のために、紫外線硬化性樹脂原 料層 104aを複数の樹脂層(第 1樹脂層 104a ,第 2樹脂層 104a )により構成するよ
1 2
うにした。このため、第 2記録層 105の記録特性を良好にしゃすい材料を最外樹脂層 として用いること力 Sできる、第 1反射層 103との密着性がよ!/、材料をデータ基板 111 に接する樹脂層に用いることができる、光記録媒体の反りの改善する材料をデータ 基板 111に接する樹脂層に用いることができる、とレ、う利点を得ることも可能である。
[0103] [III.本発明の光記録媒体の製造方法を適用しうる光記録媒体の説明]
上記の第一及び第二実施形態では、製造対象となる光記録媒体の例として、有機 色素を含む 2つの記録層を有するデュアルレイヤタイプの片面 2層 DVD— Rを例に 挙げて説明したが、本発明の光記録媒体の製造方法を適用しうる光記録媒体はこれ に限られるものではない。即ち、基板と、記録層と、凹凸形状を有する中間層とを有し 、記録層上に、直接又は他の層を介して、樹脂原料層を形成し、樹脂原料層上に転 写用凹凸形状を有するスタンパを載置し、樹脂原料層を硬化させた後、樹脂原料層 力もスタンパを剥離し、樹脂原料層にスタンパの転写用凹凸形状を転写して中間層 を形成する工程を含む製造方法によって製造される光記録媒体又は光記録媒体用 積層体であれば本発明を適用することができ、これにより、本発明の効果が良好に発 揮される。したがって、追記型の DVD— Rのみならず、再生専用の DVD— ROM、 書換可能型の DVD— RW、 DVD— RAM等はもちろん、短波長青色レーザを用い ることによって高密度記録を可能とする HD DVD-ROM, HD DVD-R, HD DVD— RW等にも好適に用いることが出来る。更に、上記いわゆる基板面入射型の 光記録媒体のみならず、 Blu-ray ディスク等(BD— ROM、 BD— R、 BD— RE等) のいわゆる膜面入射型の光記録媒体の製造においても、本発明の製造方法を適用 することが出来る。
[0104] また、例えば、本発明の光記録媒体の製造方法は、記録層を 1層のみ有する光記 録媒体に適用することもできる。
さらに、例えば、本発明の光記録媒体の製造方法は、記録層を 3層以上有し、中間 層を 2層以上有する光記録媒体に適用することもできる。この場合、 2層以上の中間 層のそれぞれを形成するために、上記実施形態で説明した中間層の形成方法を適 用すること力 Sでさる。
また、本発明の光記録媒体の製造方法を適用しうる光記録媒体としては、一度の記 録のみ可能な追記型媒体(CD— Rや DVD— Rなどの Write Once媒体)や、記録 消去を繰り返し行なえる書き換え型媒体(CD— RWや DVD— RWなどの ReWritabl e媒体)が好適である力 再生専用媒体(CD— ROMや DVD— ROMなどの ROM 媒体)を排除するものではない。特に、本発明の光記録媒体の製造方法は、追記型 媒体に適用した場合に、安定した記録 ·再生特性を発現することが出来るため好まし い。
[0105] 次に、図 1 (h)に示された片面 2層 DVD— Rを中心に、片面 2層の光記録媒体 100 を構成する各層について説明する。
〔第 1基板〕
第 1基板 101は、光透過性を有し、複屈折率が小さい等、光学特性に優れることが 望ましい。一方、膜面入射型の構成の場合には、記録'再生用のレーザ光に対して 透明性ゃ複屈折に対する制限は無い。
[0106] 第 1基板 101を構成する材料としては、特に限定されないが、例えば、適度な加工 性と剛性を有する樹脂、金属、ガラス等を用いることができる。樹脂としては、例えば、 アクリル系樹脂、メタクリル系樹脂、ポリカーボネート系樹脂、ポリオレフイン系樹脂( 特に非晶質ポリオレフイン)、ポリエステル系樹脂、ポリスチレン樹脂、エポキシ樹脂等 力 S挙げられる。なお、第 1基板 101を構成する材料は、 1種を単独で用いてもよぐ 2 種以上を任意の組み合わせ及び比率で用いてもよ!/、。
[0107] 第 1基板 101の厚さは、特に制限されないが、通常 2mm以下、好ましくは 1. 2mm 以下である。対物レンズと記録層との距離が小さぐまた、基板が薄いほどコマ収差 力 S小さい傾向があり、記録密度を上げやすいためである。但し、光学特性、吸湿性、 成形性、形状安定性を十分得るために、通常 lO rn以上、好ましくは 30 111以上で ある。また、第 1基板 101によって記録媒体の強度を確保することが望ましい場合は、 通常、 0. 5mm以上である。
第 1基板 101は、吸湿性が小さいことが望ましい。更に、第 1基板 101は、光記録媒 体がある程度の剛性を有するよう、形状安定性を備えることが望ましい。
[0108] 第 1基板 101には、通常、凹凸形状としてトラッキング用の案内溝が形成されている 。トラッキング用の案内溝は、通常、同心円状又はスパイラル状の溝として第 1基板 1 01上に設けられる。案内溝のトラックピッチは、光記録媒体の記録再生に用いるレー ザ光の波長によって異なる。具体的には、 CD系の光記録媒体では、トラックピッチは 通常 1 · 5 111以上、 1 · 6 m以下である。 DVD系の光記録媒体では、トラックピッチ は通常 0· 7 111以上、 0· 8 111以下、である。青色レーザ用の光記録媒体では、トラ ックピッチは通常 0. 1 μ m以上、 0· 6 m以下である。
[0109] 一方、溝の深さも光記録媒体の記録再生に用いるレーザ光の波長によって異なる 。具体的には、 CD系の光記録媒体では、溝深さは通常 10nm以上、 300nm以下で ある。 DVD系の光記録媒体では、溝深さは通常 lOnm以上、 250nm以下である。 青色レーザ用の光記録媒体では、溝深さは通常 lOnm以上、 200nm以下である。
[0110] また、第 1基板 101の表面に案内溝を形成する場合、案内溝の形成方法は任意で ある。例えば、以下のようにして形成すること力 Sできる。具体的には、第 1基板 101の 材料として金属やガラスを用いる場合には、通常、その表面に光硬化性や熱硬化性 の薄い樹脂層を設け、そこに案内溝を形成することができる。この点、第 1基板 101 の材料として樹脂を用いれば、射出成型によって表面に案内溝を形成することがで きるので好ましい。
[0111] なお、第 1基板 101としては、一般的に、中心にセンターホールを有する環形状の ものを用いる。環形状は特に制限されず、円盤形状、楕円形状、多角形等、様々な 形状を考えることができる。但し、第 1基板 101は通常、円盤形状とする。この場合、 第 1基板 101の直径を 80mm又は 120mm程度とするのが通常である。
[0112] 〔第 1記録層〕
第 1記録層 102は、通常、 CD— Rや片面型 DVD— R等に用いられる光記録媒体 に用いる記録層に比較して、より高感度であることが望ましい。例えば、上記の実施 形態に適用する場合、光記録媒体 100においては、通常、第 1反射層 103を半透明 反射膜とする。このため、入射したレーザ光 109の半分は第 1反射層 103を透過する 。この結果、第 1記録層 102に入射するレーザ光 109のパワーは半減することになる 。したがって、入射したレーザ光の約半分のパワーで第 1記録層 102に対する記録 が行われることになるために、第 1記録層 102は、特に感度が高いことが望ましい。
[0113] また、第 1記録層 102に使用される材料は限定されず、有機物質であっても無機物 質であっても良いが、 350〜900nm程度の可視光〜近赤外域に最大吸収波長え m axを有し、青色〜近マイクロ波レーザでの記録に適する化合物が好ましい。通常、 C D— Rに用いられるような波長 770〜830nm程度の近赤外レーザでの記録に適する 化合物、 DVD— Rに用いられるような波長 620〜690nm程度の赤色レーザでの記 録に適する化合物、あるいは、波長 410nmや 515nm等のいわゆるブルーレーザで の記録に適する化合物等がより好ましレ、。
[0114] 第 1記録層 102に使用される具体的な化合物は、特に限定されないが、例えば、有 機色素材料やアモルファス半導体などが挙げられ、特に有機色素材料を含有するこ とが好ましい。
有機色素材料としては、例えば、大環状ァザァヌレン系色素(フタロシアニン色素、 ナフタロシアニン色素、ポルフィリン色素等)、ピロメテン系色素、ポリメチン系色素(シ ァニン色素、メロシアニン色素、スクヮリリウム色素等)、アントラキノン系色素、ァズレ 二ゥム系色素、含金属ァゾ系色素、含金属インドア二リン系色素等が挙げられる。な お、これらの色素は 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比 率で併用してもよい。
[0115] 一方、アモルファス半導体材料の具体例としては、 SbTe系、 GeTe系、 GeSbTe系 、 InSbTe系、 AgSbTe系、 AglnSbTe系、 GeSb系、 GeSbSn系、 InGeSbTe系、 I nGeSbSnTe系等の材料が挙げられる。これらの中でも、結晶化速度を高めるため に、 Sbを主成分とする組成物を用いることが好ましい。なお、これらのアモルファス半 導体材料は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で 併用してもよい。
[0116] さらに、第 1記録層 102の膜厚は、記録方法等により適した膜厚が異なるため、特 に限定されない。ただし、十分な変調度を得るために、通常 5nm以上、好ましくは 10 nm以上であり、特に好ましくは 20nm以上である。また、光を透過させるためには、 通常 3 m以下、好ましくは 1 m以下、より好ましくは 200nm以下である。
[0117] また、第 1記録層 102の形成方法としては、特に限定されないが、通常、真空蒸着 法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等一般 に行われている薄膜形成法が挙げられる。成膜形成法は、量産性、コスト面からはス ピンコート法等の湿式成膜法が好ましい。また、均一な記録層が得られるという点か ら、真空蒸着法が好ましい。
[0118] 〔第 1反射層〕 第 1反射層 103は、記録再生光の吸収が小さぐ光透過率が通常 40%以上あり、 かつ、適度な光反射率を有することが望ましい。第 1反射層 103の具体的な構成の 例としては、反射率の高い金属を薄く設けることにより適度な透過率を持たせた層が 挙げられる。さらに、第 1反射層 103は、ある程度の耐食性があることが望ましい。ま た、第 1反射層 103の上層(上記の実施形態では中間層 104)からの他の成分の浸 み出しにより第 1記録層 102が影響されないような遮断性を持つことが望ましい。
[0119] また、第 1反射層 103を構成する材料としては、特に限定されないが、再生光の波 長における反射率が適度に高いものが好ましい。第 1反射層 103を構成する材料の 例を挙げると、 Au、 Al、 Ag、 Cu、 Ti、 Cr、 Ni、 Pt、 Ta、 Pd、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 Zn、 Cd、 Ga、 In, Si、 Ge、 Te、 Pb、 Po、 Sn、 B i、希土類金属等の金属若しくは半金属を、単独あるいは合金にして用いることが可 能である。また、第 1反射層 103を構成する材料は、 1種を単独で用いてもよぐ 2種 以上を任意の組み合わせ及び比率で併用してもよい。
[0120] さらに、第 1反射層 103の厚さは、通常 50nm以下、好ましくは 30nm以下、更に好 ましくは 20nm以下である。上記範囲とすることにより、光透過率を 40%以上としゃす くなる。但し、第 1反射層 103の厚さは、第 1記録層 102が第 1反射層 103上に存在 する層により影響されないために、通常 3nm以上、好ましくは 5nm以上である。
[0121] また、第 1反射層 103を形成する方法は任意である力 例えば、スパッタ法、イオン プレーティング法、化学蒸着法、真空蒸着法等が挙げられる。
[0122] 〔中間層〕
中間層 104は、透明、且つ、溝やピットの凹凸形状が形成可能であり、また、接着 力が高い樹脂から構成される。さらに、硬化接着時の収縮率が小さい樹脂を用いると 、媒体の形状安定性が高く好ましい。
また、中間層 104は、第一実施形態のような単層膜としてもよぐ第二実施形態のよ うな多層膜にしてもよい。
[0123] また、中間層 104は、第 2記録層 105にダメージを与えない材料からなることが望ま しい。中間層 104を構成する材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂、 放射線硬化性樹脂等の硬化性樹脂を挙げることができる。なお、中間層 104の材料 は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても よい。
中間層 104の材料の中でも、放射線硬化性樹脂が好ましぐその中でも、紫外線硬 化性樹脂が好ましい。これらの樹脂の採用により、スタンパの凹凸形状の転写が行い やすくなる。
[0124] 紫外線硬化性樹脂としては、ラジカル系(ラジカル重合型の)紫外線硬化性樹脂と カチオン系(カチオン重合型の)紫外線硬化性樹脂が挙げられ、いずれも使用するこ と力 Sできる。
ラジカル系紫外線硬化性樹脂は、例えば、紫外線硬化性化合物(ラジカル系紫外 線硬化性化合物)と光重合開始剤を必須成分として含む組成物が用いられる。ラジ カル系紫外線硬化性化合物としては、例えば、単官能 (メタ)アタリレート及び多官能 (メタ)アタリレートを重合性モノマー成分として用いることができる。これらは、各々、 一種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ い。なお、ここで、アタリレートとメタアタリレートとを併せて (メタ)アタリレートと称する。 また、光重合開始剤に制限はないが、例えば、分子開裂型または水素引き抜き型 のものが好ましい。本発明においては、ラジカル重合型のアクリル酸エステルを主体 とする未硬化の紫外線硬化樹脂前駆体を用いて、これを硬化させて中間層を得るこ とが好ましい。
[0125] 一方、カチオン系紫外線硬化性樹脂としては、例えば、カチオン重合型の光開始 剤を含むエポキシ樹脂が挙げられる。エポキシ樹脂としては、例えば、ビスフエノール A—ェピクロールヒドリン型、脂環式エポキシ、長鎖脂肪族型、臭素化エポキシ樹脂、 グリシジルエステル型、グリシジルエーテル型、複素環式系等が挙げられる。ェポキ シ樹脂としては、遊離した塩素および塩素イオン含有率が少ないものを用いるのが 好ましい。塩素の量は、 1重量%以下が好ましぐより好ましくは 0. 5重量%以下であ また、カチオン重合型の光開始剤としては、スルホニゥム塩、ョードニゥム塩、ジァゾ ユウム塩等が挙げられる。
[0126] また、中間層 104の材料として放射線硬化性樹脂を使用する場合、 20〜40°Cに おいて液状であるものを用いることが好ましい。樹脂原料層 104aの形成時に、上記 放射線硬化性樹脂を用いることにより溶媒を用いることなく塗布できるので、生産性 が向上するためである。また、粘度は 20〜4000mPa ' sとなるように調製するのが好 ましい。
[0127] さらに、中間層 104には、凹凸形状が螺旋状又は同心円状に設けられる。そしてこ の凹凸形状が、溝及びランドを形成する。通常、このような溝及び/又はランドを記 録トラックとして、第 2記録層 105に情報が記録 ·再生される。本発明の光記録媒体の 製造方法においては、通常記録トラックとして使用される上記凹凸形状を良好に形 成することができるという利点を有しているため、欠陥の少ない中間層 104を有する 光記録媒体 100を得ることが可能である。
[0128] なお、上記の溝幅は、通常 50〜800nm程度であり、好ましくは 100〜600nmであ り、より好ましくは 120〜500腹である。、溝深さは、通常 10〜300腹程度であり、好 ましく (ま 12〜270nmであり、より好ましく (ま 14〜250nmである。また、記録トラックカ 螺旋状である場合、トラックピッチは、通常 0. ;!〜 2. O ^ m程度であり、好ましくは 0. 2—1. 5〃 mであり、より好ましくは 0. 3—1. O ^ mである。
さらに、中間層 104の膜厚は、正確に制御されることが好ましぐ通常 5 m以上、 好ましくは 10 m以上が望ましい。但し、通常、 lOO rn以下、好ましくは 70 111以 下である。
[0129] さらに、中間層 104の形成方法に制限はなく任意である力 通常は、以下のように して形成される。
熱可塑性樹脂、熱硬化性樹脂等を用いた中間層 104は、適当な溶剤に熱可塑性 樹脂等を溶解して塗布液を調製する。この塗布液を塗布し、乾燥 (加熱)することによ つて、中間層 104を形成することができる。
一方、放射線硬化性樹脂を用いた中間層 104は、そのまま若しくは適当な溶剤に 溶解して塗布液を調製する。放射線硬化性樹脂を用いた中間層 104は、この塗布液 を塗布し、適当な放射線を照射して硬化させることによって形成することができる。
[0130] なお、塗布方法に制限はなぐ例えばスピンコート法やキャスト法等の方法が用いら れる。この中でも、スピンコート法が好ましい。特に、高粘度の樹脂を用いた中間層 1 04は、スクリーン印刷等によっても塗布形成できる。
[0131] 〔第 2記録層〕
第 2記録層 105は、前述した第 1記録層 102の場合と同様に、通常 CD— Rや片面 型 DVD— R等の光記録媒体に用いる記録層より高感度であることが望ましい。また、 第 2記録層 105は、良好な記録 ·再生を実現するためには低発熱で高屈折率な色素 であることが望ましい。更に、第 2記録層 105と第 2反射層 106との組合せにおいて、 光の反射及び吸収を適切な範囲とすることが望ましい。
[0132] 第 2記録層 105を構成する材料、成膜方法等については、第 1記録層 102と同様と すればよい。但し、第 2記録層 105の製膜方法は、湿式製膜法が好ましい。
なお、第 1記録層 102と第 2記録層 105とに用いる材料は、同じでもよいし、異なつ ていてもよい。
第 2記録層 105に使用される具体的な化合物は限定されず、第 1記録層 102と同 様の化合物が好適に使用される。
一般に、アモルファス半導体材料で構成される記録層に較べ、有機色素材料で構 成される記録層の方が案内溝が深い。このため、特に第 2記録層 105を有機色素材 料を含有する層とする場合、中間層 104に形成された深い溝形状を維持したまま第 2記録層 105を形成することは困難になる。し力、しながら、本発明においては、第 2記 録層として有機色素材料を含有する場合であっても、中間層 104との親和性が良好 であるため、中間層 104上に形成された凹凸形状を記録層の凹凸として良好に反映 することが出来る。従って、本発明によれば、特に第 2記録層 105として有機色素材 料を含有する場合にお!/、て、その効果は顕著である。
[0133] また、第 2記録層 105の膜厚は、記録方法等により適した膜厚が異なるため、特に 限定されないが、通常 10nm以上、好ましくは 30nm以上、特に好ましくは 50nm以 上である。但し、適度な反射率を得るために、第 2記録層 105の膜厚は、通常 3 111 以下、好ましくは 1 a m以下、より好ましくは 200nm以下である。
[0134] 〔第 2反射層〕
第 2反射層 106は、高反射率、かつ高耐久性であることが望ましい。
[0135] 第 2反射層 106を構成する材料としては、再生光の波長において反射率の十分高 いものが好ましい。第 2反射層 106を構成する材料としては、例えば、 Au、 Al、 Ag、 Cu、 Ti、 Cr、 Ni、 Pt、 Ta、 Pd等の金属を単独または合金にして用いることが可能で ある。これらの中でも、 Au、 Al、 Agは反射率が高ぐ第 2反射層 106の材料として適 している。また、これらの金属を主成分とする以外に他の成分を含んでいてもよい。他 の成分の例としては、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 C u、 Zn、 Cd、 Ga、 In, Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、希土類金属などの金属若しく は半金属を挙げること力できる。なお、第 2反射層 106を形成する材料は、 1種を単 独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよい。
[0136] また、高反射率を確保するために、第 2反射層 106の厚さは、通常 20nm以上、好 ましくは 30nm以上、更に好ましくは 50nm以上である。但し、記録感度を上げるため には、通常 400nm以下、好ましくは 300nm以下である。
[0137] さらに、第 2反射層 106を形成する方法に制限はないが、例えば、スパッタ法、ィォ ンプレーティング法、化学蒸着法、真空蒸着法等が挙げられる。
また、第 2反射層 106の上下に反射率の向上、記録特性の改善、密着性の向上等 のために、公知の無機系または有機系の中間層、接着層を設けることもできる。
[0138] 〔接着層〕
接着層 107は、接着力が高ぐ硬化接着時の収縮率が小さいと、光記録媒体 100 の形状安定性が高くなり、好ましい。また、接着層 107は、第 2反射層 106にダメージ を与えない材料からなることが望ましい。さらに、ダメージを抑えるために第 2反射層 1 06,接着層 107の間に公知の無機系または有機系の保護層を設けることもできる。
[0139] 接着層 107の材料は、中間層 104の材料と同様のものを用いることができる。
また、接着層 107の膜厚は、通常、 2 111以上、好ましくは 5 m以上である。但し、 光記録媒体 100をできるだけ薄くするために、また、硬化に時間を要して生産性が低 下する等のことを抑制するために、接着層 107の膜厚は、通常、 lOO ^ m以下が好ま しい。
なお、接着層 107としては、感圧式両面テープ等も使用可能である。感圧式両面テ 一プを第 2反射層 106と第 2基板 108との間に挟んで押圧することにより、接着層 10 7を形成できる。 [0140] 〔第 2基板〕
第 2基板 108は、機械的安定性が高ぐ剛性が大きいことが好ましい。また接着層 1 07との接着性が高!/、ことが望まし!/、。
このような第 2基板 108の材料としては、第 1基板 101に用いうる材料と同様のもの を用いること力 Sできる。また、上記材料としては、例えば、 A1を主成分とした Al— Mg 合金等の A1合金基板や、 Mgを主成分とした Mg— Zn合金等の Mg合金基板、シリコ ン、チタン、セラミックスのいずれ力、からなる基板やそれらを組み合わせた基板等を用 いることもできる。また、第 2基板 108の材料は、 1種を単独で用いてもよぐ 2種以上 を任意の組み合わせ及び比率で併用してもよ!/、。
[0141] なお、第 2基板 108の材料は、成形性等の高生産性、コスト、形状安定性等の点か ら、ポリカーボネートが好ましい。また、第 2基板 108の材料は、耐薬品性、低吸湿性 等の点からは、非晶質ポリオレフインが好ましい。また、第 2基板 108の材料は、高速 応答性等の点からは、ガラス基板が好まし!/、。
さらに、光記録媒体 100に十分な剛性を持たせるために、第 2基板 108はある程度 厚いことが好ましぐ第 2基板 108の厚さは、 0. 3mm以上が好ましい。但し、通常 3m m以下、好ましくは 1. 5mm以下である。
[0142] 〔その他の層〕
光記録媒体 100は、上記の積層構造において、必要に応じて 1層又は 2層以上の 任意の他の層を挟んでもよい。或いは、光記録媒体 100の最外面に 1層又は 2層以 上の任意の他の層を設けてもよい。更に、光記録媒体 100には、必要に応じて、記 録光又は再生光の入射面ではない面に、インクジェット、感熱転写等の各種プリンタ 、或いは各種筆記具にて記入(印刷)が可能な印刷受容層を設けてもよい。さらに、 光記録媒体 100を 2枚、第 1基板 101を外側にして貼合わせてもよい。光記録媒体 1 00を 2枚貼り合わせることにより、記録層を 4層有する大容量の媒体を得ることができ
[0143] また、本発明の光記録媒体の製造方法を、相変化型の書き換え型コンパクトデイス ク(CD— RW、 CD— Rewritable)又は、相変化型の書き換え型 DVDに適用するこ ともできる。相変化型の光記録媒体に適用する場合における記録層等の層構成につ いては、公知のものを適宜使用することができる。相変化型の CD— RW又は書き換 え型 DVDは、相変化型記録材料力 構成された記録層における非晶質状態と結晶 状態との屈折率差によって生じる反射率差および位相差変化を利用して記録情報 信号の検出が行われる。相変化型記録材料の具体例としては、例えば、 SbTe系、 G eTe系、 GeSbTe系、 InSbTe系、 AgSbTe系、 AglnSbTe系、 GeSb系、 GeSbSn 系、 InGeSbTe系、 InGeSbSnTe系等の材料が挙げられる。これらの中でも、結晶 化速度を高めるために、記録層に Sbを主成分とする組成を用いることが好ましい。
[0144] また、前述の通り、本発明の光記録媒体の製造方法を Blu— ray ディスクのような 膜面入射型の光記録媒体に適用することも可能である。その場合、記録レーザ光 10 9が図 1 (h)の上側から照射されることになるため、記録層と反射層の積層順が逆に なり、第 1反射層ではなく第 2反射層に適度な光反射率が要求されることになる。また 、第 2基板の代わりに、カバー層が形成される。
[0145] カバー層は、記録レーザ光に対して透明で複屈折の少ない材料が選ばれ、通常は 、カバー層シートを接着剤で貼り合せる力、、液状の材料を塗布後に光、放射線、又は 熱等により硬化して形成する。カバー層は、記録レーザ光の波長えにおいて透過率 70%以上であることが好ましぐ 80%以上であることがより好ましい。なお、透過率の 上限は、 100%である。カバー層は、更にその入射光側表面に耐擦傷性、耐指紋付 着性といった機能を付与するために、表面に厚さ 0· ; m以上、 50 111以下程度の 層を別途設けることもできる。カバー層の厚みは、記録レーザ光の波長えや対物レン ズの NA (開口数)にもよる力 通常 0. 01mm以上、好ましくは 0. 05mm以上、また、 通常 0. 3mm以下、好ましくは 0. 15mm以下の範囲であることが望ましい。接着層 やハードコート層等の厚みを含む全体の厚みが、光学的に許容される厚み範囲とな るようにするのが好ましい。例えば、いわゆる Blu— ray ディスクでは、 100 111± 3 a m程度以下に制御するのが好ましレ、。
[0146] [IV.本発明の光記録媒体の製造装置]
このような本実施形態の光記録媒体の製造方法は、例えば、図 4に示すような光記 録媒体の製造装置 1により行なうことができる。即ち、この製造装置 1は、第 1記録層 形成工程の操作を行なう第 1記録層形成装置 2と、第 1反射層形成工程の操作を行 なう第 1反射層形成装置 3と、樹脂原料層形成工程の操作を行なう樹脂原料層形成 装置 4と、樹脂原料層硬化工程の操作を行なう樹脂原料層硬化装置 5と、スタンパ剥 離工程の操作を行なうスタンパ剥離装置 6と、樹脂原料層の表面改質処理工程の操 作を行う表面改質処理装置 7と、第 2記録層形成工程の操作を行なう第 2記録層形 成装置 8と、第 2反射層形成工程の操作を行なう第 2反射層形成装置 9と、第 2基板 形成工程の操作を行なう第 2基板形成装置 10と、光記録媒体 100及びその製造途 中の中間品をこれらの各装置 2〜; 10の間で前記の順に搬送する搬送装置 11とを備 えて構成される。
[0147] よって、この製造装置 1は、基板、記録層、及び、凹凸形状を有する中間層を少なく とも備えた光記録媒体の製造装置であって、第 1基板 101上に、直接又は他の層を 介して、第 1記録層 102を形成する手段としての第 1記録層形成装置 2と、第 1記録 層 102上に、直接又は他の層を介して、樹脂原料層 104aを形成する手段としての 樹脂原料層形成装置 4と、樹脂原料層 104a上に、前記凹凸形状に対応した転写用 凹凸形状を有するスタンパ 110を載置した状態で、樹脂原料層 104aを硬化させて、 第 1基板 101、第 1記録層 102、樹脂原料層 104a及びスタンパ 110を備えた接着体 107を得る手段としての樹脂原料層硬化装置 5と、接着体 107からスタンパ 110を剥 離し、樹脂原料層 104aに転写用凹凸形状を転写する手段としてのスタンパ剥離装 置 6とを備え、かつ、転写用凹凸形状が転写された前記樹脂原料層の硬化を促進さ せる表面改質処理を施す手段としての表面改質処理装置 7を有することにより構成さ れる。したがって、この製造装置 1により上述した光記録媒体の製造方法を実施する ことで、良好な凹凸形状を有する欠陥の少ない中間層を備えた光記録媒体を安価に 製造することができるのに加え、上述した作用 ·効果を得ることができる。
[0148] ただし、上述したように、ここで例示した製造装置 1は上述した光記録媒体の製造 方法を実施するための製造装置の一例であり、本発明の光記録媒体の製造装置は これに限定されるものではなぐ本発明の要旨を逸脱しない範囲で任意に変更して 実施すること力 Sできる。例えば、装置 2〜; 11は、製造しょうとする光記録媒体の構成 に応じて任意に組み合わせて構成できる。また、製造装置 1は、ここで挙げていない 別の装置と組み合わせて構成することもできる。さらに、装置 2〜; 11は本例のように 一つの製造装置 1中に組み込まれていてもよぐそれぞれ別々に構成された装置 2
〜 11が全体として製造装置 1を構成するようにしてもよ!/、。
[0149] さらには、 1つの装置力 S、製造装置 1中の異なる装置の機能を兼ね備えていてもよ い。このような例としては、第 1記録層形成装置 2と第 2記録層形成装置 8、或いは、 第 1反射層形成装置 3と第 2反射層形成装置 9、樹脂原料層硬化装置 5と表面改質 処理装置 7などが挙げられる。
[0150] ここで、上記装置 1は基板面入射型のデュアルレイヤタイプの片面 2層 DVD— Rを 製造する場合の例であるが、膜面入射型の Blu— ray ディスクの場合は、第 1記録 層形成装置と第 1反射層形成装置との載置順番、及び第 2記録層形成装置と第 2反 射層形成装置との載置順番をそれぞれ逆にし、第 2基板形成装置の代わりにカバー 層形成装置を配置することにより対応可能である。
実施例
[0151] 以下、実施例に基づき本発明をさらに具体的に説明する。なお、本発明は、その要 旨を逸脱しない限り、以下の実施例に限定されるものではなレ、。
[0152] [実施例 1]〔HD DVD— R— DLの例〕
本実施例は HD DVD— R— DL (2層媒体)の例であるが、本発明の効果を確認 するため、第 1記録層および第 1反射層は省略して光記録媒体を作製し、評価した。 第 1記録層および第 1反射層を省略した場合であっても、本発明の効果が HD DV D— R— DLに適用できることは、以下の実施例により十分検証することができる。
[0153] (1)光記録媒体の作製
(1 1)スタンパの用意
ポリカーボネート(PC)を材料として、射出成形法により、内径 15mmの中心孔を有 する、外径 120mm、厚さ 0· 60mmの円盤状のスタンノ (以下、 PC1スタンパという 場合がある。)を形成した。射出成形は、トラックピッチ 0· 4 111、幅 0· 23 111、深さ 6 5nmの案内溝を有するニッケル製原盤を使用した。なお、原子間力顕微鏡 (AFM : Atomic Force Microscope)により、 PCIスタンパには、ニッケル製原盤の案内 溝(凹凸)が正確に転写されたことが確認された。
[0154] (1 2)第 1基板の形成 ニッケルスタンパを用いてポリカーボネートを射出成形し、トラックピッチ 0. 4〃m、 幅 0. 23 111、深さ 60nmの?冓カ形成された、直径 120mm、厚さ 0. 58mmの基板( 第 1基板)を得た。
[0155] (1 3)中間層の形成
次に、第 1基板上に、第 1樹脂層を形成するための紫外線硬化性樹脂(大日本イン キ社製 SD6036)を円形に滴下し、スピナ一法により厚さ約 18 111の膜 (第 1樹脂層 )を形成した。一方、 PC1スタンパの案内溝が形成された面に、第 2樹脂層(最外樹 脂層)を形成するための所定の紫外線硬化性樹脂(日本化薬社製 MPZ388)を円形 に滴下し、スピナ一法により厚さ約 7 mの膜 (第 2樹脂層)を形成した。
[0156] 次に、この第 1樹脂層と第 2樹脂層とが対向するように、第 1基板と PC1スタンパとを 貼り合わせた。続いて、 PC 1スタンパ側から紫外線を大気雰囲気下、常温で照射 (光 源:ハリソン東芝社製トスキユア 751)して、第 1樹脂層及び第 2樹脂層を硬化させて、 接着体を形成した。この際の紫外線の照射量は、 90mj/cm2とした。
[0157] 接着体を形成後、接着体の外周部にナイフエッジを差し込んだ後、力を加えて PC 1スタンパを第 2樹脂層(最外樹脂層)から剥離させた。 PC1スタンパと第 2樹脂層(最 外樹脂層)との界面で、全面にわたりムラ無く良好な状態で剥離を行うことができた。 なお、 PC1スタンパを剥離した後に第 2樹脂層(最外樹脂層)の表面を指で触ったと ころ、ベとつきがあり、半硬化状態であることが確認された。
PC 1スタンパを剥離した後、直ちに第 2樹脂層の上から紫外線を照射することによ つて表面改質処理を行い、中間層を形成した。この際の紫外線の照射量は、 350mJ / cmとした。
[0158] (1 4)第 2記録層等の形成
第一基板上に中間層を設け、表面改質処理を施したものを、 25°C、相対湿度 42% のクリーンブース内で 12時間放置した後、該中間層の上に、含金属ァゾ色素のテト ラフルォロプロパノール溶液 (濃度 1. 0重量%)を滴下してスピナ一法により塗布した 。塗布後、 70°Cで 30分間乾燥し、第 2記録層を形成した。なお、第 2記録層は、波長 470nmのレーザで OD値が 0. 15となるように塗布条件を調整した。
[0159] 続いて、第 2記録層上に、 Ag Bi (Bi : l . 0原子%)からなる Ag合金を用いて、ス ノ ンタリング法により厚さ lOOnmの第 2反射層を成膜した。
さらに、第 2反射層上に、紫外線硬化性樹脂をスピンコートして接着層を設けた。そ して、この接着層上に直径 120mm、厚さ 0. 6mmのポリカーボネート基板を載置し て第 2基板とし、紫外線を照射し硬化接着させた。
このようにして、光記録媒体を製造した。
[0160] (2)光記録媒体の Push— Pull信号の測定
上記方法で製造した光記録媒体から得られる Push— Pull信号を測定した。数値が 大きいほど、記録特性が良好である。なお、 Push— Pull信号は下記式で定義される
[0161] [数 1]
(Push - Pull) = ( ―
|( + + ( + 2) 2
[0162] 式中、(I I ) は、 (I I )信号の頂点間振幅である。 (I +1 ) は、 (I +1 )信号
1 2 pp 2 1 2 max 1 2 の最大値である。 (I +1 ) は (I +1 )信号の最小値である。また、 (I )は、光記録媒
1 2 mm 1 2 1
体からの再生信号を 4分割フォトディテクタにより、 4分割されたディテクタ(PD1 PD 2 PD3 PD4)として受光したとき、案内溝の仮想中心に対して左側に位置する PD 1及び PD2の出力の和である(I =PD1 + PD2 (I )は、案内溝の仮想中心に対し
1 2
て右側に位置する PD3及び PD4の出力の和である(I =PD3 + PD4
[0163] なお、フォーカスサーボは第 2記録層にかけ、トラッキングサーボはオープンループ の状態にして、光記録媒体を 600rpmで回転させた。通常、光ディスクには数十ミク ロンの偏心が存在するので、再生ビームは案内溝とランドとを、 1回転で数十回横断 することになる。 (I I )信号及び (I +1 )信号は正弦波状の出力を示すことになる。
1 2 1 2
[0164] Push— Pull信号は、パルステック工業社製 ODU1000を使用し、波長 405nmの レーザ光を用い、再生パワー 0. 4mWとした。光記録媒体上の半径位置 40mmで測 定した Push— Pull信号の測定結果を表 1に示す。
[0165] [実施例 2, 3及び比較例 1 , 2]
接着体形成時の紫外線照射量および表面改質処理時の紫外線照射量を表 1に示 す通りとした以外は実施例 1と同様にして光記録媒体を製造した。なお、何れの製造 においても、 PCIスタンパを剥離した後に第 2樹脂層(最外樹脂層)の表面を指で触 つたところ、ベとつきがあり、半硬化状態であることが確認された。
得られた光記録媒体を、実施例 1と同様の方法にて Push— Pull信号の測定を行つ た。その結果を表 1に示す。
[0166] [実施例 4〜6及び比較例 3, 4]
PC1スタンパの代わりに非晶質ポリオレフインを用いて実施例 1と同様にしてスタン パを製造した (APOlスタンパという場合がある。)。この APOlスタンパを用い、接着 体形成時の紫外線照射量および表面改質処理時の紫外線照射量を表 1に示す通り とした以外は実施例 1と同様にして光記録媒体を製造した。なお、何れの製造におい ても、 APOlスタンパを剥離した後に第 2樹脂層(最外樹脂層)の表面を指で触った ところ、ベとつきがあり、半硬化状態であることが確認された。
得られた光記録媒体を、実施例 1と同様の方法にて Push— Pull信号の測定を行つ た。その結果を表 1に示す。
[0167] [表 1]
[« 1 ]
Figure imgf000043_0001
表 1から、表面改質処理を行った実施例;!〜 3及び実施例 4〜6は、表面改質処理 を行わなかった比較例 1 , 2及び比較例 3, 4よりも、それぞれ、 Push— Pull信号の値 が大きい。このことから、比較例;!〜 4では、第 2記録層の案内溝形状がスタンパ(PC 1または APOl)の溝形状から変化している可能性が考えられる。これに対し、実施 例 1〜6ではこの変化を抑制し、良好な凹凸形状を有する第 2記録層が形成できてい ること力 Sわ力、る。 このこと力、ら、本発明の製造法によれば、光による情報の記録 ·再生が安定した光 記録媒体を得られることが推察される。
[0169] [実施例 7]〔DVDR— DL (120mm媒体)の例〕
(3)光記録媒体の作製
(3— 1)スタンパの用意
ポリカーボネート(PC)を材料として、射出成形法により、内径 15mmの中心孔を有 する、外径 120mm、厚さ 0· 60mmの円盤状のスタンノ (以下、 PC2スタンパという 場合がある。)を形成した。射出成形は、トラックピッチ 0. 74 111、幅 0· 32 111、深さ 175nmの案内溝を有するニッケル製原盤を使用した。なお、原子間力顕微鏡により 、 PC2スタンパには、ニッケル製原盤の案内溝(凹凸)が正確に転写されたことが確 認された。
[0170] (3— 2)第 1記録層等の形成
ニッケルスタンパを用いてポリカーボネートを射出成形し、トラックピッチ 0. 74〃m、 幅 0. 33 ^ 111,深さ 160nmの溝が形成された、直径 120mm、厚さ 0. 57mmの基板 (第 1基板)を得た。
[0171] 次に、含金属ァゾ色素のテトラフルォロプロパノール溶液 (濃度 0. 9重量%)を調製 し、これを基板上に滴下してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾 燥し、第 1記録層を形成した。なお、第 1記録層は、波長 590nmのレーザで OD値が 0. 53となるように塗布条件を調整した。
さらに、第 1記録層上に、 Ag— Bi (Bi : l . 0原子%)からなる Ag合金を用いて、厚さ 17nmの半透明の第 1反射層をスパッタリング法により成膜した。
[0172] (3— 3)中間層の形成
次に、第 1反射層上に、第 1樹脂層を形成するための紫外線硬化性樹脂(大日本ィ ンキ社製 SD6036)を円形に滴下し、スピナ一法により厚さ約 35 111の膜 (第 1樹脂 層)を形成した。一方、 PC2スタンパの案内溝が形成された面に、第 2樹脂層(最外 樹脂層)を形成するための所定の紫外線硬化性樹脂(日本化薬社製 MPZ388)を円 形に滴下し、スピナ一法により厚さ約 13 111の膜 (第 2樹脂層)を形成した。
[0173] 次に、この第 1樹脂層と第 2樹脂層とが対向するように、第 1基板と PC2スタンパとを 貼り合わせた。続いて、 PC2スタンパ側から紫外線を常温で照射して、第 1樹脂層及 び第 2樹脂層を硬化させて、接着体を形成した。この際の紫外線の照射量は、 200 mj/ cmどし 7こ。
[0174] 実施例 1と同様にして PC2スタンパを剥離した後、直ちに第 2樹脂層の上から紫外 線を照射することによって表面改質処理を行い、中間層を形成した。この際の紫外線 の照射量は、 350mj/cm2とした。なお、 PC2スタンパを剥離した後に第 2樹脂層( 最外樹脂層)の表面を指で触ったところ、ベとつきがあり、半硬化状態であることが確 認された。
[0175] (3— 4)第 2記録層等の形成
基板の上に第 1記録層、第 1反射層及び中間層を設け、表面改質処理を施したも のを、 25°C、相対湿度 42%のクリーンブース内で 12時間放置した後、該中間層の 上に、含金属ァゾ色素のテトラフルォロプロパノール溶液 (濃度 1. 1重量%)を滴下 してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾燥し、第 2の記録層を形 成した。なお、第 2記録層は、波長 590nmのレーザで OD値が 0· 59となるように塗 布条件を調整した。
[0176] 続いて、第 2記録層上に、 Ag— Bi (Bi : l . 0原子%)からなる Ag合金を用いて、ス ノ クタリング法により厚さ 120nmの第 2反射層を成膜した。
さらに、第 2反射層上に、紫外線硬化性樹脂をスピンコートして接着層を設けた。次 いで、この接着層上に直径 120mm、厚さ 0. 6mmのポリカーボネート基板を載置し て第 2基板とし、紫外線を照射し硬化接着させた。
このようにして、 2つの記録層を有する多層型の光記録媒体を製造した。
[0177] (4)光記録媒体の Push— Pull信号の測定
上記方法で製造した光記録媒体の第 2記録層から得られる Push— Pull信号を測 定した。数値が大きいほど、記録特性が良好である。なお、 Push— Pull信号は、パ ルステック工業社製 ODU1000を使用し、波長 650nmのレーザ光を用い、再生パヮ 一 0. 7mWとした。光記録媒体上の半径位置 23mm、 40mm,および 58mmの位置 でそれぞれ測定した Push— Pull信号の測定結果を表 2に示す。
[0178] (5)記録層の溝形状の測定 上記方法で製造した光記録媒体につ!/、て、第 2記録層形成前後における案内溝 の溝深さ及び溝幅を、半径位置 25mm、 40mm及び 55mmでそれぞれ測定した。 測定は、 dr. schwab社製、 UMDS argus plusを用いた。第 2記録層形成前につ いては、表面改質処理後の中間層表面を測定した。第 2記録層形成後については、 さらに第 2反射層を形成した後、第 2反射層表面を測定した。その結果を表 3に示す
[0179] [実施例 8, 9及び比較例 5, 6]
接着体形成時の紫外線照射量および表面改質処理時の紫外線照射量を表 2に示 す通りとした以外は実施例 7と同様にして 2つの記録層を有する多層型の光記録媒 体を製造した。なお、何れの製造においても、 PC2スタンパを剥離した後に第 2樹脂 層(最外樹脂層)の表面を指で触ったところ、ベとつきがあり、半硬化状態であること が確認された。
得られた光記録媒体を、実施例 7と同様の方法にて Push— Pull信号の測定を行つ た。その結果を表 2に示す。また、比較例 5について、実施例 7と同様の方法にて第 2 記録層形成前後の案内溝形状の測定を行った結果を表 3に示す。
[0180] [実施例 10, 11及び比較例 7, 8]
PC2スタンパの代わりに非晶質ポリオレフインを用いて実施例 7と同様にしてスタン パを製造した (AP02スタンパという場合がある。)。 AP02スタンパを用い、接着体 形成時の紫外線照射量および表面改質処理時の紫外線照射量を表 2に通りとした 以外は実施例 7と同様にして 2つの記録層を有する多層型の光記録媒体を製造した 。なお、何れの製造においても、 AP02スタンパを剥離した後に第 2樹脂層(最外樹 脂層)の表面を指で触ったところ、ベとつきがあり、半硬化状態であることが確認され た。
得られた光記録媒体を、実施例 7と同様の方法にて Push— Pull信号の測定を行つ た。その結果を表 2に示す。
[0181] [表 2] [¾ 2 ]
Figure imgf000047_0001
[0182] [表 3]
ほ 3 ]
Figure imgf000047_0002
[0183] 表 2から、表面改質処理を行った実施例 7〜9及び実施例 10, 11は、いずれの測 定位置においても、表面改質処理を行わなかった比較例 5, 6及び比較例 7, 8よりも 、それぞれ、 Push— Pull信号の値が大きい。このこと力、ら、比較例 5〜8では、第 2記 録層の案内溝形状がスタンパ(PC2または AP02)の溝形状力 変化している可能 性が考えられる。これに対し、実施例 7〜: 11ではこの変化を抑制し、良好な凹凸形状 を有する第 2記録層が形成できていることがわかる。
[0184] また、表 3から、表面改質処理を行った実施例 7は、表面改質処理を行わなかった 比較例 5よりも、第 2記録層形成後において溝が深いことが確認された。このことは、 表2に示した Push— Pull信号の結果を裏付けるものであり、実施例 7では良好な凹 凸形状を有する第 2記録層が形成できていることがわかる。表 3中、第 2記録層形成 前においては、実施例 7と比較例 5の溝形状に差異が見られないことから、表面改質 処理を行うことによって中間層と第 2記録層との親和性、換言すれば濡れ性が変化し 、この結果、スタンパの案内溝を反映した凹凸形状が第 2記録層として形成されたも のと考えられる。表面改質処理を行わない場合は、中間層に形成された案内溝が、 第 2記録層の形成過程で埋まってしまうことが考えられる。
このこと力、ら、本発明の製造法によれば、光による情報の記録 ·再生が安定した光 記録媒体を得られることが確認された。
[0185] [実施例 12]〔DVDR— DL (80mm媒体)の例〕
(6)光記録媒体の作製
(6— 1)スタンパの用意
非晶質ポリオレフインを材料として、射出成形法により、内径 15mmの中心孔を有 する、外径 80mm、厚さ 0· 60mmの円盤状のスタンノ (以下、 ΑΡ03スタンパという 場合がある。)を形成した。射出成形は、トラックピッチ 0. 74 111、幅 0· 32 111、深さ
175nmの案内溝を有するニッケル製原盤を使用した。なお、原子間力顕微鏡により
、 AP03スタンパには、ニッケル製原盤の案内溝(凹凸)が正確に転写されたことが 確認された。
[0186] (6— 2)第 1記録層等の形成
ニッケルスタンパを用いてポリカーボネートを射出成形し、トラックピッチ 0. 74〃m、 幅 0. 33 ^ 111,深さ 160nmの溝が形成された、直径 80mm、厚さ 0. 57mmの基板( 第 1基板)を得た。
[0187] 次に、含金属ァゾ色素のテトラフルォロプロパノール溶液 (濃度 0. 9重量%)を調製 し、これを基板上に滴下してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾 燥し、第 1記録層を形成した。なお、第 1記録層は、波長 590nmのレーザで OD値が 0. 53となるように塗布条件を調整した。
さらに、第 1記録層上に、 Ag— Bi (Bi : l . 0原子%)からなる Ag合金を用いて、厚さ 17nmの半透明の第 1の反射層をスパッタリング法により成膜した。
[0188] (6— 3)中間層の形成
次に、第 1反射層上に、第 1樹脂層を形成するための紫外線硬化性樹脂(大日本ィ ンキ社製 SD6036)を円形に滴下し、スピナ一法により厚さ約 35 111の膜 (第 1樹脂 層)を形成した。一方、 AP03スタンパの案内溝が形成された面に、第 2樹脂層(最 外樹脂層)を形成するための所定の紫外線硬化性樹脂(日本化薬社製 MPZ388)を 円形に滴下し、スピナ一法により厚さ約 13 111の膜 (第 2樹脂層)を形成した。 [0189] 次に、この第 1樹脂層と第 2樹脂層とが対向するように、第 1基板と AP03スタンパと を貼り合わせた。続いて、 AP03スタンパ側から紫外線を常温で照射して、第 1樹脂 層及び第 2樹脂層を硬化させて、接着体を形成した。この際の紫外線の照射量は、 1 00mj/cm2とした。
[0190] 実施例 1と同様にして AP03スタンパを剥離した後、直ちに第 2樹脂層の上から紫 外線を照射することによって表面改質処理を行い、中間層を形成した。この際の紫外 線の照射量は、 400mj/cm2とした。なお、 AP03スタンパを剥離した後に第 2樹脂 層(最外樹脂層)の表面を指で触ったところ、ベとつきがあり、半硬化状態であること が確認された。
[0191] (6— 4)第 2記録層等の形成
基板の上に第 1記録層、第 1の反射層及び中間層を設け、表面改質処理を施した ものを、 25°C、相対湿度 42%のクリーンブース内に設置した後、直ちに、該中間層 の上に、含金属ァゾ色素のテトラフルォロプロパノール溶液 (濃度 1. 1重量%)を滴 下してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾燥し、第 2の記録層を 形成した。なお、第 2記録層は、波長 590nmのレーザで OD値が 0· 59となるように 塗布条件を調整した。
[0192] 続いて、第 2記録層上に、 Ag— Bi (Bi : l . 0原子%)からなる Ag合金を用いて、ス パッタリング法により厚さ 120nmの第 2の反射層を成膜した。
さらに、第 2の反射層上に、紫外線硬化性樹脂をスピンコートして接着層を設けた。 そして、この接着層上に直径 80mm、厚さ 0. 6mmのポリカーボネート基板を載置し て第 2基板とし、紫外線を照射し硬化接着させた。
このようにして、 2つの記録層を有する多層型の光記録媒体を製造した。
[0193] (7)光記録媒体の Push— Pull信号の測定
上記方法で製造した光記録媒体の第 2記録層から得られる Push— Pull信号を測 定した。数値が大きいほど、記録特性が良好である。
Push— Pull信号は、パルステック工業社製 ODU1000を使用し、波長 650nmの レーザ光を用い、再生パワー 0. 7mWとした。光記録媒体上の半径位置 23mm、 33 mm、および 38mmの位置でそれぞれ測定した Push— Pull信号の測定結果を表 4 に示す。
[0194] (8)光記録媒体の剥離キズの確認
上記方法で製造した光記録媒体について、周方向に起こり易い溝抜けや半径方 向に起こり易い剥離キズの有無を、光学顕微鏡で観察した。
[0195] [実施例 13〜; 15及び比較例 9〜; 12]
接着体形成時の紫外線照射量および表面改質処理時の紫外線照射量を表 4に示 す通りとした以外は実施例 12と同様にして 2つの記録層を有する多層型の光記録媒 体を製造した。なお、実施例 13、 14、比較例 9〜; 11の製造においては、 AP03スタ ンパを剥離した後に第 2樹脂層(最外樹脂層)の表面を指で触ったところ、ベとつきが あり、半硬化状態であることが確認された。実施例 15および比較例 12の製造におい ては、 AP03スタンパを剥離した後に第 2樹脂層(最外樹脂層)の表面を指で触った ところ、ほとんどべとっきは感じられなかった。
得られた光記録媒体を、実施例 12と同様の方法にて、 Push— Pull信号の測定及 び剥離キズの確認を行った。その結果を表 4に示す。
[0196] [表 4]
ほ 4 ]
Figure imgf000050_0001
表 4から、表面改質処理を行った実施例 12〜; 15は、いずれの測定位置においても 、表面改質処理を行わなかった比較例 9〜12よりも Push— Pull信号の値が大きい。 このことから、比較例 9〜; 12では、第 2記録層の案内溝形状がスタンパ (AP03)の溝 形状から変化している可能性が考えられる。これに対し、実施例 12〜; 15ではこの変 化を抑制し、良好な凹凸形状を有する第 2記録層が形成できていることがわかる。 このこと力、ら、本発明の製造法によれば、光による情報の記録 ·再生が安定した光 記録媒体を得られることが推察される。
[0198] また、接着体形成時に多量の紫外線を照射した実施例 15及び比較例 12では溝抜 け/剥離キズが生じているのに対し、実施例 12〜; 14及び比較例 10, 11では溝抜け
/剥離キズが生じていないことから、良好な案内溝(即ち、凹凸形状)を形成するた めには、スタンパの剥離前においては中間層(樹脂原料層)を半硬化状態にしておく ことが好まし!/、ことが確認された。
[0199] [実施例 16]〔DVDR— DL (120mm媒体)の例〕
(9)光記録媒体の作製
(9 1)スタンパの用意
スタンパとしては、実施例 7で用いた PC2スタンパと同様のスタンパを用いた。この スタンパを、以下適宜、 PC3スタンパという。
[0200] (9 2)第 1記録層等の形成
ニッケルスタンパを用いてポリカーボネートを射出成形し、トラックピッチ 0. 74〃m、 幅 0. 33 ^ 111,深さ 160nmの溝が形成された、直径 120mm、厚さ 0. 57mmの基板
(第 1基板)を得た。
[0201] 次に、含金属ァゾ色素のテトラフルォロロペンタノール溶液(濃度 0. 9重量%)を調 製し、これを基板上に滴下してスピナ一法により塗布した。塗布後、 70°Cで 30分間 乾燥し、第 1記録層を形成した。なお、第 1記録層は、波長 590nmのレーザで OD値 が 0. 53となるように塗布条件を調整した。
[0202] さらに、第 1記録層上に、 Ag Bi (Bi : l . 0原子%)からなる Ag合金を用いて、厚さ
17nmの半透明の第 1反射層をスパッタリング法により成膜した。
[0203] (9 3)中間層の形成
次に、第 1反射層上に、第 1樹脂層を形成するための紫外線硬化性樹脂(大日本ィ ンキ社製 SD6036)を円形に滴下し、スピナ一法により厚さ約 35 111の膜 (第 1樹脂 層)を形成した。一方、 PC3スタンパの案内溝が形成された面に、第 2樹脂層(最外 樹脂層)を形成するための所定の紫外線硬化性樹脂(日本化薬社製 MPZ388)を円 形に滴下し、スピナ一法により厚さ約 13 111の膜 (第 2樹脂層)を形成した。
[0204] 次に、この第 1樹脂層と第 2樹脂層とが対向するように、第 1基板と PC3スタンパとを 貼り合わせた。続いて、 PC3スタンパ側から紫外線を常温で照射して、第 1樹脂層及 び第 2樹脂層を硬化させて、接着体を形成した。この際の紫外線の照射量は、 240 mj/ cmどし 7こ。
[0205] 実施例 1と同様にして PC3スタンパを剥離した後、直ちに 100°Cで 30分の加熱処 理による表面改質処理を行い、中間層を形成した。なお、 PC3スタンパを剥離した後 に第 2樹脂層(最外樹脂層)の表面を指で触ったところ、ほとんどべとっきは感じられ なかった。
[0206] (9 4)第 2記録層等の形成
基板の上に第 1記録層、第 1反射層及び中間層を設け、表面改質処理を施したも のを、 25°C、相対湿度 42%のクリーンブース内で 12時間放置した後、該中間層の 上に、含金属ァゾ色素のテトラフルォロプロパノール溶液 (濃度 1. 1重量%)を滴下 してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾燥し、第 2記録層を形成し た。なお、第 2記録層は、波長 590nmのレーザで OD値が 0· 59となるように塗布条 件を調整した。
[0207] 続いて、第 2記録層上に、 Ag Bi (Bi : l . 0原子%)からなる Ag合金を用いて、ス ノ クタリング法により厚さ 120nmの第 2反射層を成膜した。
さらに、第 2反射層上に、紫外線硬化性樹脂をスピンコートして接着層を設けた。そ して、この接着層上に直径 120mm、厚さ 0. 6mmのポリカーボネート基板を載置し て第 2基板とし、紫外線を照射し硬化接着させた。
このようにして、 2つの記録層を有する多層型の光記録媒体を製造した。
[0208] (10)光記録媒体の Push— Pull信号の測定
上記方法で製造した光記録媒体の第 2記録層から得られる Push— Pull信号を測 定した。数値が大きいほど、記録特性が良好である。
Push— Pull信号は、パルステック工業社製 ODU1000を使用し、波長 650nmの レーザ光を用い、再生パワー 0. 7mWとした。光記録媒体上の半径位置 23mm、 40 mm、および 58mmの位置でそれぞれ測定した Push— Pull信号の測定結果を表 5 に示す。
[0209] [実施例 17及び比較例 13] 接着体形成時の紫外線照射量および表面改質処理時の加熱処理条件を表 5に示 す通りとした以外は実施例 16と同様にして 2つの記録層を有する多層型の光記録媒 体を製造した。なお、 PC3スタンパを剥離した後に第 2樹脂層(最外樹脂層)の表面 を指で触ったところ、何れも、ほとんどべとっきは感じられなかった。
得られた光記録媒体を、実施例 16と同様の方法にて Push— Pull信号の測定を行 つた。その結果を表 5に示す。
[表 5]
ほ 5 ]
Figure imgf000053_0001
[0211] 表 5から、表面改質処理を行った実施例 16および 17は、いずれの測定位置にお いても、表面改質処理を行わなかった比較例 13よりも、 Push— Pull信号の値が大き い。このことから、比較例 13では、第 2記録層の案内溝形状がスタンパ(PC3)の溝形 状から変化している可能性が考えられる。これに対し、実施例 16および 17ではこの 変化を抑制し、良好な凹凸形状を有する第 2記録層が形成できていることがわかる。 このこと力、ら、本発明の製造法によれば、光による情報の記録 ·再生が安定した光 記録媒体を得られることが推察される。
産業上の利用可能性
[0212] 本発明は、光記録媒体に力、かる任意の分野で広く用いることができ、特に、凹凸形 状を有する中間層を有する光記録媒体の製造に用いる場合に好適である。具体例と しては、 CD、 DVD,青色レーザ対応光記録媒体等などに用いて特に好適である。 なお、 2006年 9月 26曰に出願された曰本特許出願 2006— 260963号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 凹凸形状を有する中間層を備えた光記録媒体の製造方法であって、
基板上に、直接又は他の層を介して、照射される光により情報が記録される記録層 を形成する工程と、
前記記録層上に、直接又は他の層を介して、樹脂原料層と前記凹凸形状に対応し た転写用凹凸形状を有するスタンパとをこの順に載置した状態で、前記樹脂原料層 を硬化させて、前記基板、前記記録層、前記樹脂原料層及び前記スタンパを備えた 接着体を得る工程と、
前記樹脂原料層から前記スタンパを剥離して前記樹脂原料層に前記転写用凹凸 形状を転写した後に、前記転写用凹凸形状が転写された前記樹脂原料層の硬化を 促進させる表面改質処理を施して前記中間層を形成する工程とを有する、 ことを特徴とする、光記録媒体の製造方法。
[2] 前記表面改質処理が、放射線照射処理及び/又は加熱処理である、
ことを特徴とする、請求項 1に記載の光記録媒体の製造方法。
[3] 前記表面改質処理が、照射量 50〜; !OOOmj/cm2の紫外線照射による、
ことを特徴とする、請求項 1又は請求項 2に記載の光記録媒体の製造方法。
[4] 前記表面改質処理が、加熱温度 40〜; 120°Cの加熱処理による、
ことを特徴とする、請求項 1又は請求項 2に記載の光記録媒体の製造方法。
[5] 前記接着体を得る工程における前記樹脂原料層の硬化が、半硬化状態までの硬 化である、
ことを特徴とする、請求項 1〜4の何れ力、 1項に記載の光記録媒体の製造方法。
[6] 前記記録層が、有機色素材料を含有する、
ことを特徴とする請求項 1〜5の何れ力、 1項に記載の光記録媒体の製造方法。
[7] 前記スタンパが、ポリカーボネート系樹脂製である、
ことを特徴とする請求項 1〜6の何れ力、 1項に記載の光記録媒体の製造方法。
[8] 前記樹脂原料層が複数の樹脂層から構成された、
ことを特徴とする請求項 1〜7の何れ力、 1項に記載の光記録媒体の製造方法。
[9] 前記樹脂原料層が複数の樹脂層から構成され、且つ、 前記複数の樹脂層のうち最外樹脂層の硬化が、半硬化状態までの硬化である、 ことを特徴とする、請求項 5に記載の光記録媒体の製造方法。
基板、記録層、及び、凹凸形状を有する中間層を少なくとも備えた光記録媒体の製 造装置であって、
前記基板上に、直接又は他の層を介して、前記記録層を形成する手段と、 前記記録層上に、直接又は他の層を介して、樹脂原料層を形成する手段と、 前記樹脂原料層上に、前記凹凸形状に対応した転写用凹凸形状を有するスタン パを載置した状態で、前記樹脂原料層を硬化させて、前記基板、前記記録層、前記 樹脂原料層及び前記スタンパを備えた接着体を得る手段と、
前記接着体から前記スタンパを剥離し、前記樹脂原料層に前記転写用凹凸形状を 転写する手段とを備え、かつ、
前記転写用凹凸形状が転写された前記樹脂原料層の硬化を促進させる表面改質 処理を施す手段を有する、
ことを特徴とする、光記録媒体の製造装置。
PCT/JP2007/068442 2006-09-26 2007-09-21 Procédé et appareil pour la fabrication d'un support d'enregistrement optique WO2008041526A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/443,014 US9196288B2 (en) 2006-09-26 2007-09-21 Process and apparatus for producing optical recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-260963 2006-09-26
JP2006260963 2006-09-26

Publications (1)

Publication Number Publication Date
WO2008041526A1 true WO2008041526A1 (fr) 2008-04-10

Family

ID=39268388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068442 WO2008041526A1 (fr) 2006-09-26 2007-09-21 Procédé et appareil pour la fabrication d'un support d'enregistrement optique

Country Status (4)

Country Link
US (1) US9196288B2 (ja)
CN (1) CN101512649A (ja)
TW (1) TW200832392A (ja)
WO (1) WO2008041526A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596077B2 (en) * 2002-08-30 2009-09-29 Sony Corporation Optical disk
JP2013242953A (ja) 2012-04-26 2013-12-05 Sony Corp 光情報記録媒体
CN111634108B (zh) * 2020-04-25 2020-12-08 湖南省美程陶瓷科技有限公司 一种磁控管陶瓷金属化涂浆系统及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254447A (ja) * 1988-08-18 1990-02-23 Ricoh Co Ltd 光学的記録媒体用基板の製造方法
JP2000251335A (ja) * 1999-02-24 2000-09-14 Nippon Columbia Co Ltd 光情報記録媒体製造方法
JP2002367235A (ja) * 2001-06-08 2002-12-20 Hitachi Ltd 多層構造ディスクの製造方法と製造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275019A (ja) 1988-04-28 1989-11-02 Canon Inc 情報記録媒体用基板の製造方法
JP2002279707A (ja) 2001-03-22 2002-09-27 Toshiba Corp 片面2層ディスクの作製方法、該2層ディスク及び記録再生装置
JP2003085839A (ja) 2001-09-14 2003-03-20 Tdk Corp 光情報媒体の製造方法
JP2002348368A (ja) * 2001-05-28 2002-12-04 Ge Plastics Japan Ltd 光学用ポリカーボネートおよびその用途
US6821460B2 (en) * 2001-07-16 2004-11-23 Imation Corp. Two-sided replication of data storage media
JP2003077191A (ja) 2001-08-31 2003-03-14 Pioneer Electronic Corp 多層光記録媒体の製造方法
EP1429325A4 (en) * 2001-09-13 2006-05-31 Tdk Corp METHOD OF MANUFACTURING AN OPTICAL RECORDING MEDIUM
JP2003203402A (ja) 2001-12-28 2003-07-18 Matsushita Electric Ind Co Ltd 光情報記録媒体の製造方法、および光情報記録媒体
JP2004039136A (ja) 2002-07-04 2004-02-05 Pioneer Electronic Corp 光学多層記録媒体成形用透明スタンパおよび光学多層記録媒体の製造方法
CN100421163C (zh) 2003-11-12 2008-09-24 三菱化学媒体股份有限公司 制备光学记录介质的方法和透光性压模
TWI383003B (zh) 2005-02-02 2013-01-21 Mitsubishi Gas Chemical Co 聚脂薄膜、及其製法、以及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254447A (ja) * 1988-08-18 1990-02-23 Ricoh Co Ltd 光学的記録媒体用基板の製造方法
JP2000251335A (ja) * 1999-02-24 2000-09-14 Nippon Columbia Co Ltd 光情報記録媒体製造方法
JP2002367235A (ja) * 2001-06-08 2002-12-20 Hitachi Ltd 多層構造ディスクの製造方法と製造装置

Also Published As

Publication number Publication date
US20100090358A1 (en) 2010-04-15
CN101512649A (zh) 2009-08-19
TW200832392A (en) 2008-08-01
US9196288B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US7684309B2 (en) Multi-purpose high-density optical disc
US20060145373A1 (en) Process for producing optical recording medium and light transmitting stamper
JP4642539B2 (ja) 光記録媒体
JP2007294076A (ja) 光記録媒体の製造方法及び光記録媒体の製造装置
JP4514582B2 (ja) 光記録媒体の製造方法及び光透過性スタンパ
US7910191B1 (en) Method for forming light-transmitting cover layer for optical recording medium
WO2008041526A1 (fr) Procédé et appareil pour la fabrication d'un support d'enregistrement optique
TWI395218B (zh) 光記錄媒體之製造方法及製造裝置
JP5108434B2 (ja) 光記録媒体の製造方法及び製造装置
JP4649395B2 (ja) 光記録媒体の製造方法及び製造装置
US20110096655A1 (en) Forming light-transmitting cover layer for recording medium
JP2006236574A (ja) 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の記録再生装置
JP5393045B2 (ja) 光情報記録媒体
JP4171674B2 (ja) 光記録媒体、光記録媒体の膜厚測定方法、膜厚制御方法、製造方法、膜厚測定装置及び膜厚制御装置
US7946015B1 (en) Method and apparatus for separating dummy disc from multi-layer substrate for optical storage medium
JP4238518B2 (ja) 光記録媒体及びその製造方法
JP3978402B2 (ja) 光記録媒体の製造方法及び光記録媒体用積層体の製造方法
JP4050993B2 (ja) 光記録媒体、光記録媒体の膜厚測定方法、膜厚制御方法及び製造方法
JP4922134B2 (ja) 光記録媒体および媒体認識信号の記録方法
JP4039131B2 (ja) 多層型光ディスクの製造方法
JP4039132B2 (ja) 多層型光ディスクの製造方法
WO2007114285A1 (ja) 光記録媒体の製造方法
JP2008021393A (ja) 光記録媒体およびディスク媒体認識信号の記録方法
US7986611B1 (en) High-density optical recording media and method for making same
JP2008010025A (ja) 光情報記録媒体の製造方法、光情報記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032669.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 511/MUMNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12443014

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07807773

Country of ref document: EP

Kind code of ref document: A1