WO2007114285A1 - 光記録媒体の製造方法 - Google Patents

光記録媒体の製造方法 Download PDF

Info

Publication number
WO2007114285A1
WO2007114285A1 PCT/JP2007/056941 JP2007056941W WO2007114285A1 WO 2007114285 A1 WO2007114285 A1 WO 2007114285A1 JP 2007056941 W JP2007056941 W JP 2007056941W WO 2007114285 A1 WO2007114285 A1 WO 2007114285A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
layer
curable resin
stamper
transfer layer
Prior art date
Application number
PCT/JP2007/056941
Other languages
English (en)
French (fr)
Inventor
Tadakazu Nagai
Original Assignee
Mitsubishi Kagaku Media Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Media Co., Ltd. filed Critical Mitsubishi Kagaku Media Co., Ltd.
Publication of WO2007114285A1 publication Critical patent/WO2007114285A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates

Definitions

  • the present invention relates to an optical recording medium manufacturing method and the like. Specifically, the present invention relates to a method of manufacturing an optical recording medium provided with a recording / reproducing functional layer.
  • optical disk such as CD-R, CD-RW, DVD-R, and rewritable DVD (hereinafter sometimes referred to as “optical disk”).
  • a next-generation high-density optical disc having a cover layer having a thickness of 0.1 mm on the reflective layer provided on the substrate or on the reflective layer and the recording layer has been put into practical use.
  • Ru Blu-ray Disk, UDO (Ultra-Density Optical), etc.
  • blue-violet laser light is condensed by an objective lens having a high NA (numerical aperture, for example, 0.85), and the condensed laser light is irradiated from the cover layer side.
  • NA numbererical aperture, for example, 0.85
  • recording and Z or reproduction of the information signal is performed.
  • Such an optical disc is called a film surface incidence type optical disc. Even in these film surface incidence type optical discs, two or more recording layers are provided to further improve the recording density of the optical disc. Even in this case, it is usual to provide an intermediate layer between different recording layers.
  • Patent Document 1 is a document that introduces a technique related to the intermediate layer.
  • the resin material A104 formed in the guide groove of the resin stamper 101 (the resin material A after curing is represented as 204 in FIG. 4 of the document) is cured. Then, the resin stamper on which the resin material A204 is laminated and the first substrate 111 are bonded together with the resin material B105 which is a sheet-like adhesive material. Thereafter, the resin stamper is peeled off. In view of the ease of peeling from the resin material A, it is preferable that the stamper material A be subjected to a treatment for improving mold release in consideration of the ease with which the resin material A has a weak adhesion to the stamper. Is listed Yes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-203402 (paragraphs [0020] to [0027], FIG. 3, FIG. 5) Disclosure of Invention
  • the stamper (more specifically, the resin stamper) is separated from the resin material A (transfer layer). It has been found that there are cases where it cannot be performed well. In particular, it has been found that if the stamper is made of a highly polar material such as polycarbonate (a material that increases the adhesive strength with the transfer layer), it is difficult to achieve good peeling.
  • an object of the present invention is to provide an optical recording medium manufacturing method and manufacturing apparatus capable of satisfactorily separating the stamper and the transfer layer when manufacturing an optical recording medium provided with an intermediate layer having an uneven shape. It is to provide.
  • the gist of the present invention is a method for producing an optical recording medium having an intermediate layer having an uneven shape on the surface and having a lower intermediate layer and a transfer layer, the first recording medium having a substrate.
  • An ultraviolet curable resin film is provided on the surface of the stamper having a concavo-convex shape for transfer corresponding to the concavo-convex shape of the intermediate layer. After the UV curable resin film is semi-cured by irradiating with UV light, the UV curable resin film is further cured by irradiating with UV light in an atmosphere with reduced oxygen concentration.
  • the first recording medium is manufactured by forming the recording / reproducing functional layer on the substrate, and in the bonding process, the first recording medium is provided between the transfer layer and the recording / reproducing functional layer. It is preferable to bond the transfer layer lamination stamper and the first recording medium in the state where the intermediate layer is present.
  • the first recording medium is manufactured by forming a plurality of recording / reproducing functional layers on the substrate, and in the joining process, the recording / reproducing layer is located farthest from the transfer layer and the substrate force. It is preferable that the transfer layer stacking stamper and the first recording medium are bonded together with the lower intermediate layer existing between the functional layer.
  • the semi-curing of the ultraviolet curable resin film is preferably performed by irradiating with ultraviolet rays in an atmosphere in which oxygen is present.
  • the atmosphere in which the oxygen concentration is reduced is preferably a nitrogen atmosphere.
  • the lower intermediate layer is preferably formed on the first recording medium in the first recording medium manufacturing process.
  • a joining process is performed in a pressure-reduced atmosphere.
  • the transfer layer lamination stamper is mounted on the curable resin so that the curable resin and the transfer layer face each other. It is preferable to form a lower intermediate layer by stretching and stretching the curable resin.
  • a joining process is performed in air
  • the stamper is preferably made of polycarbonate-based resin.
  • an upper recording / reproducing functional layer on the transfer layer after peeling the stamper from the transfer layer.
  • the recording / reproducing functional layer is preferably provided with a reflective layer and a recording layer in this order from the substrate side.
  • the surface has an uneven shape, and has a lower intermediate layer and a transfer layer.
  • the ultraviolet curable resin film is semi-cured can be determined by, for example, the degree of cure of the ultraviolet curable resin film. Specifically, it can be roughly quantified by measuring the ratio of residual double bonds with an infrared spectrophotometer (IR). The ratio of residual double bonds is obtained by performing infrared spectroscopic measurement before and after curing the surface of the UV curable resin film provided on the stamper and calculating the ratio of the amount of double bonds before and after curing. be able to . Therefore, for example, in a semi-cured state, the degree of cure after the semi-curing treatment on the surface of the UV curable resin film provided on the stamper (the amount of double bonds before and after curing) The ratio is 50% or less.
  • IR infrared spectrophotometer
  • the stamper As one of the methods for qualitatively determining whether the UV curable resin film is semi-cured, it is provided on the stamper after semi-curing treatment.
  • An example is a state in which the surface of the UV curable resin film has viscosity. Specifically, after the semi-curing treatment, when the surface of the ultraviolet curable resin film provided on the stamper is touched with a finger, a sticky state can be mentioned.
  • the atmosphere in which the oxygen concentration is reduced specifically refers to an atmosphere in which the oxygen concentration is 5% or less.
  • a method for producing an optical recording medium having an uneven shape on the surface and an intermediate layer having a lower intermediate layer and a transfer layer includes the following steps.
  • a first recording medium manufacturing process for obtaining a first recording medium having a substrate.
  • An ultraviolet curable resin film is provided on the surface of the stamper having a concavo-convex shape for transfer corresponding to the concavo-convex shape of the intermediate layer, and the ultraviolet curable resin film is irradiated with ultraviolet rays to cure the ultraviolet ray. After semi-curing the curable resin film, ultraviolet rays are irradiated in an atmosphere with a reduced oxygen concentration, and the ultraviolet curable resin film is further cured to form a transfer layer. Transfer layer lamination stamper manufacturing process for obtaining a stamper.
  • the following three modes can be considered as the first recording medium obtained in the first recording medium manufacturing step (1).
  • a mode having a recording / reproducing functional layer on a substrate (a mode in which the recording / reproducing functional layer is one layer)
  • the mode (i) since the intermediate layer having the uneven shape is formed on the substrate, it is not necessary to provide the uneven shape on the substrate in advance.
  • the modes (ii) and (iii) since one or a plurality of recording / reproducing functional layers are provided on the substrate, it is preferable to provide an uneven shape on the surface of the substrate in advance.
  • the intermediate layer is basically formed by the same method. Therefore, first, the method for producing an optical recording medium used in the present invention will be specifically described using the above-mentioned aspect (ii). Then, the case where the above aspects (i) and (iii) are used for the first recording medium will be described.
  • a first recording medium having a recording / reproducing functional layer formed on a substrate is used.
  • the surface has a concavo-convex shape.
  • an optical recording medium having an intermediate layer having an intermediate layer and a transfer layer is obtained, it can be divided into the following two production methods depending on the stage in which the lower intermediate layer is present.
  • the first manufacturing method the lower intermediate layer is formed in the first recording medium manufacturing process.
  • the second manufacturing method is a case where the lower intermediate layer is formed in the joining step. Each manufacturing method will be described in detail below.
  • the lower intermediate layer is formed on the recording / reproducing functional layer in the first recording medium manufacturing process.
  • FIG. 1 and 2 are schematic cross-sectional views for explaining a preferred example of a method for manufacturing an optical recording medium to which the present embodiment is applied.
  • FIG. 1 and FIG. 2 show that among the steps (1) to (4), FIG. 1 (a) shows the step (1) and FIG. 1 (b) shows the step (2). ) Shows a corresponding example.
  • FIG. 2 (c) corresponds to step (3)
  • FIG. 2 (d) corresponds to step (4).
  • the optical recording medium has a disk shape and a center hole is formed at the center, but the center hole is not shown in FIGS.
  • a stamper usually has a disk shape, and a center hole is formed in the center. In FIGS. 1 and 2, the center hole is not shown.
  • FIG. 1 (a) shows a first recording medium 100 having a recording / reproducing functional layer 2 on a substrate 1 having an uneven surface.
  • the lower intermediate layer 3 is formed on the first recording medium 100.
  • FIG. 1 (b) shows a step of semi-curing the ultraviolet curable resin film 5 by irradiating the stamper 4 having the ultraviolet curable resin film 5 on the surface with the ultraviolet light UV (b) — 1)
  • a nitrogen purge atmosphere N gas purge type atmo
  • the step (b-2) is shown in which the ultraviolet ray UV is irradiated under the sphere) to further cure the ultraviolet ray curable resin film 5 to obtain the transfer layer 6.
  • the transfer layer lamination stamper 200 is formed through these steps.
  • FIG. 2 (c) shows a lower intermediate layer between the transfer layer 6 and the first recording medium 100 (recording / reproducing functional layer 2).
  • a joining process is shown in which the transfer layer lamination stamper 200 and the first recording medium 100 are joined in a state where 3 is present. Specifically, the step (c 1) of placing the transfer layer stack stamper 200 on the lower intermediate layer 3 so that the transfer layer 6 and the lower intermediate layer 3 face each other, and the lower intermediate layer 3 and the transfer Step (c-2) for bonding layer 6 is shown.
  • FIG. 2 (d) shows a peeling process for peeling the stamper 4 from the transfer layer 6.
  • the intermediate layer 7 is formed by peeling the stamper 4.
  • FIG. 1 (a) is a diagram for explaining the outline of the first recording medium 100.
  • the first recording medium 100 is obtained by forming a recording / reproducing functional layer 2 on a substrate 1. Then, the lower intermediate layer 3 is further provided on the first recording medium 100.
  • the material of the substrate plastic, metal, glass, etc. having appropriate processability and rigidity can be used.
  • the substrate surface incidence type configuration normally, transparency is required for the recording / reproducing laser beam.
  • the transparency to the recording / reproducing laser beam is not limited by birefringence.
  • what is necessary is just to perform as follows, when forming a guide groove in the surface. Specifically, when metal or glass is used as a substrate material, a thin photocurable or thermosetting resin layer is usually provided on the surface, and grooves are formed there. In this respect, it is preferable from the viewpoint of manufacturing that the plastic material is used and the shape of the substrate 1 and the guide groove on the surface are formed all at once by injection molding.
  • plastic material that can be injection-molded it is possible to use a polycarbonate resin, polyolefin resin, acrylic resin, epoxy resin, and the like conventionally used for CDs and DVDs.
  • the thickness of the substrate 1 is not particularly limited, but is preferably in the range of usually 0.5 mm or more and 1.2 mm or less.
  • a tracking guide groove is formed on the substrate 1 (for example, an enlarged view of FIG. 1 (a)). (See large diagram).
  • the guide groove for tracking is usually provided on the substrate 1 as a concentric or snail groove.
  • the track pitch of the guide groove varies depending on the wavelength of the laser beam used for recording / reproducing of the optical recording medium. Specifically, in a CD-type optical recording medium, the track pitch is usually 1. to 1.6 m. In DVD-type optical recording media, the track pitch is usually 0 or more and 0 or less. In the optical recording medium for blue laser, the track pitch is usually 0.1 ⁇ m or more and 0.6 m or less.
  • the depth of the groove also differs depending on the wavelength of the laser beam used for recording / reproduction of the optical recording medium. Specifically, in a CD-based optical recording medium, the groove depth is usually 10 nm or more and 300 nm or less. In DVD-type optical recording media, the groove depth is usually lOnm or more and 200 nm or less. In optical recording media for blue lasers, the groove depth is usually lOnm or more and 200nm or less.
  • the substrate 1 is generally an annular substrate having a center hole at the center.
  • the ring shape is not particularly limited, and various shapes such as a disk shape, an ellipse shape, and a polygon shape can be considered.
  • the substrate 1 is usually a disk shape. In this case, the diameter of the substrate 1 is usually about 80 mm or 120 mm.
  • a recording / reproducing functional layer 2 capable of recording or reproducing by light is formed on the substrate 1 described above.
  • the recording / reproducing functional layer 2 is a layer configured to be able to record / reproduce information signals or to be reproducible, and may be a single layer or a plurality of layers.
  • the recording / reproducing functional layer 2 repeats recording and erasure when the optical recording medium is a reproduction-only medium (ROM medium) or when it is a write-once medium (Write Once medium) that can be recorded only once.
  • ROM medium reproduction-only medium
  • Writing Once medium write-once medium
  • the recording / reproducing functional layer 2 can be divided into a substrate surface incident type and a film surface incident type depending on the incident direction of the recording / reproducing laser beam.
  • the film surface incident type recording / reproducing functional layer 2 it is preferable to use the film surface incident type recording / reproducing functional layer 2 from the viewpoint of use of a blue laser and high-density recording. Therefore, in the following description, a case where a film surface incident type configuration is used as an example of the recording / reproducing functional layer 2 will be described. [0032] (Example of read-only media)
  • the recording / reproducing functional layer 2 usually refers to a reflective layer provided on a substrate having prepits provided concentrically or spirally.
  • the material of the reflective layer metals such as Al, Ag, Au, or alloys are usually used.
  • the recording / reproducing functional layer 2 is obtained by forming a reflective layer by forming an Al, Ag, Au reflective layer on a substrate by sputtering.
  • the recording / reproducing functional layer 2 usually indicates a single layer or a multilayer structure having at least a recording layer provided on a substrate. Specifically, the reflective layer and the recording layer are usually provided in this order.
  • an inorganic material for example, a metal or semiconductor oxide, nitride, carbide; or a mixture thereof; at least one of the top and bottom of the recording layer;
  • a fur layer formed of a mixture with 2) may be provided.
  • the reflective layer, the recording layer, and the buffer layer are the recording / reproducing functional layer 2.
  • the material of the reflective layer metals or alloys such as Al, Ag, and Au are usually used.
  • the method for forming the reflective layer may be the same as that for the read-only medium.
  • the buffer layer is usually formed by sputtering.
  • organic dyes examples include macrocyclic azanulene dyes (phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), polymethine dyes (such as cyanine dyes, merocyanine dyes, and sillilium dyes), anthraquinone dyes, azurenium dyes, Examples thereof include metal-containing azo dyes and metal-containing indoor-phosphorus dyes. Metal-containing azo dyes are especially preferred because they tend to be more durable.
  • the recording layer is formed of an organic dye
  • it is usually formed by a coating method.
  • the coating method include spin coating, spray coating, dip coating, and roll coating using a solution in which an organic dye is dissolved in an appropriate solvent.
  • the solvent usually Jiaseto down alcohol, 3 - hydroxy - 3 - methyl - 2-ketone alcohol solvents butanone, Mechiruse port cellosolve, cellosolve solvents such as Echiruse port cellosolve, Te Toro full O b prop no le, Perfluoroalkyl alcohol solvents such as octafluoropentanol, lactic acid Hydroxyethyl solvents such as til and methyl isobutyrate are used.
  • the thickness of the recording layer is not particularly limited because a suitable film thickness varies depending on the recording method or the like. However, in order to obtain a sufficient degree of modulation, it is usually 1 nm or more, preferably 5 nm or more, particularly preferably lOnm or more. It is. However, from the viewpoint of transmitting light, the thickness of the recording layer is usually 1 / z m or less, preferably 0.5 ⁇ m or less, more preferably lOOnm or less.
  • the recording / reproducing functional layer 2 is usually provided on a substrate with a reflective layer, a dielectric layer, a recording layer, and Refers to the dielectric layer.
  • the material of the reflective layer a metal or alloy such as Al, Ag, or Au is usually used.
  • the method for forming the reflective layer may be the same as that for the read-only medium.
  • the material of the dielectric layer is usually an inorganic material (typically ZnSZSiO or GeCrN).
  • the film thickness of the dielectric layer is usually 0.5 nm or more and usually 50 nm or less. If necessary, the dielectric layer may be formed by laminating a plurality of different inorganic materials (for example, a laminated structure of a ZnSZSiO layer and a GeCrN layer). The dielectric layer is usually
  • the recording layer is usually a film of an inorganic material (for example, a chalcogen-based alloy film such as Ge'Te or Ge'Sb'Te, a two-layer film such as SiZGe or AlZSb, or a (part) such as BiGeN or SnNbN. Nitride films, (partial) oxide films such as TeOx and BiFOx are used.
  • the film thickness of the recording layer is usually 1 nm or more, preferably 2 nm or more.
  • the film thickness of the recording layer is usually 50 nm or less, preferably 20 ⁇ m or less.
  • the recording layer is usually formed by sputtering.
  • the recording / reproducing functional layer 2 usually indicates a reflective layer, a dielectric layer, a recording layer, and a dielectric layer provided on a substrate.
  • the reflective layer, dielectric layer, and recording layer may be the same as those in "Example 2 of write-once medium" above.
  • the recording layer needs to be made of a material that can reversibly record and erase. Examples of such materials include SbTe, GeTe, GeSbTe, InSbTe, Ag SbTe, AglnSbTe, GeSb, GeSbSn, InGeSbTe, InGeSbSnTe And the like.
  • rewritable medium is a magneto-optical recording medium (MO disk).
  • MO disk magneto-optical recording medium
  • the lower intermediate layer 3 is formed on the first recording medium 100 (recording / reproducing functional layer 2).
  • the lower intermediate layer 3 in the present invention refers to one in the form of a “layer”.
  • the “layer” of the resin layer is determined regardless of whether the resin material is dry or cured. If it has a shape, it will be “lower intermediate layer 3”.
  • another layer may exist between the recording / reproducing functional layer 2 and the lower intermediate layer 3 as necessary.
  • the material used for the lower intermediate layer 3 is not particularly limited. In industry, it is normal to use a resin material. More specifically, examples of the resin material include curable resin. Examples of the curable resin include a radiation curable resin and a thermosetting resin. Among these materials, radiation curable resin is industrially preferable. Examples of radiation curable resins include materials that are cured by irradiation with electron beams or ultraviolet rays. However, in consideration of industrial productivity, it is preferable to use ultraviolet curable resins.
  • the lower intermediate layer 3 is generally desired to have the following three properties.
  • light transmission means sufficient transmission with respect to the wavelength of the laser beam applied to the recording / reproducing functional layer 2. It means having.
  • “light transmissive (or transparent)” is usually 70% or more, preferably 80% or more, more preferably 90% with respect to the wavelength of light for recording and reproduction (for example, 405 nm). It means that there is transparency of more than%. Note that the upper limit of light transmittance is ideally 100%.
  • a resin having a low elastic modulus, a low shrinkage, and an elastic modulus at room temperature is preferable to use.
  • the elastic modulus at 30 ° C of the resin used for the lower intermediate layer 3 is usually 1500 MPa or less, preferably 1300 MPa or less, more preferably 700 MPa or less, further preferably 680 MPa or less, and particularly preferably 650 MPa. The following. If the elastic modulus at 30 ° C. is in the above range, warping of the substrate 1 that may occur when the lower intermediate layer 3 is formed can be effectively suppressed.
  • the elastic modulus at 30 ° C of the resin used for the lower intermediate layer 3 is actually 40 MPa or more.
  • the elastic modulus is a dynamic elastic modulus measured with a general dynamic viscoelasticity measuring machine.
  • the shrinkage ratio of the resin used for the lower intermediate layer 3 is usually 4% or less, preferably 3.5% or less, more preferably 3% or less. If the shrinkage ratio of the resin used for the lower intermediate layer 3 is in the above range, warping of the substrate 1 can be effectively suppressed.
  • the shrinkage rate is ideally 0%.
  • the shrinkage rate is a shrinkage rate measured by a specific gravity method. The shrinkage rate can also be measured according to JIS K71126.1.
  • the lower intermediate layer 3 is a single layer.
  • the structure may be a structure in which a plurality of layers are stacked.
  • the elastic modulus and shrinkage of the entire lower intermediate layer 3 are precisely controlled to further reduce the warpage of the substrate 1. The advantage is that it is easy to do.
  • the number of the resin layers constituting the lower intermediate layer 3 is not particularly limited. In order to satisfactorily suppress the warpage of the substrate 1, the number of the resin layers is usually 10 layers or less, preferably 5 layers or less, more preferably 4 layers or less. On the other hand, the number of resin layers should be one or more. However, from the viewpoint of production efficiency, the number of the resin layers constituting the lower intermediate layer 3 is preferably 1 layer or more and 5 layers or less. From the viewpoint of production efficiency It is particularly preferable that the lower intermediate layer 3 has a single-layer structure.
  • the thickness of the lower intermediate layer 3 is not particularly limited, and a predetermined range may be appropriately used depending on the type of the optical recording medium used.
  • the film thickness of the intermediate layer 7 is not less than normal, preferably not less than 20 m.
  • the film thickness of the intermediate layer 7 is usually 80 m or less, preferably 70 / z m or less. More specifically, in the case of a blue “ray” disk using a blue laser, the thickness of the intermediate layer 7 is preferably 20 m or more and 30 m or less.
  • the thickness of the intermediate layer 7 is preferably 40 m or more and 70 m or less.
  • the thickness of the transfer layer 6 described later is set to be less than or equal to O / zm. Therefore, the thickness of the lower intermediate layer 3 is changed from the thickness of the intermediate layer 7 to the thickness of the transfer layer 6. The remaining thickness will be drawn.
  • thermoplastic resin examples include thermoplastic resin, thermosetting resin, electron beam curable resin, ultraviolet curable resin (including delayed curing type), and the like.
  • the material may be appropriately selected from the above resins.
  • Thermoplastic resin, thermosetting resin, etc. are usually dissolved in an appropriate solvent to prepare a coating solution. Thereafter, the lower intermediate layer 3 can be formed by applying the coating solution and drying (heating).
  • the UV-curable resin is usually prepared as it is or dissolved in an appropriate solvent. Thereafter, the lower intermediate layer 3 can be formed by applying this coating solution and curing it by irradiation with ultraviolet light.
  • the above materials may be used alone or in combination.
  • the coating method a coating method such as a spin coating method or a casting method is used, and among these, the spin coating method is preferable.
  • the lower intermediate layer 3 using a high-viscosity resin can also be applied and formed by screen printing or the like. It is preferable to use a UV curable resin that is liquid at 20 ° C. to 40 ° C. from the viewpoint of productivity because it is easy to apply without using a solvent.
  • the viscosity of the coating solution is preferably adjusted to be 20 MPa ′s to 1500 MPa ′s. More preferably, the viscosity of the coating solution is set to lOOOMPa's or less.
  • a force not shown in FIG. 1 (a) has a disk shape, and when the center hole is formed in the center, the lower intermediate layer 3 is formed by spin coating. In that case, it is preferable to form the lower intermediate layer 3 using the following method. In other words, at a predetermined radial position larger than the outer diameter of the center hole, the viscous resin is applied by dropping in a ring shape. Then, it is preferable to perform spin coating after that.
  • UV curable resin it is preferable to use an ultraviolet curable resin as the resin material.
  • Ultraviolet curable resin is preferred because of its high transparency and short curing time, which is advantageous in production.
  • examples of the ultraviolet curable resin include radical ultraviolet curable resins and cationic ultraviolet curable resins, and any of them can be used.
  • the cationic ultraviolet curable resin has a small shrinkage ratio and has properties, so that it is preferably used to reduce the warp of the optical recording medium.
  • the radical ultraviolet curable resin and the cationic ultraviolet curable resin will be described.
  • the radical ultraviolet curable resin a composition containing an ultraviolet curable compound and a photopolymerization initiator is used.
  • the ultraviolet curable compound monofunctional (meth) acrylate and polyfunctional (meth) acrylate can be used as the polymerizable monomer component. Each of these can be used alone or in combination of two or more.
  • the attalate and the metaacrylate are collectively referred to as (meta) atelate.
  • Examples of the monofunctional (meth) acrylate include methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, octyl, noel, dodecyl, hexadecyl, octadecyl, cyclohexyl, Benzyl, methoxyethyl, butoxetyl, fenokiche Til, nonylphenoloxyl, tetrahydrofurfuryl, glycidyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-chloro-2-hydroxypropyl, dimethylaminoethyl, jetylaminoethyl, nonylphenoloxyltetrahydrofurfuryl, Forced prolatatanes (meth) atalylate having a group such as modified tetrahydrofurfuryl, isobornyl, dicyclopental, dicyclopental,
  • Examples of the polyfunctional (meth) acrylate include 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Di (xanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, tricyclodecane dimethanol, ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, etc. Examples thereof include di (meth) atalylate such as (meth) atalylate and tris (2-hydroxyethyl) isocyanurate.
  • those that can be used together with these polymerizable monomers include polyester (meth) acrylate, polyether (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate as polymerizable oligomers. Rate and the like.
  • a photopolymerization initiator is usually added to the radical ultraviolet curable resin.
  • the photopolymerization initiator is preferably a molecular cleavage type or a hydrogen abstraction type.
  • a photopolymerization initiator for example, benzoin isobutyl ether, 2, 4 Jetylthioxanthone, 2 Isopropyl thixanthone, Benzyl, 2, 4, 6-Trimethylbenzoyldiphosphine phosphoxide, 2-Benzyl-2-dimethylamino 1- (4 morpholinophenol) 1-butane 1-one, bis (2,6 dimethoxybenzoyl) -2, 4, 4 trimethylpentylphosphine oxide and the like.
  • 1-hydroxycyclohexyl phenol ketone, benzoin ether, benzyl dimethyl ketal, 2-hydroxy 2-methyl 1-phenylpropane 1-one, 1- (4-isopropyl phenol) 2-Hydroxy-1-2-methylpropane-1-one and 2-methyl-11- (4-methylthiophenol) 2 morpholinopropane-1-one may be used in combination.
  • the hydrogen abstraction type photopolymerization initiator include benzophenone, 4-phenol penzophenone, isophthalphenone, 4-benzoyl 4, monomethyldiphenylsulfide and the like.
  • a sensitizer can be used in combination with these photopolymerization initiators.
  • the sensitizer include trimethylamine, methyldimethanolamine, triethanolamine, p-ethylaminoacetophenone, p-dimethylaminobenzoate, p-dimethylaminobenzoate isamyl, N, N dimethylbenzylamine.
  • 4,4,1bis (jetylamino) benzophenone 4,4,1bis (jetylamino) benzophenone.
  • Examples of the cationic ultraviolet curable resin include an epoxy resin containing a cationic polymerization type photopolymerization initiator.
  • Examples of the epoxy resin include a bisphenol A-epoxychlorhydrin type, an alicyclic epoxy, a long chain aliphatic type, a brominated epoxy resin, a glycidyl ester type, a glycidyl ether type, and a heterocyclic system. It is done.
  • Epoxy resin preferably has a low content of free chlorine and chlorine ions. The amount of chlorine is preferably 1% by weight or less, more preferably 0.5% by weight or less.
  • Examples of the cationic polymerization type photopolymerization initiator include sulfo-um salt, ododonium salt, diazo-um salt and the like.
  • Examples of jordanium salts include diafluortohexafluorophosphade, diaphoretohexafluoroantimonate, diaphorodium tetrafonoreroborate, diaphorodium.
  • the ratio of the photopolymerization initiator per 100 parts by weight of the cationic ultraviolet curable resin is usually 0.1 to 20 parts by weight, preferably 0.2 to 5 parts by weight. It is.
  • known photosensitizers can be used in combination. Examples of the photosensitizer at this time include anthracene, phenothiazine, benzylmethyl ketal, benzophenone, and acetophenone.
  • UV curable resins for ultraviolet curable resins, as necessary, other additives such as thermal polymerization inhibitors, hindered phenols, hindered amines, phosphites, and so forth are used for acid and soot inhibitors and plastics.
  • Agents, and silane coupling agents such as epoxy silane, mercapto silane, (meth) acryl silane and the like can be added for the purpose of improving various properties. These are selected from those having excellent solubility in ultraviolet curable compounds and those that do not impair ultraviolet transparency.
  • the transfer layer 6 is formed on the surface of the stamper 4 to obtain the transfer layer laminated stamper 200.
  • an ultraviolet curable resin film 5 is provided on the stamper 4, and the ultraviolet curable resin film 5 is irradiated with ultraviolet UV to semi-harden the ultraviolet curable resin film 5.
  • the transfer layer 6 is formed by further curing the UV curable resin film 5 by irradiating UV rays UV in an atmosphere with a reduced oxygen concentration.
  • the film before being cured by UV irradiation is called UV curable resin film 5 and is irradiated with UV UV.
  • the film after being cured by this is called the transfer layer 6.
  • the transfer layer 6 it is preferable to use a material that can ensure sufficient transparency with respect to the laser beam in order to have optical transparency with respect to the laser beam incident on the recording / reproducing functional layer 2. .
  • “light transmittance (or transparency)” means that the recording / reproducing functional layer 2 has sufficient transparency with respect to the wavelength of the laser light irradiated.
  • light transmissive is usually 70% or more, preferably 80% or more, more preferably 90% with respect to the wavelength of light for recording and reproduction (eg, 405 nm). It means that there is transparency of more than%.
  • the upper limit of light transmittance is ideally 100%.
  • the stamper 4 having the surface provided with an ultraviolet curable resin film 5 is irradiated with ultraviolet UV to thereby form an ultraviolet curable resin.
  • Film 5 is semi-cured.
  • the stamper 4 has irregularities (unevenness for transfer) having a shape (unevenness for transfer) corresponding to the uneven shape (unevenness shape) to be formed in the intermediate layer 7 on the surface.
  • the stamper 4 As a material for the stamper 4, a resin is usually used in consideration of the manufacturing cost of the optical recording medium. In addition, considering the case where the UV curable resin film 5 is cured by irradiating UV light from the stamper 4 side, it is preferable that the stamper 4 has sufficient light transmittance to light. Yes. Specifically, the transmittance is preferably 80% or more, more preferably 90% or more, at a wavelength of 400 nm. The upper limit of the transmittance is ideally 100%.
  • various materials can be exemplified as the resin used. For example, a polycarbonate-based resin used as a substrate for a normal optical disk can be used as it is.
  • the surface energy of the stano 4 is reduced by using a polyolefin resin or polystyrene resin as the material of the stamper 4.
  • a polyolefin resin or polystyrene resin as the material of the stamper 4.
  • the stamper 4 with reduced surface energy that have been practically used are amorphous cyclic polyolefin resin (for example, ZEONEX (registered trademark) and ZEONOR (registered trademark)). There are (the gap is also made by Nippon Zeon).
  • Amorphous cyclic polyolefin is an industrially excellent material having good releasability.
  • amorphous cyclic polyolefin is expensive because it is a special material, No. 4 costs tend to increase. Since the resin stamper 4 is normally disposable, the cost of the stamper 4 occupying the entire optical recording medium is increased. For this reason, it is preferable to use as low a cost as possible.
  • a polycarbonate-based resin if an acrylic resin is used in terms of cost
  • a polystyrene-based resin as a polyolefin resin if it is used in terms of peelability.
  • the transfer layer 6 in order to obtain the transfer layer 6, first, the UV curable resin film 5 is semi-cured. Then, the transfer layer 6 is obtained by further irradiating the ultraviolet ray UV to further cure the ultraviolet ray curable resin film 5. According to the study of the present inventor, as described above, the semi-cured state of the UV curable resin film 5 is once passed, whereby the peelability between the transfer layer 6 and the stamper 4 can be improved. I was divided. The reason for this is not clear, but it is presumed that the following phenomenon occurs.
  • stamper 4 when ultraviolet UV irradiation is intense, or when there is no quencher (molecules that quench radicals such as oxygen molecules) and UV UV irradiation is performed in the state, stamper 4 and It is considered that radicals from the reaction initiator and unreacted resin coexist at a high concentration in the vicinity of the interface with the UV-curable resin film 5.
  • the resin stamper 4 when the resin stamper 4 is used, in addition to the polymerization in the UV curable resin film 5, there is a chemical bond between the stamper 4 and the UV curable resin film 5. It is presumed that a part that forms and crosslinks is generated. As a result, it is considered that the peelability between the transparent stamper and the cured resin may deteriorate.
  • the UV curable resin film 5 is loosely cured prior to the operation of strongly irradiating UV UV or the operation of rapid curing such as UV UV irradiation in an atmosphere with reduced oxygen concentration. It is considered that the reaction between the stamper 4 and the UV curable resin film 5 is suppressed by carrying out (semi-curing). As a result, it is presumed that the surface properties of the stamper 4 and the ultraviolet curable resin film 5 at the interface between the stamper 4 and the ultraviolet curable resin film 5 may be relatively stable. In this state, ultraviolet rays are irradiated in an atmosphere in which the oxygen concentration is reduced, so that ultraviolet rays are irradiated. It is presumed that the peelability between the transfer layer 6 and the stamper 4 can be improved by further curing the curable resin film 5 to obtain the transfer layer 6.
  • the semi-curing of the ultraviolet curable resin film 5 is performed, so that the peelability between the stano 4 and the transfer layer 6 can be easily secured. Therefore, there is an advantage that the flexibility of the material used for the stamper 4 is greatly expanded. That is, as described above, from the viewpoint of reducing the surface energy of the stamper 4, amorphous cyclic polyolefin is preferably used as the material of the stamper 4. However, in the present invention, the above highly functional resin is used. However, it is possible to use a general-purpose and low-cost resin such as polycarbonate resin and acrylic resin.
  • the material of the stamper 4 it is preferable to use a polycarbonate resin or an acrylic resin. More preferably, it is a polycarbonate-based resin.
  • the stamper 4 materials can be used alone or in combination of two or more in any combination and ratio.
  • the stamper 4 is usually formed in a disc shape in which a central hole penetrating the front and back is formed in the central portion.
  • the manufacturing method is arbitrary.
  • the stamper 4 is a resin stamper
  • a metal stamper for example, a nickel stamper
  • the stamper 4 can be manufactured.
  • the thickness of the stamper 4 used in the present embodiment is normally preferably 0.3 mm or more in terms of shape stability and ease of handling. However, the thickness is usually 5 mm or less. If the thickness of the stamper 4 is within this range, it becomes easy to ensure sufficient light transmission. For this reason, as will be described later, even when ultraviolet rays UV are irradiated through the stamper 4, it is possible to efficiently cure the ultraviolet curable resin and the like, and it becomes easy to improve productivity.
  • the UV curable resin film 5 is usually formed as follows. That is, the ultraviolet curable resin film 5 is formed by adding additives (for example, photopolymerization initiator, sensitizer, etc.) as necessary. It is formed by applying to the surface of the stamper 4 having an uneven shape for transfer together with an additive) and a solvent.
  • the coating method is not particularly limited, but a spin coating method is generally used because it is easy to form a uniform film thickness and is suitable for industrial production.
  • the viscosity of the ultraviolet curable resin composition is usually 50 MPa ⁇ s or more and 350 MPa's or less.
  • the thickness of the transfer layer 6 can be easily controlled within a predetermined range. If the viscosity range is set, it is easy to greatly change the film thickness range of the transfer layer 6. Specifically, a thin transfer layer 6 (for example, about 5 m) can be easily formed, while a relatively thick transfer layer 6 can be easily formed.
  • the force stamper not shown in FIG. 1 (b) has a disk shape and a center hole is formed in the center
  • the following method is used to cure the ultraviolet curable coating. It is preferable to form the oil film 5. That is, it is applied by dropping UV curable resin in a ring shape at a predetermined radius position larger than the outer diameter of the center hole. Then, it is preferable to perform spin coating thereafter.
  • the ultraviolet curable resin used for the ultraviolet curable resin film 5 is not particularly limited. From the viewpoint of improving the transferability of the stamper 4 and the recording characteristics of the upper recording / reproducing functional layer (described later) provided on the transfer layer 6, the ultraviolet ray curing is performed so that the transfer layer 6 obtained by curing becomes relatively hard. It is preferable to use natural rosin.
  • the elastic modulus at 150 ° C. of the ultraviolet curable resin is preferably set to 300 MPa or more. This is because a high modulus elastic resin generally has a hard property.
  • the elastic modulus is a dynamic elastic modulus measured with a general dynamic viscoelasticity measuring device.
  • the elastic modulus at 150 ° C is preferably 300 MPa or more, more preferably 330 MPa or more, further preferably 350 MPa or more, more preferably 500 MPa or more, further preferably 750 MPa or more, particularly preferably 950 MPa or more, and most preferably lOOOMPa or more. To do.
  • the elastic modulus is a dynamic elastic modulus measured by a general dynamic viscoelasticity measuring machine as described above.
  • the elasticity of UV curable resin at 150 ° C The rate is usually 2500 MPa or less.
  • the glass transition temperature of the resin When the elastic modulus at 150 ° C is 300 MPa or more, the glass transition temperature of the resin generally tends to increase. Specifically, the glass transition temperature of a resin having an elastic modulus at 150 of 300 MPa or more is usually 140 ° C. or more. On the other hand, the upper limit of the glass transition temperature is usually 200. C.
  • the shrinkage rate of the ultraviolet curable resin used for the transfer layer 6 is small in terms of power to suppress warping of the optical disk.
  • the shrinkage rate tends to be a relatively large value.
  • the shrinkage rate is usually 6% or more, preferably 9% or more, more preferably 9.5% or more, and further preferably 10% or more.
  • the shrinkage rate is preferably 20% or less.
  • the shrinkage rate is a shrinkage rate measured by a specific gravity method.
  • the shrinkage rate can also be measured according to JIS K71126.1.
  • the ultraviolet curable resin used in the transfer layer 6 By forming the ultraviolet curable resin used in the transfer layer 6 using a resin having a shrinkage ratio of 6% or more, grooves for recording tracks are formed in the transfer layer 6 using the resin stamper 4. In forming, it is preferable because the peelability from the stamper 4 tends to be good. The reason why the release property of the stamper 4 is good is considered to be that, for example, the resin entering the groove of the stamper 4 shrinks when it is cured, and a slight distortion or gap is generated.
  • the resin used for the transfer layer 6 preferably has a contraction rate equal to or higher than a predetermined value.
  • the shrinkage during the deposition of the transfer layer 6 tends to increase. This means that the entire optical recording medium tends to warp.
  • the material of the lower intermediate layer 3 may be appropriately controlled to reduce the warp of the entire optical recording medium. This point has already been explained in the description of the material used for the lower intermediate layer 3.
  • “ultraviolet curable resin having a high elastic modulus at a high temperature (for example, 150 ° C.)” and “ultraviolet curable resin having a relatively large shrinkage” are applied to the transfer layer 6. It is preferable to use it.
  • “resin having a low elastic modulus at room temperature (eg, 30 ° C)” “shrinkage It is preferable to use a “relatively small ratio” for the lower intermediate layer 3.
  • Examples of the acrylic monomer that increases the cross-linking density include a low molecular weight per atalyloyl group! /, And a polyfunctional acrylic monomer (polyfunctional (meth) acrylate).
  • Examples of polyfunctional (meth) acrylates include 1,3 butylene glycol, 1,4 butanediol, 1,5 pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, tricyclodecane dimethanol, ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, etc. -Hydroxyethyl) isocyanurate di (meth) atallylate and the like.
  • Di (meth) acrylate of diol obtained by adding oxide Di (meth) acrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A Rate
  • Pentaerythritol tri (meth) acrylate, pentaerythritol tetra Methitol tri (
  • trimethylol propane tri (meth) acrylate tri (meth) acrylate
  • triol tri (meth) acrylate pentaerythritol tri (1) obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylol propane.
  • examples of the acrylic monomer having a rigid structure in the crosslinked structure include an acrylic monomer having a rigid cyclic structure.
  • acrylic monomers include norbornane dimethanol dichlorate. , Norbornanediethanol di (meth) acrylate, norbornanedimethanol with 2 moles of ethylene oxide or propylene oxide di (meth) acrylate, tricyclodecanedimethanoldi (meth) acrylate , Tricyclodecanediethanol di (meth) acrylate, tricyclodecane dimethanol with 2 moles of ethylene oxide or propylene oxide di (meth) acrylate, pentacyclopentadecane dimethanol di Di (meth) acrylate and pentaci of diol obtained by adding 2 moles of ethylene oxide or propylene oxide to (meth) acrylate, pentacyclopentadecane diethanol di (meth) acrylate, pentacyclopentadecane dimethanol dimethanol Examples thereof include di (meth) acrylate of diol obtained by adding 2 moles of ethylene oxide or propylene oxide to chloropentade
  • tricyclodecane dimethanol di (meth) acrylate tricyclodecane dimethanol di (meth) acrylate
  • pentacyclopentadecane dimethanol di (meth) are preferred from the viewpoint of increasing the elastic modulus at high temperatures. ) Atarirate.
  • Tricyclodecane dimethanol di (meth) acrylate and tricyclodecane diethanol di (meth) acrylate are also particularly preferred from the viewpoint of increasing the elastic modulus at high temperatures.
  • the shrinkage rate means the cure shrinkage rate.
  • Curing shrinkage is the ratio of density change during curing to density before curing. For this reason, in order to increase the shrinkage rate, the density change during curing may be increased.
  • the density of the attaroyl group may be increased.
  • an acrylic monomer that increases the crosslinking density may be used.
  • acrylic monomer that increases the cross-linking density examples include a low molecular weight per one taliloyl group! /, And a polyfunctional acrylic monomer (polyfunctional (meth) acrylate). Specific examples of such polyfunctional acrylic monomers (polyfunctional (meth) acrylates)
  • an acrylic monomer having a rigid structure may be used in combination with the crosslinked structure.
  • the content of the acrylic monomer having a rigid structure in the cross-linked structure may be set so as to obtain a desired elastic modulus and shrinkage.
  • the density change at the time of curing should be reduced.
  • a method of combining a monofunctional acrylic monomer with an acrylic oligomer having a flexible structure with a large molecular weight per taliloyl group is mentioned. be able to.
  • acrylic oligomer and monofunctional acrylic monomer with flexible structure The content ratio may be appropriately controlled in order to obtain a desired elastic modulus.
  • acrylic oligomer having a flexible structure examples include acrylic oligomers such as urethane (meth) acrylate and polyalkylene glycol diacrylate composed of polyether or polyester diol.
  • the monofunctional acrylic monomer include ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, nor (meth) acrylate, tridecyl ( (Meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, isoamyl (meth) acrylate, isodecyl (meth) acrylate, isostearyl (meth) acrylate, 2-hydroxyethyl (meta) ) Atalylate, 3—Black mouth 2—Hydroxypropyl (meth) atalylate, Methoxyethyl (meth) atalylate, Butoxychetyl (meth) atalylate, Noylphenoxychetyl (meth) atalylate, 2—Hydroxy 1 3— Mention may be
  • the shrinkage rate means the cure shrinkage rate.
  • Curing shrinkage is the ratio of density change during curing to density before curing. For this reason, in order to reduce the shrinkage rate, the density change at the time of curing may be reduced.
  • an ultraviolet curable resin is formed using an talyl monomer
  • a combination of an acrylic oligomer having a large molecular weight per allyloyl group and a small amount of the allyloyl group in the molecule and the talyl monomer may be combined.
  • Yo ... What is necessary is just to control suitably the content ratio of an acrylic oligomer and an acrylic monomer, in order to obtain a desired elasticity modulus.
  • acrylic oligomer may be the same as those described in the above-mentioned "Method for obtaining a resin having a low elastic modulus at room temperature (for example, 30 ° C)".
  • the same monofunctional acrylic monomer as described in the above “method for obtaining a resin having a low elastic modulus at room temperature (eg, 30 ° C.)” can be used.
  • the ultraviolet curable resin film 5 provided on the surface of the stamper 4 is irradiated with ultraviolet UV, and the ultraviolet curable resin film 5 is semi-cured. .
  • the ultraviolet ray irradiation amount is reduced in the air atmosphere to harden the ultraviolet curable resin film 5.
  • the amount of ultraviolet light UV is usually 50 mWZcm 2 or less, preferably 40 mWZcm 2 or less, more preferably 30 mWZcm 2 or less.
  • the UV UV light amount is usually lmWZcm 2 or more, preferably 5 mWZcm 2 or more, more preferably 7 m WZcm 2 or more.
  • UV irradiation time is usually 10 seconds or less, preferably 5 seconds or less, more preferably 3 seconds or less in order to keep the UV-curable resin film 5 cured at an appropriate level.
  • the irradiation time of ultraviolet rays UV is usually 0.1 seconds or longer, preferably 0.5 seconds or longer, more preferably 1 second or longer.
  • the peelability margin is increased and industrial production is facilitated is exhibited.
  • the irradiation time is usually 0.1 seconds or longer, preferably 0.2 seconds or longer.
  • the irradiation time is preferably 3 seconds or less.
  • UV-curable resins have properties that make it difficult to cure in an oxygen-containing atmosphere. Especially when using radical polymerization type UV curable resin, air Oxygen inside tends to react with radicals and inhibit curing. Therefore, irradiation with ultraviolet rays UV in an atmosphere containing oxygen is also an effective means for semi-curing the ultraviolet curable resin film 5.
  • the oxygen concentration when UV irradiation is performed in an atmosphere containing oxygen is O ZN
  • the ratio of 2 2 is usually at least 0.1, preferably at least 0.2, more preferably at least 0.25 (approximately the oxygen concentration in the atmosphere). Within this range, it is possible to satisfactorily control polymerization inhibition by oxygen.
  • the upper limit of the oxygen concentration is that the entire atmosphere is oxygen (100% oxygen).
  • UV UV is irradiated from the ultraviolet curable resin film 5 side, but the side force of the stamper 4 may also be irradiated with ultraviolet UV. Needless to say. However, when UV light is irradiated from the side of the stamper 4, it is preferable to reduce the presence of defects in the stamper 4 that prevent UV light irradiation as much as possible.
  • the UV-curable resin film 5 is semi-cured and then irradiated with UV-UV in an atmosphere with a reduced oxygen concentration. Then, the UV curable resin film 5 is further cured to obtain the transfer layer 6.
  • the figure as an example of an atmosphere in which the oxygen concentration is reduced, a process of obtaining a transfer layer 6 by irradiating ultraviolet ray UV in a nitrogen atmosphere to further cure the ultraviolet curable resin film 5 is shown.
  • Curing in this step is performed until the tackiness (adhesiveness) of the surface of the UV curable resin film 5 (surface on the ultraviolet irradiation side in Figs. 1 (b) and (b-2)) disappears.
  • the absence of tack function specifically means that the UV curable resin film 5 has a surface property that does not stick to the surface even if it is touched with a finger. .
  • the transfer layer 6 By forming the transfer layer 6 by curing the UV-curable resin film 5 in this step, the following advantages are also exhibited.
  • the surface of the transfer layer 6 is not tacky, so that entrainment of bubbles in the transfer layer 6 is suppressed. It becomes easy to do.
  • the lower intermediate layer 3 and the transfer layer 6 can be easily bonded in the air.
  • the process is performed in a nitrogen atmosphere.
  • the transfer layer 6 can be formed.
  • the tendency of the UV curable resin film 5 to be cured well also by setting the oxygen concentration to usually 5% or less, preferably 1% or less, more preferably 0.1% or less. It is in.
  • the lower the oxygen concentration the better.
  • the lower limit is about 1 OOppm.
  • the amount of irradiated ultraviolet light required to obtain the transfer layer 6 having the same surface properties can be suppressed. For this reason, for example, curing can be easily performed only by adjusting the amount of light of an ultraviolet lamp having the same ability as that used for the semi-curing. If nitrogen purge is not performed, a very strong UV light may be required to obtain a transfer layer 6 having a predetermined surface property (high capability! UV light lamp may be required).
  • the ultraviolet irradiation amount is appropriately controlled in order to obtain the transfer layer 6 having a predetermined surface.
  • the amount of ultraviolet light UV is usually 200 mWZcm 2 or less, preferably 150 mWZcm 2 or less, more preferably lOOmWZcm 2 or less.
  • a highly polar stamper 4 for example, a stamper made of polycarbonate resin
  • the transfer layer 6 is cured without impairing the peelability between the transfer layer 6 and the stamper 4. It becomes easy to let you.
  • the quantity of ultraviolet light UV usually 30MWZcm 2 or more, preferably 50MWZcm 2 or more, more preferably 70MWZcm 2 than on, to.
  • the surface of the ultraviolet curable resin film 5 is sufficiently cured, and the transfer layer 6 having a predetermined surface can be easily formed.
  • the irradiation time of ultraviolet rays UV is appropriately controlled in order to obtain the transfer layer 6 having a predetermined surface.
  • the irradiation time is usually 20 seconds or less, preferably 15 seconds or less, more preferably 10 seconds or less, further preferably 5 seconds or less, particularly preferably 3 seconds or less, and most preferably 2 seconds. The following is assumed.
  • the irradiation time of the ultraviolet ray UV is usually 0.2 seconds or longer, preferably 0.5 seconds or longer, more preferably 0.7 seconds or longer.
  • the transfer layer 6 is formed on the stamper 4 through the above steps.
  • the film thickness of the transfer layer 6 is usually larger than 0 ⁇ m, preferably 1 ⁇ m or more, more preferably, from the viewpoint of ensuring the hardness of the transferred uneven shape and the peelability between the transfer layer 6 and the stamper 4. Is 3 ⁇ m or more.
  • the thickness of the transfer layer 6 is usually 20 m or less, preferably 15 m or less, more preferably 10 m or less, and even more preferably 5 m or less. If the film thickness of the transfer layer 6 is within the above range, there is an advantage that it is easy to ensure the hardness of the transferred uneven shape and the peelability of the transfer layer 6 and the stamper 4 and to suppress the warpage of the disk. Demonstrated.
  • the thickness of the transfer layer 6 is 10 ⁇ m or less, the following advantages are easily exhibited.
  • the film thickness distribution of the transfer layer 6 can be satisfactorily reduced even if the operation of irradiating ultraviolet rays UV while stretching the ultraviolet curable resin by spin coating is omitted.
  • the thickness of the transfer layer 6 is reduced, there is an advantage that it is easy to obtain a semi-cured state of the UV curable resin film 5.
  • the transfer layer stack stamper 200 is placed on the lower intermediate layer 3 so that the transfer layer 6 and the lower intermediate layer 3 face each other (c 1), and then Adhere the lower intermediate layer 3 and the transfer layer 6 (c 2).
  • the transfer layer lamination stamper 200 is placed on the lower intermediate layer 3 so that the transfer layer 6 and the lower intermediate layer 3 face each other.
  • the lower intermediate layer 3 exists between the transfer layer 6 and the recording / reproducing functional layer 2.
  • the mounting method is not particularly limited.
  • the transfer layer stack stamper 200 may be placed in the air or in a vacuum.
  • the joining step is performed in a reduced pressure atmosphere. More specifically, it is preferable that the above operation is performed in a reduced pressure atmosphere.
  • a specific example of the reduced-pressure atmosphere is a vacuum state.
  • the reason why the mounting is preferably performed under a reduced-pressure atmosphere is as follows. That is, the surfaces of the transfer layer 6 and the lower intermediate layer 3 have microscopic irregularities that are not completely flat. For this reason, when mounting is performed in the air, air may be taken into the interface between the transfer layer 6 and the lower intermediate layer 3. Such air entrainment becomes bubbles and exists in the intermediate layer 7. However, it is preferable to reduce the bubbles to be optical. For this reason, in order to suppress the intake of air (in other words, generation of bubbles), it is preferable to place in a reduced pressure atmosphere.
  • the specific pressure in the reduced-pressure atmosphere is usually lOOPa or less, preferably 70Pa or less, more preferably 50Pa or less.
  • the reduced pressure atmosphere is usually lOPa or higher, preferably 15 Pa or higher, more preferably 20 Pa or higher. If it is within the above range, it becomes easy to perform bonding while securely holding the volatile components in the resin.
  • Adhesion can be achieved by the following method.
  • an adhesive is applied to the surface of the lower intermediate layer 3 or the surface of the transfer layer 6, or a pressure-sensitive adhesive sheet is attached to the surface of the lower intermediate layer 3 or the surface of the transfer layer 6.
  • the lower intermediate layer 3 and the transfer layer 6 are both formed of an ultraviolet curable resin, and after the transfer layer lamination stamper 200 is placed, the lower intermediate layer 3 and the transfer layer 6 are bonded by irradiating with ultraviolet UV. To do.
  • both the lower intermediate layer 3 and the transfer layer 6 are formed of an ultraviolet curable resin, and after the transfer layer lamination stamper 200 is placed, the lower intermediate layer 3 and the transfer layer are irradiated with ultraviolet rays UV.
  • the method of adhering 6 is preferable. When this method is used, it is preferable to leave the UV curable resin of the lower intermediate layer 3 in an uncured or semi-cured state. In the present embodiment, at the time when the lower intermediate layer 3 and the transfer layer 6 are bonded, the tackiness of the bonding surface of the transfer layer 6 (stickiness when touched with a finger) is eliminated. Therefore, it is easy to achieve good adhesion by giving the adhesive surface of the lower intermediate layer 3 tacky.
  • ultraviolet irradiation The direction is not particularly limited, but when irradiation is performed from the stamper 4 side, it is preferable to form the stamper 4 so as to be transparent to ultraviolet rays UV.
  • the stamper 4 is peeled off from the transfer layer 6 (see FIG. 2 (d)).
  • the peeling method There is no particular limitation on the peeling method. Normally, a knife edge is inserted between the stamper 4 and the transfer layer 6 from the inner diameter or outer diameter side of the substrate 1, cut, and then blown with air to peel the stamper 4 from the transfer layer 6 (see FIG. 2 (not shown in (d)).
  • the inner periphery is vacuum-sucked, a knife edge is inserted into the inner periphery of the optical recording medium, and air is blown into the transfer layer 6. Is peeled off by pulling them apart from the stanno 4. By peeling off the stamper 4, the intermediate layer 7 having the lower intermediate layer 3 and the transfer layer 6 is formed on the first recording medium 100.
  • the lower intermediate layer is formed in the joining step. Since the operation other than the formation of the lower intermediate layer is different from that of the first manufacturing method, it may be the same as that of the first manufacturing method, so only the different parts will be described below. Specifically, in the second manufacturing method, the lower intermediate layer is not formed in the first recording medium manufacturing process, but the lower intermediate layer is formed when the bonding process is performed.
  • FIG. 3 is a schematic cross-sectional view for explaining an embodiment of the joining step in the second manufacturing method.
  • FIG. 3 is a view corresponding to FIG. 2 (c) used for explaining the first manufacturing method.
  • the same components as those in FIG. 1 or FIG. 2 are denoted by the same reference numerals.
  • the optical recording medium has a disk shape and a center hole is formed at the center, but the center hole is not shown in FIG.
  • FIG. 3 (a) shows a state in which a curable resin 80 is applied on the recording / reproducing functional layer 2. Further, a state in which the transfer layer lamination stamper 200 is disposed on the upper side in order to be placed on the curable resin 80 is shown.
  • Fig. 3 (b) shows that curable resin 80 and transfer layer 6 face each other on curable resin 80. It shows a state in which stretching of the curable resin 80 is started after the transfer layer lamination stamper 200 is placed.
  • FIG. 3 (c) shows a state in which the curable resin 80 is stretched to both ends of the first recording medium 100 and the transfer layer lamination stamper 200! / Speak.
  • FIG. 3 (d) shows a state in which the lower intermediate layer 3 and thus the intermediate layer 7 are formed by irradiating ultraviolet rays UV.
  • the curable resin 80 is coated with the first recording medium 100 (recording / reproducing functional layer).
  • the material of the curable resin 80 the same material as that used when the curable resin is used for the lower intermediate layer 3 in the first production method can be used.
  • curable resin 80 an ultraviolet curable resin is used in this embodiment, but other curable resin such as a thermosetting resin may be used. There is no need.
  • the curable resin 80 is an ultraviolet curable resin.
  • a conventionally known method can also be used for applying the curable resin 80.
  • the curable resin 80 is directly applied onto the recording / reproducing functional layer 2! /, But other layers are formed on the recording / reproducing functional layer 2 as necessary. After that, you can apply curable resin 80.
  • the curability is not reduced. It is usually preferable to apply the fat 80 as follows. That is, coating is performed by dropping the curable resin 80 in a ring shape at a predetermined radial position larger than the outer diameter of the center hole.
  • the first recording medium 100 includes a substrate 1 and a recording / reproducing functional layer 2.
  • the surface of the substrate 1 is uneven, and the recording / reproducing functional layer 2 is formed on the substrate 1.
  • the transfer layer stack stamper 200 includes a stamper 4 and a transfer layer 6.
  • the surface of the stamper 4 corresponds to the uneven shape of the intermediate layer 7.
  • An uneven shape for transfer is formed.
  • the transfer layer 6 is formed on the surface on which the uneven shape for transfer is formed. Since the first recording medium 100, the transfer layer lamination stamper 200, and the like are the same as those in the first manufacturing method, description thereof is omitted here.
  • the transfer layer laminated stamper 200 is placed on the curable resin 80 so that the curable resin 80 and the transfer layer 6 face each other.
  • the curable resin 80 and the transfer layer 6 be placed gently so that they contact each other as much as possible without involving air or entraining bubbles.
  • the following method may be performed. In other words, the surface of the recording / reproducing functional layer 2 and the surface of the transfer layer 6 are placed in close proximity to each other in parallel. Then, curable resin 80 is dropped into the gaps between the surfaces. Then, the curable resin 80 is brought into contact with the respective surfaces immediately after the dropping.
  • the curable resin 80 is stretched so as to be pushed out to the ends of the first recording medium 100 and the transfer layer lamination stamper 200 depending on the weight of the transfer layer lamination stamper 200. Such stretching makes it easy to control the film thickness of the film formed by the curable resin 80 within a desired range.
  • the curable resin 80 may be stretched by spin coating or the like.
  • the curable resin 80 when the curable resin 80 reaches both ends of the first recording medium 100 and the transfer layer lamination stamper 200, the first recording medium 100 and the transfer layer lamination stamper 200 are used. Rotate at a high speed to shake off excess curable resin 80. Thereby, the film thickness of the film formed by the curable resin 80 can be controlled more precisely. In this way, the lower intermediate layer 3 is formed from the curable resin 80.
  • the stamper 4 side force is also irradiated with ultraviolet rays UV to cure the curable resin.
  • One of the advantages of the second manufacturing method is that the joining step can be performed in the atmosphere.
  • each operation shown in FIG. 3 (at least the operation shown in FIG. 3A and the operation shown in FIG. 3C) can be performed in the atmosphere.
  • an advantage that the configuration of the manufacturing apparatus can be simplified is exhibited.
  • the transfer layer lamination stamper When 200 is placed on the curable resin 80 and then the curable resin 80 is stretched, the air existing between the stamper 4 and the recording / reproducing functional layer 2 is removed by the curable resin 80 in the first recording.
  • the medium 100 and the transfer layer stack stamper 200 are expelled to the outside.
  • air is taken in between the stano 4 and the curable resin 80 (and hence the lower intermediate layer 3), so that the generation of bubbles at the interface between the stamper 4 and the lower intermediate layer 3 is suppressed. become.
  • the joining process does not have to be performed in a vacuum.
  • the intermediate layer 7 is formed, and the stamper 4 peeling process is performed. This can be done in the same way as the first manufacturing method (see Fig. 2 (d)). Since the peeling process has already been described, description thereof is omitted here.
  • an optical recording medium having an uneven shape on the surface and including the intermediate layer 7 having the lower intermediate layer 3 and the transfer layer 6 is manufactured.
  • the subsequent steps will be described.
  • FIG. 4 is a schematic cross-sectional view for explaining a preferred example of the optical recording medium 1000 to which the embodiment of the present invention is applied. Specifically, in FIG. 4, the upper recording / reproducing functional layer 8, the adhesive layer 9, and the cover layer 10 are laminated in this order on the intermediate layer 7 obtained by FIGS. It is a schematic cross section for showing that a recording medium 1000 is obtained. Components that are the same as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals.
  • the upper recording / reproducing functional layer 8 is formed on the transfer layer 6 (intermediate layer 7) in which the shapes of grooves and pits are formed.
  • the basic layer structure of the upper recording / reproducing functional layer 8 is almost the same as that of the recording / reproducing functional layer 2.
  • the upper recording / reproducing functional layer 8 transmits the laser beam L for recording / reproducing. For this reason, the film thickness of each layer constituting the upper recording / reproducing functional layer 8 is appropriately adjusted.
  • the uppermost recording / reproducing functional layer (in FIG. A cover layer 10 is provided on the upper surface of the recording / reproducing functional layer 8) via an adhesive layer 9.
  • Adhesive layer 9 and cover layer 10 The material and the forming procedure are not particularly limited.
  • an adhesive, a pressure-sensitive adhesive sheet, an ultraviolet curable resin or the like is usually used.
  • a plastic sheet or the like formed from a low hygroscopic resin such as polycarbonate resin or cycloolefin polymer is usually used.
  • the same material as that of the disk substrate, that is, polycarbonate or the like is used for the purpose of ensuring characteristics such as disk warpage.
  • the adhesive layer 9 and the cover layer 10 may be integrally formed with an ultraviolet curable resin or the like.
  • the ultraviolet curable resin used at that time is usually one having a high viscosity of 100 OMPa's or more, whereby a film having a thickness of 50 ⁇ m to 200 ⁇ m can be formed by a spin coat method.
  • the adhesive layer 9 is usually formed by a technique such as spin coating or directly attached.
  • the thickness of the adhesive layer 9 is not particularly limited, but is usually 3 m or more and 30 m or less.
  • the thickness of the cover layer 10 is usually 50 ⁇ m or more and 200 ⁇ m or less. By setting it within this range, it becomes easy to form a cover layer 10 having a uniform film thickness that can cope with the high NA of the pickup lens.
  • DVD-R etc.
  • a substrate of about 0.6 mm is bonded through an adhesive layer.
  • the substrate is used as the first recording medium.
  • an intermediate layer having an uneven shape on the surface and having a lower intermediate layer and a transfer layer is provided on the substrate.
  • This embodiment is different from the above-described embodiment in which an optical recording medium is manufactured using the first recording medium having one recording / reproducing functional layer, except that the first recording medium to be used is different. It is implemented in the same way. Specifically, the following differences exist depending on the form of the first recording medium used.
  • the first point is that in the present embodiment, an intermediate layer having an uneven shape on the surface and having a lower intermediate layer and a transfer layer is directly formed on the substrate without going through the recording / reproducing functional layer. For this reason, it is not necessary to provide an uneven shape on the substrate in advance.
  • the first recording / reproduction provided on the substrate.
  • the functional layer becomes the upper recording / reproducing functional layer.
  • the surface has an uneven shape on the surface, and An optical recording medium having an intermediate layer and an intermediate layer having a transfer layer may be manufactured. Since the necessary explanation has already been given, the explanation here is omitted.
  • This embodiment is different from the above-described embodiment in which an optical recording medium is manufactured by using the first recording medium having one recording / reproducing functional layer described above, except that the first recording medium to be used is different. It is carried out in the same way. Specifically, the following differences exist depending on the form of the first recording medium used.
  • the first point is that the first recording medium is manufactured by forming a plurality of recording / reproducing functional layers on the substrate in the first recording medium manufacturing process.
  • the transfer layer stacking stamper and the transfer layer are stacked in a state where the lower intermediate layer exists between the transfer layer and the recording / reproducing functional layer located farthest from the substrate. Bonding the first recording medium.
  • the first recording medium having one recording / reproducing functional layer has a concavo-convex shape on the surface, except that the form of the first recording medium to be used is different.
  • An optical recording medium having an intermediate layer and an intermediate layer having a transfer layer may be manufactured. Therefore, hereinafter, the first recording medium, which is a difference, will be described.
  • the first recording medium used in the present embodiment is usually manufactured as follows.
  • a recording / reproducing functional layer is formed on a substrate.
  • a second recording / reproducing functional layer is formed on the intermediate layer.
  • a second intermediate layer is formed on the second recording / reproducing functional layer.
  • the steps (c) and (d) are repeated depending on the number of recording / reproducing functional layers required.
  • the number of recording / reproducing functional layers to be laminated is not particularly limited. However, in reality, the upper limit of the number of recording / reproducing functional layers is 10 layers.
  • the number of recording / reproducing functional layers is usually 2 or more, preferably 3 or more, more preferably 5 or more. Considering various factors such as industrial production and recording characteristics, the number of recording / reproducing functional layers is most preferably two. Yes.
  • the layer structure of the recording / reproducing functional layer after the second recording / reproducing functional layer is made of the same layer structure as the recording / reproducing functional layer (recording / reproducing functional layer 2 in FIGS. 1 and 2).
  • Use materials In addition, the details of the materials and preparation procedures for the lower intermediate layer and transfer layer, the stamper structure, the curing procedure by ultraviolet irradiation, etc., when the intermediate layer after the second intermediate layer is formed are described above. The same as above.
  • the layer configuration of the optical recording medium is not limited to the configuration of the above embodiment.
  • another layer may be added even if the order of lamination is different !, or two or more layers may be provided integrally! ,.
  • the present invention also provides a manufacturing apparatus for manufacturing an optical recording medium having an uneven shape on the surface, and an intermediate layer having a lower intermediate layer and a transfer layer. Specifically, the following functions are added to the manufacturing apparatus in order to manufacture the transfer layer stack stamper.
  • an ultraviolet curable resin film is provided on the surface of a stamper having a concavo-convex shape for transfer corresponding to the concavo-convex shape of the intermediate layer, and the ultraviolet curable resin film is irradiated with ultraviolet rays to thereby generate the ultraviolet light.
  • a first curing means for semi-curing the curable resin film is added.
  • a second curing means is formed for forming a transfer layer by further curing the ultraviolet curable resin film by irradiating ultraviolet rays in an atmosphere having a reduced oxygen concentration. Since specific operations in the first curing means and the second curing means are as described in the manufacturing method, description thereof is omitted here.
  • a specific apparatus configuration for realizing the first curing means and the second curing means a conventionally known manufacturing apparatus may be appropriately modified and used.
  • a polycarbonate substrate with a thickness of 1.1 mm was prepared by transferring grooves with a groove depth of about 20 nm and a pitch of about 0.32 m.
  • a rewritable recording / reproducing functional layer (Example 1 of rewritable medium, film surface incidence configuration) was formed by sputtering on the surface of the substrate where the groove shape was formed. In this way, the first recording medium was manufactured.
  • a transparent stamper made of polycarbonate with a thickness of 0.6 mm and an outer diameter of 120 mm obtained by transferring grooves with a groove depth of about 20 nm and a pitch of about 0.32 m was produced by injection molding.
  • Radical UV curable resin (radical polymerization type UV curable resin) A (acrylic resin, viscosity of about 300 MPa 's) is applied on the surface of the stamper with the groove shape formed by spin coating. did. Then, after making the radical ultraviolet curable resin A into a thin film having a thickness of about 4 m, high-speed swing-off rotation was stopped. In this way, an ultraviolet curable resin film was formed on the stamper.
  • UV light having an almost uniform intensity distribution of 22 mWZcm 2 (light source: Harrison Toshiba Tosukia 751) was irradiated to the entire surface of the UV curable resin film for 3 seconds in an air atmosphere. . After irradiation, the surface of the UV curable resin film was sticky when touched. Next, UV light from a light source having a substantially uniform intensity distribution of 80 mWZcm 2 was irradiated on the entire surface of the UV curable resin film for 1 second in a nitrogen atmosphere. A transfer layer was thus obtained. The surface state of the transfer layer was in a state where it was difficult to be damaged even when rubbed with a sharp metal. A transfer layer laminated stamper was manufactured as described above.
  • Radical type UV curable resin (radial polymerization type UV curable resin) B (acrylic type resin, viscosity of about 500 MPa 's) on the surface of the recording / reproducing functional layer of the first recording medium with a radius of about It was applied in a ring shape around 35mm. Then, the transfer layer laminated stamper was placed on the radical ultraviolet curable resin B so that the radical ultraviolet curable resin B and the transfer layer face each other. Radical UV curable resin B is the first recording medium and When the first recording medium is stretched to the end of the transfer layer stack stamper, the first recording medium is rotated at 5000 rpm, and the excess radical UV curable resin B is shaken off to the outside of the first recording medium and the transfer layer stack stamper. It was. After that, the lower intermediate layer was cured by irradiating the entire surface with UV light with an almost uniform intensity distribution of 80 mWZcm 2 from the stamper side for 6 seconds.
  • a rewritable upper recording / reproducing functional layer (rewriteable medium example 1, film surface incident configuration) is formed on the transfer layer by sputtering, and the cover layer is 75 m thick by a resin spin coating method.
  • a two-layer rewritable Blu-ray disc was produced.
  • the transferability of the groove to the transfer layer in the two-layer rewritable Blu-ray disc produced by the above manufacturing method was evaluated by the groove signal. As a result, a good groove signal was obtained, and the fact that it was transferred satisfactorily over the entire surface contributed.
  • Example 1 “Transfer layer stack stamper manufacturing process”, only UV irradiation of 22mW Zcm 2 in the first atmosphere was omitted (the force of not performing the semi-curing operation), and “Upper recording / reproducing” An optical recording medium was tried in the same manner as in Example 1 except that the steps after “formation of functional layer” were not performed. As a result, since the transfer layer and the transparent stamper made of polycarbonate were strongly bonded, they could not be peeled off. Actually, when peeling was forcibly carried out, peeling occurred at the recording layer interface in the recording / reproducing functional layer while the transfer layer was adhered to the transparent stamper. Then, the film of the sputtered recording layer was broken all over.
  • Example 1 Transfer layer stacking stamper manufacturing process
  • UV irradiation of 80 mWZcm 2 was set to 10 seconds, and the processes after “Formation of second recording / playback functional layer” were performed. Except for this, an optical recording medium was manufactured in the same manner as in Example 1.
  • the peeling step the film of the sputtered recording layer was only partially peeled off, and the transfer layer and the transparent stamper could be peeled off almost satisfactorily.
  • a polycarbonate substrate with a thickness of 1.1 mm was prepared by transferring grooves with a groove depth of about 20 nm and a pitch of about 0.32 m.
  • a rewritable recording / reproducing functional layer (Example 1 of rewritable medium, film surface incidence configuration) was formed by sputtering on the surface of the substrate where the groove shape was formed. In this way, the first recording medium was manufactured.
  • a transparent stamper made of polycarbonate with a thickness of 0.6 mm and an outer diameter of 120 mm obtained by transferring grooves with a groove depth of about 20 nm and a pitch of about 0.32 m was produced by injection molding.
  • Radical UV curable resin (radical polymerization type UV curable resin) C (acrylic resin, viscosity of about 300 MPa 's) is applied onto the surface of the stamper with the groove shape formed by spin coating. did. Then, after making the radical ultraviolet curable resin C into a thin film having a thickness of about 4 m, high-speed swing-off rotation was stopped. In this way, an ultraviolet curable resin film was formed on the stamper.
  • UV light having an almost uniform intensity distribution of 22 mWZcm 2 (light source: Harrison Toshiba Toschia 751) was irradiated on the entire surface of the UV curable resin film for 3 seconds in an air atmosphere. . After irradiation, the surface of the UV curable resin film was sticky when touched. Next, UV light from a light source having a substantially uniform intensity distribution of 80 mWZcm 2 was irradiated on the entire surface of the UV curable resin film for 1 second in a nitrogen atmosphere. A transfer layer was thus obtained. The surface state of the transfer layer was in a state where it was difficult to be damaged even when rubbed with a sharp metal. A transfer layer laminated stamper was manufactured as described above.
  • Radical type UV curable resin (radial polymerization type UV curable resin) D (acrylic type resin, viscosity of about lOOOMPa's) on the surface of the recording / reproducing functional layer of the first recording medium It was applied in a ring shape around 35mm. And radical UV curing The transfer layer laminated stamper was placed on the radical ultraviolet curable resin D so that the resin D and the transfer layer face each other. When the radical UV curable resin D is stretched to the end of the first recording medium and transfer layer lamination stamper, the first recording medium is rotated at 5000 rpm to remove excess radical UV curable resin D. The first recording medium and the transfer layer were shaken out of the laminated stamper. After that, the lower intermediate layer was cured by irradiating the entire surface with UV light having an almost uniform intensity distribution of 80 mWZcm 2 from the stamper side for 6 seconds.
  • UV light having an almost uniform intensity distribution of 80 mWZcm 2 from the stamper side for 6 seconds.
  • a polycarbonate substrate with a thickness of 1.1 mm was prepared by transferring grooves with a groove depth of about 20 nm and a pitch of about 0.32 m.
  • a rewritable recording / reproducing functional layer (Example 1 of rewritable medium, film surface incidence configuration) was formed by sputtering on the surface of the substrate where the groove shape was formed. In this way, the first recording medium was manufactured.
  • a transparent stamper made of polycarbonate with a thickness of 0.6 mm and an outer diameter of 120 mm obtained by transferring grooves with a groove depth of about 20 nm and a pitch of about 0.32 m was produced by injection molding.
  • Radical UV curable resin (radical polymerization type UV curable resin) A (acrylic resin, viscosity of about 300 MPa 's) is applied on the surface of the stamper with the groove shape formed by spin coating. did. Then, after making the radical ultraviolet curable resin A into a thin film having a thickness of about 4 m, high-speed swing-off rotation was stopped. In this way, an ultraviolet curable resin film was formed on the stamper.
  • UV light having a substantially uniform intensity distribution of lOmWZcm 2 (light source: Toschia 751 manufactured by Harrison Toshiba) was applied to the entire surface of the UV curable resin film for 0.2 seconds. Irradiated for a while. After irradiation, the surface of the UV curable resin film was sticky when touched.
  • UV light from a light source with an almost uniform intensity distribution of 80mWZcm 2 Light was applied to the entire surface of the UV curable resin film for 1 second. In this way, a transfer layer was obtained. The surface state of the transfer layer was in a state where it was difficult to be damaged even when rubbed with a sharp metal.
  • a transfer layer laminated stamper was manufactured as described above.
  • Radical type UV curable resin (radial polymerization type UV curable resin) D (acrylic type resin, viscosity of about lOOOMPa's) on the surface of the recording / reproducing functional layer of the first recording medium It was applied in a ring shape around 35mm. Then, the transfer layer laminated stamper was placed on the radical UV curable resin D so that the radical UV curable resin D and the transfer layer face each other. When the radical UV curable resin D is stretched to the end of the first recording medium and transfer layer lamination stamper, the first recording medium is rotated at 5000 rpm to remove excess radical UV curable resin D. The first recording medium and the transfer layer were shaken out of the laminated stamper. After that, the lower intermediate layer was cured by irradiating the entire surface with UV light having an almost uniform intensity distribution of 80 mWZcm 2 from the stamper side for 6 seconds.
  • the transparent stamper was peeled off from the transfer layer, it could be peeled off in a good state with no unevenness over the entire surface at the interface between the transparent stamper and the transfer layer.
  • Example 4 when producing the transfer layer, Example 4 was performed except that only the first UV irradiation time (UV irradiation time for semi-curing) was changed to 0.2 second force and 0.5 second. In the same way, we tried to manufacture optical recording media. As a result, in the peeling process, the sputtered recording film was only partially peeled, and the transfer layer and the transparent stamper could be peeled off almost satisfactorily.
  • first UV irradiation time UV irradiation time for semi-curing
  • the transfer layer forming method in Examples 4 and 5 has an advantage that it is not necessary to switch to atmospheric force nitrogen atmosphere when the transfer layer is irradiated with UV light twice.
  • semi-curing and subsequent curing can be performed with the same UV irradiation device (UV light source). Attempts to do so tend to limit the types of industrially available UV irradiation devices (UV light sources).
  • the manufacturing margin power of the optical recording medium tends to be reduced. From this point of view, it is preferable to perform the semi-curing in an atmosphere where oxygen is present.
  • Example 1 In the “transfer layer lamination stamper manufacturing process” in Example 1, first, 200 mWZ cm 2 of UV light was irradiated in the atmosphere for 2 seconds, and then UV light irradiation was not performed in a nitrogen atmosphere. An attempt was made to manufacture an optical recording medium in the same manner as in Example 1 except that the steps after “2 Formation of Recording / Reproducing Functional Layer” were not performed.
  • the steps after “2 Formation of Recording / Reproducing Functional Layer” were not performed.
  • the bonding process was performed using a semi-cured UV curable resin film without forming a transfer layer.
  • the method for producing an optical recording medium of the present invention can be applied to various optical recording media such as CD, DVD, and BD. It can be suitably used in the field.
  • FIG. 1 is a schematic cross-sectional view for explaining a preferred example of a method for producing an optical recording medium to which the present embodiment is applied.
  • FIG. 2 is a schematic cross-sectional view for explaining a preferred example of a method for producing an optical recording medium to which the present embodiment is applied.
  • FIG. 3 is a schematic cross-sectional view for explaining an embodiment of a joining step in the second manufacturing method.
  • FIG. 4 is a schematic cross-sectional view for explaining a preferred example of an optical recording medium to which an embodiment of the present invention is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

 凹凸形状の中間層を有する光記録媒体を製造する際、スタンパと転写層との剥離が良好な光記録媒体の製造方法を提供すること。基板1上に記録再生機能層2と下中間層3とを順に積層する第1記録媒体100を形成し、一方、凹凸形状を有するスタンパ4表面に塗布した紫外線硬化性樹脂の膜を半硬化後さらに低酸素濃度雰囲気下で硬化した転写層6を有する転写層積層スタンパ200を形成し、続いて、下中間層3と転写層6とが相対するように第1記録媒体100と転写層積層スタンパ200とを接合した後、スタンパ4を剥離する光記録媒体の製造方法。

Description

明 細 書
光記録媒体の製造方法
技術分野
[0001] 本発明は、光記録媒体の製造方法等に関する。詳しくは、記録再生機能層を設け る光記録媒体を製造する方法等に関する。
背景技術
[0002] 近年、 CD— R、 CD-RW, DVD-R,書き換え型 DVD等の光記録媒体(以下「 光ディスク」 t 、う場合がある。 )の更なる高記録密度化が要求されて 、る。
[0003] この光ディスクの容量を大きくするための手段として、記録層を 2層以上設ける方法 がある。記録層を 2層以上設ける場合、記録層と記録層との間に中間層を設けるのが 通常である。
一方、基板上に設けられた反射層の上、又は、反射層及び記録層の上に、 0. lm mの厚さを有するカバー層を備えた、次世代の高密度光ディスクも実用化されて!/、る (ブルーレイディスク(Blu— ray Disk)、 UDO (Ultra— Density Optical)等)。こ れらの高密度光ディスクでは、青紫色のレーザ光を高い NA (開口数、例えば 0. 85) を有する対物レンズにより集光し、この集光したレーザ光を上記カバー層側から照射 することにより、情報信号の記録及び Z又は再生が行なわれる。このような光ディスク は、膜面入射型の光ディスクと呼ばれている。これらの膜面入射型の光ディスクでも、 記録層を 2層以上設け、光ディスクの更なる記録密度の向上が試みられている。この 場合においても、異なる記録層と記録層の間に中間層を設けるのが通常である。
[0004] 中間層に関する技術を紹介する文献として、特許文献 1がある。
同文献においては、榭脂スタンパ 101の案内溝に形成した榭脂材料 A104 (硬化 後の榭脂材料 Aは、同文献の図 4で 204と表されている。)を硬化させている。そして 、榭脂材料 A204を積層した榭脂スタンパと第 1の基盤 111を、シート状粘着材であ る榭脂材料 B105で貼り合わせている。その後、榭脂スタンパを剥離している。そして 、榭脂材料 Aにはスタンパとの接着力が弱いものが好ましぐ榭脂材料 Aとの剥離し やすさを考慮して、スタンパに離型を良好にする処理を施しても良い旨が記載されて いる。
[0005] 特許文献 1 :特開 2003— 203402号公報(段落 [0020]〜[0027]、図 3、図 5) 発明の開示
発明が解決しょうとする課題
[0006] し力しながら、本発明者の検討によれば、特許文献 1の方法では、スタンパ (より具 体的には、榭脂スタンパ)と榭脂材料 A (転写層)との剥離が良好にできない場合が あることが判明した。特に、スタンパにポリカーボネートのような極性の高い材料 (転写 層との接着力が大きくなる材料)を用いると、良好な剥離が行いにくいことが判明した
[0007] 本発明は、上記課題に鑑みてなされたものである。即ち、本発明の目的は、凹凸形 状を有する中間層を備えた光記録媒体を製造する際に、スタンパと転写層との剥離 を良好に行うことができる光記録媒体の製造方法及び製造装置を提供することであ る。
課題を解決するための手段
[0008] 上記実情に鑑み、本発明者が鋭意検討した結果、スタンパ上に形成された紫外線 硬化性榭脂の膜の硬化方法を工夫することにより、スタンパと転写層との剥離を良好 にできることを見出した。具体的には、先ず、スタンパ上に形成した紫外線硬化性榭 脂の膜に紫外線を照射して半硬化させる。次に、酸素濃度を低減させた雰囲気下で 、紫外線を照射して紫外線硬化性榭脂の膜をさらに硬化させて転写層を形成する。 これにより、スタンパと転写層との剥離を良好にできることを見出して、本発明に到達 した。
[0009] 即ち、本発明の要旨は、凹凸形状を表面に有し、下中間層及び転写層を有する中 間層を備えた光記録媒体の製造方法であって、基板を有する第 1記録媒体を得る第 1記録媒体製造工程と、中間層の凹凸形状に対応した転写用凹凸形状を表面に有 するスタンパの表面上に紫外線硬化性榭脂の膜を設け、紫外線硬化性榭脂の膜に 紫外線を照射して紫外線硬化性榭脂の膜を半硬化させた後、酸素濃度を低減させ た雰囲気下で紫外線を照射して紫外線硬化性榭脂の膜をさらに硬化させることによ つて転写層を形成して転写層積層スタンパを得る転写層積層スタンパ製造工程と、 転写層と第 1記録媒体との間に下中間層を存在させた状態で、転写層積層スタンパ と第 1記録媒体とを接合する接合工程と、スタンパを転写層から剥離する剥離工程と
、を有することを特徴とする光記録媒体の製造方法にある。
[0010] ここで、第 1記録媒体製造工程において、基板上に記録再生機能層を形成すること により第 1記録媒体を製造し、接合工程において、転写層と記録再生機能層との間 に下中間層を存在させた状態で、転写層積層スタンパと第 1記録媒体とを接合するこ とが好ましい。
また、第 1記録媒体製造工程において、基板上に複数の記録再生機能層を形成す ることにより第 1記録媒体を製造し、接合工程において、転写層と、基板力 最も遠く に位置する記録再生機能層との間に下中間層を存在させた状態で、転写層積層ス タンパと第 1記録媒体とを接合することが好ましい。
[0011] ここで、紫外線硬化性榭脂の膜の半硬化は、酸素が存在する雰囲気下で紫外線の 照射を行うことが好ましい。
また、酸素濃度を低減させた雰囲気としては、窒素雰囲気であることが好ましい。 次に、下中間層は、第 1記録媒体製造工程において、第 1記録媒体上に形成され ることが好ましい。
また、接合工程は、減圧雰囲気下で行われることが好ましい。
[0012] ここで、接合工程において、硬化性榭脂を第 1記録媒体上に塗布した後に、硬化 性榭脂と転写層とを向かい合うようにして硬化性榭脂上に転写層積層スタンパを載 置し、硬化性榭脂を延伸することによって下中間層を形成することが好ましい。
また、硬化性榭脂として、紫外線硬化性榭脂であることが好ましい。
さらに、接合工程は大気中で行われることが好ましい。
また、スタンパは、ポリカーボネート系榭脂製であることが好ましい。
また、スタンパを転写層から剥離した後、転写層上に上部記録再生機能層を形成 することが好ましい。
ここで、記録再生機能層は、基板側から反射層及び記録層をこの順に設けることが 好ましい。
さらに、本発明によれば、凹凸形状を表面に有し、下中間層及び転写層を有する 中間層を備えた光記録媒体を製造するための製造装置であって、中間層の凹凸形 状に対応した転写用凹凸形状を表面に有するスタンパの表面上に紫外線硬化性榭 脂の膜を設け、紫外線硬化性榭脂の膜に紫外線を照射して紫外線硬化性榭脂の膜 を半硬化させる第一硬化手段と、酸素濃度を低減させた雰囲気下で紫外線を照射し て紫外線硬化性榭脂の膜をさらに硬化させることによって転写層を形成する第二硬 化手段と、を有することを特徴とする光記録媒体の製造装置が提供される。
[0013] 尚、紫外線硬化性榭脂の膜が半硬化して ヽる力否かは、例えば、紫外線硬化性榭 脂の膜の硬化度合いで判断することができる。具体的には、残存二重結合の割合を 赤外分光光度計 (IR)で測定することによっておよそ定量できる。残存二重結合の割 合は、スタンパ上に設けられた紫外線硬化性榭脂の膜の表面の硬化前後における 赤外分光測定を行い、硬化前後の二重結合の量の比率を算出して得ることができる 。従って、例えば、半硬化している状態としては、スタンパ上に設けられた紫外線硬 化性榭脂の膜の表面の、半硬化処理を行った後における硬化度 (硬化前後の二重 結合の量の比率)が 50%以下という場合を挙げることができる。
[0014] 一方、紫外線硬化性榭脂の膜が半硬化しているカゝ否カゝを定性的に判断する方法 の一つとして、半硬化処理を行った後において、スタンパ上に設けられた紫外線硬 化性榭脂の膜の表面が粘性を持つ状態を挙げることができる。具体的には、半硬化 処理を行った後において、スタンパ上に設けられた紫外線硬化性榭脂の膜の表面を 指で触った場合に、ベとつくような状態を挙げることができる。
また、酸素濃度が低減された雰囲気下とは、具体的には、酸素濃度が 5%以下の 雰囲気をいう。
発明の効果
[0015] 本発明によれば、スタンパと転写層との剥離性が改良された生産効率の高い製造 方法が提供される。
発明を実施するための最良の形態
[0016] 以下、本発明をブルーレイディスク等の、膜面入射型の媒体構成を中心に詳細に 説明するが、本発明は以下の説明に限定されるものではなぐその要旨の範囲内に おいて種々に変更して実施することができる。 [0017] I.製造方法
凹凸形状を表面に有し、下中間層及び転写層を有する中間層を備えた光記録媒 体の製造方法は、以下の工程を有する。
( 1)基板を有する第 1記録媒体を得る、第 1記録媒体製造工程。
(2)中間層の凹凸形状に対応した転写用凹凸形状を表面に有するスタンパの表面 上に紫外線硬化性榭脂の膜を設け、紫外線硬化性榭脂の膜に紫外線を照射してこ の紫外線硬化性榭脂の膜を半硬化させた後、酸素濃度を低減させた雰囲気下で紫 外線を照射し、上記紫外線硬化性榭脂の膜をさらに硬化させることによって転写層を 形成して転写層積層スタンパを得る転写層積層スタンパ製造工程。
(3)転写層と第 1記録媒体との間に下中間層を存在させた状態で、転写層積層スタ ンパと第 1記録媒体とを接合する接合工程。
(4)スタンパを転写層から剥離する剥離工程。
[0018] また、本発明においては、上記(1)の第 1記録媒体製造工程で得る第 1記録媒体と して、下記 3つの態様を考えることができる。
(i)基板のみの態様
(ii)基板上に記録再生機能層を有する態様 (記録再生機能層を 1層とする態様)
(iii)基板上に複数の記録再生機能層を有する態様
これらのうち、(i)の態様においては、基板上に凹凸形状を有する中間層が形成さ れること〖こなるので、予め基板上に凹凸形状を設けなくてもよい。一方、(ii)及び (iii) の態様においては、基板上に 1又は複数の記録再生機能層が設けられることになる ので、基板の表面に予め凹凸形状を設けておくことが好ましい。
なお、上記 (i)、 (ii) , (iii)のいずれの態様においても、中間層の形成は基本的に 同じ方法を用いることになる。そこで、まず上記 (ii)の態様を用いて、本発明に用いら れる光記録媒体の製造方法について具体的な説明を行う。その後、上記 (i)、(iii)の 態様を第 1記録媒体に用いる場合について説明する。
1 - 1. 1層の記録再生機能層を有する第 1記録媒体を用いる場合
本実施の形態においては、第 1記録媒体として、基板上に記録再生機能層が形成 されたものを用いる。このような第 1記録媒体を用いて凹凸形状を表面に有し、下中 間層及び転写層を有する中間層を備えた光記録媒体を得る場合、下中間層をどの 段階で存在させるかによつて、下記 2つの製造方法に分けることができる。第 1の製 造方法は、下中間層を第 1記録媒体製造工程において形成する場合である。また、 第 2の製造方法は、接合工程において下中間層を形成する場合である。以下に、そ れぞれの製造方法について詳細に説明する。
[0019] A.第 1の製造方法
本実施の形態では、第 1記録媒体製造工程において、下中間層が記録再生機能 層上に形成される。
図 1及び図 2は、本実施の形態が適用される光記録媒体の製造方法の好ましい一 例を説明するための模式的断面図である。具体的には、図 1及び図 2には、上記(1) 〜 (4)の各工程のうち、図 1 (a)が上記工程(1)に、図 1 (b)が上記工程(2)にそれぞ れ対応する一例が示されている。また、図 1に続き、図 2には、図 2 (c)が上記工程(3 )に、及び図 2 (d)が上記工程 (4)にそれぞれ対応している。尚、通常、光記録媒体 は円盤形状を有し、中心にセンターホールが形成されているが、図 1及び図 2ではセ ンターホールの記載を省略している。同様に、通常、スタンパは円盤形状を有し、中 心にセンターホールが形成されている力 図 1及び図 2ではセンターホールの記載を 省略している。
[0020] 各図面の概略を説明する。
図 1 (a)には、表面に凹凸形状を有する基板 1上に記録再生機能層 2を有する第 1 記録媒体 100が示されている。そして、第 1記録媒体 100上に下中間層 3が形成され ている。
[0021] 図 1 (b)には、表面に紫外線硬化性榭脂の膜 5が設けられたスタンパ 4に、紫外線 UVを照射して紫外線硬化性榭脂の膜 5を半硬化させる工程 (b— 1)と、酸素濃度を 低減させた雰囲気の一例として、窒素パージ雰囲気(N gas purge type atmo
2
sphere)下で紫外線 UVを照射して紫外線硬化性榭脂の膜 5をさらに硬化させて転 写層 6を得る工程 (b— 2)と、が示されている。これら工程を経て転写層積層スタンパ 200が形成される。
[0022] 図 2 (c)には、転写層 6と第 1記録媒体 100 (記録再生機能層 2)との間に下中間層 3を存在させた状態で、転写層積層スタンパ 200と第 1記録媒体 100とを接合する、 接合工程が示されている。具体的には、転写層積層スタンパ 200を、転写層 6と下中 間層 3とが向き合うようにして下中間層 3上に載置する工程 (c 1)と、下中間層 3と転 写層 6とを接着する工程 (c - 2)とが示されて ヽる。
[0023] 図 2 (d)には、スタンパ 4を転写層 6から剥離する、剥離工程が示されて 、る。スタン パ 4の剥離により、中間層 7が形成される。
尚、各図面にぉ 、て共通の構成要素につ ヽては同一の符号を用いて表わして!/、る 。以下、図 1及び図 2を参照しながら、上記各工程についてさらに詳細に説明する。
[0024] (1)第 1記録媒体 100を得る工程
図 1 (a)は、第 1記録媒体 100の概要を説明するための図である。図 1 (a)に示すよ うに、第 1記録媒体 100は、基板 1上に記録再生機能層 2を形成することによって得ら れる。そして、第 1記録媒体 100上に、下中間層 3をさらに設ける。
[0025] 〔1.基板〕
基板 1の材料としては、適度な加工性と剛性を有するプラスチック、金属、ガラス等 を用いることができる。基板面入射型の構成の場合には、通常、記録'再生用のレー ザ光に対して透明性が求められることとなる。一方、膜面入射型の構成の場合には、 記録'再生用のレーザ光に対して透明性ゃ複屈折に対する制限がなくなる。また、そ の表面に案内溝を形成する場合には、以下のようにすればよい。具体的には、金属 やガラスを基板の材料として用いる場合には、通常、その表面に光硬化性や熱硬化 性の薄い榭脂層を設け、そこに溝を形成する。この点、プラスチック材料を用い、射 出成型によって、基板 1の形状と表面の案内溝を一挙に形成することが、製造上は 好ましい。
[0026] 射出成型できるプラスチック材料としては、従来 CDや DVDで用いられているポリ力 ーボネート榭脂、ポリオレフイン榭脂、アクリル榭脂、エポキシ榭脂等を用いることがで きる。
基板 1の厚みは、特に制限されないが、通常 0. 5mm以上、 1. 2mm以下の範囲と するのが好ましい。
[0027] 基板 1には、通常、トラッキング用の案内溝が形成されている(例えば、図 1 (a)の拡 大図参照)。トラッキング用の案内溝は、通常、同心円状又はスノィラル状の溝として 基板 1上に設けられる。案内溝のトラックピッチは、光記録媒体の記録再生に用いる レーザ光の波長によって異なる。具体的には、 CD系の光記録媒体では、トラックピッ チは通常 1. 以上、 1. 6 m以下である。 DVD系の光記録媒体では、トラック ピッチは通常 0. 以上、 0. 以下、である。青色レーザー用の光記録媒体 では、トラックピッチは通常 0. 1 μ m以上、 0. 6 m以下である。
[0028] 一方、溝の深さも光記録媒体の記録再生に用いるレーザ光の波長によって異なる 。具体的には、 CD系の光記録媒体では、溝深さは通常 10nm以上、 300nm以下で ある。 DVD系の光記録媒体では、溝深さは通常 lOnm以上、 200nm以下である。 青色レーザー用の光記録媒体では、溝深さは通常 lOnm以上、 200nm以下である
[0029] 尚、図 1 (a)には図示していないが、基板 1としては、一般的に、中心にセンターホ ールを有する環形状のものを用いる。環形状は特に制限されず、円盤形状、楕円形 状、多角形等、様々な形状を考えることができる。但し、基板 1は通常、円盤形状とす る。この場合、基板 1の直径を 80mm又は 120mm程度とするのが通常である。
[0030] [2.記録再生機能層〕
先ず、図 1 (a)に示すように、上述の基板 1上に、光により記録又は再生が可能な記 録再生機能層 2を形成する。
[0031] 記録再生機能層 2は、情報信号を記録再生可能又は再生可能となるように構成さ れた層であり、単層であっても複数の層からなってもよい。記録再生機能層 2は、光 記録媒体が、再生専用の媒体 (ROM媒体)である場合と、一度の記録のみ可能な追 記型の媒体 (Write Once媒体)である場合と、記録消去を繰り返し行なえる書き換 え可能型の媒体 (Rewritable媒体)である場合とによって、それぞれの目的に応じた 層構成を採用することができる。また、記録再生機能層 2は、記録'再生用のレーザ 光の入射方向によって、基板面入射型と膜面入射型とに分けることができる。本発明 においては、青色レーザーの使用と高密度記録との観点から、膜面入射型の記録再 生機能層 2を用いることが好ましい。このため、以下の説明においては、記録再生機 能層 2の一例として、膜面入射型の構成を用いる場合について説明する。 [0032] (再生専用媒体の例)
再生専用の媒体においては、記録再生機能層 2は、通常、同心円又はスパイラル 状に設けられたプリピットを有する基板上に設けられた反射層をいう。反射層の材料 としては通常、 Al、 Ag、 Au等の金属又は合金が用いられる。記録再生機能層 2は、 スパッタ法により Al、 Ag、 Au反射層を基板上に成膜して反射層を形成することにより 得られる。
[0033] (追記型の媒体の例 1)
追記型の媒体で膜面入射型の媒体においては、記録再生機能層 2は、通常、基板 上に設けた、少なくとも記録層を有する単層又は多層構造を指す。具体的には、通 常、反射層及び記録層がこの順に設けられている。さらに、記録層の上下の少なくと も一方に無機材料 (例えば、金属もしくは半導体の酸ィ匕物、窒化物、炭化物;又はこ れらの混合物;さら〖こは ZnSと SiO ノ ッ
2との混合物等)で形成される ファー層を設け てもよい。この場合、反射層、記録層、及びバッファ一層が記録再生機能層 2となる。
[0034] 反射層の材料としては、通常、 Al、 Ag、 Au等の金属又は合金が用いられる。反射 層の形成方法は、再生専用の媒体と同様とすればよい。また、バッファ一層は、通常 スパッタ法によって形成される。
[0035] 上記追記型の媒体における記録層の材料としては、通常、有機色素が用いられる
。このような有機色素としては、大環状ァザァヌレン系色素(フタロシアニン色素、ナフ タロシアニン色素、ポルフィリン色素など)、ポリメチン系色素(シァニン色素、メロシア ニン色素、スクヮリリウム色素など)、アントラキノン系色素、ァズレニウム系色素、含金 属ァゾ系色素、含金属インドア-リン系色素などが挙げられる。特に含金属ァゾ系色 素は、耐久性に優れる傾向にあるため好ま 、。
[0036] 有機色素により記録層を形成する場合は、通常、塗布方法で形成する。塗布方法 としては、有機色素を適当な溶媒に溶解した溶液によるスピンコート、スプレーコート 、ディップコート、ロールコート等が挙げられる。この際、溶媒としては、通常、ジァセト ンアルコール、 3—ヒドロキシ— 3—メチル— 2—ブタノン等のケトンアルコール溶媒、 メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ溶媒、テトロフルォロプロパノー ル、ォクタフルォロペンタノール等のパーフルォロアルキルアルコール溶媒、乳酸メ チル、イソ酪酸メチル等のヒドロキシェチル溶媒が使用される。
[0037] 記録層の厚さは、記録方法等により適した膜厚が異なるため、特に限定されないが 、十分な変調度を得るために、通常 lnm以上、好ましくは 5nm以上、特に好ましくは lOnm以上である。但し、光を透過させるという観点から、記録層の厚さは、通常 1 /z m以下、好ましくは 0. 5 μ m以下、より好ましくは lOOnm以下である。
[0038] (追記型の媒体の例 2)
追記型の媒体で膜面入射型の媒体における他の具体例にぉ 、ては、記録再生機 能層 2は、通常、基板上に設けられた、反射層、誘電体層、記録層、及び誘電体層を 指す。
[0039] 反射層の材料としては、通常、 Al、 Ag、 Au等の金属又は合金が用いられる。反射 層の形成方法は、再生専用の媒体と同様とすればよい。
[0040] 誘電体層の材料としては、通常、無機材料 (代表的には、 ZnSZSiOや GeCrN)
2
が用いられる。誘電体層の膜厚は、通常 0. 5nm以上、また、通常 50nm以下とする 。誘電体層は、必要に応じて、異なる無機材料を複数層積層して形成してもよい (例 えば、 ZnSZSiO層及び GeCrN層の積層構造としてもよい)。誘電体層は、通常、
2
スパッタリングすることによって形成される。
[0041] 記録層は、通常、無機材料の膜 (例えば、 Ge'Te、 Ge' Sb 'Teの様なカルコゲン系 合金膜、 SiZGe、 AlZSbなどの 2層膜、 BiGeN、 SnNbNなどの(部分)窒化膜、 T eOx、 BiFOxなどの(部分)酸ィ匕膜)が用いられる。記録層の膜厚は、通常 lnm以上 、好ましくは 2nm以上とする。また、記録層の膜厚は通常 50nm以下、好ましくは 20η m以下とされる。記録層は、通常、スパッタリングによって形成される。
[0042] (書き換え可能型の媒体の例 1)
書き換え可能型の媒体で膜面入射型の媒体においては、記録再生機能層 2は、通 常、基板上に設けられた、反射層、誘電体層、記録層、及び誘電体層を指す。
[0043] 反射層、誘電体層、及び記録層としては、上記「追記型の媒体の例 2」と同様にす ればよい。但し、記録層は、記録,消去を可逆的に行えるような材料とする必要がある 。このような材料としては、例えば、 SbTe系、 GeTe系、 GeSbTe系、 InSbTe系、 Ag SbTe系、 AglnSbTe系、 GeSb系、 GeSbSn系、 InGeSbTe系、 InGeSbSnTe系 等の材料が挙げられる。
[0044] (書き換え可能型の媒体の例 2)
書き換え可能型の媒体としての他の具体例として、光磁気記録媒体 (MOディスク) を挙げることちでさる。
[0045] 〔3.下中間層〕
次いで、図 1 (a)に示すように、上述の第 1記録媒体 100 (記録再生機能層 2)上に 、下中間層 3を形成する。本発明における下中間層 3とは、「層」の形態となっている ものを指す。例えば、下中間層 3が液体状又は粘性体 (viscous)状の榭脂材料で形 成されるときは、この榭脂材料が乾燥又は硬化している力否かに関わらず、「層」の形 態を有して 、れば「下中間層 3」となる。
尚、記録再生機能層 2と下中間層 3との間に、必要に応じて他の層を存在させても よいことはいうまでもない。
[0046] 下中間層 3に用いる材料は、特に制限はない。工業的には、榭脂材料が用いられ るのが通常である。榭脂材料としては、より具体的には、硬化性榭脂を挙げることが できる。硬化性榭脂としては、例えば、放射線硬化性榭脂ゃ熱硬化性榭脂がある。こ れら材料の中で、工業的に好ましいのは、放射線硬化性榭脂である。放射線硬化性 榭脂としては、電子線や紫外線の照射で硬化する材料を挙げることができるが、工業 生産性を考慮すると、紫外線硬化性榭脂を用いることが好まし 、。
[0047] 下中間層 3は、一般的に以下の 3つの性質を有することが望まれる。
第一に、記録再生機能層 2に入射するレーザ光に対して光透過性を有するように するために、上記レーザ光に対して十分な透明性を確保できる材料を用いることが 好ましい。ここで、本実施の形態が適用される光記録媒体において、「光透過性 (又 は透明)」とは、記録再生機能層 2に照射されるレーザ光の波長に対して十分な透過 性を有することを意味する。「光透過性 (又は透明)」とは、具体的には、記録'再生の ための光の波長(例えば、 405nm)に対して、通常 70%以上、好ましくは 80%以上 、より好ましくは 90%以上の透過性があることをいう。尚、光透過性の上限は、理想的 には 100%である。
[0048] 第二に、光記録媒体全体の反りを抑制するために、柔らかい又は収縮率が小さい 材料を用いることが好ましい。後述するように、転写性や転写層上に形成される記録 再生機能層の記録特性を良好にするために、転写層に用いる紫外線硬化性榭脂と して、収縮率の大きい材料を用いる場合がある。この場合においては、光記録媒体 全体が反りやすくなる傾向になる。従って、下中間層 3に、常温での弾性率が小さい 榭脂 (やわらか 、性質を有する榭脂)や、収縮率の小さ 、榭脂を用いることが好まし い。
より具体的には、光記録媒体全体の反りをより良好に抑えるために、下中間層 3に 用いる榭脂は、常温での弾性率力 、さくかつ収縮率の小さい榭脂を用いることが好 ましい。
[0049] 上記観点から、下中間層 3に用いる榭脂の 30°Cにおける弾性率は、通常 1500M Pa以下、好ましくは 1300MPa以下、より好ましくは 700MPa以下、さらに好ましくは 680MPa以下、特に好ましくは 650MPa以下とする。 30°Cにおける弾性率を上記範 囲とすれば、下中間層 3を形成する際に発生することがある基板 1の反りを効果的に 抑帘 Uすることができる。
一方、下中間層 3に用いる榭脂の 30°Cにおける弾性率は、現実的には、 40MPa 以上となる。尚、弾性率とは、一般的な動的粘弾性測定機にて測定された動的弾性 率である。
[0050] また、下中間層 3に用いる榭脂の収縮率は、通常 4%以下、好ましくは 3. 5%以下 、さらに好ましくは 3%以下とする。下中間層 3に用いる榭脂の収縮率を上記範囲とす れば、基板 1の反りを効果的に抑制することができる。但し、収縮率は、理想的には 0 %である。ここで、収縮率とは、比重法により測定した収縮率である。また、収縮率は 、JISの K71126. 1等に従って測定することもできる。
[0051] 第三に、転写層 6 (詳細は後述する。)との密着性を確保するために十分な接着性 を有する材料を下中間層 3に用 ヽることも好ま ヽ。転写層 6と密着性を確保する観 点からは、転写層 6及び下中間層 3に用 、る材料の種類を揃える(具体的には紫外 線硬化性榭脂とする)、下中間層 3の表面に接着層を設ける等の手法を用いることが できる。
[0052] また、図 1 (a)には図示していないが、本実施の形態において、下中間層 3は単層 構造であっても、複数層を積層した構造であってもよい。複数層を積層した構造とし て、それぞれの層に用いる榭脂の種類を適宜制御することにより、下中間層 3全体の 弾性率や収縮率を精密に制御して、基板 1の反りをより低減しやすくなる利点が発揮 される。
[0053] 下中間層 3を構成する榭脂層の数は、特に限定されない。基板 1の反りを良好に抑 制するためには、榭脂層の数は、通常 10層以下、好ましくは 5層以下、より好ましくは 4層以下とする。一方、榭脂層の数は、 1層以上とする。但し、生産効率の観点からは 、下中間層 3を構成する榭脂層の数は、 1層以上、 5層以下とすることが好ましい。生 産効率の観点力 特に好ましいのは、下中間層 3を 1層構造とすることである。
[0054] 下中間層 3の膜厚は、特に制限されず、用いられる光記録媒体の種類に応じて所 定の範囲を適宜用いればよい。例えば、中間層 7の膜厚は、通常 以上、好ま しくは 20 m以上とする。一方、中間層 7の膜厚は、通常 80 m以下、好ましくは 70 /z m以下とする。より具体的には、青色レーザーを用いたブルー 'レイ'ディスク(Blu -ray disk)の場合、中間層 7の膜厚は、好ましくは、 20 m以上、 30 m以下とさ れる。 DVD-R,書き換え型 DVDの場合は、中間層 7の膜厚は、好ましくは、 40 m以上、 70 m以下である。そして、一般的には、後述する転写層 6の膜厚を O /z m より大きぐ 以下とするので、下中間層 3の膜厚は、中間層 7の膜厚から転写 層 6の膜厚を引いた残りの厚さになる。
[0055] 以下に、下中間層 3に榭脂材料を用いる場合について説明する。榭脂としては、例 えば、熱可塑性榭脂、熱硬化性榭脂、電子線硬化性榭脂、紫外線硬化性榭脂 (遅 延硬化型を含む)等を挙げることができる。材料は、上記樹脂から適宜選択すればよ い。
熱可塑性榭脂、熱硬化性榭脂等は、通常、適当な溶剤に溶解して塗布液を調製 する。その後、この塗布液を塗布し、乾燥 (加熱)することによって、下中間層 3を形成 することができる。
紫外線硬化性榭脂は、通常、そのまま若しくは適当な溶剤に溶解して塗布液を調 製する。その後、この塗布液を塗布し、紫外光を照射して硬化させることによって、下 中間層 3を形成することができる。 上記材料は単独または混合して用いても良 、。
[0056] 塗布方法としては、スピンコート法やキャスト法等の塗布法等の方法が用いられ、こ の中でもスピンコート法が好ましい。高粘度の榭脂を用いた下中間層 3は、スクリーン 印刷等によっても塗布形成できる。紫外線硬化性榭脂は、 20°C〜40°Cにおいて液 状であるものを用いると、生産性の観点から、溶媒を用いることなく塗布しやすくなる ので好ましい。また、塗布液の粘度は 20MPa' s〜1500MPa' sとなるように調製す るのが好ましい。より好ましくは、塗布液の粘度を lOOOMPa' s以下とすることである。
[0057] 尚、図 1 (a)では図示を省略している力 基板 1が円盤形状を有し、中心にセンター ホールが形成されている場合にスピンコート法を用いて下中間層 3を形成する場合 には、以下の方法を用いて下中間層 3を形成することが好ましい。つまり、センターホ ールの外径よりも大きい所定の半径位置において、粘性を有する榭脂をリング状に 滴下 (dispence)することにより塗布する。そして、その後スピンコートを行うことが好ま しいのである。
[0058] 榭脂材料としては紫外線硬化性榭脂を用いることが好ま ヽ。紫外線硬化性榭脂 は、透明度が高ぐ硬化時間が短く製造上有利な点で好ましい。紫外線硬化性榭脂 としては、ラジカル系紫外線硬化性榭脂とカチオン系紫外線硬化性榭脂とが挙げら れ、いずれも使用することができる。
[0059] カチオン系紫外線硬化性榭脂は、収縮率が小さ!/、性質を有するので、光記録媒体 の反りを低減するために用いることが好ましい。以下、ラジカル系紫外線硬化性榭脂 及びカチオン系紫外線硬化性榭脂について説明する。
[0060] ラジカル系紫外線硬化性榭脂は、紫外線硬化性化合物と光重合開始剤を含む組 成物が用いられる。紫外線硬化性化合物としては、単官能 (メタ)アタリレート及び多 官能 (メタ)アタリレートを重合性モノマー成分として用いることができる。これらは、各 々、単独または 2種類以上併用して用いることができる。ここで、アタリレートとメタァク リレートとを併せて (メタ)アタリレートと称する。
[0061] 単官能 (メタ)アタリレートとしては、例えば、置換基としてメチル、ェチル、プロピル、 ブチル、ァミル、 2—ェチルへキシル、ォクチル、ノエル、ドデシル、へキサデシル、ォ クタデシル、シクロへキシル、ベンジル、メトキシェチル、ブトキシェチル、フエノキシェ チル、ノニルフエノキシェチル、テトラヒドロフルフリル、グリシジル、 2—ヒドロキシェチ ル、 2—ヒドロキシプロピル、 3—クロロー 2—ヒドロキシプロピル、ジメチルアミノエチル 、ジェチルアミノエチル、ノニルフエノキシェチルテトラヒドロフルフリル、力プロラタトン 変性テトラヒドロフルフリル、イソボル-ル、ジシクロペンタ -ル、ジシクロペンテ-ル、 ジシクロペンテ-口キシェチル等の基を有する(メタ)アタリレート等が挙げられる。
[0062] 多官能 (メタ)アタリレートとしては例えば、 1、 3—ブチレングリコール、 1、 4—ブタン ジオール、 1、 5—ペンタンジオール、 3—メチルー 1、 5—ペンタンジオール、 1、 6— へキサンジオール、ネオペンチルグリコール、 1、 8—オクタンジオール、 1、 9ーノナン ジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール 、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピ レングリコール等のジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレート のジ (メタ)アタリレート等が挙げられる。
[0063] また、ネオペンチルグリコール 1モルに 4モル以上のエチレンオキサイド若しくはプロ ピレンオキサイドを付カ卩して得たジオールのジ(メタ)アタリレート、ビスフエノール A1 モルに 2モルのエチレンオキサイド若しくはプロピレンオキサイドを付カ卩して得たジォ 一ルのジ(メタ)アタリレート、トリメチロールプロパン 1モルに 3モル以上のエチレンォ キサイド若しくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)ァ タリレート、ビスフエノール A1モルに 4モル以上のエチレンオキサイド若しくはプロピレ ンオキサイドを付カ卩して得たジオールのジ (メタ)アタリレート、トリメチロールプロパント リ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリトール のポリ (メタ)アタリレート、エチレンオキサイド変性リン酸 (メタ)アタリレート、エチレンォ キサイド変性アルキル化リン酸 (メタ)アタリレート等が挙げられる。
[0064] また、これらの重合性モノマーと同時に併用できるものとしては、重合性オリゴマー として、ポリエステル (メタ)アタリレート、ポリエーテル (メタ)アタリレート、エポキシ (メタ )アタリレート、ウレタン (メタ)アタリレート等が挙げられる。
[0065] 更に、ラジカル系紫外線硬化性榭脂には、通常、光重合開始剤を配合する。光重 合開始剤としては、分子開裂型または水素引き抜き型のものが好ましい。このような 光重合開始剤として、分子開裂型としては、例えば、ベンゾインイソブチルエーテル、 2、 4 ジェチルチオキサントン、 2 イソプロピルチォキサントン、ベンジル、 2、 4、 6 -トリメチルベンゾィルジフエ-ルフォスフィンォキシド、 2 -ベンジル - 2-ジメチル ァミノ一 1— (4 モルフォリノフエ-ル)一ブタン一 1—オン、ビス(2、 6 ジメトキシべ ンゾィル)—2、 4、 4 トリメチルペンチルフォスフィンォキシド等が挙げられる。
[0066] さらに、 1ーヒドロキシシクロへキシルフエ-ルケトン、ベンゾインェチルエーテル、ベ ンジルジメチルケタール、 2—ヒドロキシ 2—メチル 1 フエニルプロパン 1ーォ ン、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプロパン一 1—オン 及び 2—メチルー 1一(4ーメチルチオフエ-ル) 2 モルフォリノプロパン 1ーォ ン等を併用しても良い。水素引き抜き型光重合開始剤としては、例えば、ベンゾフエ ノン、 4—フエ-ルペンゾフエノン、イソフタルフエノン、 4—ベンゾィル 4,一メチルー ジフエ-ルスルフイド等が挙げられる。
[0067] また、これらの光重合開始剤とともに、増感剤を併用することができる。増感剤として は、例えば、トリメチルァミン、メチルジメタノールァミン、トリエタノールァミン、 p ジェ チルアミノアセトフエノン、 p ジメチルァミノ安息香酸ェチル、 p ジメチルァミノ安息 香酸イソァミル、 N、 N ジメチルベンジルァミン及び 4、 4, 一ビス(ジェチルァミノ)ベ ンゾフエノン等が挙げられる。
[0068] カチオン系紫外線硬化性榭脂としては、例えば、カチオン重合型の光重合開始剤 を含むエポキシ榭脂が挙げられる。エポキシ榭脂としては、例えば、ビスフエノーノレ A —ェピクロールヒドリン型、脂環式エポキシ、長鎖脂肪族型、臭素化エポキシ榭脂、 グリシジルエステル型、グリシジルエーテル型、複素環式系等が挙げられる。ェポキ シ榭脂としては、遊離した塩素及び塩素イオン含有率が少ないものを用いるのが好 ましい。塩素の量は、 1重量%以下が好ましぐより好ましくは 0. 5重量%以下である
[0069] カチオン重合型の光重合開始剤としては、スルホ -ゥム塩、ョードニゥム塩、ジァゾ -ゥム塩等が挙げられる。ョードニゥム塩としては、例えば、ジフエ-ルョードニゥムへ キサフルォロホスフェード、ジフエ-ルョードニゥムへキサフルォロアンチモネート、ジ フエ-ルョードニゥムテトラフノレオロボレート、ジフエ-ルョードニゥムテトラキス(ペンタ フルオロフェ -ル)ボレート、ビス(ドデシルフェ -ル)ョード -ゥムへキサフルォロホス フェート、ビス(ドデシルフェ -ル)ョードニゥムへキサフルォロアンチモネート、ビス(ド デシルフエ-ル)ョードニゥムテトラフルォロボレート、ビス(ドデシルフェ -ル)ョードニ ゥムテトラキス(ペンタフルォロフエ-ル)ボレート等が挙げられる。
[0070] さらに、 4 メチルフエ-ルー 4一(1ーメチルェチル)フエ-ルョードニゥムへキサフ ルォロホスフェート、 4 メチルフエ-ルー 4一(1ーメチルェチル)フエ-ルョード-ゥ ムへキサフルォロアンチモネート、 4—メチルフエ-ルー 4— (1—メチルェチル)フエ -ルョ一ドニゥムテトラフルォロボレート、 4 メチルフエ-ルー 4一(1 メチルェチル )フエ-ルョードニゥムテトラキス(ペンタフルォロフエ-ル)ボレート等が挙げられる。
[0071] カチオン型紫外線硬化性榭脂 100重量部当たりの光重合型開始剤の割合は、通 常、 0. 1重量部〜 20重量部であり、好ましくは 0. 2重量部〜 5重量部である。尚、紫 外線光源の波長域の近紫外領域や可視領域の波長をより有効に利用するため、公 知の光増感剤を併用することができる。この際の光増感剤としては、例えばアントラセ ン、フエノチアジン、ベンジルメチルケタール、ベンゾフエノン、ァセトフエノン等が挙 げられる。
[0072] また、紫外線硬化性榭脂には、必要に応じてさらにその他の添加剤として、熱重合 禁止剤、ヒンダードフエノール、ヒンダードァミン、ホスファイト等に代表される酸ィ匕防 止剤、可塑剤、及びエポキシシラン、メルカプトシラン、(メタ)アクリルシラン等に代表 されるシランカップリング剤等を、各種特性を改良する目的で配合することもできる。 これらは、紫外線硬化性化合物への溶解性に優れたもの、紫外線透過性を阻害しな いものを選択して用いる。
[0073] (2)転写層積層スタンパ 200を得る工程
本実施の形態においては、スタンパ 4の表面上に転写層 6を形成して転写層積層 スタンパ 200を得る。具体的には、スタンパ 4上に紫外線硬化性榭脂の膜 5を設け、 紫外線硬化性榭脂の膜 5に紫外線 UVを照射して紫外線硬化性榭脂の膜 5を半硬 化させた後、酸素濃度を低減させた雰囲気下で紫外線 UVを照射して紫外線硬化性 榭脂の膜 5をさらに硬化させることによって転写層 6を形成する。
この工程について、図 1 (b)を参照しながら説明する。尚、図 1 (b)では、紫外線 UV の照射により硬化する前の膜を紫外線硬化性榭脂の膜 5と呼び、紫外線 UVの照射 により硬化した後の膜を転写層 6と呼んでいる。転写層 6には、記録再生機能層 2に 入射するレーザ光に対して光透過性を有するようにするために、上記レーザ光に対 して十分な透明性を確保できる材料を用いることが好ましい。ここで、本実施の形態 において、「光透過性 (又は透明)」とは、記録再生機能層 2に照射されるレーザ光の 波長に対して十分な透過性を有することを意味する。「光透過性 (又は透明)」とは、 具体的には、記録 ·再生のための光の波長(例えば、 405nm)に対して、通常 70% 以上、好ましくは 80%以上、より好ましくは 90%以上の透過性があることをいう。尚、 光透過性の上限は、理想的には 100%である。
[0074] 先ず、図 1 (b) (b— 1)に示すように、表面に紫外線硬化性榭脂の膜 5が設けられた スタンパ 4に、紫外線 UVを照射して紫外線硬化性榭脂の膜 5を半硬化させる。
[0075] [1.スタンパ 4]
スタンパ 4は、中間層 7に形成されることになる凹凸の形状(凹凸形状)に対応した 形状 (転写用凹凸形状)の凹凸 (転写用凹凸)を表面に有する。
スタンパ 4の材料としては、光記録媒体の製造コストを考慮して、通常、榭脂が用い られる。また、スタンパ 4側カゝら紫外線 UVを照射して紫外線硬化性榭脂の膜 5を硬化 させる場合等を考慮して、スタンパ 4は光に対して十分な光透過性を有することが好 ましい。具体的には、波長 400nmにおいて、透過率が 80%以上であることが好まし く、 90%以上であることがより好ましい。透過率の上限は、理想的には 100%である。 スタンパ 4を榭脂で形成する場合、用いる榭脂として様々な材料を挙げることができ る。例えば、通常の光ディスクの基板として用いられるポリカーボネート系榭脂ゃァク リル系榭脂をそのまま用いることができる。他には、スタンパ 4と転写層 6との剥離性を 確保するために、スタンパ 4の材料としてポリオレフイン系榭脂ゃポリスチレン系榭脂 を用いて、スタンノ 4の表面エネルギーを低減することが行われる。このような、表面 エネルギーが低減されたスタンパ 4として実際に実用化されているのは、非晶質環状 ポリオレフイン榭脂(例えば、ゼォネックス (ZEONEX:登録商標)およびゼォノア (Z EONOR:登録商標)である( 、ずれも日本ゼオン株式会社製)。
[0076] 非晶質環状ポリオレフインは、良好な剥離性を有し工業的に優れた材料である。し 力しながら、非晶質環状ポリオレフインは、特殊な材料ゆえ高価であるために、スタン ノ 4のコストが増大する傾向になる。そして、榭脂製のスタンパ 4は、通常使い捨てと されるために、光記録媒体全体に占めるスタンパ 4のコスト負担が大きくなるのが実情 である。このため、できるだけ安価な榭脂を用いることが好ましい。一般的には、コスト の観点力もポリカーボネート系榭脂ゃアクリル系榭脂を用いることが好ましぐ剥離性 の観点力もポリオレフイン系榭脂ゃポリスチレン系榭脂を用いることが好まし 、。
[0077] ところで、本発明においては、転写層 6を得るにあたり、先ず紫外線硬化性榭脂の 膜 5を半硬化させる。そして、その後さらに紫外線 UVを照射して紫外線硬化性榭脂 の膜 5の硬化を進めることにより転写層 6を得る。本発明者の検討によれば、上記のよ うに、紫外線硬化性榭脂の膜 5の半硬化の状態を一度経ることにより、転写層 6とスタ ンパ 4との剥離性が良好となることが分力つた。この理由は明らかではないが、以下の ような現象が起きるためではないかと推測される。
[0078] つまり、紫外線 UVを強く照射した場合、又は quencher (酸素分子のような、ラジカ ルの励起消光 (quenching)する分子)が無 、状態で紫外線 UV照射を行う場合に は、スタンパ 4と紫外線硬化性榭脂の膜 5との界面近傍で、反応開始剤からのラジカ ルと未反応榭脂とが高濃度に共存する状態になると考えられる。このような場合に、 榭脂製のスタンパ 4を用いると、紫外線硬化性榭脂の膜 5における重合以外にも、ス タンパ 4と紫外線硬化性榭脂の膜 5との間にも化学結合が生成して架橋する部分が 発生すると推測される。そして、この結果、透明スタンパと硬化榭脂との剥離性が悪 化するのではないかと考えられる。特に、極性の高い材料 (例えば、ポリカーボネート 系榭脂ゃアクリル系榭脂)をスタンパ 4の材料として用いると、スタンパ 4と紫外線硬化 性榭脂の膜 5との界面における上記化学結合はより発生しやすくなると考えられる。
[0079] 従って、紫外線 UVを強く照射する操作、又は酸素濃度を低減させた雰囲気下で 紫外線 UVを照射する等の急速な硬化を行う操作に先立ち、紫外線硬化性榭脂の 膜 5を緩く硬化 (半硬化)させること〖こよって、スタンパ 4と紫外線硬化性榭脂の膜 5と の反応が抑制されるのではないかと考えられる。この結果、スタンパ 4及び紫外線硬 化性榭脂の膜 5の界面における、スタンパ 4及び紫外線硬化性榭脂の膜 5それぞれ の表面性が比較的安定な状態になるのではないかと推測される。そして、この状態に おいて、酸素濃度を低減させた雰囲気下で紫外線 UVを照射することにより、紫外線 硬化性榭脂の膜 5の硬化を更に進めて転写層 6を得ることにより、転写層 6とスタンパ 4との剥離性が改善されるのではないかと推測される。
[0080] このように、本発明では紫外線硬化性榭脂の膜 5の半硬化を経ることにより、スタン ノ 4と転写層 6との剥離性を確保しやすくなる。従って、スタンパ 4に用いる材料の自 由度が大きく広がるという利点が発揮される。つまり、上述の通り、スタンパ 4の表面ェ ネルギーを小さくする観点から、非晶質環状ポリオレフインがスタンパ 4の材料として 好ましく用いられているが、本発明においては、上記のような高機能性の樹脂に限ら れず、ポリカーボネート系榭脂、アクリル系榭脂等の汎用で低コストの榭脂を用いるこ とがでさる。
[0081] 上記利点を顕著に発揮させる観点から、スタンパ 4の材料としては、ポリカーボネー ト系榭脂、アクリル系榭脂を用いることが好ましい。より好ましくは、ポリカーボネート系 榭脂である。尚、スタンパ 4の材料は、 1種を単独で用いてもよぐ 2種以上を任意の 組み合わせ及び比率で併用してもよ!、。
[0082] 図 1 (b)には図示していないが、スタンパ 4は、通常、中央部に表裏を貫通する中心 孔を形成された円板形状に形成される。
尚、スタンパ 4を作製する場合、その作製方法は任意である。例えば、スタンパ 4を 榭脂製スタンパとする場合には、スタンパ 4が有する転写用凹凸形状の逆 (ネガ)の 凹凸パターンを有する金属製スタンパ (例えば、ニッケル製スタンパ)を用いて、射出 成形等によりスタンパ 4を作製することができる。
[0083] また、本実施の形態において使用されるスタンパ 4の厚さは、形状安定性及びハン ドリングの容易さの点で、通常 0. 3mm以上とするのが望ましい。但し、厚さは、通常 5mm以下である。スタンパ 4の厚さがこの範囲であれば、十分な光透過性を確保し やすくなる。このため、後述するようにスタンパ 4を介して紫外線 UVを照射しても、紫 外線硬化性榭脂等を効率よく硬化させることが可能であり、生産性を向上させやすく なる。
[0084] [2.紫外線硬化性榭脂の膜 5]
紫外線硬化性榭脂の膜 5は、通常以下のようにして形成される。すなわち、紫外線 硬化性榭脂の膜 5は、必要に応じて添加剤 (例えば、光重合開始剤、増感剤等の添 加剤)や溶媒と共に、スタンパ 4の転写用凹凸形状を有する面に塗布することによつ て形成される。塗布の方法は、特に制限はされないが、均一な膜厚を形成しやすい 点、工業生産に適する点等の理由から、スピンコート法を用いることが一般的である。
[0085] スピンコート法を用いる場合、紫外線硬化性榭脂の組成物の粘度は、通常 50MPa •s以上、 350MPa' s以下とする。この粘度範囲内とすることにより、転写層 6の厚みを 所定の範囲内に制御しやすくなる。また、上記粘度範囲とすれば、転写層 6の膜厚 範囲を大きく変化させることが容易になる。具体的には、薄い転写層 6 (例えば 5 m 程度)が良好に作成しやすくなる一方で、比較的膜厚の厚い転写層 6も作製しやすく なる。
[0086] 尚、図 1 (b)では図示を省略している力 スタンパが円盤形状を有し、中心にセンタ 一ホールが形成されている場合には、以下の方法を用いて紫外線硬化性榭脂の膜 5を形成することが好ましい。つまり、センターホールの外径よりも大きい所定の半径 位置において、紫外線硬化性榭脂をリング状に滴下 (dispence)することにより塗布 する。そして、その後スピンコートを行うことが好ましいのである。
[0087] 紫外線硬化性榭脂の膜 5に用いる紫外線硬化性榭脂としては特に制限はない。ス タンパ 4の転写性及び転写層 6上に設けられる上部記録再生機能層(後述)の記録 特性を向上させる観点から、硬化して得られる転写層 6が相対的に固くなるような紫 外線硬化性榭脂を用いることが好ましい。具体的には、紫外線硬化性榭脂の 150°C における弾性率を 300MPa以上とすることが好ましい。これは、弾性率の高い榭脂は 一般に硬い性質を有するためである。尚、弾性率とは、一般的な動的粘弾性測定機 にて測定された動的弾性率である。
[0088] 転写層 6に用いる紫外線硬化性榭脂の 150°Cにおける弾性率は高ければ高いほ ど好ましい。 150°Cにおける弾性率は、好ましくは 300MPa以上、より好ましくは 330 MPa以上、さらに好ましくは 350MPa以上、さらに好ましくは 500MPa以上、さらに 好ましくは 750MPa以上、特に好ましくは 950MPa以上、最も好ましくは lOOOMPa 以上とする。
[0089] ここで、弾性率とは、上述の通り、一般的な動的粘弾性測定機にて測定された動的 弾性率である。但し、生産性の観点から、紫外線硬化性榭脂の 150°Cにおける弾性 率は、通常 2500MPa以下とする。
尚、 150°Cにおける弾性率が 300MPa以上の場合は、一般的に、榭脂のガラス転 移温度が高くなる傾向にある。具体的には、 150における弾性率が 300MPa以上の 榭脂のガラス転移温度は、通常、 140°C以上となる。一方、ガラス転移温度の上限は 、通常、 200。Cとなる。
[0090] また、転写層 6に用いる紫外線硬化性榭脂の収縮率は、光ディスクの反りを抑制す る観点力ゝらは小さいことが好ましい。ただ、上記弾性率を有する紫外線硬化性榭脂に おいては、収縮率は相対的に大きい値となりやすい。また、収縮率を大きくすると後 述する利点が発揮されやすくなる。収縮率は、通常 6%以上、好ましくは 9%以上、よ り好ましくは 9. 5%以上、さらに好ましくは 10%以上である。但し、収縮率は、 20%以 下であることが好ましい。ここで、収縮率とは、比重法により測定した収縮率である。ま た、収縮率は、 JIS K71126. 1等に従い測定することもできる。
[0091] 転写層 6に用いる紫外線硬化性榭脂の収縮率が 6%以上の榭脂を用いて形成する ことにより、榭脂製のスタンパ 4を用いて転写層 6に記録トラック用の溝を形成する際 に、スタンパ 4からの剥離性が良好となりやすいので好ましい。スタンパ 4の剥離性が 良好な理由としては、例えば、スタンパ 4の溝に入った榭脂が硬化する際に収縮し、 わずかな歪又は隙間が生じることによるものと考えられる。
[0092] 上記の通り、スタンパ 4との剥離性を確保するために、転写層 6に用いる榭脂は、所 定以上の収縮率を有することが好ましい。一方で、転写層 6を比較的収縮率の大き ぃ榭脂で形成する結果、転写層 6の成膜時の収縮が大きくなる傾向にある。これは、 光記録媒体全体が反りやすくなることを意味する。この点については、下中間層 3の 材料を適宜制御して、光記録媒体全体の反りを緩和すればよい。この点については 、下中間層 3に用いる材料の説明の際にすでに説明した通りである。
[0093] 下中間層 3と転写層 6とに用いる材料の好ましい組み合わせについて以下に説明 する。
上述の通り、本実施形態においては、「高温 (例えば、 150°C)での弾性率の高い 紫外線硬化性榭脂」、「収縮率の比較的大きな紫外線硬化性榭脂」を転写層 6に用 いることが好ましい。一方で、「常温 (例えば 30°C)での弾性率の小さい榭脂」、「収縮 率の比較的小さな榭脂」を下中間層 3に用 、ることが好まし 、。
[0094] 以下に、上記 4つの性質を有する榭脂 (具体的には、紫外線硬化性榭脂)を得るた めの具体的方法について説明する。
(高温 (例えば 150°C)での弾性率の高 、紫外線硬化性榭脂を得る方法) 紫外線硬化性榭脂の高温の弾性率を高くするためには、硬化させて得られる架橋 構造のブラウン運動が束縛されるようにすればよい。つまり、架橋密度が高くなるよう にすればよい。より具体的には、アクリルモノマーを用いて紫外線硬化性榭脂を形成 する場合には、例えば、以下の(a)〜(c)を行うことにより、高温での弾性率が高い紫 外線硬化性榭脂を得ることができる。
(a)架橋密度が高くなるようなアクリルモノマーを用いる。
(b)架橋構造に剛直な構造を有するアクリルモノマーを用いる。
(c)架橋密度が高くなるようなアクリルモノマーと架橋構造に剛直な構造を有するァク リルモノマーとを組み合わせて用いる。
[0095] 架橋密度が高くなるようなアクリルモノマーとしては、アタリロイル基 1個あたりの分子 量が小さ!/、多官能アクリルモノマー(多官能 (メタ)アタリレート)を挙げることができる。 多官能 (メタ)アタリレートとしては例えば、 1、 3 ブチレングリコール、 1、 4 ブタン ジオール、 1、 5 ペンタンジオール、 3—メチルー 1、 5 ペンタンジオール、 1、 6— へキサンジオール、ネオペンチルグリコール、 1、 8 オクタンジオール、 1、 9ーノナン ジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール 、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピ レングリコール等のジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレート のジ (メタ)アタリレート等が挙げられる。
[0096] また、ネオペンチルグリコール 1モルに 4モル以上のエチレンオキサイド若しくはプロ ピレンオキサイドを付カ卩して得たジオールのジ(メタ)アタリレート、ビスフエノール A1 モルに 2モルのエチレンオキサイド若しくはプロピレンオキサイドを付カ卩して得たジォ 一ルのジ(メタ)アタリレート、ビスフエノール A1モルに 4モル以上のエチレンォキサイ ド若しくはプロピレンオキサイドを付加して得たジオールのジ (メタ)アタリレート、ェチ レンオキサイド変性リン酸 (メタ)アタリレート、エチレンオキサイド変性アルキル化リン 酸 (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールプロ パン 1モルに 3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付カロし て得たトリオールのジまたはトリ(メタ)アタリレート、ペンタエリスルトールトリ(メタ)アタリ レート、ペンタエリスルトールテトラ(メタ)アタリレート、ペンタエリスルトール 1モルに 4 モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たテトラァ ルコールのトリ又はテトラ (メタ)アタリレート、ジペンタエリスリトールのポリ(メタ)アタリ レート(例えば、ジペンタエリスリトールペンタ (メタ)アタリレート又は、ジペンタエリスリ トールへキサ(メタ)アタリレート)、ジペンタエリスリトール 1モルに 6モル以上のェチレ ンオキサイド若しくはプロピレンオキサイドを付カ卩して得たへキサアルコールのペンタ 又はへキサ (メタ)アタリレート等を挙げることができる。
[0097] これらの中でも、高温での弾性率を大きくできる点力も好ましいのは、以下の材料で ある。すなわち、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールプロパン 1 モルに 3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付カ卩して得た トリオールのトリ(メタ)アタリレート、ペンタエリスルトールトリ(メタ)アタリレート、ペンタ エリスルトールテトラ(メタ)アタリレート、ペンタエリスルトール 1モルに 4モル以上のェ チレンオキサイド若しくはプロピレンオキサイドを付加して得たテトラアルコールのトリ 又はテトラ (メタ)アタリレート、ジペンタエリスリトールペンタ (メタ)アタリレート、ジペン タエリスリトールへキサ(メタ)アタリレート、ジペンタエリスリトール 1モルに 6モル以上 のエチレンオキサイド若しくはプロピレンオキサイドを付カ卩して得たへキサアルコール のペンタ又はへキサ (メタ)アタリレート、等の多官応 (メタ)アタリレート等を挙げること ができる。
[0098] 高温での弾性率を大きくする点から、さらに好ましいのは、トリメチロールプロパント リ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスルトール テトラ(メタ)アタリレート、ジペンタエリスルトールペンタ(メタ)アタリレート、ジペンタエ リスルトールへキサ (メタ)アタリレートである。
[0099] 次に、架橋構造に剛直な構造を有するアクリルモノマーとしては、剛直な環状構造 を有するアクリルモノマーを挙げることができる。
このようなアクリルモノマーの具体例としては、ノルボリナンジメタノールジァクリレー ト、ノルボルナンジエタノールジ(メタ)アタリレート、ノルボルナンジメタノールにェチレ ンォキサォイド又はプロピレンオキサイド 2モル付カ卩して得たジオールのジ (メタ)ァク リレート、トリシクロデカンジメタノールジ (メタ)アタリレート、トリシクロデカンジエタノー ルジ (メタ)アタリレート、トリシクロデカンジメタノールにエチレンオキサイド又はプロピ レンオキサイド 2モル付カ卩して得たジオールのジ (メタ)アタリレート、ペンタシクロペン タデカンジメタノールジ (メタ)アタリレート、ペンタシクロペンタデカンジエタノールジ( メタ)アタリレート、ペンタシクロペンタデカンジメタノールにエチレンオキサイド又はプ ロピレンオキサイド 2モル付カ卩して得たジオールのジ (メタ)アタリレート、ペンタシクロ ペンタデカンジエタノールにエチレンオキサイド又はプロピレンオキサイド 2モル付カロ して得たジオールのジ (メタ)アタリレート等を挙げることができる。
[0100] これらの中でも、高温での弾性率を高くできる観点から好ましいのは、トリシクロデカ ンジメタノールジ (メタ)アタリレート、トリシクロデカンジエタノールジ (メタ)アタリレート 、ペンタシクロペンタデカンジメタノールジ(メタ)アタリレートである。
[0101] このほか、ビス(2—アタリロイルォキシェチル)ヒドロキシェチルイソシァヌレート、ビ
シェチノレ)ヒドロキシェチルイソシァヌレート、ビス(2—メタクリロイルォキシプロピル)ヒ ドロキシプロピルイソシァヌレート、ビス(2—メタクリロイルォキシブチル)ヒドロキシブ チルイソシァヌレート、トリス(2—アタリロイルォキシェチル)イソシァヌレート、トリス(2 —アタリロイルォキシプロピル)イソシァヌレート、トリス(2—アタリロイルォキシブチル) イソシァヌレート、トリス(2—メタクリロイルォキシェチル)イソシァヌレート、トリス(2—メ タクリロイルォキシプロピル)イソシァヌレート、トリス(2—メタクリロイルォキシブチル) イソシァヌレート等を挙げることもできる。
[0102] 高温での弾性率を高くできる観点力も特に好ましいのは、トリシクロデカンジメタノー ルジ (メタ)アタリレート、トリシクロデカンジエタノールジ (メタ)アタリレートである。
[0103] 架橋密度が高くなるようなアクリルモノマーと架橋構造に剛直な構造を有するアタリ ルモノマーとを組み合わせて用いる場合には、以下のようにすればよい。すなわち、 上記説明した架橋密度が高くなるようなアクリルモノマーの具体的な化合物を 1以上 選択する。さらに、上記説明した架橋構造に剛直な構造を有するアクリルモノマーの 具体的な化合物を 1以上選択する。そして、これら化合物を、所望の弾性率にあわせ て任意の割合で組み合わせて用いればょ 、。
[0104] (収縮率の比較的高!ヽ紫外線硬化性榭脂を得る方法)
紫外線硬化性榭脂の場合、収縮率とは硬化収縮率のことをいう。硬化収縮率は、 硬化前の密度に対する硬化時の密度変化の割合である。このため、収縮率を大きく するためには、硬化時の密度変化が大きくなるようにすればよい。具体的には、アタリ ルモノマーを用いて紫外線硬化性樹脂を形成する場合には、アタリロイル基の密度 が高くなるようにすればよい。換言すれば、架橋密度が高くなるようなアクリルモノマ 一を用いればよい。
[0105] 架橋密度が高くなるようなアクリルモノマーとしては、アタリロイル基 1個あたりの分子 量が小さ!/、多官能アクリルモノマー(多官能 (メタ)アタリレート)を挙げることができる。 このような多官能アクリルモノマー(多官能 (メタ)アタリレート)の具体例としては、上記
「高温 (例えば 150°C)での弾性率の高 、榭脂を得る方法」で説明した多官能 (メタ) アタリレートと同様のものを用いればよ 、。
[0106] 高温 (例えば 150°C)での弾性率を高くして、かつ、収縮率を比較的大きくするよう な榭脂を得る場合には、例えば、上記「高温 (例えば 150°C)での弾性率の高 ヽ榭脂 を得る方法」で説明したように、架橋構造に剛直な構造を有するアクリルモノマーを併 用すればよい。架橋構造に剛直な構造を有するアクリルモノマーの含有量は、所望 される弾性率及び収縮率を得られるような含有量とすればよい。
[0107] (常温 (例えば 30°C)における弾性率が小さい榭脂を得る方法)
紫外線硬化性榭脂 (より具体的には、ラジカル系紫外線硬化性榭脂)を用いて榭脂 層を形成する場合における具体的な手法を以下に説明する。
紫外線硬化性榭脂の 30°Cにおける弾性率を小さくするためには、硬化時の密度変 ィ匕が小さくなるようにすればよい。具体的には、アクリルモノマーを用いて紫外線硬化 性榭脂を形成する場合には、アタリロイル基 1個あたりの分子量が大きぐ柔軟な構 造を有するアクリルオリゴマーと単官能アクリルモノマーを組み合わせる方法を挙げる ことができる。柔軟な構造を有するアクリルオリゴマー及び単官能アクリルモノマーの 含有比率は、所望の弾性率を得るために、適宜制御すればよい。
[0108] 柔軟な構造を有するアクリルオリゴマーの具体例としては、ポリエーテル或いはポリ エステルジオールから成るウレタン (メタ)アタリレート、ポリアルキレングリコールジァク リレート等のアクリルオリゴマー等を挙げることができる。
[0109] 単官能アクリルモノマーの具体例としては、ェチル (メタ)アタリレート、ブチル (メタ) アタリレート、 2—ェチルへキシル (メタ)アタリレート、ノ-ル (メタ)アタリレート、トリデシ ル (メタ)アタリレート、へキサデシル (メタ)アタリレート、ォクタデシル (メタ)アタリレート 、イソアミル (メタ)アタリレート、イソデシル (メタ)アタリレート、イソステアリル (メタ)ァク リレート、 2—ヒドロキシェチル(メタ)アタリレート、 3—クロ口一 2—ヒドロキシプロピル( メタ)アタリレート、メトキシェチル (メタ)アタリレート、ブトキシェチル (メタ)アタリレート 、ノユルフェノキシェチル (メタ)アタリレート、 2—ヒドロキシ一 3—フエノキシプロピル( メタ)アタリレート等を挙げることができる。
[0110] (収縮率が小さい榭脂を得る方法)
紫外線硬化性榭脂の場合、収縮率とは硬化収縮率のことをいう。硬化収縮率は、 硬化前の密度に対する硬化時の密度変化の割合である。このため、収縮率を小さく するためには、硬化時の密度変化が小さくなるようにすればよい。具体的には、アタリ ルモノマーを用いて紫外線硬化性榭脂を形成する場合には、アタリロイル基 1個あた りの分子量が大きぐ分子中のアタリロイル基が少ないアクリルオリゴマー及びアタリ ルモノマーを組み合わせればよ 、。アクリルオリゴマー及びアクリルモノマーの含有 比率は、所望の弾性率を得るために、適宜制御すればよい。
[0111] アクリルオリゴマーの具体例としては、上記「常温 (例えば 30°C)における弾性率が 小さい榭脂を得る方法」で説明したものと同様のものを用いることができる。アクリルモ ノマーの具体例としては、上記「常温 (例えば 30°C)における弾性率が小さい榭脂を 得る方法」で説明した単官能アクリルモノマーと同様のものを用いることができる。
[0112] [3.紫外線硬化性榭脂の膜 5の半硬化]
図 1 (b) (b- 1)に示すように、スタンパ 4の表面に設けられた紫外線硬化性榭脂の 膜 5に紫外線 UVを照射し、紫外線硬化性榭脂の膜 5を半硬化させる。
紫外線硬化性榭脂の膜 5を半硬化させるための具体的な方法としては、 (a)紫外線照射量を少なくする。
(b)酸素が存在する雰囲気下で紫外線 UVの照射を行う。
(c) (a)と (b)とを組み合わせて用いる。
を挙げることができる。用いる紫外線硬化性榭脂の種類の性質に応じて、上記 (a)〜 (c)の手法を適宜用いればよい。図 1 (b) (b— 1)は、上記 (c)の例である。
つまり、大気雰囲気下で紫外線照射量を低減させて、紫外線硬化性榭脂の膜 5を硬 化させている。
[0113] 以下、それぞれの方法について具体的に説明する。
紫外線照射量を少なくする場合、光量自体を弱くする場合及び照射時間を弱くす る場合の何れか一方又は両方を用いることが考えられる。
紫外線 UVの光量としては、通常 50mWZcm2以下、好ましくは 40mWZcm2以下 、より好ましくは 30mWZcm2以下、とする。
一方、紫外線硬化性榭脂の膜 5の半硬化をより確実に行うために、紫外線 UVの光 量としては、通常 lmWZcm2以上、好ましくは 5mWZcm2以上、より好ましくは 7m WZcm2以上、とする。
上記数値範囲内とすれば、剥離性のマージンが大きくなり工業生産が行いやすく なる利点が発揮される。
[0114] 紫外線 UVの照射時間は、紫外線硬化性榭脂の膜 5の硬化を適当なレベルで留め るために、通常 10秒以下、好ましくは 5秒以下、より好ましくは 3秒以下とする。
一方、半硬化を確実に行う観点から、紫外線 UVの照射時間は、通常 0. 1秒以上、 好ましくは 0. 5秒以上、より好ましくは 1秒以上とする。
上記数値範囲内とすれば、剥離性のマージンが大きくなり工業生産が行いやすく なる利点が発揮される。酸素を低減した雰囲気 (例えば、窒素雰囲気)の下で紫外線 UVを照射する場合には、照射時間を短くすることが好ましい。この場合、照射時間 は、通常 0. 1秒以上、好ましくは 0. 2秒以上とする。一方、照射時間は、好ましくは 3 秒以下とする。
[0115] 紫外線硬化性榭脂は、酸素が存在する雰囲気中では硬化が進みにくくなる性質を 有する材料が多い。特に、ラジカル重合型の紫外線硬化性榭脂を用いる場合、空気 中の酸素がラジカルと反応して硬化を阻害する傾向となる。このため、酸素が存在す る雰囲気下で紫外線 UVの照射を行うことも、紫外線硬化性榭脂の膜 5を半硬化させ るために有効な手段の一つである。
[0116] 酸素が存在する雰囲気下で紫外線 UVの照射を行う場合の酸素濃度は、 O ZN
2 2 比で、通常 0. 1以上、好ましくは 0. 2以上、より好ましくは 0. 25 (およそ大気中の酸 素濃度)以上とする。この範囲にすれば、酸素による重合阻害の制御を良好に行うこ とが可能となる。
一方、酸素濃度の上限は、大気全体が酸素(100%酸素)である。
[0117] 尚、図 1 (b) (b— 1)では、紫外線硬化性榭脂の膜 5の側から紫外線 UVを照射して いるが、スタンパ 4の側力も紫外線 UVを照射してもよいことはいうまでもない。ただ、 スタンパ 4の側カゝら紫外線 UVを照射する場合には、スタンパ 4中に紫外線照射を妨 げるような欠陥の存在を極力低減することが好ましい。
[0118] [4.酸素濃度を低減させた雰囲気下での紫外線照射による硬化]
本実施形態においては、図 1 (b) (b- 2)に示すように、紫外線硬化性榭脂の膜 5を 半硬化させた後、酸素濃度を低減させた雰囲気下で紫外線 UVを照射して紫外線硬 化性榭脂の膜 5をさらに硬化させて転写層 6を得る。同図には、酸素濃度を低減させ た雰囲気の一例として窒素雰囲気下で紫外線 UVを照射して紫外線硬化性榭脂の 膜 5をさらに硬化させて転写層 6を得る工程が示されている。
[0119] この工程での硬化は、紫外線硬化性榭脂の膜 5の表面(図 1 (b) (b- 2)における紫 外線照射側の表面)のタック性 (粘着性)がなくなるまで行う。尚、タック性 (tack fun ction)がないとは、具体的には、上記表面を指で触ってもベとつかない程度の表面 性を紫外線硬化性榭脂の膜 5が有することを 、う。
[0120] この工程における紫外線硬化性榭脂の膜 5の硬化による転写層 6の形成により、以 下の利点も発揮される。つまり、後述する下中間層 3と転写層 6とを接着する際に、転 写層 6の表面にタック性がない状態になっているので、転写層 6中への気泡の巻き込 みを抑制しやすくなる。この結果、転写層 6中への気泡の巻き込みを抑制することを 目的として、下中間層 3と転写層 6との接着を真空中で行う必要がなくなる。換言すれ ば、下中間層 3と転写層 6との接着を大気中で行いやすくなる。 [0121] 本実施形態においては、窒素雰囲気下で行っている。しかし、窒素パージのように 酸素を遮断させずに所定濃度の酸素を含有する雰囲気であっても、例えば、紫外線 UVの照射量を増加させる (照射光量を上げる、照射時間を長くする)ことによって、 転写層 6の形成は可能である。
具体的には、酸素濃度を通常 5%以下、好ましくは 1%以下、より好ましくは 0. 1% 以下、とすることによつても紫外線硬化性榭脂の膜 5の硬化を良好に行える傾向にあ る。
一方、酸素濃度は少なければ少ないほど好ましいが、工業的に考えて、下限値は 1 OOppm程度となる。
[0122] 尚、窒素雰囲気下で硬化を行うことにより、同じ表面性を有する転写層 6を得るため に要する照射紫外線の光量を抑えることができる。このため、例えば上記半硬化に使 用したものと同じ能力の紫外線ランプを光量調節するのみで、硬化を行いやすくなる 。窒素パージを行わない場合には、所定の表面性を有する転写層 6を得るために、 非常に強 ヽ UV光を要する場合 (能力の高!ヽ紫外線ランプを要する場合)もあり得る
[0123] 紫外線照射量は、所定の表面を有する転写層 6を得るために、適宜制御される。具 体的には、紫外線 UVの光量としては、通常 200mWZcm2以下、好ましくは 150m WZcm2以下、より好ましくは lOOmWZcm2以下、とする。上記数値範囲内とすれ ば、極性の高いスタンパ 4 (例えば、ポリカーボネート榭脂製のスタンパ)を用いた場 合でも、転写層 6とスタンパ 4との剥離性を損なわずに、転写層 6を硬化させやすくな る。
[0124] 一方、所定の表面を有する転写層 6を得るために、紫外線 UVの光量としては、通 常 30mWZcm2以上、好ましくは 50mWZcm2以上、より好ましくは 70mWZcm2以 上、とする。上記数値範囲内とすれば、紫外線硬化性榭脂の膜 5の表面の硬化が十 分に進み、所定の表面を有する転写層 6を形成しやすくなる。
[0125] 紫外線 UVの照射時間は、所定の表面を有する転写層 6を得るために、適宜制御さ れる。具体的には、照射時間は、通常 20秒以下、好ましくは 15秒以下、より好ましく は 10秒以下、さらに好ましくは 5秒以下、特に好ましくは 3秒以下、最も好ましくは 2秒 以下、とする。
一方、所定の表面を有する転写層 6を得るために、紫外線 UVの照射時間は、通常 0. 2秒以上、好ましくは 0. 5秒以上、より好ましくは 0. 7秒以上とする。
[0126] [5.転写層の膜厚]
以上の工程を経て、転写層 6がスタンパ 4上に形成される。転写層 6の膜厚は、転 写された凹凸形状の硬度、及び転写層 6とスタンパ 4との剥離性を確保する観点から 、通常 0 μ mより大きく、好ましくは 1 μ m以上、より好ましくは 3 μ m以上とする。
一方、転写層 6の膜厚は、通常 20 m以下、好ましくは 15 m以下、より好ましくは 10 m以下、さらに好ましくは 5 m以下とする。転写層 6の膜厚を上記範囲内とす れば、転写された凹凸形状の硬度、及び転写層 6とスタンパ 4の剥離性を確保しやす ぐかつディスクの反りを抑制しやすくなるという利点が発揮される。
[0127] 特に、転写層 6の膜厚を 10 μ m以下とすれば、以下の利点が発揮されやすくなる。
第一に、スピンコートによって紫外線硬化性榭脂を延伸しながら紫外線 UVを照射す る等の操作を省略しても、転写層 6の膜厚分布を良好にしゃすくなる利点がある。 第二に、転写層 6の膜厚が薄くなるために、紫外線硬化性榭脂の膜 5の半硬化の 状態を得やすくなる利点もある。
第三に、転写性や剥離性を考慮して固 ヽ紫外線硬化性榭脂又は収縮率の大き ヽ 紫外線硬化性榭脂を転写層 6に用いる場合がある力 この場合において転写層 6の 膜厚を薄くできれば、光記録媒体全体の反りを低減しやすくなる。
[0128] (3)転写層積層スタンパ 200と第 1記録媒体 100との接合 (adhesion)工程
次に、図 2 (c)に示すように、転写層積層スタンパ 200を、転写層 6と下中間層 3とが 向き合うようにして下中間層 3上に載置し (c 1)、その後、下中間層 3と転写層 6とを 接着する (c 2)。
[0129] 先ず、図 2 (c) (C 1)に示すように、転写層積層スタンパ 200を、転写層 6と下中間 層 3とが向き合うようにして下中間層 3上に載置する。この結果、転写層 6と記録再生 機能層 2との間に下中間層 3が存在することとなる。
このとき、載置の方法は特に制限されない。また、転写層積層スタンパ 200の載置 は、大気中又は真空中のいずれで行ってもよい。ただ、本実施の形態においては、 接合工程が減圧雰囲気下で行われることが好ましい。より具体的には、上記載置の 操作が減圧雰囲気下で行われることが好ましい。減圧雰囲気下としては、具体的に は真空状態を挙げることができる。
[0130] 減圧雰囲気下で載置を行うことが好ましい理由は以下の通りである。つまり、転写 層 6及び下中間層 3それぞれの表面は、完全には平坦ではなぐ微視的には凹凸を 有する。このため、載置を大気中で行うと、転写層 6及び下中間層 3の界面に空気が 取り込まれることがある。このような空気の巻き込みは、泡となって中間層 7中に存在 することになる。しかし、上記泡は光学的になるベく低減することが好ましい。このため 、上記空気の取り込み (換言すれば、泡の発生)を抑制するために、減圧雰囲気中で 載置を行うことが好まし 、のである。
[0131] ここで、減圧雰囲気の具体的な圧力としては、通常 lOOPa以下、好ましくは 70Pa 以下、より好ましくは 50Pa以下、を挙げることができる。
一方、減圧雰囲気は、通常 lOPa以上、好ましくは 15Pa以上、より好ましくは 20Pa 以上を挙げることができる。上記範囲内とすれば、榭脂中の揮発成分を確実に保持 したまま接合をしやすくなる。
[0132] 次に、図 2 (c) (c- 2)に示すように、下中間層 3と転写層 6とを接着させる。接着は、 以下のような手法によって実現できる。例えば、下中間層 3の表面又は転写層 6の表 面に接着剤を塗布する、又は、下中間層 3の表面又は転写層 6の表面に感圧性の接 着シートを貼付する。また、例えば、下中間層 3及び転写層 6ともに紫外線硬化性榭 脂で形成し、転写層積層スタンパ 200の載置の後、紫外線 UVを照射して下中間層 3と転写層 6とを接着する。
[0133] 工業的には、下中間層 3及び転写層 6ともに紫外線硬化性榭脂で形成し、転写層 積層スタンパ 200の載置の後、紫外線 UVを照射して下中間層 3と転写層 6とを接着 する手法が好ましい。尚、この手法を用いる場合には、下中間層 3の紫外線硬化性 榭脂を未硬化又は半硬化の状態としておくことが好まし 、。本実施の形態にぉ 、て は、下中間層 3と転写層 6との接着を行う時点にお 、て転写層 6の接着面のタック性( 指で触ったときのベたつき)が無くなっているので、下中間層 3の接着面に粘着性を 持たせることにより、接着が良好に行いやすくなるからである。また、紫外線照射の方 向は特に制限されないが、スタンパ 4側から照射を行う場合には、スタンパ 4を紫外線 UVに対して光透過性に形成することが好ま 、。
[0134] (4)スタンパ 4を転写層 6から剥離する工程
下中間層 3と転写層 6とを接着した後、スタンパ 4を転写層 6から剥離する(図 2 (d) 参照)。剥離の方法も特に制限はない。通常は、ナイフエッジを基板 1の内径又は外 径側からスタンパ 4と転写層 6との間に挿入し、切り込みを入れた後、エアーを吹き込 んでスタンパ 4を転写層 6から剥離する(図 2 (d)には不図示)。
[0135] より具体的には、光記録媒体が円盤形状の場合には、内周を真空吸着して、光記 録媒体の内周にナイフエッジを入れ、そこにエアーを吹き込みながら転写層 6とスタ ンノ 4とを引き離すという方法で剥離を行なう。スタンパ 4を剥離することにより、第 1記 録媒体 100上に、下中間層 3及び転写層 6を有する中間層 7が形成されることとなる
[0136] B.第 2の製造方法
第 2の製造方法では、接合工程において下中間層を形成する。下中間層の形成が 上記第 1の製造方法と異なる以外の操作は第 1の製造方法と同様にすればよいので 、異なる部分についてのみ以下説明する。具体的には、第 2の製造方法では、第 1記 録媒体製造工程において下中間層の形成は行わず、接合工程を行う際に下中間層 の形成を行う。
図 3は、第 2の製造方法における接合工程の一実施形態を説明するための模式的 断面図である。図 3は、第 1の製造方法を説明するために用いた図 2 (c)に対応する 図である。尚、図 3において、図 1または図 2と共通の構成要素については同一の符 号を用いて表わしている。また、通常、光記録媒体は円盤形状を有し、中心にセンタ 一ホールが形成されているが、図 3ではセンターホールの記載を省略している。
[0137] 各図面の概略を説明する。
図 3 (a)は、硬化性榭脂 80を記録再生機能層 2上に塗布した状態を示している。さ らに、硬化性榭脂 80上に載置するために、転写層積層スタンパ 200が上方に配置し た様子を示している。
図 3 (b)は、硬化性榭脂 80と転写層 6とを向かい合うようにして硬化性榭脂 80上に 転写層積層スタンパ 200を載置した後、硬化性榭脂 80の延伸を開始した様子を示し ている。
図 3 (c)は、硬化性榭脂 80が第 1記録媒体 100及び転写層積層スタンパ 200の両 端部まで延伸された状態を示して!/ヽる。
図 3 (d)は、紫外線 UVを照射して下中間層 3ひいては中間層 7を形成する様子を 示している。
[0138] 以下、図 3を参照しながら、本実施の形態における接合工程について説明する。
先ず、図 3 (a)に示すように、硬化性榭脂 80が第 1記録媒体 100 (記録再生機能層
2)上に塗布される。硬化性榭脂 80の材料としては、第 1の製造方法において下中間 層 3に硬化性榭脂を用いる場合と同様のものを用いることができる。
具体的には、硬化性榭脂 80として、本実施の形態においては紫外線硬化性榭脂 を用いて 、るが、熱硬化性榭脂等の他の硬化性榭脂を用いてもょ 、ことは 、うまでも ない。
但し、下中間層 3の膜厚制御、工業生産等を考慮すると、硬化性榭脂 80が紫外線 硬化性榭脂であることが好まし ヽ。硬化性榭脂 80の塗布方法も従来公知の方法を 用!/、ることができる。
ここで、本実施の形態においては、記録再生機能層 2の上に硬化性榭脂 80を直接 塗布して!/、るが、必要に応じて記録再生機能層 2上に他の層を形成してから硬化性 榭脂 80の塗布を行っても良 、ことは 、うまでもな 、。
尚、図 3 (a)では図示を省略しているが、基板 1が円盤形状を有し、中心にセンター ホールが形成されている場合に下中間層 3を形成する場合においては、硬化性榭脂 80の塗布を通常、以下のようにして行うことが好ましい。つまり、センターホールの外 径よりも大きい所定の半径位置において、硬化性榭脂 80をリング状に滴下(dispenc e)することにより塗布を行う。
[0139] 尚、図 3 (a)に示すように、第 1記録媒体 100は、基板 1及び記録再生機能層 2から 構成される。そして、基板 1の表面には凹凸が設けられており、基板 1上に記録再生 機能層 2が形成されている。一方で、転写層積層スタンパ 200は、スタンパ 4及び転 写層 6から構成されている。スタンパ 4の表面には、中間層 7の凹凸形状に対応した 転写用凹凸形状が形成されている。そして、転写用凹凸形状が形成された表面上に 転写層 6が形成されている。第 1記録媒体 100や転写層積層スタンパ 200等につい ては、第 1の製造方法と同様であるので、ここでの説明は省略する。
[0140] 次に、図 3 (b)に示すように、硬化性榭脂 80と転写層 6とを向かい合うようにして硬 化性榭脂 80上に転写層積層スタンパ 200を載置する。この際、硬化性榭脂 80と転 写層 6とができるだけ空気を介したり、気泡を巻き込んだりせずに接するよう、静かに 載置を行うことが好ましい。又は、以下の方法を行ってもよい。つまり、あら力じめ記録 再生機能層 2の表面と転写層 6との表面とを、ほぼ平行に近接して対置する。そして 、それぞれの表面の間の空隙に硬化性榭脂 80を滴下 (dispence)する。そして、滴 下直後に硬化性榭脂 80が上記それぞれの表面に接するようにする。
次に、硬化性榭脂 80の延伸を開始する。本実施の形態においては、転写層積層 スタンパ 200の重さにより、硬化性榭脂 80を第 1記録媒体 100及び転写層積層スタ ンパ 200の端部まで押し出すように延伸している。このような延伸により、硬化性榭脂 80が形成する膜の膜厚を所望の範囲に制御しやすくなる。無論、硬化性榭脂 80の 延伸はスピンコート法等により行ってもよい。
[0141] そして、図 3 (c)に示すように、硬化性榭脂 80が第 1記録媒体 100及び転写層積層 スタンパ 200の両端に到達したところで、第 1記録媒体 100及び転写層積層スタンパ 200を高速回転して、余分な硬化性榭脂 80を外部へ振り切る。これにより、硬化性榭 脂 80が形成する膜の膜厚がさらに精密に制御されやすくなる。このようにして、硬化 性榭脂 80より下中間層 3が形成される。
[0142] 次に、図 3 (d)に示すように、スタンパ 4側力も紫外線 UVを照射して硬化性榭脂 80
(紫外線硬化性榭脂)を硬化させる。この結果、転写層 6と第 1記録媒体 100 (記録再 生機能層 2)との間に下中間層 3を存在させた状態で、転写層積層スタンパ 200と第 1記録媒体 100との接合が行われることとなる。
[0143] 第 2の製造方法の利点の一つは、接合工程を大気中で行うことができる点にある。
具体的には、図 3に示した各操作 (少なくとも図 3 (a)力も図 3 (c)の操作)は、大気中 で行うことができる。この結果、製造装置の構成を簡略化できる利点が発揮される。
[0144] 大気中で接合工程を行える理由は以下の通りである。つまり、転写層積層スタンパ 200を硬化性榭脂 80上に載置した後に硬化性榭脂 80を延伸する際に、スタンパ 4と 記録再生機能層 2との間に存在する空気を硬化性榭脂 80が、第 1記録媒体 100及 び転写層積層スタンパ 200の外側へと追い出すようになる。この結果、空気がスタン ノ 4と硬化性榭脂 80 (ひいては下中間層 3)との間に取り込まれに《なり、スタンパ 4 及び下中間層 3の界面での泡の発生が抑制されるようになる。この結果、接合工程を 真空中で行なわなくてもよくなるのである。
[0145] 以上のようにして、中間層 7を形成し、スタンパ 4の剥離工程を行う。この点について は、第 1の製造方法(図 2 (d)参照)と同様にすればよい。剥離工程については、すで に説明したので、ここでの説明は省略する。
[0146] C.その後の工程
本実施の形態においては、上記のようにして凹凸形状を表面に有し、下中間層 3及 び転写層 6を有する中間層 7を備えた光記録媒体を製造する。以下では、それ以後 の工程について説明する。
(1)上部記録再生機能層等の形成
図 4は、本発明の実施形態が適用される光記録媒体 1000の好ましい一例を説明 するための模式断面図である。具体的には、図 4には、図 1、図 2、図 3によって得ら れる中間層 7に上部記録再生機能層 8、接着層 9、及びカバー層 10をこの順に積層 することによって、光記録媒体 1000が得られることを示すための模式断面図である。 尚、図 1、図 2、図 3と共通の構成要素については同一の符号を用いて表している。
[0147] 図 4に示すように、溝やピットの形状が形成された転写層 6 (中間層 7)の上に、上部 記録再生機能層 8を形成する。上部記録再生機能層 8の基本的な層構成は、記録 再生機能層 2とほぼ同様である。但し、上部記録再生機能層 8は記録再生用のレー ザ光 Lを透過することが好ましい。このため、上部記録再生機能層 8を構成する各層 の膜厚は適宜調整される。
[0148] (2)カバー層等の形成
必要な層数の記録再生機能層を設けた後(図 4では、上部記録再生機能層 8を設 けた後)、図 4に示すように、最上層の記録再生機能層(図 4では、上部記録再生機 能層 8)の上面に、接着層 9を介してカバー層 10を設ける。接着層 9及びカバー層 10 の材料や形成手順は特に制限されない。
[0149] 接着層 9としては、通常、接着剤、感圧性接着シート、紫外線硬化性榭脂等が用い られる。また、カバー層 10としては、通常、ポリカーボネート榭脂ゃシクロォレフインポ リマー等低吸湿性の榭脂から形成されるプラスチックシート等が用いられる。好適に は、ディスクの反り等の特性を確保する目的で、ディスク基板と同一の材料すなわち ポリカーボネート等が用いられる。当然、接着層 9とカバー層 10とを、紫外線硬化性 榭脂等で一体に形成してもよい。その際用いられる紫外線硬化性榭脂は、通常 100 OMPa' s以上の高粘度のものであり、それによつて厚さ 50 μ m〜200 μ mの膜をス ピンコート法で形成することができる。
接着層 9は、通常、スピンコート法等の手法又は直接貼り付けることによって形成さ れる。
[0150] 接着層 9の厚さは、特に制限されないが、通常 3 m以上、 30 m以下、とされる。
この範囲にすることにより、均一な厚さの粘着材料を製造しやすいという利点が発揮 されやすくなる。
一方、カバー層 10の厚さは、通常 50 μ m以上、 200 μ m以下とされる。この範囲に することにより、ピックアップレンズの高 NAィ匕に対応できる均一な膜厚のカバー層 10 が形成しやすくなる。 DVD— R等では、カバー層等を形成する代わりに、約 0. 6mm の基板を、接着層を介して貼り合せる。
[0151] 1- 2.基板のみを第 1記録媒体として用いる場合
本実施の形態は、第 1記録媒体として基板のみを用いる。この結果、凹凸形状を表 面に有し、下中間層及び転写層を有する中間層は基板上に設けられる。本実施の 形態は、用いる第 1記録媒体の形態が異なること以外は、上で説明した、 1層の記録 再生機能層を有する第 1記録媒体を用いて光記録媒体を製造する実施の形態と同 様にして実施される。用いる第 1記録媒体の形態の違いによって、具体的には、以下 の相違点が存在することになる。一点目は、本実施の形態においては、凹凸形状を 表面に有し、下中間層及び転写層を有する中間層が、記録再生機能層を介さずに 基板上に直接形成されることになる。このため、予め基板上に凹凸形状を設けなくて もよい。二点目は、本実施の形態においては、基板上に最初に設けられる記録再生 機能層が上部記録再生機能層となる。
[0152] このように、用いる第 1記録媒体の形態が異なる以外は、上で説明した 1層の記録 再生機能層を有する第 1記録媒体と同様して、凹凸形状を表面に有し、下中間層及 び転写層を有する中間層を備えた光記録媒体を製造すればよい。必要な説明は既 に行ったので、ここでの説明は省略する。
[0153] 1- 3.複数の記録再生機能層を有する第 1記録媒体を用いる場合
本実施の形態は、用いる第 1記録媒体の形態が異なること以外は、上で説明した、 1層の記録再生機能層を有する第 1記録媒体を用いて光記録媒体を製造する実施 の形態と同様にして実施される。用いる第 1記録媒体の形態の違いによって、具体的 には、以下の相違点が存在することになる。一点目は、第 1記録媒体製造工程にお いて、基板上に複数の記録再生機能層を形成することにより第 1記録媒体が製造さ れることである。二点目は、本実施の形態においては、接合工程において、転写層と 、基板から最も遠くに位置する記録再生機能層との間に下中間層を存在させた状態 で、転写層積層スタンパと前記第 1記録媒体とを接合することである。
[0154] このように、用いる第 1記録媒体の形態が異なる以外は、上で説明した 1層の記録 再生機能層を有する第 1記録媒体と同様して、凹凸形状を表面に有し、下中間層及 び転写層を有する中間層を備えた光記録媒体を製造すればよい。そこで、以下では 、相違点である第 1記録媒体について説明する。
[0155] 本実施の形態に用いる第 1記録媒体は、通常、以下のようにして製造される。
(a)基板上に記録再生機能層を形成する。
(b)上記記録再生機能層上に中間層を形成する。
(c)上記中間層上に第 2記録再生機能層を形成する。
(d)第 2記録再生機能層上に、第 2の中間層を形成する。
(e)必要とされる記録再生機能層の層数によって上記 (c)、 (d)の工程を繰り返す。 積層する記録再生機能層の数は、特に制限はない。但し、現実的には、記録再生 機能層の積層数は 10層が上限となる。一方、記録再生機能層の積層数は、通常 2 層以上、好ましくは 3層以上、より好ましくは 5層以上とする。工業生産や記録特性等 の種々の要素を考慮すると、記録再生機能層の積層数を 2層とすることが最も好まし い。
[0156] 尚、上記第 2記録再生機能層以降の記録再生機能層の層構成'材料としては、記 録再生機能層(図 1、図 2における記録再生機能層 2)と同様の層構成 ·材料を用い ればよい。また、第 2の中間層以降の中間層を形成する場合における、下中間層及 び転写層の材料や作製手順、スタンパの構造、紫外線照射による硬化の手順などの 詳細も、上に説明したものと同様とすればよい。
[0157] 1-4.その他
以上、本発明について複数の実施の形態を挙げて説明した力 本発明は上述の 実施の形態に制限されるものではなぐ本発明の趣旨を逸脱しない範囲において、 適宜変更を加えて実施することが可能である。
[0158] 例えば、光記録媒体の層構成は、上記の実施形態の構成に制限されない。本発明 の趣旨を逸脱しない範囲において、積層の順序が異なっていてもよぐ別の層が追 加されて!、てもよく、二以上の層が一体に設けられて 、てもよ!/、。
[0159] II.製造装置
本発明によって、凹凸形状を表面に有し、下中間層及び転写層を有する中間層を 備えた光記録媒体を製造するための製造装置も提供される。具体的には、転写層積 層スタンパを製造するために、製造装置に以下の機能が付加される。
つまり、中間層の凹凸形状に対応した転写用凹凸形状を表面に有するスタンパの 該表面上に紫外線硬化性榭脂の膜を設け、紫外線硬化性榭脂の膜に紫外線を照 射して該紫外線硬化性榭脂の膜を半硬化させる第一硬化手段が付加される。さらに 、酸素濃度を低減させた雰囲気下で紫外線を照射して上記紫外線硬化性榭脂の膜 をさらに硬化させることによって転写層を形成する第二硬化手段が付加される。 上記第一硬化手段及び第二硬化手段における具体的な操作については、上記製 造方法において説明した通りであるので、ここでの説明は省略する。また、上記第一 硬化手段及び第二硬化手段を実現するための具体的な装置構成は、従来公知の製 造装置を適宜改良して用いればょ 、。
実施例
[0160] 以下、実施例に基づき本発明をさらに具体的に説明する。尚、本発明は、その要 旨を逸脱しない限り、以下の実施例に限定されるものではな ヽ。
(実施例 1)
(第 1記録媒体製造工程)
溝深さ約 20nm、ピッチ約 0. 32 mの溝を転写した厚さ 1. 1mmのポリカーボネー ト製基板を用意した。上記基板の溝形状が形成された表面に書き換え可能型の記録 再生機能層(書き換え可能型の媒体の例 1、膜面入射構成)をスパッタリングにて形 成した。このようにして、第 1記録媒体を製造した。
[0161] (転写層積層スタンパ製造工程)
溝深さ約 20nm、ピッチ約 0. 32 mの溝を転写した厚さ 0. 6mm、外径 120mmの ポリカーボネート製の透明スタンパを射出成型により作製した。このスタンパの溝形状 が形成された表面の上にラジカル系紫外線硬化性榭脂 (ラジカル重合型の紫外線 硬化性榭脂) A (アクリル系榭脂、粘度約 300MPa' s)をスピンコート法により塗布し た。そして、上記ラジカル系紫外線硬化性榭脂 Aを厚さ約 4 mの薄膜状とした後、 高速の振り切り回転を停止した。このようにして、紫外線硬化性榭脂の膜をスタンパ 上に形成した。
[0162] その後、大気雰囲気下で、 22mWZcm2のほぼ一様な強度分布を持つ UV光 (光 源:ハリソン東芝製トスキユア 751)を、上記紫外線硬化性榭脂の膜の全面に 3秒間 照射した。照射後、紫外線硬化性榭脂の膜の表面を触るとべとつく状態であった。次 に、窒素雰囲気下で、 80mWZcm2のほぼ一様な強度分布を持つ光源による UV光 を、上記紫外線硬化性榭脂の膜の全面に 1秒間照射した。このようにして転写層を得 た。転写層の表面状態は、鋭利な金属で擦っても傷が付き難い状態であった。 以上のようにして転写層積層スタンパを製造した。
[0163] (接合工程)
第 1記録媒体の記録再生機能層上の表面に、ラジカル系紫外線硬化性榭脂 (ラジ カル重合型の紫外線硬化性榭脂) B (アクリル系榭脂、粘度約 500MPa' s)を、半径 約 35mmの位置に一周リング状に塗布した。そして、ラジカル系紫外線硬化性榭脂 Bと転写層とを向かい合うようにして、ラジカル系紫外線硬化性榭脂 B上に、上記転 写層積層スタンパを載置した。ラジカル系紫外線硬化性榭脂 Bが第 1記録媒体およ び転写層積層スタンパの端部まで延伸されたところで、第 1記録媒体を 5000rpmで 回転させて、余分なラジカル系紫外線硬化性榭脂 Bを第 1記録媒体および転写層積 層スタンパの外部へ振り切った。その後、スタンパ側から同光源による 80mWZcm2 のほぼ一様な強度分布を持つ UV光を全面に 6秒間照射して下中間層を硬化させた
[0164] (剥離工程)
その後、透明スタンパを転写層から剥離させると、透明スタンパと転写層との界面で 、全面にわたりムラ無く良好な状態で剥離を行うことができた。
[0165] (上部記録再生機能層の形成)
さらに転写層上にスパッタリングにより書き換え可能型の上部記録再生機能層(書 き換え可能型の媒体の例 1、膜面入射構成)を形成し、さらにカバー層を榭脂スピン コート法により 75 m厚さとなるように形成して、 2層の書き換え型ブルーレイディスク を作製した。
[0166] (評価)
上記製造方法で作製した 2層の書き換え型ブルーレイディスクにおける転写層への 溝の転写性を、溝信号で評価した。その結果良好な溝信号が得られ、全面にわたり 良好に転写されて 、ることが分力つた。
[0167] (比較例 1)
実施例 1の「転写層積層スタンパ製造工程」において、最初の大気下での 22mW Zcm2の UV照射のみを省略したこと(半硬化の操作を行わな力つたこと)、及び「上 部記録再生機能層の形成」以降の工程を行わな力 たこと以外は、実施例 1と同様 にして光記録媒体の製造を試みた。その結果、転写層とポリカーボネート製の透明 のスタンパとが強く接着している為に剥離ができな力つた。実際に、剥離を無理に行 うと、転写層が透明スタンパに接着したまま、記録再生機能層における記録層の界面 で剥離が起こった。そして、スパッタリングした記録層の膜が全面で破れた。
[0168] (実施例 2)
実施例 1の「転写層積層スタンパ製造工程」における 80mWZcm2の UV光の照射 を 10秒間としたこと、及び「第 2記録再生機能層の形成」以降の工程を行わな力つた こと以外は、実施例 1と同様にして光記録媒体の製造を試みた。その結果、剥離工程 において、スパッタリングした記録層の膜が部分的に剥離したのみで、転写層と透明 スタンパとの剥離は概ね良好に行うことができた。
[0169] (実施例 3 :転写層および下中間層の榭脂材料を変えた実験)
(第 1記録媒体製造工程)
溝深さ約 20nm、ピッチ約 0. 32 mの溝を転写した厚さ 1. 1mmのポリカーボネー ト製基板を用意した。上記基板の溝形状が形成された表面に書き換え可能型の記録 再生機能層(書き換え可能型の媒体の例 1、膜面入射構成)をスパッタリングにて形 成した。このようにして、第 1記録媒体を製造した。
[0170] (転写層積層スタンパ製造工程)
溝深さ約 20nm、ピッチ約 0. 32 mの溝を転写した厚さ 0. 6mm、外径 120mmの ポリカーボネート製の透明スタンパを射出成型により作製した。このスタンパの溝形状 が形成された表面の上にラジカル系紫外線硬化性榭脂 (ラジカル重合型の紫外線 硬化性榭脂) C (アクリル系榭脂、粘度約 300MPa' s)をスピンコート法により塗布し た。そして、上記ラジカル系紫外線硬化性榭脂 Cを厚さ約 4 mの薄膜状とした後、 高速の振り切り回転を停止した。このようにして、紫外線硬化性榭脂の膜をスタンパ 上に形成した。
[0171] その後、大気雰囲気下で、 22mWZcm2のほぼ一様な強度分布を持つ UV光 (光 源:ハリソン東芝製トスキユア 751)を、上記紫外線硬化性榭脂の膜の全面に 3秒間 照射した。照射後、紫外線硬化性榭脂の膜の表面を触るとべとつく状態であった。次 に、窒素雰囲気下で、 80mWZcm2のほぼ一様な強度分布を持つ光源による UV光 を、上記紫外線硬化性榭脂の膜の全面に 1秒間照射した。このようにして転写層を得 た。転写層の表面状態は、鋭利な金属で擦っても傷が付き難い状態であった。 以上のようにして転写層積層スタンパを製造した。
[0172] (接合工程)
第 1記録媒体の記録再生機能層上の表面に、ラジカル系紫外線硬化性榭脂 (ラジ カル重合型の紫外線硬化性榭脂) D (アクリル系榭脂、粘度約 lOOOMPa' s)を、半 径約 35mmの位置に一周リング状に塗布した。そして、ラジカル系紫外線硬化性榭 脂 Dと転写層とを向かい合うようにして、ラジカル系紫外線硬化性榭脂 D上に、上記 転写層積層スタンパを載置した。ラジカル系紫外線硬化性榭脂 Dが第 1記録媒体お よび転写層積層スタンパの端部まで延伸されたところで、第 1記録媒体を 5000rpm で回転させて、余分なラジカル系紫外線硬化性榭脂 Dを第 1記録媒体および転写層 積層スタンパの外部へ振り切った。その後、スタンパ側から同光源による 80mWZc m2のほぼ一様な強度分布を持つ UV光を全面に 6秒間照射して下中間層を硬化さ せた。
[0173] (剥離工程)
その後、透明スタンパを転写層から剥離させると、透明スタンパと転写層との界面で 、全面にわたりムラ無く良好な状態で剥離を行うことができた。
[0174] (実施例 4 :半硬化を窒素下で行った実験)
(第 1記録媒体製造工程)
溝深さ約 20nm、ピッチ約 0. 32 mの溝を転写した厚さ 1. 1mmのポリカーボネー ト製基板を用意した。上記基板の溝形状が形成された表面に書き換え可能型の記録 再生機能層(書き換え可能型の媒体の例 1、膜面入射構成)をスパッタリングにて形 成した。このようにして、第 1記録媒体を製造した。
[0175] (転写層積層スタンパ製造工程)
溝深さ約 20nm、ピッチ約 0. 32 mの溝を転写した厚さ 0. 6mm、外径 120mmの ポリカーボネート製の透明スタンパを射出成型により作製した。このスタンパの溝形状 が形成された表面の上にラジカル系紫外線硬化性榭脂 (ラジカル重合型の紫外線 硬化性榭脂) A (アクリル系榭脂、粘度約 300MPa' s)をスピンコート法により塗布し た。そして、上記ラジカル系紫外線硬化性榭脂 Aを厚さ約 4 mの薄膜状とした後、 高速の振り切り回転を停止した。このようにして、紫外線硬化性榭脂の膜をスタンパ 上に形成した。
[0176] その後、窒素雰囲気下で、 lOmWZcm2のほぼ一様な強度分布を持つ UV光(光 源:ハリソン東芝製トスキユア 751)を、上記紫外線硬化性榭脂の膜の全面に 0. 2秒 間照射した。照射後、紫外線硬化性榭脂の膜の表面を触るとべとつく状態であった。 次に、窒素雰囲気下で、 80mWZcm2のほぼ一様な強度分布を持つ光源による UV 光を、上記紫外線硬化性榭脂の膜の全面に 1秒間照射した。このようにして転写層を 得た。転写層の表面状態は、鋭利な金属で擦っても傷が付き難い状態であった。 以上のようにして転写層積層スタンパを製造した。
[0177] (接合工程)
第 1記録媒体の記録再生機能層上の表面に、ラジカル系紫外線硬化性榭脂 (ラジ カル重合型の紫外線硬化性榭脂) D (アクリル系榭脂、粘度約 lOOOMPa' s)を、半 径約 35mmの位置に一周リング状に塗布した。そして、ラジカル系紫外線硬化性榭 脂 Dと転写層とを向かい合うようにして、ラジカル系紫外線硬化性榭脂 D上に、上記 転写層積層スタンパを載置した。ラジカル系紫外線硬化性榭脂 Dが第 1記録媒体お よび転写層積層スタンパの端部まで延伸されたところで、第 1記録媒体を 5000rpm で回転させて、余分なラジカル系紫外線硬化性榭脂 Dを第 1記録媒体および転写層 積層スタンパの外部へ振り切った。その後、スタンパ側から同光源による 80mWZc m2のほぼ一様な強度分布を持つ UV光を全面に 6秒間照射して下中間層を硬化さ せた。
[0178] (剥離工程)
その後、透明スタンパを転写層から剥離させると、透明スタンパと転写層との界面で 、全面にわたりムラ無く良好な状態で剥離することができた。
[0179] (実施例 5)
実施例 4において、転写層を作製する際に、最初に照射する UV照射時間(半硬化 させるための UV照射時間)のみを 0. 2秒力も 0. 5秒にしたこと以外は、実施例 4と同 様にして光記録媒体の製造を試みた。その結果、剥離工程において、スパッタリング した記録膜が部分的に剥離したのみで、転写層と透明スタンパとの剥離は概ね良好 に行うことができた。
[0180] 実施例 4、 5における転写層の形成方法は、転写層への 2回にわたる UV光の照射 の際に、大気中雰囲気力 窒素雰囲気への切り替えが不要になる利点はある。しか し、転写層積層スタンパ製造工程における、半硬化をさせる際に用いる UV光の照射 強度と、さらに硬化を行う際(2回目の硬化)に用いる UV光の照射強度とが差が比較 的大きい。このため、同一の UV照射装置 (UV光源)で半硬化及びその後の硬化を 行おうとすると、工業的に使用できる UV照射装置 (UV光源)の機種が限定される傾 向となる。また、半硬化の際の紫外線照射強度及び照射時間の適正な範囲が狭くな つて、光記録媒体の製造マージン力 、さくなる傾向となる。このような観点から考える と、半硬化は、酸素が存在する雰囲気下で行うことが好ましいと考える。
[0181] (参考例)
実施例 1の「転写層積層スタンパ製造工程」において、最初に大気下で 200mWZ cm2の UV光を 2秒間照射し、その後の窒素雰囲気下での UV光照射を行わなかつ たこと、及び「第 2記録再生機能層の形成」以降の工程を行わな力つたこと以外は、 実施例 1と同様にして光記録媒体の製造を試みた。ここで、接合工程の前に紫外線 硬化性榭脂の膜の表面状態を確認するために、紫外線硬化性榭脂の膜表面を指で 触ったところ、わずかにベとつく状態(半硬化の状態)であった。つまり、本実験にお いては、転写層を形成せずに、半硬化の状態の紫外線硬化性榭脂の膜を用いて接 合工程を行った。
[0182] 以上の状態において剥離工程を行ったところ、スパッタリングした記録層の膜が部 分的に剥離したのみで、転写層と透明スタンパとの剥離は概ね良好に行うことができ た。し力しながら、 lOOmWZcm2の UV光を用いたこと以外は同様の条件で剥離ェ 程を行ったところ、スパッタリングした記録層の膜が全体的に剥離した。
[0183] 本実験の結果から、半硬化の状態を経由することにより、転写層と透明スタンパとの 剥離を良好に行えるようになることがわかる。しかし、本実験の方法においては、紫外 線硬化性榭脂の膜の表面がタック性を有する状態で接合工程を行って!/、る。このた め、接合工程の際に、転写層と下中間層との間に気泡の巻き込みが発生する場合が あり得る。また、 UV光の照射量が低下すると剥離不良を起こす可能性が有る。このこ とから、生産性を確保するには、 UV光の照射量の大きな装置が必要となり、コスト面 で不利となる。従って、工業生産の際の低コストィ匕を実現し、生産安定性や歩留まり を向上させるためには、半硬化後に酸素濃度を低減させた雰囲気下でのさらなる硬 化を行うことが有効になる。
産業上の利用可能性
[0184] 本発明の光記録媒体の製造方法は、 CD、 DVD, BD等の各種の光記録媒体の分 野において、好適に使用することができる。
尚、本出願は、 2006年 3月 31日付けで出願された日本出願 (特願 2006— 10014 5)に基づいており、その全体が引用により援用される。
図面の簡単な説明
[0185] [図 1]本実施の形態が適用される光記録媒体の製造方法の好ましい一例を説明する ための模式的断面図である。
[図 2]本実施の形態が適用される光記録媒体の製造方法の好ましい一例を説明する ための模式的断面図である。
[図 3]第 2の製造方法における接合工程の一実施形態を説明するための模式的断面 図である。
[図 4]本発明の実施形態が適用される光記録媒体の好ましい一例を説明するための 模式断面図である。
符号の説明
[0186] 1…基板、 2…記録再生機能層、 3…下中間層、 4…スタンパ、 5…紫外線硬化性榭 脂の膜、 6…転写層、 7…中間層、 8…上部記録再生機能層、 100…第 1記録媒体、 200…転写層積層スタンパ、 1000…光記録媒体

Claims

請求の範囲
[1] 凹凸形状を表面に有し、下中間層及び転写層を有する中間層を備えた光記録媒 体の製造方法であって、
基板を有する第 1記録媒体を得る、第 1記録媒体製造工程と、
前記中間層の凹凸形状に対応した転写用凹凸形状を表面に有するスタンパの当 該表面上に紫外線硬化性榭脂の膜を設け、当該紫外線硬化性榭脂の膜に紫外線 を照射して当該紫外線硬化性榭脂の膜を半硬化させた後、酸素濃度を低減させた 雰囲気下で紫外線を照射して当該紫外線硬化性榭脂の膜をさらに硬化させることに よって前記転写層を形成して転写層積層スタンパを得る、転写層積層スタンパ製造 工程と、
前記転写層と前記第 1記録媒体との間に前記下中間層を存在させた状態で、前記 転写層積層スタンパと当該第 1記録媒体とを接合する、接合工程と、
前記スタンパを前記転写層から剥離する、剥離工程と、
を有することを特徴とする光記録媒体の製造方法。
[2] 前記第 1記録媒体製造工程にお!ヽて、前記基板上に記録再生機能層を形成する ことにより前記第 1記録媒体を製造し、
前記接合工程にお!、て、前記転写層と前記記録再生機能層との間に前記下中間 層を存在させた状態で、前記転写層積層スタンパと前記第 1記録媒体とを接合する ことを特徴とする請求項 1に記載の光記録媒体の製造方法。
[3] 前記第 1記録媒体製造工程にお!、て、前記基板上に複数の記録再生機能層を形 成することにより前記第 1記録媒体を製造し、
前記接合工程において、前記転写層と、前記基板から最も遠くに位置する前記記 録再生機能層との間に前記下中間層を存在させた状態で、前記転写層積層スタン パと前記第 1記録媒体とを接合する
ことを特徴とする請求項 1に記載の光記録媒体の製造方法。
[4] 酸素が存在する雰囲気下で紫外線の照射を行うことにより、前記紫外線硬化性榭 脂の膜の半硬化を行うことを特徴とする請求項 1乃至 3のいずれか 1項に記載の光記 録媒体の製造方法。
[5] 前記酸素濃度を低減させた雰囲気が、窒素雰囲気であることを特徴とする請求項 1 乃至 3のいずれか 1項に記載の光記録媒体の製造方法。
[6] 前記下中間層が、前記第 1記録媒体製造工程において、前記第 1記録媒体上に形 成されることを特徴とする請求項 1乃至 3のいずれか 1項に記載の光記録媒体の製造 方法。
[7] 前記接合工程が減圧雰囲気下で行われることを特徴とする請求項 1乃至 3のいず れか 1項に記載の光記録媒体の製造方法。
[8] 前記接合工程において、硬化性榭脂を前記第 1記録媒体上に塗布した後に、当該 硬化性榭脂と前記転写層とを向力 、合うようにして当該硬化性榭脂上に前記転写層 積層スタンパを載置し、当該硬化性榭脂を延伸することによって前記下中間層を形 成することを特徴とする請求項 1乃至 3のいずれか 1項に記載の光記録媒体の製造 方法。
[9] 前記硬化性榭脂が紫外線硬化性榭脂であることを特徴とする請求項 8に記載の光 記録媒体の製造方法。
[10] 前記接合工程が大気中で行われることを特徴とする請求項 8に記載の光記録媒体 の製造方法。
[11] 前記スタンパが、ポリカーボネート系榭脂製であることを特徴とする請求項 1乃至 3 の!、ずれか 1項に記載の光記録媒体の製造方法。
[12] 前記スタンパを前記転写層から剥離した後、当該転写層上に上部記録再生機能 層を形成することを特徴とする請求項 1乃至 3のいずれか 1項に記載の光記録媒体 の製造方法。
[13] 前記記録再生機能層が、前記基板側から反射層及び記録層をこの順に設けてな ることを特徴とする請求項 2又は 3に記載の光記録媒体の製造方法。
[14] 凹凸形状を表面に有し、下中間層及び転写層を有する中間層を備えた光記録媒 体を製造するための製造装置であって、
前記中間層の凹凸形状に対応した転写用凹凸形状を表面に有するスタンパの当 該表面上に紫外線硬化性榭脂の膜を設け、当該紫外線硬化性榭脂の膜に紫外線 を照射して当該紫外線硬化性榭脂の膜を半硬化させる第一硬化手段と、 酸素濃度を低減させた雰囲気下で紫外線を照射して前記紫外線硬化性榭脂の膜 をさらに硬化させることによって前記転写層を形成する第二硬化手段と、 を有することを特徴とする光記録媒体の製造装置。
PCT/JP2007/056941 2006-03-31 2007-03-29 光記録媒体の製造方法 WO2007114285A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006100145 2006-03-31
JP2006-100145 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114285A1 true WO2007114285A1 (ja) 2007-10-11

Family

ID=38563553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056941 WO2007114285A1 (ja) 2006-03-31 2007-03-29 光記録媒体の製造方法

Country Status (2)

Country Link
TW (1) TW200814050A (ja)
WO (1) WO2007114285A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116945A1 (ja) * 2009-04-07 2010-10-14 太陽誘電株式会社 多層型光情報記録媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652936B (zh) * 2012-04-26 2013-12-25 友达光电(苏州)有限公司 光固化方法与光固化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254447A (ja) * 1988-08-18 1990-02-23 Ricoh Co Ltd 光学的記録媒体用基板の製造方法
JP2002230834A (ja) * 2000-06-26 2002-08-16 Tdk Corp 光情報媒体、その製造方法、その記録または再生方法、およびその検査方法
JP2005152751A (ja) * 2003-11-25 2005-06-16 Tdk Corp 保護層の形成方法及び光情報媒体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254447A (ja) * 1988-08-18 1990-02-23 Ricoh Co Ltd 光学的記録媒体用基板の製造方法
JP2002230834A (ja) * 2000-06-26 2002-08-16 Tdk Corp 光情報媒体、その製造方法、その記録または再生方法、およびその検査方法
JP2005152751A (ja) * 2003-11-25 2005-06-16 Tdk Corp 保護層の形成方法及び光情報媒体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116945A1 (ja) * 2009-04-07 2010-10-14 太陽誘電株式会社 多層型光情報記録媒体

Also Published As

Publication number Publication date
TW200814050A (en) 2008-03-16

Similar Documents

Publication Publication Date Title
JP4704133B2 (ja) 光硬化性転写シート、光情報記録媒体及びその製造方法
JP2007294076A (ja) 光記録媒体の製造方法及び光記録媒体の製造装置
US20060145373A1 (en) Process for producing optical recording medium and light transmitting stamper
JP4642539B2 (ja) 光記録媒体
WO2003076541A1 (fr) Feuille adhesive photodurcissable, feuille de transfert photocurcissable, et support d'enregistrement d'informations optiques et son procede de preparation
WO2006013662A1 (ja) 光記録媒体の保護層形成用シート、光記録媒体およびそれらの製造方法
JP4514582B2 (ja) 光記録媒体の製造方法及び光透過性スタンパ
WO2005104116A1 (ja) 光記録媒体
US20070264464A1 (en) Optical recording medium-producing sheet and optical recording medium, and methods of producing the same
WO2007114285A1 (ja) 光記録媒体の製造方法
JP2005108375A (ja) ディスク状記録媒体の製造方法
JP4764055B2 (ja) 光硬化性転写シート、これを用いた光情報記録媒体の製造方法、及び光情報記録媒体
US9196288B2 (en) Process and apparatus for producing optical recording medium
JP2007042212A (ja) 光記録媒体の製造方法
JP5108434B2 (ja) 光記録媒体の製造方法及び製造装置
JP2010086619A (ja) 成形樹脂の製造方法及び光情報記録媒体の製造方法
WO2007058309A2 (ja) 光記録媒体の製造方法及び製造装置
JP4649395B2 (ja) 光記録媒体の製造方法及び製造装置
JP5393045B2 (ja) 光情報記録媒体
JP2007169335A (ja) 光硬化性転写シート、これを用いた光情報記録媒体の製造方法、及び光情報記録媒体
JP4410141B2 (ja) 光情報記録媒体
JP3978402B2 (ja) 光記録媒体の製造方法及び光記録媒体用積層体の製造方法
JP2006269041A (ja) 光ディスク用紫外線硬化型組成物及びこれを用いた光ディスク
JP4856600B2 (ja) 光情報媒体の製造方法
JP4442423B2 (ja) 光記録媒体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2105/MUMNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740379

Country of ref document: EP

Kind code of ref document: A1